

COURSE PROGRAMME

1. Information about the programme

1.1 University	University "Alexandru Ioan Cuza" of Iasi
1.2 Faculty	Faculty of Mathematics
1.3 Department	Department of Mathematics
1.4 Domain	Mathematics
1.5 Cycle	Masters
1.6 Programme / Qualification	Applied Mathematics

2. Information about the course

2.1 Course Name	Variational calculus and optimal control				
2.2 Course taught by	Prof. Ph.D. CATALIN GEORGE LEFTER				
2.3 Seminary / laboratory taught by	Prof. Ph.D. CATALIN GEORGE LEFTER				
2.4 Year	I	2.5 Semester	I	2.6 Type of evaluation*	E

*E - Exam / C - Colloquium / V - Verification

**OB - Obligatory / OP - Optionally / F - Facultative

3. Total hours (estimated per semester and activities)

3.1 Number of hours per week	4	3.2 course	2	3.3 seminary/ laboratory	2
3.4 Total number of hours	56	3.5 course	28	3.6 seminary/ laboratory	28
Distribution					hours
Individual study using textbooks, course notes, bibliography items, etc.					40
Supplementary study (library, on-line platforms, etc.)					35
Individual study for seminary/laboratory, homeworks, projects, etc.					40
Tutoring					0
Examination					4
Other activities					0
3.7 Total hours of individual activity*					119
3.8 Total hours per semester					175
3.9 Credit points					7

4. Pre-requisites - Curriculum (if necessary)

Differential equations. Differential geometry.

Operates with notions, methods, fundamental techniques in Mathematical Analysis, Licence level

5. Conditions (if necessary)

5.1 Course	Lecture hall
5.2 Seminary / Laboratory	Seminar hall

6. Objectives

Professional competencies

CP1.Knowing, understanding and using the fundamental concepts of mathematics and informatics, as well as the principles and methods used in the studied field

CP2.Creative application of research techniques and methods of using various software in engineering practice

Transversal competencies

CT1.The ability to quickly acquire new concepts and technologies that appear in the field of mathematics and computer science

CT3.Basic knowledge to be employed as a mathematician, statistician or actuarial expert

CT4.Acquisition of basic techniques in modeling and solving problems

7. Specific competencies/Learning outcomes

- applies scientific methods
- teach mathematics
- thinks abstractly
- performs analytical mathematical calculations
- think critically

8. Contents

8.1 Course	Teaching methods	Remarks (number of hours, references)
Introductory notions. Examples of problems in Calculus of Variations. First variation of a functional . Euler-Lagrange equations.	Exposition/Interactive presentation	2 hours
Second variation of a functional. Sufficient conditions.	Exposition/Interactive presentation	2 hours
Hamiltonian systems. Hamiltonian formalism.	Exposition/Interactive presentation	2 hours
Total variation of a functional. Problems with end points on manifolds, transversality conditions. Non-smooth extremals, Weierstrass-Erdmann conditions.	Exposition/Interactive presentation	2 hours
Hamilton-Jacobi equation. Jacobi method for integrating hamiltonian systems.	Exposition/Interactive presentation	2 hours
Control of differential systems - an introduction. Linear systems - controllability.	Exposition/Interactive presentation	2 hours
Linear systems with convex cost functional. Optimality conditions. Pontriagin maximum principle.	Exposition/Interactive presentation	2 hours
Dynamic programming equation. Linear equations with quadratic cost functional. Riccati equations.	Exposition/Interactive presentation	2 hours
Stabilization of linear differential equations. Algebraic Riccati equations.	Exposition/Interactive presentation	2 hours
Representation of differential equations on differentiable manifolds.	Exposition/Interactive presentation	2 hours
Controllability of differential systems. Orbit theorem and consequences.	Exposition/Interactive presentation	2 hours
Analytic systems. Integrability, Frobenius theorem.	Exposition/Interactive presentation	2 hours
Attainable sets and optimal control problems. Geometric form of Pontriagin maximum principle.	Exposition/Interactive presentation	2 hours
Optimal control problems with free final time. Maximum principle for free time problems	Exposition/Interactive presentation	2 hours

Bibliography

Main references:

- V. Barbu, Mathematical methods in optimization of differential systems, Kluwer Academic Publishers, Dordrecht, 1994
- Cătălin Lefter, Calculus of Variations and Control Theory - available on the personal web page.
-

Supplementary references:

- I.M. Gelfand, S.V. Fomin, Calculus of variations, 2000
- J. Zabczyk, Mathematical control theory; an introduction, Birkhauser, Boston, 2008.

