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Prefa̧t¼a

Acest curs, predat studeņtilor de la Facultatea de Matematic¼a a Universit¼a̧tii Alexandru Ioan
Cuza din Iaşi în anul I de studii de master, reprezint¼a o continuare cursului de Analiz¼a funcţi-
onal¼a de la ciclul de liceņt¼a.
Astfel, presupunem cunoscute elementele de baz¼a ale Analizei funçtionale pe spa̧tii liniare

normate şi pe spa̧tii Hilbert. Totuşi, consider¼am �reasc¼a o recapitulare a acestor elemente
(primele p¼aŗti din Capitolele 1 şi 5). De asememea, cunoaşterea unor elemente de baz¼a de
topologie general¼a este important¼a.
Principalele dezvolt¼ari pe care acest curs le are în vedere sunt urm¼atoarele:

� separarea prin hiperplane a muļtimilor convexe (Capitolul 2);

� principii ale analizei funçtionale (Capitolul 3);

� topologii slabe şi re�exivitate (Capitolul 4);

� alternativa lui Fredholm (Capitolul 4);

� dualitate în spa̧tii Hilbert (Capitolul 5);

� elemente de teorie spectral¼a (Capitolul 5).

Înso̧tim aceste prezent¼ari de probleme şi indica̧tii de rezolvare care pun în evideņt¼a diverse
aspecte ale teoriei sau sunt menite s¼a ofere cititorului un acces direct la utilizarea conceptelor
introduse (Capitolul 6). În �nal, sunt inserate modele de subiecte, atât pentru lucrarea de
parcurs, cât şi pentru examenul �nal.

Toate tematicile prezentate aici (precum şi multe extinderi şi aplica̧tii semni�cative ale aces-
tora) se reg¼asesc în monogra�ile meņtionate în bibliogra�e. În lucrarea de fa̧t¼a, în organizarea
materialului s-a ţinut cont de felul în care acesta se conecteaz¼a la cursurile anterior parcurse,
iar seleçtia problemelor este f¼acut¼a în scopul ilustr¼arii cât mai e�ciente a elementelor teoretice.
De asemenea s-a urm¼arit includerea celor mai naturale sau celor mai simple demonstra̧tii ale
rezultatelor principale. Sursele bibliogra�ce cele mai utilizate pentru �ecare capitol teoretic
sunt urm¼atoarele: pentru Capitolul 1: [8], [4] şi [7]; pentru Capitolul 2, [8] şi [1]; pentru Capi-
tolul 3, [1], [5] şi [8]; pentru Capitolul 4, [1], [5] şi [2]; pentru Capitolul 5, [1], [5], [7] şi [2].
Problemele sunt culese din diverse surse, principalele �ind [6], [3], [5] şi [7].
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6.2 Separarea muļtimilor convexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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Capitolul 1

Recapitulare şi complet¼ari

Primele patru seçtiuni ale acestui capitol recapituleaz¼a no̧tiuni şi rezultate deja întâlnite
la primul curs de Analiz¼a funcţional¼a. Din acest motiv, nu prezent¼am decât sporadic demon-
stra̧tii ale acestor rezultate, punctând în schimb expunerea cu unele exemple care ilustreaz¼a
ideile principale. Seçtiunile a cincea şi a şasea coņtin rezultate (în majoritate) noi care sunt o
continuare �reasc¼a a acestei recapitul¼ari şi pentru care vom prezenta în detaliu demonstra̧tii.

1.1 Spa̧tii liniare normate

De�ni̧tia 1.1.1 Fie E un corp, numit corp de scalari. O mulţime nevid¼a X se numeşte spaţiu
liniar (sau spaţiu vectorial) peste corpul de scalari E dac¼a este de�nit¼a o lege de compoziţie
intern¼a pe X; notat¼a + (adic¼a + : X �X ! X) şi o operaţie extern¼a de înmulţire cu elemente
din E (cu scalari), notat¼a � (adic¼a � : E�X ! X), astfel încât au loc urm¼atoarele condiţii
(i) (X;+) este grup abelian;
(ii) (�+ �) � x = � � x+ � � x; pentru orice �; � 2 E şi orice x 2 X;
(iii) � � (x+ y) = � � x+ � � y; pentru orice � 2 E şi orice x; y 2 X;
(iv) (��) � x = � � (� � x) ; pentru orice �; � 2 E şi orice x 2 X;
(v) 1 � x = x; pentru orice x 2 X:

În general, dac¼a E = R spunem c¼a spa̧tiul vectorial este real, iar dac¼a E = C; spunem c¼a
spa̧tiul vectorial este complex. În acest curs vom considera doar spa̧tii vectoriale reale (deci
vom lua E = R). Majoritatea rezultatelor sunt valabile şi în cazul E = C; dar exist¼a şi unele
difereņte pe care le vom sublinia într-o anex¼a la �nal.

Observa̧tia 1.1.2 Dac¼a X este spaţiu liniar real, elementele sale se numesc vectori sau puncte,
iar numerele reale se numesc scalari. Elementul neutru al grupului (X;+) se numeşte vectorul
nul şi se noteaz¼a cu 0: Uneori, pentru claritate, vom folosi alternativ notaţia 0X : Opusul unui
vector x în acest grup se noteaz¼a cu �x şi se numeşte vectorul opus sau simetric vectorului x:
Ca şi în cazul înmulţirii din R; vom omite de cele mai multe ori s¼a scriem explicit operaţia �:
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Dac¼a A;B � X şi C � R sunt mulţimi nevide, de�nim de asemenea

A+B = fa+ b j a 2 A; b 2 Bg;
�A = f�a j a 2 Ag; A�B = A+ (�1)B;
CA = f�a j � 2 C; a 2 Ag:

Dac¼a � 2 R n f0g şi x 2 X; vom mai scrie x
�
în loc de 1

�
x:

Observa̧tia 1.1.3 În general, vom omite cuvântul "real" din denumirea spaţiului liniar real.

Pentru uşuriņta scrierii, utiliz¼am nota̧tia P := N n f0g :

De�ni̧tia 1.1.4 Fie X spaţiu liniar. O mulţime de vectori E = fei j i 2 Ig ; unde I este o
mulţime de indici, se numeşte baz¼a Hamel sau baz¼a algebric¼a pentru X dac¼a:
(i) pentru orice x 2 X exist¼a n 2 P; �1; :::; �n 2 R şi ei1 ; :::; ein 2 E astfel încât

x =

nX
k=1

�keik ;

(ii) E este liniar independent¼a, adic¼a orice submulţime �nit¼a a sa este liniar independent¼a.

Teorema 1.1.5 Orice spaţiu liniar admite o baz¼a. În plus, orice dou¼a baze sunt cardinal
echivalente şi acest cardinal se numeşte dimensiunea spaţiului.

De�ni̧tia 1.1.6 Fie X un spaţiu liniar. O submulţime Y a lui X se numeşte subspaţiu liniar
al lui X dac¼a împreun¼a cu restricţiile operaţiilor de pe X formeaz¼a un spaţiu liniar.

De�ni̧tia 1.1.7 Dac¼a X este spaţiu liniar şi A o submulţime nevid¼a a sa, atunci subspaţiul
liniar generat de A este

spanA =

(
nX
k=1

�kak j n 2 P; �k 2 R; ak 2 A; 8k 2 1; n
)
:

Este clar c¼a spanA este cel mai mic subspaţiu liniar (în sensul incluziunii) care conţine pe A:

De�ni̧tia 1.1.8 Fie X un spaţiu liniar real. Se numeşte norm¼a pe X o funcţie k�k : X !
[0;1) cu urm¼atoarele propriet¼aţi:
(i) kxk = 0 dac¼a şi numai dac¼a x = 0;
(ii) k�xk = j�j kxk ; pentru orice x 2 X şi � 2 R;
(iii) kx+ yk � kxk+ kyk ; pentru orice x; y 2 X:
Spaţiul vectorial X înzestrat cu norma k�k se numeşte spaţiu liniar normat.

Observa̧tia 1.1.9 Vom folosi deseori şi denumirea de spaţiu vectorial normat sau chiar spaţiu
normat, îns¼aşi de�niţia normei subînţelegând structura liniar¼a.
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Fie (X; k�k) un spa̧tiu liniar normat. Este cunoscut faptul c¼a k�k induce pe X o distaņt¼a
dat¼a prin d : X �X ! [0;1)

d (x; y) = kx� yk
şi o topologie de�nit¼a în mod obi̧snuit.
Preciz¼am nota̧tiile utilizate. Fie x 2 X şi " > 0: Se de�nesc:

� bila deschis¼a cu centrul x şi raza " prin

B (x; ") = fy 2 X j kx� yk < "g ;

� bila închis¼a (sau discul) cu centrul x şi raza " prin

D (x; ") = fy 2 X j kx� yk � "g ;

� sfera cu centrul x şi raza " prin

S (x; ") = fy 2 X j kx� yk = "g :

Atunci când x = 0 şi " = 1 vom mai scrie BX ; DX şi respectiv SX pentru muļtimile de mai
sus. Uneori, când vor ap¼area mai multe spa̧tii liniare normate în cadrul discu̧tiei, pentru mai
mult¼a claritate, vom scrie, de exemplu, BX (x; ") pentru a marca faptul c¼a este vorba despre
bila corespunz¼atoare din spa̧tiul X:
Fie (X; k�k) un spa̧tiu liniar normat şi A � X. Presupunem cunoscute conceptele de mai

jos şi rezultatele fundamentale legate de acestea:

� vecin¼atate a unui punct (not¼am cu V(x) muļtimea tuturor vecin¼at¼a̧tilor lui x);

� muļtime m¼arginit¼a în X;

� muļtime deschis¼a, muļtime închis¼a;

� punct interior unei muļtimi (not¼am cu intA interiorul lui A);

� punct de acumulare a unei muļtimi (not¼am cuA0 muļtimea tuturor punctelor de acumulare
ale lui A);

� punct aderent unei muļtimi (vom folosi nota̧tiile clA şi A pentru a desemna muļtimea
aderent¼a a lui A);

� frontiera unei muļtimi (not¼am cu FrA frontiera lui A);

� muļtime compact¼a;

� muļtime dens¼a în X;

� separabilitatea lui X;
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� şir de elemente ale lui X şi convergeņta unui astfel de şir (vom folosi nota̧tiile xn ! x;
lim
n!1

xn = x sau, mai simplu, limxn = x pentru a spune c¼a şirul (xn) � X este convergent

la x 2 X);

� şir Cauchy sau fundamental.

O no̧tiune care intervine frecvent este urm¼atoarea: o muļtime A � (X; k�k) se numeşte
absorbant¼a dac¼a [

�>0

�A = X;

i.e., 0 2 A şi pentru orice x 2 X exist¼a � > 0 astfel încât �x 2 A:
În particular, orice vecin¼atate a originii este muļtime absorbant¼a.

Observa̧tia 1.1.10 Una dintre propriet¼aţile fundamentale ale vecin¼at¼aţilor punctelor într-un
spaţiu liniar normat este dat¼a de relaţia evident¼a

B (x; ") = x+B (0; ") ; 8x 2 X; 8" > 0:

Aceasta înseamn¼a c¼a putem privi o vecin¼atate a unui punct ca �ind o translaţie a unei vecin¼at¼aţi
a lui 0; ceea ce arat¼a c¼a este su�cient s¼a studiem unele propriet¼aţi topologice doar în 0:

Fie acum (X; k�k) şi (Y; k�k) dou¼a spa̧tii liniare normate. În general, rezult¼a de �ecare dat¼a
din context de care dintre cele dou¼a norme este vorba şi nu vom utiliza nota̧tii diferite pentru ele.
Totuşi, în unele cazuri, vom difereņtia normele de peX; respectiv Y; prin k�kX şi respectiv k�kY :
Din nou, presupunem cunoscute urm¼atoarele concepte şi rezultatele fundamentale asociate:

� limita unei funçtii f : A � X ! Y într-un punct a 2 A0 (vom scrie lim
x!a

f (x) = b pentru

a spune c¼a limita lui f în a este b 2 Y );

� continuitatea unei funçtii f : A � X ! Y într-un punct a 2 A şi continuitatea pe
muļtime;

� uniforma continuitate a unei funçtii f : A � X ! Y:

Observa̧tia 1.1.11 Dac¼a (X; k�k) este un spaţiu liniar normat atunci funcţiile u : X�X ! X
şi v : R�X ! X date prin

u (x; y) = x+ y

v (�; x) = �x

sunt continue (unde, pe spaţiile produs, se consider¼a topologia produs).

De�ni̧tia 1.1.12 Fie (X; k�k) un spaţiu liniar normat şi Y � X un subspaţiu vectorial al lui
X: Atunci restricţia lui k�k la Y este o norm¼a pe care o not¼am la fel şi (Y; k�k) este un spaţiu
liniar normat pe care îl numim subspaţiu liniar normat al lui X:
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De�ni̧tia 1.1.13 Un spaţiu liniar normat (X; k�k) se numeşte complet sau spaţiu Banach dac¼a
orice şir fundamental de elemente din X este convergent.

Urm¼atoarele rezultate sunt cunoscute de la precedentul curs de Analiz¼a funcţional¼a.

Propozi̧tia 1.1.14 Fie (X; k�k) un spaţiu liniar normat şi Y un subspaţiu liniar al s¼au.
(i) Dac¼a (Y; k�k) este complet, atunci Y este închis.
(ii) Dac¼a (X; k�k) este complet şi Y este închis, atunci (Y; k�k) este complet.

De�ni̧tia 1.1.15 Fie X un spaţiu liniar şi k�k1 ; k�k2 dou¼a norme pe X: Spunem c¼a cele dou¼a
norme sunt echivalente dac¼a exist¼a �; � � 0 astfel încât pentru orice x 2 X;

� kxk1 � kxk2 � � kxk1 :

Propozi̧tia 1.1.16 Fie X un spaţiu liniar şi k�k1 ; k�k2 dou¼a norme pe X: Cele dou¼a norme
sunt echivalente dac¼a şi numai dac¼a topologiile induse de ele pe X coincid (adic¼a mulţimile
deschise sunt aceleaşi).

De�ni̧tia 1.1.17 Fie X un spaţiu liniar şi k�k1 ; k�k2 dou¼a norme pe X: Spunem c¼a k�k2 este
mai �n¼a decât k�k1 dac¼a exist¼a � � 0 astfel încât pentru orice x 2 X;

� kxk1 � kxk2 :

Propozi̧tia 1.1.18 Fie X un spaţiu liniar şi k�k1 ; k�k2 dou¼a norme pe X: Atunci k�k2 este
mai �n¼a decât k�k1 dac¼a şi numai dac¼a topologia generat¼a de k�k2 este mai �n¼a decât topologia
generat¼a de k�k1 (adic¼a familia mulţimilor deschise în raport cu k�k1 este inclus¼a în familia
mulţimilor deschise în raport cu k�k2).

Observa̧tia 1.1.19 De exemplu, pentru demonstrarea unei implicaţii din propoziţia de mai
sus, în baza Observaţiei 1.1.10, este su�cient s¼a ar¼at¼am c¼a o bil¼a deschis¼a centrat¼a în 0 în
raport cu k�k1 conţine o bil¼a deschis¼a centrat¼a în 0 în raport cu k�k2 ; ceea ce rezult¼a imediat pe
baza inegalit¼aţii din ipotez¼a.

Pe spa̧tii liniare normate �nit dimensionale au loc o serie de propriet¼a̧ti de cea mai mare
importaņt¼a.

Teorema 1.1.20 Fie X un spaţiu liniar �nit dimensional. Atunci orice dou¼a norme pe X
sunt echivalente.

Teorema 1.1.21 Fie (X; k�k) un spaţiu liniar normat �nit dimensional. Atunci:
(i) (X; k�k) este spaţiu Banach;
(ii) orice şir m¼arginit din (X; k�k) admite un subşir convergent;
(iii) orice submulţime m¼arginit¼a a lui (X; k�k) este relativ compact¼a;
(iv) orice subspaţiu liniar normat al lui (X; k�k) este închis.

Teorema 1.1.22 Fie (X; k�k) un spaţiu liniar normat. Atunci DX este mulţime compact¼a
dac¼a şi numai dac¼a X este de dimensiune �nit¼a.
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1.2 Spa̧tii liniare normate fundamentale

În continuare prezent¼am câteva spa̧tii liniare normate fundamentale.

Exemplul 1.2.1 Fie d 2 P: Consider¼am muļtimea

Rd := f(x1; x2; :::; xd) j xi 2 R; 8i 2 1; dg:

Aceast¼a muļtime se organizeaz¼a ca spa̧tiu vectorial real de dimensiune d cu opera̧tiile standard
de�nite astfel: pentru orice x = (x1; x2; :::; xd); y = (y1; y2; :::; yd) 2 Rd şi orice a 2 R

x+ y = (x1 + y1; x2 + y2; :::; xd + yd) 2 Rd;
ax = (ax1; ax2; :::; axd) 2 Rd:

Conform Teoremelor 1.1.20 şi 1.1.21 pe Rd toate normele sunt echivalente şi induc o structura
de spa̧tiu Banach. În general, normele principale care se consider¼a pe Rd sunt urm¼atoarele:
- norma euclidian¼a:

kxk2 =

vuut dX
i=1

x2i ;

- norma max:
kxk1 = max

�
jxij j i 2 1; d

	
;

- norma sum¼a:

kxk1 =
dX
i=1

jxij :

Pentru compararea acestor norme, a se vedea Problema 2.

Exemplul 1.2.2 Fie d 2 P. Dac¼a X este spa̧tiu liniar de dimensiune d; atunci considerând o
baz¼a algebric¼a B =

�
ek j k 2 1; d

	
ştim c¼a orice element x 2 X se scrie unic în forma

x =
dX
k=1

�kek;

unde �1; :::; �d 2 R. Se de�nesc, ca mai sus, normele
- norma euclidian¼a:

kxk2 =

vuut dX
i=1

�2i ;

- norma max:
kxk1 = max

�
j�ij j i 2 1; d

	
;

- norma sum¼a:

kxk1 =
dX
i=1

j�ij :

Evident, exemplul precedent este coņtinut în exemplul de fa̧t¼a dac¼a consider¼am pe Rd baza
canonic¼a.
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Exemplul 1.2.3 Fie a; b 2 R cu a < b: De�nim

B ([a; b]) = ff : [a; b]! R j f m¼arginit¼a pe [a; b]g ;

C ([a; b]) = ff : [a; b]! R j f continu¼a pe [a; b]g :
Cu opera̧tiile uzuale de adunare a funçtiilor şi de înmuļtire a funçtiilor cu scalari reali, B ([a; b])
este spa̧tiu liniar, iar C ([a; b]) este subspa̧tiu liniar al s¼au.
Evident, ambele spa̧tii sunt in�nit dimensionale: este su�cient s¼a observ¼am c¼a muļtimea

funçtiilor monomiale este liniar independent¼a în C ([a; b]) ; �ind, evident, de cardinal @0:
Pe B ([a; b]) se introduce norma supremum (sau norma convergeņtei uniforme) prin

kfk1 = sup fjf (x)j j x 2 [a; b]g :

Atunci, atât B ([a; b]) ; cât şi C ([a; b]) sunt spa̧tii Banach: a se vedea Problema 3.

Exemplul 1.2.4 Fie a; b 2 R cu a < b: De�nim

C1 ([a; b]) = ff : [a; b]! R j f derivabil¼a cu derivata continu¼a pe [a; b]g :

Se observ¼a c¼a C1 ([a; b]) este subspa̧tiu liniar al lui C ([a; b]) :
Totuşi, (C1 ([a; b]) ; k�k1) nu este subspa̧tiu liniar normat închis, deci (C1 ([a; b]) ; k�k1) nu

este spa̧tiu Banach (a se vedea Propozi̧tia 1.1.14).
Pentru a demonstra aceasta, lu¼am, f¼ar¼a a restrânge generalitatea, [a; b] = [�1; 1] şi conside-

r¼am şirul fn : [�1; 1]! R,
fn (x) = jxj1+

1
n

pentru n 2 P: Atunci
fn

k�k1! f

unde f : [�1; 1]! R, f (x) = jxj : Dar, toate funçtiile fn cu n � 1 sunt de clas¼a C1; în timp ce
f nu este din C1 ([�1; 1]) :
Dac¼a pe C1 ([a; b]) consider¼am norma

kfk = kfk1 + kf 0k1 ;

atunci (C1 ([a; b]) ; k�k) este spa̧tiu Banach: a se vedea Problema 4.

Exemplul 1.2.5 Fie m spa̧tiul liniar al şirurilor numerice m¼arginite. De�nim norma

kxk1 = sup fjxnj j n 2 Pg :

Atunci (m; k�k1) este spa̧tiu Banach: a se vedea Problema 5.
Uneori, din motive pe care le vom discuta ulterior, m se noteaz¼a cu `1:
De�nim, de asemenea, spa̧tiul c al şirurilor numerice convergente. Atunci, (c; k�k1) este

subspa̧tiu liniar normat închis al lui (m; k�k1) ; deci este, la rândul s¼au, spa̧tiu Banach: a se
vedea Problema 5.
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Fie c0 spa̧tiul şirurilor numerice convergente la 0: Din nou, (c0; k�k1) este subspa̧tiu liniar
normat închis al ambelor spa̧tii liniare normate de mai sus. În particular, (c0; k�k1) este spa̧tiu
Banach: a se vedea Problema 5.
Fie p > 0: De�nim

`p =

(
(xn) 2 c0 j

1X
n=0

jxnjp <1
)

care este subspa̧tiu liniar normat al lui (c0; k�k1) : Avem

`p
k�k1 = c0:

Într-adev¼ar, incluziunea `p
k�k1 � c0 este evident¼a. Invers, pentru x = (xn) 2 c0 de�nim pentru

orice n
yn = (x1; :::; xn; 0:::) 2 `p

şi avem
kx� ynk1 = sup

k>n
jxkj ! 0:

Prin urmare, cum `p 6= c0; (`
p; k�k1) nu este spa̧tiu Banach.

Acum, pentru p � 1; de�nim pe `p norma

kxkp =
 1X
n=0

jxnjp
! 1

p

:

Este clar c¼a pentru orice x 2 `p;
kxk1 � kxkp ;

deci topologia dat¼a de k�kp este mai �n¼a decât topologia dat¼a de kxk1 pe `p:
Cu aceast¼a norm¼a `p este spa̧tiu Banach: a se vedea Problema 6

Exemplul 1.2.6 Not¼am prin c00 spa̧tiul liniar al şirurilor numerice care au to̧ti termenii nuli
de la un loc încolo (uneori, acest spa̧tiu se noteaz¼a R1). Dac¼a ne uit¼am la argumentele de mai
sus, de fapt am demonstrat şi c¼a c00k�k1 = c0; deci nici (c00; k�k1) nu este spa̧tiu Banach.

Observa̧tia 1.2.7 Fie 1 < p < r: Avem urm¼atoarele incluziuni (care sunt stricte) între spaţiile
liniare discutate:

c00 = R1 � `1 � `p � `r � c0 � c � m = `1:

Mai mult, se veri�c¼a cu uşurint¼a faptul c¼a pentru orice x 2 `1;

kxk1 � kxkr � kxkp � kxk1 :

Observ¼am din nou c¼a toate aceste spaţii liniare sunt in�nit dimensionale: mulţimea vectorilor
unitari

f(1; 0; 0; ::) ; (0; 1; 0; :::) ; :::g
este o baz¼a num¼arabil¼a în c00:
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Observa̧tia 1.2.8 În multe cazuri, atunci când vor interveni spaţii de şiruri vom presupune
tacit, din motive ce ţin de uşurinţa expunerii, c¼a şirurile sunt indexate dup¼a P:

De altfel, printre instrumentele de baz¼a pentru studiul acestor spa̧tii se num¼ar¼a urm¼atoarele
inegalit¼a̧ti care sunt generaliz¼ari ale inegalit¼a̧tilor lui Minkowski şi respectiv Hölder: pentru
orice p > 1; (xn)n2P ; (yn)n2P � R;

1X
n=1

jxn + ynjp �
 1X
n=1

jxnjp
!1=p

+

 1X
n=1

jynjp
!1=p

;

iar pentru q = (p� 1)�1 p (adic¼a p�1 + q�1 = 1),

1X
n=1

jxnynj �
 1X
n=1

jxnjp
!1=p 1X

n=1

jynjq
!1=q

:

Exemplul 1.2.9 Fie X 6= ;; M � P (X) o ��algebr¼a şi � :M ! [0;1] o m¼asur¼a. Consi-
der¼am p � 1 şi reamintim de�ni̧tia spa̧tiului liniar de funçtii p�integrabile, unde, ca de obicei,
funçtii egale ��a.p.t. se identi�c¼a:

Lp (X;�;R) =
�
f : X ! R j

Z
X

jf jp d� <1
�
:

Pe acest spa̧tiu se de�neşte norma

kfkp =
�Z

X

jf jp d�
� 1

p

:

Apoi, de�nim spa̧tiul liniar al funçtiilor m¼asurabile eseņtial m¼arginite:

L1 (X;�;R) = ff : X ! R j f esteM�m¼asurabil¼a şi 9c > 0 : jf j � c; �� a.p.t.g :

Pe acest spa̧tiu de�nim norma

kfk1 = inf fa > 0 j � (fx 2 X j jf j � ag) = 0g
= inf fc > 0 j jf j � c; �� a.p.t.g ;

cu conveņtiile inf ; =1; sup ; = �1:

Pentru orice p 2 [1;1] ;
�
Lp (X;�;R) ; k�kp

�
este spa̧tiu Banach.

Dac¼a X are m¼asur¼a �nit¼a, atunci pentru 1 � p < r <1 are loc

Lr (X;�;R) � Lp (X;�;R) � L1 (X;�;R) :

Pentru a demonstra aceasta, s¼a consider¼am p; q cu p < q şi s = p�1r > 1: Not¼am de asemenea
cu u valoarea (s� 1)�1 s: Fie f m¼asurabil¼a din Lr (X;�;R) : Avem, pe baza inegalit¼a̧tii lui
Hölder pentru funçtii,Z

X

jf (x)jp d� �
�Z

X

1ud�

�u�1 �Z
X

(jf (x)jp)s d�
�s�1

= � (X)u
�1
�Z

X

jf (x)jr d�
�s�1

;

9



de unde
kfkp � � (X)p

�1�r�1 kfkr ;
ceea ce conduce la incluziunile anuņtate.
Dac¼a m¼asura lui X nu este �nit¼a, atunci nu mai au loc incluziuni de tipul celor precedente.

De exemplu, pentru orice p; r 2 [1;1); p 6= r

Lp (R; �;R) 6� Lr (R; �;R) :

Observa̧tia 1.2.10 Separabilitatea este o proprietate important¼a, dar de multe ori di�cil de
probat sau de in�rmat. De exemplu, este clar c¼a Rd este un spaţiu separabil, Qd �ind num¼arabil¼a
şi dens¼a (indiferent de norm¼a).

1.3 Operatori liniari între spa̧tii liniare normate

Fie (X; k�k) ; (Y; k�k) spa̧tii liniare normate reale. Consider¼am T : X ! Y un operator liniar,
adic¼a o funçtie ce satisface rela̧tia

T (�x+ �y) = �T (x) + �T (y) ; 8�; � 2 R; 8x; y 2 X:

Evident, aceast¼a no̧tiune nu utilizeaz¼a norma, deci este o no̧tiune algebric¼a. Uneori vom nota
T (x) prin Tx: Este de asemenea clar c¼a T (0X) = 0Y : Not¼am cu KerT nucleul lui T; adic¼a

KerT = fx 2 X j T (x) = 0g :

Ca în cazul oric¼arei funçtii, ImT desemneaz¼a imaginea lui T . Ambele muļtimi, KerT şi ImT
sunt subspa̧tii liniare în X; respectiv Y: În plus, T este injectiv dac¼a şi numai dac¼a KerT = f0g,
iar, din nou ca în cazul unei funçtii oarecare, surjectivitatea este caracterizat¼a prin ImT = Y:

Propozi̧tia 1.3.1 Fie T un operator liniar de la X la Y: Urm¼atoarele a�rmaţii sunt echiva-
lente:
(i) T este continuu pe X;
(ii) T este continuu într-un punct x 2 X;
(iii) T este continuu în 0:

Exemplul 1.3.2 Dac¼a X este un spa̧tiu liniar normat, atunci operatorul identitate, notat id
sau idX este liniar şi continuu.

Exemplul 1.3.3 Operatorul T : (C ([a; b]) ; k�k1)! (R; j�j) ;

T (f) =

Z b

a

f (t) d t

este liniar. Din Teorema de medie, pentru orice f 2 C ([a; b]) ;

jT (f)j � (b� a) kfk1 ;

deci T este continuu în 0: Prin urmare, T este continuu pe întreg spa̧tiul.
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Exemplul 1.3.4 Operatorul T : (L1 (X;�;R) ; k�k1)! (R; j�j) ;

T (f) =

Z
X

f (x) d�

este liniar. Avem, pentru orice f 2 L1 (X;�;R) ;

jT (f)j � kfk1 ;

deci T este continuu în 0: Prin urmare, T este continuu pe întreg spa̧tiul.

Exemplul 1.3.5 Fie

Y = fp : [0; 1]! R j p polinom cu coe�cieņti realig :

Evident, (Y; k�k1) este subspa̧tiu liniar normat al lui (C ([0; 1]) ; k�k1) :
De�nim T : Y ! Y prin

T (p) = p0:

Ar¼at¼am c¼a acest operator este discontinuu în 0: Fie, pentru orice n 2 P;

pn (x) =
xn

n
:

Evident,
kpnk1 = n�1; 8n 2 P;

deci pn
k�k1!
Y
0: Dar, pe de alt¼a parte,

kT (pn)k1 = 1; 8n 2 P:

Deducem c¼a T nu este continuu în 0: Prin urmare, T nu este continuu în niciun punct.

De�ni̧tia 1.3.6 Fie (X; k�k) ; (Y; k�k) spaţii liniare normate reale şi T : X ! Y un operator
liniar. Spunem c¼a T este operator m¼arginit dac¼a duce mulţimi m¼arginite din X în mulţimi
m¼arginite din Y , ceea ce este echivalent cu urm¼atoarea proprietate:

9M > 0; 8x 2 X : kTxk �M kxk :

Propozi̧tia 1.3.7 În notaţiile precedente, urm¼atoarele a�rmaţii sunt echivalente:
(i) T este continuu;
(ii) T este m¼arginit.

Propozi̧tia 1.3.8 Dac¼a X este �nit dimensional şi T : X ! Y este liniar, atunci T este
continuu.
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Observa̧tia 1.3.9 Dac¼a X este un spaţiu liniar normat in�nit dimensional, atunci exist¼a
un operator liniar de la X la R discontinuu. Pentru a demonstra aceasta, consider¼am B =
fei j i 2 Ig o baz¼a algebric¼a a lui X: F¼ar¼a a restrânge generalitatea, putem presupune c¼a toate
elementele bazei sunt de norm¼a 1: Pentru c¼a X este in�nit dimensional, putem presupune c¼a
N � I: De�nim f : B ! R prin

f (ei) =

�
i; dac¼a i 2 N
0; dac¼a i 2 I n N:

Prelungim aceast¼a funcţie prin liniaritate la întreg spaţiul X: Evident, aceast¼a funcţie nu este
continu¼a pentru c¼a nu este m¼arginit¼a pe B � SX .

Operatorii liniari de la X la R se numesc şi funçtionale liniare. În priviņta leg¼aturii dintre
continuitatea unei funçtionale liniare şi o proprietate de m¼arginire, a se vedea Problema 15.
Not¼am cu L (X; Y ) spa̧tiul liniar al operatorilor continui de la X la Y şi cu L (X) spa̧tiul

L (X;X) :

Propozi̧tia 1.3.10 Fie (X; k�k) ; (Y; k�k) spaţii liniare normate reale. Aplicaţia k�k : L (X;Y )!
[0;1);

kTk = inf fM > 0 j kTxk �M kxk ; 8x 2 Xg
este o norm¼a pe L (X; Y ) ; numit¼a norma operatorial¼a.

Observa̧tia 1.3.11 1. Pentru orice T 2 L (X; Y ) ; au loc

kTk = sup
�
kTxk
kxk j x 2 Xn f0g

�
= sup fkTxk j kxk � 1g
= sup fkTxk j kxk < 1g
= sup fkTxk j kxk = 1g :

2. Pentru orice T 2 L (X; Y )

kTxk � kTk � kxk ; 8x 2 X:

Exemplul 1.3.12 De�nim T : (C ([a; b]) ; k�k1)! (R; j�j) ;

T f = f (c) ;

unde c este un num¼ar �xat în [a; b] : Atunci T este operator liniar m¼arginit şi kTk = 1:

Teorema 1.3.13 Dac¼a Y este spaţiu Banach, atunci L (X; Y ) este spaţiu Banach.

De�ni̧tia 1.3.14 Fie (X; k�k) un spaţiu liniar normat. Spaţiul liniar L (X;R) se numeşte
dualul lui X şi se noteaz¼a cu X�: Norma operatorial¼a pe X� indus¼a de norma pe X se numeşte
norma dual¼a normei lui X şi o vom nota uneori cu k�k� :
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Observa̧tia 1.3.15 Cum (R; j�j) este spaţiu Banach, X� înzestrat cu norma operatorial¼a este
de asemenea un spaţiu Banach. Dac¼a x� 2 X� şi x 2 X; mai not¼am num¼arul real x� (x) prin
hx; x�i sau hx�; xi : Este important de reţinut c¼a jx� (x)j � kxk kx�k� pentru orice x 2 X şi
x� 2 X�:

Propozi̧tia 1.3.16 Dac¼a x� 2 X� n f0g ; atunci Ker x� este un subspaţiu liniar închis al lui X
de codimensiune 1:

De�ni̧tia 1.3.17 Fie (X; k�k) şi (Y; k�k) spaţii liniare normate şi T : (X; k�k)! (Y; k�k) :
(i) T se numeşte izomor�sm între cele dou¼a spaţii liniare normate dac¼a este liniar, continuu,

bijectiv, iar operatorul invers T�1 este de asemenea continuu.
(ii) T se numeşte izometrie dac¼a pentru orice x 2 X; kTxk = kxk :

Observa̧tia 1.3.18 Dac¼a T este izometrie liniar¼a din proprietatea de de�niţie se obţine c¼a
este operator continuu şi injectiv, iar kTk = 1: Dac¼a, în plus, T este surjecţie atunci este
izomor�sm.

De�ni̧tia 1.3.19 Dou¼a spaţii liniare normate (X; k�k) şi (Y; k�k) se numesc izomorfe dac¼a
exist¼a un izomor�sm între ele. Dac¼a, în plus, izomor�smul este şi izometrie, spunem c¼a spaţiile
sunt izometric izomorfe (sau izometrice, subînţelegând în acest context izomor�smul) şi scriem
(X; k�k) ' (Y; k�k) :

1.4 Teorema Hahn-Banach

Reamintim acum (f¼ar¼a demonstra̧tie) unul dintre rezultatele fundamentale aleAnalizei funcţionale
şi câteva dintre conseciņtele sale.

De�ni̧tia 1.4.1 Fie X spaţiu liniar real. O funcţie p : X ! R se numeşte subliniar¼a dac¼a

p (�x) = �p (x) ; 8� > 0; 8x 2 X;
p (x+ y) � p (x) + p (y) ; 8x; y 2 X:

Teorema 1.4.2 (Hahn-Banach, varianta algebric¼a) Fie X spaţiu liniar real şi Y un sub-
spaţiu liniar al s¼au. Fie p : X ! R o funcţie subliniar¼a şi f : Y ! R o funcţie liniar¼a
astfel încât f (y) � p (y) pentru orice y 2 Y: Atunci exist¼a ~f : X ! R o funcţie liniar¼a care
prelungeşte pe f şi satisface ~f (x) � p (x) pentru orice x 2 X:

Teorema 1.4.3 (Hahn-Banach, varianta topologic¼a) Fie (X; k�k) un spaţiu liniar normat
şi Y un subspaţiu liniar normat al s¼au. Fie y� 2 Y �: Atunci exist¼a x� 2 X� astfel încât
x� (y) = y� (y) pentru orice y 2 Y şi kx�kX� = ky�kY � :

Demonstraţie Se foloseşte Teorema 1.4.2 pentru aplica̧tia subliniar¼a p : X ! R; p (x) =
ky�kY � kxk care majoreaz¼a pe y� pe Y: �

Observa̧tia 1.4.4 Teorema 1.4.3 arat¼a, în particular, c¼a dualul unui subspaţiu liniar este for-
mat din restricţiile la acel subspaţiu ale elemetelor din dualul spaţiului, adic¼a

Y � =
�
x�jY j x� 2 X�	 :
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Corolarul 1.4.5 Fie (X; k�k) un spaţiu liniar normat şi x 2 Xn f0g : Atunci exist¼a x� 2 X�

astfel încât x� (x) = kxk2 şi kx�k = kxk :

Demonstraţie Se foloseşte Teorema 1.4.3 pentru Y = Rx şi y� : Y ! R; y� (tx) = t kxk2 pentru
orice t 2 R: �

Corolarul 1.4.6 Fie (X; k�k) un spaţiu liniar normat. Atunci, pentru orice x 2 X;

kxk = max fjx� (x)j j x� 2 X�; kx�k � 1g :

Demonstraţie Dac¼a x = 0 egalitatea este clar¼a. Dac¼a x 6= 0; atunci

sup fjx� (x)j j x� 2 X�; kx�k � 1g � kxk

din de�ni̧tia normei duale. Din Corolarul 1.4.5, exist¼a x� 2 X� astfel încât x� (x) = kxk2 şi
kx�k = kxk : Alegem u� = kxk�1 x� şi avem ku�k = 1; u� (x) = kxk ; de unde ob̧tinem concluzia.
�

1.5 Dualele unor spa̧tii uzuale

Propozi̧tia 1.5.1 Fie d 2 P: Au loc egalit¼aţile:��
Rd; k�k2

��
; k�k�

�
'
�
Rd; k�k2

�
;��

Rd; k�k1
��
; k�k�

�
'
�
Rd; k�k1

�
;��

Rd; k�k1
��
; k�k�

�
'
�
Rd; k�k1

�
şi ��

Rd; k�kp
��
; k�k�

�
'
�
Rd; k�kq

�
;

pentru orice p; q > 1 cu 1
p
+ 1

q
= 1: În plus, în �ecare caz în parte, izomor�smul izometric este

de�nit prin T :
�
Rd; k�k

�
!
��
Rd; k�k

��
; k�k�

�
;

T (x) (y) =
dX
k=1

xkyk:

Demonstraţie Fie B = fe1; :::; edg baza canonic¼a a lui Rd (sau orice alt¼a baz¼a din Rd, caz în
care normele sunt îņtelese în mod uzual). Pentru orice x 2 Rd exist¼a o muļtime de scalari
f�1; :::; �dg astfel încât avem scrierea unic¼a în baza dat¼a x =

Pd
k=1 �kek: Dac¼a x

� : Rd ! R
este o funçtional¼a liniar¼a, atunci

x� (x) =

dX
k=1

�kx
� (ek) :
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Notând x� (ek) prin �x
�
k pentru k 2 1; d;

x�

 
dX
k=1

�kek

!
= x� (x) =

dX
k=1

�k�
x�

k :

Invers, toate funçtionalele de aceast¼a form¼a sunt liniare, ceea ce înseamn¼a c¼a aceasta este forma
general¼a a funçtionalelor liniare pe Rd:
Deci, x� este funçtional¼a liniar¼a pe Rd dac¼a şi numai dac¼a exist¼a �x� 2 Rd astfel încât are

loc rela̧tia anterioar¼a.
Cum pe spa̧tii liniare normate �nit dimensionale liniaritatea atrage continuitatea, deducem

c¼a aceasta este forma general¼a a elementelor dualului, indiferent de norma considerat¼a (de altfel,
normele sunt echivalente).
Practic, în continuare, trebuie s¼a identi�c¼am norma dual¼a în funçtie de forma normei con-

siderate pe Rd:

Consider¼am Rd înzestrat cu k�k2. De�nim T :
�
Rd; k�k2

�
!
��
Rd; k�k2

��
; k�k�

�
prin

T (x) (y) =
dX
k=1

xkyk:

Este clar c¼a T este bine de�nit, întrucât T (x) este funçtional¼a liniar¼a pe Rd (de�nit¼a de �T (x) =
x). De asemenea, T este liniar. În plus, T este surjectiv pentru c¼a pentru orice x� 2

�
Rd; k�k2

��
;

avem x� = T
�
�x

��
:

Ar¼at¼am c¼a T este izometrie, adic¼a pentru orice x 2 Rd;

kTxk� = kxk2 :

Pentru x = 0; egalitatea este evident¼a. Fie deci x 2 Rd n f0g : Pentru orice y 2 Rd;

jT (x) (y)j =
dX
k=1

xkyk �
dX
k=1

jxkykj �

vuut dX
k=1

x2k

vuut dX
k=1

y2k = kxk2 kyk2 :

Deci, kTxk� � kxk2 :
Pe de alt¼a parte, jT (x) (y)j � kTxk� kyk2 pentru orice y 2 Rd: Alegem y = kxk�12 x pentru

care inegalitatea anterioar¼a devine
kxk2 � kTxk� :

Rezult¼a aşadar egalitatea dorit¼a.

Consider¼am Rd înzestrat cu k�k1. De�nim T :
�
Rd; k�k1

�
!
��
Rd; k�k1

��
; k�k�

�
ca mai sus

prin

T (x) (y) =
dX
k=1

xkyk:

Singurul lucru care trebuie ar¼atat este c¼a

kTxk� = kxk1 ; x 2 Rd n f0g :
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Fix¼am x 2 Rd n f0g şi pentru orice y 2 Rd;

jT (x) (y)j =
dX
k=1

xkyk �
dX
k=1

jxkykj � kxk1
dX
k=1

jykj = kxk1 kyk1 :

Deci kTxk� � kxk1 :
Apoi alegem k 2 1; d astfel încât jxkj = kxk1 şi de�nim y 2 Rd având toate componentele

nule, cu excep̧tia celei de pe pozi̧tia k care are valoarea jxkj
�1 xk: Atunci kyk1 = 1 şi inegalitatea

jT (x) (y)j � kTxk� kyk1 devine kxk1 � kTxk� : Egalitatea este probat¼a.

Consider¼am Rd înzestrat cu k�k1. De�nim, T :
�
Rd; k�k1

�
!
��
Rd; k�k1

��
; k�k�

�
din nou

prin

T (x) (y) =
dX
k=1

xkyk:

Ar¼at¼am c¼a
kTxk� = kxk1 ; x 2 Rd n f0g :

Lu¼am x 2 Rd n f0g şi pentru orice y 2 Rd;

jT (x) (y)j =
dX
k=1

xkyk �
dX
k=1

jxkykj � kxk1 kyk1 :

Deci kTxk� � kxk1 :
Apoi de�nim y = (sgnxk)k21;d 2 Rd. Atunci kyk1 = 1 şi inegalitatea jT (x) (y)j �

kTxk� kyk1 devine kxk1 � kTxk� : Are loc din nou egalitatea dorit¼a.

