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Evaluarea se desfagsoara dupa procedura de mai jos.
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indeplinita se va calcula nota finala, care va fi rotunjirea la cel mai apropiat numar
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Prefata

Acest curs, predat studentilor de la Facultatea de Matematica a Universitatii Alexandru Ioan
Cuza din Tagi in anul I de studii de master, reprezinta o continuare cursului de Analiza functi-
onala de la ciclul de licenta.

Astfel, presupunem cunoscute elementele de baza ale Analizei functionale pe spatii liniare
normate si pe spatii Hilbert. Totusi, consideram fireasca o recapitulare a acestor elemente
(primele parti din Capitolele 1 si 5). De asememea, cunoasterea unor elemente de baza de
topologie generala este importanta.

Principalele dezvoltari pe care acest curs le are in vedere sunt urmatoarele:

e separarea prin hiperplane a multimilor convexe (Capitolul 2);

principii ale analizei functionale (Capitolul 3);

topologii slabe i reflexivitate (Capitolul 4);

alternativa lui Fredholm (Capitolul 4);

dualitate in spatii Hilbert (Capitolul 5);

elemente de teorie spectrald (Capitolul 5).

Insotim aceste prezentiri de probleme si indicatii de rezolvare care pun in evidenti diverse
aspecte ale teoriei sau sunt menite sa ofere cititorului un acces direct la utilizarea conceptelor
introduse (Capitolul 6). In final, sunt inserate modele de subiecte, atat pentru lucrarea de
parcurs, cat si pentru examenul final.

Toate tematicile prezentate aici (precum si multe extinderi si aplicatii semnificative ale aces-
tora) se regdsesc in monografiile mentionate in bibliografie. In lucrarea de fatd, in organizarea
materialului s-a tinut cont de felul in care acesta se conecteaza la cursurile anterior parcurse,
iar selectia problemelor este facuta in scopul ilustrarii cdt mai eficiente a elementelor teoretice.
De asemenea s-a urmarit includerea celor mai naturale sau celor mai simple demonstratii ale
rezultatelor principale. Sursele bibliografice cele mai utilizate pentru fiecare capitol teoretic
sunt urmatoarele: pentru Capitolul 1: [8], [4] si [7]; pentru Capitolul 2, [8] si [1]; pentru Capi-
tolul 3, [1], [5] si [8]; pentru Capitolul 4, [1], [5] si [2]; pentru Capitolul 5, [1], [5], [7] si [2].
Problemele sunt culese din diverse surse, principalele fiind [6], [3], [5] si [7].
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Capitolul 1

Recapitulare si completari

Primele patru sectiuni ale acestui capitol recapituleaza notiuni si rezultate deja intélnite
la primul curs de Analiza functionala. Din acest motiv, nu prezentam decat sporadic demon-
stratii ale acestor rezultate, punctand in schimb expunerea cu unele exemple care ilustreaza
ideile principale. Sectiunile a cincea si a sasea contin rezultate (in majoritate) noi care sunt o
continuare fireasca a acestei recapitulari si pentru care vom prezenta in detaliu demonstratii.

1.1 Spatii liniare normate

Definitia 1.1.1 Fie [E un corp, numit corp de scalari. O multime nevida X se numeste spatiu
liniar (sau spatiu vectorial) peste corpul de scalari B daca este definita o lege de compozitie
internd pe X, notata + (adica + : X x X — X ) i o operatie externa de inmultire cu elemente
din B (cu scalari), notata - (adicd - : B x X — X ), astfel incat au loc urmitoarele conditii

(i) (X,+) este grup abelian;

(i) (a+ ) -x=a-x+ - x, pentru orice a, f € B gi orice x € X;

(i) a- (x +y) = a-x+ «-y, pentru orice « € B gi orice x,y € X;

() (af)-x=a-(B-x), pentru orice o, 5 € B gi orice v € X;

(v) 12 = x, pentru orice v € X.

In general, daci E = R spunem ci spatiul vectorial este real, iar daci E = C, spunem c&
spatiul vectorial este complex. In acest curs vom considera doar spatii vectoriale reale (deci
vom lua E = R). Majoritatea rezultatelor sunt valabile i in cazul E = C, dar exista i unele
diferente pe care le vom sublinia intr-o anexa la final.

Observatia 1.1.2 Daca X este spatiu liniar real, elementele sale se numesc vectori sau puncte,
iar numerele reale se numesc scalari. Elementul neutru al grupului (X, +) se numeste vectorul
nul g1 se noteaza cu 0. Uneori, pentru claritate, vom folosi alternativ notatia Ox. Opusul unui
vector x in acest grup se noteazd cu —x §i se numeste vectorul opus sau simetric vectorului x.
Ca st in cazul inmultirii din R, vom omite de cele mai multe ori sa scriem explicit operatia -.



Daca A, B C X g1 C C R sunt multimi nevide, definim de asemenea

A+B={a+blac Abec B},
aA={aa|a€ A},A—B=A+ (-1)B,
CA={aa|aeCjac A}.

Daci o € R\ {0} si x € X, vom mai scrie £ in loc de L.
(6 (634

Observatia 1.1.3 In general, vom omite cuvdntul "real” din denumairea spatiuvlui liniar real.

Pentru usurinta scrierii, utilizim notatia P := N\ {0} .

Definitia 1.1.4 Fie X spatiu liniar. O multime de vectori E = {e; |i € I}, unde I este o
multime de indici, se numegte baza Hamel sau baza algebrica pentru X daca:
(i) pentru orice x € X existan € P, aq,...,a, € R i e;,,...,e;, € E astfel incdt

n
T = E QL4 s
k=1
(i1) E este liniar independenta, adica orice submultime finita a sa este liniar independenta.

Teorema 1.1.5 Orice spatiu liniar admite o baza. In plus, orice doua baze sunt cardinal
echivalente gi acest cardinal se numeste dimensiunea spatiului.

Definitia 1.1.6 Fie X un spatiu liniar. O submultime Y a lut X se numeste subspatiu liniar
al lut X daca tmpreuna cu restrictiile operatiilor de pe X formeaza un spatiu liniar.

Definitia 1.1.7 Daca X este spatiu liniar si A o submultime nevida a sa, atunci subspatiul
lintar generat de A este

span A = {Zakak|n€]P’,ak€R,ak€A, Vkel,_n}.

k=1
Este clar ca span A este cel mai mic subspatiu liniar (in sensul incluziunii) care contine pe A.

Definitia 1.1.8 Fie X un spatiu liniar real. Se numeste norma pe X o functie ||| : X —
[0,00) cu urmatoarele proprietati:

(1) |z|| = 0 dacd gi numai daca x = 0;

(i) ||ax|| = |a|||z|| , pentru orice x € X gi o € R;

(i13) ||z + y|| < ||z|| + |y, pentru orice x,y € X.

Spatiul vectorial X inzestrat cu norma ||-|| se numeste spatiu liniar normat.

Observatia 1.1.9 Vom folosi deseori si denumirea de spatiu vectorial normat sau chiar spatiu
normat, insagi definitia normei subintelegind structura liniara.



Fie (X,]|:]|) un spatiu liniar normat. Este cunoscut faptul c& ||-|| induce pe X o distanta
datd prin d : X x X — [0, 00)
d(z,y) = |z =yl

si o topologie definita in mod obignuit.
Precizam notatiile utilizate. Fie x € X si € > 0. Se definesc:

e bila deschisa cu centrul z si raza € prin

B(z,e) ={y € X |[lz —yll <e};

e bila inchisd (sau discul) cu centrul z si raza e prin

D(z,e) ={y e X[z -yl <e};

e sfera cu centrul x si raza € prin

S(re)={ye X |llz—yll=e}.

Atunci cand x = 0 ¢i ¢ = 1 vom mai scrie By, Dy si respectiv Sy pentru multimile de mai
sus. Uneori, cAnd vor aparea mai multe spatii liniare normate in cadrul discutiei, pentru mai
multd claritate, vom scrie, de exemplu, By (x,¢) pentru a marca faptul ca este vorba despre
bila corespunzatoare din spatiul X.

Fie (X, ||-||) un spatiu liniar normat si A C X. Presupunem cunoscute conceptele de mai
jos si rezultatele fundamentale legate de acestea:

e vecindtate a unui punct (notadm cu V(T) multimea tuturor vecindtatilor lui 7);
e multime marginita in X;

e multime deschisa, multime inchisa;

e punct interior unei multimi (notdm cu int A interiorul lui A);

e punct de acumulare a unei multimi (notam cu A’ multimea tuturor punctelor de acumulare

ale lui A);

e punct aderent unei multimi (vom folosi notatiile cl A si A pentru a desemna multimea
aderentd a lui A);

e frontiera unei multimi (notdm cu Fr A frontiera lui A);
e multime compacta,;
e multime densa in X;

e separabilitatea lui X;



e sir de elemente ale lui X gi convergenta unui astfel de gir (vom folosi notatiile z,, — =,
lim z,, = x sau, mai simplu, lim z,, = x pentru a spune ca sirul (x,) C X este convergent

n—oo

laz € X);

e sir Cauchy sau fundamental.

O notiune care intervine frecvent este urmatoarea: o multime A C (X, ||-||) se numeste
absorbanta daca
U aA =X,

a>0

i.e., 0 € A si pentru orice x € X exista § > 0 astfel incat Sz € A.
In particular, orice vecinatate a originii este multime absorbanta.

Observatia 1.1.10 Una dintre proprietatile fundamentale ale vecinatatilor punctelor intr-un
spatiu liniar normat este data de relatia evidenta

B(z,e) =x+ B(0,¢), Vx € X, Ve > 0.

Aceasta inseamna ca putem privi o vecinatate a unui punct ca fiind o translatie a unei vecinatati
a lui 0, ceea ce arata ca este suficient sa studiem unele proprietati topologice doar in 0.

Fie acum (X, ||-||) si (Y, ||||) dou& spatii liniare normate. In general, rezulta de fiecare data
din context de care dintre cele doua norme este vorba si nu vom utiliza notatii diferite pentru ele.
Totusi, in unele cazuri, vom diferentia normele de pe X, respectiv Y, prin |||y si respectiv ||-||y .
Din nou, presupunem cunoscute urmatoarele concepte si rezultatele fundamentale asociate:

e limita unei functii f: A C X — Y intr-un punct a € A’ (vom scrie lim f (x) = b pentru

r—a

a spune cd limita lui f in a este b € Y);

e continuitatea unei functii f : A C X — Y intr-un punct ¢ € A si continuitatea pe
multime;

e uniforma continuitate a unei functii f: A C X — Y.

Observatia 1.1.11 Daca (X, ||-||) este un spatiu liniar normat atunci functiilew : X x X — X
stv:Rx X — X date prin

u(z,y)=r+y
v(a,z) = ax

sunt continue (unde, pe spatiile produs, se considerd topologia produs).

Definitia 1.1.12 Fie (X, ||||) un spatiu liniar normat §i Y C X un subspatiu vectorial al lui
X. Atunci restrictia lui ||-|| la'Y este o norma pe care o notam la fel si (Y,||"]|) este un spatiu
liniar normat pe care il numim subspatiu lintar normat al lur X.



Definitia 1.1.13 Un spatiu liniar normat (X, ||-||) se numeste complet sau spativ Banach daca
orice gir fundamental de elemente din X este convergent.

Urmatoarele rezultate sunt cunoscute de la precedentul curs de Analiza functionala.

Propozitia 1.1.14 Fie (X, ||-||) un spativ liniar normat i Y un subspatiu liniar al sau.
(i) Daca (Y, ||-]|) este complet, atunci Y este inchis.
(11) Daca (X, ||-||) este complet i Y este inchis, atunci (Y,||-||) este complet.

Definitia 1.1.15 Fie X un spatiu liniar gi |||, |||, doud norme pe X. Spunem ca cele doua
norme sunt echivalente daca exista o, 3 > 0 astfel incat pentru orice x € X,

allzly < llzll, < Bl -

Propozitia 1.1.16 Fie X un spatiu liniar si |||, ||-||, doud norme pe X. Cele doud norme
sunt echivalente daca gi numai daca topologiile induse de ele pe X coincid (adica multimile
deschise sunt aceleasi).

Definitia 1.1.17 Fie X un spatiu liniar si ||-||,, |||l, doud norme pe X. Spunem ca |||, este
mai find decdt ||-||, daca exista o > 0 astfel incat pentru orice x € X,

allzly < flzfl, -

Propozitia 1.1.18 Fie X un spativ liniar gi |-||,, |-, doud norme pe X. Atunci ||-||, este
mai find decdt ||-||, dacd gi numai daca topologia generatd de |||, este mai fina decdt topologia
generata de |||, (adica familia multimilor deschise in raport cu ||-||, este inclusd in familia
multimilor deschise in raport cu ||-||,).

Observatia 1.1.19 De exemplu, pentru demonstrarea unei implicatit din propozitia de mai
sus, tn baza Observatiei este suficient sa aratam ca o bila deschisa centrata in 0 in
raport cu ||-||; contine o bila deschisa centrata in 0 in raport cu |||, , ceea ce rezulta imediat pe
baza inegalitatii din ipoteza.

Pe spatii liniare normate finit dimensionale au loc o serie de proprietati de cea mai mare
importanta.

Teorema 1.1.20 Fie X un spatiu liniar finit dimensional. Atunci orice douda norme pe X
sunt echivalente.

Teorema 1.1.21 Fie (X, ||-||) un spatiu liniar normat finit dimensional. Atunci:
(1) (X,]||']|) este spatiu Banach;
(i1) orice gir marginit din (X, ||-||) admite un subgir convergent;
(11i) orice submultime marginita a lui (X, ||-||) este relativ compacta;
(iv) orice subspatiu liniar normat al lui (X, ||-||) este inchis.

Teorema 1.1.22 Fie (X, ||-||) un spatiu liniar normat. Atunci Dx este mullime compactd
daca si numai daca X este de dimensiune finita.



1.2 Spatii liniare normate fundamentale
In continuare prezentam cateva spatii liniare normate fundamentale.
Exemplul 1.2.1 Fie d € P. Consideram multimea

RY = {(z1, 29, ...,24) | z; € R, Vi € 1,d}.

Aceasta multime se organizeaza ca spatiu vectorial real de dimensiune d cu operatiile standard
definite astfel: pentru orice x = (z1, 79, ..., 2a), ¥ = (Y1, Y2, .-, ¥a) € R? si orice a € R

T4y = (1 + Y1, T2+ Y2, -, T + Ya) € R,
ar = (axy,axy, ..., axq) € RL

Conform Teoremelor [1.1.20]si [1.1.21| pe R? toate normele sunt echivalente si induc o structura,
de spatiu Banach. In general, normele principale care se considera pe R? sunt urméatoarele:
- norma euclidiana:

- norma max: o
lz|l = max{|xi| | i€ 1,d} :

- norma, suma: .
lzlly =D |zl
i=1
Pentru compararea acestor norme, a se vedea Problema [2]

Exemplul 1.2.2 Fie d € P. Daca X este spatiu liniar de dimensiune d, atunci considerand o
baza algebrica B = {ek | kel, d} stim ca orice element x € X se scrie unic in forma

d
T = E ey,
k=1

unde aj, ..., aq € R. Se definesc, ca mai sus, normele
- norma euclidiana:

- norma max: o
2l = max {Jas| | i € 1,d}

- norma suma:
d

lzlly = lal.

i=1
Evident, exemplul precedent este continut in exemplul de fatd dacd considersam pe R? baza
canonica.



Exemplul 1.2.3 Fie a,b € R cu a < b. Definim
B(la.b]) = {f : [a,b] — R | f marginita pe [a,5]},

C ([a,b]) ={f : [a,b] = R | f continud pe [a,b]} .

Cu operatiile uzuale de adunare a functiilor si de inmultire a functiilor cu scalari reali, B ([a, b])
este spatiu liniar, iar C' ([a, b]) este subspatiu liniar al sau.

Evident, ambele spatii sunt infinit dimensionale: este suficient sa observam ca multimea
functiilor monomiale este liniar independenta in C' ([a, b]) , fiind, evident, de cardinal R,.

Pe B ([a,b]) se introduce norma supremum (sau norma convergentei uniforme) prin

[ flloe = sup {1f (2)] | 2 € [a,b]}-
Atunci, atat B ([a,b]), cat i C ([a,b]) sunt spatii Banach: a se vedea Problema [3]
Exemplul 1.2.4 Fie a,b € R cu a < b. Definim
C' ([a,b]) = {f : [a,b] — R | f derivabili cu derivata continua pe [a,b]}.

Se observa cid C* ([a,b]) este subspatiu liniar al lui C ([a, d]) .

Totusi, (C* ([a,b]),]|]l,.) nu este subspatiu liniar normat inchis, deci (C* ([a, b)), ||||,,) nu
este spatiu Banach (a se vedea Propozitia [1.1.14]).
Pentru a demonstra aceasta, ludm, fira a restrange generalitatea, [a,b] = [—1, 1] si conside-

ram girul f, : [-1,1] — R,
fo(x) =[]

pentru n € P. Atunci
I/l oo
fn =
unde f:[-1,1] = R, f(x) = |z|. Dar, toate functiile f,, cu n > 1 sunt de clasd C"!, in timp ce
f nu este din C* ([-1,1]) .
Daci pe C* ([a,b]) considerdm norma

A= 1 lloo + 1Nl »

atunci (C* ([a, b]),]|]|) este spatiu Banach: a se vedea Problema
Exemplul 1.2.5 Fie m spatiul liniar al sirurilor numerice marginite. Definim norma
[2]loe = sup{[zn| | n € P}.

Atunci (m, ||-||,) este spatiu Banach: a se vedea Problema [f]

Uneori, din motive pe care le vom discuta ulterior, m se noteaza cu £*°.

Definim, de asemenea, spatiul ¢ al sirurilor numerice convergente. Atunci, (c, |||, ) este
subspatiu liniar normat inchis al Iui (m, ||-||.), deci este, la randul sdu, spatiu Banach: a se
vedea Problema [Bl



Fie ¢y spatiul sirurilor numerice convergente la 0. Din nou, (co, ||-||,,) este subspatiu liniar
normat inchis al ambelor spatii liniare normate de mai sus. In particular, (co, ||-||,,) este spatiu
Banach: a se vedea Problema [5

Fie p > 0. Definim
= {(xn) cco| Y |zl < oo}

n=0

care este subspatiu liniar normat al lui (co, ||[|.) . Avem

7ol
e = Co.

2 g . 25l . < .
Intr-adevar, incluziunea (P " C ¢q este evidentd. Invers, pentru z = (z,,) € ¢ definim pentru
orice n

y" = (21, ..., ,,0...) €LP

si avem
[l = y"|lo = sup|z| — 0.
k>n

Prin urmare, cum ¢ # ¢y, (¢, -]|,) nu este spatiu Banach.
Acum, pentru p > 1, definim pe ¢ norma

ol = <i)

12l < ll2]l,

Este clar ca pentru orice x € /P,

deci topologia data de ||-||,, este mai find decat topologia data de ||z|,, pe ¢*.
Cu aceastd norma ¢? este spatiu Banach: a se vedea Problema [0]

Exemplul 1.2.6 Notam prin cgg spatiul liniar al sirurilor numerice care au toti termenii nuli
de la un loc incolo (uneori, acest spatiu se noteaza R*). Dacd ne uitam la argumentele de mai
sus, de fapt am demonstrat si ci Gool'l= = ¢g, deci nici (cgo, |||, ) nu este spatiu Banach.

Observatia 1.2.7 Fiel < p < r. Avem urmatoarele incluziuni (care sunt stricte) intre spatiile
liniare discutate:

coo=R®ClCcPcCl CcyCecCm=1I>.

Mai mult, se verifica cu usurinta faptul ca pentru orice v € (1,
2]l < Nll, < flll, < ]y -

Observam din nou ca toate aceste spatii liniare sunt infinit dimensionale: multimea vectorilor
unitars

{(1,0,0,..),(0,1,0,...) ...}

este o baza numarabila in cy.



Observatia 1.2.8 In multe cazuri, atunci cind vor interveni spatii de iruri vom presupune
tacit, din motive ce tin de usurinta expunerii, ca sirurile sunt indexate dupa P.

De altfel, printre instrumentele de baza pentru studiul acestor spatii se numara urmatoarele
inegalitati care sunt generalizari ale inegalitatilor lui Minkowski si respectiv Holder: pentru

orice p > 1, (xn)nep ) (yn)nep CR,

o0 o0 l/p o0 l/p
S o+l < (zw) N (zw) |
n=1 n=1 n=1

jar pentru ¢ = (p— 1) " p (adicd p ' + ¢ = 1),

) 00 1/p fes) 1/q
> [ngl < (Z |xn|”> (Z w) .
n=1

n=1 n=1

Exemplul 1.2.9 Fie X # (), M C P(X) o o—algebra si p: M — [0,00] o masurd. Consi-
deram p > 1 si reamintim definitia spatiului liniar de functii p—integrabile, unde, ca de obicei,
functii egale y—a.p.t. se identifica:

L7 (X, 1 R) = {fzxwr/xuvczumo}.

1Al = ( / Iflpdu)p

Apoi, definim spatiul liniar al functiilor masurabile esential marginite:

Pe acest spatiu se defineste norma

L (X, p1,R) ={f: X - R| f este M—masurabild si 3¢ > 0: |f| < ¢, u—a.p.t.}.
Pe acest spatiu definim norma
[flloe = inf{a>0]u({zreX|[f]=a})=0}
=inf{c>0]||f] <e¢, p—apt},

cu conventiile inf () = oo, sup ) = —oo.
Pentru orice p € [1, o0], <Lp (X, 1, R), H||p> este spatiu Banach.
Daca X are masura finita, atunci pentru 1 < p < r < oo are loc

L' (X, p,R) C LP (X, 1, R) € L' (X, 1, R).

Pentru a demonstra aceasta, si considerdm p,q cu p < ¢ si s = p~!r > 1. Notdm de asemenea
cu u valoarea (s —1)"'s. Fie f m#surabild din L (X, ,R). Avem, pe baza inegalititii lui
Holder pentru functii,

1 -1

[ieracs ([ra)” ([werra) =wo ([1rera)
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de unde L
1A, < p (X" 7" (£,

ceea ce conduce la incluziunile anuntate.
Daca masura lui X nu este finita, atunci nu mai au loc incluziuni de tipul celor precedente.
De exemplu, pentru orice p,r € [1,00), p # r

P (R, 1, R) ¢ L™ (R, u, R).

Observatia 1.2.10 Separabilitatea este o proprietate importanta, dar de multe ori dificil de
probat sau de infirmat. De exemplu, este clar ca R? este un spatiu separabil, Q7 fiind numarabila
gi densa (indiferent de norma,).

1.3 Operatori liniari intre spatii liniare normate

Fie (X, |-]), (Y, ]]|]) spatii liniare normate reale. Consideram 7" : X — Y un operator liniar,
adica o functie ce satisface relatia

T (ax + py) = aT () + BT (y), Yo, B € R, Vz,y € X.

Evident, aceasta notiune nu utilizeaza norma, deci este o notiune algebrica. Uneori vom nota
T (x) prin Tz. Este de asemenea clar ca T (0x) = Oy. Notdm cu Ker 7 nucleul lui 7', adica

KerT ={x € X |T (x) =0}.

Ca in cazul oricarei functii, Im 7" desemneaza imaginea lui 7. Ambele multimi, Ker 7" gi Im T’
sunt subspatii liniare in X, respectiv Y. In plus, T este injectiv daci gi numai dacd Ker T' = {0},
iar, din nou ca in cazul unei functii oarecare, surjectivitatea este caracterizata prin Im7 =Y.

Propozitia 1.3.1 Fie T un operator liniar de la X la Y. Urmatoarele afirmatic sunt echiva-
lente:

(i) T este continuu pe X;

(i1) T este continuu intr-un punct x € X;

(111) T este continuu in 0.

Exemplul 1.3.2 Daca X este un spatiu liniar normat, atunci operatorul identitate, notat id
sau idx este liniar si continuu.

Exemplul 1.3.3 Operatorul 7" : (C ([a,b]), ||-|l..) — (R,]]),

b
()= [ fwar
este liniar. Din Teorema de medie, pentru orice f € C ([a,b]),

T (I < b=a)lflls

deci T este continuu in 0. Prin urmare, 7" este continuu pe intreg spatiul.

10



Exemplul 1.3.4 Operatorul 7" : (L' (X, 1, R), [|-|l,) — (R, |-]),

15 = [ fadp
X
este liniar. Avem, pentru orice f € L* (X, u, R),

TN <A1y

deci T este continuu in 0. Prin urmare, 7" este continuu pe intreg spatiul.
Exemplul 1.3.5 Fie
Y ={p:[0,1] — R | p polinom cu coeficienti reali} .

Evident, (Y, ||-||.,) este subspatiu liniar normat al Iui (C ([0, 1]), ||-||..) -
Definim 7" : Y — Y prin

T(p)=1p.

Aratam ca acest operator este discontinuu in 0. Fie, pentru orice n € P,

Evident,
Ipalle =77, Vn € P,

deci p, H% 0. Dar, pe de alta parte,

1T (Pn)llo = 1, VR EP.
Deducem ca T' nu este continuu in 0. Prin urmare, 7' nu este continuu in niciun punct.

Definitia 1.3.6 Fie (X, |-||), (Y, |ll) spatii liniare normate reale si T : X — Y un operator
lintar. Spunem ca T este operator marginit dacd duce multimi marginite din X in multims
marginite din 'Y, ceea ce este echivalent cu urmatoarea proprietate:

IM >0, Vo € X : ||Tz|| < M ||z]|.

Propozitia 1.3.7 In notatiile precedente, urmatoarele afirmatii sunt echivalente:
(i) T este continuu;
(i) T este marginit.

Propozitia 1.3.8 Daca X este finit dimensional si T : X — Y este liniar, atunci T este
continuu.

11



Observatia 1.3.9 Daca X este un spativ liniar normat infinit dimensional, atunci exista
un operator liniar de la X la R discontinuu. Pentru a demonstra aceasta, consideram B =
{e; | i € I} o baza algebricd a lui X. Farda a restrange generalitatea, putem presupune ca toate

elementele bazei sunt de norma 1. Pentru ca X este infinit dimensional, putem presupune ca
N C I. Definim f: B — R prin

fles) = 1, daca i € N
Y10, dacai e I\N.
Prelungim aceasta functie prin liniaritate la intreg spatiul X. Fvident, aceasta functie nu este

continua pentru ca nu este marginita pe B C Sx.

Operatorii liniari de la X la R se numesc si functionale liniare. In privinta legiturii dintre
continuitatea unei functionale liniare si o proprietate de marginire, a se vedea Problema [15]

Notdm cu L (X,Y") spatiul liniar al operatorilor continui de la X la Y si cu L (X) spatiul
L(X,X).

Propozitia 1.3.10 Fie (X, ||]|), (Y, ||||) spatii liniare normate reale. Aplicatia ||| : L (X,Y) —
[0, 00),
IT[| = inf {M >0 | [[T]| < M|z, V2 € X}

este o norma pe L (X,Y'), numita norma operatoriala.
Observatia 1.3.11 1. Pentru orice T € L(X,Y), au loc

7] = p{m o e X\ {0}}

]
= sup {[|T[| | f|=[] <1}
= sup {[|T[| | fl=[] <1}
= sup {[| T[] | f|=[| = 1}

2. Pentru orice T € L (X,Y)
[T| < [IT[| -l , Vo € X.
Exemplul 1.3.12 Definim 7": (C ([a,b]), ||||..) — R, [|-]),
Tf=Fle),
unde ¢ este un numar fixat in [a,b]. Atunci T este operator liniar marginit si |7 = 1.
Teorema 1.3.13 Daca Y este spatiu Banach, atunci L (X,Y) este spatiu Banach.

Definitia 1.3.14 Fie (X, ||-||) un spativ liniar normat. Spatiul liniar L (X,R) se numeste
dualul lur X si se noteaza cu X*. Norma operatoriala pe X* indusa de norma pe X se numeste
norma duala normei lui X i o vom nota uneori cu |-, -

12



Observatia 1.3.15 Cum (R, ||) este spatiu Banach, X* inzestrat cu norma operatoriala este
de asemenea un spatiu Banach. Daca x* € X* gi x € X, mai notdm numarul real x* (x) prin
(x,x*) sau (z*,x). Este important de retinut ca |x* (z)| < ||z| ||z*|, pentru orice x € X gi
xr e X*

Propozitia 1.3.16 Daca x* € X*\ {0}, atunci Ker z* este un subspatiu liniar inchis al lui X
de codimensiune 1.

Definitia 1.3.17 Fie (X, ||-]|) si (Y, ||-||) spatii liniare normate si T : (X, ||-]|) — (Y, |]]) -

(i) T' se numegte izomorfism intre cele doud spatii liniare normate daca este liniar, continuu,
bijectiv, iar operatorul invers T~ este de asemenea continuu.

(i) T se numeste izometrie daca pentru orice x € X, ||[Tx| = ||z|| .

Observatia 1.3.18 Daca T este izometrie liniara din proprietatea de definitie se obtine ca
este operator continuu §i injectiv, iar ||T'|| = 1. Daca, in plus, T este surjectie atunci este
1zomorfism.

Definitia 1.3.19 Doua spatii liniare normate (X, ||-||) s¢ (Y, ||||) se numesc izomorfe daca
existd un izomorfism intre ele. Daca, in plus, izomorfismul este si izometrie, spunem ca spatiile
sunt izometric izomorfe (sau izometrice, subintelegand in acest context izomorfismul) si scriem

(XD = (-1 -

1.4 Teorema Hahn-Banach

Reamintim acum (fird demonstratie) unul dintre rezultatele fundamentale ale Analizei functionale
si cateva dintre consecintele sale.

Definitia 1.4.1 Fie X spatiu liniar real. O functie p: X — R se numeste subliniara daca
p(Az) =Ap(x), VA >0, Vo € X,
ple+y)<p@)+py), Yo,y e X.
Teorema 1.4.2 (Hahn-Banach, varianta algebrica) Fie X spatiu liniar real $iY un sub-
spaliw liniar al siu. Fie p : X — R o functie subliniara si f : Y — R o functie liniara
astfel incdt f (y) < p(y) pentru orice y € Y. Atunci ezista f : X — R o functie liniara care
prelungeste pe f si satisface f (x) < p(x) pentru orice v € X.

Teorema 1.4.3 (Hahn-Banach, varianta topologicad) Fie (X, ||-||) un spatiu liniar normat
§i Y un subspatiuv liniar normat al sau. Fie y* € Y*. Atunci exista x* € X* astfel incat

z* (y) = y* (y) pentru orice y € Y i ||2*]| . = [Jy*|

Y+
Demonstratie Se foloseste Teorema pentru aplicatia subliniard p : X — R, p(z) =
ly*|ly- lz|| care majoreazd pe y* pe Y. O
Observatia 1.4.4 Teorema(Il.4.5 aratd, in particular, ca dualul unui subspatiu liniar este for-

mat din restrictiile la acel subspatiu ale elemetelor din dualul spatiului, adica

V*={zjy | 2" € X*}.
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Corolarul 1.4.5 Fie (X,||-]|) un spatiu liniar normat i x € X\ {0} . Atunci exista x* € X*
astfel incat o* (x) = ||z||* g ||z*| = |||

Demonstratie Se foloseste Teorema m pentru Y = Rz si y* : Y — R, y* (tz) = t||z||” pentru
orice t € R. ]

Corolarul 1.4.6 Fie (X, ||||) un spatiu liniar normat. Atunci, pentru orice v € X,

]l = max {|z* ()| | 2" € X7, [l2"]| < 1}.
Demonstratie Daca x = 0 egalitatea este clara. Daca = # 0, atunci

sup {|z" (z)] | " € X*, [|l=7] < 1} < [|=]
din definitia normei duale. Din Corolarul [1.4.5] existd z* € X* astfel incat «* (z) = ||z* s
|z*|| = ||2|| . Alegem u* = ||z||* 2* si avem |[u*]| = 1, u* (z) = ||z||, de unde obtinem concluzia.
U
1.5 Dualele unor spatii uzuale

Propozitia 1.5.1 Fie d € P. Au loc egalitatile:

(R 1) 1L ) = (R I11,)
(R IFL) = (R L)
(R 1) L) = (R I11,)

: (®410,) 7 L) = (R 11,)

pentru orice p,q > 1 cu i + % =1.1In plus, in fiecare caz in parte, izomorfismul izometric este
definit prin T : (Rd, ||||) — ((Rd, ||||)* 3 ||||*) )

d
= E TrYk-
k=1

Demonstratie Fie B = {ey, ..., e} baza canonicd a lui R? (sau orice altd bazi din R?, caz in
care normele sunt intelese in mod uzual). Pentru orice z € R? existd o multime de scalari
{A1, ..., A¢} astfel incat avem scrierea unicd in baza datd x = 22:1 Aper. Dacd z* : R4 — R
este o functionala liniara, atunci

d
k=1
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Notand z* (ey) prin of pentru k € 1,d,

d d
x* (Z )\kek) =z"(x) = Z A
k=1 k=1

Invers, toate functionalele de aceasta forma sunt liniare, ceea ce inseamna ca aceasta este forma
generald a functionalelor liniare pe R

Deci, z* este functionals liniard pe R? daci si numai dacd exista o € R? astfel incat are
loc relatia anterioara.

Cum pe spatii liniare normate finit dimensionale liniaritatea atrage continuitatea, deducem
cd aceasta este forma generald a elementelor dualului, indiferent de norma considerata (de altfel,
normele sunt echivalente).

Practic, in continuare, trebuie sa identificam norma duala in functie de forma normei con-
siderate pe RY.

Consideram R? inzestrat cu ||-||,. Definim 7 : (R?, [|-|l,) — ((R% [|]l,)", [I]l,) prin

T(@) () =Y e

Este clar ci T este bine definit, intrucat 7' (x) este functionals liniarg pe R? (definits de o’ ®) =
). De asemenea, T este liniar. In plus, T este surjectiv pentru ci pentru orice z* € (Rd, IE HQ) "
avem z* =T (o).

Aritdm ci T este izometrie, adici pentru orice = € R?,

[Tl = ;-

Pentru x = 0, egalitatea este evidentd. Fie deci x € R?\ {0} . Pentru orice y € R,

d d d d
T () ()] = awye <O oyl < 4| D3y | Y w2 = llzlly [1yll, -
k=1 k=1 k=1 k=1

Deci, | Tz, < |zl 1
Pe de alta parte, |T' (z) (y)| < ||Tz||, ||ly|l, pentru orice y € R%. Alegem y = ||z||," = pentru
care inegalitatea anterioara devine
lelly < Tl -

Rezulta agsadar egalitatea dorita.

