

COURSE PROGRAMME

1. Information about the programme

1.1 University	University "Alexandru Ioan Cuza" of Iasi
1.2 Faculty	Faculty of Mathematics
1.3 Department	Department of Mathematics
1.4 Domain	Mathematics
1.5 Cycle	Masters
1.6 Programme / Qualification	Applied Mathematics

2. Information about the course

2.1 Course Name	Theory of codes				
2.2 Course taught by	Assoc. Prof. PhD. AURELIAN CLAUDIU VOLF				
2.3 Seminary / laboratory taught by	Assoc. Prof. PhD. AURELIAN CLAUDIU VOLF				
2.4 Year	I	2.5 Semester	II	2.6 Type of evaluation*	E

*E - Exam / C - Colloquium / V - Verification

**OB - Obligatory / OP - Optionally / F - Facultative

3. Total hours (estimated per semester and activities)

3.1 Number of hours per week	4	3.2 course	2	3.3 seminary/ laboratory	2
3.4 Total number of hours	56	3.5 course	28	3.6 seminary/ laboratory	28
Distribution					hours
Individual study using textbooks, course notes, bibliography items, etc.					45
Supplementary study (library, on-line platforms, etc.)					27
Individual study for seminary/laboratory, homeworks, projects, etc.					45
Tutoring					0
Examination					2
Other activities					0
3.7 Total hours of individual activity*					119
3.8 Total hours per semester					175
3.9 Credit points					7

4. Pre-requisites - Curriculum (if necessary)

Linear Algebra, Fundamental algebraic structures, Logic and set theory, Arithmetic and combinatorics
--

5. Conditions (if necessary)

5.1 Course	Classroom/lecture theater
5.2 Seminary / Laboratory	Classroom/lecture theater

6. Objectives

Introduce students to the fundamental concepts of the theory and practice of information transmission and error-correcting codes.

Motivating the study of finite fields, linear algebra and polynomial rings by their applications to the theory of error-correcting codes.

Assimilate methods, techniques and algorithms in error-correcting coding theory.

7. Specific competencies/Learning outcomes

- communicates scientific findings
- promotes knowledge transfer
- applies scientific methods

8. Contents

8.1 Course	Teaching methods	Remarks (number of hours, references)
1. Concepts in information theory. Hamming distance. Error correcting codes, the rate and minimum distance	Lecture, heuristic conversation, demonstration	2 ore
2. Error detecting/correcting capacity of a code. Erasures. Shannon theorem	Lecture, heuristic conversation, demonstration	2 ore
3. Linear codes: linear spaces, subspaces, bases, linear maps and matrices, dimension, rank, scalar product, dual	Lecture, heuristic conversation, demonstration	2 ore
4. Linear codes: definitions, examples, generator matrix, parity check matrix, minimum distance. Dual codes. Hamming codes	Lecture, heuristic conversation, demonstration	2 ore
5. Bounds on codes: Singleton, Hamming, Gilbert, Varshamov, Plotkin. Perfect codes, MDS codes	Lecture, heuristic conversation, demonstration	2 ore
6. Irreducible polynomials over Z_p , finite field constructions	Lecture, heuristic conversation, demonstration	2 ore
7. Finite fields: primitive elements, primitive polynomials. MacWilliams identities, applications	Lecture, heuristic conversation, demonstration	2 ore
8. Standard form of a generating matrix, information set. Coding algorithms. Decoding, cosets, syndroms	Lecture, heuristic conversation, demonstration	2 ore
9. New codes from old. Reed-Muller codes	Lecture, heuristic conversation, demonstration	2 ore
10. Cyclic codes: connection with the ideals of $F[X]/(X^n - 1)$, generator polynomial. Definition set of a cyclic code, Reed-Solomon codes	Lecture, heuristic conversation, demonstration	2 ore
11. BCH codes, BCH bound, connection with Hamming codes	Lecture, heuristic conversation, demonstration	2 ore
12. Peterson-Gorenstein Ziegler decoding algorithm	Lecture, heuristic conversation, demonstration	2 ore
13. Concatenation, interleaving. Compact disc error correcting scheme	Lecture, heuristic conversation, demonstration	2 ore
14. CRC. Other applications of codes: compression, cryptography	Lecture, heuristic conversation, demonstration	2 ore

Bibliography

1. Huffman, W., Pless, V., *Fundamentals of Error-Correcting Codes*, Cambridge University Press 2003.
2. Ling, S., Xing, C., *Coding Theory. A First Course*, Cambridge University Press, 2004.
3. Volf, A. C., *Introducere în teoria codurilor*, Editura Al. Myller, Iași, 2013.
4. Volf, A. C., *Algebra liniară*, Editura Universității "Al. I. Cuza" Iași, 2002.