8.2 Seminary / Laboratory	Teaching methods	Remarks (number of hours, references)
Introductory notions. Examples of problems in Calculus of Variations. First variation of a functional . Euler-Lagrange equations.	Interactive presentation/Exercises/Dialogue	2 hours
Second variation of a functional. Sufficient conditions.	Interactive presentation/Exercises/Dialogue	2 hours
Hamiltonian systems. Hamiltonian formalism.	Interactive presentation/Exercises/Dialogue	2 hours
Total variation of a functional. Problems with end points on manifolds, transversality conditions. Non-smooth extremals, Weierstrass-Erdmann conditions.	Interactive presentation/Exercises/Dialogue	2 hours
Hamilton-Jacobi equation. Jacobi method for integrating hamiltonian systems.	Interactive presentation/Exercises/Dialogue	2 hours
Control of differential systems - an introduction. Linear systems - controllability.	Interactive presentation/Exercises/Dialogue	2 hours
Linear systems with convex cost functional. Optimality conditions. Pontriagin maximum principle.	Interactive presentation/Exercises/Dialogue	2 hours
Dynamic programming equation. Linear equations with quadratic cost functional. Riccati equations.	Interactive presentation/Exercises/Dialogue	2 hours
Stabilization of linear differential equations. Algebraic Riccati equations.	Interactive presentation/Exercises/Dialogue	2 hours
Representation of differential equations on differentiable manifolds.	Interactive presentation/Exercises/Dialogue	2 hours
Controllability of differential systems. Orbit theorem and consequences.	Interactive presentation/Exercises/Dialogue	2 hours
Analytic systems. Integrability, Frobenius theorem.	Interactive presentation/Exercises/Dialogue	2 hours
Attainable sets and optimal control problems. Geometric form of Pontriagin maximum principle.	Interactive presentation/Exercises/Dialogue	2 hours
Optimal control problems with free final time. Maximum principle for free time problems	Interactive presentation/Exercises/Dialogue	2 hours

Bibliography

Bibliography

- V. Barbu, Mathematical methods in optimization of differential systems, Kluwer Academic Publishers, Dordrecht, 1994
- I. M. Gelfand, S. V. Fomin, Calculus of variations, 2000

9. Coordination of the contents with the expectations of the community representatives, professional associations and relevant employers in the corresponding domain

The material in this course is chosen in order to offer the students a unified understanding of the fundamental ideas studied in the courses of Theoretical mechanics, Differential geometry, Differential equations. It offers an introduction to the modern field of Control theory which is directly connected to the practical applications of Mathematics.

10. Assessment and examination

10.1 Continuous assessment		Percentage (min. 30%)	30
Course		Written assessment	
Assessment type			
Percentage			30
Failure to pass the continuous assessment results in failure to pass the final assessment			Yes
Assessment methods	Details	Percentage	with reexamination
	Continuous written assessment	50	Yes
	Test	50	Yes

Seminary / Laboratory	Assessment type	Written assessment	
	Percentage	70	
	Failure to pass the continuous assessment results in failure to pass the final assessment	Yes	
	Assessment methods	Details	Percentage with reexamination
	Continuous written assessment	50	Yes
	Test	50	Yes

10.2 Final assessment	Percentage (max. 70%)	70
	Assessment type	Final mixed assessment

10.3 Special notes (special situations in assessment)

10.4 Minimum performance standard

Date, **Course coordinator,**
Prof. PhD. CATALIN GEORGE LEFTER **Seminary coordinator,**
Prof. PhD. CATALIN GEORGE LEFTER

Aproval date in the department,

**Head of the department,
Prof. PhD. IONEL DUMITREL GHIBA**