Considersm R? inzestrat cu ||-||;. Definim 7" : (R%, ||-{|..) — ((R% [|,)". []l,) ca mai sus
prin

d
T (z)(y) = Zxkfyk-
k=1
Singurul lucru care trebuie aratat este ca

IT|l, = o]l , = € R\ {0}

[
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Fixdm z € R?\ {0} si pentru orice y € R?,

d d d
D=3 e <> ol < Nzl 3 el = llall ol
k=1 k=1 k=1

Deci [|Tz], < ||zl

Apoi alegem k € 1 1,d astfel incat |zz| = |||, si deﬁnlm y € R? avand toate componentele
nule, cu exceptia celei de pe pozitia k care are valoarea |z7| " az. Atunci ||y, = 1 si inegalitatea
T (x) (y)| < Tz, ||y||, devine ||z| < |[|[Tz||, . Egalitatea este probata.

Consideram R? inzestrat cu |-||,. Definim, 7 : (R, [|-[|;) — (R |]l.)" . |]l.) din nou

prin
d
= E TrYk-
k=1

Aratam ca
Tz, = [|z]|,, = € R*\ {0}.

Lusm o € R%\ {0} si pentru orice y € R,

d d
y)l = Zxk?ﬂc < Z eyl < [lzll; vl
k=1 k=1

Deci || ], < [l
Apoi definim y = (sgnag),erg € RY Atunci [jyll, = 1 i inegalitatea [T (z) (y)| <
| Tz, |lyll,, devine ||z|; < ||Tz||, . Are loc din nou egalitatea dorita.

In sfarsit, pentru p,¢ > 1 cu % + % = 1 a demonstra

() L) = (R 1)

revine la acelasi rationament ca in cazul normei ||-||, cu folosirea inegalitatii lui Holder.
Astfel, rezulta toate concluziile. O

Propozitia 1.5.2 Are loc egalitatea:

((co: 1o)™Y = (€5, 1111)

prin izomorfismul izometric T : (€4, ]]]|,) — ((co, |I-11)", I'l,) definit astfel:

(o0}
= E TrYk,
k=1

unde © = () ,cp € 0, Y = (Yn)pep € Co-
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Demonstratie Fie T operatorul din enunt. Aratam ca:
1. T este bine definit;
2. T este liniar;
3. T este surjectiv;
4. |Tz|, = ||lz||, pentru orice = € ¢*.
Aceste proprietati demonstreaza izomorfismul celor doua spatii.

1. Fie z € (', ca mai sus. Trebuie si ardtdm ci Tz € (co, ||||,)" adicd Tz : (co, |||l) — R
este bine definita, liniara si continua. Cum orice sir y € ¢ este marginit, absoluta convergenta

a seriel
o
E TrYk
k=1

rezulta dintr-un criteriu de comparatie. Deci T'x este corect definit. Liniaritatea lui Tz este
evidenta. Apoi, pentru orice y € ¢

T () (y)| =

<D lawyel < sup{lyl [k € B} Jaal = Iyl llll, -
k=1 k=1

Deci Tz este continud si, in plus, ||Tz|, < ||z, -

2. Liniaritatea lui T" este usor de verificat.

3. Fiez* € (co,||*||)" - Considersm vectorii unitari din co, {e, | k € P}. Sirulz = (2* (€,)),,cp
este din ¢! pentru ci pentru orice n > 1

Z |z = Z |z* (ex)] = ngn “(eg) = x* (Z sgn (z* (eg)) - ek>

k=1
“lex)) ekl < =7,
o0
Astfel,
o
> fa] < 27,
k=1
deci x € /.

Acum verificam ca Tx = z*. Pentru orice y € ¢y

y) = Zxkyk = Zx* (ex) yr = ligrle* (ex) Yk
= hmz ¥ (yrex) = hmx (Z ykek)

Dar

Ml oo
Y — Y,

k=1
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iar 2* este continud pe (co, ||-||.) , deci

T (z)(y) =" (y), Yy € co.

Aceasta probeaza ca T este surjectiv.
4. Am vazut deja cd ||Tz|, < ||z||, pentru orice z € ¢*.
Fie x € /*. Avem, pentru n € P,

n n o0
E |~”Ck\ = E SEN T - T = E TkYk,
k=1 k=1 k=1

unde L
| sgnazy, keln
=0, ke T

Este clar cd y = (yx) € ¢ s ||yl < 1. Deci

D lanl =T (@) (y) < | Tzl VneP.
k=1

Obtinem
lzfly < | T]l, -

Astfel, toate afirmatiile sunt probate. O
Propozitia 1.5.3 Are loc egalitatea:

(el lloo)™ s 1) = (€5 11-11,)

prin izomorfismul izometric T : {1 — c*

T (x) (y) = xolimy, + Z TkYk,
k=1

unde x = (2,),,cy € 0" 0y = (Yn),cp € C.

Demonstratie Se arata toate proprietatile necesare pentru operatorul 7', dupa modelul propoz-
itiei precedente. 0

Propozitia 1.5.4 Are loc egalitatea

(GRRWINRBEACH T SR

prin izomorfismul izometric T : (m, ||| o) — ((¢% I-1)° |-]l,) definit astfel:

T () (y) = > whys,

unde T = (xn)nEP em, Yy = (yn)ne]}P € 61'
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Demonstratie Parcurgem cele patru etape ca in cazul Propozitiei|l.5.2l Calculele si argumentele
sunt asemanatoare. O

Propozitia 1.5.5 Pentru p > 1 are loc egalitatea:

(e, ) = (e111,)

unde q = £, prin izomorfismul izometric T : <€q, ||||q> — ((Ep, ||||p) : ||H*> definit astfel:

T (x)(y) = Zﬂfkyk,

unde T = (lvn)nep S gqa Yy = (yn)nGP S .

Demonstratie Parcurgem cele patru etape ca in cazul Problemei Calculele gi argumentele
sunt asemanatoare, fiind folosita inegalitatea lui Holder. Prezentam unele detalii.
Cum pentru @ = (2,),,cp € €%, Y = (Yn),cp € ¥ avem

Slaw < (S ) (Sr)
k=1 k=1 k=1
obtinem ca seria

o0
E TrYk
k=1

este absolut convergents, deci Tz e corect definiti. In plus

[Tzl < llll,, Vo e .

Liniaritatea este simpla si demonstram acum surjectivitatea. Fie z* € <€p -l p> . Consid-

eram vectorii unitari care sunt din ¢” si construim sirul x = (z* (e,)),,cp - Trebuie sa aratam ca
x € (1. Daca toate componentele sale sunt nule acest lucru este evident. Altfel, fie n € P astfel
incat cel putin un termen de rang inferior este nenul. Avem

n n n
> lwel = 3 Jnl ] = Dl s () -
k=1 k=1 k=1
n n
= Z 26|  sgn () - 2 (ex) = o (Z 26| sgn () - ek>
k=1 k=1

= [l="1l. (Z i7" [sgn (xk)|p>
p

k=1

S =

n

S " sgn (2) - e

k=1

< [l

*

1
p

1
n P n
= [l="]l. ZI%V!S%H(%)\”) < [l (lequ> :
k=1 k=1
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de unde se obtine

" -1, 1
(Z |wk|q> = (Z kalq) < [l2*]. -
k=1 k=1

Deci z € (4. Surjectivitatea lui T rezulta acum ca la Problema [1.5.2]
Mai raméne sa probam ca
1Tz, = [l=ll,, Vo€ .

Daca z = 0 este evident. Altfel, fie n € P astfel incat cel putin un termen de rang inferior este
nenul. Definim girul " prin

k=1 k=1
Avem
1 1
n - ’ - —2)p P ’
ly™l, = D |zl lekl(q ||
k=1 k=1
1 1
n P n P
(i) () -
k=1 k=1
si

De aici deducem ca

Pentru n — oo obtinem concluzia dorita. 0

1.6 Separabilitate

Propozitia 1.6.1 Fie X spatiu liniar normat i A C X numarabila astfel incdt span A = X.
Atunci X este separabil.

Demonstratie. Asa cum se stie,

span A = {Zakaklneﬁ”,ak €R,a; € A, Vkel,_n}.

k=1

Consideram multimea

spang A = {quaHnEP,quQ,ak € A, ‘v’k:El,_n}.

k=1
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Aceasta multime este numarabila pentru ca poate fi scrisa ca

U {quak | ar € Q. ax € A, wcel,_n},

neP \ k=1

fiecare dintre multimile

{quak | g € Q, a1 € A, Vkel,_n}

k=1

fiind numarabild (are cardinalul mai mic sau egal decat cel al multimii Q" x A™).
Aratam ca spang A este densa. Fie z € X gi € > 0. Din ipotezd, existd y € span A astfel
incat ||z — y|| < 27'e. Prin definitia lui span A, existi n € Psi o, € Ryap € A, cuk € 1,n

astfel Incat .
Yy = Z aLQ.
k=1

Cum Q este dens# in R, pentru orice k € T, n, existi ¢, € Q astfel incat |ay — x| < (2n |lag] +1) " e.
Atunci

< lz =yl +

n
T — E qrag
k=1

n n
E QG — E qrag
k=1 k=1

<27'e+ ) o — gl llall
k=1

Deci spang A este densa in X. O

Exemplul 1.6.2 Urmétoarele spatii sunt separabile: (co, ||||..) (6”, ||Hp) cup € [1,00),
(©(10,1]) lI-l0) -

Pentru a demonstra separabilitatea spatiului (co, ||-|| ) , reamintim c& sirurile e; = (1, 0,0, ..),
es = (0,1,0,...), ... formeazd o bazi numarabild in cy. Deci cqo = span{ex | k € P}. De aseme-
nea, stim ca

si conform rezultatului teoretic, (co, ||-||.,) este separabil.
La fel, se constata ca
||||p — Coo = Ep? vp € [1,00),

pentru ca, v = (Ty),p € (¥ si orice n > 1,

n
r — E Tl
k=1

p

= |zl” — 0.

P k>n
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Separabilitatea lui (C'([0,1]), ||-||,,) se obtine din acelasi rezultat teoretic, tinand cont de
faptul ca

span {z" | n € N}

este dens (din Teorema lui Weierstrass de aproximare uniformé a functiilor continue prin poli-
noame).

Observatia 1.6.3 Se poate ardta similar ca pentru O # Q C R? pe care consideram urma
masurii Lebesque, spatiul LP () este separabil pentru p € [1, 00).

22



Capitolul 2

Separarea multimilor convexe

Convexitatea joaca un rol fundamental in cadrul rezultalelor din acest curs. Chiar daca rolul
convexitatii va fi din ce in ce mai putin vizibil la nivel imediat in capitolele urmatoare, de fapt,
remanent, acest concept va fi mereu prezent prin intermediul rezultatelor ce sunt prezentate in
acest capitol.

2.1 Multimi convexe
Reamintim definitia multimii convexe.

Definitia 2.1.1 Fie (X, ||]|) un spatiu liniar normat. O multime A C X se numeste convezrd
daca pentru orice x,y € A, [x,y] ={azx+ (1 —a)y | a €0,1]} C A.

Cu alte cuvinte, o multime nevida A este convexa daca si numai daca odata cu doua puncte
a1, as contine intreg segmentul [a1, as]. Se mai observa ca in definitia aceasta este suficient s&
ludm « € (0, 1). Convenim s consideram multimea vid4 ca fiind convexa.
Prin inductie se aratd imediat cd A # () este convexa daca si numai dacd pentru orice n € P,
n

L1, Ty ey T € A, 1, Qa, ...,y € [0,1] cu > o; = 1, are loc
i=1

n
Z o € A.
=1

O suma cum este cea de mai sus se numeste combinatie convexa a elementelor (;);c1.

Observatia 2.1.2 (i) Este evident ca orice intersectie de mullimi convexe este convezd, iar o
reuniune de multimi convexe nu este, in general, convexa.

(i) Cele mai importante exemple de multimi convexe sunt: intregqul spatiu, subspatiile
liniare, bilele (inchise i deschise).
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Fie A C X o multime nevida. Se numegte infaguratoarea convexa a multimii A, multimea

conv A = {Z x| n€P, (i)t C [0, 00), Zai =1, (Ti)ietn C A} :
i=1 i=1

Este usor de aratat ca infaguratoarea convexa a lui A este multime convexa, contine multimea
A si este cea mai mica multime (in sensul incluziunii) cu aceste proprietati.

Cum bilele sunt multimi convexe si sunt translatii ale bilelor centrate in 0, incepem prin a
preciza cateva proprietati ale vecinatatilor lui 0 intr-un spatiu liniar normat.

Lema 2.1.3 Fie (X, ||-||) un spatiu liniar normat si V' o vecinatate a originii. Atunci:

(i) exista o vecinatate U a originii astfel incat U +U C 'V

(1) pentru orice scalar o > 0 existd o vecindtate U a originii astfel incat aU C V;

(111) pentru orice x € X, exista o > 0 astfel incdt pentru orice B € [0,a], Sz € V; in
particular, V' este absorbanta.

Demonstratie (1) Asa cum am vazut (si cum se poate ugor demonstra), aplicatiau : X x X — X,
u(z,y)=z+y

este continud. Scriind continuitatea in (0, 0) a acestei functii deducem ca pentru vecindtatea V'
exista vecinatatea U astfel incat U + U C V.
(ii) Aplicatia v : R x X — X dat4 prin

v(a,z) = ax

este continua. Fie a > 0 fixat. Cum « -0 = 0, pentru V exista o vecinatate U a originii si un
numar ¢ > 0 astfel incat pentru orice € (o« — e, + ¢) si orice u € U

pu e V.

In particular, U C V.
(iii) Cum V este vecindtate a originii, existd ¢ > 0 astfel incat D (0,¢) C V. Fie z € X.
Daca = = 0, proprietatea de demonstrat este evidenta. Luam z # 0. Atunci

In plus, cum D (0, ) este convexi si contine 0,

£
0,—} x C D(0,e) CV.
[ ]l

Lema este complet demonstrata. 0

Observatia 2.1.4 Bineinteles, lema de mai sus se poate demonstra folosind bile.

Prezentam in continuare unele proprietati topologice ale multimilor convexe.
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Teorema 2.1.5 Fie C C (X, ||]|) o multime convera. Atunci:
(i) cl C' este convexa;
(ii) daci x € int C giy € clC, atunci [x,y) C int C;
(i1i) int C' este convexd;
(iv) daca int C # 0, atunci c1C = cl(int C') gi int C' = int(cl C).

Demonstratie (i) Fie x,y € c1C si a € (0,1). Mai mult, fie V' o vecindtate a lui 0 € X. Conform
Lemei [2.1.3] existd o vecindtate U a lui 0 astfel incat aU + (1 — @)U C V. Cum z,y € clC,
existd a2y, yy € C astfel incat zy € (. +U)NC siyy € (y+ U)NC. In consecintd, folosind
convexitatea lui C, avem

Coazp+(1l—a)yp€alz+U)+ (1 —a)(y+U)
=ar+(1-a)y+alU+(1—-a)U
Car+(1—a)y+V,
deci CN(az+ (1 —a)y+ V) # 0. Cum V este o vecindtate arbitrard a lui 0, aceasta aratd ca
ar+ (1 —a)y € clC.

(ii) Fie o € (0, 1). Este suficient sa ardtdm ca ax + (1 — o)y € int C. Cum z € int C, exista
o vecinatate V' a lui 0 astfel incat z +V +V C C. Pe de alta parte, y € clC' implica

o)
cn (y - —V) # 0,
11—«
deci y poate fi scris ca ¢+ a(l — a) v, cu c € C si v € V. Obtinem
ar+(1—a)y+aV =ax+ (1 —a)c+av+aV
=[1—-a)c+alz+v+V)
C(l—a)c+aCCC.
Cum oV este vecindtate a originii, concluziondm ca az + (1 — a)y € int C.
(iii) Dacd z,y € int C, atunci implicatia de mai sus inseamna ci [z,y] C int C, deci int C
este multime convexa.
(iv) Incluziunea cl(int C') C cl C' este evidenta. Fie z € ¢l C. Din (ii), pentru orice y € int C,
(x,y] C int C, ceea ce inseamn4 ci ne putem apropia de x cu puncte din int C, deci z € cl(int C').
Pentru partea a doua, din nou o incluziune este evidenta: int C' C int(cl C).
Fie z € int(cl C'), ceea ce inseamn4 cd existd o vecinatate V' a lui 0 astfel incat x +V C clC,
deci, din nou din (ii), pentru orice y € int C, a € (0,1) siv € V,
alx+v)+ (1 —a)y € int C.
Dar V este absorbanta, deci pentru « suficient de aproape de 1,

_— (1—a)(x—1y) cv

si pentru un astfel de «,

m:a<x+ +(1—-a)y

(1— )z~ y))

=a(z4+7)+ (1 —a)y € intC.

Demonstratia este completa. 0
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2.2 Separarea prin hiperplane a multimilor convexe

Discutam o a trei forma a Teoremei Hahn-Banach si prezentam unele consecinte ale acesteia.

Definitia 2.2.1 Fie (X, ||-||) un spativ liniar normat, f : X — R liniara (nu neaparat con-
tinua), neidentic nuld gi o € R. Se numeste hiperplan o multime de forma

H={zeX| f(zx)=a}.
Vom mai nota aceasta multime prin Hy .

Propozitia 2.2.2 Cu notatiile st in cadrul de mai sus, hiperplanul Hy, este inchis daca st
numai daca f este continud.

Demonstratie O implicatie este evidentd: dacd f este continud, cum H;,, = f~' ({a}), deducem
ca Hy, este multime inchisa.

Presupunem acum c& Hy, este inchis, adicd X\Hy, este multime deschisd. Posibilitatea
X\H;, = 0 este exclusd de faptul cd f # 0. Asadar, X\H;, # 0. Fie zp € X\Hj,, deci
f (zo) # «. Fara a restrange generalitatea presupunem ca f (zg) < «. Din ipoteza, existd e > 0
astfel incat B (zg,e) C X\Hyq.

Ardtdm ca f (x) < « pentru orice z € B (zg,¢). Contrar, existd x; € B (x¢,¢) astfel incat
f(x1) > a. Cum B (xg,¢) este convexd, [zg,x1] C B (zg,¢). Dar, pentru

f(z1) —a

A= ) - 7 ()

€ (0,1)
avem

ST =Nz + Axg) = (1 = A) f(21) + Af (20)
a— f(wo)

= ) = f (o)) @V

ceea ce reprezinta o contradictie.
Deci, pentru orice = € B (zg,¢),

f(r1) —a
f(21) = f (o)

f(z) <a.
Aceasta inegalitate inseamna marginirea superioara a lui f pe o vecinatate a lui xy. Obtinem,
conform Problemei [15] cd f este functionald liniard continua. O

Definitia 2.2.3 Fie A, B C (X,||||) doua multimi nevide.
(1) Spunem ca hiperplanul Hy,, separd multimile A si B daca f (a) < a pentru orice a € A
i f (b) > a pentru orice b € B. Aceasta este echivalent cu

sup f (2) < inf [ (x).
€A zeB

(it) Spunem ca hiperplanul Hy,, separa strict multimile A si B daca exista € > 0 astfel incdt
f(a) <« pentru orice a € A si f (b) > o+ ¢ pentru orice b € B. Aceasta este echivalent cu

sup f (z) < inf f ().
z€A zeB
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Observatia 2.2.4 Hiperplanul Hy, separd (strict) multimile A si B dacd si numai daca se-
para (strict) multimile conv A gi conv B, deci problema separarii a doud multimi se reduce la
separarea multtmilor convezxe.

Lema 2.2.5 Fie C C (X,||-||) o multime convexa si deschisa ce contine vectorul nul. Definim
p: X — R,
px)=inf{a>0|a'zeC}.

Atunci aplicatia p (numita functionala lui Minkowski asociata lui C') este bine definita gi are
urmatoarele proprietati:

(i) p(A\x) = A\p(x), pentru orice X > 0 gi orice x € X;

(1) exista M > 0 astfel incat pentru orice x € X, 0 < p(z) < M ||z|;

(ii)) C ={x € X | p(x) < 1};

() p(x+y) <p(z)+p(y), pentru orice x,y € X.

Demonstratie Cum 0 € int C, multimea
{a>0]azeC}

este nevida, pentru orice x € X. Deci p este bine definita.

(i) Relatia p(Az) = Ap(x), pentru orice A > 0 ¢i x € X este evidentd (in particular,
p(0) =0).

(ii) Cum 0 € int C, existd € > 0 astfel incat D (0,e) C C. Fie z € X\ {0} . Atunci

ix e C,
k4l
deci
ple) <e 'z,

ceea ce demonstreaza punctul (ii).

(iii) Ardtdm dubla incluziune. Fie x € C. Cum C este deschisd, exista € > 0 astfel incat
(1+¢e)xeC. Deci, p(x) < (14+¢)' < 1.

Fie acum z € X astfel incat p (z) < 1. Din teorema de caracterizare a marginii inferioare,
existd a € (0,1) astfel incat o'z € C. Dar z € [0,a x| si C este convexd. Prin urmare,
x e C.

(iv) Fie z,y € X. Tot din teorema de caracterizare a marginii inferioare, pentru orice ¢ > 0
existd o € (0,p(z) +¢), B € (0,p(y) + ¢) astfel incat a 'z € C, 7'y € C. Atunci, pe baza
convexitatii lui C,

1 « 1 15}

a+ﬂ(x+y) =25 x+mﬁ_ly60,
deci
plet+y)<a+B<px)+py) + 2.
Facem ¢ — 0 si obtinem concluzia. 0

Prezentam acum un prim rezultat de separare.
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Teorema 2.2.6 Fie C C (X, ||-||) o multime conveza cu interior nevid i T € X\ int C. Atunci
exista v* € X*\ {0} astfel incit =* (x) < z* (T) pentru orice x € C. In particular, hiperplanul
H v oo @) separda multimile convexe C' gi {T} .

Demonstratie Efectuand eventual o translatie putem presupune fara a restrange generalitatea
ca 0 € int C'. Notam cu p functionala Minkowski asociata lui int C.

Consideram subspatiul liniar generat de 7, care este Y = R=Z, si definim functionala liniara
g:Y — R prin g (aZ) = «. Dacd a < 0, atunci este evident ca g (o) < p(az). Dacid a > 0,
atunci p (aT) = ap (T) > a pentru ¢ T ¢ int C' (Lema (iii)). Deci, pentru orice y € Y,
g(y) < p(y). Cum p este subliniard (Lema [2.2.5), folosind Teorema Hahn-Banach, existd o
functie liniara f definita pe tot spatiul care prelungeste functia g si care satisface inegalitatea
f(z) < p(z) pentru orice x € X. Avand in vedere inegalitatea din Lema (ii), deducem ca
f este continua. Evident, f (T) = 1 i pentru orice x € int C, f (x) < 1, deci are loc inegalitatea
strictd f () < f (T) pentru orice = € int C.

Dar, din Teorema [2.1.5] (iv), C' C clC = clint C, deci pentru orice ¢ € C' existd un sir de
elemente din int C cu limita c. Folosind inegalitatea de mai sus si trecand la limita obtinem
inegalitatea (nestrictd) dorita. O

Observatia 2.2.7 Asa cum se poate observa din demonstratie, daca C este deschisa, atunci
exista x* € X*\ {0} astfel incdt x* (x) < z* (T) pentru orice x € C.

Prezentam acum principalele rezultate de separare a multimilor convexe.

Teorema 2.2.8 (Hahn-Banach, prima forma geometrica) Fie (X, ||-||) un spatiu liniar
normat i A, B C X multimi convexe nevide astfel incat int A # () st int AN B = (). Atunci
exists * € X*\ {0} si a € R astfel incit x* (a) < a < x*(b) pentru orice a € A 5ib € B. In
particular, hiperplanul H,~ , separa multimile convexe A gi B.

Demonstratie Fie C' = int A — B. Este clar ca C este convexa si are interior nevid (este chiar
deschisd). De asemenea, 0 ¢ C. Din teorema precedentd, existd z* € X*\ {0} astfel incat
z* (x) < x* (0) = 0 pentru orice x € C. Deci

" (a) < z*(b), Ya € int A, Vb € B.

Pentru orice b € B fixat, folosim acelagi argument ca in finalul demonstratiei teoremei de
separare a unui punct de o multime convexa pentru a deduce ca

z* (a) <z*(b), Ya € A, Vb€ B.

Evident, aceasta inseamna ca sup,c4 z* (a) < infyep 2* (b) si alegand « intre cele doud valori
obtinem concluzia. 0

Teorema 2.2.9 (Hahn-Banach, a doua forma geometrica) Fie (X, ||-||) un spativ liniar
normat si A, B C X multimi convexe nevide. Daca A este inchisa si B este compacta iar
AN B =1, atunci existd * € X*\ {0} astfel incdt sup,c, v* (a) < infyep x* (b) . In particular,
pentru orice o intre aceste valori, hiperplanul H,- o separa strict multimile convexe A gi B.
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Demonstratie Fie C' = B — A. Folosind ipotezele, C' este convexa gi inchisd, iar 0 ¢ C. Prin
urmare, existd ¢ > 0 astfel incat B (0,e) N C' = (). Putem aplica Teorema [2.2.8 acestor multimi:
existd z* € X*\ {0} astfel incat z* (z) < 2*(c) pentru orice x € B(0,e) si ¢ € C. Cum
B(0,e) =eB(0,1), deducem ca

ex* (x) <z*(b—a),Vre B(0,1), Vac A, Vbe B.

Deci
ellz*| <z*(b—a), Ya€ A, Vb e B,

adica
" (a) + ez <a*(b), Ya € A, Vbe B.

Deducem ca
up z* + I < inf 2* () .
(Slepl' (a) £ HIL' H ~ l%eBx ( )

Cum z* # 0, avem concluzia. O

Exemplul 2.2.10 In general, pe spatii infinit dimensionale, ipoteza A N B = () nu este sufi-
cientd pentru a separa multimile convexe A gi B. Considerdm exemplul urmator. Fie (e,)ncp
elementele unitare din /2. Fie

A:{Zakek\nep, a, €R, ke 1,n, an>O}C€2.

k=1

Fie B = —A. Atunci A, B sunt convexe, disjuncte si pentru orice z* € (¢2, ||-||,)"\ {0}, z* (A) =
z* (B) = R. Multimile A si B nu pot fi separate printr-un hiperplan.

Justificam aceste afirmatii. Faptul ca A, B sunt convexe si disjuncte este evident. Fie
z* € (2 ]],)" \ {0} . Atunci existd k € P astfel incat z* (e) # 0, pentru ci in caz contrar z*
s-ar anula pe span {e, | n € P} care este densd (¢?, ||-||,). Pentru orice a € R, aey, + 41 € A.
Deci,

" (e, + epq1) = ax” (ex) + 2" (epy1) € ¥ (A), Ya € R.

Cum A este convexa si 2* liniard, x* (A) este convexa in R, adica este un interval. Cum z* (ey) #
0, din relatia de mai sus obtinem c& z* (A) = R. Acum este evident ca z* (B) = —2* (A) =R
si astfel se obtine si restul concluziei.

Este evident c& A si B au interior vid (de exemplu, A C cqp, deci int A C int cgg = @) si nu
sunt inchise (de exemplu (n71,0,0,...,0,...) € A pentru orice n € P si limita acestui sir este

0e >\ A).

Observatia 2.2.11 In cazul spatiilor finit dimensionale, ipoteza AN B = () este suficientd
pentru a separa multimile convexe A gi B. A se vedea Problema[38

2.3 Consecinte ale teoremelor de separare

Prezentam acum unele consecinte ale rezultatelor de separare de mai sus.
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Corolarul 2.3.1 Fie Y un subspatiu liniar normat al spatiului liniar normat (X, |-||). Sub-
spatiul Y nu este dens (adica clY # X) daca i numai dacd exista x* € X*\ {0} care se
anuleaza pe'Y.

Demonstratie Dacd X # clY, existd T € X\ clY. Din Teorema [2.2.9, exista z* € X*\ {0} si
a € R astfel incat hiperplanul H,- , separa strict multimile {Z} si cl Y. Deci, pentru oricey € YV’

" (y) <a <z (T).

Cum pentru orice y € Y i orice numar real a, elementul ay se afld in Y, deducem ca x* (y) = 0.

Invers, daca existd x* € X*\ {0} care se anuleaza pe Y, dacd Y ar fi dens, atunci, din con-
tinuitate, * se anuleaza peste tot, deci este functionala nula, ceea ce reprezinta o contradictie.
O

Observatia 2.3.2 Asadar, pentru a arata ca un subspatiu liniar normat este dens intr-un
spatiu liniar normat e suficient sa aratam ca singura functionald liniard i continud care se
anuleaza pe acea mullime este functionala nula.

Definitia 2.3.3 Fie (X, ||||) un spatiuv liniar normat, z* € X*\ {0} si a € R. Definim multi-
mile

Hf*ya:{xGX|x*(m)§oz}

HE,={reX|s @) <a},

. . A . . . . . . > .
numite semispatiu inchis gi respectiv semispatiu deschis. Analog se definesc Hz. ., st H. .

Corolarul 2.3.4 Fie (X, ||||) un spatiu liniar normat gi C C X o submultime convexa, inchisa
gt nevida astfel incit C' # X. Atunci C este intersectia tuturor semispatiilor inchise care o
contin.

Demonstratie Cum existd x € X \ C' din Teorema este clar ca exista macar un semispatiu
inchis ce contine pe C. De asemenea, este evident ca C' este inclusa in intersectia tuturor
semispatiilor inchise care o contin. Presupunem, prin reducere la absurd, ca exista T care se
afld in respectiva intersectie, dar nu se afld in C. Aplicdm Teorema[2.2.9} existd z* € X*\ {0} si
a € R astfel incat hiperplanul H,- , separa strict multimile {Z} si C. Deci, pentru orice ¢ € C'

(c) < a <z (7).
Atunci C C H, é’a, darz ¢ H ia, ceea ce reprezinta o contradictie. O

Propozitia 2.3.5 Fie (X, |-||) un spativ liniar normat. Daca (X*,|||) e separabil, atunci
(X, ||]]) e separabil.

Demonstratie Fie {2} | n € N} o multime densa in X*. Din definitia normei operatoriale, pentru
orice n existd z,, € X astfel incat ||z,| < 1 si |z} (x,)] > 27! ||2%||. Conform unui rezultat
discutat anterior, este suficient s& ardtam ca Y = span{z, | n € N} este densa in X. Folosim
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Observatia [2.3.2] Fie z* € X* astfel incat z* se anuleazd pe Y. Fie € > 0. Din densitatea lui
{z} | n € N}, existd n € N astfel incat ||z* — 2} || < e. Avem

z*]] < [lz" — 2|l + [lzn]] < e+ 2], (z,)]
<e+ 2|2k (xn) — 2" (zn)] + 22" (z,)]
< 3e.

Cum € > 0 e arbitrar, deducem ca x* = 0, deci putem concluziona. 0

Observatia 2.3.6 Reciproca propozitiei de mai sus nu este adevarata. Conform Ezxemplului
(" este separabil dar dualul siu care se identifica cu m = (> nu este separabil.
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Capitolul 3

Principii ale Analizei functionale

Fiecare ramura majora a matematicii are la baza unele rezultate fundamentale care indi-
vidualizeaza respectiva ramura si pe care se intemeiaza toate dezvoltarile ulterioare. Analiza
functionala nu face exceptie, ci, din contra, este una dintre ramurile pentru care aceste rezultate
fundamentale, numite principii, sunt clar delimitate teoretic. Scopul acestui capitol este de a
prezenta cele mai importante dintre aceste rezultate.

3.1 Rezultate auxiliare

Prezentam céteva rezultate fundamentale pe care se vor baza demonstratiile teoremelor prin-
cipale ale acestui capitol.

Teorema 3.1.1 (Teorema de intersectie, a lui Cantor) Fie (X,d) un spatiu metric com-
plet si (Fy,),cp un gir de submulfimi inchise si nevide ale lui X astfel incat F1 D Fy D ... D
F, D ... gi diam F,, — 0. Atunci exista v € X astfel incdt

{z} = ﬂ F,.

Demonstratie Mai intai, observam ca intersectia multimilor (F},) nu poate avea mai mult de un
element pentru ca in caz contrar diametrul tuturor multimilor ar fi mai mare sau egal decéat o
constanta strict pozitiva, lucru care nu se poate intAmpla din cauza conditiei diam F}, — 0.

Aratam acum ca respectiva intersectie este nevida. Din fiecare multime F;, selectam un
element z,,, ceea ce putem face in baza faptului ca multimile sunt nevide. Demonstram ca sirul
(z,) astfel format este gir Cauchy.

Fie ¢ > 0. Atunci existd k € N astfel incat diam F), < . Fie m,n > k. Din proprietatea
de incluziune a multimilor, z,,z,, € Fj, deci d(x,,z,) < diam Fy < e. Deci (z,) este sir
fundamental, iar cum X este complet, exista x € X astfel incat x,, — x. Pe de alta parte, daca

o0
fixam n € N, atunci x,, € F,, pentru orice m > n. Cum F,, este inchis, x € F,,. Deciz € () F,

n=1
si demonstratia este incheiata. 0
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Teorema 3.1.2 (Teorema lui Baire, prima forma) Fie (X, d) un spatiu metric complet gi

(Vi) pep un sir de submultimi deschise gi dense ale lui X. Atunci (| V, este densa in X.
n=1

Demonstratie Pentru a obtine concluzia trebuie sa aratam ca pentru orice T € X si orice € > 0
oo
B(x,e)n () Va #0.
n=1

Este clar ca daca V este deschisa si densa si A este deschisa si nevida atunci exista z € X si
r > 0 astfel incat D (z,7) C V N A.

Aplicdm aceasta observatie multimilor V; si B (7,¢). Exista 1 € X si r € (0,1) astfel
incat D (zq1,m) C ViN B (T,¢).

Continudm cu acelagi argument aplicat multimilor V5 gi B (z1,71) : existd xo € X si g €
(0,271) astfel incat D (zq,72) C Vo N B (z1,71) . Recurent, obtinem un sir (z,) C X si un sir
(rn) C (0, 00) astfel incat

D (z1,7m1) D D (x2,72) D ...

diam D (z,r,) = 2r, — 0.

Conform Teoremei de intersectie, exista z € X astfel incat

() D (zn.1a) = {z}.

Dar, D (xz1,r1) C B(%,¢), deci © € B(%,¢) si D (xp,m,) C V, pentru orice n € P, deci
z € () V,. Obtinem concluzia dorita. O

n=1
Teorema 3.1.3 (Teorema lui Baire, a doua forma) Fie (X,d) un spatiuv metric complet
§i (F),ep un sir de submultimi inchise ale lui X astfel incat |J F,, = X. Atunci exista k € P
astfel incdt int Fy, # ().

n=1

Demonstratie Presupunem, prin reducere la absurd, ci int F,, = () pentru orice n € P. Pentru
toti n consideram V,, = X \ F,, care sunt multimi deschise gi dense, ultima afirmatie rezultand
pe baza faptului ca

cdV,=c(X\F,) =X \int F,, = X.

