

COURSE PROGRAMME

1. Information about the programme

1.1 University	University "Alexandru Ioan Cuza" of Iasi
1.2 Faculty	Faculty of Mathematics
1.3 Department	Department of Mathematics
1.4 Domain	Mathematics
1.5 Cycle	Masters
1.6 Programme / Qualification	Applied Mathematics

2. Information about the course

2.1 Course Name	Partial differential equations			
2.2 Course taught by	Prof. Ph.D. SEBASTIAN ANITA			
2.3 Seminary / laboratory taught by	Prof. Ph.D. SEBASTIAN ANITA			
2.4 Year	I	2.5 Semester	II	2.6 Type of evaluation*

*E - Exam / C - Colloquium / V - Verification

**OB - Obligatory / OP - Optionally / F - Facultative

3. Total hours (estimated per semester and activities)

3.1 Number of hours per week	4	3.2 course	2	3.3 seminary/ laboratory	2
3.4 Total number of hours	56	3.5 course	28	3.6 seminary/ laboratory	28
Distribution					hours
Individual study using textbooks, course notes, bibliography items, etc.					56
Supplementary study (library, on-line platforms, etc.)					0
Individual study for seminary/laboratory, homeworks, projects, etc.					59
Tutoring					0
Examination					4
Other activities					0
3.7 Total hours of individual activity*					119
3.8 Total hours per semester					175
3.9 Credit points					7

4. Pre-requisites - Curriculum (if necessary)

Mathematical Analysis, Differential Equations

5. Conditions (if necessary)

5.1 Course	Classes will be held in the amphitheater
5.2 Seminary / Laboratory	Classes will be held in the seminary room

6. Objectives

- Model a variety of real-world phenomena using partial differential equations
- Use the theoretical results to establish the existence and uniqueness of the solutions to some partial differential equations
- To use the theoretical results to establish comparison results for elliptic or for parabolic semilinear equations
- Compute the solutions to certain partial differential equations using the method of separation of variables

7. Specific competencies/Learning outcomes

- applies scientific methods
- thinks abstractly
- performs analytical mathematical calculations

8. Contents

8.1 Course	Teaching methods	Remarks (number of hours, references)
Introduction. The Lebesgue integral	Exposition, mathematical proof	2 hours, [1]
Elliptic equations. Phenomena, boundary conditions. The fundamental solution of the Laplace operator	Exposition, mathematical proof	3 hours, [1]
Distributions	Exposition, mathematical proof	3 hours, [1]
Sobolev spaces	Exposition, mathematical proof	4 hours, [1], [2]
Embedding theorems for Sobolev spaces	Exposition, mathematical proof	4 hours, [1], [2]
Variational theory of elliptic equations with boundary conditions	Exposition, mathematical proof	4 hours, [1], [2]
Eigenfunctions and eigenvalues for the Laplace operator	Exposition, mathematical proof	2 hours, [1]
Parabolic equations. Existence and uniqueness of a weak solution for the mixed problem	Exposition, mathematical proof	4 hours, [1], [2], [3]
Hyperbolic equations. Existence and uniqueness of a weak solution for the mixed problem	Exposition, mathematical proof	4 hours, [1]

Bibliography

- [1] V. Barbu, Probleme la limită pentru ecuații cu derivate parțiale, Editura Academiei Române, București, 1993.
- [2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
- [3] M. H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.

8.2 Seminary / Laboratory	Teaching methods	Remarks (number of hours, references)
Polar, spherical, cylindrical coordinates	Exercise and conversation	2 hours
Special equations and functions	Exercise and conversation	4 hours
Distributional solutions	Exercise and conversation	2 hours
Variable separation method for elliptic equations for rectangular and parallelepipedic domains	Exercise and conversation	3 hours
Variable separation method for elliptic equations for disk and annulus	Exercise and conversation	3 hours
Applications of Lax-Milgram's lemma	Exercise and conversation	4 hours
Eigenvalues and eigenfunctions for the elliptic operators	Exercise and conversation	2 hours
Separation of variables for parabolic equations	Exercise and conversation	4 hours
Separation of variables for hyperbolic equations	Exercise and conversation	4 hours

Bibliography

- 1. G. Aniculăesei, S. Anița, Ecuații cu derivate parțiale. Aplicații, Editura Universității ``Al.I. Cuza" Iași, 2001.

9. Coordination of the contents with the expectations of the community representatives, professional associations and relevant employers in the corresponding domain

The course and seminary aim to provide the basic notions and results of PDEs theory. A special attention will be paid to the modelling of various phenomena via PDEs and to deriving the basic properties of the solutions. The results and methods have several applications in Physics, Chemistry, Economics, Biology, Engineering and provide a strong background for those interested in mathematical research.

10. Assessment and examination

10.1 Continuous assessment		Percentage (min. 30%)	50
Course	Assessment type		
	Percentage		0
	Failure to pass the continuous assessment results in failure to pass the final assessment		
	Assessment methods	Details	Percentage with reexamination
Seminary / Laboratory	Assessment type		Mixed assessment
	Percentage		100
	Failure to pass the continuous assessment results in failure to pass the final assessment		No
	Assessment methods	Details	Percentage with reexamination
		Test	50 No
		Continuous oral assessment	50 No

10.2 Final assessment	Percentage (max. 70%)	50
	Assessment type	Final mixed assessment

10.3 Special notes (special situations in assessment)

LA EVALUAREA FINALA: Din ponderea de 50%:
40% - examenul scris si 10% - examinarea orala

10.4 Minimum performance standard

1. Finding solutions using the method of separation of variables, Fourier series
2. Establishing existence and uniqueness results for the weak solutions of certain PDEs
3. Mastering the basic results: Lax-Milgram's lemma, The embedding theorems, the existence and uniqueness of the weak solutions, etc.
4. Ability of using the theoretical results in different situations

Date,

Course coordinator,
Prof. Ph.D. SEBASTIAN ANITA

Seminary coordinator,
Prof. Ph.D. SEBASTIAN ANITA

Aproval date in the department,

Head of the department,
Prof. Ph.D. IONEL DUMITREL GHIBA