În sfâŗsit, pentru p; q > 1 cu 1
p
+ 1

q
= 1 a demonstra��

Rd; k�kp
��
; k�k�

�
'
�
Rd; k�kq

�
;

revine la acelaşi ra̧tionament ca în cazul normei k�k2 cu folosirea inegalit¼a̧tii lui Hölder.
Astfel, rezult¼a toate concluziile. �

Propozi̧tia 1.5.2 Are loc egalitatea:

((c0; k�k1)
� ; k�k�) '

�
`1; k�k1

�
;

prin izomor�smul izometric T : (`1; k�k1)! ((c0; k�k1)
� ; k�k�) de�nit astfel:

T (x) (y) =

1X
k=1

xkyk;

unde x = (xn)n2P 2 `1; y = (yn)n2P 2 c0:
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Demonstraţie Fie T operatorul din enuņt. Ar¼at¼am c¼a:
1. T este bine de�nit;
2. T este liniar;
3. T este surjectiv;
4. kTxk� = kxk1 pentru orice x 2 `1:
Aceste propriet¼a̧ti demonstreaz¼a izomor�smul celor dou¼a spa̧tii.

1. Fie x 2 `1; ca mai sus. Trebuie s¼a ar¼at¼am c¼a Tx 2 (c0; k�k1)
� adic¼a Tx : (c0; k�k1)! R

este bine de�nit¼a, liniar¼a şi continu¼a. Cum orice şir y 2 c0 este m¼arginit, absoluta convergeņt¼a
a seriei

1X
k=1

xkyk

rezult¼a dintr-un criteriu de compara̧tie. Deci Tx este corect de�nit. Liniaritatea lui Tx este
evident¼a. Apoi, pentru orice y 2 c0

jT (x) (y)j =
�����
1X
k=1

xkyk

����� �
1X
k=1

jxkykj � sup fjykj j k 2 Pg
1X
k=1

jxkj = kyk1 kxk1 :

Deci Tx este continu¼a şi, în plus, kTxk� � kxk1 :
2. Liniaritatea lui T este uşor de veri�cat.
3. Fie x� 2 (c0; k�k1)

� : Consider¼am vectorii unitari din c0; fek j k 2 Pg : Şirul x = (x� (en))n2P
este din `1 pentru c¼a pentru orice n � 1

nX
k=1

jxkj =
nX
k=1

jx� (ek)j =
nX
k=1

sgn (x� (ek)) � x� (ek) = x�

 
nX
k=1

sgn (x� (ek)) � ek

!

� kx�k�







nX
k=1

sgn (x� (ek)) � ek







1

� kx�k� :

Astfel,
1X
k=1

jxkj � kx�k� ;

deci x 2 `1:
Acum veri�c¼am c¼a Tx = x�: Pentru orice y 2 c0

T (x) (y) =

1X
k=1

xkyk =
1X
k=1

x� (ek) yk = lim
n

nX
k=1

x� (ek) yk

= lim
n

nX
k=1

x� (ykek) = lim
n
x�

 
nX
k=1

ykek

!

Dar
nX
k=1

ykek
k�k1�! y;
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iar x� este continu¼a pe (c0; k�k1) ; deci

T (x) (y) = x� (y) ; 8y 2 c0:

Aceasta probeaz¼a c¼a T este surjectiv.
4. Am v¼azut deja c¼a kTxk� � kxk1 pentru orice x 2 `1:
Fie x 2 `1: Avem, pentru n 2 P;

nX
k=1

jxkj =
nX
k=1

sgnxk � xk =
1X
k=1

xkyk;

unde

yk =

�
sgnxk; k 2 1; n
0; k =2 1; n:

Este clar c¼a y = (yk) 2 c0 şi kyk1 � 1: Deci
nX
k=1

jxkj = T (x) (y) � kTxk� ; 8n 2 P:

Ob̧tinem
kxk1 � kTxk� :

Astfel, toate a�rma̧tiile sunt probate. �

Propozi̧tia 1.5.3 Are loc egalitatea:

((c; k�k1)
� ; k�k�) '

�
`1; k�k1

�
prin izomor�smul izometric T : `1 ! c�

T (x) (y) = x0 lim yn +
1X
k=1

xkyk;

unde x = (xn)n2N 2 `1 şi y = (yn)n2P 2 c:

Demonstraţie Se arat¼a toate propriet¼a̧tile necesare pentru operatorul T , dup¼a modelul propoz-
i̧tiei precedente. �

Propozi̧tia 1.5.4 Are loc egalitatea��
`1; k�k1

��
; k�k�

�
' (m; k�k1) ;

prin izomor�smul izometric T : (m; k�k1)!
�
(`1; k�k1)

�
; k�k�

�
de�nit astfel:

T (x) (y) =
1X
k=1

xkyk;

unde x = (xn)n2P 2 m; y = (yn)n2P 2 `1:
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Demonstraţie Parcurgem cele patru etape ca în cazul Propozi̧tiei 1.5.2. Calculele şi argumentele
sunt asem¼an¼atoare. �

Propozi̧tia 1.5.5 Pentru p > 1 are loc egalitatea:��
`p; k�kp

��
; k�k�

�
'
�
`q; k�kq

�
;

unde q = p
p�1 ; prin izomor�smul izometric T :

�
`q; k�kq

�
!
��
`p; k�kp

��
; k�k�

�
de�nit astfel:

T (x) (y) =

1X
k=1

xkyk;

unde x = (xn)n2P 2 `q; y = (yn)n2P 2 `p:

Demonstraţie Parcurgem cele patru etape ca în cazul Problemei 1.5.2. Calculele şi argumentele
sunt asem¼an¼atoare, �ind folosit¼a inegalitatea lui Hölder. Prezent¼am unele detalii.
Cum pentru x = (xn)n2P 2 `q; y = (yn)n2P 2 `p avem

1X
k=1

jxnynj �
 1X
k=1

jxnjq
! 1

q
 1X
k=1

jynjp
! 1

p

;

ob̧tinem c¼a seria
1X
k=1

xkyk

este absolut convergent¼a, deci Tx e corect de�nit¼a. În plus

kTxk� � kxkq ; 8x 2 `q:

Liniaritatea este simpl¼a şi demonstr¼am acum surjectivitatea. Fie x� 2
�
`p; k�kp

��
: Consid-

er¼am vectorii unitari care sunt din `p şi construim şirul x = (x� (en))n2P : Trebuie s¼a ar¼at¼am c¼a
x 2 `q: Dac¼a toate componentele sale sunt nule acest lucru este evident. Altfel, �e n 2 P astfel
încât cel pu̧tin un termen de rang inferior este nenul. Avem

nX
k=1

jxkjq =
nX
k=1

jxkjq�1 jxkj =
nX
k=1

jxkjq�1 sgn (xk) � xk

=
nX
k=1

jxkjq�1 sgn (xk) � x� (ek) = x�

 
nX
k=1

jxkjq�1 sgn (xk) � ek

!

� kx�k�







nX
k=1

jxkjq�1 sgn (xk) � ek







p

= kx�k�

 
nX
k=1

jxkj(q�1)p jsgn (xk)jp
! 1

p

= kx�k�

 
nX
k=1

jxkjq jsgn (xk)jp
! 1

p

� kx�k�

 
nX
k=1

jxkjq
! 1

p

;
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de unde se ob̧tine  
nX
k=1

jxkjq
!1� 1

p

=

 
nX
k=1

jxkjq
! 1

q

� kx�k� :

Deci x 2 `q: Surjectivitatea lui T rezult¼a acum ca la Problema 1.5.2.
Mai r¼amâne s¼a prob¼am c¼a

kTxk� � kxkq ; 8x 2 `q:
Dac¼a x = 0 este evident. Altfel, �e n 2 P astfel încât cel pu̧tin un termen de rang inferior este
nenul. De�nim şirul yn prin

yn =

 
nX
k=1

jxkjq
!� 1

p
 

nX
k=1

jxkjq�2 xkek

!
:

Avem

kynkp =
 

nX
k=1

jxkjq
!� 1

p
 

nX
k=1

jxkj(q�2)p jxkjp
! 1

p

=

 
nX
k=1

jxkjq
!� 1

p
 

nX
k=1

jxkjq
! 1

p

= 1

şi

T (x) (yn) =

 
nX
k=1

jxkjq
!� 1

p
 

nX
k=1

jxkjq�2 xkxk

!
=

 
nX
k=1

jxkjq
! 1

q

:

De aici deducem c¼a  
nX
k=1

jxkjq
! 1

q

� kTxk� :

Pentru n!1 ob̧tinem concluzia dorit¼a. �

1.6 Separabilitate

Propozi̧tia 1.6.1 Fie X spaţiu liniar normat şi A � X num¼arabil¼a astfel încât spanA = X:
Atunci X este separabil.

Demonstraţie. Aşa cum se ştie,

spanA =

(
nX
k=1

�kak j n 2 P; �k 2 R; ak 2 A; 8k 2 1; n
)
:

Consider¼am muļtimea

spanQA =

(
nX
k=1

qkak j n 2 P; qk 2 Q; ak 2 A; 8k 2 1; n
)
:
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Aceast¼a muļtime este num¼arabil¼a pentru c¼a poate � scris¼a ca

[
n2P

(
nX
k=1

qkak j qk 2 Q; ak 2 A; 8k 2 1; n
)
;

�ecare dintre muļtimile (
nX
k=1

qkak j qk 2 Q; ak 2 A; 8k 2 1; n
)

�ind num¼arabil¼a (are cardinalul mai mic sau egal decât cel al muļtimii Qn�An).
Ar¼at¼am c¼a spanQA este dens¼a. Fie x 2 X şi " > 0. Din ipotez¼a, exist¼a y 2 spanA astfel

încât kx� yk < 2�1": Prin de�ni̧tia lui spanA; exist¼a n 2 P şi �k 2 R; ak 2 A; cu k 2 1; n
astfel încât

y =
nX
k=1

�kak:

CumQ este dens¼a înR, pentru orice k 2 1; n; exist¼a qk 2 Q astfel încât j�k � qkj < (2n kakk+ 1)�1 ":
Atunci 




x�

nX
k=1

qkak






 � kx� yk+







nX
k=1

�kak �
nX
k=1

qkak







< 2�1"+

nX
k=1

j�k � qkj kakk

< 2�1"+
nX
k=1

"

2n
= ":

Deci spanQA este dens¼a în X: �

Exemplul 1.6.2 Urm¼atoarele spa̧tii sunt separabile: (c0; k�k1) ;
�
`p; k�kp

�
cu p 2 [1;1);

(C ([0; 1]) ; k�k1) :
Pentru a demonstra separabilitatea spa̧tiului (c0; k�k1) ; reamintim c¼a şirurile e1 = (1; 0; 0; ::) ;

e2 = (0; 1; 0; :::) ; ::: formeaz¼a o baz¼a num¼arabil¼a în c00: Deci c00 = span fek j k 2 Pg : De aseme-
nea, ştim c¼a

k�k1 � c00 = c0

şi conform rezultatului teoretic, (c0; k�k1) este separabil.
La fel, se constat¼a c¼a

k�kp � c00 = `p; 8p 2 [1;1);
pentru c¼a, x = (xk)k2P 2 `p şi orice n � 1;




x�

nX
k=1

xkek







p

p

=
X
k>n

jxkjp ! 0:
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Separabilitatea lui (C ([0; 1]) ; k�k1) se ob̧tine din acelaşi rezultat teoretic, ţinând cont de
faptul c¼a

span fxn j n 2 Ng
este dens (din Teorema lui Weierstrass de aproximare uniform¼a a funçtiilor continue prin poli-
noame).

Observa̧tia 1.6.3 Se poate ar¼ata similar c¼a pentru ; 6= 
 � Rd pe care consider¼am urma
m¼asurii Lebesgue, spaţiul Lp (
) este separabil pentru p 2 [1;1).
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Capitolul 2

Separarea muļtimilor convexe

Convexitatea joac¼a un rol fundamental în cadrul rezultalelor din acest curs. Chiar dac¼a rolul
convexit¼a̧tii va �din ce în ce mai pu̧tin vizibil la nivel imediat în capitolele urm¼atoare, de fapt,
remanent, acest concept va �mereu prezent prin intermediul rezultatelor ce sunt prezentate în
acest capitol.

2.1 Muļtimi convexe

Reamintim de�ni̧tia muļtimii convexe.

De�ni̧tia 2.1.1 Fie (X; k�k) un spaţiu liniar normat. O mulţime A � X se numeşte convex¼a
dac¼a pentru orice x; y 2 A; [x; y] = f�x+ (1� �)y j � 2 [0; 1]g � A:

Cu alte cuvinte, o muļtime nevid¼a A este convex¼a dac¼a şi numai dac¼a odat¼a cu dou¼a puncte
a1; a2 coņtine întreg segmentul [a1; a2]: Se mai observ¼a c¼a în de�ni̧tia aceasta este su�cient s¼a
lu¼am � 2 (0; 1): Convenim s¼a consider¼am muļtimea vid¼a ca �ind convex¼a.
Prin induçtie se arat¼a imediat c¼a A 6= ; este convex¼a dac¼a şi numai dac¼a pentru orice n 2 P;

x1; x2; :::; xn 2 A; �1; �2; :::; �n 2 [0; 1] cu
nP
i=1

�i = 1; are loc

nX
i=1

�ixi 2 A:

O sum¼a cum este cea de mai sus se numeşte combina̧tie convex¼a a elementelor (xi)i21;n:

Observa̧tia 2.1.2 (i) Este evident c¼a orice intersecţie de mulţimi convexe este convex¼a, iar o
reuniune de mulţimi convexe nu este, în general, convex¼a.
(ii) Cele mai importante exemple de mulţimi convexe sunt: întregul spaţiu, subspaţiile

liniare, bilele (închise şi deschise).
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Fie A � X o muļtime nevid¼a. Se numeşte înf¼aşur¼atoarea convex¼a a muļtimii A; muļtimea

convA =

(
nX
i=1

�ixi j n 2 P; (�i)i21;n � [0;1);
nX
i=1

�i = 1; (xi)i21;n � A

)
:

Este uşor de ar¼atat c¼a înf¼aşur¼atoarea convex¼a a lui A este muļtime convex¼a, coņtine muļtimea
A şi este cea mai mic¼a muļtime (în sensul incluziunii) cu aceste propriet¼a̧ti.

Cum bilele sunt muļtimi convexe şi sunt transla̧tii ale bilelor centrate în 0, începem prin a
preciza câteva propriet¼a̧ti ale vecin¼at¼a̧tilor lui 0 într-un spa̧tiu liniar normat.

Lema 2.1.3 Fie (X; k�k) un spaţiu liniar normat şi V o vecin¼atate a originii. Atunci:
(i) exist¼a o vecin¼atate U a originii astfel încât U + U � V ;
(ii) pentru orice scalar � > 0 exist¼a o vecin¼atate U a originii astfel încât �U � V ;
(iii) pentru orice x 2 X; exist¼a � > 0 astfel încât pentru orice � 2 [0; �] ; �x 2 V ; în

particular, V este absorbant¼a.

Demonstraţie (i) Aşa cum am v¼azut (̧si cum se poate uşor demonstra), aplica̧tia u : X�X ! X;

u (x; y) = x+ y

este continu¼a. Scriind continuitatea în (0; 0) a acestei funçtii deducem c¼a pentru vecin¼atatea V
exist¼a vecin¼atatea U astfel încât U + U � V:
(ii) Aplica̧tia v : R�X ! X dat¼a prin

v (�; x) = �x

este continu¼a. Fie � > 0 �xat. Cum � � 0 = 0; pentru V exist¼a o vecin¼atate U a originii şi un
num¼ar " > 0 astfel încât pentru orice � 2 (�� "; �+ ") şi orice u 2 U

�u 2 V:

În particular, �U � V:
(iii) Cum V este vecin¼atate a originii, exist¼a " > 0 astfel încât D (0; ") � V: Fie x 2 X:

Dac¼a x = 0; proprietatea de demonstrat este evident¼a. Lu¼am x 6= 0: Atunci
"

kxkx 2 D (0; ") :

În plus, cum D (0; ") este convex¼a şi coņtine 0;�
0;

"

kxk

�
x � D (0; ") � V:

Lema este complet demonstrat¼a. �

Observa̧tia 2.1.4 Bineînţeles, lema de mai sus se poate demonstra folosind bile.

Prezent¼am în continuare unele propriet¼a̧ti topologice ale muļtimilor convexe.
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Teorema 2.1.5 Fie C � (X; k�k) o mulţime convex¼a. Atunci:
(i) clC este convex¼a;
(ii) dac¼a x 2 intC şi y 2 clC; atunci [x; y) � intC;
(iii) intC este convex¼a;
(iv) dac¼a intC 6= ;; atunci clC = cl(intC) şi intC = int(clC):

Demonstraţie (i) Fie x; y 2 clC şi � 2 (0; 1): Mai mult, �e V o vecin¼atate a lui 0 2 X: Conform
Lemei 2.1.3, exist¼a o vecin¼atate U a lui 0 astfel încât �U + (1 � �)U � V: Cum x; y 2 clC;
exist¼a xU ; yU 2 C astfel încât xU 2 (x + U) \ C şi yU 2 (y + U) \ C: În conseciņt¼a, folosind
convexitatea lui C; avem

C 3 �xU + (1� �)yU 2 �(x+ U) + (1� �)(y + U)

= �x+ (1� �)y + �U + (1� �)U

� �x+ (1� �)y + V;

deci C \ (�x+ (1� �)y + V ) 6= ;: Cum V este o vecin¼atate arbitrar¼a a lui 0; aceasta arat¼a c¼a
�x+ (1� �)y 2 clC:
(ii) Fie � 2 (0; 1): Este su�cient s¼a ar¼at¼am c¼a �x+ (1� �)y 2 intC: Cum x 2 intC; exist¼a

o vecin¼atate V a lui 0 astfel încât x+ V + V � C: Pe de alt¼a parte, y 2 clC implic¼a

C \
�
y � �

1� �
V

�
6= ;;

deci y poate � scris ca c+ �(1� �)�1v; cu c 2 C şi v 2 V: Ob̧tinem
�x+ (1� �)y + �V = �x+ (1� �)c+ �v + �V

= (1� �)c+ �(x+ v + V )

� (1� �)c+ �C � C:

Cum �V este vecin¼atate a originii; concluzion¼am c¼a �x+ (1� �)y 2 intC:
(iii) Dac¼a x; y 2 intC; atunci implica̧tia de mai sus înseamn¼a c¼a [x; y] � intC; deci intC

este muļtime convex¼a.
(iv) Incluziunea cl(intC) � clC este evident¼a. Fie x 2 clC: Din (ii), pentru orice y 2 intC;

(x; y] � intC; ceea ce înseamn¼a c¼a ne putem apropia de x cu puncte din intC; deci x 2 cl(intC):
Pentru partea a doua, din nou o incluziune este evident¼a: intC � int(clC):
Fie x 2 int(clC); ceea ce înseamn¼a c¼a exist¼a o vecin¼atate V a lui 0 astfel încât x+V � clC;

deci, din nou din (ii), pentru orice y 2 intC; � 2 (0; 1) şi v 2 V;
�(x+ v) + (1� �)y 2 intC:

Dar V este absorbant¼a, deci pentru � su�cient de aproape de 1;

v :=
(1� �)(x� y)

�
2 V

şi pentru un astfel de �;

x = �

�
x+

(1� �)(x� y)

�

�
+ (1� �)y

= �(x+ v) + (1� �)y 2 intC:
Demonstra̧tia este complet¼a. �
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2.2 Separarea prin hiperplane a muļtimilor convexe

Discut¼am o a trei form¼a a Teoremei Hahn-Banach şi prezent¼am unele conseciņte ale acesteia.

De�ni̧tia 2.2.1 Fie (X; k�k) un spaţiu liniar normat, f : X ! R liniar¼a (nu neaparat con-
tinu¼a), neidentic nul¼a şi � 2 R: Se numeşte hiperplan o mulţime de forma

H = fx 2 X j f (x) = �g :

Vom mai nota aceast¼a mulţime prin Hf;�:

Propozi̧tia 2.2.2 Cu notaţiile şi în cadrul de mai sus, hiperplanul Hf;� este închis dac¼a şi
numai dac¼a f este continu¼a.

Demonstraţie O implica̧tie este evident¼a: dac¼a f este continu¼a, cumHf;� = f�1 (f�g) ; deducem
c¼a Hf;� este muļtime închis¼a.
Presupunem acum c¼a Hf;� este închis, adic¼a XnHf;� este muļtime deschis¼a. Posibilitatea

XnHf;� = ; este exclus¼a de faptul c¼a f 6= 0: Aşadar, XnHf;� 6= ;: Fie x0 2 XnHf;�; deci
f (x0) 6= �: F¼ar¼a a restrânge generalitatea presupunem c¼a f (x0) < �: Din ipotez¼a, exist¼a " > 0
astfel încât B (x0; ") � XnHf;�:
Ar¼at¼am c¼a f (x) < � pentru orice x 2 B (x0; ") : Contrar, exist¼a x1 2 B (x0; ") astfel încât

f (x1) > �: Cum B (x0; ") este convex¼a, [x0; x1] � B (x0; ") : Dar, pentru

� =
f (x1)� �

f (x1)� f (x0)
2 (0; 1)

avem

f ((1� �)x1 + �x0) = (1� �) f (x1) + �f (x0)

=
�� f (x0)

f (x1)� f (x0)
f (x1) +

f (x1)� �

f (x1)� f (x0)
f (x0) = �;

ceea ce reprezint¼a o contradiçtie.
Deci, pentru orice x 2 B (x0; ") ;

f (x) < �:

Aceast¼a inegalitate înseamn¼a m¼arginirea superioar¼a a lui f pe o vecin¼atate a lui x0: Ob̧tinem,
conform Problemei 15, c¼a f este funçtional¼a liniar¼a continu¼a. �

De�ni̧tia 2.2.3 Fie A;B � (X; k�k) dou¼a mulţimi nevide.
(i) Spunem c¼a hiperplanul Hf;� separ¼a mulţimile A şi B dac¼a f (a) � � pentru orice a 2 A

şi f (b) � � pentru orice b 2 B: Aceasta este echivalent cu

sup
x2A

f (x) � inf
x2B

f (x) :

(ii) Spunem c¼a hiperplanul Hf;� separ¼a strict mulţimile A şi B dac¼a exist¼a " > 0 astfel încât
f (a) � � pentru orice a 2 A şi f (b) � �+ " pentru orice b 2 B: Aceasta este echivalent cu

sup
x2A

f (x) < inf
x2B

f (x) :
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Observa̧tia 2.2.4 Hiperplanul Hf;� separ¼a (strict) mulţimile A şi B dac¼a şi numai dac¼a se-
par¼a (strict) mulţimile convA şi convB; deci problema separ¼arii a dou¼a mulţimi se reduce la
separarea mulţimilor convexe.

Lema 2.2.5 Fie C � (X; k�k) o mulţime convex¼a şi deschis¼a ce conţine vectorul nul. De�nim
p : X ! R;

p (x) = inf
�
� > 0 j ��1x 2 C

	
:

Atunci aplicaţia p (numit¼a funcţionala lui Minkowski asociat¼a lui C) este bine de�nit¼a şi are
urm¼atoarele propriet¼aţi:
(i) p (�x) = �p (x) ; pentru orice � � 0 şi orice x 2 X;
(ii) exist¼a M > 0 astfel încât pentru orice x 2 X; 0 � p (x) �M kxk ;
(iii) C = fx 2 X j p (x) < 1g ;
(iv) p (x+ y) � p (x) + p (y) ; pentru orice x; y 2 X:

Demonstraţie Cum 0 2 intC; muļtimea�
� > 0 j ��1x 2 C

	
este nevid¼a, pentru orice x 2 X: Deci p este bine de�nit¼a.
(i) Rela̧tia p (�x) = �p (x) ; pentru orice � � 0 şi x 2 X este evident¼a (în particular,

p (0) = 0).
(ii) Cum 0 2 intC; exist¼a " > 0 astfel încât D (0; ") � C: Fie x 2 Xn f0g : Atunci

"

kxkx 2 C;

deci
p (x) � "�1 kxk ;

ceea ce demonstreaz¼a punctul (ii).
(iii) Ar¼at¼am dubla incluziune. Fie x 2 C: Cum C este deschis¼a, exist¼a " > 0 astfel încât

(1 + ")x 2 C: Deci, p (x) � (1 + ")�1 < 1:
Fie acum x 2 X astfel încât p (x) < 1: Din teorema de caracterizare a marginii inferioare,

exist¼a � 2 (0; 1) astfel încât ��1x 2 C: Dar x 2 [0; ��1x] şi C este convex¼a. Prin urmare,
x 2 C:
(iv) Fie x; y 2 X: Tot din teorema de caracterizare a marginii inferioare, pentru orice " > 0

exist¼a � 2 (0; p (x) + "); � 2 (0; p (y) + ") astfel încât ��1x 2 C; ��1y 2 C: Atunci, pe baza
convexit¼a̧tii lui C;

1

�+ �
(x+ y) =

�

�+ �
��1x+

�

�+ �
��1y 2 C;

deci
p (x+ y) � �+ � < p (x) + p (y) + 2":

Facem "! 0 şi ob̧tinem concluzia. �

Prezent¼am acum un prim rezultat de separare.
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Teorema 2.2.6 Fie C � (X; k�k) o mulţime convex¼a cu interior nevid şi x 2 Xn intC: Atunci
exist¼a x� 2 X�n f0g astfel încât x� (x) � x� (x) pentru orice x 2 C: În particular, hiperplanul
Hx�;x�(x) separ¼a mulţimile convexe C şi fxg :

Demonstraţie Efectuând eventual o transla̧tie putem presupune f¼ar¼a a restrânge generalitatea
c¼a 0 2 intC: Not¼am cu p funçtionala Minkowski asociat¼a lui intC:
Consider¼am subspa̧tiul liniar generat de x; care este Y = Rx; şi de�nim funçtionala liniar¼a

g : Y ! R prin g (�x) = �: Dac¼a � � 0, atunci este evident c¼a g (�x) � p (�x) : Dac¼a � > 0;
atunci p (�x) = �p (x) � � pentru c¼a x =2 intC (Lema 2.2.5, (iii)). Deci, pentru orice y 2 Y;
g (y) � p (y) : Cum p este subliniar¼a (Lema 2.2.5), folosind Teorema Hahn-Banach, exist¼a o
funçtie liniar¼a f de�nit¼a pe tot spa̧tiul care prelungeşte funçtia g şi care satisface inegalitatea
f (x) � p (x) pentru orice x 2 X: Având în vedere inegalitatea din Lema 2.2.5 (ii), deducem c¼a
f este continu¼a. Evident, f (x) = 1 şi pentru orice x 2 intC; f (x) < 1; deci are loc inegalitatea
strict¼a f (x) < f (x) pentru orice x 2 intC:
Dar, din Teorema 2.1.5 (iv), C � clC = cl intC; deci pentru orice c 2 C exist¼a un şir de

elemente din intC cu limita c: Folosind inegalitatea de mai sus şi trecând la limit¼a ob̧tinem
inegalitatea (nestrict¼a) dorit¼a. �

Observa̧tia 2.2.7 Aşa cum se poate observa din demonstraţie, dac¼a C este deschis¼a, atunci
exist¼a x� 2 X�n f0g astfel încât x� (x) < x� (x) pentru orice x 2 C:

Prezent¼am acum principalele rezultate de separare a muļtimilor convexe.

Teorema 2.2.8 (Hahn-Banach, prima form¼a geometric¼a) Fie (X; k�k) un spaţiu liniar
normat şi A;B � X mulţimi convexe nevide astfel încât intA 6= ; şi intA \ B = ;: Atunci
exist¼a x� 2 X�n f0g şi � 2 R astfel încât x� (a) � � � x� (b) pentru orice a 2 A şi b 2 B: În
particular, hiperplanul Hx�;� separ¼a mulţimile convexe A şi B:

Demonstraţie Fie C = intA � B: Este clar c¼a C este convex¼a şi are interior nevid (este chiar
deschis¼a). De asemenea, 0 =2 C: Din teorema precedent¼a, exist¼a x� 2 X�n f0g astfel încât
x� (x) < x� (0) = 0 pentru orice x 2 C: Deci

x� (a) � x� (b) ; 8a 2 intA; 8b 2 B:

Pentru orice b 2 B �xat, folosim acelaşi argument ca în �nalul demonstra̧tiei teoremei de
separare a unui punct de o muļtime convex¼a pentru a deduce c¼a

x� (a) � x� (b) ; 8a 2 A; 8b 2 B:

Evident, aceasta înseamn¼a c¼a supa2A x
� (a) � infb2B x

� (b) şi alegând � între cele dou¼a valori
ob̧tinem concluzia. �

Teorema 2.2.9 (Hahn-Banach, a doua form¼a geometric¼a) Fie (X; k�k) un spaţiu liniar
normat şi A;B � X mulţimi convexe nevide. Dac¼a A este închis¼a şi B este compact¼a iar
A \ B = ;; atunci exist¼a x� 2 X�n f0g astfel încât supa2A x� (a) < infb2B x� (b) : În particular,
pentru orice � între aceste valori, hiperplanul Hx�;� separ¼a strict mulţimile convexe A şi B:
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Demonstraţie Fie C = B � A: Folosind ipotezele, C este convex¼a şi închis¼a, iar 0 =2 C. Prin
urmare, exist¼a " > 0 astfel încât B (0; ")\C = ;: Putem aplica Teorema 2.2.8 acestor muļtimi:
exist¼a x� 2 X�n f0g astfel încât x� (x) � x� (c) pentru orice x 2 B (0; ") şi c 2 C: Cum
B (0; ") = "B (0; 1) ; deducem c¼a

"x� (x) � x� (b� a) ; 8x 2 B (0; 1) ; 8a 2 A; 8b 2 B:

Deci
" kx�k � x� (b� a) ; 8a 2 A; 8b 2 B;

adic¼a
x� (a) + " kx�k � x� (b) ; 8a 2 A; 8b 2 B:

Deducem c¼a
sup
a2A

x� (a) + " kx�k � inf
b2B

x� (b) :

Cum x� 6= 0; avem concluzia. �

Exemplul 2.2.10 În general, pe spa̧tii in�nit dimensionale, ipoteza A \ B = ; nu este su�-
cient¼a pentru a separa muļtimile convexe A şi B. Consider¼am exemplul urm¼ator. Fie (en)n2P
elementele unitare din `2: Fie

A =

(
nX
k=1

akek j n 2 P; ak 2 R; k 2 1; n; an > 0
)
� `2:

Fie B = �A: Atunci A;B sunt convexe, disjuncte şi pentru orice x� 2 (`2; k�k2)
�nf0g ; x� (A) =

x� (B) = R: Muļtimile A şi B nu pot � separate printr-un hiperplan.
Justi�c¼am aceste a�rma̧tii. Faptul c¼a A;B sunt convexe şi disjuncte este evident. Fie

x� 2 (`2; k�k2)
� n f0g : Atunci exist¼a k 2 P astfel încât x� (ek) 6= 0; pentru c¼a în caz contrar x�

s-ar anula pe span fen j n 2 Pg care este dens¼a (`2; k�k2). Pentru orice � 2 R, �ek + ek+1 2 A:
Deci,

x� (�ek + ek+1) = �x� (ek) + x� (ek+1) 2 x� (A) ; 8� 2 R.
CumA este convex¼a şi x� liniar¼a, x� (A) este convex¼a în R, adic¼a este un interval. Cum x� (ek) 6=
0; din rela̧tia de mai sus ob̧tinem c¼a x� (A) = R. Acum este evident c¼a x� (B) = �x� (A) = R
şi astfel se ob̧tine şi restul concluziei.
Este evident c¼a A şi B au interior vid (de exemplu, A � c00; deci intA � int c00 = ;) şi nu

sunt închise (de exemplu (n�1; 0; 0; :::; 0; :::) 2 A pentru orice n 2 P şi limita acestui şir este
0 2 `2 n A).

Observa̧tia 2.2.11 În cazul spaţiilor �nit dimensionale, ipoteza A \ B = ; este su�cient¼a
pentru a separa mulţimile convexe A şi B. A se vedea Problema 38.

2.3 Conseciņte ale teoremelor de separare

Prezent¼am acum unele conseciņte ale rezultatelor de separare de mai sus.
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Corolarul 2.3.1 Fie Y un subspaţiu liniar normat al spaţiului liniar normat (X; k�k) : Sub-
spaţiul Y nu este dens (adic¼a clY 6= X) dac¼a şi numai dac¼a exist¼a x� 2 X�n f0g care se
anuleaz¼a pe Y:

Demonstraţie Dac¼a X 6= clY , exist¼a x 2 Xn clY: Din Teorema 2.2.9, exist¼a x� 2 X�n f0g şi
� 2 R astfel încât hiperplanul Hx�;� separ¼a strict muļtimile fxg şi clY: Deci, pentru orice y 2 Y

x� (y) < � < x� (x) :

Cum pentru orice y 2 Y şi orice num¼ar real a; elementul ay se a�¼a în Y; deducem c¼a x� (y) = 0:
Invers, dac¼a exist¼a x� 2 X�n f0g care se anuleaz¼a pe Y; dac¼a Y ar � dens, atunci, din con-

tinuitate, x� se anuleaz¼a peste tot, deci este funçtionala nul¼a, ceea ce reprezint¼a o contradiçtie.
�

Observa̧tia 2.3.2 Aşadar, pentru a ar¼ata c¼a un subspaţiu liniar normat este dens într-un
spaţiu liniar normat e su�cient s¼a ar¼at¼am c¼a singura funcţional¼a liniar¼a şi continu¼a care se
anuleaz¼a pe acea mulţime este funcţionala nul¼a.

De�ni̧tia 2.3.3 Fie (X; k�k) un spaţiu liniar normat, x� 2 X�n f0g şi � 2 R: De�nim mulţi-
mile

H�
x�;� = fx 2 X j x� (x) � �g

H<
x�;� = fx 2 X j x� (x) < �g ;

numite semispaţiu închis şi respectiv semispaţiu deschis. Analog se de�nesc H�
x�;� şi H

>
x�;�:

Corolarul 2.3.4 Fie (X; k�k) un spaţiu liniar normat şi C � X o submulţime convex¼a, închis¼a
şi nevid¼a astfel încât C 6= X. Atunci C este intersecţia tuturor semispaţiilor închise care o
conţin.

Demonstraţie Cum exist¼a x 2 X nC din Teorema 2.2.9 este clar c¼a exist¼a m¼acar un semispa̧tiu
închis ce coņtine pe C. De asemenea, este evident c¼a C este inclus¼a în interseçtia tuturor
semispa̧tiilor închise care o coņtin. Presupunem, prin reducere la absurd, c¼a exist¼a x care se
a�¼a în respectiva interseçtie, dar nu se a�¼a în C: Aplic¼am Teorema 2.2.9: exist¼a x� 2 X�n f0g şi
� 2 R astfel încât hiperplanul Hx�;� separ¼a strict muļtimile fxg şi C: Deci, pentru orice c 2 C

x� (c) < � < x� (x) :

Atunci C � H�
x�;�; dar x =2 H�

x�;�; ceea ce reprezint¼a o contradiçtie. �

Propozi̧tia 2.3.5 Fie (X; k�k) un spaţiu liniar normat. Dac¼a (X�; k�k) e separabil, atunci
(X; k�k) e separabil.

Demonstraţie Fie fx�n j n 2 Ng o muļtime dens¼a înX�: Din de�ni̧tia normei operatoriale, pentru
orice n exist¼a xn 2 X astfel încât kxnk � 1 şi jx�n (xn)j � 2�1 kx�nk : Conform unui rezultat
discutat anterior, este su�cient s¼a ar¼at¼am c¼a Y = span fxn j n 2 Ng este dens¼a în X: Folosim

30



Observa̧tia 2.3.2. Fie x� 2 X� astfel încât x� se anuleaz¼a pe Y: Fie " > 0: Din densitatea lui
fx�n j n 2 Ng ; exist¼a n 2 N astfel încât kx� � x�nk < ": Avem

kx�k � kx� � x�nk+ kx�nk � "+ 2 jx�n (xn)j
� "+ 2 jx�n (xn)� x� (xn)j+ 2 jx� (xn)j
� 3":

Cum " > 0 e arbitrar, deducem c¼a x� = 0; deci putem concluziona. �

Observa̧tia 2.3.6 Reciproca propoziţiei de mai sus nu este adev¼arat¼a. Conform Exemplului
1.6.2, `1 este separabil dar dualul s¼au care se identi�c¼a cu m = `1 nu este separabil.
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Capitolul 3

Principii ale Analizei funçtionale

Fiecare ramur¼a major¼a a matematicii are la baz¼a unele rezultate fundamentale care indi-
vidualizeaz¼a respectiva ramur¼a şi pe care se întemeiaz¼a toate dezvolt¼arile ulterioare. Analiza
funçtional¼a nu face excep̧tie, ci, din contra, este una dintre ramurile pentru care aceste rezultate
fundamentale, numite principii, sunt clar delimitate teoretic. Scopul acestui capitol este de a
prezenta cele mai importante dintre aceste rezultate.

3.1 Rezultate auxiliare

Prezent¼am câteva rezultate fundamentale pe care se vor baza demonstra̧tiile teoremelor prin-
cipale ale acestui capitol.

Teorema 3.1.1 (Teorema de interseçtie, a lui Cantor) Fie (X; d) un spaţiu metric com-
plet şi (Fn)n2P un şir de submulţimi închise şi nevide ale lui X astfel încât F1 � F2 � ::: �
Fn � ::: şi diamFn ! 0: Atunci exist¼a x 2 X astfel încât

fxg =
1\
n=1

Fn:

Demonstraţie Mai întâi, observ¼am c¼a interseçtia muļtimilor (Fn) nu poate avea mai mult de un
element pentru c¼a în caz contrar diametrul tuturor muļtimilor ar �mai mare sau egal decât o
constant¼a strict pozitiv¼a, lucru care nu se poate întâmpla din cauza condi̧tiei diamFn ! 0:
Ar¼at¼am acum c¼a respectiva interseçtie este nevid¼a. Din �ecare muļtime Fn select¼am un

element xn; ceea ce putem face în baza faptului c¼a muļtimile sunt nevide. Demonstr¼am c¼a şirul
(xn) astfel format este şir Cauchy.
Fie " > 0: Atunci exist¼a k 2 N astfel încât diamFk < ": Fie m;n � k: Din proprietatea

de incluziune a muļtimilor, xn; xm 2 Fk; deci d (xn; xm) � diamFk < ": Deci (xn) este şir
fundamental, iar cum X este complet, exist¼a x 2 X astfel încât xn ! x: Pe de alt¼a parte, dac¼a

�x¼am n 2 N; atunci xm 2 Fn pentru orice m � n: Cum Fn este închis¼a, x 2 Fn: Deci x 2
1T
n=1

Fn

şi demonstra̧tia este încheiat¼a. �
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Teorema 3.1.2 (Teorema lui Baire, prima form¼a) Fie (X; d) un spaţiu metric complet şi

(Vn)n2P un şir de submulţimi deschise şi dense ale lui X: Atunci
1T
n=1

Vn este dens¼a în X:

Demonstraţie Pentru a ob̧tine concluzia trebuie s¼a ar¼at¼am c¼a pentru orice x 2 X şi orice " > 0

B (x; ") \
1\
n=1

Vn 6= ;:

Este clar c¼a dac¼a V este deschis¼a şi dens¼a şi A este deschis¼a şi nevid¼a atunci exist¼a z 2 X şi
r > 0 astfel încât D (z; r) � V \ A:
Aplic¼am aceast¼a observa̧tie muļtimilor V1 şi B (x; ") : Exist¼a x1 2 X şi r1 2 (0; 1) astfel

încât D (x1; r1) � V1 \B (x; ") :
Continu¼am cu acelaşi argument aplicat muļtimilor V2 şi B (x1; r1) : exist¼a x2 2 X şi r2 2

(0; 2�1) astfel încât D (x2; r2) � V2 \ B (x1; r1) : Recurent, ob̧tinem un şir (xn) � X şi un şir
(rn) � (0;1) astfel încât

D (x1; r1) � D (x2; r2) � :::

diamD (xn; rn) = 2rn ! 0:

Conform Teoremei de interseçtie, exist¼a x 2 X astfel încât

1\
n=1

D (xn; rn) = fxg :

Dar, D (x1; r1) � B (x; ") ; deci x 2 B (x; ") şi D (xn; rn) � Vn pentru orice n 2 P; deci

x 2
1T
n=1

Vn: Ob̧tinem concluzia dorit¼a. �

Teorema 3.1.3 (Teorema lui Baire, a doua form¼a) Fie (X; d) un spaţiu metric complet

şi (Fn)n2P un şir de submulţimi închise ale lui X astfel încât
1S
n=1

Fn = X: Atunci exist¼a k 2 P

astfel încât intFk 6= ;:

Demonstraţie Presupunem, prin reducere la absurd, c¼a intFn = ; pentru orice n 2 P: Pentru
to̧ti n consider¼am Vn = X n Fn care sunt muļtimi deschise şi dense, ultima a�rma̧tie rezultând
pe baza faptului c¼a

clVn = cl (X n Fn) = X n intFn = X:

Cum
1S
n=1

Fn = X; avem

; = X n
1[
n=1

Fn =
1\
n=1

(X n Fn) =
1\
n=1

Vn;

ceea ce contrazice prima form¼a a Teoremei lui Baire. �
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Exemplul 3.1.4 Ipoteza de completitudine din Teorema lui Baire este eseņtial¼a. Pentru a
proba acest lucru, consider¼am spa̧tiul necomplet

�
c00; k�kp

�
despre care am v¼azut c¼a este un

subspa̧tiu liniar dens al lui
�
`p; k�kp

�
, unde p 2 (1;1) : Consider¼am, pentru orice n 2 P;

An =
�
(x1; :::; xn; 0; 0; :::) j xi 2 R, 8i 2 1; n

	
:

Aceste muļtimi sunt subspa̧tii �nit dimensionale ale lui c00; deci sunt închise. Pe de alt¼a parte,
interiorul lor este vid pentru c¼a nu coincid cu tot spa̧tiul. Observ¼am c¼a

c00 =

1[
n=1

An:

Propozi̧tia 3.1.5 Fie (X; k�k) un spaţiu Banach şi V � X o mulţime convex¼a, absorbant¼a şi
închis¼a. Atunci V este vecin¼atate a originii.

Demonstraţie Cum V este absorbant¼a, coņtine pe 0 şi avem

X =
[
��0

�V:

Pe baza convexit¼a̧tii îns¼a, pentru orice �; � > 0 cu � < �;

�V � �V

pentru c¼a

�v = �

�
�

�
v +

�
1� �

�

�
0

�
2 �V; 8v 2 V:

Astfel, deducem c¼a
X =

[
n2P

nV:

Folosind a doua form¼a a Teoremei lui Baire, pentru c¼a V este şi închis¼a, exist¼a k 2 P astfel
încât int (kV ) 6= ;: Ob̧tinem de aici c¼a intV 6= ;; adic¼a exist¼a x 2 intV: Pentru elementul �x
exist¼a � > 0 astfel încât ��x 2 V: Pe baza convexit¼a̧tii lui V;

0 =
1

1 + �
(��x) + �

1 + �
x 2 intV:

Am ob̧tinut c¼a V este vecin¼atate a originii, deci concluzia. �

3.2 Rezultate principale

Prezent¼am în continuare unul dintre principiile Analizei funçtionale.