Cum |J F, = X, avem

n=1
(o ¢] o0 o0
b=X\JF.=[)X\FE) =[]V
n=1 n=1 n=1
ceea ce contrazice prima forma a Teoremei lui Baire. [l
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Exemplul 3.1.4 Ipoteza de completitudine din Teorema lui Baire este esentiala. Pentru a

proba acest lucru, consideram spatiul necomplet (COO, Il p) despre care am vazut ca este un

subspatiu liniar dens al lui <€p - p), unde p € (1,00) . Consideram, pentru orice n € P,

A, = {(ml, ey Ty 0,0, ) | € R, Vi € 1,_71}

Aceste multimi sunt subspatii finit dimensionale ale lui ¢y, deci sunt inchise. Pe de alta parte,
interiorul lor este vid pentru ca nu coincid cu tot spatiul. Observam ca

0o
Coo — U An
n=1

Propozitia 3.1.5 Fie (X, ||||) un spativ Banach ¢i V C X o multime convexa, absorbanta i
inchisa. Atunci V' este vecinatate a originii.

Demonstratie Cum V' este absorbanta, contine pe 0 si avem

X:UaV.

a>0
Pe baza convexitatii insa, pentru orice o, § > 0 cu a < 3,
oV C gV

pentru ca

QU:B<%U+(1—%)O>65V, Yv e V.

X:UnV.

nepP

Astfel, deducem ca

Folosind a doua forma a Teoremei lui Baire, pentru ca V' este si inchisa, exista k € P astfel
incat int (kV) # 0. Obtinem de aici c¢& int V' # (), adicd existd T € int V. Pentru elementul —%
exista 0 > 0 astfel incat —0 € V. Pe baza convexitatii lui V,

1 d
0=——(—07 T eintV.
1+5( a:)+1+§x in
Am obtinut ca V' este vecinatate a originii, deci concluzia. 0

3.2 Rezultate principale
Prezentam in continuare unul dintre principiile Analizei functionale.

Teorema 3.2.1 (Principiul marginirii uniforme) Fie (X, |-||) spativ Banach si (Y,|-||)
spatiu liniar normat. Fie (T;),.; C L(X,Y) o familie de operatori liniari continui indevata
dupa o multime I arbitrara de indici. Presupunem ca familia este punctual marginita, adica
pentru orice x € X exista M, > 0 astfel incat pentru orice i € I, |Tiz|| < M,. Atunci ezista
M > 0 astfel incdt pentru orice i € I, ||T;|| < M.
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Demonstratie Pentru toti n € P consideram multimea inchisa
F,={ze X ||Tiz|| <n, Viel}.
Din ipoteza de marginire punctuala, N
x=JF.
n=1

gi cum X este complet, din Teorema lui Baire (Teorema [3.1.3) obtinem ci exista k& € N astfel
incat int Fj, # ). Prin urmare, existd T € X si ¢ > 0 astfel incat D (Z,e) C F}, adicd pentru
orice z € D (T,¢) si orice i € I, ||T;z]| < k. Pentru orice z € D (0,¢) putem scrie

1 1
$=§($+$)—§($—l‘)

si cum ambii vectori sunt in D (T, ¢),
1 _ 1 _ :
| Tiz]| < 3 |T; (T + )| + 5 \T; (T — )| <k, Viel

Fie x € X \ {0}. Putem scrie

]
ITaf) = 220
9

k
ﬂ(ﬂﬁuswmquf
EUEE

Pe baza definitiei normei operatoriale,

| T3] <

™ |

, Viel,
adica exact concluzia. O

Observatia 3.2.2 Ipoteza de marginire punctuala este echivalentda cu marginirea punctuala
pe Dx, iar concluzia rezultatului de mai sus este echivalenta cu oricare dintre urmatoarele
afirmatii:

- exista M > 0 astfel incdt pentru orice x € Dx gi oricei € I, ||Tix| < M (adica marginirea
uniforma pe Dy );

- exista M > 0 astfel incat Dx C {z € X | | T;z|| < M, Vie I}.

Exemplul 3.2.3 Completitudinea lui X este esentiala. De exemplu, pentru orice n € P
definim T3, : (coo, ||| o.) — (R, |-]) prin

T, ((x1, 22, ...)) = nx,.

Acesti operatori sunt marginiti si ||75,|| = n pentru orice n. Pe de altd parte, pentru orice
T € oo, cum exista m, € P astfel incat z, = 0 pentru orice k > m,,

Thx| <my x|, Yn,

deci familia de operatori (7},) este punctual marginita.
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Corolarul 3.2.4 Fie X spatiu Banach $iY spatiu liniar normat. Fie T, : X —Y (n € N) un
gir de operatori liniari continui convergent punctual, i.e., pentru orice v € X, exista Tx € Y
astfel incdt im T,,x = Tx. Atunci T este operator liniar continuu.

Demonstratie Din convergenta punctuald a sirului (7),), deducem maérginirea sa punctuala.
Deci, conform Principiului marginirii uniforme (Teorema |3.2.1)), exista M > 0 astfel incat

T, < M, Vn € N.
Se verifica ugor ca T este liniar, iar relatia de mai sus ne permite sa scriem
|ITz|| = lim || T,z|| < M||z|, Vo € X.
Agadar, T este continuu. O

Exemplul 3.2.5 Pentru a arata ca ipoteza de completitudine pentru X este esentiala in coro-
larul de mai sus, consideram sirul de operatori 75, : (coo, ||-[|..) — (R, ]-]),

T, ((x1,22,...) = Y _ @

Toti operatorii 7,, sunt marginiti. Acest sir converge punctual la operatorul liniar 7" : cgo — R
dat prin

T ((x1,22,..) = Y _ o,

Dar T nu este operator marginit.

In continuare discutam cateva aspecte de baza privind teoria seriilor de elemente dintr-un
spatiu normat.

Definitia 3.2.6 Fie (X, ||-||) un spatiu liniar normat si (x,),.p un sir de elemente din X. Seria
>z, se defineste, ca gi in cazul numeric, ca fiind cuplul format de girul termenului general
(xn) §i de girul sumelor partiale (s,). Spunem ca seria este convergentd daca girul sumelor
partiale este convergent in X.

Ca de obicei, limita sirului sumelor partiale, daca existd, se noteaza tot cu Y -, x,,. Evident,
in acest caz

) k

k—o0
g T, — E z,|| — 0.
n=1 n=1

Definitia 3.2.7 Spunem ca o serie Y -, x, este absolut convergenta dacda seria de numere
reale Y, ||zn|| este convergenta.

Are loc urmatorul rezultat fundamental.
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Propozitia 3.2.8 Daca (X, ||-||) este spatiu Banach. Daca ) .. | x, este o serie absolut con-
vergenta, atunci 220:1 T, este convergenta §i

oo oo
D wl| <2l
n=1 n=1

Demonstratie Fie (s,) sirul sumelor partiale ale seriei absolut convergente > - | z,. Notdm cu
(t,) sirul sumelor partiale ale seriei normelor. Pentru orice n,m € P cu n > m avem

n

> =

k=m+1

n

< > Nl =t — to

k=m+1

Hsn - Sm” =

Cum (t,) e sir Cauchy de numere reale, deducem ca (s,,) e de asemenea sir Cauchy in X. Cum
X este spatiu Banach, (s,) este convergent, deci seria initiald este convergenta. Inegalitatea
finald rezulta prin compararea normelor termenilor lui (s,) cu termenii lui (¢,) . O

Prezentam acum alte doud dintre principiile Analizei functionale.

Teorema 3.2.9 (Principiul aplicatiilor deschise) Fie (X,|||), (Y,||]|) spatii Banach si
T € L(X,Y). Daca T este surjectiv, atunci T este deschis, adica duce multimi deschise in
multimi deschise.

Demonstratie Observam ca este suficient sa aratam ca exista v > 0 astfel incat
By (O, V) cT (BX (0, ].)) . (31)

Intr-adevir, daci aceastd incluziune este adevirats atunci pentru orice multime deschisd V € X
si pentru orice y € T (V), existd T € V astfel incat TZ = 7 si existd € > 0 astfel incat
B(z,e) CV, deci

T(V)>T(B(T,¢e)) =TT +TBx (0,1) 7 + By (0,) = By (7, ve) ,

ceea ce aratd ca T (V') este deschisa.

Asadar, demonstram incluziunea evidentiatd mai sus. S& considerim mai intai multimea,
inchisa 7' (Dx). Este destul de simplu de verificat ca aceasta este convexa (pe baza liniaritatii
lui 7') si absorbantad (pe baza surjectivitatii lui 7). Cum Y este spatiu Banach, obtinem ca
T (Dx) este vecindtate a originii, deci exista p > 0 astfel incat D (0,p) C T (Dx).

Fiey € Y\ {0} si 6 > 0. Cum plly|| 'y € D(0,p) C T (Dx), existd u € Dx astfel incat

o llyll ™y = Tul| < pllyl "6,

adicd punand z = |jy|| p~1u,
ly — Tz < 6.

Deci, pentru orice y € Y i § > 0 exista z € X astfel incat

1 :
2] < ;Ilyll st fly —Tz] <o.

37



Putem acum sa ardtam (3.1)) pentru v = p. Faptul cd 0y € T (Bx (0,1)) este evident. Fie
asadar y € B(0,p) \ {Oy}. Fixdm § € (0,27 (p — ||ly||)) . Din cele discutate, exista zo € X
astfel incat

1

[lzoll < —1lyll
p

ly — Taol| < 6.

Aplicim acelasi argument acum pentru y — Tz si 2710 : existd o1 € X astfel incat

1 5
21| < = ly — Tol| < -
p p
ly — Twg — T || < 27%6.

Continudm: aplicim acelasi argument acum pentru y —T'wg — T2 si 2726 : existd zo € X astfel
incat
1 )
2]l < = |ly = Twg — T || < 5~
p 2p
”y - TI‘O — Tﬂ?l — T.%'z” < 2_2(5.

Daca am construit in acest fel termenii x4, ...,z,_1 cu n € P, aplicAnd aceeasi tehnica gasim
T, € X astfel incat

)
anlp
ly —Taxg—Txy — Txy.. — Ty — Tyl <2776

1
|zn|| < ; ly —Twg—Txy — ... — Ty 4] <

Astfel, pe baza inductiei matematice, am construit un sir (z,,) pentru care seria » .~ x, este
absolut convergenta pentru ca, pe baza alegerii lui 6,

> 1 ) llyll + 26
|lznll < = lyll + . <1l
2 ol < 5 0 5

p

Cum X este spatiu Banach, seria ) -, z,, este convergentd la un element z € X. Dacd notdm cu
(s,) sirul sumelor partiale ale acestei serii din a doua inegalitate de la determinarea termenilor
() gasim

ly — Tsp]| <270 — 0,

deci T's,, — y, ceea ce inseamna ca y = T'x. In plus,

o0 o0
an < Z |zall <1,
n=0 n=0

deci y € T (Bx) . Demostratia este incheiata. O

] =

Corolarul 3.2.10 Fie X, Y spatii Banach si T € L (X,Y) bijectiv. Atunci T-' € L(Y,X).
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Demonstratie Pentru ca T este bijectiv, existd operatorul 7! despre care se arati cu usurinta
ca este liniar. Fie D C X deschisa. Din Principiul aplicatiilor deschise, 7' (D) este deschisa.
Avand in vedere ca (T‘l)f1 (D) = T (D), deducem c& T~! intoarce deschisi in deschisi, deci
este continuu. [l

Corolarul 3.2.11 Fie X spatiu liniar normat si |||, , |||, doud norme pe X in raport cu care
X este spativ Banach. Daca existd ¢ > 0 astfel incat pentru orice x € X, ||z, < c||z||,, atunci
cele doua norme sunt echivalente. Cu alte cuvinte, daca doua morme de spativ Banach sunt
comparabile, atunci ele sunt echivalente.

Demonstratie Fie aplicatia identitate id : (X, ||-||;) — (X, ||-|ly). Conform ipotezei, id este
operator liniar continuu. Din corolarul anterior deducem ca operatorul invers este de asemenea
continuu. Obtinem astfel concluzia. O

Teorema 3.2.12 (Principiul graficului inchis) Fie X,Y spatii Banach i T : X — Y
lintar. Atunci T este continuu dacd §i numai dacd are graficul inchis.

Demonstratie Este cunoscut faptul ca orice aplicatie continua intre doua spatii metrice are
graficul inchis.

Invers, presupunem ca 1" are graficul inchis si aratam ca este continuu.

Introducem pe X norma

lelly = llell x + 1Ty, Ve e X,

Este usor de vazut ca aceasta este intr-adevar o norma.
Aratam ci (X, ||-||,) este spatiu Banach. Fie (x,) un sir Cauchy in raport cu [|-||; . Obtinem
imediat cd (z,,) este gir Cauchy in raport cu ||-||  , iar (T'z,,) este sir Cauchy in raport cu ||-||y .

Cum X, Y sunt spatii Banach, exista x € X si y € YV astfel incat x,, — x, Tz, — y. Datorita

faptului c& T are grafic inchis, y = Tz ¢i avem c& z,, WM, 2 Deci (X, ]]-]|;) este spatiu Banach.

Este evident c& pentru orice = € X, ||z]x < ||z||; si conform corolarului precedent cele
doud norme sunt echivalente, deci exista d > 0 astfel incat pentru orice z € X, ||z||; < d||z||y .
Astfel,

ITally < dllelly, Va € X,

deci T este continuu. O

Aratam acum, prin exemple, ca ipotezele de completitudine sunt esentiale in rezultatele de
mai sus.

Exemplul 3.2.13 1. Fie aplicatia identitate de la (¢, ||-||,) la (¢*,]-]|..) , notata, ca de obicei,
cu id. Atunci id este continud (pentru ca ||-|| . < ||||;), surjectiva si dacd ar fi deschisa atunci
inversa ar fi de asemenea continud. Dar identitatea de la (¢%,]-]| ) la (¢*, ||-||;) nu este continué:
pentru =, = (1,...,1,0,0,...) (n € P, 1 pana la pozitia n), ||z,|; = n, ||z.]|,, = 1. Aceasta se
intAmpld pentru cd (¢*, |||, ) nu este complet.

2. Fie X spatiu Banach infinit dimensional si f : X — R un operator liniar discontinuu
(nemadrginit) a carui existentd este asiguratd de Observatia Definim pe X o noua norma
prin

el = llll + 1f ()]
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Se verifici ci intr-adevir aceastd aplicatie este o norm#. In plus, <X -l f> nu este complet

pentru c& [|-[|; si ||| sunt comparabile si daca <X Al f> ar fi spatiu Banach atunci ar fi
echivalente, ceea ce revine la continuitatea lui f. Definim din nou operatorul identitate id de la
(X Al f) la (X, ||-||) care este liniar, continuu si surjectiv. Totusi inversul siu nu este continuu
pentru ca normele nu sunt echivalente.

3. Sa considerdm spatiul <C00, Il p> ,unde p € (1,00), care nu este complet (este subspatiu
dens propriu in (ﬁp, ||||p>) Fie T': <Coo, ||||p> — <COO7 ||||p>
T(z)= (n""mz,).
Acest operator este bine definit, liniar, continuu, bijectiv, dar inversul 7! este dat de
T (2) = (nan)

care este operator nemarginit.

4. Fie T+ (C* ([0,1]). .0) — (€ ([0,1]).]}-]..) dat prin
T(f) = f.

Este clar ca T este liniar i are grafic inchis (Teorema de transfer a derivabilitatii). Totusi, T
nu este continuu, nefiind marginit. De exemplu, pentru f, : [0,1] — R,

fo(z) = %sin (n’z), Vn e P

avem | f,|, — 0, in timp ce [|Tf.|, = [|f.ll., = n — oo. Bineinteles, acest exemplu nu
contrazice Principiul graficului inchis, intrucat domeniul nu este spatiu Banach (a se vedea

Exemplul si Exemplul |1.3.5]).
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Capitolul 4

Topologii slabe si compactitate

In acest capitol vom studia, pe un spatiu liniar normat si pe dualul acestuia, cateva topologii
care sunt mai slabe decat topologiile date de norme. Necesitatea introducerii unor topologii noi,
mai slabe decat topologia normei, se fundamenteaza pe urmatoarele fapte: cu cat o topologie
este mai find (mai tare, are mai multe multimi deschise) exista cu atat mai multe functii con-
tinue cu valori reale, dar cu atat mai putine multimi compacte, ori tocmai cuplarea continuitatii
cu compactitatea produce rezultate importante (a se vedea, de exemplu, Teorema lui Weier-
strass, Teorema lui Cantor) si asigurd posibilitatea trecerii la limitd in diverse probleme. Pe
de alta parte, intr-un spatiu liniar normat infinit dimensional chiar bila unitate inchisa nu este
compacta. Astfel apare necesitatea gandirii unor topologii care sa fie compatibile cu topologia
normei, dar care sa aiba avantajul unei mai mari clase de multimi compacte. Astfel de topologii
nu sunt in general metrizabile, deci trebuie sa facem apel la rezultate din cadrul spatiilor liniare
topologice generale.

4.1 Preliminarii

Pana in acest moment, topologiile pe care le-am considerat in rezultatele principale au fost
topologii induse de o norma. Reamintim definita generala a unei topologii precum gi unele
aspecte pe care le vom avea in vedere in cele ce urmeaza.

Definitia 4.1.1 Fie X o multime nevida gi P(X) familia submultimilor sale. O submultime T
a lui P(X) se numeste topologie pe X daca satisface urmatoarele conditii:

(i) UierD; € T, pentru orice multime de indici I gi orice familie {D; | i € I} C T; (ii)
D1 N Dy € 7, pentru orice Dy, Dy € T3 (ii1) X, 0 € 7.

Perechea (X, T) se numeste spatiu topologic, iar elementele lui T se numesc multimi deschise.

Definitia 4.1.2 Fie (X, 7) un spatiu topologic si A C X. Spunem ca A este mullime inchisa
daca X \ A este multime deschisa, i.e., X \ A € T.

Presupunem cunoscute conceptele de mai jos si rezultatele fundamentale legate de acestea:
vecindtate a unui punct (notdm cu V(Z) multimea tuturor vecinatatilor lui 7); punct interior
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unei multimi; punct aderent unei multimi; frontiera unei multimi; multime compacta; continu-
itatea unei functii f : A C X — Y intr-un punct a € A si continuitatea pe multime, unde X, Y
sunt spatii topologice si A C X.

Spre deosebire de o topologie metrica (deci, in particular, o topologie datd de o norm4)
caracterizarile cu siruri ale punctelor aderente sau ale multimilor compacte nu mai sunt valabile.

Fie X o multime nevida si 71, 75 doua topologii pe X. Reamintim ca 7; se numeste mai putin
fina decat 7 (sau ca 7, este mai find decat 1) daca 7 C 7. Spunem ca 7 este strict mai putin
find decéat 7 (sau c& 7o este strict mai find decat 1) dacd 7 C 7o si 71 # T». Fie X o multime
nevida si 7, 75 doua topologii pe X. Topologia 7 este mai putin fina decdt 7 daca si numai
daca aplicatia identitate id : (X, 72) — (X, 71) este continua.

Revenim acum la cadrul uzual al spatiilor liniare normate. Incepem prin a defini pe un spatiu
liniar normat o topologie, numita topologia slaba, in scopul de a identifica mai usor multimi
compacte, avand totusi o clasa suficient de vasta de functii continue. Desi acest prim efort
nu ofera raspunsul direct la aceasta chestiune, vom construi pe spatiul dual, pe baza acelorasi
idei, doua noi topologii, topologia slaba si topologia slab-stelata gi vom vedea ca aceasta din
urma corespunde scopului initial. O ipoteza suplimentara care conduce la conceptul de spatiu
reflexiv va fi esentiala pentru obtinerea de rezultate de compactitate si pentru prima topologie
introdusa, si anume topologia slaba.

Apoi, vom studia un tip special de operatori pentru care imaginea discului unitate are
proprietati de compactitate. Astfel, intreaga problematica a acestui capitol este subsumata
ideii de identificare a unor multimi compacte (in raport cu o topologie mai slabd decat cea a
normei).

4.2 Topologia slaba

Fie X un spatiu liniar normat. Topologia slaba, notata w, pe X este cea mai putin fina topologie
care contine familia de multimi

E={a*"" (V)| 2" € X*,V CR deschisi} .

Altfel spus, w este cea mai slaba topologie pe X pentru care toate functionale din dual sunt
continue. Este evident ca

w= ﬂ{T | 7 topologie pe X, £ C 7}.

Deci, multimile deschise in w sunt reuniunile de intersectii finite de elemente din £. Are loc
rezultatul urmator de caracterizare a multimilor topologiei w.

Propozitia 4.2.1 Fie (X, ||||) un spatiu liniar normat. Atunci o submultime nevida U C X
este in w daca g1 numai daca pentru orice x € U, exista € > 0, n € P, 27, ...,z; € X* astfel
incat

(2" (@} (2) — &, 2% (2) +¢)

k=1

={yeX ||z} (y—2) <e, Vkeln} CU.
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Demonstratie Multimea U este in w daca si numai daca este vecinatate in w pentru orice x € U.
Aceasta revine la a spune ca pentru orice x € U exista o intersectie finita de elemente din &
care contine x si este inclusa in U. Deci

Ucew < VexeUdneP i, .z, X" V..V, CR deschise, astfel incat

Este clar ca fiecare Vj, este vecindtate a lui x} (), deci existd un € > 0 comun astfel incat
(x} (z) — e, 25 (x) +¢€) C V.
Deducem ca

Uecew <= VreUdnelPuai, ..z € X" >0, astfel incat

ﬂ i (2 (2) — e, 75 (v) +€) C U.
k=1

Astfel, avem concluzia. O

Observatia 4.2.2 Din cele de mai sus retinem i faptul ca o vecinatate generica a unui punct
T € X in topologia slaba are forma

V (z;a], 25, ., ape) ={z e X ||z] (. —T)| <e,Vieln},

ns
unden € P, z7,25,...,z;, € X* si ¢ > 0. De asemenea,

V(T;x], 25, ., xr;e) =T+ V (0; 27,25, ..., 275 €) .

Aceasta inseamna, printre altele, ca pentru a proba continuitatea unei aplicatii liniare in
raport cu topologia slaba este suficient sa se arate continuitatea sa in origine.

Observatia 4.2.3 FEste clar ca topologia slaba este inclusa in topologia normei pe care o vom
numi si topologia tare: orice multime slab deschisa este si deschisa tare. Similar pentru multimi
inchise.

Propozitia 4.2.4 Fie (X, ||||) un spatiu liniar normat. Atunci w este separata Ts.

Demonstratie Fie x,y € X cu x # y. Din Teorema Hahn-Banach, exista z* € X* \ {0} astfel
incat z* (z —y) > 0. Notdm ¢ = 2* (x — y) si observam ca

{reX|lz*(z—a)<27e}n{zeX||z"(z—y)| <27} =0,
iar cele doua multimi sunt vecinatati in w ale lui x si respectiv . O

Propozitia 4.2.5 Pe spatii liniare normate finit dimensionale topologia normei i w coincid.
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Demonstratie Fie X spatiu liniar normat finit dimensional, de dimensiune n € P. Cum toate
normele sunt echivalente pe X, este suficient sa aratam ca bilele deschise in raport cu norma
|||, sunt vecinatati slab deschise ale centrului.

Fie z € X gi € > 0. Atunci

By (z,6) ={y e X ||y — x| <e, Vieln}.
Consideram functionalele fi, .., f, : X — R date, pentru k € 1, n, prin

fr (z) = xy.

Este clar ca aceste functionale sunt din X* si observam ca

Bu(2,2) = {y € X | Ifity) - Hl@)] <&, Vi e Tn},
deci By (z,¢) € w, adicd By (z,€) este vecinatate slabd a lui x. O

Propozitia 4.2.6 Fie (X, ||||) un spatiu liniar normat infinit dimensional. Atunci:

(i) orice multime slab deschisa nevidd contine o dreaptda afing, deci este nemdarginita in
topologia normet;

(1) orice multime marginita in normd are interior vid in topologia w.

Demonstratie (i) Fie U € w\{(} . Atunci pentru orice x € U, existd e > 0,n € P, z7,...,x% € X*
astfel incat
{ye X ||z} (y—2)<e, Vieln} CU.

Ardtdm ci existd 7 € X \ {0} astfel incat pentru orice i € 1,n, 2} (Z) = 0. Daci nu ar exista
un astfel de element, atunci aplicatia

x— (2] (x), ..., 2 () € R"

ar fi o injectie liniara cu valori intr-un spatiu finit dimensional, ceea ce ar atrage concluzia falsa
ca dimensiunea lui X este finita.

Prin urmare, existd 7 € X \ {0} astfel incat pentru orice i € 1,n, z* (T) = 0. Atunci, pentru
oricet e Rsii € 1,n, 2} (v +1tT —z) =0, adica

{z+tz|teR}CU,

ceea ce reprezinta concluzia.

(ii) Fie U marginita in norma. Dacd interiorul sau in topologia w ar fi nevid, atunci acesta
ar fi un deschis nevid din w continut in U. Dar conform punctului (i), pe baza marginirii lui
U, singura multime din w continutd in U este (), deci int,, U = 0. 0

Observatia 4.2.7 Punctul (i) al rezultatului precedent arata ca pe spatii normate infinit di-
mensionale topologia slaba este strict mai putin fina decdat topologia tare.

Prezentam acum un rezultat foarte important care arata ca multimile convexe si inchise
coincid in cele doua topologii.
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Teorema 4.2.8 (Mazur) Fie (X, ||-||) un spativ liniar normat si C' C X o multime conveza.
Atunci C este slab inchisa daca si numai daca este tare inchisa. Pentru o astfel de multime

Cle =(C = CIH.” C.

Demonstratie Daca C' este slab inchisa atunci ea este tare inchisa din compararea topologiilor.
Presupunem c& C' este tare inchisd. Fie x ¢ C (cazul C' = X este evident). Atunci, din
a doua forma geometrica a Teoremei Hahn-Banach, exista z* € X* si a € R astfel incat
r* (r) < a < 2" (c) pentru orice ¢ € C. Aceasta inseamna ca v € Hy , C X \ C. Cum H3 ,
este o multime deschisd in topologia w, deducem c& X \ C este deschisd in aceastd topologie.
Astfel, C' este inchisa in w.

Ultima afirmatie este evidenta pentru ca o multime inchisa intr-o topologie oarecare coincide
cu inchiderea ei in acea topologie. U

Propozitia 4.2.9 Fie (X, ||||) un spatiu liniar normat infinit dimensional. Atunci sfera uni-
tate nu este slab inchisa. Mai mult,

Clw SX = DX-
Demonstratie Avem, succesiv,

X\Clw SX = intw (X\Sx) = iIltw (BX U (X\Dx))
= inthX Uintw (X\Dx) = @U (X\Clex)

Cum Dx este convexa, din teorema precedenta inchiderea sa este aceeasi in ambele topologii,

deci
X\CleX :X\Dx,

adica cl, Sx = Dyx. ]
Discutam acum unele aspecte legate de convergenta sirurilor in topologia slaba.

Propozitia 4.2.10 Fie (X, ||-||) un spativ liniar normat, (x,) C X un gir si v € X. Atunci:
(i) z, — = dacd §i numai dacd pentru orice * € X*, x* (z,) — z* (v) in R;
(ii) dacd x, — x, atunci T, — ;
(i4) dacd x, — x, atunci (x,,) este marginit in norma gi ||z|| < liminf ||z, ;
(iv) dacé (x¥) este un sir de functionale convergent in norma dualului la x* si x, —— x,
atunci x (x,) — x* (z) .

Demonstratie (i) Afirmatia rezultd imediat din definitia convergentei unui sir intr-o topologie
si din forma vecinatatilor unui punct in w.

(ii) Compararea topologiilor probeaza si aceasta implicatie.

(iii) Daci z,, — z, din punctul (i), 2* (z,) — =* (x) pentru orice z* € X*. In particular,
familia de operatori {z,, | n € N}, unde x,, este identificat cu operatorul z, : X* — R, z,, (z*) =
x* (z,), este punctual marginitd. Conform Principiului marginirii uniforme (X* este complet),
deducem marginirea lui (z,) in topologia normei.
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Pentru orice z* € X*,
2" (2)] < [2* (@ — @n)| + |27 (20)| < |27 (@ — @) | + |27 [[2n]] -

Prin trecere la liminf se obtine inegalitatea anuntata.
(iv) Scrierea

|2, (2n) — 2™ ()| <o, (2n) — 27 (20)] + 27 (20) — 2" (2))]
<l = @[zl + |27 (20 — )]

sl marginirea in norm& a lui (z,) probeaza afirmatia. O

Exemplul 4.2.11 In general, convergenta slabi (i.e., in topologia slabi) a unui sir nu implic
convergenta sa tare (i.e., in topologia normei). Un astfel de exemplu este cazul vectorilor unitari
(en)pep 10 (co, ||-]|o) - Este clar ca acest sir nu este tare convergent intrucat nu este fundamental:

len —emll, =1, Vm,n € P, n # m.

Ardtdm ci acest sir este slab convergent la 0. Stim cd ¢, = ¢!, iar operatorul care realizeazi
izomorfismul izometric intre cele doud spatii este T : (¢, ||-||;) — ((co, [|llo.)”, [I]l,) definit prin:

T () (y) = > wayss

unde x = (2,),,cp € 01, Y = (Yn)pep € Co. Astfel e, — 0 este echivalent cu: pentru orice x € ¢*,
T (x)(en) =z, — 0,

ceea ce este adevarat.

Totusi convergenta in topologia slaba nu poate fi caracterizata prin giruri pe spatii infinit
dimensionale pentru ca w nu este metrizabila pe astfel de spatii, dupa cum arata rezultatul ce
urmeaza.

Teorema 4.2.12 Topologia slaba intr-un spatiu liniar normat infinit dimensional nu este metriz-
abila.

Demonstratie Este suficient sa aratam ca topologia slaba nu satisface prima axioma a numara-
bilitatii. Presupunem, prin reducere la absurd gi fara a restrdnge generalitatea, ca originea

admite un sistem fundamental de vecinatati numarabil (U,), . in topologia w. Evident, tot
fara a restrange generalitatea, putem considera

U,oU,D>..DU,D..D{0}.

Conform Propozitiei si demonstratiei punctului (i), pentru orice n, existd x, € X \ {0}
astfel incat
{0+tx, |t € R} C U,
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Definim sirul

Este evident ca pentru orice n, y, € U,.
Alegem z* € X* gi ¢ > 0. Cum 2" (—¢,6) € w, existd n. € N astfel incat U,. C
z*~1 (—¢,¢), iar din monotonia sirului (U,,),

U, C 2" (—¢,e), Vn > n,..

Deci
Yo € 271 (—€,€), Vn > n..

Aceasta inseamna cd z* (y,) — 0. Cum z* a fost ales arbitrar, conform Propozitiei (i),
Yn — 0. Dar tot (y,) este nemirginit in norms, deci nu poate fi slab convergent conform
punctului (iii) al aceleiagi propozitii.

Contradictia la care am ajuns inseamna ca originea nu admite un sistem fundamental de
vecinatati numarabil. Demostratia este incheiata. ([l

4.3 Topologia slab — stelata

Fie (X, [|||) un spatiu liniar normat si (X*, ||-||x.) dualul sau. Evident, X* are la randul siu
un dual, notat X** gi numit bidualul lui X. Putem astfel, considerandu-1 pe X* ca spatiu de
baza, sa introducem pe X* topologia slaba, ca mai sus: cea mai putin find topologie pentru
care toate functionalele din bidual sunt continue.

Studiind relatia dintre X si X™**, vom observam insa ca, tot pe X*, mai putem introduce o
topologie, mai slaba decat topologia sa slaba.

Sa incepem prin a remarca faptul ca norma pe X™** este data de

|7 - = sup{2™ (%) | [|27]| 5. < 1}
Definim acum & : X — X™**,
O (z) (") =2"(z), Va© € X"
Observam cd ¢ este bine definitd intrucat pentru orice z € X, ® (z) este liniara pe X* si
sup {® () (%) | [[#%|| . <1} =sup{a” (2) | [27]x. < 1} = |||,

deci @ (x) € X** s @ (2)]| o =[] .

Mai mult, ® este liniard, deci ® stabileste un izomorfism izometric intre X ¢i ® (X). Astfel,
X poate fi privit ca un subspatiu al lui X**, intrucat se identificd cu ® (X). Aplicatia ¢ se

numeste scufundarea canonica a lui X in X**. In general, ® nu este surjectiva si vom vedea
mai multe detalii in cele ce urmeaza. Suntem acum pregatiti sa definim topologia anuntata.
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Definitia 4.3.1 Fie X un spatiu liniar normat, X** bidualul sau g1 ® : X — X** scufundarea
canonica. Topologia slab-stelata, notata w*, este cea mai putin fina toplogie pe X* care contine
familia de multimi

& ={(® @) ' (V)|ze X, VCR deschisa} .

Altfel spus, w* este cea mai slaba topologie pe X* pentru care toate functionale din ® (X) C X**
sunt continue.

Propozitia 4.3.2 Fie (X, ||-||) un spativ liniar normat. Atunci U € w* daca gi numai daca
pentru orice x* € U, exista € > 0, n € P, x1,...,x, € X astfel incit

() (@ ()™ (@ () (%) — &, ® (w1) () + 2)
— {y* e X" | |(y"—a")(ap)| <e, Vk € L_n} cU.

Demonstratie Rezulta din cele de mai sus, ca in cazul topopogiei w. 0

Observatia 4.3.3 O vecinatate generica a unet functionale T € X* in topologia w* are forma
V(@55 21,29, s 25 6) = {2" € X* | (2" = 7%) ()] <e,Vie T n},

unden € P, xy,x9,...,x, € X gie > 0. Dinnou, V (T*;x1, 29, ..., xp;€) = T+V (0; 21, T2, .., T €)

Propozitia 4.3.4 Topologia w* este separata Ts.

Demonstratie Fie z*,y* € X* cu 2* # y*. Atunci exista T € X astfel incat 2* () # y* (7). Fara
a restrange generalitatea, presupunem ca z* () > y* (T) , ludm ¢ = z* (T) — y* (T) si observam
ca

{FeX ||0@) (-2 <2e}n{zF e X ||@(@)(y —2%)| <27} =0,

iar cele doua multimi sunt vecinatati in w* ale lui x* si respectiv y*. 0
Observatia 4.3.5 FEste clar ca pe X* cele trei topologii considerate sunt in relatia
w* Cw C Ty
Daca X este finit dimensional atunci
X~ X"~ X

gt cele trei topologii coincid.

In schimb, am vdzut, ci dacd X* este infinit dimensional atunci a doua incluziune este
stricta. Vom vedea ca daca scufundarea canonica nu este surjectiva atunci si prima incluziune
este stricta.

Mai intdi demonstram ca functionalele liniare continue in raport cu w* sunt exact cele
din ® (X). Avem nevoie de o lem& (consecintd, de exemplu, a Lemei lui Farkas). Mai intai
sd observam ca o functionala liniara este continua in raport cu w* daca si numai daca este
continud in raport cu w* in 0 (conform Observatiei [4.3.3]).
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Lema 4.3.6 (Teorema nucleelor) Fie X un spatiu liniar, n € P, ;, i € 1,1 $i ¢ functionale
liniare de la X la R. Atunci

Vee X :[pi(x) =0,...,0.(z) =0] = p(x) =0 (4.1)
dacd si numai dact evistd (o;);c1,; C R astfel incat ¢ = 7" | ;.

