NEW SHARP BOUNDS FOR GAMMA AND DIGAMMA FUNCTIONS

BY

CRISTINEL MORTICI

Abstract. Motivated by Sandor and Debnath, Batir, we prove that a function involving gamma function is completely monotonic. As applications, we establish new upper and lower bounds for the gamma and digamma functions, with sharp constants.

Mathematics Subject Classification 2000: 30E15, 26D07, 41A60.
Key words: factorial function, gamma function, digamma and polygamma functions, completely monotonic function, inequalities, Euler constant.

1. Introduction

We discuss here the approximations of the factorial function of the form

\[n^{n+1}e^{-n}\sqrt{2\pi} \leq n! < \frac{n^{n+1}e^{-n}\sqrt{2\pi}}{\sqrt{n-\alpha}}, \]

where \(\alpha, \beta \) are real parameters. The bounds (1.1) were stated in Sandor and Debnath [9] with \(\alpha = 0 \) and \(\beta = 1 \). Their result was rediscovered by Guo [5]. Very recently, Batir [3] determined the largest number \(\alpha = 1 - \frac{1}{2\pi}e^{-2} \) and the smallest number \(\beta = \frac{1}{6} \) such that the inequalities (1.1) hold for all \(n = 1, 2, 3, \ldots \).

Numerical computations made in [3] show that the upper approximation

\[n! \approx \frac{n^{n+1}e^{-n}\sqrt{2\pi}}{\sqrt{n-1/6}} \]

is better than the other lower approximation from (1.1) (with \(\alpha = 1-2\pi e^{-2} \)) and also it is more accurate than other known formulas as Stirling’s formula,
or Burnside’s formula. These facts entitled us to consider the following function associated with the approximation (1.2):

\[f(x) = \ln \Gamma(x + 1) - (x + 1) \ln x + x - \ln \sqrt{2\pi} + \frac{1}{2} \ln \left(x - \frac{1}{6} \right). \]

We prove that \(-f\) is strictly completely monotonic and as a direct consequence, we establish new double inequalities for \(x \geq 1\):

\[
\omega \cdot \frac{x^{x+1}e^{-x} \sqrt{2\pi}}{\sqrt{x-1/6}} \leq \Gamma(x + 1) < \frac{x^{x+1}e^{-x} \sqrt{2\pi}}{\sqrt{x-1/6}},
\]

where \(\omega = e^{\sqrt{\frac{5}{12\pi}}} = 0.98995\ldots\) is best possible. Moreover, the following double inequality for \(x \geq 1\) is established:

\[
\frac{1}{x} - \frac{1}{2(x - \frac{1}{6})} < \psi(x) - (\ln x - \frac{1}{x}) < \frac{1}{x} - \frac{1}{2(x - \frac{1}{6})} + \zeta,
\]

where \(\zeta = -\gamma + \frac{3}{5} = 0.022785\ldots\) (\(\gamma = 0.577215\ldots\) is the Euler constant).

2. The results

The gamma \(\Gamma\) and digamma \(\psi\) functions are defined by

\[
\Gamma(x) = \int_0^{\infty} t^{x-1}e^{-t}dt, \quad \psi(x) = \frac{d}{dx} (\ln \Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}
\]

for all complex numbers \(x\) with \(\text{Re} \, x > 0\), but here we restrict them to positive real numbers \(x\). We also have \(\psi(x + 1) = \psi(x) + \frac{1}{x}\), for all \(x > 0\). The gamma function is an extension of the factorial function, since \(\Gamma(n + 1) = n!\), for \(n = 0, 1, 2, 3\ldots\). The derivatives \(\psi', \psi'', \ldots\), known as polygamma functions, have the following integral representations:

\[
\psi^{(n)}(x) = (-1)^{n-1} \int_0^{\infty} \frac{t^n e^{-xt}}{1 - e^{-t}} dt
\]

for \(n = 1, 2, 3, \ldots\). For proofs and other details, see for example, [2]. We also use the following integral representation

\[
\frac{1}{x^n} = \frac{1}{(n-1)!} \int_0^{\infty} t^{n-1} e^{-xt} dt, \quad n \geq 1.
\]

Recall that a function \(f\) is completely monotonic in an interval \(I\) if \(f\) has derivatives of all orders in \(I\) such that \((-1)^n f^{(n)}(x) \geq 0\), for all \(x \in I\)
and \(n = 0, 1, 2, 3 \ldots \). If this inequality is strict for all \(x \in I \) and all non-negative integers \(n \), then \(f \) is said to be strictly completely monotonic.