Teorema 3.2.1 (Principiul m¼arginirii uniforme) Fie (X; k�k) spaţiu Banach şi (Y; k�k)
spaţiu liniar normat. Fie (Ti)i2I � L (X; Y ) o familie de operatori liniari continui indexat¼a
dup¼a o mulţime I arbitrar¼a de indici. Presupunem c¼a familia este punctual m¼arginit¼a, adic¼a
pentru orice x 2 X exist¼a Mx > 0 astfel încât pentru orice i 2 I; kTixk � Mx. Atunci exist¼a
M > 0 astfel încât pentru orice i 2 I; kTik �M:
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Demonstraţie Pentru to̧ti n 2 P consider¼am muļtimea închis¼a

Fn = fx 2 X j kTixk � n; 8i 2 Ig :

Din ipoteza de m¼arginire punctual¼a,

X =

1[
n=1

Fn

şi cum X este complet, din Teorema lui Baire (Teorema 3.1.3) ob̧tinem c¼a exist¼a k 2 N astfel
încât intFk 6= ;: Prin urmare, exist¼a x 2 X şi " > 0 astfel încât D (x; ") � Fk; adic¼a pentru
orice z 2 D (x; ") şi orice i 2 I; kTizk � k: Pentru orice x 2 D (0; ") putem scrie

x =
1

2
(x+ x)� 1

2
(x� x)

şi cum ambii vectori sunt în D (x; ") ;

kTixk �
1

2
kTi (x+ x)k+ 1

2
kTi (x� x)k � k; 8i 2 I:

Fie x 2 X n f0g : Putem scrie

kTixk =
kxk
"





Ti� "x

kxk

�



 � k

"
kxk ; 8i 2 I:

Pe baza de�ni̧tiei normei operatoriale,

kTik �
k

"
; 8i 2 I;

adic¼a exact concluzia. �

Observa̧tia 3.2.2 Ipoteza de m¼arginire punctual¼a este echivalent¼a cu m¼arginirea punctual¼a
pe DX ; iar concluzia rezultatului de mai sus este echivalent¼a cu oricare dintre urm¼atoarele
a�rmaţii:
- exist¼aM > 0 astfel încât pentru orice x 2 DX şi orice i 2 I; kTixk �M (adic¼a m¼arginirea

uniform¼a pe DX);
- exist¼a M > 0 astfel încât DX � fx 2 X j kTixk �M; 8i 2 Ig :

Exemplul 3.2.3 Completitudinea lui X este eseņtial¼a. De exemplu, pentru orice n 2 P
de�nim Tn : (c00; k�k1)! (R; j�j) prin

Tn ((x1; x2; :::)) = nxn:

Aceşti operatori sunt m¼argini̧ti şi kTnk = n pentru orice n: Pe de alt¼a parte, pentru orice
x 2 c00; cum exist¼a mx 2 P astfel încât xk = 0 pentru orice k > mx;

jTnxj � mx kxk1 ; 8n;

deci familia de operatori (Tn) este punctual m¼arginit¼a.
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Corolarul 3.2.4 Fie X spaţiu Banach şi Y spaţiu liniar normat. Fie Tn : X ! Y (n 2 N) un
şir de operatori liniari continui convergent punctual, i.e., pentru orice x 2 X; exist¼a Tx 2 Y
astfel încât limTnx = Tx: Atunci T este operator liniar continuu.

Demonstraţie Din convergeņta punctual¼a a şirului (Tn) ; deducem m¼arginirea sa punctual¼a.
Deci, conform Principiului m¼arginirii uniforme (Teorema 3.2.1), exist¼a M > 0 astfel încât

kTnk �M; 8n 2 N:

Se veri�c¼a uşor c¼a T este liniar, iar rela̧tia de mai sus ne permite s¼a scriem

kTxk = lim kTnxk �M kxk ; 8x 2 X:

Aşadar, T este continuu. �

Exemplul 3.2.5 Pentru a ar¼ata c¼a ipoteza de completitudine pentru X este eseņtial¼a în coro-
larul de mai sus, consider¼am şirul de operatori Tn : (c00; k�k1)! (R; j�j),

Tn ((x1; x2; :::)) =
nX
k=1

xk:

To̧ti operatorii Tn sunt m¼argini̧ti. Acest şir converge punctual la operatorul liniar T : c00 ! R
dat prin

T ((x1; x2; :::)) =
1X
k=1

xn:

Dar T nu este operator m¼arginit.

În continuare discut¼am câteva aspecte de baz¼a privind teoria seriilor de elemente dintr-un
spa̧tiu normat.

De�ni̧tia 3.2.6 Fie (X; k�k) un spaţiu liniar normat şi (xn)n2P un şir de elemente din X: SeriaP1
n=1 xn se de�neşte, ca şi în cazul numeric, ca �ind cuplul format de şirul termenului general

(xn) şi de şirul sumelor parţiale (sn) : Spunem c¼a seria este convergent¼a dac¼a şirul sumelor
parţiale este convergent în X:

Ca de obicei, limita şirului sumelor paŗtiale, dac¼a exist¼a, se noteaz¼a tot cu
P1

n=1 xn: Evident,
în acest caz 






1X
n=1

xn �
kX
n=1

xn






 k!1�! 0:

De�ni̧tia 3.2.7 Spunem c¼a o serie
P1

n=1 xn este absolut convergent¼a dac¼a seria de numere
reale

P1
n=1 kxnk este convergent¼a.

Are loc urm¼atorul rezultat fundamental.
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Propozi̧tia 3.2.8 Dac¼a (X; k�k) este spaţiu Banach. Dac¼a
P1

n=1 xn este o serie absolut con-
vergent¼a, atunci

P1
n=1 xn este convergent¼a şi






1X
n=1

xn






 �
1X
n=1

kxnk :

Demonstraţie Fie (sn) şirul sumelor paŗtiale ale seriei absolut convergente
P1

n=1 xn: Not¼am cu
(tn) şirul sumelor paŗtiale ale seriei normelor. Pentru orice n;m 2 P cu n > m avem

ksn � smk =







nX
k=m+1

xk






 �
nX

k=m+1

kxkk = tn � tm:

Cum (tn) e şir Cauchy de numere reale, deducem c¼a (sn) e de asemenea şir Cauchy în X: Cum
X este spa̧tiu Banach, (sn) este convergent, deci seria ini̧tial¼a este convergent¼a. Inegalitatea
�nal¼a rezult¼a prin compararea normelor termenilor lui (sn) cu termenii lui (tn) : �

Prezent¼am acum alte dou¼a dintre principiile Analizei funçtionale.

Teorema 3.2.9 (Principiul aplica̧tiilor deschise) Fie (X; k�k) ; (Y; k�k) spaţii Banach şi
T 2 L (X; Y ) : Dac¼a T este surjectiv, atunci T este deschis, adic¼a duce mulţimi deschise în
mulţimi deschise.

Demonstraţie Observ¼am c¼a este su�cient s¼a ar¼at¼am c¼a exist¼a � > 0 astfel încât

BY (0; �) � T (BX (0; 1)) : (3.1)

Într-adev¼ar, dac¼a aceast¼a incluziune este adev¼arat¼a atunci pentru orice muļtime deschis¼a V � X
şi pentru orice y 2 T (V ) ; exist¼a x 2 V astfel încât Tx = y şi exist¼a " > 0 astfel încât
B (x; ") � V; deci

T (V ) � T (B (x; ")) = Tx+ "TBX (0; 1) � y + "BY (0; �) = BY (y; �") ;

ceea ce arat¼a c¼a T (V ) este deschis¼a.
Aşadar, demonstr¼am incluziunea (3.1) evideņtiat¼a mai sus. S¼a consider¼ammai întâi muļtimea

închis¼a T (DX): Este destul de simplu de veri�cat c¼a aceasta este convex¼a (pe baza liniarit¼a̧tii
lui T ) şi absorbant¼a (pe baza surjectivit¼a̧tii lui T ). Cum Y este spa̧tiu Banach, ob̧tinem c¼a
T (DX) este vecin¼atate a originii, deci exist¼a � > 0 astfel încât D (0; �) � T (DX):
Fie y 2 Y n f0g şi � > 0: Cum � kyk�1 y 2 D (0; �) � T (DX); exist¼a u 2 DX astfel încât

� kyk�1 y � Tu



 < � kyk�1 �;

adic¼a punând z = kyk ��1u;
ky � Tzk < �:

Deci, pentru orice y 2 Y şi � > 0 exist¼a z 2 X astfel încât

kzk � 1

�
kyk şi ky � Tzk < �:
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Putem acum s¼a ar¼at¼am (3.1) pentru � = �: Faptul c¼a 0Y 2 T (BX (0; 1)) este evident. Fie
aşadar y 2 B(0; �) n f0Y g : Fix¼am � 2 (0; 2�1 (�� kyk)) : Din cele discutate, exist¼a x0 2 X
astfel încât

kx0k �
1

�
kyk

ky � Tx0k < �:

Aplic¼am acelaşi argument acum pentru y � Tx0 şi 2�1� : exist¼a x1 2 X astfel încât

kx1k �
1

�
ky � Tx0k �

�

�

ky � Tx0 � Tx1k < 2�1�:

Continu¼am: aplic¼am acelaşi argument acum pentru y�Tx0�Tx1 şi 2�2� : exist¼a x2 2 X astfel
încât

kx2k �
1

�
ky � Tx0 � Tx1k �

�

2�

ky � Tx0 � Tx1 � Tx2k < 2�2�:

Dac¼a am construit în acest fel termenii x1; :::; xn�1 cu n 2 P; aplicând aceeaşi tehnic¼a g¼asim
xn 2 X astfel încât

kxnk �
1

�
ky � Tx0 � Tx1 � :::� Txn�1k �

�

2n�1�

ky � Tx0 � Tx1 � Tx2::� Txn�1 � Txnk < 2�n�:

Astfel, pe baza induçtiei matematice, am construit un şir (xn) pentru care seria
P1

n=0 xn este
absolut convergent¼a pentru c¼a, pe baza alegerii lui �;

1X
n=0

kxnk �
1

�
kyk+

1X
n=1

�

2n�1�
=
kyk+ 2�

�
< 1:

CumX este spa̧tiu Banach, seria
P1

n=0 xn este convergent¼a la un element x 2 X: Dac¼a not¼am cu
(sn) şirul sumelor paŗtiale ale acestei serii din a doua inegalitate de la determinarea termenilor
(xn) g¼asim

ky � Tsnk < 2�n� ! 0;

deci Tsn ! y; ceea ce înseamn¼a c¼a y = Tx: În plus,

kxk =






1X
n=0

xn






 �
1X
n=0

kxnk < 1;

deci y 2 T (BX) : Demostra̧tia este încheiat¼a. �

Corolarul 3.2.10 Fie X; Y spaţii Banach şi T 2 L (X; Y ) bijectiv. Atunci T�1 2 L (Y;X) :
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Demonstraţie Pentru c¼a T este bijectiv, exist¼a operatorul T�1 despre care se arat¼a cu uşuriņt¼a
c¼a este liniar. Fie D � X deschis¼a. Din Principiul aplica̧tiilor deschise, T (D) este deschis¼a.
Având în vedere c¼a (T�1)�1 (D) = T (D) ; deducem c¼a T�1 întoarce deschi̧si în deschi̧si, deci
este continuu. �

Corolarul 3.2.11 Fie X spaţiu liniar normat şi k�k1 ; k�k2 dou¼a norme pe X în raport cu care
X este spaţiu Banach. Dac¼a exist¼a c > 0 astfel încât pentru orice x 2 X; kxk2 � c kxk1 ; atunci
cele dou¼a norme sunt echivalente. Cu alte cuvinte, dac¼a dou¼a norme de spaţiu Banach sunt
comparabile, atunci ele sunt echivalente.

Demonstraţie Fie aplica̧tia identitate id : (X; k�k1) ! (X; k�k2) : Conform ipotezei, id este
operator liniar continuu. Din corolarul anterior deducem c¼a operatorul invers este de asemenea
continuu. Ob̧tinem astfel concluzia. �

Teorema 3.2.12 (Principiul gra�cului închis) Fie X;Y spaţii Banach şi T : X ! Y
liniar. Atunci T este continuu dac¼a şi numai dac¼a are gra�cul închis.

Demonstraţie Este cunoscut faptul c¼a orice aplica̧tie continu¼a între dou¼a spa̧tii metrice are
gra�cul închis.
Invers, presupunem c¼a T are gra�cul închis şi ar¼at¼am c¼a este continuu.
Introducem pe X norma

kxk1 = kxkX + kTxkY ; 8x 2 X:

Este uşor de v¼azut c¼a aceasta este într-adev¼ar o norm¼a.
Ar¼at¼am c¼a (X; k�k1) este spa̧tiu Banach. Fie (xn) un şir Cauchy în raport cu k�k1 : Ob̧tinem

imediat c¼a (xn) este şir Cauchy în raport cu k�kX ; iar (Txn) este şir Cauchy în raport cu k�kY :
Cum X; Y sunt spa̧tii Banach, exist¼a x 2 X şi y 2 Y astfel încât xn ! x; Txn ! y: Datorit¼a

faptului c¼a T are gra�c închis, y = Tx şi avem c¼a xn
k�k1�! x: Deci (X; k�k1) este spa̧tiu Banach.

Este evident c¼a pentru orice x 2 X; kxkX � kxk1 şi conform corolarului precedent cele
dou¼a norme sunt echivalente, deci exist¼a d > 0 astfel încât pentru orice x 2 X; kxk1 � d kxkX :
Astfel,

kTxkY � d kxkX ; 8x 2 X;
deci T este continuu. �

Ar¼at¼am acum, prin exemple, c¼a ipotezele de completitudine sunt eseņtiale în rezultatele de
mai sus.

Exemplul 3.2.13 1. Fie aplica̧tia identitate de la (`1; k�k1) la (`1; k�k1) ; notat¼a, ca de obicei,
cu id : Atunci id este continu¼a (pentru c¼a k�k1 � k�k1), surjectiv¼a şi dac¼a ar � deschis¼a atunci
inversa ar �de asemenea continu¼a. Dar identitatea de la (`1; k�k1) la (`1; k�k1) nu este continu¼a:
pentru xn = (1; :::; 1; 0; 0; :::) (n 2 P; 1 pân¼a la pozi̧tia n), kxnk1 = n; kxnk1 = 1: Aceasta se
întâmpl¼a pentru c¼a (`1; k�k1) nu este complet.
2. Fie X spa̧tiu Banach in�nit dimensional şi f : X ! R un operator liniar discontinuu

(nem¼arginit) a c¼arui existeņt¼a este asigurat¼a de Observa̧tia 1.3.9. De�nim pe X o nou¼a norm¼a
prin

kxkf = kxk+ jf (x)j :
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Se veri�c¼a c¼a într-adev¼ar aceast¼a aplica̧tie este o norm¼a. În plus,
�
X; k�kf

�
nu este complet

pentru c¼a k�kf şi k�k sunt comparabile şi dac¼a
�
X; k�kf

�
ar � spa̧tiu Banach atunci ar �

echivalente, ceea ce revine la continuitatea lui f: De�nim din nou operatorul identitate id de la�
X; k�kf

�
la (X; k�k) care este liniar, continuu şi surjectiv. Totuşi inversul s¼au nu este continuu

pentru c¼a normele nu sunt echivalente.
3. S¼a consider¼am spa̧tiul

�
c00; k�kp

�
; unde p 2 (1;1) ; care nu este complet (este subspa̧tiu

dens propriu în
�
`p; k�kp

�
). Fie T :

�
c00; k�kp

�
!
�
c00; k�kp

�
T (x) =

�
n�1xn

�
:

Acest operator este bine de�nit, liniar, continuu, bijectiv, dar inversul T�1 este dat de

T�1 (x) = (nxn) ;

care este operator nem¼arginit.
4. Fie T : (C1 ([0; 1]) ; k�k1)! (C ([0; 1]) ; k�k1) dat prin

T (f) = f 0:

Este clar c¼a T este liniar şi are gra�c închis (Teorema de transfer a derivabilit¼a̧tii). Totuşi, T
nu este continuu, ne�ind m¼arginit. De exemplu, pentru fn : [0; 1]! R;

fn (x) =
1

n
sin
�
n2x
�
; 8n 2 P

avem kfnk1 ! 0, în timp ce kTfnk1 = kf 0nk1 = n ! 1: Bineîņteles, acest exemplu nu
contrazice Principiul gra�cului închis, întrucât domeniul nu este spa̧tiu Banach (a se vedea
Exemplul 1.2.4 şi Exemplul 1.3.5).
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Capitolul 4

Topologii slabe şi compactitate

În acest capitol vom studia, pe un spa̧tiu liniar normat şi pe dualul acestuia, câteva topologii
care sunt mai slabe decât topologiile date de norme. Necesitatea introducerii unor topologii noi,
mai slabe decât topologia normei, se fundamenteaz¼a pe urm¼atoarele fapte: cu cât o topologie
este mai �n¼a (mai tare, are mai multe muļtimi deschise) exist¼a cu atât mai multe funçtii con-
tinue cu valori reale, dar cu atât mai pu̧tine muļtimi compacte, ori tocmai cuplarea continuit¼a̧tii
cu compactitatea produce rezultate importante (a se vedea, de exemplu, Teorema lui Weier-
strass, Teorema lui Cantor) şi asigur¼a posibilitatea trecerii la limit¼a în diverse probleme. Pe
de alt¼a parte, într-un spa̧tiu liniar normat in�nit dimensional chiar bila unitate închis¼a nu este
compact¼a. Astfel apare necesitatea gândirii unor topologii care s¼a �e compatibile cu topologia
normei, dar care s¼a aib¼a avantajul unei mai mari clase de muļtimi compacte. Astfel de topologii
nu sunt în general metrizabile, deci trebuie s¼a facem apel la rezultate din cadrul spa̧tiilor liniare
topologice generale.

4.1 Preliminarii

Pân¼a în acest moment, topologiile pe care le-am considerat în rezultatele principale au fost
topologii induse de o norm¼a. Reamintim de�ni̧ta general¼a a unei topologii precum şi unele
aspecte pe care le vom avea în vedere în cele ce urmeaz¼a.

De�ni̧tia 4.1.1 Fie X o mulţime nevid¼a şi P(X) familia submulţimilor sale. O submulţime �
a lui P(X) se numeşte topologie pe X dac¼a satisface urm¼atoarele condiţii:
(i) [i2IDi 2 �; pentru orice mulţime de indici I şi orice familie fDi j i 2 Ig � � ; (ii)

D1 \D2 2 �; pentru orice D1; D2 2 � ; (iii) X; ; 2 �:
Perechea (X; �) se numeşte spaţiu topologic, iar elementele lui � se numesc mulţimi deschise.

De�ni̧tia 4.1.2 Fie (X; �) un spaţiu topologic şi A � X: Spunem c¼a A este mulţime închis¼a
dac¼a X n A este mulţime deschis¼a, i.e., X n A 2 �:

Presupunem cunoscute conceptele de mai jos şi rezultatele fundamentale legate de acestea:
vecin¼atate a unui punct (not¼am cu V(x) muļtimea tuturor vecin¼at¼a̧tilor lui x); punct interior
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unei muļtimi; punct aderent unei muļtimi; frontiera unei muļtimi; muļtime compact¼a; continu-
itatea unei funçtii f : A � X ! Y într-un punct a 2 A şi continuitatea pe muļtime, unde X; Y
sunt spa̧tii topologice şi A � X:
Spre deosebire de o topologie metric¼a (deci, în particular, o topologie dat¼a de o norm¼a)

caracteriz¼arile cu şiruri ale punctelor aderente sau ale muļtimilor compacte nu mai sunt valabile.
Fie X o muļtime nevid¼a şi �1; �2 dou¼a topologii pe X: Reamintim c¼a �1 se numeşte mai pu̧tin

�n¼a decât �2 (sau c¼a �2 este mai �n¼a decât �1) dac¼a �1 � �2: Spunem c¼a �1 este strict mai pu̧tin
�n¼a decât �2 (sau c¼a �2 este strict mai �n¼a decât �1) dac¼a �1 � �2 şi �1 6= �2: Fie X o muļtime
nevid¼a şi �1; �2 dou¼a topologii pe X: Topologia �1 este mai pu̧tin �n¼a decât �2 dac¼a şi numai
dac¼a aplica̧tia identitate id : (X; �2)! (X; �1) este continu¼a.
Revenim acum la cadrul uzual al spa̧tiilor liniare normate. Începem prin a de�ni pe un spa̧tiu

liniar normat o topologie, numit¼a topologia slab¼a, în scopul de a identi�ca mai uşor muļtimi
compacte, având totuşi o clas¼a su�cient de vast¼a de funçtii continue. Deşi acest prim efort
nu ofer¼a r¼aspunsul direct la aceast¼a chestiune, vom construi pe spa̧tiul dual, pe baza aceloraşi
idei, dou¼a noi topologii, topologia slab¼a şi topologia slab-stelat¼a şi vom vedea c¼a aceasta din
urm¼a corespunde scopului ini̧tial. O ipotez¼a suplimentar¼a care conduce la conceptul de spa̧tiu
re�exiv va � eseņtial¼a pentru ob̧tinerea de rezultate de compactitate şi pentru prima topologie
introdus¼a, şi anume topologia slab¼a.
Apoi, vom studia un tip special de operatori pentru care imaginea discului unitate are

propriet¼a̧ti de compactitate. Astfel, întreaga problematic¼a a acestui capitol este subsumat¼a
ideii de identi�care a unor muļtimi compacte (în raport cu o topologie mai slab¼a decât cea a
normei).

4.2 Topologia slab¼a

FieX un spa̧tiu liniar normat. Topologia slab¼a, notat¼a w; peX este cea mai pu̧tin �n¼a topologie
care coņtine familia de muļtimi

E =
�
x��1 (V ) j x� 2 X�; V � R deschis¼a

	
:

Altfel spus, w este cea mai slab¼a topologie pe X pentru care toate funçtionale din dual sunt
continue. Este evident c¼a

w =
\
f� j � topologie pe X; E � �g :

Deci, muļtimile deschise în w sunt reuniunile de interseçtii �nite de elemente din E . Are loc
rezultatul urm¼ator de caracterizare a muļtimilor topologiei w:

Propozi̧tia 4.2.1 Fie (X; k�k) un spaţiu liniar normat. Atunci o submulţime nevid¼a U � X
este în w dac¼a şi numai dac¼a pentru orice x 2 U; exist¼a " > 0; n 2 P; x�1; :::; x�n 2 X� astfel
încât

n\
k=1

x��1k (x�k (x)� "; x�k (x) + ")

=
�
y 2 X j jx�k (y � x)j < "; 8k 2 1; n

	
� U:
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Demonstraţie Muļtimea U este în w dac¼a şi numai dac¼a este vecin¼atate în w pentru orice x 2 U:
Aceasta revine la a spune c¼a pentru orice x 2 U exist¼a o interseçtie �nit¼a de elemente din E
care coņtine x şi este inclus¼a în U: Deci

U 2 w () 8x 2 U;9n 2 P; x�1; :::; x�n 2 X�; V1; :::; Vn � R deschise, astfel încât

x 2
n\
k=1

x��1k (Vk) � U:

Este clar c¼a �ecare Vk este vecin¼atate a lui x�k (x) ; deci exist¼a un " > 0 comun astfel încât

(x�k (x)� "; x�k (x) + ") � Vk:

Deducem c¼a

U 2 w () 8x 2 U;9n 2 P; x�1; :::; x�n 2 X�; " > 0, astfel încât
n\
k=1

x��1k (x�k (x)� "; x�k (x) + ") � U:

Astfel, avem concluzia. �

Observa̧tia 4.2.2 Din cele de mai sus reţinem şi faptul c¼a o vecin¼atate generic¼a a unui punct
x 2 X în topologia slab¼a are forma

V (x;x�1; x
�
2; :::; x

�
n; ") =

�
x 2 X j jx�i (x� x)j < ";8i 2 1; n

	
;

unde n 2 P; x�1; x�2; :::; x�n 2 X� şi " > 0: De asemenea,

V (x;x�1; x
�
2; :::; x

�
n; ") = x+ V (0; x�1; x

�
2; :::; x

�
n; ") :

Aceasta înseamn¼a, printre altele, c¼a pentru a proba continuitatea unei aplicaţii liniare în
raport cu topologia slab¼a este su�cient s¼a se arate continuitatea sa în origine.

Observa̧tia 4.2.3 Este clar c¼a topologia slab¼a este inclus¼a în topologia normei pe care o vom
numi şi topologia tare: orice mulţime slab deschis¼a este şi deschis¼a tare. Similar pentru mulţimi
închise.

Propozi̧tia 4.2.4 Fie (X; k�k) un spaţiu liniar normat. Atunci w este separat¼a T2:

Demonstraţie Fie x; y 2 X cu x 6= y: Din Teorema Hahn-Banach, exist¼a x� 2 X� n f0g astfel
încât x� (x� y) > 0: Not¼am " = x� (x� y) şi observ¼am c¼a�

z 2 X j jx� (z � x)j < 2�1"
	
\
�
z 2 X j jx� (z � y)j < 2�1"

	
= ;;

iar cele dou¼a muļtimi sunt vecin¼at¼a̧ti în w ale lui x şi respectiv y: �

Propozi̧tia 4.2.5 Pe spaţii liniare normate �nit dimensionale topologia normei şi w coincid.
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Demonstraţie Fie X spa̧tiu liniar normat �nit dimensional, de dimensiune n 2 P. Cum toate
normele sunt echivalente pe X; este su�cient s¼a ar¼at¼am c¼a bilele deschise în raport cu norma
k�k1 sunt vecin¼at¼a̧ti slab deschise ale centrului.
Fie x 2 X şi " > 0: Atunci

B1 (x; ") =
�
y 2 X j jyi � xij < "; 8i 2 1; n

	
:

Consider¼am funçtionalele f1; ::; fn : X ! R date, pentru k 2 1; n; prin

fk (x) = xk:

Este clar c¼a aceste funçtionale sunt din X� şi observ¼am c¼a

B1 (x; ") =
�
y 2 X j jfi(y)� fi(x)j < "; 8i 2 1; n

	
;

deci B1 (x; ") 2 w; adic¼a B1 (x; ") este vecin¼atate slab¼a a lui x: �

Propozi̧tia 4.2.6 Fie (X; k�k) un spaţiu liniar normat in�nit dimensional. Atunci:
(i) orice mulţime slab deschis¼a nevid¼a conţine o dreapt¼a a�n¼a, deci este nem¼arginit¼a în

topologia normei;
(ii) orice mulţime m¼arginit¼a în norm¼a are interior vid în topologia w:

Demonstraţie (i) Fie U 2 wnf;g : Atunci pentru orice x 2 U; exist¼a " > 0; n 2 P; x�1; :::; x�n 2 X�

astfel încât �
y 2 X j jx�i (y � x)j < "; 8i 2 1; n

	
� U:

Ar¼at¼am c¼a exist¼a x 2 X n f0g astfel încât pentru orice i 2 1; n; x�i (x) = 0: Dac¼a nu ar exista
un astfel de element, atunci aplica̧tia

x 7! (x�1 (x) ; :::; x
�
n (x)) 2 Rn

ar �o injeçtie liniar¼a cu valori într-un spa̧tiu �nit dimensional, ceea ce ar atrage concluzia fals¼a
c¼a dimensiunea lui X este �nit¼a.
Prin urmare, exist¼a x 2 X nf0g astfel încât pentru orice i 2 1; n; x� (x) = 0: Atunci, pentru

orice t 2 R şi i 2 1; n, x�i (x+ tx� x) = 0; adic¼a

fx+ tx j t 2 Rg � U;

ceea ce reprezint¼a concluzia.
(ii) Fie U m¼arginit¼a în norm¼a. Dac¼a interiorul s¼au în topologia w ar � nevid, atunci acesta

ar � un deschis nevid din w coņtinut în U: Dar conform punctului (i) ; pe baza m¼arginirii lui
U; singura muļtime din w coņtinut¼a în U este ;; deci intw U = ;: �

Observa̧tia 4.2.7 Punctul (ii) al rezultatului precedent arat¼a c¼a pe spaţii normate in�nit di-
mensionale topologia slab¼a este strict mai puţin �n¼a decât topologia tare.

Prezent¼am acum un rezultat foarte important care arat¼a c¼a muļtimile convexe şi închise
coincid în cele dou¼a topologii.
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Teorema 4.2.8 (Mazur) Fie (X; k�k) un spaţiu liniar normat şi C � X o mulţime convex¼a.
Atunci C este slab închis¼a dac¼a şi numai dac¼a este tare închis¼a. Pentru o astfel de mulţime

clw C = C = clk�kC:

Demonstraţie Dac¼a C este slab închis¼a atunci ea este tare închis¼a din compararea topologiilor.
Presupunem c¼a C este tare închis¼a. Fie x =2 C (cazul C = X este evident). Atunci, din
a doua form¼a geometric¼a a Teoremei Hahn-Banach, exist¼a x� 2 X� şi a 2 R astfel încât
x� (x) < a < x� (c) pentru orice c 2 C: Aceasta înseamn¼a c¼a x 2 H<

x�;a � X n C: Cum H<
x�;a

este o muļtime deschis¼a în topologia w; deducem c¼a X n C este deschis¼a în aceast¼a topologie.
Astfel, C este închis¼a în w:
Ultima a�rma̧tie este evident¼a pentru c¼a o muļtime închis¼a într-o topologie oarecare coincide

cu închiderea ei în acea topologie. �

Propozi̧tia 4.2.9 Fie (X; k�k) un spaţiu liniar normat in�nit dimensional. Atunci sfera uni-
tate nu este slab închis¼a. Mai mult,

clw SX = DX :

Demonstraţie Avem, succesiv,

X n clw SX = intw (X n SX) = intw (BX [ (X nDX))

= intw BX [ intw (X nDX) = ; [ (X n clwDX) :

Cum DX este convex¼a, din teorema precedent¼a închiderea sa este aceeaşi în ambele topologii,
deci

X n clw SX = X nDX ;

adic¼a clw SX = DX : �

Discut¼am acum unele aspecte legate de convergeņta şirurilor în topologia slab¼a.

Propozi̧tia 4.2.10 Fie (X; k�k) un spaţiu liniar normat, (xn) � X un şir şi x 2 X: Atunci:
(i) xn

w�! x dac¼a şi numai dac¼a pentru orice x� 2 X�; x� (xn)! x� (x) în R;
(ii) dac¼a xn ! x; atunci xn

w�! x;
(iii) dac¼a xn

w�! x; atunci (xn) este m¼arginit în norm¼a şi kxk � lim inf kxnk ;
(iv) dac¼a (x�n) este un şir de funcţionale convergent în norma dualului la x

� şi xn
w�! x;

atunci x�n (xn)! x� (x) :

Demonstraţie (i) A�rma̧tia rezult¼a imediat din de�ni̧tia convergeņtei unui şir într-o topologie
şi din forma vecin¼at¼a̧tilor unui punct în w:
(ii) Compararea topologiilor probeaz¼a şi aceast¼a implica̧tie.
(iii) Dac¼a xn

w�! x; din punctul (i), x� (xn) ! x� (x) pentru orice x� 2 X�: În particular,
familia de operatori fxn j n 2 Ng, unde xn este identi�cat cu operatorul xn : X� ! R; xn (x�) =
x� (xn) ; este punctual m¼arginit¼a. Conform Principiului m¼arginirii uniforme (X� este complet),
deducem m¼arginirea lui (xn) în topologia normei.
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Pentru orice x� 2 X�;

jx� (x)j � jx� (x� xn)j+ jx� (xn)j � jx� (x� xn)j+ kx�k kxnk :

Prin trecere la lim inf se ob̧tine inegalitatea anuņtat¼a.
(iv) Scrierea

jx�n (xn)� x� (x)j � jx�n (xn)� x� (xn)j+ jx� (xn)� x� (x)j
� kx�n � x�k kxnk+ jx� (xn � x)j

şi m¼arginirea în norm¼a a lui (xn) probeaz¼a a�rma̧tia. �

Exemplul 4.2.11 În general, convergeņta slab¼a (i.e., în topologia slab¼a) a unui şir nu implic¼a
convergeņta sa tare (i.e., în topologia normei). Un astfel de exemplu este cazul vectorilor unitari
(en)n2P în (c0; k�k1) : Este clar c¼a acest şir nu este tare convergent întrucât nu este fundamental:

ken � emk1 = 1; 8m;n 2 P; n 6= m:

Ar¼at¼am c¼a acest şir este slab convergent la 0: Ştim c¼a c�0 = `1, iar operatorul care realizeaz¼a
izomor�smul izometric între cele dou¼a spa̧tii este T : (`1; k�k1)! ((c0; k�k1)

� ; k�k�) de�nit prin:

T (x) (y) =
1X
k=1

xkyk;

unde x = (xn)n2P 2 `1; y = (yn)n2P 2 c0: Astfel en
w�! 0 este echivalent cu: pentru orice x 2 `1;

T (x) (en) = xn ! 0;

ceea ce este adev¼arat.

Totuşi convergeņta în topologia slab¼a nu poate � caracterizat¼a prin şiruri pe spa̧tii in�nit
dimensionale pentru c¼a w nu este metrizabil¼a pe astfel de spa̧tii, dup¼a cum arat¼a rezultatul ce
urmeaz¼a.

Teorema 4.2.12 Topologia slab¼a într-un spaţiu liniar normat in�nit dimensional nu este metriz-
abil¼a.

Demonstraţie Este su�cient s¼a ar¼at¼am c¼a topologia slab¼a nu satisface prima axiom¼a a num¼ara-
bilit¼a̧tii. Presupunem, prin reducere la absurd şi f¼ar¼a a restrânge generalitatea, c¼a originea
admite un sistem fundamental de vecin¼at¼a̧ti num¼arabil (Un)n2P în topologia w: Evident, tot
f¼ar¼a a restrânge generalitatea, putem considera

U1 � Un � ::: � Un � ::: � f0g :

Conform Propozi̧tiei 4.2.6 şi demonstra̧tiei punctului (i), pentru orice n; exist¼a xn 2 X n f0g
astfel încât

f0 + txn j t 2 Rg � Un:
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De�nim şirul

(yn)n =

�
nxn
kxnk

�
n

:

Este evident c¼a pentru orice n; yn 2 Un:
Alegem x� 2 X� şi " > 0: Cum x��1 (�"; ") 2 w; exist¼a n" 2 N astfel încât Un" �

x��1 (�"; ") ; iar din monotonia şirului (Un) ;

Un � x��1 (�"; ") ; 8n � n":

Deci
yn 2 x��1 (�"; ") ; 8n � n":

Aceasta înseamn¼a c¼a x� (yn) ! 0: Cum x� a fost ales arbitrar, conform Propozi̧tiei 4.2.10 (i),
yn

w�! 0: Dar tot (yn) este nem¼arginit în norm¼a, deci nu poate � slab convergent conform
punctului (iii) al aceleiaşi propozi̧tii.
Contradiçtia la care am ajuns înseamn¼a c¼a originea nu admite un sistem fundamental de

vecin¼at¼a̧ti num¼arabil. Demostra̧tia este încheiat¼a. �

4.3 Topologia slab �stelat¼a

Fie (X; k�k) un spa̧tiu liniar normat şi (X�; k�kX�) dualul s¼au. Evident, X� are la rândul s¼au
un dual, notat X�� şi numit bidualul lui X: Putem astfel, considerându-l pe X� ca spa̧tiu de
baz¼a, s¼a introducem pe X� topologia slab¼a, ca mai sus: cea mai pu̧tin �n¼a topologie pentru
care toate funçtionalele din bidual sunt continue.
Studiind rela̧tia dintre X şi X��; vom observ¼am îns¼a c¼a, tot pe X�; mai putem introduce o

topologie, mai slab¼a decât topologia sa slab¼a.
S¼a începem prin a remarca faptul c¼a norma pe X�� este dat¼a de

kx��kX�� = sup fx�� (x�) j kx�kX� � 1g :

De�nim acum � : X ! X��;

� (x) (x�) = x� (x) ; 8x� 2 X�:

Observ¼am c¼a � este bine de�nit¼a întrucât pentru orice x 2 X, � (x) este liniar¼a pe X� şi

sup f� (x) (x�) j kx�kX� � 1g = sup fx� (x) j kx�kX� � 1g = kxk ;

deci � (x) 2 X�� şi k� (x)kX�� = kxkX :
Mai mult, � este liniar¼a, deci � stabileşte un izomor�sm izometric între X şi � (X). Astfel,

X poate � privit ca un subspa̧tiu al lui X��; întrucât se identi�c¼a cu � (X) : Aplica̧tia � se
numeşte scufundarea canonic¼a a lui X în X��: În general, � nu este surjectiv¼a şi vom vedea
mai multe detalii în cele ce urmeaz¼a. Suntem acum preg¼ati̧ti s¼a de�nim topologia anuņtat¼a.
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De�ni̧tia 4.3.1 Fie X un spaţiu liniar normat, X�� bidualul s¼au şi � : X ! X�� scufundarea
canonic¼a. Topologia slab-stelat¼a, notat¼a w�; este cea mai puţin �n¼a toplogie pe X� care conţine
familia de mulţimi

E� =
�
(� (x))�1 (V ) j x 2 X;V � R deschis¼a

	
:

Altfel spus, w� este cea mai slab¼a topologie pe X� pentru care toate funcţionale din � (X) � X��

sunt continue.

Propozi̧tia 4.3.2 Fie (X; k�k) un spaţiu liniar normat. Atunci U 2 w� dac¼a şi numai dac¼a
pentru orice x� 2 U; exist¼a " > 0; n 2 P; x1; :::; xn 2 X astfel încât

n\
k=1

(� (xk))
�1 (� (xk) (x

�)� ";� (xk) (x
�) + ")

=
�
y� 2 X� j j(y� � x�) (xk)j < "; 8k 2 1; n

	
� U:

Demonstraţie Rezult¼a din cele de mai sus, ca în cazul topopogiei w. �

Observa̧tia 4.3.3 O vecin¼atate generic¼a a unei funcţionale x� 2 X� în topologia w� are forma

V (x�;x1; x2; :::; xn; ") =
�
x� 2 X� j j(x� � x�) (xi)j < ";8i 2 1; n

	
;

unde n 2 P; x1; x2; :::; xn 2 X şi " > 0: Din nou, V (x�;x1; x2; :::; xn; ") = x�+V (0; x1; x2; :::; xn; ")

Propozi̧tia 4.3.4 Topologia w� este separat¼a T2:

Demonstraţie Fie x�; y� 2 X� cu x� 6= y�: Atunci exist¼a x 2 X astfel încât x� (x) 6= y� (x) : F¼ar¼a
a restrânge generalitatea, presupunem c¼a x� (x) > y� (x) ; lu¼am " = x� (x)� y� (x) şi observ¼am
c¼a �

z� 2 X� j j� (x) (x� � z�)j < 2�1"
	
\
�
z� 2 X� j j� (x) (y� � z�)j < 2�1"

	
= ;;

iar cele dou¼a muļtimi sunt vecin¼at¼a̧ti în w� ale lui x� şi respectiv y�: �

Observa̧tia 4.3.5 Este clar c¼a pe X� cele trei topologii considerate sunt în relaţia

w� � w � �k�kX� :

Dac¼a X este �nit dimensional atunci

X ' X� ' X��

şi cele trei topologii coincid.
În schimb, am v¼azut, c¼a dac¼a X� este in�nit dimensional atunci a doua incluziune este

strict¼a. Vom vedea c¼a dac¼a scufundarea canonic¼a nu este surjectiv¼a atunci şi prima incluziune
este strict¼a.

Mai întâi demonstr¼am c¼a funçtionalele liniare continue în raport cu w� sunt exact cele
din � (X) : Avem nevoie de o lem¼a (conseciņt¼a, de exemplu, a Lemei lui Farkas). Mai întâi
s¼a observ¼am c¼a o funçtional¼a liniar¼a este continu¼a în raport cu w� dac¼a şi numai dac¼a este
continu¼a în raport cu w� în 0 (conform Observa̧tiei 4.3.3).
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Lema 4.3.6 (Teorema nucleelor) Fie X un spaţiu liniar, n 2 P, 'i; i 2 1; n şi ' funcţionale
liniare de la X la R: Atunci

8x 2 X : ['1(x) = 0; : : : ; 'n(x) = 0]) '(x) = 0 (4.1)

dac¼a şi numai dac¼a exist¼a (�i)i21;n � R astfel încât ' =
Pn

i=1 �i'i:

Teorema 4.3.7 Fie X un spaţiu liniar normat, X�� bidualul s¼au şi � : X ! X�� scufundarea
canonic¼a. Fie ' : X� ! R liniar¼a. Urm¼atoarele a�rmaţii sunt echivalente:
(i) ' 2 � (X) ;
(ii) Ker' este mulţime w��închis¼a;
(iii) ' este (w�; j�j) continu¼a:

Demonstraţie Implica̧tia (i) =) (iii) rezult¼a chiar din de�ni̧tia lui w�; iar implica̧tia (iii) =) (ii)
este evident¼a.
Demonstr¼am (iii) =) (i). Fie " > 0: Conform ipotezei, exist¼a U vecin¼atate a originii în w�

astfel încât j' (x�)j < " pentru orice x� 2 U: F¼ar¼a a restrânge generalitatea putem presupune
c¼a

U =
�
x� 2 X� j jx� (xk)j < �; 8k 2 1; n

	
;

unde � > 0; n 2 P şi xk 2 X pentru k 2 1; n: Din inegalitatea de mai sus deducem c¼a dac¼a
x� (xk) = 0 pentru orice k 2 1; n atunci j' (x�)j < ": Dar dac¼a x� (xk) = 0 pentru orice k 2 1; n;
atunci pentru orice � > 0; (�x�) (xk) = 0 pentru orice k 2 1; n; deci � j' (x�)j < "; ceea ce nu
se poate decât dac¼a ' (x�) = 0: Astfel, am ar¼atat c¼a�

� (xk) (x
�) = 0, 8k 2 1; n

�
=) ' (x�) = 0:

Din Teorema nucleelor (Lema 4.3.6 de mai sus), exist¼a �k 2 R cu k 2 1; n astfel încât

' =
nX
k=1

�k� (xk) = �

 
nX
k=1

�kxk

!
2 � (X) :

Demonstra̧tia implica̧tiei anuņtate este complet¼a.
Ar¼at¼am c¼a (ii) =) (iii). Conform ipotezei,

A = fx� 2 X� j ' (x�) 6= 0g

este w��deschis¼a. Fie " > 0 şi x� 2 A astfel încât j' (x�)j < ": Exist¼a U o vecin¼atate
w��deschis¼a a lui x� în A de care poate � luat¼a de forma

U =
�
y� 2 X� j j(y� � x�) (xk)j < �; 8k 2 1; n

	
;

unde � > 0; n 2 P şi xk 2 X pentru k 2 1; n:Muļtimea U este convex¼a ca interseçtie de muļtimi
convexe, deci ' (U) este convex¼a în R; adic¼a este un interval. Prin urmare, cum ' nu se anuleaz¼a
pe U; ' (U) � (�1; 0) sau ' (U) � (0;1) : Lu¼am primul caz, în cel¼alalt ra̧tionamentul �ind
asem¼an¼ator. Deci ştim c¼a ' (y�) < 0 pentru orice y� 2 U: Not¼am

V = U � x� =
�
z� 2 X� j jz� (xk)j < �; 8k 2 1; n
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şi pentru orice z� = y� � x� 2 V; cu y� 2 U avem

' (z�) = ' (y�)� ' (x�) < �' (x�) < ":

Dar V este simetric¼a, deci
j' (z�)j < "; 8z� 2 V:

Aşadar am demonstrat c¼a pentru orice " > 0 exist¼a o vecin¼atate V a lui 0 în w� astfel încât
pentru orice z� 2 V; j' (z�)j < ": Aceasta înseamn¼a c¼a ' este continu¼a în 0; deci continu¼a peste
tot. �

Corolarul 4.3.8 Dac¼a scufundarea canonic¼a nu este surjectiv¼a, atunci w� este strict mai slab¼a
decât w pe X�:

Demonstraţie Dac¼a scufundarea canonic¼a nu este surjectiv¼a, atunci considerând x�� 2 X�� n
� (X) ; muļtimea Ker x�� este slab închis¼a, dar nu este w��închis¼a (conform teoremei ante-
rioare), ceea ce demonstreaz¼a a�rma̧tia din enuņt. �

Observa̧tia 4.3.9 Demonstraţia acestui corolar arat¼a şi faptul c¼a Teorema lui Mazur nu are
loc pentru topologia w�:

Propozi̧tia 4.3.10 Fie X un spaţiu liniar normat şi X� dualul s¼au. Fie (x�n) � X� un şir şi
x� 2 X�: Atunci:
(i) x�n

w��! x� dac¼a şi numai dac¼a pentru orice x 2 X; x�n (x)! x� (x) în R;
(ii) dac¼a x�n ! x�; atunci x�n

w��! x�; dac¼a x�n
w�! x�; atunci x�n

w��! x�;

(iii) dac¼a X este complet şi x�n
w��! x�; atunci (x�n) este m¼arginit în norm¼a şi kx�k �

lim inf kx�nk ;
(iv) dac¼a X este complet şi (xn) este un şir de elemente din X convergent în norm¼a la x,

iar x�n
w��! x�; atunci x�n (xn)! x� (x) :

Demonstraţie Se utilizeaz¼a aceleaşi argumente, adaptate topologiei w�, ca cele din cazul propoz-
i̧tiei corespunz¼atoare prvitoare la topologia w. Este de remarcat c¼a pentru punctul (iii) se
foloseşte Principiul m¼arginirii uniforme pentru operatori de�ni̧ti pe X; deci X trebuie s¼a �e
complet. La punctul (iv) se foloseşte m¼arginirea de la punctul (iii), deci trebuie impus¼a din
nou completitudinea lui X. �

Exemplul 4.3.11 Prezent¼am un exemplu concret în care convergeņtele secveņtiale în topologi-
ile w şi w� pe X� sunt distincte. Fie fen j n 2 Pg vectorii unitari standard în `1 privit ca dual
al lui c0: Atunci en

w��! 0; dar (en) nu este w�convergent.
Într-adev¼ar, având în vedere forma operatorului care realizeaz¼a izomor�smul izometric între

`1 şi c�0, pentru orice x 2 c0; avem

T (en) (x) =
1X
i=0

(en)i xi = xn ! 0; 8n

deci en
w��! 0:
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Se constat¼a uşor c¼a (en)
w

6�! 0 : cum, (`1)� = `1, x = (1; 1; :::; 1; :::) 2 `1; prin operatorul
de izomor�sm izometric ob̧tinem

T (x) (en) =
1X
i=0

(en)i xi = xn = 1 6! 0:

Ob̧tinerea urm¼atorului rezultat reprezint¼a principalul motiv al studiului topologiilor slabe.