Teorema 4.3.7 Fie X un spatiu lintar normat, X** bidualul sau gi ® : X — X** scufundarea
canonica. Fie ¢ : X* — R liniara. Urmatoarele afirmatic sunt echivalente:

(1) p € ®(X);

(ii) Ker ¢ este muliime w*—inchisa;

(i11) ¢ este (w*,|-|) continua.

Demonstratie Implicatia (1) = (iii) rezult4 chiar din definitia lui w*, iar implicatia (iii) = (ii)
este evidenta.

Demonstram (iii) = (i). Fie ¢ > 0. Conform ipotezei, existd U vecinitate a originii in w*
astfel incat |p (z*)| < e pentru orice z* € U. Fira a restrange generalitatea putem presupune
ca

U={s"€X*||a*(z)| <0, Vk e 1,n},

unde 6 > 0, n € P si 2, € X pentru k € 1,n. Din inegalitatea de mai sus deducem c# daca
z* (x1,) = 0 pentru orice k € 1,n atunci |¢ (z*)| < €. Dar dacd z* (z3) = 0 pentru orice k € 1,n,
atunci pentru orice a > 0, (az*) (z;) = 0 pentru orice k € 1,n, deci a |p (z*)] < €, ceea ce nu
se poate decat daca ¢ (z*) = 0. Astfel, am aratat ci

(@ (zx) (z*) =0,Vk € I,n) = ¢ (2*) =0.

Din Teorema nucleelor (Lema de mai sus), existd o, € R cu k € 1, n astfel incat

Y= Zakq) xk (Z Oék;xk) S <I> )
Demonstratia implicatiei anuntate este completa.
Ardtam ca (ii) = (iii). Conform ipotezei,
A=A{z" € X" | p(z%) # 0}

este w*—deschisd. Fie ¢ > 0 si 2* € A astfel incat |p (2*)| < e. Existd U o vecindtate
w*—deschisa a lui z* in A de care poate fi luata de forma

U={y eX"||(y =) (@)| <8, Vk € T,n},

unde § > 0,n € Psiz;, € X pentru k € 1, n. Multimea U este convexa ca intersectie de multimi
convexe, deci p (U) este convexa in R, adica este un interval. Prin urmare, cum ¢ nu se anuleazi
pe U, ¢ (U) C (—00,0) sau ¢ (U) C (0,00). Ludm primul caz, in celdlalt rationamentul fiind
asemanator. Deci gtim cd ¢ (y*) < 0 pentru orice y* € U. Notam

V=U-z"={z"€X"||2"(z)| <4, Vk € 1,n}
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si pentru orice z* =y* —2* € V, cu y* € U avem

() =) —p(r") < —p(a") <e.

Dar V este simetrica, deci
lp (") <e, V2 eV.

Asadar am demonstrat ca pentru orice ¢ > 0 existd o vecinatate V a lui 0 in w* astfel incat
pentru orice z* € V| |¢ (2*)| < €. Aceasta inseamni ci ¢ este continud in 0, deci continud peste
tot. U

Corolarul 4.3.8 Daca scufundarea canonica nu este surjectiva, atunci w* este strict masi slaba
decit w pe X*.

Demonstratie Daca scufundarea canonicd nu este surjectiva, atunci considerand x** € X**\
® (X), multimea Kerz*™* este slab inchisd, dar nu este w*—inchisd (conform teoremei ante-
rioare), ceea ce demonstreazd afirmatia din enunt,. 0

Observatia 4.3.9 Demonstratia acestui corolar arata si faptul ca Teorema lui Mazur nu are
loc pentru topologia w*.

Propozitia 4.3.10 Fie X un spatiu liniar normat gi X* dualul sau. Fie (xf) C X* un gir gi
x* € X*. Atunci:
. w* ¢ - . o . Py
(i) ¥ — z* daca si numai dacd pentru orice x € X, x} () — x* (z) in R;
.. o . w* o w . w*
(ii) dacd i, — x*, atunci x}, — x*; daca x} — x*, atunci x}, — x*;

*

(i1i) daca X este complet si x}, % ¥, atunci (x}) este marginit in norma si ||z*|| <
liminf ||z || ;
(iv) daca X este complet si (x,,) este un gir de elemente din X convergent in norma la x,

iar x %, o*, atunc k() — x* (x).

Demonstratie Se utilizeaza aceleasi argumente, adaptate topologiei w*, ca cele din cazul propoz-
itiei corespunzitoare prvitoare la topologia w. Este de remarcat ci pentru punctul (iii) se
foloseste Principiul marginirii uniforme pentru operatori definiti pe X, deci X trebuie sa fie
complet. La punctul (iv) se foloseste marginirea de la punctul (iii), deci trebuie impusa din
nou completitudinea lui X. O

Exemplul 4.3.11 Prezentam un exemplu concret in care convergentele secventiale in topologi-
ile w i w* pe X* sunt distincte. Fie {e, | n € P} vectorii unitari standard in ¢! privit ca dual

. . w*
al lui ¢g. Atunci e,, — 0, dar (e,) nu este w—convergent.
Intr-adevar, avand in vedere forma operatorului care realizeaza izomorfismul izometric intre
(' i ¢, pentru orice x € ¢y, avem

T (en) (x) = Z (en); i =x, — 0, Vn

=0

. w*
deci e,, — 0.
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w
Se constata usor ca (e,) /A 0 : cum, (/1)" = ¢*, z = (1,1,...,1,...) € £>, prin operatorul
de izomorfism izometric obtinem

T (x)(e,) = Z (en); i =x, =1+ 0.

i=0
Obtinerea urmatorului rezultat reprezinta principalul motiv al studiului topologiilor slabe.

Teorema 4.3.12 (Teorema Alaoglu-Bourbaki) Fie (X, |-||) un spatiu liniar normat si A C
X* o multime nevida, marginita in norma st w*—inchisa. Atunci A este w*—compacta. In par-
ticular, Dx~ este w*—compacta.

Demonstratie De fapt, este suficient sa probam ca Dy« este w*—compacta pentru ca marginirea
lui A asigura existenta unei constante a > 0 astfel incat

A C OCDX*,

deci A este o submultime w*—inchisa a unei mul{imi w*—compacte.

Fie acum R¥ | adica (spatiul functiilor de la X la R) cu topologia produs pe care o notdm
cu 7. Evident, X* C R¥.

Arstam cd w* este urma topologiei produs de pe R¥ pe X*. Reamintim ci daca f € RX
atunci o multime U este vecinatate a lui f in topologia produs daca exista ¢ > 0, n € P si
x1,...,x, € X astfel incat

v <f; (xi>iefn;5) —{geRY ||g(z)— f(z)| <& VieLn} CU.

Restrangandu-ne la X* gi tindnd cont de definitia lui w*, afirmatia facuta anterior este evident
adevarata.
Ne reamintim si faptul ca z* € Dy« daca si numai daci |2* (z)| < ||z|| pentru orice = € X.

Deci
Dx- C [ I= 2, l=ll].

zeX

Conform Teoremei lui Tihonov, multimea din partea dreapta este compacta ca produs cartezian
de spatii topologice compacte.

Trebuie deci sa mai aratam ca Dy« este inchisa in (]RX , 7') . Pentru inceput observam ca
inchiderea lui Dy« in raport cu 7 este submultime a lui X* pentru ca X* este inchisa ca
multime in (RX,T). Intr-adevir, daci f € RY \ X*, existd z,y € X, a, 3 € R astfel incat
numarul f (ax + By) — af () — Bf (y) este pozitiv. Alegem

flax+By) —af (x) — Bf (y)

5=
1+ |af + (]

si atunci V (f; (z,y, ax + Py);0) N X* = (), ceea ce dovedegte afirmatia anterioara.
In sfarsit, demonstrim inchiderea lui Dy~ in X* in raport cu w*. Fie 2* € w* — cl Dx- si
e > 0. Exista x € Sx astfel incat
|lo*|| < z* (x) + e.
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Dar w*—vecinatatea lui z*
vy eX | |(y—2%) (o) < e}

trebuie sa intersecteze Dy, deci existd y* € Dy« astfel incat |(y* — z*) (z)| < e.
Obtinem
27| < 2*(2) + & <y (2) + 2 < |y |2 +2e <1+ 2e.

Cum ¢ > 0 este arbitrar, ||z*|| < 1, adicd z* € Dx-.
Demonstratia este completa. 0

Propozitia 4.3.13 Fie (X, ||||) un spativ Banach separabil. Fie B C X* o multime marginita.
Atunci urma topologiei w* pe B este metrizabila, iar o metrica care induce w* pe B este
d: BxB—R,

d(z*,y") = Z min {|z* (;pk)Qk_ y* ()|, 1}7
k=1

unde {zy | k € P} este o submultime densa a lui X.

Demonstratie Fie {z, | k € P} o submultime densa a lui X si d datd de formula de mai sus. Este
simplu de verificat ca d este o metrica invarianta la translatii. Deci este suficient sa presupunem
ca 0 € B i sa aratam ca 74 si w* au aceleasi vecinatati.

Conform definitiilor corespunzatoare, aceste sisteme de vecinatati au ca baze:

B(0,p) = {y* € X" | i min {[y" (xk)l,l}}

Qk
k=1

U (5, {yk}keﬁ> ={y € X*||y*(yx)| <&, Vk € I,n}, unde n € P, {Yk b ers C X
Fiep>0siz* €U <2*1p, {xk}keﬁ> ,cun € P, adica

lz* (zp)] < 271p, VE €1 0.

Atunci
— min {[o* (z)], 1} _ = min {J2* (24)],1} | <~ min {[2* (23)], 1}
> T <> T + > o
k=1 k=1 k=n+1
P e 1 1 p X1
S52mt 2 w5t 2 &
k=1 k=n+1 k=n+1

Cum, pentru n suficient de mare,

obtinem ca pentru un astfel de n,
U (27 {mihiers) € BU0.p).
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Invers, mai intai observam ca pentru orice € > 0, n € P si vy, ...,y € X, exista, eventual
renumerotand, zy, .., z, astfel incat

c _
— < — Vkeln.
e = zell < 2diam B "

Deci, pentru orice x* € B si orice k € 1,n,

|2 (y)| < [2* (z)| + | £ ] lyx — 4]

5
< |z* i -
< |o* (ay)] +d1amB2diamB

. £
= |2 (x)| + 3
Fie acum z* € B (0, 3 min {¢,1}) . Atunci

1
2n+1

1 —
2—kmin{]a:* ()|, 1} < min {e, 1}, Vk € 1,n,
deci,

1 -
min {|z* (x)|,1} < §min{€, 1} < -, Vkeln.

DO | ™

Deducem ca .
[ ()l < 27 (w) [ + 5 < eV € Tm,

adica .
B (O,ﬁmm{e,l}) cU <€, {yk}k€ﬁ> s
ceea ce incheie demonstratia. 0

Teorema 4.3.14 (Alaoglu-Bourbaki, varianta secventiald) Fie (X, |||) un spatiu Banach
separabil. Atunci Dx+ este w*—secvential compacta.

Demonstratie Conform Teoremei Alaoglu-Bourbaki (Teorema 4.3.12)), Dx« este w*—compacta.
Dar, din rezultatul anterior topologia w* pe Dy« este o topologie metrica, deci cele doua tipuri
de compactitate coincid. 0

4.4 Reflexivitate

Definitia 4.4.1 Un spatiu liniar normat (X, ||-||) se numeste reflexiv daca scufundarea canon-
1ca in bidual este surjectiva.

Observatia 4.4.2 Cum bidualul este mereu spativ Banach, orice spatiu liniar normat reflexiv
este spatiu Banach.

Observatia 4.4.3 Daca X este reflexiv, atunci topologiile w g1 w* pe X* coincid.

Propozitia 4.4.4 Orice spatiu ¢? cup € (1,00) este reflexiv.
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Demonstratie Stim ca

((01,) " 1) = (e 1,

unde g = ;25 iar operatorul T (£, [, ) = (. ]1,) 1., ) prin
T (x)(y) = Zxkyk
k=1

este izomorfism izometric. Atunci 7} : <€q : ||||q) — (ZP, -l p) dat prin
Li(y)=y ol
este izomorfism de spatii liniare normate. Fie acum izomorfismul izometric 75 : (Ep Al p) —
*

(GAEREENE

o0

Ty (x) (y) = Z-’Bkyk-
k=1

kk
Atunci Ty o Ty : (ﬁp : ||||p) — (ﬁp Al p) este izomorfism izometric. Ardtdm cd acest operator

coincide cu scufundarea canonica.
Fie x € (. Atunci, pentru orice z* € (¢)

*
)

(Ty o T) (z) (z*) = ((TQx) o T_l) (%) = (Tox) o T (2%),

iar folosind notatia y = T~ (z*) avem in continuare:

(Ti o Ty) (x) (%) = To () (y) = D _waye = T (y) (2) = 2" () = @ (2) (27) .

Aceasta arata cd (17 o Ty) = ©. O

Observatia 4.4.5 Folosind aceeasi metoda, obtinem ca orice spatiu liniar normat finit dimen-
sional este reflexiv.

Exemplul 4.4.6 Spatiul (co, ||||.) nu este reflexiv. Intr-adevr, stim c&
cpf 2 0.

Pe de alta parte, ¢y gi £*° (cu normele uzuale) nu sunt izomorfe pentru ca primul spatiu este
separabil iar al doilea este neseparabil. Deci nu exista niciun izomorfism intre ¢ si cf*. Astfel,
cp nu este reflexiv.

Propozitia 4.4.7 Fie X un spatiuv Banach. Atunci:
(i) ® (X) este subspatiu liniar inchis in X**;
(i1) ® este (w,w*) — continua;
(iii) daca X este reflexiv, atunci =1 este (w*, w) — continua.
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Demonstratie (i) Cum @ este izometrie, afirmatia rezultd pe baza Problemei
(ii) ® este (w,w*)—continui dacd si numai dacd ®' duce w*—vecindtati ale lui 0 in
w—vecinatati ale lui 0. Fie

V = {y** e X** ’ ‘y** (IE:)’ < g, Vi 61,_n}

o w*—vecindtate a lui 0 € X** (cu notatiile obignuite). Atunci v € ®~! (V) dacd si numai daci
® (u) € V, ceea ce este echivalent cu

@ (u) (27)| <&, VieIn,
adica
lz¥ (u)| < e, Viel,n.

Astfel u € @' (V) dacd si numai dacd u € U = {z € X ||z} (z)| <e, Vi€ 1,n}, deci
®~1 (V) = U care este o w—vecindtate a lui 0.

(iii) Presupunem c& ® este surjectiva si ardtdm cd ! este (w*, w) —continud, adicid ® duce
w—vecinatati ale lui 0 in w*—vecinatati ale lui 0.

Fie, din nou cu notatiile standard,

U={zeX|l|z(z) <e, Vieln}

o w—vecindtate a lui 0. Atunci 2™ € ® (U) dacd si numai dacd existd u € U astfel incat
z* = @ (u). Cum
|z} (u)| < e, Vi€l n,

deducem ca
@ (u) (27)| < e, Vieln,

adica
|z (z7)] < &, Vi € 1,n.

Deci 2** € @ (X) NV =V, unde V = {y*™* € X** | |[y** (z})| <&, Vi € 1,n}. Astfel obtinem
concluzia. 0

Teorema 4.4.8 Daca X este spatiu Banach reflexiv, atunci Dx este w—compacta.

Demonstratie Cum ® (X)) este izometrie, ® (Dx) = Dx«. Pe baza Teoremei Alaoglu-Bourbaki
(Teorema4.3.12)) deducem c& D x++ este w*—compactd. Dar conform Propozitiei , o1 este
(w*, w) —continud, deci Dy este w—compacta. O

Observatia 4.4.9 De fapt, are loc st reciproca pe care nu o demonstram aici. Aceasta echivalenta
poarta numele de Teorema lur Kakutani.

Pe baza rezultatului de mai sus si a Teoremei lui Weierstrass, obtinem consecinta urmatoare.
Corolarul 4.4.10 Daca X este spatiu Banach reflexiv, atunci pentru orice x* € X*,

[ = max {Jz* ()] | [|z]} <1}
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Propozitia 4.4.11 Daca (X, ||]]) = (Y, |||]) st X este reflexiv, atunci Y este reflexiv.

Demonstratie Notam cu @ x si @y cele doua scufundari canonice gi cu T : X — Y izomorfismul
izometric dintre X gi Y. Definim 77 : X* — Y* prin

Ty (x*) =2 o T
siTy: X* — Y™ prin
T2 (l'**) — ot OTl_l.

Cei doi operatori sunt izomorfisme izometrice.

Fie y*™* € Y**. Cum T, este surjectiv, existd ™ € X** astfel incat 15 (z**) = y**, adica
** o T, ! = y**. Folosind surjectivitatea lui ®x, existd v € X astfel incat ®y () = 2**. Atunci,
pentru orice y* € Y*, avem

YY) =2 o Ty () = 2™ (Yo T) = Bx (x) (y* o T)
= oT)(z)=y" (Tx) = 0y (Tx) (y") .

Deci y** = &y (T'x) , adicd Py este surjectiva. O

Propozitia 4.4.12 Daca X este spatiu Banach reflexiv 1Y este un subspatiu liniar inchis al
sau, atuncit Y este spatiu Banach reflexiv.

Demonstratie Fie ¢ € Y**. Definim ¢ € X™** prin
o@) =y (@ |y), Va* e X™.

Cum X este reflexiv, existda x € X astfel incat @ (z) = . Trebuie sa ardtdm ca x € Y pentru
ca astfel avem

oy (2) =27 () = @ (2) (¢7) = 0 (¢7) = ¢ (2" [y), Va© € X7

si pe baza Teoremei Hahn-Banach, orice y* € Y* poate fi extinsa la o functionala x* € X*, deci
relatia de mai sus asigura

y (x) = (y*), vyt e Y™
Presupunem, prin reducere la absurd, ca x ¢ Y. Din forma geometrica a Teoremei Hahn-Banach,
existd un hiperplan care separd subspatiul inchis Y i multimea compacta {z} . Deducem, printr-
un argument deja standard, c& existd z* € X*\ {0} astfel incat 2* se anuleazd pe Y i z* () > 0.
Pentru acest x* avem

in timp ce

p(z%) = @ (2) (27) = 27 () #0.
Contradictia obtinuta inseamna ca presupunerea facuta este falsa, deci © € Y, ceea ce incheie
demonstratia. 0

Propozitia 4.4.13 Un spatiu Banach X este reflexiv daca si numai daca dualul sau este re-
fleziv.
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Demonstratie Practic, trebuie sa aratam ca
Dy (X) = X <= by (X7) = X
Presupunem mai intai cd X** = & (X). Fixdm u € X** gi observam ca functia z* : X — R,
z* (2) = u(Px (2))

este din X*. Pe de alta parte,

" (z) = ®x (z) (), Vo € X,
deci

u(®x (x)) = Px (z) (z*), Vo € X.

Cum & (x) parcurge X** cand z parcurge X, inseamna ca

u(@™) = o (), Vo™ € X*,
adica

u= Py (x%).

Aceasta inseamna ca injectia canonica a lui X™* in X*** este surjectiva.
Invers, presupunem ca X* este reflexiv. Din pasul anterior rezultd ca X** este reflexiv.
Spatiul X fiind Banach, ® (X) este subspatiu inchis in X** gi din rezultatul anterior obtinem

cad ® (X)) este reflexiv, deci, pe baza Propozitiei 4.4.11, X este reflexiv. O

Propozitia 4.4.14 Fie X spatiu Banach. Atunci X este reflexiv si separabil daca si numai
daca X* este reflexiv gi separabil.

Demonstratie Daca X* este reflexiv gi separabil, atunci X este reflexiv si separabil pe baza
rezultatelor deja demonstrate. Invers, dacd X este reflexiv i separabil, atunci X*™* ~ & (X)
este reflexiv gi separabil, deci X™* este reflexiv si separabil. O

Teorema 4.4.15 Daca X este spatiuv Banach reflexiv, atunci Dx este w—secvential compacta.
Demonstratie Fie (z,,) sir din Dy. Consideram subspatiul liniar inchis al lui X
Y = cljspan{xy, ..., 2p, ...}

care este reflexiv si evident separabil . Deducem ca Y™** este reflexiv si separabil. Din varianta
secventiala a Teoremei Alaoglu-Bourbaki, Dy« este secvential compacta. Folosind din nou
Propozitia , Dy este secvential compactd, deci girul (x,) C Dy are subsir w—convergent.
OJ

In final, trecem in revista cateva consecinte ale reflexivitatii.

Teorema 4.4.16 Fie X spatiu Banach reflexiv. Atunci:
(i) Dx este w—compacta gi w—secvential compacta;
(i1) orice gir marginit din X admite un subgir w— convergent;
(111) orice multime w—1inchisa gi marginiti este w— compacta §i w—secvential compacta;
(iv) orice multime convexd, marginita i inchisa in norma este w— compacta i w— secvential
compacta.
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Demonstratie (i) Cele doud concluzii au ficut obiectul unor rezultate anterioare (Teoremele
5i[LL.15).

(ii) Un sir marginit este inclus intr-un disc centrat in 0, care este multime w—secvential
compacta.

(iii) Dacd o multime este marginitd in norma atunci este inclusa intr-un disc centrat in 0,
care este multime w—compacti si w—secvential compacts. In plus, fiind slab inchisd este si
slab secvential inchisa. Deducem concluzia

(iv) Aplicim Teorema lui Mazur pentru a deduce cd multimea este slab inchisa si apoi
aplicam punctul precedent. 0

Exemplul 4.4.17 De la ipotezele punctului (iv) nu putem elimina convexitatea. De exemplu,
sfera unitate in ¢ este maginitd si inchisd in norms, dar nu este slab compactd si nici slab
secvential compactd intrucat sirul vectorilor unitari converge slab la 0 (a se vedea Problema

4.5 Operatori compacti. Alternativa lui Fredholm

Definitia 4.5.1 Fie XY spatii Banach. Un operator T € L(X,Y) se numeste compact daca
T (Dx) este multime compacta in'Y . Notam cu K (X,Y) multimea operatorilor compacti de la
X laY gi cu K (X) spatiul K (X, X).

Observatia 4.5.2 1. Daca T este liniar de la X la'Y §iT (Dx) este multime compacta in'Y,
atunct T este automat continuu pentru ca este marginit.

2. Faptul caT (Dx) este multime compacta revine la a spune ca T (Dx) este multime relativ
compacta. Reamintim ca o submultime a unui spativ metric complet este relativ compacta daca
g1 numai dacd pentru orice € > 0 poate fi acoperitd cu un numar finit de bile de raza € (sau, altfel
spus, intr-un spatiu metric complet multimile relativ compacte coincid cu cele total marginite).

3. Proprietatea lui T de a fi operator compact poate fi reformulata astfel: pentru orice sir
marginit (x,) C X, sirul (T'z,) admite un subsir convergent.

Propozitia 4.5.3 Multimea K (X,Y) este subspatiu liniar inchis al lui L (X,Y).

Demonstratie Faptul c& multimea K (X,Y") este subspatiu liniar se arata ugor daca se tine cont
ca + este parte stabila datorita incluziunii

(S + T) (Dx) C S(Dx) + T(Dx),

si a rezultatului cunoscut care afirma ca suma dintre doua multimi compacte este compacta
(imaginea prin aplicatia continua (z,y) — = + y a produsului celor doud multimi).

Fie acum un sir (7,,) € K (X,Y) si T € L(X,Y) astfel incat ||7,, — T|| — 0. Fie asadar
e > 0. Exista n, € N astfel incat

T, —T|| <27, Vn > n,.

Deci, pentru orice x € Dy,
| T, () = T (2)]| < 27"
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Cum T,,. (Dx) este relativ compacta (iar Y este spatiu Banach), poate fi acoperitd cu un numar
finit de bile de raza ¢, deci exista k € Psi y; € Y, 7 € 1, k astfel incat

T.. (Dx) C UD (yi, 2*15) )

Deducem ca

Deci T' este compact. U]

Definitia 4.5.4 Fie X,Y spatii Banach. Un operator T' € L(X,Y’) se numeste de rang finit
daca T (X) are dimensiune finita.

Observatia 4.5.5 FEuvident, orice operator de rang finit este compact.

Corolarul 4.5.6 DacaT € L(X,Y) este limita tn norma a unui gir de operatori de rang finit,
atunct este compact.

Exemplul 4.5.7 Fie operatorul T : ¢ — ¢? dat prin

Ty

T (z)= (?>kep’ Vo = (z)pep € 0

Se verifica ugor ca T' este liniar continuu. De asemenea, se observa ca T este limita girului de
operatori de rang finit (7},), ., dat prin

- (22

T, E, ceny ;,O, ) , Vo = (xk)kelP’ & 62’ Vn € P.

Deci T este un operator compact care nu este de rang finit (toti vectorii unitari se afla in Im 7").

Exemplul 4.5.8 Fie K : [0,1] x [0,1] — R o functie continud. Pentru f € C ([0, 1]) definim

_/OIK(m,t)f(t)dt.

Atunci 7" este un operator liniar continuu compact de la (C ([0, 1]), ||-||..) la (C ([0,1]), |I]l..) -
Demonstram aceste afirmatii. Este clar ca T'f € C([0,1]) pentru orice f € C([0,1]).
Liniaritatea lui T' este evidentd. Apoi, pentru orice f € C ([0, 1]) si orice z € [0, 1],

(Tf) ()] =

[ xworoa < [ e ola <KL
0

deci
1T fll o < 1Kl 1 f oo »

adica T este continuu. Pentru a arata ca 1" este compact, trebuie sa mai aratam ca T’ (DC([OJ}))
este relativ compacta, lucru pentru care folosim Teorema Arzela-Ascoli. Marginirea multimii
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T (DC([OJ])) este evidenta din continuitatea lui T Trebuie sa aratam ca aceasta multime de
functii este echicontinud. Pentru orice x, 2’ € [0,1],

(Tf) () = (T'f) ()] = /0 (K (2,t) = K (2, 1)) f (t) di
< HfHootil[ép” K (2,1) = K (2, )]

Dar K fiind continud pe compactul [0, 1]2 , este uniform continua, deci pentru orice € > 0 exista
d > 0 astfel incat pentru orice z, 2, t,t' € [0,1] cu |z — 2| <6, [t — /| < ¢ avem

|K (x,t) — K (2/,1')] <e.
In particular, pentru orice ¢ € [0, 1]
|K (z,t) — K (2',t)] < e
daca x, 2" € [0,1] cu | — 2’| < 4. Deci pentru orice f € Deypo,1)), orice z, 2" € [0,1] cu |z — 2’| <

d,
(Tf) (2) = (T @) <ellflle <e

Concluzionam ca T (DC([OJD) este echicontinua deci, in final, relativ compacta.

Exemplul 4.5.9 Daca X este un spatiu Banach infinit dimensional, atunci idx nu este un
operator compact.

Reamintim urmatorul rezultat important.

Lema 4.5.10 (Lema lui Riesz) FieY este subspatiu liniar inchis propriu al unui spativ Ba-
nach X gie € (0,1). Atunci exista x € Sx astfel incat d(xz,Y) > e.

Demonstratie Fie u € X \ Y. Cum Y este inchis, d (u,Y) > 0. Din definitia distantei, pentru
cde € (0,1), existd v € Y astfel incat

d(u,Y)

lu —of] <

Considersm acum 7 = |lu — v||~" (u — v) € Sy si pentru orice y € Y

u—v H
_y —
vli

lu —
Deci, d(Z,Y) > ¢. O

u— (A fu-vly) H
lu =] Hu—vll

Hf—yuz\

Teorema 4.5.11 Fie X spatiu Banach i T € K (X). Atunci:
(i) Ker (id =T') este finit dimensional;
(i1) Im (id =T') este inchisa.
(11i) Daca (id —T) este injectiv, atunci este inversabil.
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Demonstratie Daca X este finit dimensional, toate afirmatiile sunt evidente. Presupunem deci
ca X este infinit dimensional.

(i) Avem u € Ker (id —7') daca si numai dacd u = T (u). Asta inseamnd cd bila unitate
inchisa din subspatiul Ker (id —7) este inclusa in 7' (Dx ), deci este compactd. Asta inseamna
cd Ker (id —T') este de dimensiune finita.

(ii) Fie (z,), C X si (yn),, = (¥, — Tx,), C Im(id—T') astfel incat y, — y. Aratdm ci
y €lm(id-T).

Presupunem mai intéi ca (z,,) este marginit. Cum 7T este operator compact, exista un subsir
(xn,) astfel incat

Tz, — z€c X.

Atunci
Tpy, = Ty — Ly, + Ty, —y+2

si deducem ca
Tx,, — T (y+2).

Deci T'(y + z) = z. Avem
=y+z—z=y+2—-T(y+2)=0{0d-T)(y+2) €Im(id-T).
Presupunem acum ca (z,) nu este marginit. Fie girul de numere reale
(dy), = (d(z,,Ker (id=T))),, -
Existd z, € Ker (id —7") astfel incat
|xn — zn]| < 2d,, ¥n € N.

Aratam ca sirul numeric (d,,) este marginit. Presupunem, prin reducere la absurd, ca exista un
subsgir al acestuia (notat la fel, pentru usurinta scrierii) divergent la infinit, adica (d,) — oo.
Fara a restrange generalitatea putem presupune ca toti termenii acestui subsir sunt nenuli si

luam, pentru orice n
Tn — Zn

2d,,

Dar, (a,) este marginit si cum 7" este operator compact, (T'«;,) admite subsir convergent la un
element 3 € X. Pe de alta parte,

oy =

T (mn - Zn) — In + Zn —Yn
= —
2d,, 2d,,

Ta,, — o, =
Din relatia de mai sus, (a,) are un subsir convergent la 3, deci 8 € Ker (id —7T') . Ins#, pentru
n suficient de mare, ||, — 3] < 271, deci

Tn — Zn

2d,,

o] er

adica
|t — 20 — 2d,8|| < dn,
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ceea ce este fals intrucat z, + 2d,5 € Ker (id —7") . Conchidem c& (d,,) este marginit. Evident,
(xn, — z,) este de asemenea marginit. Cum (z,) C Ker (id —7"), avem (id —7') (2, — zn) — y si
am revenit la cazul precedent pentru care am aratat deja ca are loc concluzia.

(iii) Trebuie sa ardtdm cd id —7" este surjectiv. Fie X; = Im (id —7') si presupunem, prin
reducere la absurd, cd X; # X. Din punctul anterior, X; este spatiu Banach si T'(X;) C X
pentrucd y € T (X;) sescriecay =T (v) =T (Tv) cuv € X, deciy = (id —T') (Tv) . Mai mult,
restrictia lui 7" la X este din K (X).

Consideram subspatiul liniar inchis Xy = (id —7") (X;) . Oricey € Xy sescriecay = z—T1 ()
cuxr € X, ceea ce inseamna ca y € X, adica Xy C X;. Mai mult, incluziunea este stricta
pentru cd id —7 este injectiv: luand y € X \ X7, (id —7T') (y) € X; dar nu poate fi in X5 pentru
ca s-ar contrazice injectivitatea.

Inductiv, construim sirul strict descrescator de subspatii inchise

(Xn)nEIP’ = ((id _T)n (X))nGIP’ )

unde puterea n semnificd compunerea de n ori a operatorului.
Din Lema lui Riesz (Lema [4.5.10), pentru orice n, existd u, € X, N Sy astfel incat
d (Up, Xpy1) > 271, Atunci, pentru orice n, m

Tuy — Ttup = — (up — Tuy) + (U — TUp) + Up — U,
sidacan >m, cum X1 C X, C Xi1 C X,
— (up, — Tup) + (U — Tty + upy € Xpna,

deci
||Tun - TumH Z d (um7Xm+1) Z

N —

Acesta este imposibil pentru ci (u,) este marginit si T este compact. Am ajuns la o
contradictie, deci Im (id —=7") = X. O

Teorema 4.5.12 (Alternativa lui Fredholm) Fie X spatiu Banach i T € K (X). Atunci
are loc eract una dintre urmatoarele doud afirmatii:

(1) ecuatia x — Tz = 0 are o solutie nenula (deci o infinitate de solutii);

(i1) pentru orice y € X ecuatia x — Tx =y are solulie unica.

Demonstratie Rezulta din punctul (iii) al teoremei precedente. U

Observatia 4.5.13 In notatiile din Exemplul pe baza teoremer precedente oblinem wur-
matorul rezultat: fie ecuatia (in necunoscuta f)

f—/o K (8) £ (#)dt =0

are o solutie nenula, fie pentru orice g € C ([0, 1]) ecuatia (in necunoscuta f)

f—/o K(0) f(t)dt = g

are o unica solutie.
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Capitolul 5

Spatii Hilbert

Ca gi in cazul primului capitol, vom trece mai intai in revista concepte si rezultate intal-
nite deja in cursurile anterioare. Structura fina a unui spatiu Hilbert permite obtinerea unor
rezultate noi si foarte puternice, asa cum vom constata in rezultatele principale ale acestui
capitol.

5.1 Recapitulare si completari

Definitia 5.1.1 Fie X spatiu liniar peste R. Se numeste produs scalar pe X o functie (-,-) :
X X X — R avdnd urmatoarele proprietati:

(1) (x,x) > 0 pentru orice v € X si (z,z) =0 daca i numai daca x = 0;

(i1) {ax + By, z) = a{x,z) + 5y, z), pentru orice o, f € R, x,y,2z € X

(i1i) (x,y) = (y,x), pentru orice x,y € X.

Perechea (X, (-,-)) se numeste spatiu cu produs scalar.

Exemplul 5.1.2 1. Pe R? (d > 1) se defineste produsul scalar

d
<$7y> = Zxkyka V:E7y € ]Rd'

k=1

2. Dacd X e spatiu liniar finit dimensional de dimensiune d > 1 ¢i E = {e1, ..., e4} este o baza
algebrica a sa, atunci pentru orice x = ZZZI Trer Sy = ZZ=1 yrer scrise in baza F se definegte
produsul scalar

d
k=1

3. Pe (2 se defineste produsul scalar

<$, y> = Zxkyk

k=1
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(E simplu de vizut cd aceastd serie este convergentd tocmai pentru c z,y € £2.)
4. Pe C ([a, b)) se definegte produsul scalar

b
(f:9) :/ f(x)g(x)de.

5. Pe L? (X, 1, R) se defineste produsul scalar

Uy%ZLjngw

Propozitia 5.1.3 Fie (X, (-,-)) un spatiu cu produs scalar. Atunci:
(i) (z,y)* < (x,2) (y,y), pentru orice z,y € X (inegalitatea lui Schwarz);
(i) ||| - X — [0,00), ||z|]| = \/(x,x) este o norma pe X.