8.2 Seminary / Laboratory	Teaching methods	Remarks (number of hours, references)
1. Examples of error-correcting codes. Hamming distance properties, rate. Repetition codes, parity codes	exercise, dialogue, problematization	2 ore
2. Hamming bound, perfect codes, ISBN	exercise, dialogue, problematization	2 ore
3. Problems on linear spaces, linear mappings, matrices, rank, scalar product	exercise, dialogue, problematization	2 ore
4. Codes defined by generator matrices, parity check matrices. Determining code parameters; dual codes. Examples of Hamming codes	exercise, dialogue, problematization	2 ore
5. Bounds: Singleton, Hamming, Gilbert, Varshamov, Plotkin. Perfect codes, MDS codes	exercise, dialogue, problematization	2 ore
6. Constructions of finite fields, applications	exercise, dialogue, problematization	2 ore
7. Compute primitive elements and primitive polynomials. MacWilliams identities and dual codes	exercise, dialogue, problematization	2 ore
8. Find standard forms of the generator matrix, applications. Compute syndrom tables	exercise, dialogue, problematization	2 ore
9. Constructions of codes, determining best codes with given length and dimension	exercise, dialogue, problematization	2 ore
10. Problems on cyclic codes	exercise, dialogue, problematization	2 ore
11. Problems on BCH codes	exercise, dialogue, problematization	2 ore
12. BCH codes and decoding	exercise, dialogue, problematization	2 ore
13. Construction of concatenated and interleaved codes, burst error correcting codes	exercise, dialogue, problematization	2 ore
14. Examples of CRC error-detection schemes, computation of various parameters	exercise, dialogue, problematization	2 ore

Bibliography

1. Huffman, W., Pless, V., Fundamentals of Error-Correcting Codes, Cambridge University Press 2003.
2. Ling, S., Xing, C., Coding Theory. A First Course, Cambridge University Press, 2004.
3. Volf, A. C, Introducere în teoria codurilor, Editura Al. Myller, Iași, 2013.
4. Zaragoza, R.M, The art of Error-Correcting Coding, John Wiley, 2002.

9. Coordination of the contents with the expectations of the community representatives, professional associations and relevant employers in the corresponding domain

Error correcting codes are ubiquitous and indispensable in all devices and technologies used in storing and transmitting digital data: optical media storage (CD, DVD, Blu-Ray), hard disks, RAM memories, SSD, deep space data transmissions, wireless, QR codes etc. Knowledge of the principles and methods that form the basis of error correcting coding is useful and often essential to future IT specialists, and it marks a strong point in any CV of IT-related professional.

10. Assessment and examination

10.1 Continuous assessment		Percentage (min. 30%)	30
Course		Assessment type	
Percentage			0
Failure to pass the continuous assessment results in failure to pass the final assessment			
Assessment methods		Details	Percentage with reexamination

Seminary / Laboratory	Assessment type	Mixed assessment		
	Percentage	100		
	Failure to pass the continuous assessment results in failure to pass the final assessment	No		
	Assessment methods	Details	Percentage	with reexamination
		Essay	50	No
		Continuous oral assessment	50	No

10.2 Final assessment	Percentage (max. 70%)	70
	Assessment type	Final mixed assessment

10.3 Special notes (special situations in assessment)

10.4 Minimum performance standard	
<ul style="list-style-type: none">- Knowledge of the fundamental notions, understanding of main results- Solving some basic exercises and problems- writing and presenting a project or report of minimal difficulty	

Date, **Course coordinator,** **Seminary coordinator,**
Assoc. Prof. PhD. AURELIAN CLAUDIU VOLF **Assoc. Prof. PhD. AURELIAN CLAUDIU VOLF**

Aproval date in the department,

**Head of the department,
Prof. PhD. IONEL DUMITREL GHIBA**