Teorema 4.3.12 (Teorema Alaoglu-Bourbaki) Fie (X; k�k) un spaţiu liniar normat şi A �
X� o mulţime nevid¼a, m¼arginit¼a în norm¼a şi w��închis¼a. Atunci A este w��compact¼a. În par-
ticular, DX� este w��compact¼a.

Demonstraţie De fapt, este su�cient s¼a prob¼am c¼a DX� este w��compact¼a pentru c¼a m¼arginirea
lui A asigur¼a existeņta unei constante � > 0 astfel încât

A � �DX� ;

deci A este o submuļtime w��închis¼a a unei muļtimi w��compacte.
Fie acum RX ; adic¼a (spa̧tiul funçtiilor de la X la R) cu topologia produs pe care o not¼am

cu � . Evident, X� � RX :
Ar¼at¼am c¼a w� este urma topologiei produs de pe RX pe X�: Reamintim c¼a dac¼a f 2 RX

atunci o muļtime U este vecin¼atate a lui f în topologia produs dac¼a exist¼a " > 0; n 2 P şi
x1; :::; xn 2 X astfel încât

V
�
f ; (xi)i21;n ; "

�
=
�
g 2 RX j jg (xi)� f (xi)j < "; 8i 2 1; n

	
� U:

Restrângându-ne la X� şi ţinând cont de de�ni̧tia lui w�; a�rma̧tia f¼acut¼a anterior este evident
adev¼arat¼a.
Ne reamintim şi faptul c¼a x� 2 DX� dac¼a şi numai dac¼a jx� (x)j � kxk pentru orice x 2 X:

Deci
DX� �

Y
x2X

[�kxk ; kxk] :

Conform Teoremei lui Tihonov, muļtimea din partea dreapt¼a este compact¼a ca produs cartezian
de spa̧tii topologice compacte.
Trebuie deci s¼a mai ar¼at¼am c¼a DX� este închis¼a în

�
RX ; �

�
: Pentru început observ¼am c¼a

închiderea lui DX� în raport cu � este submuļtime a lui X� pentru c¼a X� este închis¼a ca
muļtime în

�
RX ; �

�
: Într-adev¼ar, dac¼a f 2 RX n X�; exist¼a x; y 2 X; �; � 2 R astfel încât

num¼arul f (�x+ �y)� �f (x)� �f (y) este pozitiv. Alegem

� =
f (�x+ �y)� �f (x)� �f (y)

1 + j�j+ j�j

şi atunci V (f ; (x; y; �x+ �y); �) \X� = ;; ceea ce dovedeşte a�rma̧tia anterioar¼a.
În sfâŗsit, demonstr¼am închiderea lui DX� în X� în raport cu w�: Fie x� 2 w� � clDX� şi

" > 0: Exist¼a x 2 SX astfel încât
kx�k < x� (x) + ":
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Dar w��vecin¼atatea lui x�
fy� 2 X� j j(y� � x�) (x)j < "g

trebuie s¼a intersecteze DX� ; deci exist¼a y� 2 DX� astfel încât j(y� � x�) (x)j < ":
Ob̧tinem

kx�k < x� (x) + " � y� (x) + 2" � ky�k kxk+ 2" � 1 + 2":
Cum " > 0 este arbitrar, kx�k � 1; adic¼a x� 2 DX� :
Demonstra̧tia este complet¼a. �

Propozi̧tia 4.3.13 Fie (X; k�k) un spaţiu Banach separabil. Fie B � X� o mulţime m¼arginit¼a.
Atunci urma topologiei w� pe B este metrizabil¼a, iar o metric¼a care induce w� pe B este
d : B �B ! R,

d (x�; y�) =
1X
k=1

min fjx� (xk)� y� (xk)j ; 1g
2k

;

unde fxk j k 2 Pg este o submulţime dens¼a a lui X:

Demonstraţie Fie fxk j k 2 Pg o submuļtime dens¼a a luiX şi d dat¼a de formula de mai sus. Este
simplu de veri�cat c¼a d este o metric¼a invariant¼a la transla̧tii. Deci este su�cient s¼a presupunem
c¼a 0 2 B şi s¼a ar¼at¼am c¼a �d şi w� au aceleaşi vecin¼at¼a̧ti.
Conform de�ni̧tiilor corespunz¼atoare, aceste sisteme de vecin¼at¼a̧ti au ca baze:

B (0; �) =

(
y� 2 X� j

1X
k=1

min fjy� (xk)j ; 1g
2k

)
U
�
"; fykgk21;n

�
=
�
y� 2 X� j jy� (yk)j < "; 8k 2 1; n

	
; unde n 2 P; fykgk21;n � X:

Fie � > 0 şi x� 2 U
�
2�1�; fxkgk21;n

�
; cu n 2 P; adic¼a

jx� (xk)j < 2�1�; 8k 2 1; n:

Atunci

1X
k=1

min fjx� (xk)j ; 1g
2k

�
nX
k=1

min fjx� (xk)j ; 1g
2k

+

1X
k=n+1

min fjx� (xk)j ; 1g
2k

� �

2

nX
k=1

1

2k
+

1X
k=n+1

1

2k
<
�

2
+

1X
k=n+1

1

2k
:

Cum, pentru n su�cient de mare,
1X

k=n+1

1

2k
<
�

2

ob̧tinem c¼a pentru un astfel de n;

U
�
2�1�; fxkgk21;n

�
� B (0; �) :
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Invers, mai întâi observ¼am c¼a pentru orice " > 0, n 2 P şi y1; :::; yn 2 X; exist¼a, eventual
renumerotând, x1; ::; xn astfel încât

kyk � xkk �
"

2 diamB
; 8k 2 1; n:

Deci, pentru orice x� 2 B şi orice k 2 1; n;

jx� (yk)j � jx� (xk)j+ kfk kyk � xkk

� jx� (xk)j+ diamB
"

2 diamB

= jx� (xk)j+
"

2
:

Fie acum x� 2 B
�
0; 1

2n+1
min f"; 1g

�
: Atunci

1

2k
min fjx� (xk)j ; 1g �

1

2n+1
min f"; 1g ; 8k 2 1; n;

deci,

min fjx� (xk)j ; 1g �
1

2
min f"; 1g � "

2
; 8k 2 1; n:

Deducem c¼a
jx� (yk)j � jx� (xk)j+

"

2
< " 8k 2 1; n;

adic¼a

B

�
0;

1

2n+1
min f"; 1g

�
� U

�
"; fykgk21;n

�
;

ceea ce încheie demonstra̧tia. �

Teorema 4.3.14 (Alaoglu-Bourbaki, varianta secveņtial¼a) Fie (X; k�k) un spaţiu Banach
separabil. Atunci DX� este w��secvenţial compact¼a.

Demonstraţie Conform Teoremei Alaoglu-Bourbaki (Teorema 4.3.12), DX� este w��compact¼a.
Dar, din rezultatul anterior topologia w� pe DX� este o topologie metric¼a, deci cele dou¼a tipuri
de compactitate coincid. �

4.4 Re�exivitate

De�ni̧tia 4.4.1 Un spaţiu liniar normat (X; k�k) se numeşte re�exiv dac¼a scufundarea canon-
ic¼a în bidual este surjectiv¼a.

Observa̧tia 4.4.2 Cum bidualul este mereu spaţiu Banach, orice spaţiu liniar normat re�exiv
este spaţiu Banach.

Observa̧tia 4.4.3 Dac¼a X este re�exiv, atunci topologiile w şi w� pe X� coincid.

Propozi̧tia 4.4.4 Orice spaţiu `p cu p 2 (1;1) este re�exiv.

53



Demonstraţie Ştim c¼a ��
`p; k�kp

��
; k�k�

�
'
�
`q; k�kq

�
;

unde q = p
p�1 , iar operatorul T :

�
`q; k�kq

�
!
��
`p; k�kp

��
; k�k�

�
prin

T (x) (y) =
1X
k=1

xkyk

este izomor�sm izometric. Atunci T1 :
�
`q; k�kq

��
!
�
`p; k�kp

���
dat prin

T1 (y
�) = y� � T�1

este izomor�sm de spa̧tii liniare normate. Fie acum izomor�smul izometric T2 :
�
`p; k�kp

�
!��

`q; k�kq
��
; k�k�

�
;

T2 (x) (y) =

1X
k=1

xkyk:

Atunci T1 � T2 :
�
`p; k�kp

�
!
�
`p; k�kp

���
este izomor�sm izometric. Ar¼at¼am c¼a acest operator

coincide cu scufundarea canonic¼a.
Fie x 2 `p: Atunci, pentru orice x� 2 (`p)� ;

(T1 � T2) (x) (x�) =
�
(T2x) � T�1

�
(x�) = (T2x) � T�1 (x�) ;

iar folosind nota̧tia y = T�1 (x�) avem în continuare:

(T1 � T2) (x) (x�) = T2 (x) (y) =
1X
k=0

xkyk = T (y) (x) = x� (x) = � (x) (x�) :

Aceasta arat¼a c¼a (T1 � T2) = �: �

Observa̧tia 4.4.5 Folosind aceeaşi metod¼a, obţinem c¼a orice spaţiu liniar normat �nit dimen-
sional este re�exiv.

Exemplul 4.4.6 Spa̧tiul (c0; k�k1) nu este re�exiv. Într-adev¼ar, ştim c¼a

c��0 ' `1:

Pe de alt¼a parte, c0 şi `1 (cu normele uzuale) nu sunt izomorfe pentru c¼a primul spa̧tiu este
separabil iar al doilea este neseparabil. Deci nu exist¼a niciun izomor�sm între c0 şi c��0 : Astfel,
c0 nu este re�exiv.

Propozi̧tia 4.4.7 Fie X un spaţiu Banach. Atunci:
(i) � (X) este subspaţiu liniar închis în X��;
(ii) � este (w;w�)�continu¼a;
(iii) dac¼a X este re�exiv, atunci ��1 este (w�; w)�continu¼a.
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Demonstraţie (i) Cum � este izometrie, a�rma̧tia rezult¼a pe baza Problemei 14.
(ii) � este (w;w�)�continu¼a dac¼a şi numai dac¼a ��1 duce w��vecin¼at¼a̧ti ale lui 0 în

w�vecin¼at¼a̧ti ale lui 0: Fie

V =
�
y�� 2 X�� j jy�� (x�i )j < "; 8i 2 1; n

	
o w��vecin¼atate a lui 0 2 X�� (cu nota̧tiile obi̧snuite). Atunci u 2 ��1 (V ) dac¼a şi numai dac¼a
� (u) 2 V; ceea ce este echivalent cu

j� (u) (x�i )j < "; 8i 2 1; n;

adic¼a
jx�i (u)j < "; 8i 2 1; n:

Astfel u 2 ��1 (V ) dac¼a şi numai dac¼a u 2 U =
�
x 2 X j jx�i (x)j < "; 8i 2 1; n

	
; deci

��1 (V ) = U care este o w�vecin¼atate a lui 0:
(iii) Presupunem c¼a � este surjectiv¼a şi ar¼at¼am c¼a ��1 este (w�; w)�continu¼a, adic¼a � duce

w�vecin¼at¼a̧ti ale lui 0 în w��vecin¼at¼a̧ti ale lui 0:
Fie, din nou cu nota̧tiile standard,

U =
�
x 2 X j jx�i (x)j < "; 8i 2 1; n

	
o w�vecin¼atate a lui 0: Atunci x�� 2 � (U) dac¼a şi numai dac¼a exist¼a u 2 U astfel încât
x�� = �(u) : Cum

jx�i (u)j < "; 8i 2 1; n;
deducem c¼a

j� (u) (x�i )j < "; 8i 2 1; n;
adic¼a

jx�� (x�i )j < "; 8i 2 1; n:
Deci x�� 2 � (X) \ V = V; unde V =

�
y�� 2 X�� j jy�� (x�i )j < "; 8i 2 1; n

	
: Astfel ob̧tinem

concluzia. �

Teorema 4.4.8 Dac¼a X este spaţiu Banach re�exiv, atunci DX este w�compact¼a.

Demonstraţie Cum � (X) este izometrie, � (DX) = DX��. Pe baza Teoremei Alaoglu-Bourbaki
(Teorema 4.3.12) deducem c¼a DX�� este w��compact¼a. Dar conform Propozi̧tiei 4.4.7, ��1 este
(w�; w)�continu¼a, deci DX este w�compact¼a. �

Observa̧tia 4.4.9 De fapt, are loc şi reciproca pe care nu o demonstr¼am aici. Aceast¼a echivalenţ¼a
poart¼a numele de Teorema lui Kakutani.

Pe baza rezultatului de mai sus şi a Teoremei lui Weierstrass, ob̧tinem conseciņta urm¼atoare.

Corolarul 4.4.10 Dac¼a X este spaţiu Banach re�exiv, atunci pentru orice x� 2 X�;

kx�k = max fjx� (x)j j kxk � 1g :
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Propozi̧tia 4.4.11 Dac¼a (X; k�k) ' (Y; k�k) şi X este re�exiv, atunci Y este re�exiv.

Demonstraţie Not¼am cu �X şi �Y cele dou¼a scufund¼ari canonice şi cu T : X ! Y izomor�smul
izometric dintre X şi Y: De�nim T1 : X

� ! Y � prin

T1 (x
�) = x� � T�1

şi T2 : X�� ! Y �� prin
T2 (x

��) = x�� � T�11 :

Cei doi operatori sunt izomor�sme izometrice.
Fie y�� 2 Y ��: Cum T2 este surjectiv, exist¼a x�� 2 X�� astfel încât T2 (x��) = y��; adic¼a

x�� �T�11 = y��: Folosind surjectivitatea lui �X ; exist¼a x 2 X astfel încât �X (x) = x��: Atunci,
pentru orice y� 2 Y �; avem

y�� (y�) = x�� � T�11 (y�) = x�� (y� � T ) = �X (x) (y� � T )
= (y� � T ) (x) = y� (Tx) = �Y (Tx) (y

�) :

Deci y�� = �Y (Tx) ; adic¼a �Y este surjectiv¼a. �

Propozi̧tia 4.4.12 Dac¼a X este spaţiu Banach re�exiv şi Y este un subspaţiu liniar închis al
s¼au, atunci Y este spaţiu Banach re�exiv.

Demonstraţie Fie  2 Y ��: De�nim ' 2 X�� prin

' (x�) =  (x� jY ) ; 8x� 2 X�:

Cum X este re�exiv, exist¼a x 2 X astfel încât � (x) = ': Trebuie s¼a ar¼at¼am c¼a x 2 Y pentru
c¼a astfel avem

x� jY (x) = x� (x) = � (x) (x�) = ' (x�) =  (x� jY ) ; 8x� 2 X�

şi pe baza Teoremei Hahn-Banach, orice y� 2 Y � poate � extins¼a la o funçtional¼a x� 2 X�; deci
rela̧tia de mai sus asigur¼a

y� (x) =  (y�) ; 8y� 2 Y �:

Presupunem, prin reducere la absurd, c¼a x 62 Y:Din forma geometric¼a a Teoremei Hahn-Banach,
exist¼a un hiperplan care separ¼a subspa̧tiul închis Y şi muļtimea compact¼a fxg :Deducem, printr-
un argument deja standard, c¼a exist¼a x� 2 X�nf0g astfel încât x� se anuleaz¼a pe Y şi x� (x) > 0:
Pentru acest x� avem

' (x�) =  (x� jY ) = 0;
în timp ce

' (x�) = � (x) (x�) = x� (x) 6= 0:
Contradiçtia ob̧tinut¼a înseamn¼a c¼a presupunerea f¼acut¼a este fals¼a, deci x 2 Y , ceea ce încheie
demonstra̧tia. �

Propozi̧tia 4.4.13 Un spaţiu Banach X este re�exiv dac¼a şi numai dac¼a dualul s¼au este re-
�exiv.
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Demonstraţie Practic, trebuie s¼a ar¼at¼am c¼a

�X (X) = X�� () �X� (X�) = X���:

Presupunem mai întâi c¼a X�� = �X (X) : Fix¼am u 2 X��� şi observ¼am c¼a funçtia x� : X ! R,

x� (x) = u (�X (x))

este din X�: Pe de alt¼a parte,

x� (x) = �X (x) (x
�) ; 8x 2 X;

deci
u (�X (x)) = �X (x) (x

�) ; 8x 2 X:
Cum � (x) parcurge X�� când x parcurge X; înseamn¼a c¼a

u (x��) = x�� (x�) ; 8x�� 2 X��;

adic¼a
u = �X� (x�) :

Aceasta înseamn¼a c¼a injeçtia canonic¼a a lui X� în X��� este surjectiv¼a.
Invers, presupunem c¼a X� este re�exiv. Din pasul anterior rezult¼a c¼a X�� este re�exiv.

Spa̧tiul X �ind Banach, � (X) este subspa̧tiu închis în X�� şi din rezultatul anterior ob̧tinem
c¼a � (X) este re�exiv, deci, pe baza Propozi̧tiei 4.4.11, X este re�exiv. �

Propozi̧tia 4.4.14 Fie X spaţiu Banach. Atunci X este re�exiv şi separabil dac¼a şi numai
dac¼a X� este re�exiv şi separabil.

Demonstraţie Dac¼a X� este re�exiv şi separabil, atunci X este re�exiv şi separabil pe baza
rezultatelor deja demonstrate. Invers, dac¼a X este re�exiv şi separabil, atunci X�� ' � (X)
este re�exiv şi separabil, deci X� este re�exiv şi separabil. �

Teorema 4.4.15 Dac¼a X este spaţiu Banach re�exiv, atunci DX este w�secvenţial compact¼a.

Demonstraţie Fie (xn) şir din DX : Consider¼am subspa̧tiul liniar închis al lui X

Y = clk�k span fx1; :::; xn; :::g

care este re�exiv şi evident separabil . Deducem c¼a Y �� este re�exiv şi separabil. Din varianta
secveņtial¼a a Teoremei Alaoglu-Bourbaki, DY �� este secveņtial compact¼a. Folosind din nou
Propozi̧tia 4.4.7, DY este secveņtial compact¼a, deci şirul (xn) � DY are subşir w�convergent.
�

În �nal, trecem în revist¼a câteva conseciņte ale re�exivit¼a̧tii.

Teorema 4.4.16 Fie X spaţiu Banach re�exiv. Atunci:
(i) DX este w�compact¼a şi w�secvenţial compact¼a;
(ii) orice şir m¼arginit din X admite un subşir w�convergent;
(iii) orice mulţime w�închis¼a şi m¼arginit¼a este w�compact¼a şi w�secvenţial compact¼a;
(iv) orice mulţime convex¼a, m¼arginit¼a şi închis¼a în norm¼a este w�compact¼a şi w�secvenţial

compact¼a.
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Demonstraţie (i) Cele dou¼a concluzii au f¼acut obiectul unor rezultate anterioare (Teoremele
4.4.8 şi 4.4.15).
(ii) Un şir m¼arginit este inclus într-un disc centrat în 0; care este muļtime w�secveņtial

compact¼a.
(iii) Dac¼a o muļtime este m¼arginit¼a în norm¼a atunci este inclus¼a într-un disc centrat în 0;

care este muļtime w�compact¼a şi w�secveņtial compact¼a. În plus, �ind slab închis¼a este şi
slab secveņtial închis¼a. Deducem concluzia
(iv) Aplic¼am Teorema lui Mazur pentru a deduce c¼a muļtimea este slab închis¼a şi apoi

aplic¼am punctul precedent. �

Exemplul 4.4.17 De la ipotezele punctului (iv) nu putem elimina convexitatea. De exemplu,
sfera unitate în `2 este m¼aginit¼a şi închis¼a în norm¼a, dar nu este slab compact¼a şi nici slab
secveņtial compact¼a întrucât şirul vectorilor unitari converge slab la 0 (a se vedea Problema
66).

4.5 Operatori compaçti. Alternativa lui Fredholm

De�ni̧tia 4.5.1 Fie X; Y spaţii Banach. Un operator T 2 L (X; Y ) se numeşte compact dac¼a
T (DX) este mulţime compact¼a în Y . Not¼am cu K (X; Y ) mulţimea operatorilor compacţi de la
X la Y şi cu K (X) spaţiul K (X;X) :

Observa̧tia 4.5.2 1. Dac¼a T este liniar de la X la Y şi T (DX) este mulţime compact¼a în Y ,
atunci T este automat continuu pentru c¼a este m¼arginit.
2. Faptul c¼a T (DX) este mulţime compact¼a revine la a spune c¼a T (DX) este mulţime relativ

compact¼a. Reamintim c¼a o submulţime a unui spaţiu metric complet este relativ compact¼a dac¼a
şi numai dac¼a pentru orice " > 0 poate �acoperit¼a cu un num¼ar �nit de bile de raz¼a " (sau, altfel
spus, într-un spaţiu metric complet mulţimile relativ compacte coincid cu cele total m¼arginite).
3. Proprietatea lui T de a � operator compact poate � reformulat¼a astfel: pentru orice şir

m¼arginit (xn) � X; şirul (Txn) admite un subşir convergent.

Propozi̧tia 4.5.3 Mulţimea K (X; Y ) este subspaţiu liniar închis al lui L (X; Y ) :

Demonstraţie Faptul c¼a muļtimea K (X; Y ) este subspa̧tiu liniar se arat¼a uşor dac¼a se ţine cont
c¼a + este parte stabil¼a datorit¼a incluziunii

(S + T ) (DX) � S (DX) + T (DX);

şi a rezultatului cunoscut care a�rm¼a c¼a suma dintre dou¼a muļtimi compacte este compact¼a
(imaginea prin aplica̧tia continu¼a (x; y)! x+ y a produsului celor dou¼a muļtimi).
Fie acum un şir (Tn) � K (X;Y ) şi T 2 L (X;Y ) astfel încât kTn � Tk ! 0: Fie aşadar

" > 0: Exist¼a n" 2 N astfel încât

kTn � Tk � 2�1"; 8n � n":

Deci, pentru orice x 2 DX ;
kTn" (x)� T (x)k � 2�1":
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Cum Tn" (DX) este relativ compact¼a (iar Y este spa̧tiu Banach), poate �acoperit¼a cu un num¼ar
�nit de bile de raz¼a ", deci exist¼a k 2 P şi yi 2 Y; i 2 1; k astfel încât

Tn" (DX) �
k[
i=1

D
�
yi; 2

�1"
�
:

Deducem c¼a

T (DX) �
k[
i=1

D (yi; ") :

Deci T este compact. �

De�ni̧tia 4.5.4 Fie X; Y spaţii Banach. Un operator T 2 L (X; Y ) se numeşte de rang �nit
dac¼a T (X) are dimensiune �nit¼a.

Observa̧tia 4.5.5 Evident, orice operator de rang �nit este compact.

Corolarul 4.5.6 Dac¼a T 2 L (X; Y ) este limita în norm¼a a unui şir de operatori de rang �nit,
atunci este compact.

Exemplul 4.5.7 Fie operatorul T : `2 ! `2 dat prin

T (x) =
�xk
k

�
k2P

; 8x = (xk)k2P 2 `2:

Se veri�c¼a uşor c¼a T este liniar continuu. De asemenea, se observ¼a c¼a T este limita şirului de
operatori de rang �nit (Tn)n2P dat prin

Tn (x) =
�x1
1
;
x2
2
; :::;

xn
n
; 0; :::

�
; 8x = (xk)k2P 2 `2; 8n 2 P:

Deci T este un operator compact care nu este de rang �nit (to̧ti vectorii unitari se a�¼a în ImT ).

Exemplul 4.5.8 Fie K : [0; 1]� [0; 1]! R o funçtie continu¼a. Pentru f 2 C ([0; 1]) de�nim

(Tf) (x) =

Z 1

0

K (x; t) f (t) dt:

Atunci T este un operator liniar continuu compact de la (C ([0; 1]) ; k�k1) la (C ([0; 1]) ; k�k1) :
Demonstr¼am aceste a�rma̧tii. Este clar c¼a Tf 2 C ([0; 1]) pentru orice f 2 C ([0; 1]) :

Liniaritatea lui T este evident¼a. Apoi, pentru orice f 2 C ([0; 1]) şi orice x 2 [0; 1] ;

j(Tf) (x)j =
����Z 1

0

K (x; t) f (t) dt

���� � Z 1

0

jK (x; t) f (t)j dt � kKk1 kfk1 ;

deci
kTfk1 � kKk1 kfk1 ;

adic¼a T este continuu. Pentru a ar¼ata c¼a T este compact, trebuie s¼a mai ar¼at¼am c¼a T
�
DC([0;1])

�
este relativ compact¼a, lucru pentru care folosim Teorema Arzelà-Ascoli. M¼arginirea muļtimii
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T
�
DC([0;1])

�
este evident¼a din continuitatea lui T: Trebuie s¼a ar¼at¼am c¼a aceast¼a muļtime de

funçtii este echicontinu¼a. Pentru orice x; x0 2 [0; 1] ;

j(Tf) (x)� (Tf) (x0)j =
����Z 1

0

(K (x; t)�K (x0; t)) f (t) dt

����
� kfk1 sup

t2[0;1]
jK (x; t)�K (x0; t)j :

Dar K �ind continu¼a pe compactul [0; 1]2 ; este uniform continu¼a, deci pentru orice " > 0 exist¼a
� > 0 astfel încât pentru orice x; x0; t; t0 2 [0; 1] cu jx� x0j � �; jt� t0j < � avem

jK (x; t)�K (x0; t0)j < ":

În particular, pentru orice t 2 [0; 1]

jK (x; t)�K (x0; t)j < "

dac¼a x; x0 2 [0; 1] cu jx� x0j � �: Deci pentru orice f 2 DC([0;1]); orice x; x0 2 [0; 1] cu jx� x0j �
�;

j(Tf) (x)� (Tf) (x0)j � " kfk1 � ":

Concluzion¼am c¼a T
�
DC([0;1])

�
este echicontinu¼a deci, în �nal, relativ compact¼a.

Exemplul 4.5.9 Dac¼a X este un spa̧tiu Banach in�nit dimensional, atunci idX nu este un
operator compact.

Reamintim urm¼atorul rezultat important.

Lema 4.5.10 (Lema lui Riesz) Fie Y este subspaţiu liniar închis propriu al unui spaţiu Ba-
nach X şi " 2 (0; 1) : Atunci exist¼a x 2 SX astfel încât d (x; Y ) � ":

Demonstraţie Fie u 2 X n Y: Cum Y este închis, d (u; Y ) > 0: Din de�ni̧tia distaņtei, pentru
c¼a " 2 (0; 1) ; exist¼a v 2 Y astfel încât

ku� vk < d (u; Y )

"

Consider¼am acum x = ku� vk�1 (u� v) 2 SX şi pentru orice y 2 Y

kx� yk =




 u� v

ku� vk � y





 = 



u� (v + ku� vk y)
ku� vk





 � d (u; Y )

ku� vk > ":

Deci, d (x; Y ) � ": �

Teorema 4.5.11 Fie X spaţiu Banach şi T 2 K (X) : Atunci:
(i) Ker (id�T ) este �nit dimensional;
(ii) Im (id�T ) este închis¼a.
(iii) Dac¼a (id�T ) este injectiv, atunci este inversabil.
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Demonstraţie Dac¼a X este �nit dimensional, toate a�rma̧tiile sunt evidente. Presupunem deci
c¼a X este in�nit dimensional.
(i) Avem u 2 Ker (id�T ) dac¼a şi numai dac¼a u = T (u) : Asta înseamn¼a c¼a bila unitate

închis¼a din subspa̧tiul Ker (id�T ) este inclus¼a în T (DX); deci este compact¼a. Asta înseamn¼a
c¼a Ker (id�T ) este de dimensiune �nit¼a.
(ii) Fie (xn)n � X şi (yn)n = (xn � Txn)n � Im (id�T ) astfel încât yn ! y: Ar¼at¼am c¼a

y 2 Im (id�T ) :
Presupunem mai întâi c¼a (xn) este m¼arginit. Cum T este operator compact, exist¼a un subşir

(xnk) astfel încât
Txnk ! z 2 X:

Atunci
xnk = xnk � Txnk + Txnk ! y + z

şi deducem c¼a
Txnk ! T (y + z) :

Deci T (y + z) = z. Avem

y = y + z � z = y + z � T (y + z) = (id�T ) (y + z) 2 Im (id�T ) :

Presupunem acum c¼a (xn) nu este m¼arginit. Fie şirul de numere reale

(dn)n = (d (xn;Ker (id�T )))n :

Exist¼a zn 2 Ker (id�T ) astfel încât

kxn � znk � 2dn; 8n 2 N:

Ar¼at¼am c¼a şirul numeric (dn) este m¼arginit. Presupunem, prin reducere la absurd, c¼a exist¼a un
subşir al acestuia (notat la fel, pentru uşuriņta scrierii) divergent la in�nit, adic¼a (dn) ! 1:
F¼ar¼a a restrânge generalitatea putem presupune c¼a to̧ti termenii acestui subşir sunt nenuli şi
lu¼am, pentru orice n

�n =
xn � zn
2dn

:

Dar, (�n) este m¼arginit şi cum T este operator compact, (T�n) admite subşir convergent la un
element � 2 X: Pe de alt¼a parte,

T�n � �n =
T (xn � zn)� xn + zn

2dn
=
�yn
2dn

! 0:

Din rela̧tia de mai sus, (�n) are un subşir convergent la �; deci � 2 Ker (id�T ) : Îns¼a, pentru
n su�cient de mare, k�n � �k < 2�1; deci



xn � zn

2dn
� �





 < 2�1;
adic¼a

kxn � zn � 2dn�k < dn;
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ceea ce este fals întrucât zn + 2dn� 2 Ker (id�T ) : Conchidem c¼a (dn) este m¼arginit. Evident,
(xn � zn) este de asemenea m¼arginit. Cum (zn) � Ker (id�T ) ; avem (id�T ) (xn � zn)! y şi
am revenit la cazul precedent pentru care am ar¼atat deja c¼a are loc concluzia.
(iii) Trebuie s¼a ar¼at¼am c¼a id�T este surjectiv. Fie X1 = Im (id�T ) şi presupunem, prin

reducere la absurd, c¼a X1 6= X: Din punctul anterior, X1 este spa̧tiu Banach şi T (X1) � X1

pentru c¼a y 2 T (X1) se scrie ca y = T (v)�T (Tv) cu v 2 X; deci y = (id�T ) (Tv) : Mai mult,
restriçtia lui T la X1 este din K (X1) :
Consider¼am subspa̧tiul liniar închisX2 = (id�T ) (X1) :Orice y 2 X2 se scrie ca y = x�T (x)

cu x 2 X1; ceea ce înseamn¼a c¼a y 2 X1; adic¼a X2 � X1: Mai mult, incluziunea este strict¼a
pentru c¼a id�T este injectiv: luând y 2 X nX1; (id�T ) (y) 2 X1 dar nu poate � în X2 pentru
c¼a s-ar contrazice injectivitatea.
Inductiv, construim şirul strict descresc¼ator de subspa̧tii închise

(Xn)n2P = ((id�T )
n (X))n2P ;

unde puterea n semni�c¼a compunerea de n ori a operatorului.
Din Lema lui Riesz (Lema 4.5.10), pentru orice n; exist¼a un 2 Xn \ SX astfel încât

d (un; Xn+1) > 2
�1: Atunci, pentru orice n;m

Tun � Tum = � (un � Tun) + (um � Tum) + un � um;

şi dac¼a n > m; cum Xn+1 � Xn � Xm+1 � Xm;

� (un � Tun) + (um � Tum) + un 2 Xm+1;

deci
kTun � Tumk � d (um; Xm+1) �

1

2
:

Acesta este imposibil pentru c¼a (un) este m¼arginit şi T este compact. Am ajuns la o
contradiçtie, deci Im (id�T ) = X: �

Teorema 4.5.12 (Alternativa lui Fredholm) Fie X spaţiu Banach şi T 2 K (X) : Atunci
are loc exact una dintre urm¼atoarele dou¼a a�rmaţii:
(i) ecuaţia x� Tx = 0 are o soluţie nenul¼a (deci o in�nitate de soluţii);
(ii) pentru orice y 2 X ecuaţia x� Tx = y are soluţie unic¼a.

Demonstraţie Rezult¼a din punctul (iii) al teoremei precedente. �

Observa̧tia 4.5.13 În notaţiile din Exemplul 4.5.8, pe baza teoremei precedente obţinem ur-
m¼atorul rezultat: �e ecuaţia (în necunoscuta f)

f �
Z 1

0

K (�; t) f (t) dt = 0

are o soluţie nenul¼a, �e pentru orice g 2 C ([0; 1]) ecuaţia (în necunoscuta f)

f �
Z 1

0

K (�; t) f (t) dt = g

are o unic¼a soluţie.
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Capitolul 5

Spa̧tii Hilbert

Ca şi în cazul primului capitol, vom trece mai întâi în revist¼a concepte şi rezultate întâl-
nite deja în cursurile anterioare. Structura �n¼a a unui spa̧tiu Hilbert permite ob̧tinerea unor
rezultate noi şi foarte puternice, aşa cum vom constata în rezultatele principale ale acestui
capitol.

5.1 Recapitulare şi complet¼ari

De�ni̧tia 5.1.1 Fie X spaţiu liniar peste R: Se numeşte produs scalar pe X o funcţie h�; �i :
X �X ! R având urm¼atoarele propriet¼aţi:
(i) hx; xi � 0 pentru orice x 2 X şi hx; xi = 0 dac¼a şi numai dac¼a x = 0;
(ii) h�x+ �y; zi = � hx; zi+ � hy; zi ; pentru orice �; � 2 R; x; y; z 2 X;
(iii) hx; yi = hy; xi ; pentru orice x; y 2 X:
Perechea (X; h�; �i) se numeşte spaţiu cu produs scalar.

Exemplul 5.1.2 1. Pe Rd (d � 1) se de�neşte produsul scalar

hx; yi =
dX
k=1

xkyk; 8x; y 2 Rd:

2. Dac¼a X e spa̧tiu liniar �nit dimensional de dimensiune d � 1 şi E = fe1; :::; edg este o baz¼a
algebric¼a a sa, atunci pentru orice x =

Pd
k=1 xkek şi y =

Pd
k=1 ykek scrise în baza E se de�neşte

produsul scalar

hx; yi =
dX
k=1

xkyk:

3. Pe `2 se de�neşte produsul scalar

hx; yi =
1X
k=1

xkyk:
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(E simplu de v¼azut c¼a aceast¼a serie este convergent¼a tocmai pentru c¼a x; y 2 `2:)
4. Pe C ([a; b]) se de�neşte produsul scalar

hf; gi =
Z b

a

f (x) g (x) dx:

5. Pe L2 (X;�;R) se de�neşte produsul scalar

hf; gi =
Z
X

(f � g) d�:

Propozi̧tia 5.1.3 Fie (X; h�; �i) un spaţiu cu produs scalar. Atunci:
(i) hx; yi2 � hx; xi hy; yi ; pentru orice x; y 2 X (inegalitatea lui Schwarz);
(ii) k�k : X ! [0;1); kxk =

p
hx; xi este o norm¼a pe X:

Demonstraţie (i) Pentru orice a 2 R şi orice x; y 2 X;

0 � hx� ay; x� ayi = hx; xi � 2a hx; yi+ a2 hy; yi :

Folosind propriet¼a̧tile trinomului de gradul al doilea, ob̧tinem inegalitatea.
(ii) Veri�c¼am doar a treia proprietate a normei, primele dou¼a �ind imediate. Pentru orice

x; y 2 X

kx+ yk2 = kxk2 + 2 hx; yi+ kyk2 � kxk2 + 2
p
hx; xi hy; yi+ kyk2

= kxk2 + 2 kxk kyk+ kyk2 = (kxk+ kyk)2 :

Deci k�k este o norm¼a. �

Observa̧tia 5.1.4 Inegalitatea lui Schwarz se scrie echivalent

jhx; yij � kxk kyk ; 8x; y 2 X:

Propozi̧tia 5.1.5 Fie (X; h�; �i) un spaţiu cu produs scalar. Atunci pentru orice x; y 2 X:
(i) kx+ yk2 + kx� yk2 = 2

�
kxk2 + kyk2

�
(identitatea paralelogramului);

(ii) 4 hx; yi = kx+ yk2 � kx� yk2 :

Demonstraţie Ambele rela̧tii se arat¼a prin calcul direct. �

Teorema 5.1.6 Dac¼a (X; k�k) este spaţiu liniar normat pe care are loc identitatea paralelogra-
mului atunci exist¼a un produs scalar pe X care induce norma k�k :

Demonstraţie De�nim

hx; yi = kx+ yk2 � kx� yk2

4
; 8x; y 2 X

şi ar¼at¼am c¼a acesta este produs scalar, iar norma provine din acesta.
Prima şi a treia proprietate din De�ni̧tia 5.1.1 sunt evidente.
Pentru a ar¼ata proprietatea a doua (adic¼a liniaritatea în raport cu prima variabil¼a), ar¼at¼am

pe rând aditivitatea şi omogenitatea.
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Fie x1; x2; x3 2 X: Pe baza identit¼a̧tii paralelogramului avem

kx1 + x2 + x3k2 + kx1 + x2 � x3k2 = 2
�
kx1 + x2k2 + kx3k2

�
kx1 � x2 + x3k2 + kx1 � x2 � x3k2 = 2

�
kx1 � x2k2 + kx3k2

�
;

rela̧tii care prin sc¼adere conduc la�
kx1 + x2 + x3k2 � kx1 � x2 + x3k2

�
+
�
kx1 + x2 � x3k2 � kx1 � x2 � x3k2

�
= 2

�
kx1 + x2k2 � kx1 � x2k2

�
;

adic¼a
hx1 + x3; x2i+ hx1 � x3; x2i = 2 hx1; x2i : (5.1)

Pentru x3 = x1; deducem
h2x1; x2i+ h0; x2i = 2 hx1; x2i :

Dar, din rela̧tia de de�ni̧tie, h0; x2i = 0;

h2x1; x2i = 2 hx1; x2i ; 8x1; x2 2 X:

Fie acum x; y; z 2 X: Alegem în (5.1) x1 = 2�1 (x+ y) ; x3 = 2
�1 (x� y) ; x2 = z: Atunci

hx; zi+ hy; zi = 2


2�1 (x+ y) ; z

�
= hx+ y; zi

şi aditivitatea este demonstrat¼a.
Demonstr¼am acum omogenitatea. Fie x; y 2 X: Din aditivitate, induçtie, pentru orice n 2 N

hnx; yi = n hx; yi :

Înlocuind x cu n�1x pentru n 2 P deducem şi

1

n
hx; yi =

�
1

n
x; y

�
:

Prin combina̧tia acestor rela̧tii ob̧tinem omogenitatea pentru scalarii ra̧tionali pozitivi.
Acum, prin de�ni̧tia lui h�; �i ;

h�x; yi = �hx; yi
şi ob̧tinem omogenitatea pentru to̧ti scalarii ra̧tionali. Cum h�; yi este continu¼a pentru orice
y 2 X; deducem omogenitatea pentru scalarii reali.
În sfâŗsit, este clar c¼a kxk2 = hx; xi ; deci norma provine din produsul scalar de�nit pe baza

ei. �

Corolarul 5.1.7 O norm¼a pe un spaţiu liniar provine dintr-un produs scalar dac¼a şi numai
dac¼a satisface identitatea paralelogramului.

Exemplul 5.1.8 Norma k�k1 pe R2 nu provine dintr-un produs scalar pentru c¼a nu satisface
identitatea paralelogramului. Într-adev¼ar, se observ¼a cu uşuriņt¼a c¼a vectorii bazei canonice nu
veri�c¼a aceast¼a identitate.
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Observa̧tia 5.1.9 Pe baza inegalit¼aţii lui Schwarz, produsul scalar este continuu în raport cu
�ecare din cele dou¼a variabile în raport cu topologia normei. De fapt, produsul scalar este
continuu în ansamblul variabilelor, lucru care se arat¼a direct şi mai jos.

Propozi̧tia 5.1.10 Fie (X; h�; �i) un spaţiu cu produs scalar. Atunci pentru orice dou¼a şiruri
(xn) ; (yn) convergente (în topologia dat¼a de norma indus¼a de produsul scalar) la x 2 X, respectiv
y 2 X avem

hxn; yni ! hx; yi :

Demonstraţie Avem

jhxn; yni � hx; yij = jhxn � x; yni+ hx; yn � yij
� kxn � xk kynk+ kyn � yk kxk ! 0;

ceea ce demonstreaz¼a propozi̧tia. �

De�ni̧tia 5.1.11 Se numeşte spaţiu Hilbert un spaţiu cu produs scalar care este complet în
raport cu norma indus¼a de produsul scalar.