Demonstratie (i) Pentru orice a € R i orice z,y € X,
0< <CE —Cl’y,ZL‘—(Iy> = <ZE,J}> —2Q<I,y> +a2 <y7y> :

Folosind proprietatile trinomului de gradul al doilea, obtinem inegalitatea.
(ii) Verificim doar a treia proprietate a normei, primele doud fiind imediate. Pentru orice
z,y€e X

2 2 2 2 2
o+ yll” = [lz]” + 2z, y) + lylI” < ll=]]” + 2/ (2, 2) (g, ) + [yl

2 2 2
= [l + 2=l lyll + lylI” = (llll + [lyl)"-
Deci ||-|| este o0 norma. O
Observatia 5.1.4 Inegalitatea lui Schwarz se scrie echivalent
[z, )| < [l [lyll, Vo, y € X.

Propozitia 5.1.5 Fie (X, (-,-)) un spatiu cu produs scalar. Atunci pentru orice x,y € X :
(i) |z +yl|*> + = — y)|* = 2 (||« + |yl|*) (identitatea paralelogramului);

(ii) 4 (z,y) = ||z + y [ = ll= = y[|*.

Demonstratie Ambele relatii se arata prin calcul direct. 0

Teorema 5.1.6 Daca (X, ||-||) este spatiu liniar normat pe care are loc identitatea paralelogra-
mului atunci ezistd un produs scalar pe X care induce norma ||-|| .

Demonstratie Definim
2 2
_ Nz +yl” =z —yl

<£L‘,y>— 4 avx>y€X

si aratam ca acesta este produs scalar, iar norma provine din acesta.

Prima si a treia proprietate din Definitia sunt evidente.

Pentru a arita proprietatea a doua (adica liniaritatea in raport cu prima variabild), ardtam
pe rand aditivitatea si omogenitatea.
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Fie x1, 29,23 € X. Pe baza identitatii paralelogramului avem

|21 + 22 + 563H2 + |21 + 22 — $3||2 =2 (Hiﬁl + 1‘2||2 + ||»"C3H2)

21 — 5+ as|* + [lz1 — 25 — a* = 2 ([lor — a* + [|2s]|?) ,
relatii care prin scadere conduc la

(lz1 + 22 + 23> = |21 — @2 + 23]|°) + (|71 + 22 — 23]* = |21 — T2 — 23]|°)
=2 (||or + 22|” — [l21 — 22[7)
adica
<.I'1 + Zs3, $2> + <.I’1 — 333,33'2) =2 <Qf1,l’2> . (51)

Pentru x5 = 1, deducem
(221, 22) + (0, 29) = 2 (21, 29) .

Dar, din relatia de definitie, (0, x9) = 0,
(221, 29) = 2 (w1, x9), V1,29 € X.
Fie acum z, 5,2 € X. Alegem in (5.1) z; =27 ' (x +y), 23 =27 (x —y), 15 = 2. Atunci

(m,2) + (g, 2) =227 (x+y),2) = (x+y,2)

si aditivitatea este demonstrata.
Demonstram acum omogenitatea. Fie z,y € X. Din aditivitate, inductie, pentru orice n € N

(nz,y) =n(x,y).

Inlocuind = cu n~ 'z pentru n € P deducem si

%<x,y> = <%xy>

Prin combinatia acestor relatii ob{inem omogenitatea pentru scalarii rationali pozitivi.
Acum, prin definitia lui (-, ),
(—2,9) = — (x,y)

si obtinem omogenitatea pentru toti scalarii rationali. Cum (-, y) este continud pentru orice
y € X, deducem omogenitatea pentru scalarii reali.

In sfarsit, este clar c& ||z||*> = (x,z) , deci norma provine din produsul scalar definit pe baza
ei. U

Corolarul 5.1.7 O norma pe un spatiu liniar provine dintr-un produs scalar daca $i numas
daca satisface identitatea paralelogramulus.

Exemplul 5.1.8 Norma |||, pe R? nu provine dintr-un produs scalar pentru ci nu satisface
identitatea paralelogramului. Intr-adevar, se observa cu usurinta ca vectorii bazei canonice nu
verifica aceasta identitate.

65



Observatia 5.1.9 Pe baza inegalitatic lur Schwarz, produsul scalar este continuu in raport cu
fiecare din cele doua variabile in raport cu topologia mormei. De fapt, produsul scalar este
continuu in ansamblul variabilelor, lucru care se arata direct si maz jos.

Propozitia 5.1.10 Fie (X, (-,-)) un spatiu cu produs scalar. Atunci pentru orice doud §iruri
(1), (yn) convergente (in topologia data de norma indusa de produsul scalar) la x € X, respectiv
y € X avem

(@ns Yn) — (2, Y) -
Demonstratie Avem

‘(xnayn> - (:z:,y)] = ‘(l’n - xvyn> + <x7yn _y>’
< lzn — [ {lynll + llyn — yll 2] — 0,

ceea ce demonstreaza propozitia. O

Definitia 5.1.11 Se numeste spatiu Hilbert un spativ cu produs scalar care este complet in
raport cu norma indusa de produsul scalar.

Exemplul 5.1.12 Spatiile de la Exemplul 1, 2, 3, 5 sunt spatii Hilbert. Spatiul de la
Exemplul 4 nu este Hilbert, pentru ca C' ([a, b]) nu este complet in raport cu nicio norma
H ' ||p

Teorema 5.1.13 (existenta elementului de cea mai buna aproximare) Fie (X, (-,-)) un
spativ Hilbert si C' C X o multime nevida, convexd i inchisa. Atunci, pentru orice x € X
exista un unic element y € C' astfel incat

d(z,0) = [lz =yl
In plus, y este caracterizat de proprietatile y € C gi (x —y,u —y) < 0 pentru orice u € C.

Demonstratie Cum pentru orice z € X, multimea C' — x este nevida, convexa si inchisa, este
suficient s aratdm prima parte pentru x = 0. Adicd, trebuie demonstrat cd existd un unic
z € C astfel incat

d(0,C) =inf{[lc]| [ c € C} =[] .

Ardtam mai intai existenta. Notdm d (0,C) cu ~. Pentru orice y € C, |ly|| > v si conform
caracterizarii infimumului, pentru orice n € P, exista y, € C' astfel incat

1
7 <l <97+ (5.2)

Ardtdm ci (y,) este sir Cauchy folosind identitatea paralelogramului. Avem, pentru orice
n,m € P,

1 1
= l” = 2l + 2l = 4 0+ G

1 1 1 1
§2<72+ﬁ+72+ﬁ>_472:2<E+E>’
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unde am folosit faptul ca 271y, + 271y, € C pentru ci C este convexi. Inegalitatea de mai
sus aratd cd (y,) este sir fundamental. Cum spatiul este complet, exista z € C astfel incat
limy,, = z. De asemenea, prin trecere la limitd in (5.2), ||z|| = lim ||y, || = 7.

Demonstram acum unicitatea. Dacd 0 € C, nu avem nimic de aratat. Luam 0 ¢ C.
Consideram a1, a2 € C cu d (0,C) = ||a1|| = ||az| . Folosind egalitatea paralelogramului avem

lax + as* + flar — as||* = 2 fJar | + 2 laz|*,

adica
lar + as|* + [|az — a1 ||* = 4°
si impartind prin 4 obtinem

2 2
a2 —

2

a; + as
2

Cum C este convexa, 27(a; + az) € C, deci H%W > ~2. Aceastd relatie si egalitatea
precedentd aratd cd ||az — a1|| = 0, deci a; = ay. Demonstratia unicitatii este completa.

Sa demonstram acum, din nou pentru z € X fixat, cd y € C a carui existenta si unicitate
tocmai au fost probate verifica relatia (x —y,u —y) < 0 pentru orice u € C. Pentru aceasta
ludm u € C. Atunci pentru orice « € (0, 1]

v=au+ (1 —a)yeC.
Deci
o —yll < flo —ou— (1 —a)yl| =z —y - a(u—y),
de unde, prin ridicare la patrat,
lz =yl <z = ylI* = 2a (z — y,u—y) + * [lu—y|*.
Dupa reducere si simplificarea cu a > 0 obtinem
0<—2(x—y,u—y)+alu—yl*.

Facand a — 0 obtinem inegalitatea anuntata.
Invers, dacad un element ¢ € C satisface (x — ¢,u — ¢) < 0 pentru orice u € C| atunci pentru
orice v € C
lz = cll* = [l = ol = 2{z = c,v =€) = [le —v[|* <0,

deci ¢ coincide cu y. Demonstratia este incheiata. 0

Definitia 5.1.14 In contextul teoremei anterioare y se numeste proiectia lui x pe C si se
noteazd pro T.

Propozitia 5.1.15 Fie (X, (-,-)) un spatiu Hilbert si C C X o multime nevida, convexd i
inchisa. Atunci operatorul de proiectie X > x +— proax € C este 1— Lipschitz.
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Demonstratie Fie x1, x5 € X. Atunci, conform Teoremei [5.1.13] pentru orice v € C,

(x1 — prexy, v —proay) <0
(x9 — pro e, v — prexg) < 0.

Inlocuind in prima relatie v cu pry 22 si in a doua v cu pr x; si adunand, gasim

Ipre 21 — pre @s||* < (1 — 22, pro a1 — pre 22)
de unde concluzia. O

Propozitia 5.1.16 Fie Fie (X, (-,)) un spatiu Hilbert si Y C X wun subspatiu liniar inchis
diferit de {0}. Atunci operatorul de proiectie X > x +— pry x € Y este operator liniar continuu
de norma 1.

Demonstratie Fie x € X. Caracterizarea elementului de proiectie a lui x pe Y data mai sus, si
anume, pry z € Y si (x — pry z,u — pry x) < 0 pentru orice u € Y devine, pe baza liniaritatii
lui Y, pryx € Y si (x — pry z,u) = 0 pentru orice u € Y. Cu aceastd precizare, liniaritatea
rezulta imediat pentru ca pentru orice «, 8 € R, orice z,y € X si orice u € Y avem

(ax + By — pry (ax + By) ,u) =0,
(x —pryx,u) =0, (y — pry y,u) =0,

de unde gasim, prin operatii algebrice,

(apry z + Bpry y — pry (az + By),u) = 0.

Alegand u = apry z + S pry y — pry (ax + By) € Y, deducem concluzia.
Propozitia anterioara dovedeste continuitatea acestui operator si, in plus, ||pry | < 1. Cum
Y N Sx # 0, deducem ci ||pry || = 1. O

5.2 Ortogonalitate

Definitia 5.2.1 Fie (X, (-,-)) un spatiu cu produs scalar.
(1) Spunem ca doud elemente x,y € X sunt ortogonale si scriem x L y dacd (x,y) = 0.

(i1) Fie x,y € X \ {0}. Se numeste unghiul celor doud elemente numarul, notat (x,y), din
intervalul [0, 7] pentru care

@)
cos (x,y) = — .
] Iy

Daca (z,y) € {0, 7}, spunem ca vectorii x giy sunt paraleli sau coliniari.

—

Observatia 5.2.2 Daca x,y € X \ {0} atunci v Ly daca si numai daca (v,y) = 5.

Definitia 5.2.3 Fie (X, (-,-)) un spativ cu produs scalar gi A C X. Se numeste complementul
ortogonal al lui A multimea

At ={rcX|xLa, Yac A}.
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Propozitia 5.2.4 Fie (X, {-,-)) un spatiu cu produs scalar si A C X. Atunci:
(i) At = WL si AL este subspatiu liniar inchis al lui X;
(i) A C (A-)";
(iii) AN A+ = {0} daca 0 € A 5i AN AL =0 dacid 0 ¢ A.

Demonstratie Toate afirmatiile rezulta direct din definitii. O

Lema 5.2.5 Fie (X, (-,-)) un spativ cu produs scalar §i'Y un subspatiu vectorial al lui X. Fie
xr € X giy €Y. Urmatoarele afirmatii sunt echivalente:

(i)r—yeYh

(i1) ||z — y|| < ||l —u|, pentru orice u € Y.

Demonstratie Fie z = x — y. Atunci, pentru orice u € Y

r—u=(z-y)—(u—y)=2z-uv,

unde v = u — y. Pentru y € Y fixat aplicatia Y > u+— v =u — y € Y este o bijectie. Deci:
(i) se scrie z € Y,
(ii) se scrie ||z]| < ||z — v|| pentru orice v € Y adicd, dacd ridicam la pétrat si efectudm
calculele, 2 (v, z) < ||v||* pentru orice v € Y.
Acum, (i) = (ii) este evidenta. Demonstram (ii) = (i). Aplicdm (ii) pentru av cu @ € R
si avem
20 (v, z) < & |jv]|*, Va e R, Vv €Y.

Dacs z ¢ Y, existd y € YV astfel incat (z,y) # 0. Fira a restrange generalitatea, presupunem
cd (z,y) > 0 i cum
2a(y,2) < o |ly||*, Va € R

prin impartire la a > 0 si facand o — 0, obtinem

2(y,2)

lyll* > — 00,

ceea ce reprezintd o contradictie. Deci z € Y. (l

Corolarul 5.2.6 Fie X un spatiu Hilbert siY un subspatiu vectorial inchis al lui X. Fiex € X
siy €Y. Atunci y = pry x dacd i numai daci x —y € Y.

Definitia 5.2.7 Spunem ca un spatiu lintar X este suma directa a doua subspatii vectoriale Y
§t Z ale sale daca pentru orice x € X, exista i sunt unice doud elemente y € Y, z € Z astfel
incit v =y + z. Scriem X =Y & Z gi observam ca definitia este echivalenta cu X =Y + Z s
YnZ={0}.

Teorema 5.2.8 (de descompunere ortogonald) Fie (X, (-,-)) un spatiuv Hilbert i Y C X
un subspativ vectorial inchis al lui X. Atunci X =Y @Y™L, adici pentru orice x € X existd si
sunt unice doud elemente y €Y si z € Y+ astfel incit x = y + z. In plus, pentru orice v €Y,

2 2 2
lz = ol = llz = ylI” + [ly = v[|”-
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Demonstratie Fie x € X. Cum Y este, ca multime, nevida, convexa si inchisa, din Teorema
5.1.13| exista un unic y € Y astfel incat

|z —y|| < ||z —ul, VueY.

Conform Lemei x—y €Y't Decizx =y+ 2 unde z = x — y. Unicitatea descompunerii
rezultd din faptul ci Y N Y+ = {0} .
Aratam ultima concluzie. Fie v € Y. Atunci

r—v=x—-y+(y—v).
Cum (z —y) L (y —v), prin ridicare la patrat,
2 2 2
|z —vlI" = llz —y[” + ly — vl
adica ceea ce trebuia sa demonstram. O

Propozitia 5.2.9 Daca Y este subspatiu vectorial inchis al spatiului Hilbert X, atunci are loc
: L
egalitatea (Y ) =Y.

Demonstratie Incluziunea Y C (Yl)L are loc mereu. Fie z € (YL)L . Atunci, conform Teore-

mei existd si sunt unice doud elemente y € Y si z € Y+ astfel incat = y + 2. Inmultim
scalar cu z aceastd egalitate si avem ||z||*> = 0, deci z =y € Y. O

5.3 Dualitate in spatii Hilbert

Dualul unui spatiu Hilbert poate fi descris explicit.

Teorema 5.3.1 (Teorema lui Riesz) Fie (X, (-,-)) un spatiu Hilbert peste R. Pentru orice
y € X, functia f, : X — R data prin f,(x) = (x,y) satisface f, € X* i ||fyllx- = |yllx -
Reciproc, pentru orice z* € X*, exista un unic y € X astfel incat z* = f,.

Demonstratie Faptul ca f, este liniara pentru orice y este evident. Apoi, pentru orice z € X

| fy (@) < [l lyll

deci f, este continud si || f,|| < |ly||. Dar,

lyll* = 1£, I < 1F Iyl

deci || f,]| > |ly|| - Asadar, are loc egalitatea.

Fie acum z* € X*. Daca z* = 0, luam y = 0 si 2* = f,. Presupunem ca z* # 0. Atunci,
Kerz* # X si din Teorema de descompunere ortogonald deducem c& (Kerz*)" # {0} . Fie
z € (Kerz*)" \ {0}. Daci z € Kerz*, atunci am avea ||z||> = 0, ceea ce nu se poate. Deci
z*(z) # 0. Fie x € X. Observam ca

“(-5) -
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deci

adica

Asadar, pentru orice x € X,

ceea ce Inseamna ca z* = f,, unde

Deci are loc rezultatul de existenta. Demonstram, in final, unicitatea lui y. Daca f,, = f, pentru
Y,z € X, atunci (x,y — z) = 0 pentru orice x € X, ceea ce atrage y = z. [

Observatia 5.3.2 Asadar Teorema lui Riesz arata faptul ca un spatiu Hilbert este izomorf
izometric cu dualul sau gi x* € X* daca i numai daca x* = (y,-) cuy € X.
In particular, convergenta slaba pe X devine

(mn$x> — ((y,z,) — (y,z), Yy € X).

Propozitia 5.3.3 Daca X este spatiu Hilbert, atunci X* este spatiu Hilbert.

Demonstratie Fie x*,y* € X*. Fie x,y € X elementele corespunzatoare date de Teorema lui
Riesz. Definim (z*,y*) = (z,y). Se arata usor ci acesta este un produs scalar care induce
norma pe X*. Cum X* este si complet, deducem ca este spatiu Hilbert. O

Teorema 5.3.4 Orice spatiu Hilbert este reflexiv.

Demonstratie Fie ® : X — X** scufundarea canonica in bidual. Trebuie sa aratam ca ® este
surjectiva. Fie z** € X**. Cum X* este spatiu Hilbert, din Teorema lui Riesz, exista y* € X*
astfel incat pentru orice z* € X*,

™ (2") = (2", ") = (2,y)
unde z,y sunt elementele corespunzatoare pentru z* si y* date de Teorema lui Riesz. Astfel,
(%) = 2" (y), Va* € X¥,
deci z** = @ (y). O
Teorema 5.3.5 Fie (X, (-,-)) un spativ Hilbert. Daca T € L (X) atunci exista un unic operator

T* € L(X) astfel incat
(Tz,y) = (z, T"y), Vx,y € X.

In plus, ||T|| = |77
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Demonstratie Pentru orice y fixat consideram z* : X — R,
¥ (z) = (Tx,y) .

Cum T e liniar si continuu, z* € X* gi conform Teoremei existd un unic z, € X astfel
incat z* = (-, 2,). Prin urmare, definim 7% : X — X prin 7% (y) = #z, si chiar din aceasta
definitie avem

¥ (z) = (Tx,y) = (x,T"y), Vo € X.

Fie acum yq,y2 € X si ay, as € R. Pentru orice x € X

(2, T" (121 + agx2)) = (T, nx1 + Qawa) = a1 (Tx,y1) + ag (Tx, yo)
= a1 (z, T 1) + ag (x, T yo) = (x, 00T y1 + axT™ys) .

De aici rezultd cd T* (a1 + qoa) = anT*y; + aT*ys, adicd T™ este liniar.
Pentru orice z,y € X,

(2, T*y)| = [T, )| < ([T lyll < 171 = lyll
Alegem x = T™y si avem
* (|12 *
1Tyl < 17Tyl vl

deci
|T*yll < Tl lyll ,

adica T € L (X) si [|T*|| < ||IT] -
Pe de alta parte, din nou pentru orice x,y € X,

[Tz, y)| = [{=, T < T[] 1yl -

Alegem y = Tz i avem
2 *
[T|” < T[T} ]

deci
| T < [T [|=]],

adica || T]| < ||T*]| . Avem asadar concluzia. O

Definitia 5.3.6 Operatorul T™ definit in teorema de mai sus se numeste adjunctul operatorului
T.

Propozitia 5.3.7 Fie (X, (-,-)) un spatiu Hilbert i T € L (X). Atunci:
(i) Ker T = (ImT*)™;
(i) Ker T* = (ImT))™" ;
(iii) (Ker T)" = Tm T*;
(iv) (Ker T*)" =TmT.
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Demonstratie (i) Egalitatea rezulta prin dubld incluziune prin aplicarea definitiilor.
Astfel, daca u € KerT si v € ImT*, atunci exista y € X astfel incat v = Ty si

(u,v) = (u, T"y) = (Tu,y) = 0,

deci u € (ImT*)" .
Daca luam v € (ImT *)l, atunci pentru orice y € X,

0= (v,T") = (Tv,y).

Deducem ca Tv = 0, adica v € Ker T
(ii) Pe baza punctului anterior,

Ker T* = (Im (T%)")" = (Im T)* .
(iii) Avem ) |
(Ker T)" = ((ImT*)L> - ((m)l) — Tm T~

(iv) Este similar punctului anterior.

O

Propozitia 5.3.8 Fie X spatiu Banach, Y spatiu Hilbert si T € K (X,Y). Atunci T este

limita unui gir de operatori de rang finit.

Demonstratie Fie ¢ > 0. Multimea T' (Dy) fiind relativ compactd, existi n € P si yy,...,yn € Y

astfel incat
T(DX) C U B (yi,é-:) .
ieln
Notdm cu Z subspatiul finit dimensional (deci inchis) al lui Y generat de (y;)
operatorul liniar continuu

icln
T. =pryoT,

unde pr, este operatorul de proiectie pe Z. Evident, 7. este de rang finit.
Mai intai, observam c& pentru orice € Dy existd iy € 1, n astfel incat

Tz — v, || <e.
Deci, pentru orice x € Dy,

[Tz = (prz oT) x| < [T = yioll + [[(Prz oT) = = i |
<e+|l(prgoT) x —pry (yio)| < e+ 1Tw = yioll < 2¢,

adica
T —T¢|| < 2e,

ceea ce conduce la concluzie.
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5.4 Multimi ortonormate, baze ortonormate

Definitia 5.4.1 Fie (X, (-,-)) un spativ cu produs scalar. O submultime A C X se numeste
ortonormata daca pentru orice e, f € A

] 0, dacae# f
<€’f>_{ 1, daca e = f.

Propozitia 5.4.2 Orice multime ortonormata este liniar independenta.

Demonstratie Fie A C X ortonormata si {ey, .., e,} o submultime finitd a sa (unde n € P). Fie
acum «q, ..., o, € R astfel incat
n
Z Ap€r = 0.
k=1

Inmultim succesiv cu (ej)j si deducem ca a; = 0 pentru orice j € 1,n. U

€ln

Propozitia 5.4.3 (Teorema lui Pitagora) Fie {ey,..,e,} (n € P) o multime ortonormata
finita in spatiul cu produs scalar (X, (-,-)). Atunci pentru orice oy, ..., o, € R

n 2 n
2 : _ § : 2
QLEL = .
k=1 k=1

Demonstratie Calculul direct al normei din primul membru si proprietatea de ortonormatitate
dovedesc egalitatea. 0

Observatia 5.4.4 1. Daca A C X este ortonormata, atunci pentru orice doud elemente dis-
tincte e, f € A, avem ||e — f|| = /2. Deducem ci daci X este infinit dimensional si separabil,
atunci A poate fi cel mult numarabila.

2. Din Lema lut Zorn rezulta ca orice multime ortonormata este continuta intr-o muliime
ortonormata maximala.

Propozitia 5.4.5 Fie (X, (-,-)) un spatiu cu produs scalar si A = {eq, .., e,} (n € P) o multime

ortonormata. Fie x € X si
n

Yy = Z (x, er) eg.

k=1

Atunci y € span A este proiectia lui x pe span A, deci x — y € (span A)L . In plus, pentru orice
v € span A,
2 2 2
lz = vll" = llz =yl + [ly — v[I"
Demonstratie Este clar ¢ y € span A. Ludm z = © — y si se verificd usor c& z € (span A)*.
Evident, span A este finit dimensional i prin urmare inchis. Restul afirmatiilor rezulta ca in

Teorema de descompunere ortogonala. O

In continuare discutam despre familii ortonormate numarabile.
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Propozitia 5.4.6 Fie (X, (-,-)) un spatiuv Hilbert si A = {ex | k € P} o familie ortonormata
numarabila. Fie (og),cp un gir de elemente din R. Atunci seria ), | apey, converge dacd §i
numai dacd Y po, ai converge. Mai mult, in caz de convergentd are loc relatia

o0 2 oo

2 : _E : 2
Q€EL = .

k=1 k=1

Demonstratie Definim girul sumelor partiale

n
Sy = E ager, n € P.
k=1

Pe baza ortonormatitatii,
n
lsall* =) ai.
k=1

Daci (s,,) este convergent, atunci (s,,) este marginit, deci relatia de mai sus asigurd convergenta
seriei numerice Y- | af.
o 0o 2 o .
Invers, dacd > ;- | a; este convergentd, cum pentru orice m,n cu n > m,

n
||Sn—5m||2: Z aj,
k=m+1

deducem ci (s,) este sir Cauchy si deci, cum spatiul este complet, convergent.
In plus,

o0 2 oo
Zakek = lim ||s,|* = Zai,
k=1 k=1

adica concluzia finala. OJ

Propozitia 5.4.7 (Inegalitatea lui Bessel) Fie (X, (-,-)) un spatiu cu produs scalar §i
{ex | k € P}

. o o o . . . 2
o familie ortonormata numarabila. Atunci, pentru orice x € X, seria Y .-, (x,ex)” este con-

vergenta §i
o0

> (zen)” <

k=1

Demonstratie Fie x € X. Pentru a proba ambele afirmatii este suficient sa aratam ca pentru

oricen € P
n

> (ze)” < |zl

k=1
Fixdm agsadar n € P gi ludm Y,, = span{ey,...,e,} . Fie s, (v) = > ,_, (%, ex) ;. Atunci s, (z) €
Y, si x — s, (x) € Y,;-. Folosim Propozitia pentru a scrie

2 2 2
[ l™ = {lsn (@) + [l = sn ()]
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De aici rezulta
2 2
[sn (@)[|” < |27,

ceea ce conduce la concluzie. O

Corolarul 5.4.8 Fie (X, (-,-)) un spatiuv Hilbert si {ex | k € P} o familie ortonormata numara-
bila. Atunci, pentru orice x € X seria Y ,, (T, ey) ey, este convergentd.

Observatia 5.4.9 Daca (X, (-,-)) este un spatiu Hilbert si {ex | k € P} este o familie ortonor-
matd numarabild a sa, atunci e, — 0, dar (ey) nu este nici macar fundamental in topologia
normei. Intr-adevar, din inegalitatea lui Bessel, pentru orice x € X,

2 2
> (wen)” <zl

)
k=1

iar seria fiind convergentd (x,e;) — 0, deci e, — 0. Pe de altd parte, pentru orice i,j € P
diferit,
2
lei —e;lI” = 2,

de unde se obtline a doua concluzie.

Teorema 5.4.10 Fie (X, (-,-)) un spatiu cu produs scalar si A = {ey | k € P} o multime orto-
normata numarabila. Atunci urmatoarele afirmatii sunt echivalente:

(i) = po, (@, ex) e, pentru orice x € X;

(ii) ||z|* = 3222, (x, ex)? pentru orice x € X;

(11i) span A = X.

Daca in plus X este spatiu Hilbert, atunci acestea sunt echivalente si cu:

(iv) A este o multime ortonormata mazximala;

(v) A+ = {0}.
Demonstratie Ca mai sus, definim, pentru orice x € X si orice n € P

n

Sp (x) = Z (x,ex) e.

k=1
(i) = (ii) Conform ipotezei, pentru orice z,
r=lims, (z).

Atunci
o0

l2)* = Tim |50 (2)* = ) (@, en)”.

k=1

(ii) = (i) Din ipoteza acestei implicatii, pentru orice x € X,
2 2
]| = lim [|s,, ()]
Dar, asa cum am vazut mai sus,

2 2 2
[l = {lsn (@)1 + [l = sn ()]
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ceea ce atrage
r =lims, (x),
adica (i).
(i) = (iii) Pentru orice z € X,

x = lims, (z) € span A,

deci
X = span A.
(iii) = (i) Fie = € X. Atunci x € span A, deci existd un sir (y,) C span A astfel incat
Yn — x. Dar
span A = UY”’
neP
unde Y,, = span {ey, ..., e, } , pentru orice n € P. Deci, pentru orice termen al sirului (y,,) exista
pn € P astfel incat y,, € Y, .
Dar
[z = sp, (@) < |z = ynll =0,
adica
Sp, () — .

Folosind din nou egalitatea
2 2 2
21" = [lsn ()] = [l = sn (2)[7, ¥n €P,

cum sirul (||s, (x)]|),, este crescdtor, inseamna ca sirul (|| — s, (x)]]),, este descrescitor. De-
ducem ca
Sp (x) — .

Presupunem acum ca X este spatiu Hilbert.

(ii) = (iv) Daci A nu ar fi maximala, ar putea fi extinsa, deci ar exista T € Sx astfel incat
(x,e,) = 0, pentru orice n. Evident, aceasta contrazice relatia de la (ii) scrisa pentru 7.

(iv) = (i) Presupunem, prin reducere la absurd, ca existd x € X astfel incat seria con-
vergenta Zf:l (x,er) e nu este egald cu x. Fie u suma acestei serii. Atunci, pentru orice n,
folosind continuitatea produsului scalar, avem

(x —u,e,) = <33 — Z (x,er) ek,en> = (z,e,) — <Z (x,ex) ek,en>

k=1 k=1
= (z,e,) — lim <Z (x,e) ey, en> =0.
k=1

In particular, + — u ¢ span A, deci adiugand la A elementul ||z —u| ™" (# — u) obtinem o
multime ortonormata mai larga, contrazicand astfel maximalitatea lui A.

(iii) => (v) Cum A+ = span A, obtinem A* = {0} .

(v) = (iii) Din Teorema de descompunere ortogonald stim cd X = span A & span AL, iar

faptul ca span At = {0} asigura concluzia. O
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Definitia 5.4.11 O familie ortonormata cu proprietatile din teorema precedenta se numeste
baza ortonormata a spatiului X.

Observatia 5.4.12 1. Egalitatea din punctul (ii) al teoremei anterioare se numeste identitatea
lui Parseval.

2. Daca A este o baza ortonormata si x € X, atunci elementele {(x,ey) | k € P} se numesc
coeficienti Fourier ai lui x in raport cu A.

3. Descompunerea data de punctul (i) al teoremei mentionate a unui element x in raport
cu baza A este unicd. Intr-adevar,

r = Z ALEL
k=1

implica oy, = (x, ex) pentru orice k.

Exemplul 5.4.13 In spatiul Hilbert ¢? elementele {(1,0,0,...), (0,1,0,...), ...} formeazi o bazi
ortonormata: faptul ca multimea este ortonormata este usor de probat si, in plus, are loc
identitatea lui Parseval.

Corolarul 5.4.14 Fie X un spatiu Hilbert, A = {ey | k € P} o baza ortonormatad a sa, (x,) C
X six € X. Atunci x,, > 2 dacd §i numai dacd (x,) este marginit i (x,,ex) — (,ex) pentru
orice k € P.

Demonstratie Afirmatia este o consecinta a Teoremei si a Problemei [l

Teorema 5.4.15 Fie X un spatiu Hilbert infinit dimensional. Atunci X admite o baza orto-
normata numarabila daca $i numai daca este separabil.

Demonstratie Presupunem mai intai ca X admite o baza ortonormata numarabila. Faptul ca X
este separabil rezulta din proprietatea din Teorema (iii) si o problema discutata anterior.

Invers, X admite o multime ortonormat# maximald numéarabild (Observatia[5.4.4). O astfel
de multime este bazd (Teorema [5.4.10)). O

Teorema 5.4.16 Orice spatiu Hilbert separabil infinit dimensional este izomorf izometric cu
(@ 1-15) -
Demonstratie Fie X un spatiu Hilbert separabil infinit dimensional. Conform rezultatului
anterior, existda A = {ey | k € P} C X o bazd ortonormatd numdrabild a sa. Definim 7' :
(X, 011 = (€2, ]]°[l,) prin

Tz = ((z,er))pep
Din teorema de caracterizare a bazelor ortonormate (Teorema [5.4.10)),

o0

lz* =) (@ e)?, Vo € X,

k=1

deci Tx € (2 pentru orice x € X, adicd T este bine definit. Apoi, este usor de verificat c& T
este operator liniar. Din identitatea lui Parseval,

o0

l2]* =) (@ en)” = | T2l3, V2 € X,

k=1
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deci T este izometrie. Este suficient si mai ardtam ci T este surjectiv. Fie (oy),cp € €. Cum
seria Y ;- o2 este convergentd, seria y .-, ayey converge in X. Considerdm z =Y - | ayey €
X. Pentru orice n € P, folosind continuitatea produsului scalar, putem scrie

0o k
(x,e,) = E Q€L En :klim E €5, En ) = Qi
— 00
k=1 i=1

Deci Tx = ((z,€x))yep = (k) pep » adica T' este surjectiv. O

5.5 Lema Lax-Milgram

Definitia 5.5.1 Fie (X, (-,-)) un spatiu cu produs scalar. O aplicatie biliniara a : X x X — R
se numegte:
(i) continud daca exista ¢ > 0 astfel incdt pentru orice z,y € X

ja (z,y)| < cllz] {lyll;
(ii) coerciva daca exista o > 0 astfel incat pentru orice u € X
allul|* < a(u,u).

Teorema 5.5.2 (Teorema lui Stampacchia) Fie X spatiu Hilbert si a o aplicatie biliniara
continua §i coerciva. Fie C C X nevida, inchisa i convexd. Atunci, pentru orice x* € X*
exista un unic u € C' astfel incdt

a(u,v—u)>z"(v—u), YvoeC.

Mai mult, daca a este simetrica, u este caracterizat de proprietatile

{ u e C,
La(u,u) — 2% (u) = minyec {3a (v,v) — 2" (v)}.

Demonstratie Fie z* € X*. Pentru u € X fixat, aplicatia v — a (u,v) este liniard si continua.
Conform Teoremei lui Riesz (Teorema , exista un unic element in X, pe care il notam Au,
astfel incat

a(u,v) = (Au,v), Yv € X.

E usor de observat ca A : X — X este liniar si

[Au]l < cflull, Yue X
(Au,u) > alu]*, Yu e X.

A obtine existenta in prima concluzie inseamnéa determinarea unui element u € C' astfel incat
(Au,v —u) > 2" (v —u), Yv € C,
adica, prin identificarea lui z* cu elementul corespunzator dat de Teorema lui Riesz,

(¥ — Au,v —u) <0, Yo e C.
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Aceasta ultima inegalitate este echivalenta cu
(Bx* — AU+ u —u,v —u) <0, Vv € C,

unde 5 > 0. Reamintindu-ne caracterizarea proiectiei din Teorema [5.1.13, cum C' este nevida,
convexa si inchisa, aceasta inseamna

u = pro (fz* — fAu+u).

