

COURSE PROGRAMME

1. Information about the programme

1.1 University	University "Alexandru Ioan Cuza" of Iasi
1.2 Faculty	Faculty of Mathematics
1.3 Department	Department of Mathematics
1.4 Domain	Mathematics
1.5 Cycle	Masters
1.6 Programme / Qualification	Applied Mathematics

2. Information about the course

2.1 Course Name	Graph theory				
2.2 Course taught by	Prof. Ph.D. MARIUS TARNAUCEANU				
2.3 Seminary / laboratory taught by	Prof. Ph.D. MARIUS TARNAUCEANU				
2.4 Year	I	2.5 Semester	I	2.6 Type of evaluation*	E

*E - Exam / C - Colloquium / V - Verification

**OB - Obligatory / OP - Optionally / F - Facultative

3. Total hours (estimated per semester and activities)

3.1 Number of hours per week	4	3.2 course	2	3.3 seminary/ laboratory	2
3.4 Total number of hours	56	3.5 course	28	3.6 seminary/ laboratory	28
Distribution					hours
Individual study using textbooks, course notes, bibliography items, etc.					50
Supplementary study (library, on-line platforms, etc.)					20
Individual study for seminary/laboratory, homeworks, projects, etc.					20
Tutoring					0
Examination					4
Other activities					0
3.7 Total hours of individual activity*					94
3.8 Total hours per semester					150
3.9 Credit points					6

4. Pre-requisites - Curriculum (if necessary)

Completion of the following courses: "Logic and set theory", "Fundamental algebraic structures", "Arithmetics and Combinatorics".

5. Conditions (if necessary)

5.1 Course	Amphitheatre
5.2 Seminary / Laboratory	Seminar room

6. Objectives

General objective: The main goal of this course is to present some basic notions and results of graph theory. These will be used to develop algorithms and to write computer programs.

Specific objectives: Upon successful completion of this discipline, students will be able to:

- Describe and exemplify the fundamental notions of graph theory
- Apply the main studied results
- Use some theoretical results in solving problems
- Write computer programs based on algorithms

7. Specific competencies/Learning outcomes

- applies scientific methods
- teach mathematics
- teach digital literacy
- thinks abstractly
- finds solutions to problems

8. Contents

8.1 Course	Teaching methods	Remarks (number of hours, references)
Graphs, digraphs, and generalizations	Exposition, conversation, demonstration	2 hours
Methods of representing graphs and digraphs	Exposition, conversation, demonstration	2 hours
Subgraphs and graph homomorphisms	Exposition, conversation, demonstration	2 hours
Degrees. Indegrees and outdegrees	Exposition, conversation, demonstration	2 hours
Paths, cycles, and circuits	Exposition, conversation, demonstration	2 hours
Connectivity	Exposition, conversation, demonstration	2 hours
Some important classes of graphs: complete graphs, planar graphs, bipartite graphs, regular graphs	Exposition, conversation, demonstration	2 hours
Trees. Partial trees	Exposition, conversation, demonstration	2 hours
Minimum cost trees. The algorithms of Kruskal and Prim	Exposition, conversation, demonstration	2 hours
Counting problems for trees	Exposition, conversation, demonstration	2 hours
Graph search algorithms	Exposition, conversation, demonstration	2 hours
Shortest / longest path problems	Exposition, conversation, demonstration	2 hours
The algorithms of Dantzig & Ford, Dijkstra, and Floyd & Warshall	Exposition, conversation, demonstration	2 hours
The critical path method	Exposition, conversation, demonstration	2 hours

Bibliography

Main references:

- Tărnăuceanu, M., "Introduction to graph theory", Ed. Matrix Rom, Bucureşti, 2025.

Other references:

- Smadici, C., "Introducere în analiza combinatorie", Ed. Matrix Rom, Bucureşti, 2007.
- Tomescu, I., "Introducere în combinatorică", Ed. Tehnică, Bucureşti, 1972.

8.2 Seminary / Laboratory	Teaching methods	Remarks (number of hours, references)
Graphs, digraphs, and generalizations	Exercise, conversation	2 hours
Methods of representing graphs and digraphs	Exercise, conversation	2 hours
Subgraphs and graph homomorphisms	Exercise, conversation	2 hours
Degrees. Indegrees and outdegrees	Exercise, conversation	2 hours
Paths, cycles, and circuits	Exercise, conversation	2 hours
Connectivity	Exercise, conversation	2 hours
Some important classes of graphs: complete graphs, planar graphs, bipartite graphs, regular graphs	Exercise, conversation	2 hours
Trees. Partial trees	Exercise, conversation	2 hours
Minimum cost trees. The algorithms of Kruskal and Prim	Exercise, conversation	2 hours
Counting problems for trees	Exercise, conversation	2 hours
Graph search algorithms	Exercise, conversation	2 hours
Shortest / longest path problems	Exercise, conversation	2 hours
The algorithms of Dantzig & Ford, Dijkstra, and Floyd & Warshall	Exercise, conversation	2 hours
The critical path method	Exercise, conversation	2 hours

Bibliography

Main references:

- Tărnăuceanu, M., "Introduction to graph theory", Ed. Matrix Rom, Bucureşti, 2025.

Other references:

- Tomescu, I., "Probleme de combinatorică și teoria grafurilor", E.D.P., Bucureşti, 1981.

9. Coordination of the contents with the expectations of the community representatives, professional associations and relevant employers in the corresponding domain

The course presents some basic notions and results of graph theory. These are useful in all computer science jobs.

10. Assessment and examination

10.1 Continuous assessment		Percentage (min. 30%)	75
Course		Assessment type	Mixed assessment
Percentage			50
Failure to pass the continuous assessment results in failure to pass the final assessment			No
Assessment methods		Details	Percentage with reexamination
		Continuous written assessment	50% Yes
		Test	30% Yes
		Current assessment	20% No

Seminary / Laboratory	Assessment type	Mixed assessment		
	Percentage	50		
	Failure to pass the continuous assessment results in failure to pass the final assessment	No		
	Assessment methods	Details	Percentage	with reexamination
	Continuous written assessment	50%	Yes	
	Test	30%	Yes	
	Current assessment	20%	No	

10.2 Final assessment	Percentage (max. 70%)	25
	Assessment type	Final mixed assessment

10.3 Special notes (special situations is assessment)
The current assessment can be replaced with a report presentation.

10.4 Minimum performance standard

The final mark must be at least 5

Date, **Course coordinator,**
Prof. PhD. MARIUS TARNAUCEANU **Seminary coordinator,**
Prof. PhD. MARIUS TARNAUCEANU

Aproval date in the department,

**Head of the department,
Prof. PhD. IONEL DUMITREL GHIBA**