Exemplul 5.1.12 Spa̧tiile de la Exemplul 5.1.2 1, 2, 3, 5 sunt spa̧tii Hilbert. Spa̧tiul de la
Exemplul 5.1.2 4 nu este Hilbert, pentru c¼a C ([a; b]) nu este complet în raport cu nicio norm¼a
k�kp.

Teorema 5.1.13 (existeņta elementului de cea mai bun¼a aproximare) Fie (X; h�; �i) un
spaţiu Hilbert şi C � X o mulţime nevid¼a, convex¼a şi închis¼a. Atunci, pentru orice x 2 X
exist¼a un unic element y 2 C astfel încât

d (x;C) = kx� yk :

În plus, y este caracterizat de propriet¼aţile y 2 C şi hx� y; u� yi � 0 pentru orice u 2 C:

Demonstraţie Cum pentru orice x 2 X; muļtimea C � x este nevid¼a, convex¼a şi închis¼a, este
su�cient s¼a ar¼at¼am prima parte pentru x = 0: Adic¼a, trebuie demonstrat c¼a exist¼a un unic
z 2 C astfel încât

d (0; C) = inf fkck j c 2 Cg = kzk :
Ar¼at¼am mai întâi existeņta. Not¼am d (0; C) cu 
: Pentru orice y 2 C; kyk � 
 şi conform
caracteriz¼arii in�mumului, pentru orice n 2 P; exist¼a yn 2 C astfel încât


2 � kynk2 � 
2 +
1

n
: (5.2)

Ar¼at¼am c¼a (yn) este şir Cauchy folosind identitatea paralelogramului. Avem, pentru orice
n;m 2 P;

kyn � ymk2 = 2 kynk2 + 2 kymk2 � 4




12yn + 12ym





2
� 2

�

2 +

1

n
+ 
2 +

1

m

�
� 4
2 = 2

�
1

n
+
1

m

�
;
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unde am folosit faptul c¼a 2�1yn + 2�1ym 2 C pentru c¼a C este convex¼a. Inegalitatea de mai
sus arat¼a c¼a (yn) este şir fundamental. Cum spa̧tiul este complet, exist¼a z 2 C astfel încât
lim yn = z: De asemenea, prin trecere la limit¼a în (5.2), kzk = lim kynk = 
:
Demonstr¼am acum unicitatea. Dac¼a 0 2 C; nu avem nimic de ar¼atat. Lu¼am 0 =2 C:

Consider¼am a1; a2 2 C cu d (0; C) = ka1k = ka2k : Folosind egalitatea paralelogramului avem

ka1 + a2k2 + ka1 � a2k2 = 2 ka1k2 + 2 ka2k2 ;

adic¼a
ka1 + a2k2 + ka2 � a1k2 = 4
2

şi împ¼aŗtind prin 4 ob̧tinem 



a1 + a2
2





2 + 



a2 � a1
2





2 = 
2:

Cum C este convex¼a, 2�1(a1 + a2) 2 C, deci


a1+a2

2



2 � 
2: Aceast¼a rela̧tie şi egalitatea
precedent¼a arat¼a c¼a ka2 � a1k = 0; deci a1 = a2: Demonstra̧tia unicit¼a̧tii este complet¼a.
S¼a demonstr¼am acum, din nou pentru x 2 X �xat, c¼a y 2 C a c¼arui existeņt¼a şi unicitate

tocmai au fost probate veri�c¼a rela̧tia hx� y; u� yi � 0 pentru orice u 2 C: Pentru aceasta
lu¼am u 2 C: Atunci pentru orice � 2 (0; 1]

v = �u+ (1� �)y 2 C:

Deci
kx� yk � kx� �u� (1� �)yk = kx� y � �(u� y)k ;

de unde, prin ridicare la p¼atrat,

kx� yk2 � kx� yk2 � 2� hx� y; u� yi+ �2 ku� yk2 :

Dup¼a reducere şi simpli�carea cu � > 0 ob̧tinem

0 � �2 hx� y; u� yi+ � ku� yk2 :

F¼acând �! 0 ob̧tinem inegalitatea anuņtat¼a.
Invers, dac¼a un element c 2 C satisface hx� c; u� ci � 0 pentru orice u 2 C; atunci pentru

orice v 2 C
kx� ck2 � kx� vk2 = 2 hx� c; v � ci � kc� vk2 � 0;

deci c coincide cu y: Demonstra̧tia este încheiat¼a. �

De�ni̧tia 5.1.14 În contextul teoremei anterioare y se numeşte proiecţia lui x pe C şi se
noteaz¼a prC x:

Propozi̧tia 5.1.15 Fie (X; h�; �i) un spaţiu Hilbert şi C � X o mulţime nevid¼a, convex¼a şi
închis¼a. Atunci operatorul de proiecţie X 3 x 7! prC x 2 C este 1�Lipschitz.
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Demonstraţie Fie x1; x2 2 X: Atunci, conform Teoremei 5.1.13, pentru orice v 2 C;

hx1 � prC x1; v � prC x1i � 0
hx2 � prC x2; v � prC x2i � 0:

Înlocuind în prima rela̧tie v cu prC x2 şi în a doua v cu prC x1 şi adunând, g¼asim

kprC x1 � prC x2k
2 � hx1 � x2; prC x1 � prC x2i ;

de unde concluzia. �

Propozi̧tia 5.1.16 Fie Fie (X; h�; �i) un spaţiu Hilbert şi Y � X un subspaţiu liniar închis
diferit de f0g. Atunci operatorul de proiecţie X 3 x 7! prY x 2 Y este operator liniar continuu
de norm¼a 1:

Demonstraţie Fie x 2 X: Caracterizarea elementului de proieçtie a lui x pe Y dat¼a mai sus, şi
anume, prY x 2 Y şi hx� prY x; u� prY xi � 0 pentru orice u 2 Y devine, pe baza liniarit¼a̧tii
lui Y; prY x 2 Y şi hx� prY x; ui = 0 pentru orice u 2 Y: Cu aceast¼a precizare, liniaritatea
rezult¼a imediat pentru c¼a pentru orice �; � 2 R, orice x; y 2 X şi orice u 2 Y avem

h�x+ �y � prY (�x+ �y) ; ui = 0;
hx� prY x; ui = 0; hy � prY y; ui = 0;

de unde g¼asim, prin opera̧tii algebrice,

h� prY x+ � prY y � prY (�x+ �y) ; ui = 0:

Alegând u = � prY x+ � prY y � prY (�x+ �y) 2 Y; deducem concluzia.
Propozi̧tia anterioar¼a dovedeşte continuitatea acestui operator şi, în plus, kprY k � 1: Cum

Y \ SX 6= ;; deducem c¼a kprY k = 1: �

5.2 Ortogonalitate

De�ni̧tia 5.2.1 Fie (X; h�; �i) un spaţiu cu produs scalar.
(i) Spunem c¼a dou¼a elemente x; y 2 X sunt ortogonale şi scriem x ? y dac¼a hx; yi = 0:
(ii) Fie x; y 2 X n f0g : Se numeşte unghiul celor dou¼a elemente num¼arul, notat [(x; y); din

intervalul [0; �] pentru care

cos[(x; y) =
hx; yi
kxk kyk :

Dac¼a [(x; y) 2 f0; �g ; spunem c¼a vectorii x şi y sunt paraleli sau coliniari.

Observa̧tia 5.2.2 Dac¼a x; y 2 X n f0g atunci x ? y dac¼a şi numai dac¼a [(x; y) = �
2
:

De�ni̧tia 5.2.3 Fie (X; h�; �i) un spaţiu cu produs scalar şi A � X: Se numeşte complementul
ortogonal al lui A mulţimea

A? = fx 2 X j x ? a; 8a 2 Ag :
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Propozi̧tia 5.2.4 Fie (X; h�; �i) un spaţiu cu produs scalar şi A � X: Atunci:
(i) A? = spanA

?
şi A? este subspaţiu liniar închis al lui X;

(ii) A �
�
A?
�?
;

(iii) A \ A? = f0g dac¼a 0 2 A şi A \ A? = ; dac¼a 0 =2 A:

Demonstraţie Toate a�rma̧tiile rezult¼a direct din de�ni̧tii. �

Lema 5.2.5 Fie (X; h�; �i) un spaţiu cu produs scalar şi Y un subspaţiu vectorial al lui X: Fie
x 2 X şi y 2 Y: Urm¼atoarele a�rmaţii sunt echivalente:
(i) x� y 2 Y ?;
(ii) kx� yk � kx� uk ; pentru orice u 2 Y:

Demonstraţie Fie z = x� y: Atunci, pentru orice u 2 Y

x� u = (x� y)� (u� y) = z � v;

unde v = u� y: Pentru y 2 Y �xat aplica̧tia Y 3 u 7! v = u� y 2 Y este o bijeçtie. Deci:
(i) se scrie z 2 Y ?;
(ii) se scrie kzk � kz � vk pentru orice v 2 Y adic¼a, dac¼a ridic¼am la p¼atrat şi efectu¼am

calculele, 2 hv; zi � kvk2 pentru orice v 2 Y:
Acum, (i) =) (ii) este evident¼a. Demonstr¼am (ii) =) (i). Aplic¼am (ii) pentru �v cu � 2 R

şi avem
2� hv; zi � �2 kvk2 ; 8� 2 R, 8v 2 Y:

Dac¼a z =2 Y ?, exist¼a y 2 Y astfel încât hz; yi 6= 0: F¼ar¼a a restrânge generalitatea, presupunem
c¼a hz; yi > 0 şi cum

2� hy; zi � �2 kyk2 ; 8� 2 R
prin împ¼aŗtire la � > 0 şi f¼acând �! 0; ob̧tinem

kyk2 � 2 hy; zi
�

!1;

ceea ce reprezint¼a o contradiçtie. Deci z 2 Y ?: �

Corolarul 5.2.6 Fie X un spaţiu Hilbert şi Y un subspaţiu vectorial închis al lui X: Fie x 2 X
şi y 2 Y: Atunci y = prY x dac¼a şi numai dac¼a x� y 2 Y ?:

De�ni̧tia 5.2.7 Spunem c¼a un spaţiu liniar X este sum¼a direct¼a a dou¼a subspaţii vectoriale Y
şi Z ale sale dac¼a pentru orice x 2 X; exist¼a şi sunt unice dou¼a elemente y 2 Y; z 2 Z astfel
încât x = y + z: Scriem X = Y �Z şi observ¼am c¼a de�niţia este echivalent¼a cu X = Y +Z şi
Y \ Z = f0g :

Teorema 5.2.8 (de descompunere ortogonal¼a) Fie (X; h�; �i) un spaţiu Hilbert şi Y � X
un subspaţiu vectorial închis al lui X. Atunci X = Y � Y ?; adic¼a pentru orice x 2 X exist¼a şi
sunt unice dou¼a elemente y 2 Y şi z 2 Y ? astfel încât x = y + z. În plus, pentru orice v 2 Y;

kx� vk2 = kx� yk2 + ky � vk2 :
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Demonstraţie Fie x 2 X: Cum Y este, ca muļtime, nevid¼a, convex¼a şi închis¼a, din Teorema
5.1.13, exist¼a un unic y 2 Y astfel încât

kx� yk � kx� uk ; 8u 2 Y:

Conform Lemei 5.2.5, x � y 2 Y ?: Deci x = y + z; unde z = x � y: Unicitatea descompunerii
rezult¼a din faptul c¼a Y \ Y ? = f0g :
Ar¼at¼am ultima concluzie. Fie v 2 Y: Atunci

x� v = x� y + (y � v):

Cum (x� y) ? (y � v) ; prin ridicare la p¼atrat,

kx� vk2 = kx� yk2 + ky � vk2 ;

adic¼a ceea ce trebuia s¼a demonstr¼am. �

Propozi̧tia 5.2.9 Dac¼a Y este subspaţiu vectorial închis al spaţiului Hilbert X; atunci are loc
egalitatea

�
Y ?�? = Y:

Demonstraţie Incluziunea Y �
�
Y ?�? are loc mereu. Fie x 2 �Y ?�? : Atunci, conform Teore-

mei 5.2.8, exist¼a şi sunt unice dou¼a elemente y 2 Y şi z 2 Y ? astfel încât x = y + z. Înmuļtim
scalar cu z aceast¼a egalitate şi avem kzk2 = 0; deci x = y 2 Y: �

5.3 Dualitate în spa̧tii Hilbert

Dualul unui spa̧tiu Hilbert poate � descris explicit.

Teorema 5.3.1 (Teorema lui Riesz) Fie (X; h�; �i) un spaţiu Hilbert peste R: Pentru orice
y 2 X; funcţia fy : X ! R dat¼a prin fy (x) = hx; yi satisface fy 2 X� şi kfykX� = kykX :
Reciproc, pentru orice x� 2 X�; exist¼a un unic y 2 X astfel încât x� = fy:

Demonstraţie Faptul c¼a fy este liniar¼a pentru orice y este evident. Apoi, pentru orice x 2 X

jfy (x)j � kxk kyk ;

deci fy este continu¼a şi kfyk � kyk : Dar,

kyk2 = jfy (y)j � kfyk kyk ;

deci kfyk � kyk : Aşadar, are loc egalitatea.
Fie acum x� 2 X�: Dac¼a x� = 0, lu¼am y = 0 şi x� = fy: Presupunem c¼a x� 6= 0: Atunci,

Ker x� 6= X şi din Teorema de descompunere ortogonal¼a deducem c¼a (Kerx�)? 6= f0g : Fie
z 2 (Kerx�)? n f0g : Dac¼a z 2 Ker x�; atunci am avea kzk2 = 0; ceea ce nu se poate. Deci
x� (z) 6= 0: Fie x 2 X: Observ¼am c¼a

x�
�
x� x� (x)

x� (z)
z

�
= 0;
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deci �
z; x� x� (x)

x� (z)
z

�
= 0;

adic¼a

hx; zi = x� (x)

x� (z)
kzk2 :

Aşadar, pentru orice x 2 X;
x� (x) =

�
x;
x� (z)

kzk2
z

�
;

ceea ce înseamn¼a c¼a x� = fy; unde

y =
x� (z)

kzk2
z:

Deci are loc rezultatul de existeņt¼a. Demonstr¼am, în �nal, unicitatea lui y: Dac¼a fy = fz pentru
y; z 2 X; atunci hx; y � zi = 0 pentru orice x 2 X; ceea ce atrage y = z: �

Observa̧tia 5.3.2 Aşadar Teorema lui Riesz arat¼a faptul c¼a un spaţiu Hilbert este izomorf
izometric cu dualul s¼au şi x� 2 X� dac¼a şi numai dac¼a x� = hy; �i cu y 2 X:
În particular, convergenţa slab¼a pe X devine�

xn
w�! x

�
() (hy; xni ! hy; xi ; 8y 2 X) :

Propozi̧tia 5.3.3 Dac¼a X este spaţiu Hilbert, atunci X� este spaţiu Hilbert.

Demonstraţie Fie x�; y� 2 X�: Fie x; y 2 X elementele corespunz¼atoare date de Teorema lui
Riesz. De�nim hx�; y�i = hx; yi : Se arat¼a uşor c¼a acesta este un produs scalar care induce
norma pe X�: Cum X� este şi complet, deducem c¼a este spa̧tiu Hilbert. �

Teorema 5.3.4 Orice spaţiu Hilbert este re�exiv.

Demonstraţie Fie � : X ! X�� scufundarea canonic¼a în bidual. Trebuie s¼a ar¼at¼am c¼a � este
surjectiv¼a. Fie x�� 2 X��: Cum X� este spa̧tiu Hilbert, din Teorema lui Riesz, exist¼a y� 2 X�

astfel încât pentru orice x� 2 X�;

x�� (x�) = hx�; y�i = hx; yi ;

unde x; y sunt elementele corespunz¼atoare pentru x� şi y� date de Teorema lui Riesz. Astfel,

x�� (x�) = x� (y) ; 8x� 2 X�;

deci x�� = �(y) : �

Teorema 5.3.5 Fie (X; h�; �i) un spaţiu Hilbert:Dac¼a T 2 L (X) atunci exist¼a un unic operator
T � 2 L (X) astfel încât

hTx; yi = hx; T �yi ; 8x; y 2 X:
În plus, kTk = kT �k.
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Demonstraţie Pentru orice y �xat consider¼am x� : X ! R;

x� (x) = hTx; yi :

Cum T e liniar şi continuu, x� 2 X� şi conform Teoremei 5.3.1 exist¼a un unic zy 2 X astfel
încât x� = h�; zyi : Prin urmare, de�nim T � : X ! X prin T � (y) = zy şi chiar din aceast¼a
de�ni̧tie avem

x� (x) = hTx; yi = hx; T �yi ; 8x 2 X:
Fie acum y1; y2 2 X şi �1; �2 2 R. Pentru orice x 2 X

hx; T � (�1x1 + �2x2)i = hTx; �1x1 + �2x2i = �1 hTx; y1i+ �2 hTx; y2i
= �1 hx; T �y1i+ �2 hx; T �y2i = hx; �1T �y1 + �2T

�y2i :

De aici rezult¼a c¼a T � (�1x1 + �2x2) = �1T
�y1 + �2T

�y2; adic¼a T � este liniar.
Pentru orice x; y 2 X;

jhx; T �yij = jhTx; yij � kTxk kyk � kTk kxk kyk :

Alegem x = T �y şi avem
kT �yk2 � kTk kT �yk kyk ;

deci
kT �yk � kTk kyk ;

adic¼a T � 2 L (X) şi kT �k � kTk :
Pe de alt¼a parte, din nou pentru orice x; y 2 X;

jhTx; yij = jhx; T �yij � kT �k kxk kyk :

Alegem y = Tx şi avem
kTxk2 � kT �k kTxk kxk ;

deci
kTxk � kT �k kxk ;

adic¼a kTk � kT �k : Avem aşadar concluzia. �

De�ni̧tia 5.3.6 Operatorul T � de�nit în teorema de mai sus se numeşte adjunctul operatorului
T .

Propozi̧tia 5.3.7 Fie (X; h�; �i) un spaţiu Hilbert şi T 2 L (X) : Atunci:
(i) KerT = (ImT �)? ;
(ii) KerT � = (ImT )? ;
(iii) (KerT )? = ImT �;
(iv) (KerT �)? = ImT :
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Demonstraţie (i) Egalitatea rezult¼a prin dubl¼a incluziune prin aplicarea de�ni̧tiilor.
Astfel, dac¼a u 2 KerT şi v 2 ImT �; atunci exist¼a y 2 X astfel încât v = T �y şi

hu; vi = hu; T �yi = hTu; yi = 0;

deci u 2 (ImT �)? :
Dac¼a lu¼am v 2 (ImT �)?, atunci pentru orice y 2 X;

0 = hv; T �yi = hTv; yi :

Deducem c¼a Tv = 0; adic¼a v 2 KerT:
(ii) Pe baza punctului anterior,

KerT � = (Im (T �)�)
?
= (ImT )? :

(iii) Avem

(KerT )? =
�
(ImT �)?

�?
=
��
ImT �

�?�?
= ImT �:

(iv) Este similar punctului anterior. �

Propozi̧tia 5.3.8 Fie X spaţiu Banach, Y spaţiu Hilbert şi T 2 K (X; Y ) : Atunci T este
limita unui şir de operatori de rang �nit.

Demonstraţie Fie " > 0: Muļtimea T (DX) �ind relativ compact¼a, exist¼a n 2 P şi y1; :::; yn 2 Y
astfel încât

T (DX) �
[
i21;n

B (yi; ") :

Not¼am cu Z subspa̧tiul �nit dimensional (deci închis) al lui Y generat de (yi)i21;n şi consider¼am
operatorul liniar continuu

T" = prZ �T;
unde prZ este operatorul de proieçtie pe Z. Evident, T" este de rang �nit.
Mai întâi, observ¼am c¼a pentru orice x 2 DX exist¼a i0 2 1; n astfel încât

kTx� yi0k < ":

Deci, pentru orice x 2 DX ;

kTx� (prZ �T )xk � kTx� yi0k+ k(prZ �T )x� yi0k
< "+ k(prZ �T )x� prZ (yi0)k � "+ kTx� yi0k < 2";

adic¼a
kT � T"k � 2";

ceea ce conduce la concluzie. �
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5.4 Muļtimi ortonormate, baze ortonormate

De�ni̧tia 5.4.1 Fie (X; h�; �i) un spaţiu cu produs scalar. O submulţime A � X se numeşte
ortonormat¼a dac¼a pentru orice e; f 2 A

he; fi =
�
0; dac¼a e 6= f
1; dac¼a e = f:

Propozi̧tia 5.4.2 Orice mulţime ortonormat¼a este liniar independent¼a.

Demonstraţie Fie A � X ortonormat¼a şi fe1; ::; eng o submuļtime �nit¼a a sa (unde n 2 P). Fie
acum �1; :::; �n 2 R astfel încât

nX
k=1

�kek = 0:

Înmuļtim succesiv cu (ej)j21;n şi deducem c¼a �j = 0 pentru orice j 2 1; n: �

Propozi̧tia 5.4.3 (Teorema lui Pitagora) Fie fe1; ::; eng (n 2 P) o mulţime ortonormat¼a
�nit¼a în spaţiul cu produs scalar (X; h�; �i). Atunci pentru orice �1; :::; �n 2 R






nX
k=1

�kek







2

=
nX
k=1

�2k:

Demonstraţie Calculul direct al normei din primul membru şi proprietatea de ortonormatitate
dovedesc egalitatea. �

Observa̧tia 5.4.4 1. Dac¼a A � X este ortonormat¼a, atunci pentru orice dou¼a elemente dis-
tincte e; f 2 A; avem ke� fk =

p
2: Deducem c¼a dac¼a X este in�nit dimensional şi separabil,

atunci A poate � cel mult num¼arabil¼a.
2. Din Lema lui Zorn rezult¼a c¼a orice mulţime ortonormat¼a este conţinut¼a într-o mulţime

ortonormat¼a maximal¼a.

Propozi̧tia 5.4.5 Fie (X; h�; �i) un spaţiu cu produs scalar şi A = fe1; ::; eng (n 2 P) o mulţime
ortonormat¼a. Fie x 2 X şi

y =
nX
k=1

hx; eki ek:

Atunci y 2 spanA este proiecţia lui x pe spanA; deci x� y 2 (spanA)? : În plus, pentru orice
v 2 spanA;

kx� vk2 = kx� yk2 + ky � vk2 :

Demonstraţie Este clar c¼a y 2 spanA: Lu¼am z = x � y şi se veri�c¼a uşor c¼a z 2 (spanA)? :
Evident, spanA este �nit dimensional şi prin urmare închis. Restul a�rma̧tiilor rezult¼a ca în
Teorema de descompunere ortogonal¼a. �

În continuare discut¼am despre familii ortonormate num¼arabile.
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Propozi̧tia 5.4.6 Fie (X; h�; �i) un spaţiu Hilbert şi A = fek j k 2 Pg o familie ortonormat¼a
num¼arabil¼a. Fie (�k)k2P un şir de elemente din R: Atunci seria

P1
k=1 �kek converge dac¼a şi

numai dac¼a
P1

k=1 �
2
k converge. Mai mult, în caz de convergenţ¼a are loc relaţia






1X
k=1

�kek







2

=
1X
k=1

�2k:

Demonstraţie De�nim şirul sumelor paŗtiale

sn =

nX
k=1

�kek, n 2 P:

Pe baza ortonormatit¼a̧tii,

ksnk2 =
nX
k=1

�2k:

Dac¼a (sn) este convergent, atunci (sn) este m¼arginit, deci rela̧tia de mai sus asigur¼a convergeņta
seriei numerice

P1
k=1 �

2
k:

Invers, dac¼a
P1

k=1 �
2
k este convergent¼a, cum pentru orice m;n cu n > m;

ksn � smk2 =
nX

k=m+1

�2k;

deducem c¼a (sn) este şir Cauchy şi deci, cum spa̧tiul este complet, convergent.
În plus, 






1X
k=1

�kek







2

= lim ksnk2 =
1X
k=1

�2k;

adic¼a concluzia �nal¼a. �

Propozi̧tia 5.4.7 (Inegalitatea lui Bessel) Fie (X; h�; �i) un spaţiu cu produs scalar şi

fek j k 2 Pg

o familie ortonormat¼a num¼arabil¼a. Atunci, pentru orice x 2 X; seria
P1

k=1 hx; eki
2 este con-

vergent¼a şi
1X
k=1

hx; eki2 � kxk2 :

Demonstraţie Fie x 2 X: Pentru a proba ambele a�rma̧tii este su�cient s¼a ar¼at¼am c¼a pentru
orice n 2 P

nX
k=1

hx; eki2 � kxk2 :

Fix¼am aşadar n 2 P şi lu¼am Yn = span fe1; :::; eng : Fie sn (x) =
Pn

k=1 hx; eki ek: Atunci sn (x) 2
Yn şi x� sn (x) 2 Y ?

n : Folosim Propozi̧tia 5.4.5 pentru a scrie

kxk2 = ksn (x)k2 + kx� sn (x)k2 :
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De aici rezult¼a
ksn (x)k2 � kxk2 ;

ceea ce conduce la concluzie. �

Corolarul 5.4.8 Fie (X; h�; �i) un spaţiu Hilbert şi fek j k 2 Pg o familie ortonormat¼a num¼ara-
bil¼a. Atunci, pentru orice x 2 X seria

P1
k=1 hx; eki ek este convergent¼a.

Observa̧tia 5.4.9 Dac¼a (X; h�; �i) este un spaţiu Hilbert şi fek j k 2 Pg este o familie ortonor-
mat¼a num¼arabil¼a a sa, atunci ek

w�! 0; dar (ek) nu este nici m¼acar fundamental în topologia
normei. Într-adev¼ar, din inegalitatea lui Bessel, pentru orice x 2 X;

1X
k=1

hx; eki2 � kxk2 ;

iar seria �ind convergent¼a hx; eki ! 0; deci ek
w�! 0: Pe de alt¼a parte, pentru orice i; j 2 P

diferiţi,
kei � ejk2 = 2;

de unde se obţine a doua concluzie.

Teorema 5.4.10 Fie (X; h�; �i) un spaţiu cu produs scalar şi A = fek j k 2 Pg o mulţime orto-
normat¼a num¼arabil¼a. Atunci urm¼atoarele a�rmaţii sunt echivalente:
(i) x =

P1
k=1 hx; eki ek pentru orice x 2 X;

(ii) kxk2 =
P1

k=1 hx; eki
2 pentru orice x 2 X;

(iii) spanA = X:
Dac¼a în plus X este spaţiu Hilbert, atunci acestea sunt echivalente şi cu:
(iv) A este o mulţime ortonormat¼a maximal¼a;
(v) A? = f0g :

Demonstraţie Ca mai sus, de�nim, pentru orice x 2 X şi orice n 2 P

sn (x) =

nX
k=1

hx; eki ek:

(i) =) (ii) Conform ipotezei, pentru orice x;

x = lim sn (x) :

Atunci

kxk2 = lim ksn (x)k2 =
1X
k=1

hx; eki2 :

(ii) =) (i) Din ipoteza acestei implica̧tii, pentru orice x 2 X;

kxk2 = lim ksn (x)k2 :

Dar, aşa cum am v¼azut mai sus,

kxk2 = ksn (x)k2 + kx� sn (x)k2 ;
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ceea ce atrage
x = lim sn (x) ;

adic¼a (i).
(i) =) (iii) Pentru orice x 2 X;

x = lim sn (x) 2 spanA;

deci
X = spanA:

(iii) =) (i) Fie x 2 X: Atunci x 2 spanA; deci exist¼a un şir (yn) � spanA astfel încât
yn ! x: Dar

spanA =
[
n2P

Yn;

unde Yn = span fe1; :::; eng ; pentru orice n 2 P: Deci, pentru orice termen al şirului (yn) exist¼a
pn 2 P astfel încât yn 2 Ypn :
Dar

kx� spn (x)k � kx� ynk ! 0;

adic¼a
spn (x)! x:

Folosind din nou egalitatea

kxk2 � ksn (x)k2 = kx� sn (x)k2 ; 8n 2 P;

cum şirul (ksn (x)k)n este cresc¼ator, înseamn¼a c¼a şirul (kx� sn (x)k)n este descresc¼ator. De-
ducem c¼a

sn (x)! x:

Presupunem acum c¼a X este spa̧tiu Hilbert.
(ii) =) (iv) Dac¼a A nu ar �maximal¼a, ar putea �extins¼a, deci ar exista x 2 SX astfel încât

hx; eni = 0; pentru orice n: Evident, aceasta contrazice rela̧tia de la (ii) scris¼a pentru x:
(iv) =) (i) Presupunem, prin reducere la absurd, c¼a exist¼a x 2 X astfel încât seria con-

vergent¼a
P1

k=1 hx; eki ek nu este egal¼a cu x: Fie u suma acestei serii. Atunci, pentru orice n;
folosind continuitatea produsului scalar, avem

hx� u; eni =
*
x�

1X
k=1

hx; eki ek; en

+
= hx; eni �

* 1X
k=1

hx; eki ek; en

+

= hx; eni � lim
m

*
mX
k=1

hx; eki ek; en

+
= 0:

În particular, x � u =2 spanA; deci ad¼augând la A elementul kx� uk�1 (x� u) ob̧tinem o
muļtime ortonormat¼a mai larg¼a, contrazicând astfel maximalitatea lui A:
(iii) =) (v) Cum A? = spanA

?
; ob̧tinem A? = f0g :

(v) =) (iii) Din Teorema de descompunere ortogonal¼a ştim c¼a X = spanA� spanA?; iar
faptul c¼a spanA

?
= f0g asigur¼a concluzia. �
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De�ni̧tia 5.4.11 O familie ortonormat¼a cu propriet¼aţile din teorema precedent¼a se numeşte
baz¼a ortonormat¼a a spaţiului X:

Observa̧tia 5.4.12 1. Egalitatea din punctul (ii) al teoremei anterioare se numeşte identitatea
lui Parseval.
2. Dac¼a A este o baz¼a ortonormat¼a şi x 2 X; atunci elementele fhx; eki j k 2 Pg se numesc

coe�cienţi Fourier ai lui x în raport cu A:
3. Descompunerea dat¼a de punctul (i) al teoremei menţionate a unui element x în raport

cu baza A este unic¼a. Într-adev¼ar,

x =
1X
k=1

�kek

implic¼a �k = hx; eki pentru orice k:

Exemplul 5.4.13 În spa̧tiul Hilbert `2 elementele f(1; 0; 0; :::) ; (0; 1; 0; :::); :::g formeaz¼a o baz¼a
ortonormat¼a: faptul c¼a muļtimea este ortonormat¼a este uşor de probat şi, în plus, are loc
identitatea lui Parseval.

Corolarul 5.4.14 Fie X un spaţiu Hilbert, A = fek j k 2 Pg o baz¼a ortonormat¼a a sa, (xn) �
X şi x 2 X: Atunci xn

w! x dac¼a şi numai dac¼a (xn) este m¼arginit şi hxn; eki ! hx; eki pentru
orice k 2 P:

Demonstraţie A�rma̧tia este o conseciņt¼a a Teoremei 5.4.10 şi a Problemei 62. �

Teorema 5.4.15 Fie X un spaţiu Hilbert in�nit dimensional. Atunci X admite o baz¼a orto-
normat¼a num¼arabil¼a dac¼a şi numai dac¼a este separabil.

Demonstraţie Presupunem mai întâi c¼a X admite o baz¼a ortonormat¼a num¼arabil¼a. Faptul c¼a X
este separabil rezult¼a din proprietatea din Teorema 5.4.10 (iii) şi o problem¼a discutat¼a anterior.
Invers, X admite o muļtime ortonormat¼a maximal¼a num¼arabil¼a (Observa̧tia 5.4.4). O astfel

de muļtime este baz¼a (Teorema 5.4.10). �

Teorema 5.4.16 Orice spaţiu Hilbert separabil in�nit dimensional este izomorf izometric cu
(`2; k�k2) :

Demonstraţie Fie X un spa̧tiu Hilbert separabil in�nit dimensional. Conform rezultatului
anterior, exist¼a A = fek j k 2 Pg � X o baz¼a ortonormat¼a num¼arabil¼a a sa. De�nim T :
(X; k�k)! (`2; k�k2) prin

Tx = (hx; eki)k2P :
Din teorema de caracterizare a bazelor ortonormate (Teorema 5.4.10),

kxk2 =
1X
k=1

hx; eki2 ; 8x 2 X;

deci Tx 2 `2 pentru orice x 2 X; adic¼a T este bine de�nit. Apoi, este uşor de veri�cat c¼a T
este operator liniar. Din identitatea lui Parseval,

kxk2 =
1X
k=1

hx; eki2 = kTxk22 ; 8x 2 X;
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deci T este izometrie. Este su�cient s¼a mai ar¼at¼am c¼a T este surjectiv. Fie (�k)k2P 2 `2: Cum
seria

P1
k=1 �

2
k este convergent¼a, seria

P1
k=1 �kek converge în X. Consider¼am x =

P1
k=1 �kek 2

X: Pentru orice n 2 P; folosind continuitatea produsului scalar, putem scrie

hx; eni =
* 1X
k=1

�kek; en

+
= lim

k!1

*
kX
i=1

�iei; en

+
= �n:

Deci Tx = (hx; eki)k2P = (�k)k2P ; adic¼a T este surjectiv. �

5.5 Lema Lax-Milgram

De�ni̧tia 5.5.1 Fie (X; h�; �i) un spaţiu cu produs scalar. O aplicaţie biliniar¼a a : X �X ! R
se numeşte:
(i) continu¼a dac¼a exist¼a c > 0 astfel încât pentru orice x; y 2 X

ja (x; y)j � c kxk kyk ;

(ii) coerciv¼a dac¼a exist¼a � > 0 astfel încât pentru orice u 2 X

� kuk2 � a (u; u) :

Teorema 5.5.2 (Teorema lui Stampacchia) Fie X spaţiu Hilbert şi a o aplicaţie biliniar¼a
continu¼a şi coerciv¼a. Fie C � X nevid¼a, închis¼a şi convex¼a. Atunci, pentru orice x� 2 X�

exist¼a un unic u 2 C astfel încât

a (u; v � u) � x� (v � u) ; 8v 2 C:

Mai mult, dac¼a a este simetric¼a, u este caracterizat de propriet¼aţile�
u 2 C;
1
2
a (u; u)� x� (u) = minv2C

�
1
2
a (v; v)� x� (v)

	
:

Demonstraţie Fie x� 2 X�: Pentru u 2 X �xat, aplica̧tia v 7! a (u; v) este liniar¼a şi continu¼a.
Conform Teoremei lui Riesz (Teorema 5.3.1), exist¼a un unic element în X; pe care îl not¼am Au;
astfel încât

a (u; v) = hAu; vi ; 8v 2 X:
E uşor de observat c¼a A : X ! X este liniar şi�

kAuk � c kuk ; 8u 2 X
hAu; ui � � kuk2 ; 8u 2 X:

A ob̧tine existeņta în prima concluzie înseamn¼a determinarea unui element u 2 C astfel încât

hAu; v � ui � x� (v � u) ; 8v 2 C;

adic¼a, prin identi�carea lui x� cu elementul corespunz¼ator dat de Teorema lui Riesz,

hx� � Au; v � ui � 0; 8v 2 C:
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Aceast¼a ultim¼a inegalitate este echivalent¼a cu

h�x� � �Au+ u� u; v � ui � 0; 8v 2 C;

unde � > 0: Reamintindu-ne caracterizarea proieçtiei din Teorema 5.1.13, cum C este nevid¼a,
convex¼a şi închis¼a, aceasta înseamn¼a

u = prC (�x
� � �Au+ u) :

Vom ar¼ata c¼a pentru � > 0 convenabil ales un astfel de punct u 2 C exist¼a.
De�nim, pentru � > 0; S� : C ! C;

S� (v) = prC (�x
� � �Av + v)

şi practic trebuie s¼a ar¼at¼am c¼a S� are punct �x pentru � > 0 convenabil ales. Conform
Propozi̧tiei 5.1.15, pentru orice v1; v2 2 C avem

kS� (v1)� S� (v2)k2 � k(v1 � v2)� � (Av1 � Av2)k2

= kv1 � v2k2 � 2� hv1 � v2; A (v1 � v2)i+ �2 kA (v1 � v2)k2

�
�
1� 2�� + �2c2

�
kv1 � v2k2 :

Fie � 2 (0; 2c�2�) : Atunci (1� 2�� + �2c2) < 1; deci S� este o contraçtie. Conform Principiu-
lui lui Banach de punct �x, S� are un unic punct �x în C şi existeņta în prima parte a teoremei
este demonstrat¼a.
Fie u1; u2 2 C care veri�c¼a concluzia. Atunci

a (u1; u2 � u1) � x� (u2 � u1) ;

a (u2; u1 � u2) � x� (u1 � u2) :

Prin adunare, ob̧tinem
a (u2 � u1; u1 � u2) � 0:

adic¼a
a (u2 � u1; u2 � u1) � 0:

Deducem de aici c¼a u1 = u2:
Presupunem acum c¼a a este simetric¼a. Atunci a determin¼a pe X un nou produs scalar,

iar datorit¼a celorlalte propriet¼a̧ti ale lui a; norma corespunz¼atoare este echivalent¼a cu norma
ini̧tial¼a. Astfel, X este spa̧tiu Hilbert şi în raport cu aceast¼a norm¼a. Din Teorema lui Riesz,
exist¼a un unic z 2 X astfel încât

x� (v) = a (z; v) ; 8v 2 X:

Atunci prima concluzie, deja demonstrat¼a, revine la g¼asirea unui element u 2 C astfel încât

a (z � u; v � u) � 0; 8v 2 C:

Acest u nu este decât proieçtia lui z pe C în noul produs scalar, iar aceasta înseamn¼a c¼a u
minimizeaz¼a pe C funçtia

v 7!
p
a (z � v; z � v);
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adic¼a minimizeaz¼a pe C funçtia

v 7! a (z � v; z � v) = a (v; v)� 2x� (v) + a (z; z) :

Deci, în �nal, u minimizeaz¼a pe C funçtia

v 7! 1

2
a (v; v)� x� (v) ;

ceea ce încheie demonstra̧tia. �

Teorema 5.5.3 (Lema Lax-Milgram) Fie X spaţiu Hilbert şi a o aplicaţie biliniar¼a con-
tinu¼a şi coerciv¼a. Atunci, pentru orice x� 2 X� exist¼a un unic u 2 X astfel încât

a (u; v) = x� (v) ; 8v 2 X:

Mai mult, dac¼a a este simetric¼a, u este caracterizat de propriet¼aţile�
u 2 X;
1
2
a (u; u)� x� (u) = minv2X

�
1
2
a (v; v)� x� (v)

	
:

Demonstraţie Se aplic¼a Teorema lui Stampacchia pentru C = X şi folosind liniaritatea spa̧tiului
ob̧tinem chiar egalitate în prima concluzie. �

5.6 Elemente de teorie spectral¼a

De�ni̧tia 5.6.1 Fie X un spaţiu Hilbert şi T 2 L (X) : Mulţimea rezolvent¼a, notat¼a � (T ) ; a
operatorului T este

� (T ) = f� 2 R j (T � � id) este bijectivg :
Spectrul lui T este mulţimea � (T ) = R n � (T ) :
Un num¼ar real � se numeşte valoare proprie a lui T dac¼a Ker (T � � id) 6= f0g : Mulţimea

tuturor valorilor proprii ale lui T se noteaz¼a �p (T ) şi se numeşte spectrul punctual al lui T: Un
element nenul din Ker (T � � id) se numeşte vector propriu asociat valorii proprii �:

Este clar c¼a �p (T ) � � (T ) : Aceast¼a incluziune este strict¼a, în general, aşa cum se poate
vedea în exemplul de mai jos.

Exemplul 5.6.2 Fie X = `2 şi T 2 L (`2) dat prin

T (x) = (0; x1; x2; :::) ; 8x = (xn)n2P 2 `2:

Atunci 0 2 � (T ) n �p (T ) :

De asemenea, ambele spectre pot �muļtimea vid¼a, ca în exemplul urm¼ator.

Exemplul 5.6.3 Fie X = `2 şi T 2 L (`2) dat prin

T (x) = (�x2; x1;�x4; x3; :::) ; 8x = (xn)n2P 2 `2:

Atunci � (T ) = �p (T ) = ;:
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Propozi̧tia 5.6.4 Dac¼a T 2 L (X) ; atunci � (T ) � [�kTk ; kTk] şi � (T ) este mulţime com-
pact¼a.