Vom arata ca pentru 3 > 0 convenabil ales un astfel de punct u € C' exista.
Definim, pentru 8 > 0, Sz : C' — C,

Sp (v) = pro (Br" — fAv + )

si practic trebuie sa aratam ca Sg are punct fix pentru 8 > 0 convenabil ales. Conform
Propozitiei [5.1.15] pentru orice vy, vy € C' avem

1S5 (1) = S (v2)|* < [[(v1 = v2) = B (Avr — Awy)|”
= [lor = va]|* = 28 (o1 — va, A (v1 — v)) + 57 [|A (01 — v2)|”
S (]. — 260& —+ 6202) HUl — U2H2 .
Fie 8 € (0,2c %) . Atunci (1 — 2Ba + 3%c?) < 1, deci Sj este o contractie. Conform Principiu-
lui lui Banach de punct fix, Sz are un unic punct fix in C' si existenta in prima parte a teoremei
este demonstrata.
Fie uy,us € C' care verifica concluzia. Atunci
a(u1,up —up) > " (ug —u1),
a (ug,uy — ug) > =" (ug — ug) .
Prin adunare, obtinem
a(ug — ug,uy —ug) > 0.
adica
a(ug — ug,ug —uy) < 0.

Deducem de aici ca u; = us.

Presupunem acum ca a este simetrica. Atunci a determind pe X un nou produs scalar,
iar datorita celorlalte proprietati ale lui a, norma corespunzatoare este echivalenta cu norma
initiala. Astfel, X este spatiu Hilbert si in raport cu aceastd norma. Din Teorema lui Riesz,
exista un unic z € X astfel incat

" (v) =a(zv), Yve X.
Atunci prima concluzie, deja demonstrata, revine la gasirea unui element u € C' astfel incat
a(z—wu,v—u) <0, Vvel.

Acest u nu este decat proiectia lui z pe C' in noul produs scalar, iar aceasta inseamna ca u
minimizeaza pe C' functia

v al(z—v,2—v),
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adica minimizeaza pe C' functia

v—a(z—v,z—v)=a(v,v) —2z" (v)+al(zz).
Deci, in final, u minimizeaza pe C functia

1
v 5@(1},1})—3:*(1}),

ceea ce incheie demonstratia. O

Teorema 5.5.3 (Lema Lax-Milgram) Fie X spatiu Hilbert i a o aplicatie biliniara con-
tinua i coerciva. Atunci, pentru orice x* € X* exista un unic u € X astfel incat

a(u,v) =z (v), Yo € X.
Mai mult, daca a este simetrica, u este caracterizat de proprietatile
u € X,
la(u,u) — 2% (u) = mingex {3a(v,v) — 2" (v)}.

Demonstratie Se aplica Teorema lui Stampacchia pentru C' = X si folosind liniaritatea spatiului
obtinem chiar egalitate in prima concluzie. 0

5.6 Elemente de teorie spectrala

Definitia 5.6.1 Fie X un spatiu Hilbert si T € L (X). Multimea rezolventa, notata p(T), a
operatorulus T este
p(T)={XNeR|(T —\id) este bijectiv} .

Spectrul lui T' este multimea o (T) =R\ p(T).

Un numar real A se numegte valoare proprie a lui T daca Ker (T — \id) # {0} . Multimea
tuturor valorilor proprii ale lui T se noteazd o, (T') si se numeste spectrul punctual ol lui T. Un
element nenul din Ker (T — \id) se numeste vector propriu asociat valorii proprii .

Este clar ca o0, (1) C o (T). Aceastd incluziune este strictd, in general, asa cum se poate
vedea in exemplul de mai jos.

Exemplul 5.6.2 Fie X = (? si T € L (¢?) dat prin
T (z) = (0,21,22,...), V& = (z),cp € (.
Atunci 0 € o (T) \ 0, (T) .
De asemenea, ambele spectre pot fi multimea vida, ca in exemplul urmator.
Exemplul 5.6.3 Fie X = (? 5i T € L (¢?) dat prin
T (z) = (—x2, 21, —%4, T3, ...), VT = (2),,cp € O

Atunci o (T') = 0, (T) = 0.

81



Propozitia 5.6.4 Daca T € L(X), atunci o (T) C [—||T||,||T]]] si o (T) este multime com-
pacta.

Demonstratie Fie A € R cu |[A| > ||T|. Aratdm cd A € p(T), adicd T' — \id este operator
bijectiv. Aceasta revine la a ardta ca pentru orice y € X, ecuatia Tx — Az = y are solutie
unica. Ecuatia anterioara se scrie ca

ZL’:)\_I(TI—y),

iar aplicatia *+ — A7! (T'z — y) este o contractie. Din Principiul lui Banach de punct fix, de-
ducem ca exista un unic punct fix al acestei aplicatii, adica o solutie unica a ecuatiei anterioare.

Cum o (T) este o submultime a lui R, pentru arita ca este compactd mai trebuie aratat
ci este inchisd. Ardtam cd p(T) este deschisi. Fie A € p(T). Considersm A € Rsiy € X.
Ecuatia Tr — A\x = y se scrie

To— Xz =y+ ()\—S\)x,
adica
r=(T—Xid) " (y+ (A V) 2)

Din nou, din Principiul lui Banach de punct fix, aceasta ecuatie are solutie unica daca aplicatia
‘(T - S\id)_lH < 1. Asadar, pentru

A suficient de aproape de A, T — \id este inversabild, observatie care incheie demonstratia. [

(in x) din membrul drept este contractie, adicd daca |A — A|

In continuare investigdm structura multimilor o (T) si ¢, (T) in cazul in care T € K (X).

Lema 5.6.5 Daca T € K (X) si (\n),cp este un sir de numere reale distincte convergent la
A € R astfel incat (A,) C o (T') \ {0}, atunci A = 0.

Demonstratie Din Teorema [4.5.11] (iii) stim ca (\,) C o, (T) \ {0}, deci pentru orice n € P
existd u, # 0 astfel incat (T' — A, id) (u,,) = 0. Definim

Y, = span {uq, ..., u,}, Vn € P.
Evident, Y,, C Y, 1 pentru orice n. Aratam ca incluziunea este stricta, ceea ce este adevarat
daca vectorii (uy), sunt liniari independenti. Folosim principiul inductiei matematice si pre-

supunem deci ca pentru n fixat (u;),.5 sunt liniari independenti. Prin reducere la absurd,
presupunem cé exista (o;),.15; C R astfel incat

n
Up+1 = g QU
i=1

Atunci, cum T, 1 = Apy1tny1, avem

n n
Tun+1 = E QAU = )\n+1 E Uy,
i=1 i=1

adicd, din ipoteza inductiva, o; (A; — Ap41) = 0 pentru orice i € 1,n. Cum valorile (), sunt
distincte, obtinem ca a; = 1 pentru orice ¢ € 1,n, adica o contradictie. Asadar incluziunea
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Y,, C Y, este strictd pentru orice n. Aplicim in continuare Lema lui Riesz (Lema
pentru a construi un sir (z,),-, astfel incat x, € Yy, ||z,| =1, d (2, Y,,—1) > 27! pentru orice
n > 2. Pentru m, n astfel incat 2 <m <mnavem Y,,_, CY,, CY,_; C Y, si (T — \,id) (V) C
Y,—1 (pentru ci u, € Ker (T — A, id)). Deci

An Am

— + 2y — || > d (2, Yy) > 27

Tx, Tz,
An Am

H Tz, — ATy TTwm — AnTm

Dacd A # 0, cum (T'x,) are subgir convergent, inegalitatea de mai sus nu este posibild. Deci
A=0. U

Teorema 5.6.6 Presupunem ci X este infinit dimensional §i T € K (X). Atunci:
(1) 0 €a(T);
(it) o (T) \ {0} = 0, (T) \ {0} ;
(i11) are loc una dintre urmatoarele situatii:
(a) o (T) = {0};
(b) o (T)\ {0} e multime finita;
(c) o (T)\ {0} este un gir cu limita 0.

Demonstratie (i) Daca 0 ¢ o (T, atunci T este bijectiv, ceea ce conduce la faptul c& id = T'oT !
este operator compact (a se vedea gi Problema , ceea ce contrazice faptul cd X este infinit
dimensional.

(ii) Daca A € o (T') \ {0}, din Teorema (iii) rezultd cd T — Aid nu este injectiv, deci
A€o, (T)\ {0},

(iii) Pentru fiecare n € P, consideram multimea o (T)N{\ € R ||\ > n~'}. Conform Lemei
5.6.5, aceasta este vida sau finitd. Deci multimea o (T") \ {0} fie este finit4, fie are o infinitate
de puncte distincte care formeaza un sir cu limita 0. U

Definitia 5.6.7 Un operator T € L (X) se numeste autoadjunct daca T = T*.

Propozitia 5.6.8 Fie T' € L(X) autoadjunct. Definim m = inf {(Tz,z) |z € Sx}, M =
sup{(Tz,z) | x € Sx}. Atuncio (T) C [m, M], m, M € o (T). Mai mult, || T|| = max {|m|, |M|}.

Demonstratie Pentru A > M ardtdm ca A € p (7). Stim c&
(Tz,z) < M|z||”, Vz € X.

Deci
Mz —Tx,z) < (A= M) ||z|*, Vz e X.

Din Lema Lax-Milgram (Teorema deducem ca Aid —T este operator bijectiv. Asemana-
tor, A € p(T) pentru A < m. Astfel, o (T') C [m, M].

Ardtdm cd M € o (T). Forma biliniard a : X x X — R, a(z,y) = (Mz —Tx,y) este
simetrica si satisface a (z, ) > 0 pentru orice x € X, adica satisface proprietétile unui produs
scalar. Putem scrie deci inegalitatea Schwarz:

la(z,9)] < Va(z,2)\/alyy), Yo,y e X.
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Astfel,

[(Mz —Ta,y)| < /(M —Tx,x)\/(My —Ty,y), Yo,y € X.

Luéand sup dupa y € X, deducem ca exista o constanta ¢ > 0 such that

Mz —Tz|| < c/(Mx —Tz,x), Vo € X.

Din definitia lui M, existd un sir (x,), C Sx astfel incat (T'z,,x,) — M, iar din ine-
galitatea precedenta avem |Mwx, —Tx,| — 0. Dacd am avea M € p(T), atunci z, =
(Mid—T)"" (Mz, — Tx,) — 0, ceea ce este imposibil. Deci M € o (T). Similar se arati
cameo(T).
In final, ardtdm ci ||T|| = p, unde p = max {|m|,|M|}. Faptul ci [(Tz, z)| < |T| ||=|
pentru orice z € X asigura inegalitatea p < |||
Pentru orice =,y € X, avand in vedere ca T este autoadjunct putem scrie
(T'(x+y), z+y) = (Tz,2) + (Ty,y) + 2(Tz,y),
(T'(x—y),x—y) = (Tr,z) + Ty, y) — 2(Tz,y).

Atunci,
ATx,y) = (T(x+y),z+y) —(T(x—y),v—y) <Mz +y|> —mlz—yl,

deci
4T < (o + 9l + Iz = ylP) = 20 (ol + y]1?) , Y,y € X.

Inlocuind y cu ay pentru o > 0, gasim

[E2li

4|<T[L‘,y>| < 2#’ (T +Oé||y||2> ) VZL‘,y € X, Va > 0.

Pentru , y fixati nenuli, membrul drept igi atinge minimul pentru a = |ju || ™", deci
[Tz, y)| < pllull vl Yo,y € X.

Deducem ca ||T]| < u, deci are loc egalitatea. O

Corolarul 5.6.9 Daca T € L (X) este autoadjunct atunci

17| = sup {T'z,z)].

TESx

Corolarul 5.6.10 (i) Daca T € L (X) este autoadjunct i o (T) = {0}, atunci T = 0.
(i1) Daca T € K (X) este autoadjunct gi nenul atunci are macar o valoare proprie nenuld.

Demonstratie Folosim Propozitia pentru (i) si Teorema [5.6.6) (ii) (pentru care ipoteza
legatd de dimensiunea spatiului nu e esentiald) pentru (ii). O

Lema 5.6.11 Fie T € L(X) autoadjunct. Atunci T este inversabil dacd i numai dacd exista
¢ > 0 astfel incat ¢ ||x|| < ||Tx|| pentru orice x € X.
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Demonstratie Evident, inegalitatea din enunt este implicata de inversabilitatea lui 7" cu ¢ =
|71 . Invers, inegalitatea implici imediat injectivitatea lui 7. Cum T = T* i, in general,
KerT = (ImT *)l (Propozitia , obtinem ca Im T este dens. De asemenea, inegalitatea
datd implica inchiderea lui Im 7" (Problema . Agadar ImT' = X, adica T este bijectiv, deci

inversabil (Corolarul (3.2.10)). O

Definitia 5.6.12 Fie T € L(X).

(i) Daca A este o valoare proprie a lui T, atunci subspatiul Ker (T' — \id) se numeste sub-
spatiu propriu asociat lut .

(i1) Un subspativ'Y al lui X se numeste invariant prin T daca T (Y) C Y.

Lema 5.6.13 Fie T € L (X) un operator autoadjunct. Atunci:
(i) Subspatiile proprii asociate unor valori proprii distincte sunt ortogonale.

(ii) Daca'Y este un subspatiu invariant prin T, atunci Y+ este de asemenea invariant prin
Tsio(T)=0(Tyy)Uo (Tiy:).

Demonstratie (i) Fie A\, Ay valori proprii distincte ale lui T' gi x1,xs vectori proprii asociati
acestora. Atunci:

A (@1, x2) = (Ax1, ) = (Txy, x0) = (w1, T2) = (X1, AoTa) = A2 (T1, T2) .

Deci (1, x9) = 0.
(ii) Fie y € Y. Pentru orice z € Y, (Ty,z) = (y, Tx) = 0, deci Ty € Y. Este clar ci Tjy
si Tjy+ sunt autoadjuncti.

Consideram A\ € o (T|y) . Conform Lemei [5.6.11},
infesy |7 — Nidy|| < infyes, |7 — Xidp|| =0, deci A € o (T). Lafel, o (Ty+) C o (T).

Luim A ¢ o (Tly) Uo (Tjy.) . Atunci, tot din Lema |5.6.11} existd ¢ > 0 astfel incat
clyl <IITy = Myll, ¥y €Y

clzll < ||ITz = Az, Vz € Y
Orice z € X sescriesubformaz =y+zcuy€Ysize Y. DarTy— Ay €Y siTz— Iz € Y,
astfel ca
1Tz = Xe||* = | Ty — Ay + Tz = Xz = | Ty — Myl* + || T2 — Az|?

2 2 2
> yll” + " = e el
Deducem cd A ¢ o (T'), ceea ce incheie demonstratia. O

Teorema 5.6.14 Daca X este spatiu Hilbert separabil netrivial §i T € K (X) este un operator
autoadjunct, atunci existd o baza ortonormata a lui X formata din vectori proprii (uy,), ai lu
T g1 pentru orice x € X,

[e.e]

Tx = Z An (T, Uy ) Un,

n=1

unde N, este valoarea proprie asociata lui u, pentru orice n.

85



Demonstratie Cazul T = 0 este trivial. Presupunem 7' # 0. Stim c& o, (T) # 0 (Corolarul
[5.6.10), iar aceasta multime este finitd sau numéarabild (Teoremal[5.6.6). Pentru orice A € oy, (T))
consideram o baza ortonormatd B) a subspatiului propriu Ker (7' — Aid) (care are dimensiune
finita daca A # 0, conform Teoremei . Cum aceste spatii sunt ortogonale doua cate doua,

B:UBA

Aeop(T)

este o multime ortonormata. Trebuie sa aratam ca subspatiul inchis, notat Y, generat de B,
adicd generat de U Ker (T — \id) este X. In caz contrar, Y+ # {0} . Cum Y este invariant
Aeop(T)

prin T, Y este de asemenea invariant prin 7" si Tjy+ are cel putin o valoare proprie, care este
valoare proprie gi pentru 7" (din Lema . Astfel, vectorii proprii asociati ar fi gi in Y si in
Y+, ceea ce nu e posibil. Asadar B este bazi ortorormats pentru X formati din vectori proprii
ailui 7.

Notdm cu (uy,), elementele acestei baze si cu (\,,),, valorile proprii asociate. Cum |A,| < |||
pentru orice n, operatorul S : X — X definit prin S (z) = > <, A\ (@, uy) u, € bine definit
(pentru ¢ 32 -, [(z, u,) > < oo implicd 37, [An]® [{z, un)]* < 00) si continuu pentru ci

1S2l* = D Il K, wa) [P < 1T |l2]*, Vo € X

n>1

Cum Su, = \u, =T (u,) pentru orice n > 1, deducem ca S =T O
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Capitolul 6

Probleme (si indicatii de rezolvare)

6.1 Recapitulare si completari

Problema 1 Sa se determine toate normele pe R.

Indicatie Fie ||-|| o norm& pe R. Atunci pentru orice z € R,
]l =l - 1l = =[]
Notam ||1]| cu a si deducem forma normei. O

Problema 2 Sa se arate, prin calcul direct, echivalenta celor trei norme de la Exemplul
§t sa se precizeze cele mai bune constante de comparatie.

Indicatie Se observa ca pentru orice z € R? (p € P),
2]l < llzlly < izl -

Pentru p = 2 i x = (1,0) avem egalitate in ambele relatii deci inegalitatile nu pot fi im-
bunatatite.
Mai departe, pentru orice x € RP

zlly < VP 2]l
si pentru p = 2 si « = (1,1) avem egalitate, deci constanta ,/p nu poate fi imbunatatita
(micsorata). Pentru celelalte situatii se procedeaza similar. 0

Problema 3 Sa se arate ca B ([a,b], ||-||..) ¢ (C ([a,b]), ||||.) sunt spatii Banach.

Indicatie Fie (f,,),cp un sir Cauchy in B ([a, 0], ||-||,) - Aceasta inseamna ca pentru orice € > 0,
exista n. € N astfel incat pentru orice n, m > n.,

Sel[lpb] | fr () = fr (2)] < e

In particular, pentru orice = € [a, D] .
|fo () = fi (2)] <,
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deci girul numeric (f, (z)), este fundamental. Prin urmare, pentru orice z € [a,b] existd
f () € R astfel incat

lim £, () = f (2).

Trecem la limitd cu m — oo in relatia de mai sus si se obtine c& f € B ([a,b]).

Apoi se deduce ca
[l oo
fo = I.

Deci, B ([a,b],||||.) este spatiu Banach.
Acum, pentru ca (C ([a,b]), ||-||.,) este subspatiu liniar al spatiului Banach B ([a,b], ||-||..),
pentru a demonstra ca este complet la randul sau, este suficient sa aratam ca este inchis. [

Problema 4 Sa se arate ca (C* ([a,b]),||]]), cu ||-|| de la Exemplul este spativ Banach.

Indicatie Se foloseste Teoremei de transfer a derivabilitatii prin convergenta uniforma. O

Problema 5 Sa se arate ca (m, ||| ) este spatiu Banach. Sa se arate ca c §i ¢y subspatii
liniare inchise, dect sunt spatit Banach.

Indicatie Fie (z), .p un sir Cauchy in (m, ||-||,) . Deci, pentru orice € > 0, exista n. € N astfel
incat pentru orice n,m > n.

[2" = 2"l = sup |z} — 2} <e.
k

In particular, pentru orice k € N girul (x}), este sir Cauchy in R. Asadar, pentru orice k € N
existd ) € R care e limita lui (z}), . Notdm cu 2° girul cu termenii ), (k € P). Se procedeazi
ca mai sus, adaptat prezentei situatii si concluzionam ca (m, ||-||,) este spatiu Banach. O

Problema 6 Sa se arate ca pentru p € [1,00), <€p, HH;;) este spatiu Banach.

Indicatie Se folosesc argumente similare celor de mai sus, eventual aplicate unor siruri de sume
partiale. 0

Problema 7 Sa se arate ca spatiul liniar normat (Coo, H|\p> (p € [1,00)) nu este spatiu Ba-
nach.

Indicatie Spatiul (Coo, IRl p) este subspatiu liniar normat al spatiului Banach (6”, Il p> . Este

suficient sa aratam ca nu este inchis. Consideram, pentru orice n € P,

1 1
" = (1, 22p’1 g eeey n2p71,0’07 ) € Coo,

1 1 1
0 _
Tr = (1, 92p=17 " ap1) (n T 1)2p‘1 y > e \ Coo-

si deducem ca (Coo, Il |l p) nu este inchis. O
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Problema 8 Fie a,b, c numere reale strict pozitive cu b < ¢ si k € P. Fie (P,),.p un sir de
polinoame de grad cel mult k. Presupunem ca

/ |P, (z)|dz < a, Vn € P.
b

Sa se arate ca (P,) admite un subgir uniform convergent pe intervalul [b, c| .

Indicatie Consideram spatiul liniar al functiilor polinomiale de grad cel mult k definite pe [b, ] .
Acest spatiu liniar este finit dimensional, deci toate normele sunt echivalente. 0

Problema 9 Consideram spatiul liniar normat (B ([—m, 7)), |]-||..) . S se determine distanta
dintre functiile sin §i cos in acest spatiu.

Indicatie Conform definitiei,

|lsin — cos|| ., = sup |[sinx —cosz|.

z€[—m,7]

Este usor de vazut ca acest maxim este V2. O

Problema 10 Sa se arate ca pentru orice p € [1,00], (Lp (X, 1, R), ||||p> este spatiu Banach.

Solutie Demonstram pentru cazul p € [1, 00).
Fie (f,),ep un sir Cauchy din spatiul (L (X, u, R?) , |||l .») . Atunci existé un subsir (fu, ),cp
astfel incat pentru orice k

|fnk+1 - fnk‘ S 2_k

Notam, pentru orice i € P :

7
= Z ‘fnkJrl - fnk| .
k=1

Este clar cd (g;) este un gir monoton si folosind Teorema convergentei monotone avem

/gfduﬂ/gpdu,
X X

unde g = sup, g; = lim g;. De asemenea, pentru orice 4

loil, — o] <Z||fml fudll <1,

de unde deducem ca ||g||, < 1.
Pe de alta parte, pentru m > o > 2,

m—1

o = Faod €3 [ foes = ]

i
HO

o—1
|fnk+1 fnk|_Z|fnk+1_fnk| Sg_go—b
k=1

£
Il

1
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p—a.p.t. Deci p—a.p.t. = € X, sirul (f,, (z)) este Cauchy in R. Din completitudinea acestui
spatiu, deducem convergenta p—a.p.t. = € X a sgirului (f,, (x)). Pentru aceste elemente =,
notdm f (z) = lim f,, (). Avem astfel o functie f definitd p—a.p.t. pe care o completdm cu
valoarea 0 in rest. Atunci functia f astfel obtinuta este p—masurabila gi avem:

\f = fu.[" < ¢”, k suficient de mare
fnk - f7 ,UJ - a.p.t.

iar g € L' (X, u, R). Din Teorema convergentei dominate, deducem c&

fow = fin (L7 (X, 0, R), 1) -

Cum sirul Cauchy (f,,) are un subsir convergent, deducem ca sirul este convergent la aceeasi
limita. O

Problema 11 Sa se arate ca pentru orice p € [1,00), <C ([a, b)), HHp> nu este spatiu Banach.

Indicatie Trebuie s& construim un gir Cauchy in (C’ ([a,b]) ) care nu este convergent in

A1l
<C’ ([a, b)), |-l p>. Fara a restrange generalitatea presupunem ca [a,b] = [—1,1]. Fie, pentru
orice n € P, f, : [-1,1] — R,

0, dacd z € [-1,0],
fo(x) =< nzx, dacd x € (O, %) ,
1, daca z € [%,1} )
E usor de vazut ca aceste functii sunt continue.
Se aratd cd (f,) este gir Cauchy in (C’ ([a,b]), HHp) .

Presupunem apoi, prin reducere la absurd ca (f.) — fo € C ([a,b]) in [|-[|,. Cum

/_an(aﬂ)—fo(x)ypdxg /_1‘fn(£€)—f0 (w)\pda:—>0

si fn () = 0 pentru orice = € [—1,0], deducem c& fy () = 0 pentru orice x € [—1,0].
Fie € € (0,1]. Similar, deducem ci f, () = 1 pentru orice z € [g,1]. Cum ¢ € (0, 1] este
arbitrar, avem fj () = 1 pentru orice x € (0, 1]. Cum f; astfel obtinutd nu este continud, am

ajuns la o contradictie. Deci (f,,) nu este convergent in (C ([a, b)), ||| p> : O
Problema 12 Sa se arate ca daca un spatiuv liniar normat contine o multime compacta cu
interior nevid, atunci este finit dimensional.

Indicatie Fie X un spatiu liniar normat si A C X o multime compacta cu interior nevid. Atunci
existd © € X si e > 0 astfel incat D (z,¢) C A. Cum D (z,¢) este inchisd, deducem ca D (z, ¢)
este compacta. Dar

D(xz,e) =z +¢eDx,

deci Dy este compacta. 0
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Problema 13 Fie (X, ||-||) un spativ liniar normat i Y un subspatiu liniar al sau.
(i) Sa se arate ca clY este de asemenea subspatiu liniar.
(i1) Sa se arate ca intY # () daca si numai daca Y = X.

Indicatie (i) Verificarea este imediatd folosind caracterizarea cu giruri a inchiderii.

(ii) Evident, dacd Y = X atunci intY = X =# (). Invers, presupunem ci existd y € Y si
e > 0 astfel incat B (y,e) C Y. Atunci, cum B (y,e) =y +¢eB(0,1), deducem c& B (0,1) C Y.
Se obtine Y = X. O

Problema 14 Fie X spatiu Banach, Y spatiu liniar normat si T € L (X,Y). Presupunem ca
exista € > 0 astfel incdt pentru orice v € X, ||T (x)|| > ¢||z||. Sa se arate ci imaginea lui T
este multime inchisa i T privit cu valori in T (X)) este bijectiv gi bicontinuu.

Indicatie Fie (x,) sir de elemente din X astfel incat 7' (x,) — y € Y. Aratam ca y € T (X).
Sirul (7 (z,,)) este fundamental si folosind ipoteza avem

1
lon = zmll < Z 11T (@n) = T ()|, V1, m,

de unde deducem ca (x,) este gir fundamental. Deci, cum X este spatiu Banach, existd z € X
astfel incat x,, — x. Restul argumentelor sunt acum usor de dedus. O

Problema 15 Fie (X, ||-||) un spatiu liniar normat. Sa se arate ca o functionala liniard este
continua daca si numai daca este marginita superior pe o vecinatate a unui punct.

Indicatie Fie f : X — R liniara si continud. Atunci este clar cd f este marginitd pe B (0,1).
Reciproc, scriem marginirea lui f pe o bila si deducem proprietatea de marginire din caracteri-
zarea continuitatii. O

Problema 16 Fie X un spatiu liniar finit dimensional gt fie T : X — X un operator liniar.
Sa se arate ca daca T este injectiv, atunci este surjectiv §i reciproc.

Indicatie Se foloseste scrierea elementelor lui X intr-o baza finita. O
Problema 17 Fie X = (C[0,1],|||,.)- Sa se arate ca wrmatorii operatori sunt liniari gi
continui §t sa se determine norma lor.

(i))T;: X — X

(T.f) (x) = 2 f (0);
(i) To: X — X
(Tof) (x) = f (2?) .

Indicatie In ambele cazuri verificarea cerintelor nu ridic probleme deosebite. Norma ambilor
operatori este 1 (pentru inegalitatea ||-|| > 1 se poate considera functia identic 1). O

Problema 18 (i) Fie T : (¢2,-|,) — (¢, ||-|l,) definit prin

T ((z1,x2,...)) = (T2, 23, ...) .
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Sa se arate ca T este liniar, continuu st are norma 1. Sa se arate ca T este surjectiv, dar nu

este injectiv.
(ii) Fie S (2,],) — (&, |[1l,) definit prin

S ((x1,29,...)) = (0,21, 2, ...) .

Sa se arate ca S este liniar, continuu si are norma 1. Sa se arate ca S este injectiv, dar nu
este surjectiv. In plus, S ((*) este subspatiu liniar inchis al lui (€2, ]]]|,) -

Indicatie (i) Faptul cd T este liniar se verifica foarte ugor. Apoi, pentru orice z € 2

o 2
2
1T, = (Z [z ) < [lll,

k=2

deci T este continuu si ||7]| < 1.
(ii) Faptul ca S este liniar se verificd foarte ugor. Apoi, pentru orice = € ¢2,

1Szl = Nzl

deci S este continuu si || S]] = 1.
Fie f : > — R dat# prin
f ((xn)nEP) = 1.

Se verifica faptul ci f € (£2)" si c& S (£2) = Ker f, de unde se deduce concluzia. O

Problema 19 Fie 2*: ¢y — R,

o0
T
z* (x) = Z ST
n=1
(i) Sa se arate ci x* € (co, ||| )" i [|l2*]| = 2.
(i1) Sa se arate ca x* nu isi atinge norma pe bila unitate inchisa.

Indicatie (i) Liniaritatea lui 2* este simplu de aratat. Pentru orice x = (), cp € Co,

* - 1
7 (@) < ol D 5oy =217l

n=1

Deci z* € (c)" si ||z*|| < 2.

Fie acum, pentru orice n € P, 2" = (1,...,1,0,0,...) € co, unde 1 apare pe primele n pozitii.
Deducem ca ||z*|| > 2.

(ii) Presupunem c& z* gi-ar atinge norma pe bila unitate inchisa a lui ¢, adica existd = € ¢
cu ||z]|, < 1sia*(x)=|z*| = 2. Astfel,

2= ZQn—l SZQVL—ISZQTL—IZQ'
n=1 n=1 n=1
Se ajunge la o contradictie. 0
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Problema 20 Fie (X, ||-||) un spatiu liniar normat i Y un subspatiu liniar normat al sau.
Fie g € X astfel incdt d (xo,Y) > 0. Atunci exista x* € X* astfel incat z* (y) = 0 pentru orice
y ey, o (wo) =1 gi [a"l| = (d(20,Y)) "

Indicatie Definim Z =Y @ span{xp} si f: Z — R,

[ (y+ azxg) = a.
Apoi, aplicam acum varianta topologica a Teoremei Hahn-Banach. [l

Problema 21 Fie X,Y spatii liniare normate st T € L(X,Y). Sa se arate ci pentru orice
reX sir>0
sup |[Tul[ = ([T

u€B(z,r)

Indicatie $tim ca B (z,7) = x + rB(0,1) . Atunci, pentru orice v € B (0,1),
1
max {||T (z +ro)[|, [IT (z —ro)[} = S [IT (z + ro)l[| + |T (& = rv)]].

Restul argumentelor sunt simple. 0

Problema 22 Pe spatiul liniar C'([0,1]) consideram urmatoarele aplicatii cu valori reale
nenegative
1
£ = [ 1 @lda, 11 =17 @)+ sup |f @), V7.
0 z€[0,1]

(i) Sa se arate ca |||, ||-||" sunt norme.

(it) Sa se arate ca orice sir convergent in norma ||-|| ., este convergent in |-||, si orice gir
convergent in norma ||-||" e convergent in norma ||| . .

(iii) Sa se studieze convergenta sirurilor f, (x) = z" gi g, (r) = n~'sin(nz), unde n € P.
Apoi sa se compare cele trei norme.

Indicatie (i) Verificarea acestui fapt reprezintd un calcul simplu.
(ii) Pentru orice f € C* ([0,1]) avem

1Al < 111l

deci |||, este mai fina decat |||, . Obtinem astfel demonstratia primei afirmatii.
Apoi, se aratd ca ||| este mai find decét |- , de unde deducem a doua afirmatie.
(iii) Pentru n € P,
1

1
1full, = / )l = 0

Deci
£ Mg,

Dar,
I full, =1, ¥n € P.
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deci

llloo

fo 7= 0.

Asadar, |||, este strict mai find decat |||, .
Similar, ||-||" este strict mai find decat ||-|| - O

Problema 23 Cu notatiile de la Problema[23, definim T : C*([0,1]) — C* ([0,1]) prin

Tf(x)z/oxf(t)dt-

Sa se arate ca T este bine definit gi lintar. Sa se studieze continuitatea lui T atunci cand pe
C* ([0,1]), atdt ca domeniu, cat si codomeniu se considera una dintre cele trei norme.

Indicatie Faptul ca T este bine definit si liniar se verifica usor.
Pentru a doua cerinta avem de studiat practic 9 cazuri. Totusi tinidnd seama de relatiile
dintre cele trei norme stabilite la Problema 22 unele concluzii sunt deductibile din altele.  [J

Problema 24 Fie (X, |[|]|) st (Y,||:]|) spatii liniare normate. Sa se arate ca daca (X, ||-]]) ~
Y (D), atunci (X, [|-)" ~ (Y, [|)"

Indicatie Din ipotezd, existd un izomorfism izometric T : (X, [|-]|) — (Y,]|]|). Definim S :
(X -D" = (VD" prin
S(z*)=a*oT

Operatorul S este corect definit (z* gi 7! sunt liniare si continue). Se arati cd S este izomorfism
izometric. U

Problema 25 Fie ¢ : (0, ],) — R,

o (z) = Z (Ton—1 — 32n) , Vo = (24),5, € L',

n=1

(i) Sa se arate ci ¢ este corect definita gi ca @ € ((1)"; sa se determine ||| .
(i1) Sa se determine elementul y € m care corespunde lui @ prin izomorfismul izometric de
la Propozitia|1.5.4]; si se regaseasca valoarea lui ||p|| .

Indicatie (i) Este simplu de aritat ca ¢ este corect definitd si este liniard. Apoi, pentru orice
T = (xn)n21 e
o ()] < 3]z, -

Deci ¢ este continua si ||¢|| < 3.
Considerdm acum elementul unitar e; pentru care avem ||es||, =1 si

o (e2)| = 3.

In concluzie, ||¢|| = 3.
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(ii) Avand in vedere forma izomorfismului izometric de la Problema|1.5.4] elementul din m
corespunzator lui ¢ este sirul y = (y,,) definit astfel:

_J 1, daca n este impar
Yn = —3, dacd n este par.

Regasim faptul ca ||| = 3. O

Problema 26 Sa se arate ca daca doua spatii liniare normate sunt izomorfe, atunci ele sunt
simultan separabile sau neseparabile.

Indicatie Este usor de constatat ca un izomorfism intre doua spatie liniare normate duce o
multime densa de pe primul spatiu intr-o multime densa in cel de-al doilea spatiu. 0

Problema 27 Sa se arate ca (¢, ||-||,) nu e separabil.

Indicatie Pentru a demonstra ca (¢, (|||, ) nu e separabil vom pune in evidentd o familie
nenumarabila de bile deschise disjuncte. Astfel, o multime densa trebuie sa aiba puncte comune
cu toate aceste multimi, deci nu poate fi numarabila.
Fie f : P (P) — (*,
£(8) = (a5,05,.).

s [ 1, keS
x"“_{O,k‘%S , Vk e P.

Atunci M = f(P (P)) C (> si f : P (P) — M este bijectie, deci card M = card P (P) = 2%,
Fie S,T € P(P), S # T. Atunci

unde

B(z°.27)nB(z",27") =0

si
{B(2527") |z e M}

este familia cautata. O

Problema 28 Fie T : (£, ||| ,) — (L (€%, [I-l,) . [I-l.) dat prin

T (2) (y) = (xi%i);cp

pentru orice & = (;);e1 € £ si orice y = (Yi);e1m € 1. S se arate ci:
(i) T este bine definit si stabileste un izomorfism izometric intre ({*,|-]|.,) §i un sub-
spatiu liniar inchis al lui (L (6, ||-|ly) , [I]l,) (spunem ca (L (€2, -]l,) . ||ll,) contine o copie a lui

(022, 11l ) )5
(i) (L (¢ ||Il,), I-]l,) nu este separabil.