Completely monotonic functions involving \(\ln \Gamma(x) \) are important because they produce bounds for the polygamma functions. A consequence of the famous Hausdorff-Bernstein-Widder theorem states that \(f \) is completely monotonic on \([0, \infty)\) if and only if \(f(x) = \int_0^\infty e^{-xt} \varphi(t) \, dt \), where \(\varphi \) is a non-negative function on \([0, \infty)\) such that the integral converges for all \(x > 0 \), see [10, p. 161].

Lemma 2.1. For the sequence \(x_n = \frac{1}{2}(\frac{7^{n-1}}{6^{n-1}}) + \frac{1}{n} - 1 \) we have \(x_n > 0 \), for all \(n \geq 4 \).

Proof. First note that \(x_4 = \frac{1}{21} \) and \(x_5 = \frac{17}{135} \), so we are concentrated to show that \(x_n > 0 \), for all \(n \geq 6 \).

The function \(g(x) = (7^x - 1)/6^x \) is strictly increasing, since \(g'(x) = \frac{1}{6^x} (\ln 6 + 7^x \ln \frac{7}{6}) > 0 \). Then for all \(n \geq 6 \), we have \(x_n > \frac{1}{2}(\frac{7^{n-1}}{6^{n-1}}) - 1 \geq \frac{17}{5} (\frac{7^3 - 1}{6^3}) - 1 > 0 \) and the conclusion follows. \(\Box \)

Now we are in position to prove the following

Theorem 2.1. Let \(f : (1/6, \infty) \to \mathbb{R} \), given by \(f(x) = \ln \Gamma(x + 1) - (x + 1) \ln x + x - \ln \sqrt{2\pi} + \frac{1}{2} \ln (x - \frac{1}{6}) \). Then \(-f\) is strictly completely monotonic.

Proof. We have \(f'(x) = \psi(x) - \ln x + \frac{1}{2(x - \frac{1}{6})} \) and \(f''(x) = \psi'(x) - \frac{1}{x} - \frac{1}{2(x - \frac{1}{6})^2} \). Using the representations (2.1)-(2.2), we obtain \(f''(x) = \int_0^\infty e^{-xt} \varphi(t) \, dt \), where \(\varphi(t) = te^t - (e^t - 1) - \frac{1}{2}(e^{\frac{2}{3}t} - e^{\frac{1}{3}t}) \), or \(\varphi(t) = -\sum_{n=4}^{\infty} \frac{x_n}{(n-1)!} t^n \), where \((x_n)_{n \geq 4} \) is defined in Lemma 2.1. According to Lemma 2.1, we have \(\varphi < 0 \) and then, \(-f''\) is strictly completely monotonic.

Now, \(f' \) is strictly decreasing, since \(f'' < 0 \). But we have \(\lim_{x \to \infty} f'(x) = 0 \), so \(f'(x) > 0 \) and consequently, \(f \) is strictly increasing. Using the fact that \(\lim_{x \to \infty} f(x) = 0 \), we deduce that \(f < 0 \). Finally, \(-f\) is strictly completely monotonic. \(\Box \)

As a direct consequence of the fact that \(f \) is strictly increasing, we have \(f(1) \leq f(x) < \lim_{x \to \infty} f(x) = 0 \), for all \(x \geq 1 \). As \(f(1) = 1 + \ln \sqrt{\frac{5}{12\pi}} \), we derive

\[
\omega \cdot \frac{x^{x+1}e^{-x}\sqrt{2\pi}}{\sqrt{x-1/6}} \leq \Gamma(x + 1) < \frac{x^{x+1}e^{-x}\sqrt{2\pi}}{\sqrt{x-1/6}},
\]

where \(\omega \) is a constant.
where $\omega = e^{\sqrt{\frac{3}{12\pi}}}$ is best possible.

Using the fact that f' is strictly decreasing, we have $\lim_{x \to \infty} f'(x) = 0 < f'(x) < f'(1)$, for all $x \geq 1$. As we have $f'(1) = -\gamma + \frac{3}{5} = 0.022785 \ldots$, we obtain $-\frac{1}{2(x-\frac{1}{4})} < \psi(x) - \ln x < -\frac{1}{2(x-\frac{1}{8})} + \zeta$, with best possible constant $\zeta = -\gamma + \frac{3}{5} = 0.022785 \ldots$, which improve other results of the form $\ln x - \frac{1}{x} < \psi(x) < \ln x - \frac{1}{2x}$, $x > 1$, see [1, 4, 6, 7, 8].

REFERENCES

Received: 19.V.2009

Valahia University of Târgovişte,
Department of Mathematics,
Bd. Unirii 18, 130082 Târgovişte,
ROMANIA
cmortici@valahia.ro