Demonstraţie Fie � 2 R cu j�j > kTk : Ar¼at¼am c¼a � 2 � (T ) ; adic¼a T � � id este operator
bijectiv. Aceasta revine la a ar¼ata c¼a pentru orice y 2 X; ecua̧tia Tx � �x = y are solu̧tie
unic¼a. Ecua̧tia anterioar¼a se scrie ca

x = ��1 (Tx� y) ;

iar aplica̧tia x ! ��1 (Tx� y) este o contraçtie. Din Principiul lui Banach de punct �x, de-
ducem c¼a exist¼a un unic punct �x al acestei aplica̧tii, adic¼a o solu̧tie unic¼a a ecua̧tiei anterioare.
Cum � (T ) este o submuļtime a lui R; pentru ar¼ata c¼a este compact¼a mai trebuie ar¼atat

c¼a este închis¼a. Ar¼at¼am c¼a � (T ) este deschis¼a. Fie �� 2 � (T ) : Consider¼am � 2 R şi y 2 X:
Ecua̧tia Tx� �x = y se scrie

Tx� ��x = y +
�
�� ��

�
x;

adic¼a
x =

�
T � �� id

��1 �
y +

�
�� ��

�
x
�

Din nou, din Principiul lui Banach de punct �x, aceast¼a ecua̧tie are solu̧tie unic¼a dac¼a aplica̧tia
(în x) din membrul drept este contraçtie, adic¼a dac¼a

���� ���� 


�T � �� id��1


 < 1: Aşadar, pentru
� su�cient de aproape de ��; T � � id este inversabil¼a, observa̧tie care încheie demonstra̧tia. �

În continuare investig¼am structura muļtimilor � (T ) şi �p (T ) în cazul în care T 2 K (X) :

Lema 5.6.5 Dac¼a T 2 K (X) şi (�n)n2P este un şir de numere reale distincte convergent la
� 2 R astfel încât (�n) � � (T ) n f0g, atunci � = 0:

Demonstraţie Din Teorema 4.5.11 (iii) ştim c¼a (�n) � �p (T ) n f0g ; deci pentru orice n 2 P
exist¼a un 6= 0 astfel încât (T � �n id) (un) = 0: De�nim

Yn = span fu1; :::; ung ; 8n 2 P:

Evident, Yn � Yn+1 pentru orice n: Ar¼at¼am c¼a incluziunea este strict¼a, ceea ce este adev¼arat
dac¼a vectorii (un)n sunt liniari independeņti. Folosim principiul induçtiei matematice şi pre-
supunem deci c¼a pentru n �xat (ui)i21;n sunt liniari independeņti. Prin reducere la absurd,
presupunem c¼a exist¼a (�i)i21;n � R astfel încât

un+1 =
nX
i=1

�iui:

Atunci, cum Tun+1 = �n+1un+1; avem

Tun+1 =

nX
i=1

�i�iui = �n+1

nX
i=1

�iui;

adic¼a, din ipoteza inductiv¼a, �i (�i � �n+1) = 0 pentru orice i 2 1; n: Cum valorile (�n)n sunt
distincte, ob̧tinem c¼a �i = 1 pentru orice i 2 1; n; adic¼a o contradiçtie. Aşadar incluziunea
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Yn � Yn+1 este strict¼a pentru orice n: Aplic¼am în continuare Lema lui Riesz (Lema 4.5.10)
pentru a construi un şir (xn)n�1 astfel încât xn 2 Yn; kxnk = 1; d (xn; Yn�1) � 2�1 pentru orice
n � 2: Pentru m;n astfel încât 2 � m < n avem Ym�1 � Ym � Yn�1 � Yn şi (T � �n id) (Yn) �
Yn�1 (pentru c¼a un 2 Ker (T � �n id)). Deci



Txn�n � Txm

�m





 = 



Txn � �nxn
�n

� Txm � �mxm
�m

+ xn � xm





 � d (xn; Yn�1) � 2�1:

Dac¼a � 6= 0; cum (Txn) are subşir convergent, inegalitatea de mai sus nu este posibil¼a. Deci
� = 0: �

Teorema 5.6.6 Presupunem c¼a X este in�nit dimensional şi T 2 K (X) : Atunci:
(i) 0 2 � (T ) ;
(ii) � (T ) n f0g = �p (T ) n f0g ;
(iii) are loc una dintre urm¼atoarele situaţii:

(a) � (T ) = f0g ;
(b) � (T ) n f0g e mulţime �nit¼a;
(c) � (T ) n f0g este un şir cu limita 0:

Demonstraţie (i) Dac¼a 0 =2 � (T ) ; atunci T este bijectiv, ceea ce conduce la faptul c¼a id = T �T�1
este operator compact (a se vedea şi Problema 80), ceea ce contrazice faptul c¼a X este in�nit
dimensional.
(ii) Dac¼a � 2 � (T ) n f0g ; din Teorema 4.5.11 (iii) rezult¼a c¼a T � � id nu este injectiv, deci

� 2 �p (T ) n f0g :
(iii) Pentru �ecare n 2 P, consider¼am muļtimea � (T )\f� 2 R j j�j � n�1g : Conform Lemei

5.6.5, aceasta este vid¼a sau �nit¼a. Deci muļtimea � (T ) n f0g �e este �nit¼a, �e are o in�nitate
de puncte distincte care formeaz¼a un şir cu limita 0: �

De�ni̧tia 5.6.7 Un operator T 2 L (X) se numeşte autoadjunct dac¼a T = T �:

Propozi̧tia 5.6.8 Fie T 2 L (X) autoadjunct. De�nim m = inf fhTx; xi j x 2 SXg ; M =
sup fhTx; xi j x 2 SXg : Atunci � (T ) � [m;M ] ; m;M 2 � (T ) :Mai mult, kTk = max fjmj ; jM jg :

Demonstraţie Pentru � > M ar¼at¼am c¼a � 2 � (T ) : Ştim c¼a

hTx; xi �M kxk2 ; 8x 2 X:

Deci
h�x� Tx; xi � (��M) kxk2 ; 8x 2 X:

Din Lema Lax-Milgram (Teorema 5.5.3) deducem c¼a � id�T este operator bijectiv. Asem¼an¼a-
tor, � 2 � (T ) pentru � < m: Astfel, � (T ) � [m;M ] :
Ar¼at¼am c¼a M 2 � (T ) : Forma biliniar¼a a : X � X ! R; a (x; y) = hMx� Tx; yi este

simetric¼a şi satisface a (x; x) � 0 pentru orice x 2 X; adic¼a satisface propriet¼a̧tile unui produs
scalar. Putem scrie deci inegalitatea Schwarz:

ja (x; y)j �
p
a (x; x)

p
a (y; y); 8x; y 2 X:
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Astfel,
jhMx� Tx; yij �

p
hMx� Tx; xi

p
hMy � Ty; yi; 8x; y 2 X:

Luând sup dup¼a y 2 X; deducem c¼a exist¼a o constant¼a c > 0 such that

kMx� Txk � c
p
hMx� Tx; xi; 8x 2 X:

Din de�ni̧tia lui M; exist¼a un şir (xn)n � SX astfel încât hTxn; xni ! M; iar din ine-
galitatea precedent¼a avem kMxn � Txnk ! 0: Dac¼a am avea M 2 � (T ) ; atunci xn =
(M id�T )�1 (Mxn � Txn) ! 0; ceea ce este imposibil. Deci M 2 � (T ) : Similar se arat¼a
c¼a m 2 � (T ) :
În �nal, ar¼at¼am c¼a kTk = �; unde � = max fjmj ; jM jg : Faptul c¼a jhTx; xij � kTk kxk2

pentru orice x 2 X asigur¼a inegalitatea � � kTk :
Pentru orice x; y 2 X; având în vedere c¼a T este autoadjunct putem scrie

hT (x+ y) ; x+ yi = hTx; xi+ hTy; yi+ 2 hTx; yi ;
hT (x� y) ; x� yi = hTx; xi+ hTy; yi � 2 hTx; yi :

Atunci,

4 hTx; yi = hT (x+ y) ; x+ yi � hT (x� y) ; x� yi �M kx+ yk2 �m kx� yk2 ;

deci
4 jhTx; yij � �

�
kx+ yk2 + kx� yk2

�
= 2�

�
kxk2 + kyk2

�
; 8x; y 2 X:

Înlocuind y cu �y pentru � > 0; g¼asim

4 jhTx; yij � 2�
 
kxk2

�
+ � kyk2

!
; 8x; y 2 X; 8� > 0:

Pentru x; y �xa̧ti nenuli, membrul drept î̧si atinge minimul pentru � = kuk kvk�1 ; deci

jhTx; yij � � kuk kvk ; 8x; y 2 X:

Deducem c¼a kTk � �; deci are loc egalitatea. �

Corolarul 5.6.9 Dac¼a T 2 L (X) este autoadjunct atunci

kTk = sup
x2SX

jhTx; xij :

Corolarul 5.6.10 (i) Dac¼a T 2 L (X) este autoadjunct şi � (T ) = f0g ; atunci T = 0:
(ii) Dac¼a T 2 K (X) este autoadjunct şi nenul atunci are m¼acar o valoare proprie nenul¼a.

Demonstraţie Folosim Propozi̧tia 5.6.8 pentru (i) şi Teorema 5.6.6 (ii) (pentru care ipoteza
legat¼a de dimensiunea spa̧tiului nu e eseņtial¼a) pentru (ii). �

Lema 5.6.11 Fie T 2 L (X) autoadjunct. Atunci T este inversabil dac¼a şi numai dac¼a exist¼a
c > 0 astfel încât c kxk � kTxk pentru orice x 2 X:
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Demonstraţie Evident, inegalitatea din enuņt este implicat¼a de inversabilitatea lui T cu c =
kT�1k�1 : Invers, inegalitatea implic¼a imediat injectivitatea lui T: Cum T = T � şi, în general,
KerT = (ImT �)? (Propozi̧tia 5.3.7), ob̧tinem c¼a ImT este dens. De asemenea, inegalitatea
dat¼a implic¼a închiderea lui ImT (Problema 14). Aşadar ImT = X; adic¼a T este bijectiv, deci
inversabil (Corolarul 3.2.10). �

De�ni̧tia 5.6.12 Fie T 2 L (X) :
(i) Dac¼a � este o valoare proprie a lui T; atunci subspaţiul Ker (T � � id) se numeşte sub-

spaţiu propriu asociat lui �:
(ii) Un subspaţiu Y al lui X se numeşte invariant prin T dac¼a T (Y ) � Y:

Lema 5.6.13 Fie T 2 L (X) un operator autoadjunct. Atunci:
(i) Subspaţiile proprii asociate unor valori proprii distincte sunt ortogonale.
(ii) Dac¼a Y este un subspaţiu invariant prin T; atunci Y ? este de asemenea invariant prin

T şi � (T ) = �
�
TjY
�
[ �

�
TjY ?

�
:

Demonstraţie (i) Fie �1; �2 valori proprii distincte ale lui T şi x1; x2 vectori proprii asocia̧ti
acestora. Atunci:

�1 hx1; x2i = h�x1; x2i = hTx1; x2i = hx1; Tx2i = hx1; �2x2i = �2 hx1; x2i :

Deci hx1; x2i = 0:
(ii) Fie y 2 Y ?: Pentru orice x 2 Y; hTy; xi = hy; Txi = 0; deci Ty 2 Y ?: Este clar c¼a TjY

şi TjY ? sunt autoadjunçti.

Consider¼am � 2 �
�
TjY
�
: Conform Lemei 5.6.11,

infx2SX kT � � idXk � infx2SF kT � � idFk = 0; deci � 2 � (T ) : La fel, �
�
TjY ?

�
� � (T ) :

Lu¼am � =2 �
�
TjY
�
[ �

�
TjY ?

�
: Atunci, tot din Lema 5.6.11, exist¼a c > 0 astfel încât

c kyk � kTy � �yk ; 8y 2 Y

c kzk � kTz � �zk ; 8z 2 Y ?:

Orice x 2 X se scrie sub forma x = y+z cu y 2 Y şi z 2 Y ?: Dar Ty��y 2 Y şi Tz��z 2 Y ?;
astfel c¼a

kTx� �xk2 = kTy � �y + Tz � �zk2 = kTy � �yk2 + kTz � �zk2

� c2 kyk2 + c2 kzk2 = c2 kxk2 :

Deducem c¼a � =2 � (T ) ; ceea ce încheie demonstra̧tia. �

Teorema 5.6.14 Dac¼a X este spaţiu Hilbert separabil netrivial şi T 2 K (X) este un operator
autoadjunct, atunci exist¼a o baz¼a ortonormat¼a a lui X format¼a din vectori proprii (un)n ai lui
T şi pentru orice x 2 X;

Tx =

1X
n=1

�n hx; uniun;

unde �n este valoarea proprie asociat¼a lui un pentru orice n:
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Demonstraţie Cazul T = 0 este trivial. Presupunem T 6= 0: Ştim c¼a �p (T ) 6= ; (Corolarul
5.6.10), iar aceast¼a muļtime este �nit¼a sau num¼arabil¼a (Teorema 5.6.6). Pentru orice � 2 �p (T )
consider¼am o baz¼a ortonormat¼a B� a subspa̧tiului propriu Ker (T � � id) (care are dimensiune
�nit¼a dac¼a � 6= 0; conform Teoremei 4.5.11). Cum aceste spa̧tii sunt ortogonale dou¼a câte dou¼a,

B =
[

�2�p(T )

B�

este o muļtime ortonormat¼a. Trebuie s¼a ar¼at¼am c¼a subspa̧tiul închis, notat Y; generat de B;
adic¼a generat de

[
�2�p(T )

Ker (T � � id) este X: În caz contrar, Y ? 6= f0g : Cum Y este invariant

prin T; Y ? este de asemenea invariant prin T şi TjY ? are cel pu̧tin o valoare proprie, care este
valoare proprie şi pentru T (din Lema 5.6.13). Astfel, vectorii proprii asocia̧ti ar � şi în Y şi în
Y ?; ceea ce nu e posibil. Aşadar B este baz¼a ortorormat¼a pentru X format¼a din vectori proprii
ai lui T:
Not¼am cu (un)n elementele acestei baze şi cu (�n)n valorile proprii asociate. Cum j�nj � kTk

pentru orice n; operatorul S : X ! X de�nit prin S (x) =
P

n�1 �n hx; uniun e bine de�nit
(pentru c¼a

P
n�1 jhx; unij

2 <1 implic¼a
P

n�1 j�nj
2 jhx; unij2 <1) şi continuu pentru c¼a

kSxk2 =
X
n�1

j�nj2 jhx; unij2 � kTk2 kxk2 ; 8x 2 X:

Cum Sun = �nun = T (un) pentru orice n � 1; deducem c¼a S = T: �
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Capitolul 6

Probleme (̧si indica̧tii de rezolvare)

6.1 Recapitulare şi complet¼ari

Problema 1 S¼a se determine toate normele pe R:

Indicaţie Fie k�k o norm¼a pe R: Atunci pentru orice x 2 R;

kxk = kx � 1k = jxj k1k :

Not¼am k1k cu a şi deducem forma normei. �

Problema 2 S¼a se arate, prin calcul direct, echivalenţa celor trei norme de la Exemplul 1.2.1
şi s¼a se precizeze cele mai bune constante de comparaţie.

Indicaţie Se observ¼a c¼a pentru orice x 2 Rp (p 2 P),

kxk1 � kxk2 � kxk1 :

Pentru p = 2 şi x = (1; 0) avem egalitate în ambele rela̧tii deci inegalit¼a̧tile nu pot � îm-
bun¼at¼a̧tite.
Mai departe, pentru orice x 2 Rp

kxk2 �
p
p kxk1

şi pentru p = 2 şi x = (1; 1) avem egalitate, deci constanta
p
p nu poate � îmbun¼at¼a̧tit¼a

(micşorat¼a). Pentru celelalte situa̧tii se procedeaz¼a similar. �

Problema 3 S¼a se arate c¼a B ([a; b] ; k�k1) şi (C ([a; b]) ; k�k1) sunt spaţii Banach.

Indicaţie Fie (fn)n2P un şir Cauchy în B ([a; b] ; k�k1) : Aceasta înseamn¼a c¼a pentru orice " > 0;
exist¼a n" 2 N astfel încât pentru orice n;m � n";

sup
x2[a;b]

jfn (x)� fm (x)j < ":

În particular, pentru orice x 2 [a; b] :

jfn (x)� fm (x)j < ";
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deci şirul numeric (fn (x))n este fundamental. Prin urmare, pentru orice x 2 [a; b] exist¼a
f (x) 2 R astfel încât

lim
n
fn (x) = f (x) :

Trecem la limit¼a cu m!1 în rela̧tia de mai sus şi se ob̧tine c¼a f 2 B ([a; b]) :
Apoi se deduce c¼a

fn
k�k1�! f:

Deci, B ([a; b] ; k�k1) este spa̧tiu Banach.
Acum, pentru c¼a (C ([a; b]) ; k�k1) este subspa̧tiu liniar al spa̧tiului Banach B ([a; b] ; k�k1),

pentru a demonstra c¼a este complet la rândul s¼au, este su�cient s¼a ar¼at¼am c¼a este închis. �

Problema 4 S¼a se arate c¼a (C1 ([a; b]) ; k�k), cu k�k de la Exemplul 1.2.4 este spaţiu Banach.

Indicaţie Se foloseşte Teoremei de transfer a derivabilit¼a̧tii prin convergeņta uniform¼a. �

Problema 5 S¼a se arate c¼a (m; k�k1) este spaţiu Banach. S¼a se arate c¼a c şi c0 subspaţii
liniare închise, deci sunt spaţii Banach.

Indicaţie Fie (xn)n2P un şir Cauchy în (m; k�k1) : Deci, pentru orice " > 0; exist¼a n" 2 N astfel
încât pentru orice n;m � n"

kxn � xmk1 = sup
k
jxnk � xmk j < ":

În particular, pentru orice k 2 N şirul (xnk)n este şir Cauchy în R. Aşadar, pentru orice k 2 N
exist¼a x0k 2 R care e limita lui (xnk)n : Not¼am cu x0 şirul cu termenii x0k (k 2 P) : Se procedeaz¼a
ca mai sus, adaptat prezentei situa̧tii şi concluzion¼am c¼a (m; k�k1) este spa̧tiu Banach. �

Problema 6 S¼a se arate c¼a pentru p 2 [1;1);
�
`p; k�kp

�
este spaţiu Banach.

Indicaţie Se folosesc argumente similare celor de mai sus, eventual aplicate unor şiruri de sume
paŗtiale. �

Problema 7 S¼a se arate c¼a spaţiul liniar normat
�
c00; k�kp

�
(p 2 [1;1)) nu este spaţiu Ba-

nach.

Indicaţie Spa̧tiul
�
c00; k�kp

�
este subspa̧tiu liniar normat al spa̧tiului Banach

�
`p; k�kp

�
: Este

su�cient s¼a ar¼at¼am c¼a nu este închis. Consider¼am, pentru orice n 2 P;

xn =

�
1;

1

22p�1
; :::;

1

n2p�1
; 0; 0; :::

�
2 c00;

şi

x0 =

�
1;

1

22p�1
; :::;

1

n2p�1
;

1

(n+ 1)2p�1
; :::

�
2 `p n c00:

şi deducem c¼a
�
c00; k�kp

�
nu este închis. �
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Problema 8 Fie a; b; c numere reale strict pozitive cu b < c şi k 2 P: Fie (Pn)n2P un şir de
polinoame de grad cel mult k. Presupunem c¼aZ c

b

jPn (x)j dx � a; 8n 2 P:

S¼a se arate c¼a (Pn) admite un subşir uniform convergent pe intervalul [b; c] :

Indicaţie Consider¼am spa̧tiul liniar al funçtiilor polinomiale de grad cel mult k de�nite pe [b; c] :
Acest spa̧tiu liniar este �nit dimensional, deci toate normele sunt echivalente. �

Problema 9 Consider¼am spaţiul liniar normat (B ([��; �]) ; k�k1) : S¼a se determine distanţa
dintre funcţiile sin şi cos în acest spaţiu:

Indicaţie Conform de�ni̧tiei,

ksin� cosk1 = sup
x2[��;�]

jsin x� cosxj :

Este uşor de v¼azut c¼a acest maxim este
p
2: �

Problema 10 S¼a se arate c¼a pentru orice p 2 [1;1] ;
�
Lp (X;�;R) ; k�kp

�
este spaţiu Banach.

Soluţie Demonstr¼am pentru cazul p 2 [1;1):
Fie (fn)n2P un şir Cauchy din spa̧tiul

�
Lp
�
X;�;Rd

�
; k�kLp

�
: Atunci exist¼a un subşir (fnk)k2P

astfel încât pentru orice k ��fnk+1 � fnk
�� � 1

2k
:

Not¼am, pentru orice i 2 P :

gi =
iX

k=1

��fnk+1 � fnk
�� :

Este clar c¼a (gi) este un şir monoton şi folosind Teorema convergeņtei monotone avemZ
X

gpi d�!
Z
X

gpd�;

unde g = supi gi = lim gi: De asemenea, pentru orice i

kgikp =







iX
k=1

��fnk+1 � fnk
��





p

�
iX

k=1



fnk+1 � fnk



p
� 1;

de unde deducem c¼a kgkp � 1:
Pe de alt¼a parte, pentru m � o � 2;

jfnm � fno j �
m�1X
k=o

��fnk+1 � fnk
��

=

m�1X
k=1

��fnk+1 � fnk
��� o�1X

k=1

��fnk+1 � fnk
�� � g � go�1;
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��a.p.t. Deci ��a.p.t. x 2 X; şirul (fnk (x)) este Cauchy în R: Din completitudinea acestui
spa̧tiu, deducem convergeņta ��a.p.t. x 2 X a şirului (fnk (x)) : Pentru aceste elemente x;
not¼am f (x) = lim fnk (x) : Avem astfel o funçtie f de�nit¼a ��a.p.t. pe care o complet¼am cu
valoarea 0 în rest. Atunci funçtia f astfel ob̧tinut¼a este ��m¼asurabil¼a şi avem:

jf � fnk j
p � gp; k su�cient de mare

fnk ! f; �� a.p.t.

iar gp 2 L1 (X;�;R) : Din Teorema convergeņtei dominate, deducem c¼a

fnk ! f în
�
Lp (X;�;R) ; k�kp

�
:

Cum şirul Cauchy (fn) are un subşir convergent, deducem c¼a şirul este convergent la aceeaşi
limit¼a. �

Problema 11 S¼a se arate c¼a pentru orice p 2 [1;1);
�
C ([a; b]) ; k�kp

�
nu este spaţiu Banach.

Indicaţie Trebuie s¼a construim un şir Cauchy în
�
C ([a; b]) ; k�kp

�
care nu este convergent în�

C ([a; b]) ; k�kp
�
. F¼ar¼a a restrânge generalitatea presupunem c¼a [a; b] = [�1; 1] : Fie, pentru

orice n 2 P; fn : [�1; 1]! R;

fn (x) =

8<:
0; dac¼a x 2 [�1; 0] ;
nx; dac¼a x 2

�
0; 1

n

�
;

1; dac¼a x 2
�
1
n
; 1
�
:

E uşor de v¼azut c¼a aceste funçtii sunt continue.
Se arat¼a c¼a (fn) este şir Cauchy în

�
C ([a; b]) ; k�kp

�
:

Presupunem apoi, prin reducere la absurd c¼a (fn)! f0 2 C ([a; b]) în k�kp : CumZ 0

�1
jfn (x)� f0 (x)jp dx �

Z 1

�1
jfn (x)� f0 (x)jp dx! 0

şi fn (x) = 0 pentru orice x 2 [�1; 0] ; deducem c¼a f0 (x) = 0 pentru orice x 2 [�1; 0] :
Fie " 2 (0; 1]: Similar, deducem c¼a f0 (x) = 1 pentru orice x 2 ["; 1] : Cum " 2 (0; 1] este

arbitrar, avem f0 (x) = 1 pentru orice x 2 (0; 1]: Cum f0 astfel ob̧tinut¼a nu este continu¼a, am

ajuns la o contradiçtie. Deci (fn) nu este convergent în
�
C ([a; b]) ; k�kp

�
: �

Problema 12 S¼a se arate c¼a dac¼a un spaţiu liniar normat conţine o mulţime compact¼a cu
interior nevid, atunci este �nit dimensional.

Indicaţie Fie X un spa̧tiu liniar normat şi A � X o muļtime compact¼a cu interior nevid. Atunci
exist¼a x 2 X şi " > 0 astfel încât D (x; ") � A: Cum D (x; ") este închis¼a, deducem c¼a D (x; ")
este compact¼a. Dar

D (x; ") = x+ "DX ;

deci DX este compact¼a. �
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Problema 13 Fie (X; k�k) un spaţiu liniar normat şi Y un subspaţiu liniar al s¼au.
(i) S¼a se arate c¼a clY este de asemenea subspaţiu liniar.
(ii) S¼a se arate c¼a intY 6= ; dac¼a şi numai dac¼a Y = X:

Indicaţie (i) Veri�carea este imediat¼a folosind caracterizarea cu şiruri a închiderii.
(ii) Evident, dac¼a Y = X atunci intY = X 6= ;: Invers, presupunem c¼a exist¼a y 2 Y şi

" > 0 astfel încât B (y; ") � Y: Atunci, cum B (y; ") = y + "B (0; 1) ; deducem c¼a B (0; 1) � Y:
Se ob̧tine Y = X: �

Problema 14 Fie X spaţiu Banach, Y spaţiu liniar normat şi T 2 L (X; Y ) : Presupunem c¼a
exist¼a " > 0 astfel încât pentru orice x 2 X; kT (x)k � " kxk : S¼a se arate c¼a imaginea lui T
este mulţime închis¼a şi T privit cu valori în T (X) este bijectiv şi bicontinuu.

Indicaţie Fie (xn) şir de elemente din X astfel încât T (xn) ! y 2 Y: Ar¼at¼am c¼a y 2 T (X) :
Şirul (T (xn)) este fundamental şi folosind ipoteza avem

kxn � xmk �
1

"
kT (xn)� T (xm)k ; 8n;m;

de unde deducem c¼a (xn) este şir fundamental. Deci, cum X este spa̧tiu Banach, exist¼a x 2 X
astfel încât xn ! x: Restul argumentelor sunt acum uşor de dedus. �

Problema 15 Fie (X; k�k) un spaţiu liniar normat. S¼a se arate c¼a o funcţional¼a liniar¼a este
continu¼a dac¼a şi numai dac¼a este m¼arginit¼a superior pe o vecin¼atate a unui punct.

Indicaţie Fie f : X ! R liniar¼a şi continu¼a. Atunci este clar c¼a f este m¼arginit¼a pe B (0; 1) :
Reciproc, scriem m¼arginirea lui f pe o bil¼a şi deducem proprietatea de m¼arginire din caracteri-
zarea continuit¼a̧tii. �

Problema 16 Fie X un spaţiu liniar �nit dimensional şi �e T : X ! X un operator liniar.
S¼a se arate c¼a dac¼a T este injectiv, atunci este surjectiv şi reciproc.

Indicaţie Se foloseşte scrierea elementelor lui X într-o baz¼a �nit¼a. �

Problema 17 Fie X = (C [0; 1] ; k�k1) : S¼a se arate c¼a urm¼atorii operatori sunt liniari şi
continui şi s¼a se determine norma lor.
(i) T1 : X ! X

(T1f) (x) = x2f (0) ;

(ii) T2 : X ! X
(T2f) (x) = f

�
x2
�
:

Indicaţie În ambele cazuri veri�carea ceriņtelor nu ridic¼a probleme deosebite. Norma ambilor
operatori este 1 (pentru inegalitatea k�k � 1 se poate considera funçtia identic 1). �

Problema 18 (i) Fie T : (`2; k�k2)! (`2; k�k2) de�nit prin

T ((x1; x2; :::)) = (x2; x3; :::) :
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S¼a se arate c¼a T este liniar, continuu şi are norma 1: S¼a se arate c¼a T este surjectiv, dar nu
este injectiv.
(ii) Fie S : (`2; k�k2)! (`2; k�k2) de�nit prin

S ((x1; x2; :::)) = (0; x1; x2; :::) :

S¼a se arate c¼a S este liniar, continuu şi are norma 1: S¼a se arate c¼a S este injectiv, dar nu
este surjectiv. În plus, S (`2) este subspaţiu liniar închis al lui (`2; k�k2) :

Indicaţie (i) Faptul c¼a T este liniar se veri�c¼a foarte uşor. Apoi, pentru orice x 2 `2;

kTxk2 =
 1X
k=2

jxkj2
! 1

2

� kxk2 ;

deci T este continuu şi kTk � 1:
(ii) Faptul c¼a S este liniar se veri�c¼a foarte uşor. Apoi, pentru orice x 2 `2;

kSxk2 = kxk2 ;

deci S este continuu şi kSk = 1:
Fie f : `2 ! R dat¼a prin

f
�
(xn)n2P

�
= x1:

Se veri�c¼a faptul c¼a f 2 (`2)� şi c¼a S (`2) = Ker f; de unde se deduce concluzia. �

Problema 19 Fie x� : c0 ! R;

x� (x) =
1X
n=1

xn
2n�1

:

(i) S¼a se arate c¼a x� 2 (c0; k�k1)
� şi kx�k = 2:

(ii) S¼a se arate c¼a x� nu îşi atinge norma pe bila unitate închis¼a.

Indicaţie (i) Liniaritatea lui x� este simplu de ar¼atat. Pentru orice x = (xn)n2P 2 c0;

jx� (x)j � kxk1
1X
n=1

1

2n�1
= 2 kxk1 :

Deci x� 2 (c0)� şi kx�k � 2:
Fie acum, pentru orice n 2 P; xn = (1; :::; 1; 0; 0; :::) 2 c0; unde 1 apare pe primele n pozi̧tii.

Deducem c¼a kx�k � 2:
(ii) Presupunem c¼a x� şi-ar atinge norma pe bila unitate închis¼a a lui c0; adic¼a exist¼a x 2 c0

cu kxk1 � 1 şi x� (x) = kx�k = 2: Astfel,

2 =

�����
1X
n=1

xn
2n�1

����� �
1X
n=1

jxnj
2n�1

�
1X
n=1

1

2n�1
= 2:

Se ajunge la o contradiçtie. �
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Problema 20 Fie (X; k�k) un spaţiu liniar normat şi Y un subspaţiu liniar normat al s¼au.
Fie x0 2 X astfel încât d (x0; Y ) > 0: Atunci exist¼a x� 2 X� astfel încât x� (y) = 0 pentru orice
y 2 Y; x� (x0) = 1 şi kx�k = (d (x0; Y ))�1 :

Indicaţie De�nim Z = Y � span fx0g şi f : Z ! R,

f (y + �x0) = �:

Apoi, aplic¼am acum varianta topologic¼a a Teoremei Hahn-Banach. �

Problema 21 Fie X; Y spaţii liniare normate şi T 2 L (X; Y ) : S¼a se arate c¼a pentru orice
x 2 X şi r > 0

sup
u2B(x;r)

kTuk � r kTk :

Indicaţie Ştim c¼a B (x; r) = x+ rB (0; 1) : Atunci, pentru orice v 2 B (0; 1) ;

max fkT (x+ rv)k ; kT (x� rv)kg � 1

2
[kT (x+ rv)k+ kT (x� rv)k] :

Restul argumentelor sunt simple. �

Problema 22 Pe spaţiul liniar C1 ([0; 1]) consider¼am urm¼atoarele aplicaţii cu valori reale
nenegative

kfk1 =
Z 1

0

jf (x)j dx; kfk0 = jf (0)j+ sup
x2[0;1]

jf 0 (x)j ; 8f:

(i) S¼a se arate c¼a k�k1 ; k�k
0 sunt norme.

(ii) S¼a se arate c¼a orice şir convergent în norma k�k1 este convergent în k�k1 şi orice şir
convergent în norma k�k0 e convergent în norma k�k1 :
(iii) S¼a se studieze convergenţa şirurilor fn (x) = xn şi gn (x) = n�1 sin (nx), unde n 2 P:

Apoi s¼a se compare cele trei norme.

Indicaţie (i) Veri�carea acestui fapt reprezint¼a un calcul simplu.
(ii) Pentru orice f 2 C1 ([0; 1]) avem

kfk1 � kfk1 ;

deci k�k1 este mai �n¼a decât k�k1 : Ob̧tinem astfel demonstra̧tia primei a�rma̧tii.
Apoi, se arat¼a c¼a k�k0 este mai �n¼a decât k�k1 ; de unde deducem a doua a�rma̧tie.
(iii) Pentru n 2 P;

kfnk1 =
Z 1

0

jfn (x)j dx =
1

n+ 1
! 0:

Deci
fn

k�k1�! 0:

Dar,
kfnk1 = 1; 8n 2 P:
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deci

fn
k�k1
6�! 0:

Aşadar, k�k1 este strict mai �n¼a decât k�k1 :
Similar, k�k0 este strict mai �n¼a decât k�k1 : �

Problema 23 Cu notaţiile de la Problema 22, de�nim T : C1 ([0; 1])! C1 ([0; 1]) prin

Tf (x) =

Z x

0

f (t) dt:

S¼a se arate c¼a T este bine de�nit şi liniar. S¼a se studieze continuitatea lui T atunci când pe
C1 ([0; 1]) ; atât ca domeniu, cât şi codomeniu se consider¼a una dintre cele trei norme.

Indicaţie Faptul c¼a T este bine de�nit şi liniar se veri�c¼a uşor.
Pentru a doua ceriņt¼a avem de studiat practic 9 cazuri. Totuşi ţinând seama de rela̧tiile

dintre cele trei norme stabilite la Problema 22 unele concluzii sunt deductibile din altele. �

Problema 24 Fie (X; k�k) şi (Y; k�k) spaţii liniare normate. S¼a se arate c¼a dac¼a (X; k�k) '
(Y; k�k), atunci (X; k�k)� ' (Y; k�k)� :

Indicaţie Din ipotez¼a, exist¼a un izomor�sm izometric T : (X; k�k) ! (Y; k�k) : De�nim S :
(X; k�k)� ! (Y; k�k)� prin

S (x�) = x� � T�1:
Operatorul S este corect de�nit (x� şi T�1 sunt liniare şi continue). Se arat¼a c¼a S este izomor�sm
izometric. �

Problema 25 Fie ' : (`1; k�k1)! R;

' (x) =
1X
n=1

(x2n�1 � 3x2n) ; 8x = (xn)n�1 2 `1:

(i) S¼a se arate c¼a ' este corect de�nit¼a şi c¼a ' 2 (`1)� ; s¼a se determine k'k :
(ii) S¼a se determine elementul y 2 m care corespunde lui ' prin izomor�smul izometric de

la Propoziţia 1.5.4; s¼a se reg¼aseasc¼a valoarea lui k'k :

Indicaţie (i) Este simplu de ar¼atat c¼a ' este corect de�nit¼a şi este liniar¼a. Apoi, pentru orice
x = (xn)n�1 2 `1

j' (x)j � 3 kxk1 :
Deci ' este continu¼a şi k'k � 3:
Consider¼am acum elementul unitar e2 pentru care avem ke2k1 = 1 şi

j' (e2)j = 3:

În concluzie, k'k = 3:
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(ii) Având în vedere forma izomor�smului izometric de la Problema 1.5.4, elementul din m
corespunz¼ator lui ' este şirul y = (yn) de�nit astfel:

yn =

�
1; dac¼a n este impar
�3; dac¼a n este par.

Reg¼asim faptul c¼a k'k = 3: �

Problema 26 S¼a se arate c¼a dac¼a dou¼a spaţii liniare normate sunt izomorfe, atunci ele sunt
simultan separabile sau neseparabile.

Indicaţie Este uşor de constatat c¼a un izomor�sm între dou¼a spa̧tie liniare normate duce o
muļtime dens¼a de pe primul spa̧tiu într-o muļtime dens¼a în cel de-al doilea spa̧tiu. �

Problema 27 S¼a se arate c¼a (`1; k�k1) nu e separabil.

Indicaţie Pentru a demonstra c¼a (`1; k�k1) nu e separabil vom pune în evideņt¼a o familie
nenum¼arabil¼a de bile deschise disjuncte. Astfel, o muļtime dens¼a trebuie s¼a aib¼a puncte comune
cu toate aceste muļtimi, deci nu poate � num¼arabil¼a.
Fie f : P (P)! `1;

f (S) =
�
xS1 ; x

S
2 ; :::

�
;

unde

xSk =

�
1; k 2 S
0; k =2 S ; 8k 2 P:

Atunci M = f(P (P)) � `1 şi f : P (P)!M este bijeçtie, deci cardM = cardP (P) = 2@0 :
Fie S; T 2 P (P) ; S 6= T: Atunci

B
�
xS; 2�1

�
\B

�
xT ; 2�1

�
= ;

şi �
B
�
xS; 2�1

�
j x 2M

	
este familia c¼autat¼a. �

Problema 28 Fie T : (`1; k�k1)! (L (`2; k�k2) ; k�k�) dat prin

T (x) (y) = (xiyi)i2P

pentru orice x = (xi)i21;n 2 `1 şi orice y = (yi)i21;n 2 `2: S¼a se arate c¼a:
(i) T este bine de�nit şi stabileşte un izomor�sm izometric între (`1; k�k1) şi un sub-

spaţiu liniar închis al lui (L (`2; k�k2) ; k�k�) (spunem c¼a (L (`2; k�k2) ; k�k�) conţine o copie a lui
(`1; k�k1));
(ii) (L (`2; k�k2) ; k�k�) nu este separabil.

Indicaţie (i) Propriet¼a̧tile lui T se stabiliesc în mod obi̧snuit. Din proprietatea de izometrie
rezult¼a şi c¼a ImT este închis¼a (Problema 14).
(ii) Dac¼a (L (`2; k�k2) ; k�k�) ar �separabil, atunci (ImT; k�k�) ar �separabil, deci (`1; k�k1)

ar � separabil. �
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Problema 29 Fie X;Y spaţii liniare normate, (Tn)n2P � L (X;Y ) un şir de operatori şi
T 2 L (X; Y ) : S¼a se arate c¼a dac¼a Tn ! T atunci Tnx! Tx pentru orice x 2 X:
Folosind operatorii Tn; T : (`2; k�k2)! (`2; k�k2) (n 2 P)

Tn ((x1; x2; :::)) = (x1; x2; :::; xn; 0; 0; :::) ;

T = id;

s¼a se arate c¼a reciproca a�rmaţiei anterioare este fals¼a.

Indicaţie Este evident c¼a pentru orice x 2 X şi orice n 2 P putem scrie

kTnx� Txk � kTn � Tk kxk ;

de unde ob̧tinem prima concluzie.
Pentru a doua parte, este uşor de ar¼atat c¼a to̧ti operatorii Tn sunt liniari şi continui. În

plus, pentru orice x 2 `2;
Tnx

k�k2! idx:

Dar, orice n 2 P;
kTn � idk � k(Tn � id) (en+1)k = 1:

Prin urmare, (Tn) nu tinde în norma operatorial¼a la id : �

Problema 30 Fie X un spaţiu liniar normat real şi x� 2 X� n f0g : Fie a 2 X astfel încât
a =2 Ker x�: S¼a se arate c¼a
(i) kx�k = d (a;Ker x�)�1 jx� (a)j ;
(ii) exist¼a x 2 Ker x� astfel încât d (a;Ker x�) = ka� xk dac¼a şi numai dac¼a exist¼a x0 2 SX

astfel încât jx� (x0)j = kx�k ;
(iii) în cazul X = C ([0; 1]) înzestrat cu norma uniform¼a şi pentru aplicaţia x� dat¼a prin

x� (f) =

Z 1=2

0

f (t) dt�
Z 1

1=2

f (t) dt

condiţiile echivalente de la (ii) nu au loc.

Soluţie (i) Este clar c¼a d (a;Ker x�) > 0 pentru c¼a a =2 Ker x� şi Ker x� este subspa̧tiu liniar
închis. De asemenea, este cunoscut faptul c¼a Ker x� este subspa̧tiu liniar de codimensiune 1 şi
X = Kerx� � Ra: Pentru orice u 2 Ker x� avem

jx� (a)j = jx� (a� u)j � kx�k ka� uk ;

deci
jx� (a)j � d (a;Ker x�) kx�k :

Fie x 2 X nKer x�: Atunci exist¼a u 2 Ker x� şi t 2 R n f0g astfel încât x = u+ ta: Avem

kxk = jtj




1t u+ a





 � jtj d (a;Ker x�)
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şi
jx� (x)j = jtj jx� (a)j ;

deci
jx� (x)j
kxk � jx� (a)j

d (a;Ker x�)
:

Deducem egalitatea dorit¼a.
(ii) Presupunem c¼a exist¼a x 2 Ker x� astfel încât d (a;Ker x�) = ka� xk : Avem, folosind

calculele de mai sus,

jx� (a� x)j = jx� (a)j = d (a;Ker x�) kx�k = ka� xk kx�k :

Astfel, elementul ka� xk�1 (a� x) satisface concluzia.
Reciproc, presupunem c¼a exist¼a x0 2 SX astfel încât jx� (x0)j = kx�k : Din nou, exist¼a u 2

Ker x� şi t 2 R astfel încât x0 = u+ ta: Atunci, jx� (x0)j = jtj jx� (a)j ; deci jtj d (a;Ker x�) = 1:
Dar, kx0k = 1; deci ku+ tak = jtj d (a;Ker x�) ; adic¼a



a� jtj�1 u

 = d (a;Ker x�) şi deducem
concluzia.
(iii) Este simplu de ar¼atat c¼a x� 2 X� şi kx�k � 1: Pentru n > 2; de�nim fn : [0; 1] ! R

continu¼a ca �ind funçtia care are valoarea 1 pe intervalul
�
0; 1

2
� 1

n

�
; �1 pe intervalul

�
1
2
+ 1

n
; 1
�

şi este a�n¼a pe
�
1
2
� 1

n
; 1
2
+ 1

n

�
: Atunci, pentru orice n; kfnk1 = 1 şi x� (fn) = 1 � n�1: Deci

kx�k � 1; iar în �nal kx�k = 1:
Presupunem c¼a exist¼a f 2 X astfel încât kfk1 = 1 şi jx� (f)j = 1: F¼ar¼a a restrânge

generalitatea, putem presupune c¼a x� (f) = 1: AtunciZ 1
2

0

(1� f (x)) dx+

Z 1

1
2

(1 + f (x)) dx = 0:

Cum funçtiile 1 � f şi 1 + f sunt continue şi pozitive, ob̧tinem c¼a 1 � f = 0 pe
�
0; 1

2

�
; iar

1 + f = 0 pe
�
1
2
; 1
�
: Deci f

�
1
2

�
trebuie s¼a �e simultan 1 şi �1; ceea ce este imposibil. �

Problema 31 Fie X un spaţiu liniar normat şi Y; Z � X un subspaţii liniare astfel încât Y
este închis, iar Z este �nit dimensional. S¼a se arate c¼a Y + Z este închis.

Soluţie Presupunem mai întâi c¼a Y \Z = f0g : Fie (yn) � Y şi (zn) � Z astfel încât yn+ zn !
x 2 X: Ar¼at¼am c¼a (zn) este m¼arginit. Într-adev¼ar, în caz contrar, exist¼a un subşir al s¼au (znk)
astfel încât kznkk ! 1: Cum Z este �nit dimensional, putem presupune, eventual trecând din
nou la un subşir kznkk

�1 znk ! z 2 Z; cu kzk = 1: Ob̧tinem c¼a

kznkk
�1 ynk + kznkk

�1 znk ! 0;

deci kznkk
�1 ynk ! �z: Cum Y este închis şi

�
kznkk

�1 ynk
�
� Y; deducem c¼a z 2 Y: Aşadar

z 2 Y \ Z = f0g ; ceea ce este imposibil. Deci (zn) este m¼arginit şi admite subşir convergent
la un element z 2 Z: Atunci, pe acel subşir, (yn) este convergent la u� z 2 Y; ceea ce însemn¼a
c¼a u 2 Y + Z: Concluzia este demonstrat¼a în ipoteza suplimentar¼a Y \ Z = f0g :
În cazul general, not¼am cu ~Y complementul lui Y \Z în Z; care exist¼a tocmai pentru c¼a Z

este �nit dimensional. Evident, ~Y este �nit dimensional, ~Y \ Y = f0g şi Y + ~Y = Y + Z: Din
pasul anterior, rezult¼a c¼a ~Y + Y este închis, deci Y + Z este închis. �
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6.2 Separarea muļtimilor convexe

Problema 32 Fie X spaţiu liniar normat şi f : X ! R liniar¼a.
(i) S¼a se arate c¼a f este continu¼a dac¼a şi numai dac¼a Ker f = f�1 (0) este închis¼a.
(ii) S¼a se arate c¼a dac¼a f nu este continu¼a, atunci Ker f este dens¼a în X:

Indicaţie (i) Rezult¼a din Propozi̧tia 2.2.2.
(ii) Dac¼a f�1 (0) nu este dens¼a în X; exist¼a o bil¼a B centrat¼a într-un punct din X astfel

încât f nu se anulez¼a în niciun punct al lui B: Folosind acelaşi ra̧tionament ca în Propozi̧tia
2.2.2, f este continu¼a pe X; ceea ce reprezint¼a o contradiçtie. �

Problema 33 Fie X spaţiu liniar normat de dimensiune in�nit¼a. S¼a se arate c¼a exist¼a dou¼a
mulţimi convexe C1 şi C2 astfel încât C1 [ C2 = X; C1 \ C2 = ; şi C1; C2 dense în X:

Indicaţie Conform Observa̧tiei 1.3.9, exist¼a un operator liniar f de la X la R discontinuu.
De�nim

C1 = fx 2 X j f (x) � 0g
C2 = fx 2 X j f (x) < 0g :

Este clar c¼a C1 [C2 = X; C1 \C2 = ;: Folosind ra̧tionamentul din problema precedent¼a, C1 şi
C2 sunt dense. �

Problema 34 S¼a se dea exemple de mulţimi convexe C pentru care egalit¼aţile clC = cl(intC)
şi intC = int(clC) nu au loc.