Indicatie (i) Proprietatile lui T' se stabiliesc in mod obignuit. Din proprietatea de izometrie
rezultd si ¢ Im T este inchisd (Problema[14)).

(ii) Dacd (L (¢, |||l,) , [I-1l,) ar fi separabil, atunci (Im T, ||-||,) ar fi separabil, deci (¢*°, ||-||.)
ar fi separabil. 0
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Problema 29 Fie X,Y spatii liniare normate, (T,,),.p C L(X,Y) un sir de operatori si
T e L(X,Y). Sa se arate ca daca T,, — T atunci T,x — Tz pentru orice x € X.
Folosind operatorii T,,, T : (2, ||]l,) — (€% ]||l,) (n € P)

T, ((x1, 22, ...)) = (21,22, ..., T4, 0,0, ...)
T =1id,

sa se arate ca reciproca afirmatiei anterioare este falsa.

Indicatie Este evident ca pentru orice z € X si orice n € P putem scrie
[Toz — Tl < T = T Il

de unde obtinem prima concluzie.
Pentru a doua parte, este usor de aratat ca toti operatorii 7;, sunt liniari si continui. In
plus, pentru orice = € (2,

| RIP
T,x — idx.

Dar, orice n € P,
1T —1d|| > [[(T5, — id) (ens1)|| = 1.

Prin urmare, (7,,) nu tinde in norma operatoriala la id . U

Problema 30 Fie X un spatiu liniar normat real gi x* € X*\ {0}. Fie a € X astfel incadt
a ¢ Kerz*. Sa se arate ca

(i) ll*|| = d (a, Ker2*) ™" |2* (a)]

(11) exista T € Ker x* astfel incat d (a, Ker z*) = ||a — Z|| daca §i numai daca exista xy € Sx
astfel incat |z* (xo)| = ||z*]| ;

(#1i) in cazul X = C ([0, 1]) inzestrat cu norma uniforma si pentru aplicatia x* data prin

1/2 1
x*<f>=/0 swa—[ o

conditiile echivalente de la (i1) nu au loc.

Solutie (i) Este clar ca d (a,Kerz*) > 0 pentru ca a ¢ Kerx* si Kerz* este subspatiu liniar
inchis. De asemenea, este cunoscut faptul ca Ker 2* este subspatiu liniar de codimensiune 1 si
X = Kerz* @ Ra. Pentru orice u € Ker * avem

|2 (a)] = [2" (a —w)| < |z"[ fla = u],

deci
2" (a)| < d(a,Kerz™) ||z .

Fie x € X \ Ker z*. Atunci existd u € Kerz* gi t € R\ {0} astfel incat x = u + ta. Avem

lall = I \ > It d (a, Ker %)

L
—UuU-Ta
t
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|27 ()] = [t 2" (a)]

deci

2% ()] lz* (a)|
2 = d{a Kera®)’

Deducem egalitatea dorita.
(ii) Presupunem ca existd T € Kerz* astfel incat d (a, Kerz*) = |la — Z|| . Avem, folosind
calculele de mai sus,

2% (a = T)| = |2" (a)| = d (a, Ker z7) [|lz"|| = [la — 2| [|="]| .

Astfel, elementul ||ja — Z|| ™" (a — T) satisface concluzia.

Reciproc, presupunem ci exista xo € Sx astfel incat |z* (zo)| = ||#*|| . Din nou, existd u €
Kerz* si t € R astfel incat xo = u + ta. Atunci, |z* (x)| = |t||z* (a)|, deci || d (a, Ker z*) = 1.
Dar, ||zo|| = 1, deci ||u + ta|| = |t|d (a, Ker z*), adica Ha - |t|71u|| = d (a,Ker z*) si deducem
concluzia.

(iii) Este simplu de ardtat cd z* € X* si ||2*|| < 1. Pentru n > 2, definim f, : [0,1] — R
continua ca fiind functia care are valoarea 1 pe intervalul [O, % — %] , —1 pe intervalul [% + %, 1}
si este afind pe [ — 1,14+ 1] Atunci, pentru orice n, ||f,|, =1 si 2" (f,) = 1 — n~*. Deci
|lz*|| > 1, iar in final ||z*|| = 1.

Presupunem ca existd f € X astfel incat ||f||,, = 1 si |2*(f)] = 1. Fard a restrange
generalitatea, putem presupune ca z* (f) = 1. Atunci

/0;(1_f(‘”))der[l(lﬂLf(w))dx:o,

2

Cum functiile 1 — f si 1 + f sunt continue si pozitive, obtinem ca 1 — f = 0 pe [0, %} , lar

1+ f=0pe [%, 1} . Deci f (%) trebuie sa fie simultan 1 si —1, ceea ce este imposibil. O

Problema 31 Fie X un spatiu liniar normat si Y, Z C X un subspatii liniare astfel incit Y
este inchis, iar Z este finit dimensional. Sa se arate ca'Y + Z este inchis.

Solutie Presupunem mai intai cd Y NZ = {0} . Fie (y,) C Y si (z,) C Z astfel incat y,, + 2z, —
r € X. Ardtdm ci (z,) este marginit. Intr-adevir, in caz contrar, existd un subsir al siu (2,,)
astfel incat ||z, || — co. Cum Z este finit dimensional, putem presupune, eventual trecand din
nou la un subsir ||z,, ||~ 2zn, — 2z € Z, cu ||z|| = 1. Obtinem c&

L

deci ||zn, || ' Yn, — —2. Cum Y este inchis si (HznkH_l Yn,) C Y, deducem ci z € Y. Asadar
z €Y NZ=1{0}, ceea ce este imposibil. Deci (z,) este marginit gi admite subsir convergent
la un element z € Z. Atunci, pe acel subsir, (y,) este convergent la u — z € Y, ceea ce insemna
cd u € Y + Z. Concluzia este demonstrata in ipoteza suplimentard Y N Z = {0} .

In cazul general, notam cu Y complementul lui Y N Z in Z, care existd tocmai pentru ci Z
este finit dimensional. Evident, Y este finit dimensional, Y NY = {0} i Y +Y =Y + Z. Din
pasul anterior, rezulta ca Y +Y este inchis, deci Y + Z este inchis. O

97



6.2 Separarea multimilor convexe

Problema 32 Fie X spatiu liniar normat i f : X — R liniara.
(i) Sa se arate ci f este continud daca si numai daci Ker f = f~1(0) este inchisa.
(i1) Sa se arate ca dacd f nu este continud, atunci Ker f este densa in X.

Indicatie (i) Rezultd din Propozitia [2.2.2]
(i) Dacd f~'(0) nu este densd in X, existd o bild B centratd intr-un punct din X astfel

incat f nu se anuleza in niciun punct al lui B. Folosind acelasi rationament ca in Propozitia
2.2.2) f este continua pe X, ceea ce reprezinta o contradictie. O

Problema 33 Fie X spatiu liniar normat de dimensiune infinita. Sa se arate ca exista doud
multimi convexe Cy si Cy astfel incat C; UCy, = X, Ci1NCy =0 51 Cq, Cy dense in X.

Indicatie Conform Observatiei [[.3.9] existd un operator liniar f de la X la R discontinuu.
Definim

Cr={reX|[f(z)=0}

Co={reX|f(x)<0}.

Este clar c& C; UC, = X, C; N Oy = (). Folosind rationamentul din problema precedentd, C; si
C5 sunt dense. W

Problema 34 Sa se dea exemple de multimi convexe C' pentru care egalitatile cl C' = cl(int C)
gi int C' = int(cl C') nu au loc.

Indicatie Avand in vedere Teorema in ambele cazuri, multimea C trebuie sa fie cu interior
vid. Pentru prima dintre situatii, orice multime formata dintr-un singur punct nu satisface
egalitatea. Pentru a doua situatie, orice subspatiu liniar propriu dens intr-un spatiu liniar

normat nu satisface egalitatea (a se vedea Exemplele si|1.2.6)). O

Problema 35 Fie

k=1

A= {(xn)nep €| kai < 1}.

Sa se arate ca A este convexa, nu este absorbanta si nu este deschisa.

Indicatie Convexitatea lui A se arata ugor folosind definitia si, eventual, convexitatea functiei

JZI—>£L'2.

Fie ) .
=(1,=, .= ... e\ A
x < 727 7n7 > \

Fie A > 0 astfel incat Az € A. Atunci

<1

S| =

oo

D

k=1

ceea ce atrage A = 0. Deci A nu este absorbanti. In continuare, observiim ci 0 € A si daci A

ar fi deschisa, atunci 0 s-ar afla in interiorul lui A, deci A ar fi vecinatate a originii, deci ar fi
absorbanta. Deducem cd A nu este deschisa.
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Problema 36 Fiep € (1,00) i

G = {(xn)nepeep | an:o}.

nepP

Sa se arate ca G este subspatiu liniar normat dens in (Ep, Il Il p> :

*
si x* se anuleaza pe

N——

Indicatie Folosim Observatia [2.3.2/ si demonstram ca daca z* € (ép, 111,

G, atunci z* este nuld. Cum ((ﬁp, ||Hp) , ||||*) ~ (ﬁq, H||q) , unde ¢ = -£5, prin izomorfismul
T de la Problema [I.5.5 putem scrie * = Tz, cu x € (. Fie n € N cu n > 1. Definim sirul

w=(-1,0,..0,1,0,..) € G,
unde intre —1 i 1 sunt (n — 1) zerouri. Cum
2 (u) =T (z) (u) = x, — 21,
deducem ca sirul x este constant. Cum x € ¢9, singura posibilitate este ca x sa fie 0. U
Problema 37 In spatiul liniar normat (co, ||-||.) consideram multimile
Y ={z=(2,),>, €co|T2m1 =0, Vn P}
7 = {x = (xn)n;l € ¢y | Top = nx9py_1, V0 € IP’} )

Sa se arate ca
(1) Y, Z sunt subspatii liniare normate inchise ale lui co;
(1)) Y + Z este subspatiu liniar normat propriu si dens in co.

Solutie (1) Fie ¢ : ¢ — R,
SO('ZU) = (1’1,0,1‘3,07 )) V.ZU - (xn)nZI € Cp.-

Este usor de vazut ca ¢ este liniara, continua si Y = Ker . Deci Y este subspatiu liniar normat
inchis in cg.
Faptul ca Z este subspatiu liniar se probeaza in mod standard. Aratam cd Z este inchis.

Fie (xﬁ)n € Z pentru orice k € P astfel incat z* "% 2 € ¢o. Atunci

lI-lloo
ko ok
Ty, = NTs, 1, VN, k.

Dar

k k—o0
sup }xn — :z:n‘ — 0,
n

deci are loc convergenta pe coordonate. Astfel, deducem ca pentru orice n, s, = nws,_1, deci
x € 4.
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(i) Ardtdm acum ca Y + Z este dens in ¢y. Fie ¢ € ¢ ~ ¢! prin izomorfismul canonic.
Astfel, ¢ se identificd cu Tz, unde x € ¢*. Presupunem ci (T'z) (y) = 0 pentru oricey € Y + Z,
adica

anyn =0,VyeY+ 27

n=1
Alegem, pentru orice k, y** = (0,...,0,1,0,...) €Y C Y + Z (cu 1 pe pozitia 2k) avem zo; = 0.
Deci relatia de mai sus revine la

Z Ton—1Yan—1 = 0, Vy ey —+ Z.

n=1

Alegem, pentru orice k, y**=! = (0,...,0,1,k,0,...) € Z C Y + Z (cu 1 pe pozitia 2k — 1) si
deducem z9,_1 = 0. Deci = 0, adica ¢ = 0. Conform, Observatiei [2.3.2) Y 4 Z este dens in
Co.

Aratam ca Y + Z nu coincide cu ¢y. Fie

1 1
u= 11—, ...,—,... | €.
< V2 > ’

Daca u s-ar scrie ca v+ w cuv € Y si w € Z, am avea succesiv: v; = 0, w; = 1, wy = 2,
vy = \/Li —1,v3 =0, w3 = \/Lg, wy = \%, vy = \/LZ — 2\% s.a.m.d. Se ajunge la contradictia

w ¢ co. O

Problema 38 Fie (X, ||-||) finit dimensional. Fie C C X o multime convexd nevida astfel
incat 0 ¢ C i fie A, B multimi conveze nevide disjuncte. Fie {x, | n € P} o multime densa in
C. Sa se arate ca:

(i) pentru orice n € P multimea C,, = conv{zy,...,x,} este compacta gi reuniunea acestor
multimi este densa in C'

(i1) pentru orice n € P exista x, € X* astfel incat ||z} = 1 si x} (x) > 0 pentru orice
x € Cy;
(1) exista v* € X* astfel incat ||z*|| =1 gi x* (x) > 0 pentru orice x € C|

(1v) multimile A si B pot fi separate printr-un hiperplan.

Indicatie (i) Compactitatea lui C,, se aratd dupa modalitatea standard, proband secventiala
compactitate. Cum reuniunea acestor multimi contine pe {z,, | n € P}, este densa in C.

(ii) Existenta lui 27 rezulta dintr-una din teoremele de separare aplicatd pentru C,, si {0}.

(iii) Sirul (z}),cp de la punctul precedent este marginit si cum dualul Iui X este tot finit
dimensional, exista un subsir notat tot prin (z) convergent la un element z* € Sy-.

Fie x € C. Atunci exista un gir

(yn) < | J Cn
neP

astfel incat y,, — x. Pentru orice n exista k,, € N astfel incat y,, € C},, si cum sirul de multimi
(C,) este crescator, y, € Cy pentru orice k > k,,. Gasim astfel un sir strict crescator de numere
reale (k,), astfel incat y, € Cj, pentru orice n. Avem:

zy, (yn) >0, Vn € P.
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Pe de alta parte

o (w) = ap, ()] + |2k, (@) — 2t (vn)]
[zl + lle = yull, Y € P,

o (@) — i, ()| <
<|

-z

deci z, (yn) — 2* (x) . Deducem ca z* (z) > 0.
(iv) Cum AN B =0,0¢ A— B. Aplicdm punctul (iii) i deducem concluzia. O

Problema 39 Sa se arate ca (¢, ||-|l,) st (€, ||]l..)" s |Ill,) nu sunt izomorfe. Sa se arate ca

T: ([l = (@ - loe)™ -1 dat prin

= (2n),cp € 0 Y= (Un),ep € L este corect definit, liniar, injectiv si continuu. Sa se atate
ca T este izometrie i sa se deduca faptul ca T nu este surjectiv.
Sa se construiasca o functionald z* € (€, ||-|)" \ ImT.

Indicatie Am vizut la Exemplul [1.6.2] si Problema27 cd (¢, ||-||,) este separabil, dar (¢, |-]| )
nu este separabil. Dacd (¢, ||-||,) ar fi izomorf cu ((€°°, ||-]|.)", [I]l.) » atunci (€, ||-]l..)" [I1l,)
ar fi separabil si conform Propozitiei (€, |-l .) ar fi separabil. Obtinem o contradictie,
deci spatiile nu sunt izomorfe.

Buna definire a lui 7', injectivitatea, liniaritatea si continuitatea sa se dovedesc ca la prob-
lemele precedente. Similar pentru proprietatea de izometrie. Din cele de mai sus, 7' nu poate
fi surjectiv.

Construim o functionald din (€°°,|-||,)" care nu se afld in imaginea lui 7. Fie f : ¢ — R
data prin

f(z) =limz,.
Este ugor de verificat ci aceastd aplicatie este in (¢, |||, )" . Folosim Teorema Hahn-Banach in
varianta sa topologicd si prelungim f la intreg spatiul > (c este subspatiu liniar al lui £*°).
Notdm aceastd extindere g si stim c& ||g||, = || f||, - Dacd ar exista z € ¢ astfel incat Tz = g,
atunci pentru orice n

zn =T (x)(en) = g () = [ (en) =0,
deci z = 0, adicd g = 0. Dar, ¢g((1,1,...,1...)) = f((1,1,...,1...)) = 1, ceea ce reprezinta o
contradictie. O

6.3 Principii ale Analizei functionale

Problema 40 Sa se arate ca daca (X, ||||) este spatiu Banach infinit dimensional, atunci
dimensiunea sa algebrica este mai mare decdt Ng.

Indicatie Dacd (X, ||-||) este spatiu infinit dimensional, atunci dimensiunea sa algebricd este
mai mare sau egald decat Wg. Presupunem ca (X, ||-||) este spatiu Banach si are dimensiunea
No. Fie B = {e} | k € N} o bazd a lui X. Pentru orice n € N definim

Fn:span{ek|k€(),_n}.
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Evident, toate subspatiile liniare F,, sunt inchise (fiind finit dimensionale) si

X:UFn.

neN

Conform Teoremei lui Baire (Teorema [3.1.3), existd ng € N astfel incat int F,,, # (. Atunci,
pe baza Problemei [13] F,, = X, ceea ce reprezintd o contradictie. Asadar, X nu poate avea
dimensiunea Ng. O

Problema 41 Fie (X, ||-||) un spatiu Banach. Sa se arate ca X nu se poate scrie ca reuniune
numarabila de subspatii liniare inchise proprii.

Indicatie Fie (X,,) o familie numarabild de subspatii liniare inchise astfel incat

[OJ X, =X.
n=1

Conform Teoremei lui Baire (Teorema [3.1.3)), cel putin unul dintre aceste subspatii are interior
nevid. Dar, conform Problemei [13] dacd un subspatiu liniar are interior nevid, atunci coincide
cu intregul spatiu. O

Problema 42 (i) Sa se arate ca nu exista norma de spatiuv Banach pe cqp.
(i1) Sa se arate ca nu exista norma de spativ Banach pe spatiul liniar al polinoamelor.

Indicatie Se folosesc problemele precedente. 0
Problema 43 Fie, pentru orice n € P, T, : (coo, |||l,) — (co, [|ll) »
T, ((z1, 9, ...)) = (21, 229, ..., nT,, 0,0...) .

Sa se arate ca:

(i) pentru orice n € P, T, este liniar continuu §i pentru orice © € coy, sirul (T,x) este
convergent;

(11) sirul (||T,]|) nu este marginit.

Contrazic aceste fapte Principiul marginirii uniforme?

Indicatie Punctele (i) si (ii) se probeaza usor. Principiul marginirii uniforme nu este contrazis
de acest exemplu pentru cd (coo, ||-||,) nu este spatiu Banach. O

Problema 44 Fie X spatiu liniar normat si B C X. Sa se arate ca B este marginita daca si
numai dacd multimea x* (B) este marginiti pentru orice z* € X*.

Indicatie O implicatie este clara: dacd B este marginita atunci multimea z* (B) este marginita
pentru orice z* € X*.

Demonstram implicatia inversa. Pentru orice b € B definim operatorul liniar 7}, : X* — R
prin

Ty (x*) = 2" (b) .
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Cum
Ty ()] < [[o]| [|=*|, Vb€ B, z* € X*

deducem faptul ca {T}, | b € B} este o familie de operatori liniari gi continui. Avand in vedere
ca pentru orice z* € X* {T,(z*) |b€ B} = x*(B), ipoteza ne asigurd cd aceasta familie
este punctual marginitd. De asemenea, X* este spatiu Banach. Atunci, conform Principiului
marginirii uniforme (Teorema , exista ¢ > 0 astfel incat pentru orice x* € X* si orice
be B,

Ty ()] < el

deci
|27 (0)] < ™|
Cum
16l = sup {|z* (b)| | 2" € Sx-},
obtinem ca ||b|] < ¢ pentru orice b € B. Deci B este marginita. O

Problema 45 Fie X spatiu Banach si B C X*. Sa se arate ca B este marginita daca si numai
daca multimea {b(x) | b € B} este marginita pentru orice x € X.

Indicatie Rationam similar cu problema de mai sus, singura diferenta fiind ca trebuie sa im-
punem completitudinea lui X intrucat lucram cu operatori definiti pe X, spre deosebire de
problema anteriora la care completitudinea lui X*, adica a domeniului operatorilor, este au-
tomat satisfacuta. O

Problema 46 Fie X,Y, 7 spatii liniare normate. FieT : X XY — Z operator liniar in fiecare
variabila. Consideram urmatoarele afirmatii:

(i) T este continuu (in ansamblul variabilelor);

(ii) T este continuu in (0,0);

(111) exista M > 0 astfel incat

1T (z,y)|| < M|lz][ Iyl , Yz € X,y €Y;
(iv) T este continuu in fiecare variabila.

Atunci (i) < (i) <= (i) = (). Daca, in plus, X sauY este complet toate afirmatiile
sunt echivalente.

Indicatie Implicatiile (i) = (ii) = (iv) si (iii) = (i) sunt evidente.
Pentru (ii) = (iii), presupunem, prin reducere la absurd, ca existd (z,) C X, (y,) C Y
astfel incat pentru orice n € P

1T (n y) || > 0 ||yl

Evident, termenii z,, si y,, sunt nenuli. Consideram girurile

= (i) o0 ()

si ajungem la o contradictie cu ipoteza.
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Ardtdm acum (iv) = (iii). Pana acum completitudinea niciunui spatiu nu a fost necesara.
Pentru aceasta implicatie, fara a restrange generalitatea, presupunem ca X este complet. Pentru
orice x € X fixat consideram aplicatia liniard si continud 7' (z,-) : Y — Z. Deci pentru orice
x € X, exista M, > 0 astfel incat

1T (z,y)|| < M |lyll, Vy €Y.

Atunci familia de operatori liniari si continui de la X la Z data prin {7 (-,y) | |ly]| < 1} este
punctual marginita. Se aplica apoi Principiului marginirii uniforme. 0]

Problema 47 Sa se studieze exemplul X =Y =cp, Z =R, T: X xY — Z

T (J}, y) - Z TnYn,
n=1

unde v = (x1,x2,...), ¥y = (Y1, Y2, ...) pentru a dovedi ca ipoteza de completitudine din problema
precedenta este esentiala.

Solutie Se arata usor ca T este bine definit, continuu si liniar in fiecare variabila. Consideram
acum
r, = (1,1,...,1,0,0,...), Vn € P

unde 1 se gaseste pana la pozitia n. Atunci
T (xn,x,) = n,
deci
T = = 1, VneP
—F7=Tn, —=Tn | = 1, VN .
NV
Cum /1 ', — 0 in (oo, |l..) » deducem c& 7" nu este continuu in ansamblul variabilelor. [J

Problema 48 Fie in (co, ||||,,) seria
= 1
> L.
n=1

Sa se arate ca seria este absolut convergenta, dar nu este convergenta.

Solutie Absoluta convergenta este clara. Apoi, coy este subspatiu liniar al lui ¢q si se observa
cd seria este convergentd in ¢o la (n7?), p, element care nu este in cgp. d

Problema 49 Fie T : (¢2|-||,) — (€2, ]]-]l,) dat prin

Tn

T () = ().

n

Sa se arate ca:
(i) T este corect definit, liniar, continuu;
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(i1) imaginea lui T este

ImT = {x6€2 | Zn%i < oo},
n=1

iar acest subspatiu liniar este propriu si dens in (2, ||-]],);
(i) operatorul liniar, continuu, bijectiv T : (€2,]-]l,) — (Im T\ ||-|l,) nu are invers continuu.

Sa se compare cu Corolarul [3.2.10.

Indicatie Toate afirmatiile se probeaza in mod standard. Spatiul (Im 7, |-||,) nu este complet

si din acest motiv Corolarul [3.2.10| nu este aplicabil. O

Problema 50 Fie
M:{x€€1]Zn|xn|<oo}.
n=1

Sa se arate ca M este subspatiu liniar propriu dens al lui (¢*,|-]|,). Definim T : (M, |-||,) —

(€ [I-[ly) prin
T ((xn)) = (nn) .

Sa se arate ca:
(i) T este liniar, bijectiv;
(ii) T~ este continuu;
(i1i) T are grafic inchis dar nu este continuu.
Sa se compare cu Principiul graficului inchis.

Problema 51 Fie X un spatiu liniar si ||-||,, ||-||, doud norme complete pe X. Presupunem ca
are loc urmatoarea proprietate: pentru orice (x,) C X,

Il
Tn > T
Il — T =T
n )

Sa se arate ca cele doua norme sunt echivalente.

Indicatie Consideram aplicatia identitate id : (X, [|-||;) — (X, |||l,). Ipoteza asigura faptul
cd graficul acestei aplicatii este inchis. Deci, pe baza completitudinii normelor (Principiul
graficului inchis, Teorema, id de mai sus este continud. Astfel normele sunt comparabile
si folosind Corolarul obtinem echivalenta lor. O

Problema 52 Fie X un spativ Banach siT : X — X* un operator liniar. Sa se arate ca daca
T(z)(x) 20, Vo € X,

atunct T' este continuu.
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Indicatie Se arata ca T are grafic inchis si cum X si X* sunt spatii Banach va rezulta ca este
continuu. Fie (z,,T (z,)) — (z,z*) € X x X* un sir convergent de elemente din graficul lui 7'
Trebuie sa aratam ca x* = T'z. Din ipoteza se obtine

" (y—2)<T(y)(y—2), Vye X.
De aici se obtine z* = T'z. U

Problema 53 Fie X spatiu Banach, Y spatiu liniar normat si T : X — Y operator liniar.
Definim ||-||, : X — R prin
zlly = [l + [T .

(i) Sa se arate ca |||, este o norma pe X;
(ii) Sa se arate ca urmatoarele afirmatii sunt echivalente: (a) T este continuu; (b) normele
-] s2 |||l sunt echivalente; (c) (X, ||||;) este spatiu Banach.

Indicatie (i) Faptul c& [-||; este o norm& pe X se arata in mod obignuit.
(ii) (a) = (b) Este clar ca |||, este mai find decat [-||. Invers, din continuitatea lui 7,
pentru orice r € X,

lly < (X7 1]l -

Deci normele sunt echivalente.

(b) = (c) Implicatia este evidenta.

(¢c) = (a) Cum cele doud norme sunt comparabile gi sunt norme complete, din Corolarul
deducem ca sunt echivalente. Deci exista M > 0 astfel incat

lzlly < M |jz]|, Vo € X.

Obtinem
[Tal) < (M = 1) |||, Vo € X,

deci T este continuu. O

Problema 54 Fie X,Y spatii Banach si T : X — Y operator liniar continuu st surjectiv. Sa
se arate ca exista v > 0 astfel incdt pentru oricey € Y existax € X cuy =Tx i ||z|| < vyl -

Indicatie Din Principiul aplicatiilor deschise (Teorema(3.2.9)), exista ov > 0 astfel incat D(0, ) C
T(D(0,1)). Se obtine concluzia pentru v = 1. O

Problema 55 Fie X,Y spatii Banach i T : X — Y operator liniar continuu. Sa se arate ca
urmatoarele afirmatii sunt echivalente:

(i) T (X) este multime inchisa;

(i1) Operatorul T privit cu valori in T (X)) este deschis;

(111) existay > 0 astfel incat pentru oricey € T (X) existax € X cuy =Tz gi||z]] <7yl .

Indicatie (i) = (ii) Cum T (X) este spatiu Banach, putem aplica Principiul aplicatiilor de-
schise.
(il) = (iii) Rezultd dim Problema
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(iii) = (i) Fie (y,) C ImT astfel incat y, — y € Y. Putem atunci gési un sir strict
crescator (ny) de numere naturale astfel incat pentru orice k € P,

1
lgmess = el < 55

Din relatia de mai sus, pentru orice k € P, gasim u; € X astfel incat

. Y
Tuy = Ynpyr — Yny 81 ||uk|| < ﬁ

Fie x; € X astfel incat T'zy = y,, si
T =1+ U+ ... +up_q1, Vb > 2,
ceea ce inseamna, in particular, ca
Tz, = yp,, Yk > 1.

Dar, din cele de mai sus, seria ) uy este absolut convergentd, deci convergentd. Deducem ca
(x)) este convergent la un element = € X. Deci, T'vy, = y,, — Tx =y, adicd v € ImT". O

Problema 56 Fie X spatiu Banach si Y, Z subspatii liniare inchise ale lui X astfel incdt
YNZ ={0} si X =Y +Z. Sa se arate ca pentru orice x € X exista o unica scriere x = Y, + 2,
cuyy €Y §iz, € Z Definim Py : X =Y §i Py: X — Z prin Py (x) =y, Pz (v) = 2. Sa
se arate ca acesti doi operatort sunt liniari, surjectivi, satisfac

PyOPy:Py,ker(Py):Z,onpzzpz,ker(Pz):Y

§t sunt continui.

Indicatie Singura dificultate este demonstrarea continuitatii. Cum Y, 7 sunt spatii Banach,
este suficient sa aratam ca cei doi operatori au grafic inchis. Aratam pentru Py. Fie asadar
(Xn, Py (x,)) — (z,y) € X X Y un sir convergent de elemente din graficul operatorului Py.

Cum Py este surjectiv, existda T € X astfel incat Py (Z) = y. Este suficient sa ardtam ca
Py (T) = Py (x) . Stim ca x,,— Py (x,) — x—y. Dar, pentru orice n, z,— Py (z,) € ker (Py) = Z.
Cum Z este inchis, z —y € Z, deci Py (z) = Py (y) . d

6.4 Topologii slabe si compactitate

Problema 57 Fie (X, ||-||) un spatiu liniar normat. Sa se arate ca o functionala liniard f :
X — R este (|||, |-]) — continua daca i numai daca este (w, |-|) —continua.

Indicatie Rezulta din modul de definire a topologiei slabe gi din compararea celor doua topologii.
O

Problema 58 Fie (X, ||-||) un spatiu liniar normat si (x,) un sir de elemente din X care este
fundamental in norma si converge slab la un element x € X. Atunci (z,,) converge tare la x.
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Indicatie Fie € > 0. Faptul ca (z,,) este fundamental in norma inseamna ca exista n. € N astfel
incat pentru orice n,m > n., ||z, — || < . Deci, pentru orice n,m > n.

Tm € Th, +EDX.

Dar, conform Teoremei lui Mazur (Teorema |4.2.8)), multimea x,, +eDx este slab inchisa pentru
orice n. Facand m — oo, pe baza convergentei slabe a lui (z,) deducem

rE€x,+eDx, Vn>n,.
Aceasta inseamna ca

”xﬂ o x“ S, Vn > N,
deci z este limita lui (z,,) in topologia normei. O
Problema 59 Fie (X, ||||) un spatiu liniar normat. Fie (x,) C X un gir care converge slab

la v € X. Folosind multimea C' = clj. (conv {x, | n € N}) §i Teorema lui Mazur sa se arate ca
exista un gir de combinatii convexe ale lui (x,) care converge tare la x.

Indicatie Este clar ¢ C' este convexa gi ||-|| —inchisd. Din Teorema lui Mazur (Teorema [4.2.8)),
C este slab inchisd. Dar cum x,, — z, x este in inchiderea slabd a multimii {x, | n € N} care
este submultime a lui C. Deci z € C. Obtinem concluzia. 0

Problema 60 Fie (X, |-||) un spativ liniar normat si (x,) un gir de elemente din X astfel
incat toti termenii se afla intr-o submuliime compacta in topologia normei. Sa se arate ca daca
(x,) este slab convergent, atunci este tare convergent.

Indicatie Presupunem ci z,, — x € X dar z,, / x. Atunci existd ¢ > 0 si un subsir (z,,) al
lui (z,) astfel incat pentru orice k
[2n, =z = .

Dar (z,,) este la randul sdu un sir continut in multimea compacta din enunt, deci are subsir
convergent in topologia tare. Acest subgir este deci convergent si in sens slab la aceeasi limita
si cum topologia w este separata, limita nu poate fi decat x. Aceasta este in contradictie cu
relatia de mai sus. 0

Problema 61 Fie X un spatiu liniar normat i A C X o multime nevida. Sa se arate ca
cly el A = cl, A.

Este adevarat, in general, ca clcl, A = clj, A?
Sa se dea exemplu de sir pentru care inchiderea slaba a multimii termenilor sai este Dx.

Indicatie Incluziunea cl,, A C cl, clj.| A este evidenta. Fie = € cl, clj. A. Atunci, pentru orice
multime U, w—deschisa ce contine z, avem

Uncl, A£0.

Dar U este si tare deschisa, iar relatia de mai sus atrage U N A # ().
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Pentru a vedea ca relatia clj. cl, A = clj. A nu este in general adevarata, este suficient sa
consideram X infinit dimensional si sa luam A = Sk.

Pentru ultima chestiune, consideram X un spatiu liniar normat separabil infinit dimensional
si A = {xz,|n €P} o submultime densd in Sx (orice subspatiu metric al unui spatiu metric
separabil este separabil). Atunci, conform celor artate,

Clw A= Clw ClH.” A= Clw SX = DX,
adica egalitatea dorita. 0

Problema 62 Fie X spatiu liniar normat, (z,) C X, z € X, (z}) C X*, 2" € X*, D C X
astfel incit span D = X, D* C X* astfel incdt span D* = X*. Sa se arate ca
(i) x, — x dacd §i numai dacd (x,) este marginit si

¥ (x,) — % (z), Vo* € D*.

*

(i1) daci X este complet, 7, % o dact si numai dacd (x}) este marginit si

z; (x) = o (x), Yz € D.

Indicatie (i) Dacd x, — x atunci o* (x,) — z* (x) pentru orice 2* € X*, deci a doua parte a
concluziei are loc. Pentru prima parte, folosim Propozitia [4.2.10] pentru a deduce marginirea
sirului.

Demonstram implicatia reciproca. Trebuie sa aratam cd z* (z,) — z*(x) pentru orice
rr e X*.

Fie z* € X*. Cum span D* = X*, exista un sir (z}) C span D*, x; — z*. Pe baza ipotezei
se observa cu usurinta ca

" (x,) — o* (x), Va* € span D*.

Fie ¢ > 0. Folosind convergenta lui (z}) si marginirea lui (z,,), exista un rang k. astfel incat
pentru orice n € N avem
{ | (|27, — 2
]| ||=F, — 2

Pentru acest rang k., din ipoteza, exista un rang n. € N astfel incat pentru orice n > n.,

*

<€
< E.

;. () — 2 ()] <e.
Atunci

[0 (@) — 2™ ()] < |27 () — 2}, (20)| + zy, (2) — 2" ()]

< 3e, Vn > n..

zy, (20) — o, (2)] +

Deducem agadar ca z* (x,) — =* (x).
(ii) Rationdm ca mai sus. Completitudinea lui X intervine atunci cand, la implicatia directa,
folosim Propozitia [4.3.10| pentru a obtine marginirea sirului. U

Problema 63 Fie X = ¢y sau X = cup € (1,00). Fie (v,) C X un gir marginit si v € X.
Sa se arate ci v, — = dacd si numai dact are loc convergenta pe coordonate, adicd (Un), — Tk
pentru orice k. Sa se arate ca ipoteza de marginire a lui (v,) este esentiald.
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Indicatie Consideram multimea vectorilor unitari privitd in ¢ = (¢p)" sau in 2 = (/7)" (cu
p~ '+ ¢ 1 =1). Pentru a constata ci ipoteza de marginire a lui (v,) este esentiald, consideram
(vn) = (ne,) C F2. Acest sir converge pe componente la 0, dar nu este slab convergent pentru
ca nu este marginit. O

Problema 64 Fic f: (' — R,
k=1

Sa se arate ca f € (01)", dar f nu este w*— continud.