Indicaţie Având în vedere Teorema 2.1.5, în ambele cazuri, muļtimea C trebuie s¼a �e cu interior
vid. Pentru prima dintre situa̧tii, orice muļtime format¼a dintr-un singur punct nu satisface
egalitatea. Pentru a doua situa̧tie, orice subspa̧tiu liniar propriu dens într-un spa̧tiu liniar
normat nu satisface egalitatea (a se vedea Exemplele 1.2.5 şi 1.2.6). �

Problema 35 Fie

A =

(
(xn)n2P 2 `2 j

1X
k=1

kx2k < 1

)
:

S¼a se arate c¼a A este convex¼a, nu este absorbant¼a şi nu este deschis¼a.

Indicaţie Convexitatea lui A se arat¼a uşor folosind de�ni̧tia şi, eventual, convexitatea funçtiei
x 7! x2:
Fie

x =

�
1;
1

2
; :::;

1

n
; :::

�
2 `2 n A:

Fie � � 0 astfel încât �x 2 A: Atunci

�
1X
k=1

1

k
� 1;

ceea ce atrage � = 0: Deci A nu este absorbant¼a. În continuare, observ¼am c¼a 0 2 A şi dac¼a A
ar � deschis¼a, atunci 0 s-ar a�a în interiorul lui A; deci A ar � vecin¼atate a originii, deci ar �
absorbant¼a. Deducem c¼a A nu este deschis¼a.
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Problema 36 Fie p 2 (1;1) şi

G =

(
(xn)n2P 2 `p j

X
n2P

xn = 0

)
:

S¼a se arate c¼a G este subspaţiu liniar normat dens în
�
`p; k�kp

�
:

Indicaţie Folosim Observa̧tia 2.3.2 şi demonstr¼am c¼a dac¼a x� 2
�
`p; k�kp

��
şi x� se anuleaz¼a pe

G; atunci x� este nul¼a. Cum
��
`p; k�kp

��
; k�k�

�
'
�
`q; k�kq

�
; unde q = p

p�1 ; prin izomor�smul
T de la Problema 1.5.5 putem scrie x� = Tx; cu x 2 `q: Fie n 2 N cu n � 1: De�nim şirul

u = (�1; 0; :::0; 1; 0; :::) 2 G;

unde între �1 şi 1 sunt (n� 1) zerouri. Cum

x� (u) = T (x) (u) = xn � x1;

deducem c¼a şirul x este constant. Cum x 2 `q; singura posibilitate este ca x s¼a �e 0: �

Problema 37 În spaţiul liniar normat (c0; k�k1) consider¼am mulţimile

Y =
�
x = (xn)n�1 2 c0 j x2n�1 = 0; 8n 2 P

	
Z =

�
x = (xn)n�1 2 c0 j x2n = nx2n�1; 8n 2 P

	
:

S¼a se arate c¼a
(i) Y; Z sunt subspaţii liniare normate închise ale lui c0;
(ii) Y + Z este subspaţiu liniar normat propriu şi dens în c0:

Soluţie (i) Fie ' : c0 ! R;

' (x) = (x1; 0; x3; 0; :::) ; 8x = (xn)n�1 2 c0:

Este uşor de v¼azut c¼a ' este liniar¼a, continu¼a şi Y = Ker': Deci Y este subspa̧tiu liniar normat
închis în c0:
Faptul c¼a Z este subspa̧tiu liniar se probeaz¼a în mod standard. Ar¼at¼am c¼a Z este închis.

Fie
�
xkn
�
n
2 Z pentru orice k 2 P astfel încât xk k!1�!

k�k1
x 2 c0: Atunci

xk2n = nxk2n�1; 8n; k:

Dar
sup
n

��xkn � xn
�� k!1�! 0;

deci are loc convergeņta pe coordonate. Astfel, deducem c¼a pentru orice n; x2n = nx2n�1; deci
x 2 Z:
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(ii) Ar¼at¼am acum c¼a Y + Z este dens în c0: Fie ' 2 c�0 ' `1 prin izomor�smul canonic.
Astfel, ' se identi�c¼a cu Tx; unde x 2 `1: Presupunem c¼a (Tx) (y) = 0 pentru orice y 2 Y +Z;
adic¼a 1X

n=1

xnyn = 0; 8y 2 Y + Z:

Alegem, pentru orice k; y2k = (0; :::; 0; 1; 0; :::) 2 Y � Y +Z (cu 1 pe pozi̧tia 2k) avem x2k = 0:
Deci rela̧tia de mai sus revine la

1X
n=1

x2n�1y2n�1 = 0; 8y 2 Y + Z:

Alegem, pentru orice k; y2k�1 = (0; :::; 0; 1; k; 0; :::) 2 Z � Y + Z (cu 1 pe pozi̧tia 2k � 1) şi
deducem x2k�1 = 0: Deci x = 0; adic¼a ' = 0: Conform, Observa̧tiei 2.3.2, Y + Z este dens în
c0:
Ar¼at¼am c¼a Y + Z nu coincide cu c0: Fie

u =

�
1;
1p
2
; :::;

1p
n
; :::

�
2 c0:

Dac¼a u s-ar scrie ca v + w cu v 2 Y şi w 2 Z; am avea succesiv: v1 = 0; w1 = 1; w2 = 2;
v2 =

1p
2
� 1; v3 = 0; w3 =

1p
3
; w4 =

2p
3
; v4 =

1p
4
� 2 1p

3
ş.a.m.d. Se ajunge la contradiçtia

w =2 c0: �

Problema 38 Fie (X; k�k) �nit dimensional. Fie C � X o mulţime convex¼a nevid¼a astfel
încât 0 =2 C şi �e A;B mulţimi convexe nevide disjuncte. Fie fxn j n 2 Pg o mulţime dens¼a în
C: S¼a se arate c¼a:
(i) pentru orice n 2 P mulţimea Cn = conv fx1; :::; xng este compact¼a şi reuniunea acestor

mulţimi este dens¼a în C;
(ii) pentru orice n 2 P exist¼a x�n 2 X� astfel încât kx�nk = 1 şi x�n (x) � 0 pentru orice

x 2 Cn;
(iii) exist¼a x� 2 X� astfel încât kx�k = 1 şi x� (x) � 0 pentru orice x 2 C;
(iv) mulţimile A şi B pot � separate printr-un hiperplan.

Indicaţie (i) Compactitatea lui Cn se arat¼a dup¼a modalitatea standard, probând secveņtiala
compactitate. Cum reuniunea acestor muļtimi coņtine pe fxn j n 2 Pg ; este dens¼a în C:
(ii) Existeņta lui x�n rezult¼a dintr-una din teoremele de separare aplicat¼a pentru Cn şi f0g :
(iii) Şirul (x�n)n2P de la punctul precedent este m¼arginit şi cum dualul lui X este tot �nit

dimensional, exist¼a un subşir notat tot prin (x�n) convergent la un element x
� 2 SX� :

Fie x 2 C: Atunci exist¼a un şir
(yn) �

[
n2P

Cn

astfel încât yn ! x: Pentru orice n exist¼a kn 2 N astfel încât yn 2 Ckn şi cum şirul de muļtimi
(Cn) este cresc¼ator, yn 2 Ck pentru orice k � kn: G¼asim astfel un şir strict cresc¼ator de numere
reale (kn)n astfel încât yn 2 Ckn pentru orice n: Avem:

x�kn (yn) � 0; 8n 2 P:
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Pe de alt¼a parte ��x� (x)� x�kn (yn)
�� � ��x� (x)� x�kn (x)

��+ ��x�kn (x)� x�kn (yn)
��

�


x� � x�kn



 kxk+ kx� ynk ; 8n 2 P;

deci x�kn (yn)! x� (x) : Deducem c¼a x� (x) � 0:
(iv) Cum A \B = ;; 0 =2 A�B: Aplic¼am punctul (iii) şi deducem concluzia. �

Problema 39 S¼a se arate c¼a (`1; k�k1) şi ((`1; k�k1)
� ; k�k�) nu sunt izomorfe. S¼a se arate c¼a

T : (`1; k�k1)! ((`1; k�k1)
� ; k�k�) dat prin

T (x) (y) =
1X
k=1

xkyk;

x = (xn)n2P 2 `1; y = (yn)n2P 2 `1 este corect de�nit, liniar, injectiv şi continuu. S¼a se atate
c¼a T este izometrie şi s¼a se deduc¼a faptul c¼a T nu este surjectiv.
S¼a se construiasc¼a o funcţional¼a x� 2 (`1; k�k1)

� n ImT .

Indicaţie Am v¼azut la Exemplul 1.6.2 şi Problema 27 c¼a (`1; k�k1) este separabil, dar (`1; k�k1)
nu este separabil. Dac¼a (`1; k�k1) ar � izomorf cu ((`1; k�k1)

� ; k�k�) ; atunci ((`1; k�k1)
� ; k�k�)

ar � separabil şi conform Propozi̧tiei 2.3.5, (`1; k�k1) ar � separabil. Ob̧tinem o contradiçtie,
deci spa̧tiile nu sunt izomorfe.
Buna de�nire a lui T; injectivitatea, liniaritatea şi continuitatea sa se dovedesc ca la prob-

lemele precedente. Similar pentru proprietatea de izometrie. Din cele de mai sus, T nu poate
� surjectiv.
Construim o funçtional¼a din (`1; k�k1)

� care nu se a�¼a în imaginea lui T . Fie f : c ! R
dat¼a prin

f (x) = limxn:

Este uşor de veri�cat c¼a aceast¼a aplica̧tie este în (c; k�k1)
� : Folosim Teorema Hahn-Banach în

varianta sa topologic¼a şi prelungim f la întreg spa̧tiul `1 (c este subspa̧tiu liniar al lui `1).
Not¼am aceast¼a extindere g şi ştim c¼a kgk� = kfk� : Dac¼a ar exista x 2 `1 astfel încât Tx = g;
atunci pentru orice n

xn = T (x) (en) = g (en) = f (en) = 0;

deci x = 0; adic¼a g = 0: Dar, g ((1; 1; :::; 1:::)) = f ((1; 1; :::; 1:::)) = 1; ceea ce reprezint¼a o
contradiçtie. �

6.3 Principii ale Analizei funçtionale

Problema 40 S¼a se arate c¼a dac¼a (X; k�k) este spaţiu Banach in�nit dimensional, atunci
dimensiunea sa algebric¼a este mai mare decât @0:

Indicaţie Dac¼a (X; k�k) este spa̧tiu in�nit dimensional, atunci dimensiunea sa algebric¼a este
mai mare sau egal¼a decât @0: Presupunem c¼a (X; k�k) este spa̧tiu Banach şi are dimensiunea
@0: Fie B = fek j k 2 Ng o baz¼a a lui X: Pentru orice n 2 N de�nim

Fn = span
�
ek j k 2 0; n

	
:
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Evident, toate subspa̧tiile liniare Fn sunt închise (�ind �nit dimensionale) şi

X =
[
n2N

Fn:

Conform Teoremei lui Baire (Teorema 3.1.3), exist¼a n0 2 N astfel încât intFn0 6= ;: Atunci,
pe baza Problemei 13, Fn0 = X; ceea ce reprezint¼a o contradiçtie. Aşadar, X nu poate avea
dimensiunea @0: �

Problema 41 Fie (X; k�k) un spaţiu Banach. S¼a se arate c¼a X nu se poate scrie ca reuniune
num¼arabil¼a de subspaţii liniare închise proprii.

Indicaţie Fie (Xn) o familie num¼arabil¼a de subspa̧tii liniare închise astfel încât

1[
n=1

Xn = X:

Conform Teoremei lui Baire (Teorema 3.1.3), cel pu̧tin unul dintre aceste subspa̧tii are interior
nevid. Dar, conform Problemei 13, dac¼a un subspa̧tiu liniar are interior nevid, atunci coincide
cu întregul spa̧tiu. �

Problema 42 (i) S¼a se arate c¼a nu exist¼a norm¼a de spaţiu Banach pe c00.
(ii) S¼a se arate c¼a nu exist¼a norm¼a de spaţiu Banach pe spaţiul liniar al polinoamelor.

Indicaţie Se folosesc problemele precedente. �

Problema 43 Fie, pentru orice n 2 P; Tn : (c00; k�k1)! (c0; k�k1) ;

Tn ((x1; x2; :::)) = (x1; 2x2; :::; nxn; 0; 0:::) :

S¼a se arate c¼a:
(i) pentru orice n 2 P; Tn este liniar continuu şi pentru orice x 2 c00; şirul (Tnx) este

convergent;
(ii) şirul (kTnk) nu este m¼arginit.
Contrazic aceste fapte Principiul m¼arginirii uniforme?

Indicaţie Punctele (i) şi (ii) se probeaz¼a uşor. Principiul m¼arginirii uniforme nu este contrazis
de acest exemplu pentru c¼a (c00; k�k1) nu este spa̧tiu Banach. �

Problema 44 Fie X spaţiu liniar normat şi B � X: S¼a se arate c¼a B este m¼arginit¼a dac¼a şi
numai dac¼a mulţimea x� (B) este m¼arginit¼a pentru orice x� 2 X�.

Indicaţie O implica̧tie este clar¼a: dac¼a B este m¼arginit¼a atunci muļtimea x� (B) este m¼arginit¼a
pentru orice x� 2 X�.
Demonstr¼am implica̧tia invers¼a. Pentru orice b 2 B de�nim operatorul liniar Tb : X� ! R

prin
Tb (x

�) = x� (b) :

102



Cum
jTb (x�)j � kbk kx�k ; 8b 2 B; x� 2 X�

deducem faptul c¼a fTb j b 2 Bg este o familie de operatori liniari şi continui. Având în vedere
c¼a pentru orice x� 2 X�; fTb (x�) j b 2 Bg = x� (B) ; ipoteza ne asigur¼a c¼a aceast¼a familie
este punctual m¼arginit¼a. De asemenea, X� este spa̧tiu Banach. Atunci, conform Principiului
m¼arginirii uniforme (Teorema 3.2.1), exist¼a c > 0 astfel încât pentru orice x� 2 X� şi orice
b 2 B;

jTb (x�)j � c kx�k ;
deci

jx� (b)j � c kx�k :
Cum

kbk = sup fjx� (b)j j x� 2 SX�g ;
ob̧tinem c¼a kbk � c pentru orice b 2 B: Deci B este m¼arginit¼a. �

Problema 45 Fie X spaţiu Banach şi B � X�: S¼a se arate c¼a B este m¼arginit¼a dac¼a şi numai
dac¼a mulţimea fb (x) j b 2 Bg este m¼arginit¼a pentru orice x 2 X:

Indicaţie Ra̧tion¼am similar cu problema de mai sus, singura difereņt¼a �ind c¼a trebuie s¼a im-
punem completitudinea lui X întrucât lucr¼am cu operatori de�ni̧ti pe X; spre deosebire de
problema anterior¼a la care completitudinea lui X�; adic¼a a domeniului operatorilor, este au-
tomat satisf¼acut¼a. �

Problema 46 Fie X; Y; Z spaţii liniare normate. Fie T : X�Y ! Z operator liniar în �ecare
variabil¼a. Consider¼am urm¼atoarele a�rmaţii:
(i) T este continuu (în ansamblul variabilelor);
(ii) T este continuu în (0; 0) ;
(iii) exist¼a M > 0 astfel încât

kT (x; y)k �M kxk kyk ; 8x 2 X; y 2 Y ;

(iv) T este continuu în �ecare variabil¼a.
Atunci (i)() (ii)() (iii) =) (iv). Dac¼a, în plus, X sau Y este complet toate a�rmaţiile

sunt echivalente.

Indicaţie Implica̧tiile (i) =) (ii) =) (iv) şi (iii) =) (i) sunt evidente.
Pentru (ii) =) (iii), presupunem, prin reducere la absurd, c¼a exist¼a (xn) � X; (yn) � Y

astfel încât pentru orice n 2 P

kT (xn; yn)k > n kxnk kynk :

Evident, termenii xn şi yn sunt nenuli. Consider¼am şirurile

(xn) =

�
xnp
n kxnk

�
; (yn) =

�
ynp
n kynk

�
şi ajungem la o contradiçtie cu ipoteza.
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Ar¼at¼am acum (iv) =) (iii). Pân¼a acum completitudinea niciunui spa̧tiu nu a fost necesar¼a.
Pentru aceast¼a implica̧tie, f¼ar¼a a restrânge generalitatea, presupunem c¼aX este complet. Pentru
orice x 2 X �xat consider¼am aplica̧tia liniar¼a şi continu¼a T (x; �) : Y ! Z. Deci pentru orice
x 2 X; exist¼a Mx > 0 astfel încât

kT (x; y)k �Mx kyk ; 8y 2 Y:

Atunci familia de operatori liniari şi continui de la X la Z dat¼a prin fT (�; y) j kyk � 1g este
punctual m¼arginit¼a. Se aplic¼a apoi Principiului m¼arginirii uniforme. �

Problema 47 S¼a se studieze exemplul X = Y = c00; Z = R, T : X � Y ! Z

T (x; y) =
1X
n=1

xnyn;

unde x = (x1; x2; :::) ; y = (y1; y2; :::) pentru a dovedi c¼a ipoteza de completitudine din problema
precedent¼a este esenţial¼a.

Soluţie Se arat¼a uşor c¼a T este bine de�nit, continuu şi liniar în �ecare variabil¼a. Consider¼am
acum

xn = (1; 1; :::; 1; 0; 0; :::) ; 8n 2 P
unde 1 se g¼aseşte pân¼a la pozi̧tia n: Atunci

T (xn; xn) = n;

deci

T

�
1p
n
xn;

1p
n
xn

�
= 1; 8n 2 P:

Cum
p
n
�1
xn ! 0 în (c00; k�k1) ; deducem c¼a T nu este continuu în ansamblul variabilelor. �

Problema 48 Fie în (c00; k�k1) seria
1X
n=1

1

n2
en:

S¼a se arate c¼a seria este absolut convergent¼a, dar nu este convergent¼a.

Soluţie Absoluta convergeņt¼a este clar¼a. Apoi, c00 este subspa̧tiu liniar al lui c0 şi se observ¼a
c¼a seria este convergent¼a în c0 la (n�2)n2P ; element care nu este în c00: �

Problema 49 Fie T : (`2; k�k2)! (`2; k�k2) dat prin

T ((xn)) =
�xn
n

�
:

S¼a se arate c¼a:
(i) T este corect de�nit, liniar, continuu;
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(ii) imaginea lui T este

ImT =

(
x 2 `2 j

1X
n=1

n2x2n <1
)
;

iar acest subspaţiu liniar este propriu şi dens în (`2; k�k2) ;
(iii) operatorul liniar, continuu, bijectiv T : (`2; k�k2)! (ImT; k�k2) nu are invers continuu.
S¼a se compare cu Corolarul 3.2.10.

Indicaţie Toate a�rma̧tiile se probeaz¼a în mod standard. Spa̧tiul (ImT; k�k2) nu este complet
şi din acest motiv Corolarul 3.2.10 nu este aplicabil. �

Problema 50 Fie

M =

(
x 2 `1 j

1X
n=1

n jxnj <1
)
:

S¼a se arate c¼a M este subspaţiu liniar propriu dens al lui (`1; k�k1) : De�nim T : (M; k�k1) !
(`1; k�k1) prin

T ((xn)) = (nxn) :

S¼a se arate c¼a:
(i) T este liniar, bijectiv;
(ii) T�1 este continuu;
(iii) T are gra�c închis dar nu este continuu.
S¼a se compare cu Principiul gra�cului închis.

Problema 51 Fie X un spaţiu liniar şi k�k1 ; k�k2 dou¼a norme complete pe X: Presupunem c¼a
are loc urm¼atoarea proprietate: pentru orice (xn) � X;(

xn
k�k1�! x1

xn
k�k2�! x2

=) x1 = x2:

S¼a se arate c¼a cele dou¼a norme sunt echivalente.

Indicaţie Consider¼am aplica̧tia identitate id : (X; k�k1) ! (X; k�k2) : Ipoteza asigur¼a faptul
c¼a gra�cul acestei aplica̧tii este închis. Deci, pe baza completitudinii normelor (Principiul
gra�cului închis, Teorema 3.2.12), id de mai sus este continu¼a. Astfel normele sunt comparabile
şi folosind Corolarul 3.2.11 ob̧tinem echivaleņta lor. �

Problema 52 Fie X un spaţiu Banach şi T : X ! X� un operator liniar. S¼a se arate c¼a dac¼a

T (x) (x) � 0; 8x 2 X;

atunci T este continuu.
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Indicaţie Se ar¼at¼a c¼a T are gra�c închis şi cum X şi X� sunt spa̧tii Banach va rezulta c¼a este
continuu. Fie (xn; T (xn))! (x; x�) 2 X �X� un şir convergent de elemente din gra�cul lui T:
Trebuie s¼a ar¼at¼am c¼a x� = Tx: Din ipotez¼a se ob̧tine

x� (y � x) � T (y) (y � x) ; 8y 2 X:

De aici se ob̧tine x� = Tx: �

Problema 53 Fie X spaţiu Banach, Y spaţiu liniar normat şi T : X ! Y operator liniar.
De�nim k�k1 : X ! R prin

kxk1 = kxk+ kTxk :
(i) S¼a se arate c¼a k�k1 este o norm¼a pe X;
(ii) S¼a se arate c¼a urm¼atoarele a�rmaţii sunt echivalente: (a) T este continuu; (b) normele

k�k şi k�k1 sunt echivalente; (c) (X; k�k1) este spaţiu Banach.

Indicaţie (i) Faptul c¼a k�k1 este o norm¼a pe X se arat¼a în mod obi̧snuit.
(ii) (a) =) (b) Este clar c¼a k�k1 este mai �n¼a decât k�k : Invers, din continuitatea lui T;

pentru orice x 2 X;
kxk1 � (1 + kTk) kxk :

Deci normele sunt echivalente.
(b) =) (c) Implica̧tia este evident¼a.
(c) =) (a) Cum cele dou¼a norme sunt comparabile şi sunt norme complete, din Corolarul

3.2.11 deducem c¼a sunt echivalente. Deci exist¼a M > 0 astfel încât

kxk1 �M kxk ; 8x 2 X:

Ob̧tinem
kTxk � (M � 1) kxk ; 8x 2 X;

deci T este continuu. �

Problema 54 Fie X; Y spaţii Banach şi T : X ! Y operator liniar continuu şi surjectiv. S¼a
se arate c¼a exist¼a 
 > 0 astfel încât pentru orice y 2 Y exist¼a x 2 X cu y = Tx şi kxk � 
 kyk :

Indicaţie Din Principiul aplica̧tiilor deschise (Teorema 3.2.9), exist¼a � > 0 astfel încâtD(0; �) �
T (D(0; 1)): Se ob̧tine concluzia pentru 
 = ��1: �

Problema 55 Fie X; Y spaţii Banach şi T : X ! Y operator liniar continuu. S¼a se arate c¼a
urm¼atoarele a�rmaţii sunt echivalente:
(i) T (X) este mulţime închis¼a;
(ii) Operatorul T privit cu valori în T (X) este deschis;
(iii) exist¼a 
 > 0 astfel încât pentru orice y 2 T (X) exist¼a x 2 X cu y = Tx şi kxk � 
 kyk :

Indicaţie (i) =) (ii) Cum T (X) este spa̧tiu Banach, putem aplica Principiul aplica̧tiilor de-
schise.
(ii) =) (iii) Rezult¼a dim Problema 54.
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(iii) =) (i) Fie (yn) � ImT astfel încât yn ! y 2 Y: Putem atunci g¼asi un şir strict
cresc¼ator (nk) de numere naturale astfel încât pentru orice k 2 P;

ynk+1 � ynk



 � 1

2k
:

Din rela̧tia de mai sus, pentru orice k 2 P; g¼asim uk 2 X astfel încât

Tuk = ynk+1 � ynk şi kukk �



2k
:

Fie x1 2 X astfel încât Tx1 = yn1 şi

xk = x1 + u1 + :::+ uk�1; 8k � 2;

ceea ce înseamn¼a, în particular, c¼a

Txk = ynk ; 8k � 1:

Dar, din cele de mai sus, seria
P
uk este absolut convergent¼a, deci convergent¼a. Deducem c¼a

(xk) este convergent la un element x 2 X: Deci, Txk = ynk ! Tx = y; adic¼a x 2 ImT: �

Problema 56 Fie X spaţiu Banach şi Y; Z subspaţii liniare închise ale lui X astfel încât
Y \Z = f0g şi X = Y +Z: S¼a se arate c¼a pentru orice x 2 X exist¼a o unic¼a scriere x = yx+zx
cu yx 2 Y şi zx 2 Z: De�nim PY : X ! Y şi PZ : X ! Z prin PY (x) = yx; PZ (x) = zx: S¼a
se arate c¼a aceşti doi operatori sunt liniari, surjectivi, satisfac

PY � PY = PY ; ker (PY ) = Z; PZ � PZ = PZ ; ker (PZ) = Y

şi sunt continui.

Indicaţie Singura di�cultate este demonstrarea continuit¼a̧tii. Cum Y; Z sunt spa̧tii Banach,
este su�cient s¼a ar¼at¼am c¼a cei doi operatori au gra�c închis. Ar¼at¼am pentru PY : Fie aşadar
(xn; PY (xn)) ! (x; y) 2 X � Y un şir convergent de elemente din gra�cul operatorului PY :
Cum PY este surjectiv, exist¼a x 2 X astfel încât PY (x) = y: Este su�cient s¼a ar¼at¼am c¼a
PY (x) = PY (x) : Ştim c¼a xn�PY (xn)! x�y:Dar, pentru orice n, xn�PY (xn) 2 ker (PY ) = Z:
Cum Z este închis, x� y 2 Z; deci PY (x) = PY (y) : �

6.4 Topologii slabe şi compactitate

Problema 57 Fie (X; k�k) un spaţiu liniar normat. S¼a se arate c¼a o funcţional¼a liniar¼a f :
X ! R este (k�k ; j�j)�continu¼a dac¼a şi numai dac¼a este (w; j�j)�continu¼a:

Indicaţie Rezult¼a din modul de de�nire a topologiei slabe şi din compararea celor dou¼a topologii.
�

Problema 58 Fie (X; k�k) un spaţiu liniar normat şi (xn) un şir de elemente din X care este
fundamental în norm¼a şi converge slab la un element x 2 X: Atunci (xn) converge tare la x:
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Indicaţie Fie " > 0: Faptul c¼a (xn) este fundamental în norm¼a înseamn¼a c¼a exist¼a n" 2 N astfel
încât pentru orice n;m � n"; kxn � xmk � ": Deci, pentru orice n;m � n"

xm 2 xn + "DX :

Dar, conform Teoremei lui Mazur (Teorema 4.2.8), muļtimea xn+ "DX este slab închis¼a pentru
orice n: F¼acând m!1; pe baza convergeņtei slabe a lui (xn) deducem

x 2 xn + "DX ; 8n � n":

Aceasta înseamn¼a c¼a
kxn � xk � "; 8n � n";

deci x este limita lui (xn) în topologia normei. �

Problema 59 Fie (X; k�k) un spaţiu liniar normat. Fie (xn) � X un şir care converge slab
la x 2 X: Folosind mulţimea C = clk�k (conv fxn j n 2 Ng) şi Teorema lui Mazur s¼a se arate c¼a
exist¼a un şir de combinaţii convexe ale lui (xn) care converge tare la x:

Indicaţie Este clar c¼a C este convex¼a şi k�k�închis¼a. Din Teorema lui Mazur (Teorema 4.2.8),
C este slab închis¼a. Dar cum xn

w�! x; x este în închiderea slab¼a a muļtimii fxn j n 2 Ng care
este submuļtime a lui C: Deci x 2 C: Ob̧tinem concluzia. �

Problema 60 Fie (X; k�k) un spaţiu liniar normat şi (xn) un şir de elemente din X astfel
încât toţi termenii se a�¼a într-o submulţime compact¼a în topologia normei. S¼a se arate c¼a dac¼a
(xn) este slab convergent, atunci este tare convergent.

Indicaţie Presupunem c¼a xn
w�! x 2 X dar xn 6! x: Atunci exist¼a " > 0 şi un subşir (xnk) al

lui (xn) astfel încât pentru orice k
kxnk � xk � ":

Dar (xnk) este la rândul s¼au un şir coņtinut în muļtimea compact¼a din enuņt, deci are subşir
convergent în topologia tare. Acest subşir este deci convergent şi în sens slab la aceeaşi limit¼a
şi cum topologia w este separat¼a, limita nu poate � decât x: Aceasta este în contradiçtie cu
rela̧tia de mai sus. �

Problema 61 Fie X un spaţiu liniar normat şi A � X o mulţime nevid¼a. S¼a se arate c¼a

clw clk�kA = clw A:

Este adev¼arat, în general, c¼a clk�k clw A = clk�kA?
S¼a se dea exemplu de şir pentru care închiderea slab¼a a mulţimii termenilor s¼ai este DX :

Indicaţie Incluziunea clw A � clw clk�kA este evident¼a. Fie x 2 clw clk�kA: Atunci, pentru orice
muļtime U; w�deschis¼a ce coņtine x; avem

U \ clk�kA 6= ;:

Dar U este şi tare deschis¼a, iar rela̧tia de mai sus atrage U \ A 6= ;:
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Pentru a vedea c¼a rela̧tia clk�k clw A = clk�kA nu este în general adev¼arat¼a, este su�cient s¼a
consider¼am X in�nit dimensional şi s¼a lu¼am A = SX :
Pentru ultima chestiune, consider¼amX un spa̧tiu liniar normat separabil in�nit dimensional

şi A = fxn j n 2 Pg o submuļtime dens¼a în SX (orice subspa̧tiu metric al unui spa̧tiu metric
separabil este separabil). Atunci, conform celor ar¼atate,

clw A = clw clk�kA = clw SX = DX ;

adic¼a egalitatea dorit¼a. �

Problema 62 Fie X spaţiu liniar normat, (xn) � X; x 2 X; (x�n) � X�; x� 2 X�; D � X
astfel încât spanD = X; D� � X� astfel încât spanD� = X�: S¼a se arate c¼a
(i) xn

w�! x dac¼a şi numai dac¼a (xn) este m¼arginit şi

x� (xn)! x� (x) ; 8x� 2 D�:

(ii) dac¼a X este complet, x�n
w��! x� dac¼a şi numai dac¼a (x�n) este m¼arginit şi

x�n (x)! x� (x) ; 8x 2 D:

Indicaţie (i) Dac¼a xn
w�! x atunci x� (xn)! x� (x) pentru orice x� 2 X�; deci a doua parte a

concluziei are loc. Pentru prima parte, folosim Propozi̧tia 4.2.10 pentru a deduce m¼arginirea
şirului.
Demonstr¼am implica̧tia reciproc¼a. Trebuie s¼a ar¼at¼am c¼a x� (xn) ! x� (x) pentru orice

x� 2 X�:
Fie x� 2 X�: Cum spanD� = X�; exist¼a un şir (x�k) � spanD�; x�k ! x�: Pe baza ipotezei

se observ¼a cu uşuriņt¼a c¼a
x� (xn)! x� (x) ; 8x� 2 spanD�:

Fie " > 0: Folosind convergeņta lui (x�k) şi m¼arginirea lui (xn) ; exist¼a un rang k" astfel încât
pentru orice n 2 N avem �

kxnk


x�k" � x�



 < "
kxk



x�k" � x�


 < ":

Pentru acest rang k"; din ipotez¼a, exist¼a un rang n" 2 N astfel încât pentru orice n � n";��x�k" (xn)� x�k" (x)
�� < ":

Atunci

jx� (xn)� x� (x)j �
��x� (xn)� x�k" (xn)

��+ ��x�k" (xn)� x�k" (x)
��+ ��x�k" (x)� x� (x)

��
< 3"; 8n � n":

Deducem aşadar c¼a x� (xn)! x� (x) :
(ii) Ra̧tion¼am ca mai sus. Completitudinea luiX intervine atunci când, la implica̧tia direct¼a,

folosim Propozi̧tia 4.3.10 pentru a ob̧tine m¼arginirea şirului. �

Problema 63 Fie X = c0 sau X = `p cu p 2 (1;1) : Fie (vn) � X un şir m¼arginit şi x 2 X:
S¼a se arate c¼a vn

w�! x dac¼a şi numai dac¼a are loc convergenţa pe coordonate, adic¼a (vn)k ! xk
pentru orice k: S¼a se arate c¼a ipoteza de m¼arginire a lui (vn) este esenţial¼a.
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Indicaţie Consider¼am muļtimea vectorilor unitari privit¼a în `1 = (c0)
� sau în `q = (`p)� (cu

p�1+ q�1 = 1). Pentru a constata c¼a ipoteza de m¼arginire a lui (vn) este eseņtial¼a, consider¼am
(vn) = (nen) � `2: Acest şir converge pe componente la 0; dar nu este slab convergent pentru
c¼a nu este m¼arginit. �

Problema 64 Fie f : `1 ! R;

f (x) =

1X
k=1

xk:

S¼a se arate c¼a f 2 (`1)�, dar f nu este w��continu¼a:

Indicaţie Liniaritatea lui f este clar¼a. Apoi,

jf (x)j � kxk1 ; 8x 2 `1;

deci f este continu¼a. Fie acum fek j k 2 Pg vectorii unitari standard în `1: Ştim c¼a ek
w��! 0:

Dar f (ek) = 1 pentru orice k; deci f nu este w��continu¼a. �

Problema 65 Fie (en) şirul vectorilor unitari în c0: De�nim şirul (vn) prin

vn = e1 + :::+ en; 8n:

S¼a se arate c¼a:
(i) (vn) privit ca şir în `1 = (`1)

� este w��convergent;
(ii) (vn) nu este w�convergent în c0:

Indicaţie (i) Pentru orice y 2 `1; folosind operatorul de izomor�sm izometric între `1 şi (`1)� ;
avem

T (vn) (y) =
nX
k=1

yk !
1X
k=1

yk = T ((1)) (y) ;

unde (1) este şirul constant 1: Deci vn
w��! (1) :

(ii) Dac¼a ar exista x 2 c0 astfel încât vn
w�c0�! x atunci vn

w��`1�! x: Astfel, x = (1) =2 c0; ceea
ce reprezint¼a o contradiçtie. �

Problema 66 S¼a se arate c¼a şirul vectorilor unitari converge slab în `2; dar nu este convergent
în norm¼a.

Indicaţie Cum dualul lui `2 se identi�c¼a cu `2; pe baza operatorului de identi�care avem, pentru
orice x 2 `2 şi orice n;

T (x) (en) = xn ! 0;

deci en
w�! 0: Dar, pentru orice n;m diferite

ken � emk2 =
p
2;

deci (en) nu admite subşir convergent în norm¼a (de fapt, nu admite nici subşir fundamental în
norm¼a). �
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Problema 67 În spaţiul `1 = m; privit ca dual al lui `1; consider¼am şirul (xn)n2P cu primii

n termeni 0 şi toţi ceilalţi 1: S¼a se arate c¼a (xn)
w��! 0; dar (xn)

w

6�! 0:

Indicaţie Reamintim c¼a `1 ' (`1)� : Folosind operatorul T de izomor�sm izometric (Problema
1.5.4) deducem

T (xn) (y) =

1X
k=n+1

yk
n!1�! 0:

Deci, (xn) w��! 0: Dac¼a ar � adev¼arat c¼a (xn)
w�! 0; atunci din Corolarul 59 ar exista un şir de

combina̧tii convexe de termeni ai şirului cu limita 0 în norm¼a. Cum kuk1 = 1 pentru orice u
combina̧tie convex¼a de vectori (xn) ; acest lucru nu este posibil. Deci (xn) nu converge nici în
topologia w; nici în topologia tare. �

Problema 68 Fie X = `1 (adic¼a m) cu norma k�k1 : S¼a se arate c¼a mulţimea

S = fek j k 2 Pg [ f0g

este slab-stelat secvenţial compact¼a, dar nu este compact¼a în norm¼a.

Indicaţie Observ¼am c¼a
kei � ejk1 = 1; 8i; j 2 P; i 6= j;

deci nu putem extrage niciun subşir convergent în norm¼a.
Apoi, se arat¼a c¼a ek

w��! 0: �

Problema 69 Consider¼am spaţiul (C ([0; 1]) ; k�k1) : S¼a se arate c¼a dac¼a (fn) � C ([0; 1]) este
slab convergent la f 2 C ([0; 1]) ; atunci fn (x) ! f (x) pentru orice x 2 [0; 1] ; iar reciproca
acestei implicaţii este fals¼a.

Indicaţie Pentru orice x 2 [0; 1] operatorul Tx : C ([0; 1])! R dat prin Tx (f) = f (x) este liniar
şi continuu: Deducem c¼a dac¼a fn

w�! f; atunci (fn) converge punctual la f: Pentru a ar¼ata c¼a
reciproca este fals¼a, consider¼am operatorul T : C ([0; 1])! R dat prin

T (f) =

Z 1

0

f (t) dt

şi şirul de funçtii (fn)n2P � C ([0; 1]) de�nit prin fn (x) = nx (1� x2)
n. �

Problema 70 Fie X = (C [0; 1] ; k�k1) : Consider¼am şirul de operatori Ln : X ! R dat,
pentru orice n 2 P; prin

Ln (f) = n

Z 1
n

0

f (x) dx:

(i) S¼a se arate c¼a Ln 2 SX� pentru orice n 2 P:
(ii) S¼a se arate c¼a (Ln) este w��convergent.
(iii) S¼a se arate c¼a (Ln) nu este convergent în norm¼a.
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Indicaţie Primul punct se arat¼a uşor. Pentru al doilea, folosind eventual o teorem¼a de medie,
observ¼am c¼a

limn

Z 1
n

0

f (x) dx = f (0) ; 8f 2 X:

La punctul (iii) este su�cient s¼a g¼asim c > 0 şi un şir de funçtii (fn) � SX astfel încât
jLn (fn)� L (fn)j � c; 8n 2 P: �

Problema 71 Fie (X; �) spaţii topologic, Y spaţiu liniar normat şi f : X ! Y o funcţie. S¼a
se arate c¼a f este (�; w)�continu¼a dac¼a şi numai dac¼a pentru orice y� 2 Y �; y� � f : X ! R
este (�; j�j)�continu¼a.

Indicaţie Dac¼a f este (�; w)�continu¼a, cum orice y� 2 Y � este (w; j�j)�continu¼a (problema
anterioar¼a), deducem c¼a y� � f este (�; j�j)�continu¼a.
Invers, presupunem c¼a y� � f : X ! R este (�; j�j)�continu¼a pentru orice y� 2 Y �: Fie

x 2 X. Consider¼am o vecin¼atate w�deschis¼a a lui f (x) ; adic¼a alegem n 2 P; y�i 2 Y � pentru
orice i 2 1; n, " > 0 şi consider¼am

V (f (x) ; y�1; :::; y
�
n; ") =

�
y 2 Y j jy�i (y)� y�i (f (x))j < "; 8i 2 1; n

	
:

Se veri�c¼a egalitatea

f�1 (V (f (x) ; y�1; :::; y
�
n; ")) =

n\
i=1

(y�i � f)
�1 (B (y�i (f (x)) ; ")) :

Aceasta este o muļtime deschis¼a în � pentru c¼a y�i �f este (�; j�j)�continu¼a pentru orice i 2 1; n:
Deci f întoarce muļtimi deschise din w în muļtimi din � . �

Problema 72 Fie X; Y spaţii Banach şi T : X ! Y un operator liniar. S¼a se arate c¼a
urm¼atoarele a�rmaţii sunt echivalente:
(i) T este (k�k ; k�k)�continuu;
(ii) T este (w;w)�continuu;
(iii) T este (k�k ; w)�continuu.

Indicaţie Pentru a ar¼ata echivaleņta condi̧tiilor (i) şi (ii), într-un sens se foloseşte problema
anterioar¼a, iar în cel¼alalt Principiul gra�cului închis. Similar pentru echivaleņta dintre (i) şi
(iii) �

Problema 73 Fie X spaţiu Banach re�exiv, Y spaţiu Banach şi T 2 L (X; Y ) : S¼a se arate c¼a
T (DX) este închis¼a în Y: Dac¼a, în plus, T 2 K (X; Y ) ; atunci T (DX) este compact¼a.

Indicaţie CumX este re�exiv,DX este slab compact¼a. Din Problema 72, T este (w;w)�continuu.
Aşadar, T (DX) este w�închis¼a deci tare închis¼a. Dac¼a T 2 K (X; Y ) ; T (DX) este şi relativ
compact¼a, deci compact¼a. �

Problema 74 Fie X; Y spaţii liniare normate şi T 2 L (X; Y ) : S¼a se arate c¼a dac¼a cel puţin
unul dintre aceste spaţii este re�exiv, atunci pentru orice şir m¼arginit (xn) � X, şirul (T (xn))
conţine subşir slab convergent.
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Indicaţie Dac¼a X este re�exiv, atunci orice şir m¼arginit (xn) � X coņtine un subşir slab
convergent. Cum T este (w;w)�continuu (din nou prima implica̧tie din Problema 72), deducem
concluzia.
Dac¼a Y este re�exiv, cum (T (xn)) este m¼arginit, ob̧tinem din nou concluzia. �

Problema 75 S¼a se arate c¼a spaţiile `1; `1 nu sunt re�exive.

Indicaţie Dac¼a `1 ar � re�exiv, cum este un spa̧tiu separabil, conform Propozi̧tiei 4.4.14, dualul
s¼au ar � separabil, ceea ce, conform Problemelor 1.5.2 şi 27, este fals.
Dac¼a `1 ar � re�exiv atunci subspa̧tiul s¼au închis c0 ar � de asemenea re�exiv (Propozi̧tia

4.4.12). Dar ştim c¼a c0 nu este re�exiv (Exemplul 4.4.6). �

Problema 76 Fie X; Y spaţii Banach şi T 2 K (X; Y ) : S¼a se arate c¼a ImT este mulţime
închis¼a dac¼a şi numai dac¼a T este de rang �nit.

Indicaţie Dac¼a T este de rang �nit, ImT este un subspa̧tiu liniar �nit dimensional, deci este
muļtime închis¼a. Invers, presupunem c¼a ImT este închis¼a. Atunci ImT este spa̧tiu Banach şi
T 2 L (X; ImT ) este surjectiv. Conform Principiului aplica̧tiilor deschise, T (DX) coņtine o
bil¼a închis¼a B centrat¼a în 0 a lui ImT: Cum ImT este închis¼a, B este închis¼a în Y: Dar,

B � T (DX) � T (DX):

Astfel, B este compact¼a, deci ImT este subspa̧tiu �nit dimensional. �

Problema 77 Fie X; Y spaţii Banach şi T : X ! Y un operator liniar. S¼a se arate c¼a
(i) dac¼a T este (w; k�k)�continuu, atunci T este de rang �nit;
(ii) dac¼a T este (k�k ; k�k)�continuu şi de rang �nit, atunci este (w; k�k)�continuu.
S¼a se compare cu Problema 72.

Indicaţie (i) Proprietatea de continuitate înseamn¼a c¼a pentru orice " > 0 exist¼a � > 0; n 2 P;
(x�i )i21;n astfel încât kTxk < " pentru orice x 2 V (0; x�1; :::; x�n; �) : În particular, dac¼a x apaŗtine
subspa̧tiului Z =

�
z 2 X j x�i (z) = 0; 8i 2 1; n

	
; ob̧tinem c¼a T (x) = 0: Dar codimnesiunea

lui M este �nit¼a, deci nucleul lui T este de codimensiune �nit¼a. Deducem c¼a imaginea lui T
are dimensiune �nit¼a.
(ii) Cum T este de rang �nit, pe ImT topologia w coincide cu topologia normei. Dar, pentru

orice A � Y; T�1 (A) = T�1 (A \ ImT ) şi folosind Problema 72, (w; k�k)�continuu. �

Problema 78 S¼a se arate c¼a operatorul T : `p ! `p cu p 2 (1;1) dat prin

T
�
(xn)n2P

�
= (0; x1; :::; xn; :::)

nu este compact.

Indicaţie Muļtimea T (D`p) coņtine şirul de vectori (0; 1; 0; :::); (0; 0; 1; :::);... care nu coņtine
niciun subşir Cauchy, deci niciun subşir convergent. �
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Problema 79 Fie p 2 [1;1] şi a = (an)n2P 2 `1: De�nim T : `p ! `p prin

Ta (x) = (anxn)n ; 8x = (xn)n2P 2 `p:

S¼a se arate c¼a:
(i) Ta este bine de�nit, liniar şi continuu, iar kTak = kak1;
(ii) Ta este compact dac¼a şi numai dac¼a a 2 c0:

Indicaţie (i) Se arat¼a folosind metode deja utilizate de mai multe ori.
(ii) Presupunem c¼a Ta este compact, dar a =2 c0: Atunci exist¼a " > 0 şi un subşir (ank) al lui

(an) astfel încât jank j > " pentru orice k: Atunci pentru j; k 2 P

kTaenk � Taenkk =
�
jank j

p +
��anj ��p�p > �;

deci şirul (Ta (ank)) nu admite subşir convergent.
Presupunem acum c¼a a 2 c0: De�nim şirul de elemente din c00 prin

a(n) = (a1; :::; an; 0; :::) ; 8n 2 P:

Se arat¼a c¼a kTa � Ta(n)k ! 0 şi se deduce concluzia. �

Problema 80 Fie X; Y; Z spaţii Banach şi T 2 L (X; Y ) ; S 2 L (Y; Z) : S¼a se arate c¼a
(i) dac¼a T 2 K (X; Y ) ; atunci S � T 2 K (X;Z) ;
(ii) dac¼a S 2 K (Y; Z) ; atunci S � T 2 K (X;Z) :

Indicaţie Ambele a�rma̧tii rezult¼a prin aplicarea de�ni̧tiilor şi propriet¼a̧tii de m¼arginire a op-
eratorilor liniari continui. �

Problema 81 Fie X spaţiu Banach in�nit dimensional şi T 2 K (X) : S¼a se arate c¼a 0 2
T (SX):

Soluţie Presupunem c¼a 0 =2 T (SX): Atunci � = infx2SX kTxk > 0: Aceasta înseamn¼a c¼a T (X)
este subspa̧tiu liniar închis (a se vedea Problema 14), deci T�1 : T (X)! X este operator liniar
continuu (kT�1k � ��1), iar idX = T�1 �T este operator compact (Problema 80). Rezult¼a deci
X este �nit dimensional, ceea ce este fals. �

Problema 82 Fie X; Y spaţii Banach şi T 2 L (X; Y ) : Consider¼am urm¼atoarea proprietate:

(�) 8 (xn)n
w! x; T (xn)! T (x) :

S¼a se arate c¼a:
(i) dac¼a T este compact, atunci are proprietatea (�) ;
(ii) dac¼a X este re�exiv şi T are proprietatea (�) ; atunci T este compact.

Soluţie (i) Fie (xn)n
w! x: Ştim c¼a (xn)n este m¼arginit, iar cum T este compact, (T (xn)) are

subşir convergent tare la un element y: În particular, (T (xn)) este şi slab convergent la y.
De asemenea, ştim c¼a T este (w;w) continuu, deci T (xn) ! T (x) ; Deducem c¼a y = T (x) :
Astfel, singurul punct limit¼a al lui (T (xn)) este T (x) : Cum (T (xn)) este inclus într-o muļtime
compact¼a, g¼asim c¼a singura posibilitate este ca T (xn)! T (x) :
(ii) Fie (xn) � X un şir m¼arginit. Cum X este re�exiv, exist¼a un subşir al acestuia, notat

(xnk) slab convergent la un element x 2 X: Din ipotez¼a (T (xnk)) este tare convergent. Ob̧tinem
c¼a T este compact. �
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6.5 Spa̧tii Hilbert

Problema 83 Fie X un spaţiu cu produs scalar şi �e x; y 2 X: S¼a se arate c¼a jhx; yij = kxk kyk
dac¼a şi numai dac¼a x şi y sunt liniar dependenţi, adic¼a �e x sau y este nul, �e exist¼a � 2 Rnf0g
astfel încât x = �y.

Indicaţie Presupunem c¼a jhx; yij = kxk kyk şi ar¼at¼am c¼a exist¼a � 2 R astfel încât kx� �yk2 = 0:
�

Problema 84 Fie X un spaţiu cu produs scalar şi x; y 2 X: S¼a se arate c¼a dac¼a

kxk � kx+ �yk ; 8� 2 R;

atunci x ? y.

Indicaţie Ridic¼am la p¼atrat rela̧tia dat¼a, dezvolt¼am al doilea membru şi ob̧tinem hx; yi = 0: �

Problema 85 S¼a se arate c¼a dintre toate spaţiile Banach
�
`p; k�kp

�
cu p 2 [1;1); singurul

care este spaţiu Hilbert este (`2; k�k2) :

Indicaţie Se arat¼a c¼a doar pe (`2; k�k2) se respect¼a identitatea paralelogramului. �

Problema 86 De�nim aplicaţia h�; �i : c00 � c00 ! R dat¼a prin

hx; yi =
1X
k=0

xkyk:

S¼a se arate c¼a h�; �i este un produs scalar dar c00 cu acest produs scalar nu este spaţiu Hilbert.

Indicaţie Se arat¼a uşor c¼a h�; �i este corect de�nit¼a şi reprezint¼a un produs scalar. Am v¼azut la
Problema 40 c¼a c00 nu este complet în raport cu nicio norm¼a. �

Problema 87 Fie X un spaţiu Hilbert şi Y un subspaţiu liniar al s¼au. S¼a se arate c¼a Y este
dens în X dac¼a şi numai dac¼a Y ? = f0g :

Indicaţie Dac¼a Y este dens, avem

Y ? = (clY )? = X? = f0g :

Invers, dac¼a Y ? = f0g ; atunci (clY )? = f0g şi cum X = (clY )?� clY; deducem c¼a clY = X;
adic¼a Y este dens în X: �

Problema 88 S¼a se g¼aseasc¼a un spaţiu Hilbert X şi un subspaţiu Y al s¼au astfel încât X 6=
Y � Y ?:

Indicaţie Fie în spa̧tiul Hilbert X = `2 subspa̧tiul liniar Y = c00: Atunci Y ? = f0g pentru c¼a
pentru orice şir x 2 `2 n f0g exist¼a i astfel încât xi 6= 0; deci hx; eii 6= 0 (sau pentru c¼a c00 este
dens în `2). �
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Problema 89 Fie X un spaţiu Hilbert şi Y; Z subspaţii liniare închise ale lui X: S¼a se arate
c¼a dac¼a Y ? Z (adic¼a hy; zi = 0 pentru orice y 2 Y şi z 2 Z) atunci Y + Z este subspaţiu
liniar închis.

Indicaţie Evident, Y + Z este subspa̧tiu liniar. Ar¼at¼am c¼a este închis.
Fie (xn) = (yn + zn) ! x unde (yn) � Y; (zn) � Z: Vom demonstra c¼a (yn) şi (zn) sunt

şiruri Cauchy. Într-adev¼ar, pe baza perpendicularit¼a̧tii din ipotez¼a, pentru m;n 2 N;

kxn � xmk2 = k(ym + zm)� (yn + zn)k2 = kym � ynk2 + kzm � znk2

� max
�
kym � ynk2 ; kzm � znk2

	
:

şi cum (xn) este şir Cauchy, deducem a�rma̧tia f¼acut¼a. Atunci, pe baza completitudinii lui X;
(yn) este convergent la un element y care apaŗtine lui Y (pentru c¼a Y este închis), iar (zn) este
convergent la un element z care apaŗtine lui Z (pentru c¼a Z este închis). �

Problema 90 În spaţiul `2 consider¼am subspaţiileH0 = span feigi�2 şiH = span
�
H0 [

�
( 1
n
)n2P

	�
:

S¼a se arate c¼a H0 este subspaţiu liniar închis în H şi c¼a nu exist¼a în H0 element de cea mai
bun¼a aproximare pentru x = ( 1n)n2P :

Soluţie Dac¼a vom considera un şir de elemente din H0 convergent în H; atunci este clar c¼a
elementul limit¼a are prima component¼a 0; deci nu poate � în H nH0: Apoi, presupunem, prin
reducere la absurd c¼a exist¼a un element de cea mai bun¼a aproximare pentru x în H0, pe care
îl not¼am prH0 x. Atunci prH0 x are forma

P
i2I �iei; unde I este o muļtime �nit¼a de elemente

din P n f1g şi scalarii �i sunt reali. Se arat¼a c¼a pentru orice j 2 P n (f1g [ I)



x� prH0 x

 >





x�

 X
i2I

�iei +
1

j
ej

!





ob̧tinându-se o contradiçtie. �

Problema 91 Fie spaţiul C ([0; 1]) pe care consider¼am norma uzual¼a, adic¼a norma k�k1. Con-
sider¼am mulţimea

M =

(
f 2 C ([0; 1]) j

Z 1
2

0

f (x) dx�
Z 1

1
2

f (x) dx = 1

)
:

(i) S¼a se arate c¼a (C ([0; 1]) ; k�k1) nu este spaţiu Hilbert.
(ii) S¼a se arate c¼a M este convex¼a şi închis¼a.
(iii) S¼a se determine inf fkfk1 j f 2Mg :
(iv) S¼a se arate c¼a M nu conţine niciun element de norm¼a minim¼a.

Soluţie (i) Norma k�k1 nu provine dintr-un produs scalar pentru c¼a nu satisface identitatea
paralelogramului. Putem considera, de exemplu, funçtiile f; g : [0; 1] ! R date prin f (x) = x
şi g (x) = 1� x.
(ii) Convexitatea lui M se veri�c¼a cu uşuriņt¼a. De asemenea, teorema de transfer a inte-

grabilit¼a̧tii Riemann prin convergeņta uniform¼a asigur¼a închiderea lui M:
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(iii) Se ar¼ata c¼a
inf fkfk1 j f 2Mg = 1:

(iv) Presupunem c¼a exist¼a f 2M astfel încât kfk1 = 1: AtunciZ 1
2

0

(1� f (x)) dx+

Z 1

1
2

(1 + f (x)) dx = 0:

Cum funçtiile 1 � f şi 1 + f sunt continue şi pozitive, ob̧tinem c¼a 1 � f = 0 pe
�
0; 1

2

�
; iar

1 + f = 0 pe
�
1
2
; 1
�
: Deci f

�
1
2

�
trebuie s¼a �e simultan 1 şi �1; ceea ce este imposibil. �

Problema 92 Fie X un spaţiu Hilbert şi fengn2N o baz¼a ortonormat¼a a sa. Fie

Y = span fe2n j n 2 Pg;

Z = span

�
e2n +

e2n+1
2n+ 1

j n 2 P
�
:

S¼a se arate c¼a Y + Z este subspaţiu dens propriu al lui X:

Indicaţie Este clar c¼a Y şi Z sunt subspa̧tii liniare închise, iar Y + Z coņtine baza fengn2P :
Deci Y +Z este subspa̧tiu dens. Ar¼at¼am c¼a Y +Z nu coincide cu X. Pentru aceasta observ¼am
c¼a vectorul

x =
1X
n=1

e2n+1
2n+ 1

nu apaŗtine lui Y + Z: Mai întâi observ¼am c¼a x este corect de�nit (seria este convergent¼a) pe
baza Propozi̧tiei 5.4.6. Dac¼a ar exista y 2 Y; z 2 Z astfel încât x = y + z; atunci, din forma
subspa̧tiilor şi unicitatea descopunerii în raport cu baza, cum toate elementele fe2n+1gn sunt
implicate în x; trebuie ca y s¼a �e

�
1X
n=1

e2n:

Dar acest lucru este imposibil pentru c¼a aceast¼a sum¼a nu converge (din nou pe baza Propozi̧tiei
5.4.6). �

Problema 93 Fie X spaţiu Hilbert şi T 2 L (X) : S¼a se arate c¼a urm¼atoarele a�rmaţii sunt
echivalente:
(i) exist¼a c > 0 astfel încât

c kxk � kTxk ; 8x 2 X;
(ii) exist¼a S 2 L (X) astfel încât S � T = 1X :

Indicaţie (i) =) (ii) Pe baza ipotezei, din Problema 14, T (X) este subspa̧tiu liniar închis şi
T�1 : T (X) ! X este liniar şi continuu. Fie Y complementul ortogonal al lui T (X) în X
(conform Teoremei 5.2.8). De�nim S : X ! X prin S (x) = T�1 (z) ; unde z 2 T (X) este
elementul care intervine în scrierea unic¼a a lui x în descompunerea ortogonal¼a X = T (X)� Y:
Atunci S are propriet¼a̧tile de la (ii).

117



(ii) =) (i) Pentru orice x 2 X;

kxk = k(S (T (x)))k � kSk kTxk :

Evident, kSk 6= 0 (contrar, S = 0 şi rela̧tia S � T = 1X este imposibil¼a) şi prin urmare (i) are
loc. �

Problema 94 Fie X un spaţiu Hilbert. S¼a se arate c¼a dac¼a un şir (xn) � X satisface xn
w�!

x 2 X şi kxnk ! kxk ; atunci xn ! x:

Indicaţie Avem

kxn � xk2 = hxn � x; xn � xi = kxnk2 � 2 hxn; xi+ kxk2 :

Cum xn
w�! x; avem hxn; xi ! kxk2 : Folosind şi ipoteza kxnk ! kxk deducem c¼a kxn � xk2 !

0; de unde se ob̧tine concluzia. �

Problema 95 Fie X spaţiu Hilbert, fengn2P o baz¼a ortonormat¼a a sa şi (an)n2P un şir m¼arginit
de numere reale. De�nim şirul

un =
1

n

nX
k=1

akek; 8n 2 P:

S¼a se arate c¼a
(i) (un)! 0;
(ii) (

p
nun)

w�! 0:

Indicaţie (i) Avem, pentru to̧ti n;

kunk2 =
1

n2

nX
k=1

a2k �
M2

n
;

unde M este o constant¼a de m¼arginire a lui (an) : Deci kunk ! 0:
(ii) Din estimarea anterioar¼a deducem c¼a şirul (

p
nun) este m¼arginit. Observ¼am şi c¼a, pentru

orice k �xat şi orice n � k; 
p
nun; ek

�
=

akp
n
! 0:

Pe baza Corolarului 5.4.14, deducem c¼a (
p
nun)

w�! 0: �

Problema 96 Fie (X; h�; �i) un spaţiu Hilbert, T; T1; T2 2 L (X) şi � 2 R: Atunci:
(i) (T1 + T2)

� = T �1 + T �2 ;
(ii) (�T )� = �T �;
(iii) (T1T2)

� = T �2 T
�
1 ; unde T1T2 noteaz¼a compunerea celor doi operatori;

(iv) (T �)� = T ;
(v) kT �Tk = kTT �k = kTk2 ;
(vi) Dac¼a T este inversabil atunci T � este inversabil şi (T �)�1 = (T�1)� :

Indicaţie Toate rela̧tiile sunt simple aplica̧tii ale de�ni̧tiei operatorului adjunct. �
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Problema 97 S¼a se arate c¼a dac¼a X este spaţiu Hilbert şi T 2 K (X) ; atunci T � 2 K (X) :

Indicaţie. Trebuie s¼a ar¼at¼am c¼a pentru orice şir (yn) m¼arginit şirul (T �yn) admite subşir con-
vergent. FieM constanta de m¼arginire a lui (yn) : Cum T � 2 L (X) ; şirul (T �yn) este m¼arginit,
deci şirul (T (T �yn)) admite un subşir, notat (T (T �ynk)) ; convergent (pentru c¼a T 2 K (X)):
Se arat¼a c¼a (T �ynk) este convergent ar¼atând c¼a este fundamental. �

Problema 98 Fie X spaţiu Hilbert şi T 2 K (X) : S¼a se arate c¼a id�T este injectiv dac¼a şi
numai dac¼a este surjectiv.

Indicaţie Injectivitatea lui id�T atrage surjectivitatea sa chiar în spa̧tii Banach, dup¼a cum am
v¼azut în Teorema 4.5.11 (iii).
Reciproc, presupunem acum c¼a id�T este surjectiv. Atunci

Ker (id�T )� = (Im (id�T ))? = f0g ;

adic¼a (id�T )� este injectiv. Dar T � 2 K (X) (conform problemei anterioare) şi din pasul
precedent al demonstra̧tiei, Im (id�T )� = X: Astfel, folosind Problema 5.3.7,

Ker (id�T ) = (Im (id�T )�)? = f0g ;

deci id�T este injectiv. �

De�ni̧tia 6.5.1 Fie X spaţiu liniar normat şi T 2 L (X) : Spunem c¼a T este m¼arginit inferior
dac¼a exist¼a c > 0 astfel încât

c kxk � kTxk ; 8x 2 X:

Problema 99 Fie X spaţiu Hilbert şi T 2 L (X) : S¼a se arate c¼a urm¼atoarele a�rmaţii sunt
echivalente:
(i) T este bijectiv;
(ii) T şi T � sunt m¼arginiţi inferior;
(iii) T este m¼arginit inferior şi T � este injectiv;
(iv) T este m¼arginit inferior şi T (X) = X.

Indicaţie (i) =) (ii) Dac¼a T este bijectiv, cumX este complet, T are invers continuu (Corolarul
3.2.10). Astfel, m¼arginirea inferioar¼a este clar¼a: pentru orice x 2 X;

kxk =


T�1 (Tx)

 � 

T�1

 kTxk :

Cum, pe baza Problemei 96, T � este inversabil şi (T �)�1 = (T�1)� ob̧tinem c¼a şi T � este m¼arginit
inferior.
(ii) =) (iii) Este clar c¼a orice operator liniar m¼arginit inferior este injectiv.
(iii) =) (iv) Ştim (Propozi̧tia 5.3.7) c¼a KerT � = (ImT )? =

�
ImT

�?
; deci f0g =

�
ImT

�?
;

adic¼a

X =
��
ImT

�?�?
= T (X):

(iv) =) (i) Cum T este m¼arginit inferior, este injectiv. Tot din m¼arginirea inferioar¼a
ob̧tinem (Problema 14) c¼a T (X) este subspa̧tiu liniar închis, deci în ipoteza dat¼a T este sur-
jectiv. Deci T este bijectiv. �
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Problema 100 Fie X spaţiu Hilbert şi T : X ! X liniar. Presupunem c¼a

hTx; xi � 0; 8x 2 X:

S¼a se arate c¼a T este continuu, iar id+T este inversabil şi are invers continuu.

Indicaţie Prima concluzie rezult¼a din Problema 52 şi Teorema lui Riesz. Apoi se arat¼a c¼a id+T
satisface condi̧tiile de la punctul (ii) al problemei de mai sus. �

Problema 101 Fie X spaţiu Hilbert şi T 2 L (X) : Presupunem c¼a kTk � 1: S¼a se arate c¼a
Tx = x dac¼a şi numai dac¼a T �x = x:

Indicaţie Fie x 2 X astfel încât Tx = x: Atunci

kxk2 = hTx; xi = hx; T �xi
� kxk kT �xk � kxk2 kT �k � kxk2 :

Prin urmare, toate inegalit¼a̧tile sunt de fapt egalit¼a̧ti. Deci

hx; T �xi = kxk kT �xk

şi conform Problemei 83, x şi T �x sunt liniar dependeņti sau unul dintre aceşti vectori este nul.
Folosind din nou şirul de egalit¼a̧ti de mai sus ob̧tinem c¼a T �x = x:
Reciproc, dac¼a T �x = x; atunci (T �)� x = x; adic¼a Tx = x: �

Problema 102 Pentru orice k 2 N de�nim Tk : `
2 ! `2 prin

Tk (x) = (xk+1; xk+2; :::) ; 8x = (xn)n2P :

(i) S¼a se arate c¼a Tk 2 L (`2) şi s¼a se determine (Tk)� :
(ii) S¼a se arate c¼a limk!1 Tkx! 0 2 `2 pentru orice x 2 `2:
(iii) S¼a se arate c¼a exist¼a x 2 `2 astfel încât (T �kx)k nu are limit¼a în `2:

Indicaţie (i) Din condi̧tia
hTkx; yi = hx; (Tk)� yi ; 8x; y 2 `2;

deducem c¼a (Tk)
� (x) = (0; :::0; x1; x2; :::) ; unde primele k componente sunt 0:

(ii) Pentru orice x 2 `2;

kTkxk =

vuut 1X
n=k+1

jxnj2
k!1! 0;

deducem concluzia.
(iii) Pentru orice x 2 `2;

k(Tk)� xk = kxk :
Pentru x 6= 0; presupunând c¼a exist¼a y = limk!1 (Tk)

� x; din forma operatorilor (Tk)
� ; deducem

c¼a yn = 0 pentru orice n; ceea ce contrazice rela̧tia anterioar¼a. �
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Problema 103 Fie X un spaţiu Hilbert şi A : X ! X un operator liniar astfel încât

hAx; yi = hx;Ayi ; 8x; y 2 X:

S¼a se arate c¼a A este continuu.

Indicaţie Presupunem, prin reducere la absurd, c¼a A nu este continuu. Atunci exist¼a (xn)n2P �
SX astfel încât kAxnk ! 1: Consider¼am, pentru �ecare n 2 P; fn : X ! R;

fn (x) = hx;Axni :

Atunci fn 2 X� şi şirul (fn)n este punctual m¼arginit. Se aplic¼a Principiul m¼arginirii uniforme
şi se ajunge la o contradiçtie. �

De�ni̧tia 6.5.2 Fie X un spaţiu Hilbert. Un operator liniar P : X ! X se numeşte proiector
dac¼a imaginea sa este subspaţiu liniar închis şi

x� Px 2 P (X)? ; 8x 2 X:

Problema 104 Fie Y � X un subspaţiu liniar închis al spaţiului Hilbert X: Atunci exist¼a un
unic proiector P : X ! X astfel încât P (X) = Y: În particular, orice proiector este continuu
şi are norma 1; iar

P (X) = fx 2 X j Px = xg :

Soluţie Conform Teoremei de descompunere ortogonal¼a, X = Y � Y ?; adic¼a pentru orice
x 2 X exist¼a şi sunt unice dou¼a elemente y 2 Y şi z 2 Y ? astfel încât x = y + z. De�nim
P : X ! X prin P (x) = prY x = y: Este clar c¼a P este liniar, ImP = Y iar pentru orice
x 2 X; x � P (x) 2 Y ? = (ImP )? : Demonstr¼am unicitatea. Fie Q : X ! X un proiector
astfel încât Q (X) = Y: Dar, pentru orice x 2 X;

x = Px+ (x� Px) = Qx+ (x�Qx) ;

iar unicitatea descompunerii lui X atrage Px = Qx: Deci P = Q:
Aşadar, orice proiector este un operator de proieçtie pe un subspa̧tiu liniar închis şi din

Propozi̧tia 5.1.16 deducem c¼a orice proiector este continuu şi are norma 1: Ultima a�rma̧tie
este acum evident¼a. �

Problema 105 Fie X un spaţiu Hilbert şi P : X ! X un proiector. S¼a se arate c¼a:
(i) hPx; xi � 0; pentru orice x 2 X;
(ii) KerP = fx 2 X j hPx; xi = 0g ;
(iii) KerP = (ImP )? :

Indicaţie (i) Pentru orice x 2 X avem

hPx; xi = hPx; Px+ (x� Px)i = hPx; Pxi+ hPx; (x� Px)i = kPxk2 � 0:

(ii), (iii) Rezult¼a din punctul precedent şi problema anterioar¼a. �
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Problema 106 Fie X un spaţiu Hilbert şi P 2 L (X) : S¼a se arate c¼a urm¼atoarele a�rmaţii
sunt echivalente:
(i) P este proiector;
(ii) P = P � şi P � P = P ;
(iii) P � � P = P:

Indicaţie (i) =) (ii) Presupunem c¼a P este proiector. Atunci, pentru orice x; y 2 X;

hPx; yi = hPx; Py + y � Pyi = hPx; Pyi+ hPx; y � Pyi = hPx; Pyi
= hPx; Pyi+ hx� Px; Pyi = hx; Pyi :

Deci P = P �: Apoi, pentru orice x 2 X;

(P � P ) (x) = P (Px) = Px;

adic¼a P � P = P:
Celelalte implica̧tii se arat¼a folosind argumente similare. �

Problema 107 Fie X un spaţiu Hilbert. Pe mulţimea proiectorilor introducem urm¼atoarea
relaţie:

P1 � P2 () hP1x; xi � hP2x; xi ; 8x 2 X:
S¼a se arate c¼a aceast¼a relaţie este o relaţie de ordine. Apoi s¼a se arate c¼a urm¼atoarele a�rmaţii
sunt echivalente:
(i) P1 � P2;
(ii) KerP2 � KerP1;
(iii) P1 (X) � P2 (X) ;
(iv) P2 � P1 = P1;
(v) P1 � P2 = P1;
(vi) P2 � P1 este proiector.

Soluţie Faptul c¼a � este re�exiv¼a şi tranzitiv¼a este evident. Ar¼at¼am c¼a este antisimetric¼a.
Presupunem deci c¼a hP1x; xi = hP2x; xi pentru orice x 2 X: Dar, ca mai sus, hP1x; xi = kP1xk2
şi similar pentru P2: Deducem c¼a P1 = P2:
Ar¼at¼am acum echivaleņtele din enuņt.
(i) =) (ii) Conform ipotezei,

hP1x; xi � hP2x; xi ; 8x 2 X:

Dac¼a x 2 KerP2; atunci hP2x; xi = 0 şi cum hP1x; xi � 0 (Problema 105) deducem hP1x; xi = 0;
deci x 2 KerP1:
(ii) =) (iii) Ştim (din nou Problema 105) c¼a (ImP1)

? = KerP1 şi similar pentru P2: Deci
ipoteza se scrie

(ImP2)
? � (ImP2)? ;

deci
ImP2 = (ImP2)

?? � (ImP1)?? = ImP1:
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(iii) =) (iv) Cum P1 (X) � P2 (X) ; pentru orice x 2 X; P1x 2 P2 (X) ; deci P2 (P1x) = P1x;
deci P2 � P1 = P1:
(iv) =) (v) Dac¼a P2 �P1 = P1; atunci (P2 � P1)� = P �1 ; deci P

�
1 �P �2 = P �1 ; dar cum P �1 = P1

şi P �2 = P2; ob̧tinem c¼a P1 � P2 = P1:
(v) =) (i) Fie x 2 X. Avem

hP1x; xi = kP1xk2 = k(P1 � P2)xk2 � kP1k2 kP2xk2 = hP1x; xi ;

adic¼a P1 � P2:
(i) =) (vi) Faptul c¼a P1 � P2 este echivalent cu P1 � P2 = P2 � P1 = P1: Se veri�c¼a uşor c¼a

P2 � P1 veri�c¼a, de exemplu, condi̧tiile din Problema 106 (ii), deci este proiector.
(vi) =) (i) Dac¼a P2 � P1 este proiector atunci

h(P2 � P1)x; xi � 0; 8x 2 X;

deci P1 � P2: �

Problema 108 Fie X un spaţiu Hilbert şi P1; P2 proiectori. S¼a se arate c¼a urm¼atoarele a�r-
maţii sunt echivalente:
(i) P1 + P2 este proiector;
(ii) P1 � P2 = 0;
(iii) P2 � P1 = 0;
(iv) P1 (X) ? P2 (X) :

Indicaţie Se folosesc argumente similare celor din problemele anterioare. �

Problema 109 Fie X un spaţiu Hilbert şi T 2 L (X) autoadjunct. S¼a se arate c¼a urm¼atoarele
a�rmaţii sunt echivalente:
(i) hTx; xi � 0 pentru orice x 2 X;
(ii) � (T ) � [0;1):

Soluţie Echivaleņta celor dou¼a a�rma̧tii este conseciņt¼a direct¼a a Propozi̧tiei 5.6.8. �

Problema 110 Fie X un spaţiu Hilbert şi T 2 L (X) autoadjunct. S¼a se arate c¼a urm¼atoarele
a�rmaţii sunt echivalente:
(i) hTx; xi � 0 pentru orice x 2 X şi kTk � 1;
(ii) 0 � hTx; xi � kxk2 pentru orice x 2 X;
(iii) � (T ) � [0; 1];
(iv) hTx; xi � kTxk2 pentru orice x 2 X:

Soluţie Din Corolarul 5.6.9, kTk = supx2SX jhTx; xij : Astfel, (i), (ii) şi (iii) sunt evident echiva-
lente. De asemenea, faptul c¼a (iv) implic¼a (iii) este simplu de v¼azut. Ar¼at¼am c¼a (iii) implic¼a
(iv). Pentru orice " > 0; operatorul T" = T + " id este bijectiv şi � (T") � ["; 1 + "] : Astfel,
� (T�1" ) �

�
1
1+"

; 1
"

�
: Din nou prin intermediul Propozi̧tiei 5.6.8,



T�1" x; x

�
� 1

1 + "
kxk2 ; 8x 2 X;

123



adic¼a
hT"x; xi �

1

1 + "
kT"xk2 ; 8x 2 X:

F¼acând "! 0 ob̧tinem concluzia. �

Problema 111 Fie X un spaţiu Hilbert şi T 2 L (X) autoadjunct. S¼a se arate c¼a urm¼atoarele
a�rmaţii sunt echivalente:
(i) hTx; xi � kTxk2 pentru orice x 2 X:
(ii) (0; 1) � � (T ) :

Soluţie Consider¼am operatorul S = 2T � id : Atunci (i) este echivalent cu

kxk � kSxk ; 8x 2 X:

Astfel, conform Lemei 5.6.11, (i) implic¼a

(�1; 1) � � (S) = 2� (T )� 1;

deci (ii) are loc.
Invers, (ii) implic¼a faptul c¼a (�1; 1) � � (S) ; deci � (S) � (�1;�1] [ [1;1): Astfel,

� (S�1) � [�1; 1] şi din Propozi̧tia 5.6.8, kS�1k � 1; ceea ce implic¼a (i). �

Problema 112 Fie T : (C ([0; 1]) ; k�k1)! (C ([0; 1]) ; k�k1) ;

T (f) (x) =

Z x

0

f (t) dt:

(i) S¼a se arate c¼a T este liniar, continuu şi compact.
(ii) S¼a se arate c¼a pentru orice � 6= 0 şi orice g 2 C ([0; 1]) ; problema Cauchy�

h� �h0 = g;
h (0) = 0

are soluţie unic¼a şi s¼a se g¼aseasc¼a dspectrul operatorului T . S¼a se precizeze dac¼a 0 este valoare
proprie pentru T:

Soluţie (i) Faptul c¼a T este liniar şi continuu se arat¼a în mod obi̧snuit. Pentru a ar¼ata compacti-
tatea, adic¼a pentru a ar¼ata c¼a T

�
DC([0;1])

�
este relativ compact¼a, folosim Teorema Arzelà-Ascoli.

Din nou, m¼arginirea este clar¼a:

kTfk � kfk1 ; 8f 2 C ([0; 1]) :

În plus,

jTf (x)� Tf (y)j � kfk1 jx� yj � jx� yj ; 8f 2 DC([0;1]); 8x; y 2 [0; 1] ;

de unde rezult¼a echicontinuitatea familiei de funçtii T
�
DC([0;1])

�
:

(ii) Folosind formula varia̧tiei constantelor, ob̧tinem solu̧tia unic¼a a problemei Cauchy din
enuņt în forma

h (x) = �1
�
e
x
�

Z x

0

g (t) e�
t
�dt:
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Folosind aceasta pentru h = Tf; deducem c¼a pentru orice � 6= 0; operatorul T � � id este
bijectiv. Pe de alt¼a parte, T nu este surjectiv pentru c¼a toate funçtiile din imaginea sa sunt
de clas¼a C1: Deci � (T ) = f0g : Totuşi, 0 nu este valoare proprie pentru c¼a dac¼a consider¼am
f 2 KerT; atunci f = (Tf)0 = 0: �
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Addendum �Spa̧tii liniare reale vs.
spa̧tii liniare complexe

Aşa cum am anuņtat de la început, vom face o scurt¼a trecere în revist¼a a similarit¼a̧tilor şi
deosebirilor dintre rezultatele principale ale acestei lucr¼ari atunci când se lucreaz¼a cu spa̧tii
liniare normate reale (cum am procedat pân¼a acum) şi atunci când se consider¼a spa̧tii liniare
complexe (peste C).
Fie deci E = C şi X spa̧tiu liniar normat peste C. De�ni̧tia normei se modi�c¼a doar la a

doua axiom¼a, acolo unde acum � 2 C: O funçtional¼a liniar¼a pe X ia acum valori în C şi to̧ti
scalarii implica̧ti în de�ni̧tie sunt din C: Dualul şi norma dual¼a se de�nesc şi se noteaz¼a similar.
Este evident c¼a un spa̧tiu liniarX peste C este şi un spa̧tiu liniar peste R (not¼am acest spa̧tiu

prin XR) aşa încât, atunci când avem o norm¼a pe un spa̧tiu liniar complex, avem şi o norm¼a
peste spa̧tiul liniar real corespunz¼ator. Între elementele dualului unui spa̧tiu liniar complex
(notat, cum am spus, prin X�) şi elementele dualului spa̧tiului liniar real corespunz¼ator, pe
care îl not¼am X�

R, avem rela̧tiile date de rezultatul de mai jos.

Propozi̧tia 6.5.3 Fie f : X ! C liniar¼a (peste C) şi u : XR ! R, u = Re f (unde Re noteaz¼a
partea real¼a a unui num¼ar complex). Atunci u este liniar¼a (peste R) şi f (�) = u (�)�i�u (i � (�)) :
Reciproc, dac¼a u : XR ! R este liniar¼a (peste R), atunci f : X ! C de�nit¼a prin f (�) =

u (�)� i � u (i � (�)) este liniar¼a (peste C).
În plus, cu aceste notaţii, f 2 X� dac¼a şi numai dac¼a u 2 X�

R şi în acest caz, kfkX� =
kukX�

R
:

În varianta algebric¼a a Teoremei Hahn-Banach (Teorema 1.4.2), pentru a p¼astra concluzia
trebuie ca p s¼a �e o seminorm¼a, în timp ce varianta topologic¼a a aceleiaşi teoreme (Teorema
1.4.3) r¼amâne neschimbat¼a pentru spa̧tii liniare normate complexe. Legat de teoremele de
separare a muļtimilor convexe, no̧tiunea de hiperplan devine:

H = fx 2 X j Re f (x) = �g ;

unde f : X ! C este liniar¼a, neidentic nul¼a şi � 2 R: Cu aceast¼a modi�care, teoremele de
separare cap¼at¼a o form¼a speci�c¼a, uşor de dedus din aceste fapte.
Rezultatele din Capitolele 4 şi 5 r¼amân practic neschimbate, iar modi�c¼arile de demonstra̧tie

sunt uşor de dedus.

Probabil cea mai semni�cativ¼a difereņt¼a între spa̧tiile liniare complexe şi cele reale apare
în contextul spa̧tiilor Hilbert. Relu¼am de�ni̧tia produsului scalar în acest context şi o parte de
rezultatele subsecvente cu modi�c¼arile necesare.
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De�ni̧tia 6.5.4 Fie X spaţiu liniar peste C: Se numeşte produs scalar pe X o funcţie h�; �i :
X �X ! C având urm¼atoarele propriet¼aţi:
(i) hx; xi � 0 pentru orice x 2 X şi hx; xi = 0 dac¼a şi numai dac¼a x = 0;
(ii) h�x+ �y; zi = � hx; zi+ � hy; zi ; pentru orice �; � 2 C; x; y; z 2 X;
(iii) hx; yi = hy; xi; pentru orice x; y 2 X; unde z este conjugatul num¼arului complex z;
Perechea (X; h�; �i) se numeşte spaţiu cu produs scalar.

Din nou, de�ni̧tia normei şi a conceptului de spa̧tiu Hilbert sunt aceleaşi. Identitatea paralel-
ogramului este neschimbat¼a. În general, rezultatele pe care nu le relu¼am aici sunt neschimbate
în acest cadru, singurele modi�c¼ari survenind în demonstra̧tii şi �ind relativ evidente.

Propozi̧tia 6.5.5 Fie (X; h�; �i) un spaţiu liniar complex cu produs scalar. Atunci:
(i) jhx; yij2 � kxk kyk ; pentru orice x; y 2 X;
(ii) 4 hx; yi = kx+ iyk2 � kx� yk2 + i kx+ iyk2 � i kx� iyk2 ; pentru orice x; y 2 X:

Teorema 6.5.6 (existeņta elementului de cea mai bun¼a aproximare) Fie (X; h�; �i) un
spaţiu Hilbert complex şi C � X o mulţime nevid¼a, convex¼a şi închis¼a. Atunci, pentru orice
x 2 X exist¼a un unic element y 2 C astfel încât

d (x;C) = kx� yk :
În plus, y este caracterizat de propriet¼aţile y 2 C şi Re hx� y; u� yi � 0 pentru orice u 2 C:

Urm¼atoarele modi�c¼ari semni�cative apar la Teorema lui Stampacchia (Teorema 5.5.2) şi
Lema Lax-Milgram (Teorema 5.5.3).
Fie (X; h�; �i) un spa̧tiu liniar complex cu produs scalar. Consider¼am o aplica̧tie a : X�X !

C cu urm¼atoarele propriet¼a̧ti:
- pentru orice y 2 X; x 7! a (x; y) este liniar¼a şi pentru orice x 2 X; y 7! a (x; y) este

liniar¼a;
- a este continu¼a, adic¼a exist¼a c > 0 astfel încât pentru orice x; y 2 X;

ja (x; y)j � c kxk kyk ;
- a este coerciv¼a, adic¼a exist¼a � > 0 astfel încât pentru orice u 2 X

� kuk2 � Re a (u; u) :
Teorema 6.5.7 (Teorema lui Stampacchia �cazul complex) Fie X spaţiu Hilbert com-
plex şi a o aplicaţiecare satisface propriet¼aţile de mai sus. Fie C � X nevid¼a, închis¼a şi convex¼a.
Atunci, pentru orice x� 2 X� exist¼a un unic u 2 C astfel încât

Re a (u; v � u) � Rex� (v � u) ; 8v 2 C:
Mai mult, dac¼a a (x; y) = a (y; x) pentru orice x; y 2 X, u este caracterizat de propriet¼aţile�

u 2 C;
1
2
a (u; u)� Rex� (u) = minv2C

�
1
2
a (v; v)� Rex� (v)

	
:

Noua form¼a a Lemei Lax-Milgram este acum evident¼a.
În ceea ce priveşte rezultatele de teorie spectral¼a, cadrul spa̧tiilor Hilbert complexe ofer¼a un

cadru mult mai potrivit dezvolt¼arilor necesare, iar difereņtele fa̧t¼a de cadrul descris în aceast¼a
lucrare sunt notabile, motiv pentru care consultarea surselor bibliogra�ce este indicat¼a.
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Modele de evalu¼ari scrise

Model examen paŗtial

Subiectul 1. Funçtionala Minkowski asociat¼a unei muļtimi convexe, deschise ce coņtine ele-
mentul 0: De�ni̧tie şi demonstrarea subliniarit¼a̧tii.

Subiectul 2. Fie p; q 2 (1;1) ; p < q: S¼a se arate c¼a `p � `q; iar scufundarea canonic¼a

f :
�
`p; k�kp

�
!
�
`q; k�kq

�
;

f (x) = x

este aplica̧tie liniar¼a continu¼a. S¼a se determine norma lui f:

Subiectul 3. Fie urm¼atoarea submuļtime a lui (`1; k�k1) :

A =
�
x = (xn)n2P 2 `1 j jxnj � 1; 8n 2 P

	
:

S¼a se arate c¼a A este convex¼a, închis¼a, absorbant¼a, iar

intA =
�
x = (xn)n2P 2 `1 j jxnj < 1; 8n 2 P

	
:

Subiectul 4. Fie T : C ([0; 2])! C ([0; 2]) dat prin

T (f) (x) =

Z x

0

tf (t) dt; 8x 2 [0; 2] :

S¼a se arate c¼a T este bine de�nit şi liniar. Pe C ([0; 2]) consider¼am normele

kfk1 = max
t2[0;2]

jf (t)j ;

kfk2 =
Z 2

0

jf (t)j dt:

S¼a se studieze continuitatea lui T atunci când pe domeniu se consider¼a k�k1 ; iar pe codomeniu
se consider¼a k�k2 :

Barem de notare:
1p din o�ciu; Subiectul 1: 1,5p; Subiectul 2: 2,5p; Subiectul 3: 2,5p; Subiectul 4: 2,5p

Timp de lucru: 100 minute
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Model veri�care scris¼a

Subiectul 1. S¼a se enuņte Teorema lui Baire (într-una din cele dou¼a forme) şi s¼a se enuņte şi
s¼a se demonstreze Principiul m¼arginirii uniforme.

Subiectul 2. Studia̧ti convergeņta slab¼a şi convergeņta slab-stelat¼a a vectorilor unitari din `1:

Barem de notare:
1p din o�ciu; Subiectul 1: Baire 2p; PMU - enuņt 3p; PMU - demonstra̧tie 4p; Subiectul 2:
studiul convergeņtei w � 4p; studiul convergeņtei w� � 5p.

Timp de lucru: 50 minute
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Model evaluare �nal¼a

Subiectul 1. Conceptul de operator compact (de�ni̧tie). S¼a se arate c¼a muļtimea operatorilor
compaçti formeaz¼a un subspa̧tiu liniar închis în spa̧tiul operatorilor liniari şi continui.

Subiectul 2. Fie X un subspa̧tiu liniar închis al lui (C ([0; 1]) ; k�k1) astfel încât toate ele-
mentele sale sunt funçtii de clas¼a C1: Folosind operatorul T : X ! C ([0; 1]) ; T (f) = f 0; s¼a se
arate c¼a exist¼a M > 0 astfel încât pentru orice f 2 X cu kfk1 � 1 are loc kf 0k1 �M:

Subiectul 3. Fie (X; k�k) un spa̧tiu liniar normat şi (xn) un şir de elemente din X astfel încât
to̧ti termenii se a�¼a într-o submuļtime compact¼a în topologia normei. S¼a se arate c¼a dac¼a (xn)
este slab convergent, atunci este tare convergent.

Subiectul 4. Studia̧ti convergeņta slab¼a a şirului vectorilor unitari în spa̧tiile `p (p 2 [1;1)).

Subiectul 5. Pe spa̧tiul `2 consider¼am norma standard k�k2 şi norma k�k := k�k2 + k�k1 : S¼a
se arate c¼a cele dou¼a norme sunt echivalente, (`2; k�k2) este spa̧tiu Hilbert, dar (`2; k�k) nu este
spa̧tiu Hilbert.

Barem de notare:
1p din o�ciu; Subiectul 1: 1,5p; Subiectul 2: 1,5p; Subiectul 3: 1,5p; Subiectul 4: 2,5; Subiectul
5: 2,0

Timp de lucru: 2 ore
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