Indicatie Liniaritatea lui f este clara. Apoi,

If @) < llzll,, Vo € £,

deci f este continud. Fie acum {e; | k € P} vectorii unitari standard in ¢*. Stim ci ey 0.
Dar f (e;x) = 1 pentru orice k, deci f nu este w*—continua. O

Problema 65 Fie (¢e,) sirul vectorilor unitari in co. Definim girul (v,,) prin
vy, =€1+ ...+ e, Vn.

Sa se arate ca:

(i) (vy,) privit ca sir in £ = ({*)" este w*— convergent;

(i1) (v,) nu este w—convergent in cy.
Indicatie (i) Pentru orice y € ¢, folosind operatorul de izomorfism izometric intre £*° i (¢1)",
avem

T(w) () =Y o — Y ye=T(1))(y),

unde (1) este girul constant 1. Deci v, SN (1).

.. v . ~ A w—c . w* —f>*
(ii) Daci ar exista = € ¢y astfel incat v, — x atunci v, — . Astfel, z = (1) & ¢y, ceea
ce reprezinta o contradictie. U

Problema 66 S se arate ca sirul vectorilor unitari converge slab in (2, dar nu este convergent
in norma.

Indicatie Cum dualul lui £2 se identifica cu £2, pe baza operatorului de identificare avem, pentru
orice x € £? si orice n,
T (z)(e,) =z, — 0,

deci e, — 0. Dar, pentru orice n, m diferite
len — emlly = \/57

deci (e,) nu admite subsir convergent in norma (de fapt, nu admite nici subgir fundamental in
norma). O
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Problema 67 In spatiul (* = m, privit ca dual al lui 0*, considerdm sirul (2"),cp cu primii
n termeni 0 gi toti ceilalti 1. Sa se arate ca (z™) 2,0, dar (™) 4= 0.

Indicatie Reamintim c# £ ~ (¢!)" . Folosind operatorul 7' de izomorfism izometric (Problema

1.5.4) deducem
y) = Z yr — 0.

k=n+1

Deci, (z™) %, 0. Daci ar fi adevirat ci (z™) - 0, atunci din Corolarul [59] ar exista un sir de
combinatii convexe de termeni ai girului cu limita 0 in norma. Cum |[ju||, = 1 pentru orice u
combinatie convexd de vectori (z"), acest lucru nu este posibil. Deci (z") nu converge nici in
topologia w, nici in topologia tare. [l

Problema 68 Fie X = (> (adici m) cu norma ||-||, . S& se arate ca multimea
S ={ey | ke P} U{0}

este slab-stelat secvential compacta, dar nu este compacta in norma.

Indicatie Observam ca
||€i_ej||oo:1’ VZ,j GP, Z?é],

deci nu putem extrage niciun subsgir convergent in norma.

Apoi, se arata ca e 5. 0
Problema 69 Consideram spatiul (C ([0,1]),]-||.,) - Sa se arate ca daca (f,,) C C([0,1]) este
slab convergent la f € C([0,1]), atunci f, () — f(x) pentru orice x € [0,1], iar reciproca

acestei implicatii este falsa.

Indicatie Pentru orice x € [0, 1] operatorul T, : C' ([0, 1]) — R dat prin T}, (f) = f (x) este liniar
n

1]
si continuu. Deducem ci dacad f,, — f, atunci (f,) converge punctual la f. Pentru a arita ca
reciproca este falsa, consideram operatorul 7' : C' ([0, 1]) — R dat prin

—/Olf(t)dt

si sirul de functii (f,),cp C C ([0,1]) definit prin f, (z) = na (1 — 22)". O

Problema 70 Fie X = (C'[0,1],|||,.). Consideram sirul de operatori L, : X — R dat,

pentru orice n € P, prin
1
N=n | 1@
0

(i) Sa se arate ca L, € Sx« pentru orice n € P.
(11) Sa se arate ca (L) este w*— convergent.
(i1i) Sa se arate ca (L,) nu este convergent in normd.
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Indicatie Primul punct se arata usor. Pentru al doilea, folosind eventual o teorema de medie,
observam ca

1imn/"f<x)dx:f(0), Vf e X.
0

La punctul (iii) este suficient si gisim ¢ > 0 si un sir de functii (f,) C Sx astfel incat
|Ln, (fn) = L(fa)| > ¢, Vn eP. O

Problema 71 Fie (X, ) spatii topologic, Y spatiu liniar normat si f : X — Y o functie. Sa
se arate ca [ este (T,w) —continud daca §i numai daca pentru orice y* € Y* y*o f: X — R
este (,|]) — continua.

Indicatie Daca f este (7,w)—continud, cum orice y* € Y* este (w,|-|) —continua (problema
anterioard), deducem ca y* o f este (7, |-|) —continua.

Invers, presupunem ca y* o f : X — R este (7,]|-|) —continua pentru orice y* € Y*. Fie
Z € X. Consideram o vecindtate w—deschisa a lui f (Z), adicd alegem n € P, yF € Y* pentru
orice i € 1,n, € > 0 si consideram

V(f@);ur, ) ={veY |y () —v (f (@) <e, Yieln}.

Se verifica egalitatea

FHVAf @591, ynse)) = ﬂ (y: o /) (B yr (f (@) .€)) -

Aceasta este o multime deschisa in 7 pentru ca y} o f este (7, |-|) —continua pentru orice i € 1, n.
Deci f intoarce multimi deschise din w in multimi din 7. 0

Problema 72 Fie X,Y spatii Banach si T : X — Y un operator liniar. Sa se arate ca
urmatoarele afirmatit sunt echivalente:

(1) T este (|||, [|-l]) —continuu;
(i1) T este (w,w) — continuu;
(i1i) T este (|||, w) — continuu.

Indicatie Pentru a ardta echivalenta conditiilor (i) si (ii), intr-un sens se foloseste problema
anterioard, iar in celdlalt Principiul graficului inchis. Similar pentru echivalenta dintre (i) si
(iii) O
Problema 73 Fie X spatiu Banach reflexiv, Y spatiu Banach §iT € L(X,Y). Sa se arate ca
T (Dx) este inchisa in Y. Daca, in plus, T € K (X,Y), atunci T (Dx) este compacta.

Indicatie Cum X este reflexiv, Dy este slab compactd. Din Problema, T este (w, w) —continuu.
Asgadar, T (Dx) este w—inchisa deci tare inchisd. Dacd T' € K (X,Y), T (Dx) este si relativ
compacta, deci compacta. 0

Problema 74 Fie X,Y spatii liniare normate si T € L(X,Y). Sa se arate ca daca cel putin

unul dintre aceste spatii este reflexiv, atunci pentru orice gir marginit (z,,) C X, sirul (T (z,,))
contine subgir slab convergent.
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Indicatie Daca X este reflexiv, atunci orice gir marginit (z,) C X contine un subsir slab
convergent. Cum 7T este (w, w) —continuu (din nou prima implicatie din Problema, deducem
concluzia.

Daci Y este reflexiv, cum (7" (x,)) este marginit, obtinem din nou concluzia. O

Problema 75 Sa se arate ca spatiile (1, (> nu sunt reflexive.

Indicatie Daci ¢* ar fi reflexiv, cum este un spatiu separabil, conform Propozitiei |4.4.14, dualul
sau ar fi separabil, ceea ce, conform Problemelor $1[27], este fals.
Daci ¢ ar fi reflexiv atunci subspatiul sdu inchis ¢y ar fi de asemenea reflexiv (Propozitia

4.4.12)). Dar stim c& ¢ nu este reflexiv (Exemplul |4.4.6]). O

Problema 76 Fie X,Y spatii Banach siT € K (X,Y). Sa se arate ca ImT este multime
inchisa daca gt numai daca T este de rang finit.

Indicatie Daca T este de rang finit, Im 7" este un subspatiu liniar finit dimensional, deci este
multime inchisa. Invers, presupunem ca Im 7T este inchisd. Atunci Im 7T este spatiu Banach si
T € L(X,ImT) este surjectiv. Conform Principiului aplicatiilor deschise, T'(Dy) contine o
bila inchisa B centrata in 0 a lui Im 7. Cum Im T este inchisa, B este inchisa in Y. Dar,

BCT(Dx)CT(Dx).
Astfel, B este compacta, deci Im T este subspatiu finit dimensional. O

Problema 77 Fie X,Y spatii Banach st T : X — Y un operator liniar. Sa se arate ca
(i) daca T este (w, ||||) —continuu, atunci T este de rang finit;
(i1) daca T este (|||, ||||) — continuu gi de rang finit, atunci este (w, ||-||) — continuu.
Sa se compare cu Problema[73.

Indicatie (i) Proprietatea de continuitate inseamna ca pentru orice € > 0 existd 6 > 0, n € P,
(7 );e1y astfel incat | Tz|| < e pentru orice x € V (0; 27, ..., 27,3 9) - In particular, daci = apartine
subspatiului Z = {z eX|zi(z)=0, Vie L_n} , obtinem ca T (z) = 0. Dar codimnesiunea
lui M este finita, deci nucleul lui T" este de codimensiune finitd. Deducem ca imaginea lui T’
are dimensiune finita.

(ii) Cum T este de rang finit, pe Im T topologia w coincide cu topologia normei. Dar, pentru
orice ACY, T-*(A) =T (ANImT) si folosind Problema |72} (w, ||||) —continuu. O

Problema 78 Sa se arate ca operatorul T : P — (P cup € (1,00) dat prin

T ((#n)ep) = (0,21, ..., Tp, ...)

nu este compact.

Indicatie Multimea T' (D) contine sirul de vectori (0, 1,0, ...), (0,0,1,...),... care nu contine
niciun subsgir Cauchy, deci niciun subsir convergent. U
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Problema 79 Fie p € [1,00] si a = (ay),cp € €. Definim T : (7 — (P prin
T, (z) = (an®n), , Yo = (Tn),cp € .

Sa se arate ca:
(1) T, este bine definit, liniar si continuu, iar |T,| = ||al . ;
(i1) T, este compact daca gi numai daca a € cy.

Indicatie (i) Se arata folosind metode deja utilizate de mai multe ori.
(ii) Presupunem ca T, este compact, dar a ¢ c¢. Atunci exista ¢ > 0 si un subsir (a,, ) al lui
(a,) astfel incat |a,,| > ¢ pentru orice k. Atunci pentru j,k € P

| Toen, — Tutwyll = (lan, P + |an, ") > 6,

deci sirul (7}, (an,)) nu admite subsir convergent.
Presupunem acum ca a € ¢y. Definim sirul de elemente din cgg prin

a™ = (a1,...,a,,0,...), Vn € P.
Se aratd cd ||T, — T,m || — 0 si se deduce concluzia. U

Problema 80 Fie X,Y, 7 spatii Banach siT € L(X,Y), S € L(Y,Z). Sa se arate ca
(i) daca T € K (X,Y), atunci SoT € K (X, Z);
(i1) daca S € K (Y,Z), atunci SoT € K (X,Z).

Indicatie Ambele afirmatii rezulta prin aplicarea definitiilor si proprietatii de marginire a op-
eratorilor liniari continui. O

Problema 81 Fie X spatiu Banach infinit dimensional i T € K (X). Sa se arate ca 0 €

T (Sx).

Solutie Presupunem c& 0 ¢ T (Sx). Atunci o = inf,cg, ||Tz|| > 0. Aceasta inseamna ca 7" (X)
este subspatiu liniar inchis (a se vedea Problemall4), deci T-' : T (X) — X este operator liniar
continuu (|77 < a™1), iar idy = T~'oT este operator compact (Problema[80). Rezulta deci
X este finit dimensional, ceea ce este fals. O

Problema 82 Fie X,Y spatii Banach i T € L (X,Y). Consideram urmatoarea proprietate:
(%) Y (an), =@, T(2,) = T ().

Sa se arate ca:
(i) daca T este compact, atunci are proprietatea () ;
(i1) daci X este reflexiv i T' are proprietatea (%), atunci T este compact.

Solutie (i) Fie (x,), — x. Stim ¢4 (z,), este mirginit, iar cum 7' este compact, (T (x,)) are
subsir convergent tare la un element y. In particular, (7' (x,)) este si slab convergent la y.
De asemenea, stim ca 7' este (w,w) continuu, deci T (z,) — T (z), Deducem cd y = T (x).
Astfel, singurul punct limita al lui (7" (x,,)) este T'(z) . Cum (7 (x,)) este inclus intr-o multime
compactd, gisim cé singura posibilitate este ca T' (z,,) — T ().

(ii) Fie (z,) C X un sir marginit. Cum X este reflexiv, existd un subsir al acestuia, notat
(xn, ) slab convergent la un element x € X. Din ipoteza (T (x,,)) este tare convergent. Obtinem
ca T este compact. U
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6.5 Spatii Hilbert

Problema 83 Fie X un spatiu cu produs scalar i fie x,y € X. Sa se arate ca |(x,y)| = ||z|| ||y||
daca i numai daca x iy sunt liniar dependenti, adica fie v sauy este nul, fie exista A € R\{0}
astfel incdt © = \y.

Indicatie Presupunem ci |(x, y)| = |||/ ||y|| si arstim c& existd A € R astfel incat ||z — Ay||* = 0.
0

Problema 84 Fie X un spatiu cu produs scalar i x,y € X. Sa se arate ca daca
2]l < [l + ayl|, Vo €R,

atunci x 1L y.

Indicatie Ridicdm la patrat relatia datd, dezvoltdm al doilea membru si obtinem (z,y) = 0. O

Problema 85 Sa se arate ca dintre toate spatiile Banach (Ep, H\|p> cup € [1,00), singurul

care este spatiu Hilbert este (€2, ]-||,) -

Indicatie Se aratd ci doar pe (£2,]-||,) se respectd identitatea paralelogramului. O

Problema 86 Definim aplicatia (-,-) : coo X coo — R data prin

<ZE, y> = Z LYk

k=0
Sa se arate cd (-, -) este un produs scalar dar coy cu acest produs scalar nu este spatiu Hilbert.

Indicatie Se arata ugor ca (-, ) este corect definitd gi reprezinta un produs scalar. Am vizut la
Problema 40| ca cgg nu este complet in raport cu nicio norma. 0]

Problema 87 Fie X un spatiu Hilbert si Y un subspatiu liniar ol sau. Sa se arate ca 'Y este
dens in X dacd i numai daca Y+ = {0} .

Indicatie Daca Y este dens, avem
Yt = (adY)t =X+t ={0}.

Invers, daci Y- = {0}, atunci (c1Y)" = {0} si cum X = (c1Y)" @ clY, deducem cii clY = X,
adica Y este dens in X. 0J

Problema 88 Sa se gaseasca un spativ Hilbert X si un subspatiu Y al sau astfel incit X #
YooYt

Indicatie Fie in spatiul Hilbert X = ¢? subspatiul liniar Y = cpy. Atunci Y+ = {0} pentru ci
pentru orice sir x € €2\ {0} existd 7 astfel incat z; # 0, deci (z, e;) # 0 (sau pentru ci cg este
dens in £?). O
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Problema 89 Fie X un spatiu Hilbert si Y, Z subspatii liniare inchise ale lur X. Sa se arate
ca daca’Y 1 Z (adica (y,z) = 0 pentru orice y € Y gi z € Z) atunci Y + Z este subspatiu
lintar inchis.

Indicatie Evident, Y + Z este subspatiu liniar. Aratam ca este inchis.
Fie (z,) = (yn + 2,) — x unde (y,) C Y, (2,) C Z. Vom demonstra ca (y,) si (z,,) sunt
siruri Cauchy. Intr-adevar, pe baza perpendicularitatii din ipoteza, pentru m,n € N,

2 2 2 2
T = Tl = [[(Um + 2m) — W + 20)|I7 = |¥m = ¥nll” + [|2m — 2n|
2 2
zmaX{Hym_yn” N zm — znl| }

si cum (z,) este gir Cauchy, deducem afirmatia facuta. Atunci, pe baza completitudinii lui X,
(yn) este convergent la un element y care apartine lui Y (pentru cd Y este inchis), iar (z,) este
convergent la un element z care apartine lui Z (pentru ci Z este inchis). O

Problema 90 In spatiul > consideram subspatiile Hy = span {€;};>o 51 H = span (HO U {(%)nep}> .
Sa se arate ca Hy este subspatiu lintar inchis in H gi ca nu exista in Hy element de cea mai
bund aprozimare pentru = (=) cp.

Solutie Daca vom considera un gir de elemente din H, convergent in H, atunci este clar ca
elementul limitd are prima componenta 0, deci nu poate fi in H \ Hy. Apoi, presupunem, prin
reducere la absurd ca exista un element de cea mai buna aproximare pentru x in H,, pe care
il notdm pry, . Atunci pry, x are forma ), ier i€ unde I este o multime finita de elemente
din P\ {1} si scalarii «; sunt reali. Se aratd ca pentru orice j € P\ ({1} U )

T — (Z o,e; + e]> H
iel

obtindndu-se o contradictie. U

|l = pry, =] >

Problema 91 Fie spatiul C ([0, 1]) pe care considerdam norma uzuala, adica norma ||-|| . Con-

sideram multimea
= {fEC([U,l]) !/:f(@dw—ﬁ f(ﬁc)dl’:l}-

(i) Sa se arate ca (C ([0,1]),||-]|.) nu este spativ Hilbert.

(ii) Sa se arate ca M este convexd gi inchisa.

(iii) Sa se determine inf {||f||. | fe M}.

(iv) Sa se arate ca M nu contine niciun element de norma minima.

Solutie (i) Norma [|-||, nu provine dintr-un produs scalar pentru cd nu satisface identitatea
paralelogramului. Putem considera, de exemplu, functiile f,g : [0,1] — R date prin f (z) =z
sig(z)=1—u.

(ii) Convexitatea lui M se verificd cu usurintd. De asemenea, teorema de transfer a inte-
grabilitatii Riemann prin convergenta uniforma asigura inchiderea lui M.
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(iii) Se arata ca
inf {[|fll | f € M} =1.

(iv) Presupunem cd exista f € M astfel incat || f||. = 1. Atunci

/0;(1_f(x))der/;(lef(:E))dm:O'

Cum functiile 1 — f si 1 4+ f sunt continue si pozitive, obtinem ca 1 — f = 0 pe [(), %} , lar

14+ f=0pe [%, 1} . Deci f (%) trebuie sa fie simultan 1 gi —1, ceea ce este imposibil. O

Problema 92 Fie X un spatiu Hilbert si {e,}, .y 0 baza ortonormata a sa. Fie

Y =span{ey, | n € P},

€2n+1
Z = n celPs.
span{eg —{—2n+1\n }

Sa se arate ca'Y + Z este subspatiu dens propriu al lui X.

Indicatie Este clar ca Y si Z sunt subspatii liniare inchise, iar Y 4 Z contine baza {e,}, p -
Deci Y + Z este subspatiu dens. Aratam ca Y + Z nu coincide cu X. Pentru aceasta observam

ca vectorul
o0

€an+1
x = —
Z 2n+1
n=1
nu apartine lui Y + Z. Mai intai observam ca z este corect definit (seria este convergentd) pe
baza Propozitiei Daca ar exista y € Y, z € Z astfel incat x = y + z, atunci, din forma
subspatiilor gi unicitatea descopunerii in raport cu baza, cum toate elementele {es,11}, sunt
implicate in z, trebuie ca y sa fie
o
e
n=1

Dar acest lucru este imposibil pentru c& aceastd suma nu converge (din nou pe baza Propozitiei

5.4.0). O

Problema 93 Fie X spatiu Hilbert si T € L(X). Sa se arate ci urmatoarele afirmatii sunt
echivalente:

(1) exista ¢ > 0 astfel incat

cllzll < T[], Vo e X;

(11) exista S € L (X) astfel incit SoT = 1x.
Indicatie (i) = (ii) Pe baza ipotezei, din Problema [14, T (X) este subspatiu liniar inchis si
T~':T(X) — X este liniar si continuu. Fie Y complementul ortogonal al lui 7' (X) in X
(conform Teoremei [5.2.8)). Definim S : X — X prin S(z) = T71(2), unde z € T (X) este

elementul care intervine in scrierea unicd a lui z in descompunerea ortogonald X =T (X) @Y.
Atunci S are proprietiatile de la (ii).
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(ii) = (i) Pentru orice z € X,
[l = [1CS (T @)D < ISIHIT]] -

Evident, ||.S|| # 0 (contrar, S = 0 si relatia S o T = 1x este imposibild) si prin urmare (i) are
loc. U

Problema 94 Fie X un spativ Hilbert. S se arate ci daca un sir (x,) C X satisface x, —
r € X gi|x,| — |z, atunci z, — .

Indicatie Avem
2 2 2
[0 — 2" = {20 — 2,20 — @) = [Jzal]” — 2 (20, 2) + |||

Cum , — x, avem (z,, ) — ||z||* . Folosind si ipoteza ||z,|| — ||z deducem ci ||z, — z||* —
0, de unde se obtine concluzia. O

Problema 95 Fie X spaliv Hilbert, {e,}, p 0 baza ortonormata a sa si(ay), cp un sir marginit
de numere reale. Definim sirul

1 n
Uy = - ;akek, Vn € P.

Sa se arate ca
(i) (un) — 0;

Indicatie (i) Avem, pentru toti n,

1 — M?
2
luall® = —5 > <

unde M este o constantd de marginire a lui (a,) . Deci ||u,| — 0.
(ii) Din estimarea anterioard deducem ci sirul (y/nu,) este marginit. Observam si c&, pentru
orice k fixat si orice n > k,

(Vnu,, e,) = % — 0.
Pe baza Corolarului [5.4.14, deducem c& (y/nu,) — 0. O

Problema 96 Fie (X, (-,-)) un spatiuv Hilbert, T,T\, T € L (X) gi A € R. Atunci:
(i) (W + 1) =17 + T3
(ii) (\T)* = \T™;
(iii) (Ty\Ty)" = Ty Ty, unde Ty Ty noteaza compunerea celor doi operatori;
(iv) (T*)" =T;
* * 2
(o) | 7T = [[TT*[| = 7" ) )
(vi) Daca T este inversabil atunci T* este inversabil gi (T*) = (T~1)".

Indicatie Toate relatiile sunt simple aplicatii ale definitiei operatorului adjunct. 0
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Problema 97 Sa se arate ca daca X este spatiu Hilbert i T € K (X), atunci T* € K (X).

Indicatie. Trebuie sa aratam ca pentru orice gir (y,) marginit girul (7*y,) admite subsir con-
vergent. Fie M constanta de marginire a lui (y,,) . Cum T* € L (X), sirul (T*y,,) este marginit,
deci sirul (7' (T*y,)) admite un subsir, notat (7' (7*y,, )), convergent (pentru ca 7' € K (X)).
Se aratd cd (T™y,, ) este convergent ardtand ca este fundamental. U

Problema 98 Fie X spatiu Hilbert i T € K (X). Sa se arate ca id —T este injectiv daca gi
numai daca este surjectiv.

Indicatie Injectivitatea lui id —71" atrage surjectivitatea sa chiar in spatii Banach, dupa cum am

vazut in Teorema [4.5.11] (iii).

Reciproc, presupunem acum ca id —7" este surjectiv. Atunci
Ker (id =7)* = (Im (id —=T)))" = {0},

adicd (id —T)* este injectiv. Dar T* € K (X) (conform problemei anterioare) si din pasul
precedent al demonstratiei, Im (id —7")" = X. Astfel, folosind Problema ,

Ker (id —T) = (Im (id =7)")" = {0},
deci id —T" este injectiv. 0

Definitia 6.5.1 Fie X spatiu liniar normat §i T € L (X). Spunem caT este marginit inferior
daca exista ¢ > 0 astfel incat
¢llall < || Txf], Vo e X.

Problema 99 Fie X spatiu Hilbert si T € L(X). Sa se arate ca urmatoarele afirmatii sunt
echivalente:

(i) T este bijectiv;

(1) T st T* sunt marginiti inferior;

(111) T este marginit inferior gi T* este injectiv;

(iv) T' este marginit inferior si T (X) = X.

Indicatie (i) = (ii) Daca T este bijectiv, cum X este complet, T" are invers continuu (Corolarul
3.2.10]). Astfel, marginirea inferioara este clara: pentru orice x € X,

ol = [|T77" (T) || < [|[ 77 1T -

Cum, pe baza Problemei , T* este inversabil si (T*) ™" = (T")" obtinem c& si T* este mérginit
inferior.

(ii) = (iii) Este clar ca orice operator liniar marginit inferior este injectiv.

(iii) = (iv) Stim (Propozitia[5.3.7) c& Ker T* = (ImT)* = (ImT) ", deci {0} = (Tm T) ",

adica
x= (@)

(iv) = (i) Cum T este marginit inferior, este injectiv. Tot din marginirea inferioara
obtinem (Problema [14)) ci T (X) este subspatiu liniar inchis, deci in ipoteza dat& T este sur-
jectiv. Deci T este bijectiv. 0

€L -

(X).
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Problema 100 Fie X spatiu Hilbert si'T : X — X liniar. Presupunem ca
(Tx,x) >0, Vo € X.

Sa se arate ca T este continuu, tar id +T este inversabil i are invers continuu.

Indicatie Prima concluzie rezultd din Problema [52|si Teorema, lui Riesz. Apoi se arata ca id +71°
satisface conditiile de la punctul (ii) al problemei de mai sus. O

Problema 101 Fie X spatiu Hilbert si T € L(X). Presupunem ca ||T|| < 1. Sa se arate ca
Tz = x daca $t numai daca T*x = x.

Indicatie Fie x € X astfel incat Tz = x. Atunci

lz[|* = (T, ) = (2, T*z)
* 2 * 2
< [l Tz} < Q=PI < fl=]]”

Prin urmare, toate inegalitatile sunt de fapt egalitati. Deci
(z, T"x) = |||l [|T"x]]

si conform Problemei 83} = si T*x sunt liniar dependenti sau unul dintre acesti vectori este nul.
Folosind din nou sirul de egalitati de mai sus obtinem ca T*x = .
Reciproc, dacd T*r = z, atunci (T*)" x = x, adicd Tx = . O

Problema 102 Pentru orice k € N definim T}, : (2 — (% prin

Tk (LU) = (l’k.}.l, Lk+2, ) 5 Vo = (In)nEP :

(i) Sa se arate ca Ty, € L (¢?) si sa se determine (Ty)" .
(ii) Sa se arate ca limy .o Tpx — 0 € €2 pentru orice x € (2.
(i) Sa se arate ca exista x € (% astfel tncat (Tyx), nu are limitd in (2.
Indicatie (i) Din conditia
(Tew,y) = (2, (T)"y) , Yo,y € £,
deducem ca (T},)" () = (0, ...0, 21, T3, ...) , unde primele k& componente sunt 0.
(ii) Pentru orice = € 2,

[Tl =

o0
S w250,

n=k+1

deducem concluzia.
(iii) Pentru orice = € (2,
1(Tx)" 2| = =] -

Pentru z # 0, presupunand c existd y = limy_., (Tx)" z, din forma operatorilor (T})*, deducem
ca y, = 0 pentru orice n, ceea ce contrazice relatia anterioara. U]
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Problema 103 Fie X un spatiu Hilbert si A : X — X un operator liniar astfel incdt
(Az,y) = (2, Ay) , Y,y € X.

Sa se arate ca A este continuu.

Indicatie Presupunem, prin reducere la absurd, ca A nu este continuu. Atunci exista (z,,),cp C
Sx astfel incat ||Az,|| — oo. Consideram, pentru fiecare n € P, f,, : X — R,

fo () = (2, Azy,) .

Atunci f, € X* si sirul (f,), este punctual marginit. Se aplicd Principiul mérginirii uniforme
si se ajunge la o contradictie. 0

Definitia 6.5.2 Fie X un spatiu Hilbert. Un operator liniar P : X — X se numeste proiector
daca imaginea sa este subspatiu lintar inchis g1

©—PreP(X)", VeeX.

Problema 104 Fie Y C X un subspatiu liniar inchis al spatiului Hilbert X. Atunci existd un
unic proiector P : X — X astfel incat P (X) = Y. In particular, orice proiector este continuu
st are norma 1, iar

P(X)={re X |Px=uz}.

Solutie Conform Teoremei de descompunere ortogonals, X = Y @ Y+, adicid pentru orice
r € X existd gi sunt unice doud elemente y € Y si 2z € Y+ astfel incat x = y + 2. Definim
P: X — X prin P(z) = pryz = y. Este clar c& P este liniar, Im P = Y iar pentru orice
ze€X,z—P(z) e Yt = (ImP)". Demonstrim unicitatea. Fie Q : X — X un proiector
astfel incat @ (X) =Y. Dar, pentru orice x € X

x=Pr+ (r— Pzx)=Qx+ (zr — Qux),

iar unicitatea descompunerii lui X atrage Pr = Qx. Deci P = Q.

Agadar, orice proiector este un operator de proiectie pe un subspatiu liniar inchis si din
Propozitia deducem ca orice proiector este continuu si are norma 1. Ultima afirmatie
este acum evidenta. O

Problema 105 Fie X un spatiu Hilbert si P : X — X un proiector. Sa se arate ca:
(i) (Pz,z) > 0, pentru orice x € X;
(i1) Ker P = {x € X | (Pz,z) = 0};
(iii) Ker P = (Im P)* .

Indicatie (i) Pentru orice x € X avem
(Px,z) = (Px, Px + (x — Pz)) = (Px, Px) + (Px, (x — Px)) = || Pz > 0.

(ii), (iii) Rezulta din punctul precedent gi problema anterioars. O
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Problema 106 Fie X un spatiu Hilbert i P € L(X). Sa se arate ca urmatoarele afirmatii
sunt echivalente:

(i) P este proiector;

(ii) P= P* i Po P = P;

(i1i)) P*o P = P.

Indicatie (i) = (ii) Presupunem ca P este proiector. Atunci, pentru orice z,y € X,

(Pz,y) = (Pz, Py +y— Py) = (P, Py) + (Px,y — Py) = (Pz, Py)
= (Pzx, Py) + (x — Pz, Py) = (z, Py) .

Deci P = P*. Apoi, pentru orice z € X,
(PoP)(x) =P (Px)= Px,

adica Po P = P.
Celelalte implicatii se arata folosind argumente similare. 0

Problema 107 Fie X un spatiu Hilbert. Pe multimea protectorilor introducem urmatoarea
relatie:
Pl Spg < <P1£L’,.CE> < <P2.T,[L'>, Ve e X.

Sa se arate ca aceasta relatie este o relatie de ordine. Apoi sa se arate ca urmatoarele afirmatii
sunt echivalente:

(1) P, < Py

(ii) Ker P, C Ker Pi;

(i) Py (X) C P (X);

(iU)PQOPlzpl;

(v) Py o P, = Py

(vi) Py — Py este proiector.

Solutie Faptul ca < este reflexiva si tranzitiva este evident. Aratam ca este antisimetrica.
Presupunem deci ci (Pyx, ) = (Pyz, z) pentru orice 2 € X. Dar, ca mai sus, (Pz, z) = || Pz
si similar pentru P. Deducem ca P, = Ps.

Aratam acum echivalentele din enunt,.

(i) = (ii) Conform ipotezei,

(Piz,x) < (Px,x), Vo € X.

Daci z € Ker P, atunci (Pyz, z) = 0 si cum (Pyz, z) > 0 (Problema[l05) deducem (Pyz, z) = 0,
deci x € Ker P;.
(ii) = (iii) Stim (din nou Problema c& (Im P,)" = Ker P si similar pentru P,. Deci
ipoteza se scrie
(Im P)*"  (Im Py)",

deci
ImP, = (ImP)"" > (ImP)"" =ImP.
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(iii) = (iv) Cum P; (X) C P (X), pentruorice x € X, Pix € P» (X), deci P, (P1x) = Py,
deci P,o P, = P,.

(iv) = (v) Dacd P,o P, = Pj, atunci (P, 0 Py)* = P}, deci P} o Py = P}, dar cum P} = P,
si Py = P,, obtinem ca P, o P, = P.

(v) = (i) Fie 2z € X. Avem

(Pur,z) = | Prz|)” = [|(Pro B) 2|” < || PA* || Pocel|* = (Pra, )

adica P1 S P2.

(i) = (vi) Faptul c& P; < P; este echivalent cu P o P, = Py o P; = Py. Se verifica usor c&
P, — P verifica, de exemplu, conditiile din Problema m (ii), deci este proiector.

(vi) = (i) Daca P, — P, este proiector atunci

<(P2—P1).flf,x> 207 vxeX?
deciPlng. U

Problema 108 Fie X un spatiu Hilbert si Py, P, proiectori. Sa se arate ca urmatoarele afir-
matii sunt echivalente:

(i) P, + Py este proiector;

(M) P10P2=O;

(iii) Py o P, = 0;

(iv) P (X) L P (X).

Indicatie Se folosesc argumente similare celor din problemele anterioare. 0

Problema 109 Fie X un spatiu Hilbert si T € L (X) autoadjunct. Sa se arate ca urmatoarele
afirmatii sunt echivalente:

(1) (T'z,z) > 0 pentru orice v € X;

(ii) o (T') C [0, 00).

Solutie Echivalenta celor doud afirmatii este consecintd directd a Propozitiei [5.6.8 O

Problema 110 Fie X un spatiu Hilbert §i T € L (X) autoadjunct. Sa se arate ca urmatoarele
afirmatii sunt echivalente:

(i) (Tx,x) > 0 pentru orice v € X gi |T|| < 1;

(i) 0 < (Tx,z) < ||z|* pentru orice x € X;

(i1i) o (T') C [0,1];

() (Tx,x) > ||Tz||* pentru orice x € X.

Solutie Din Corolarul 5.6.9,, ||T'|| = sup,cg, [(T'z,z)|. Astfel, (i), (ii) si (iii) sunt evident echiva-
lente. De asemenea, faptul ca (iv) implica (iii) este simplu de vazut. Aratam ca (iii) implica
(iv). Pentru orice € > 0, operatorul 7. = T + €id este bijectiv si o (T%) C [e,1 + €] . Astfel,

o(T71Y) C [1%8, 1]. Din nou prin intermediul Propozitiei ,

(T w,z) > |z||*, Vz € X,

1+¢
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adica )
(Tew,x) > — || Tez|®, Vo € X.
1+e¢

Facand ¢ — 0 obtinem concluzia. O

Problema 111 Fie X un spatiu Hilbert i T € L (X) autoadjunct. Sa se arate ca urmatoarele
afirmatit sunt echivalente:

(i) (Tx,z) < ||Tz||” pentru orice z € X.

(i1) (0,1) C o (T).

Solutie Consideram operatorul S = 27 — id . Atunci (i) este echivalent cu

Jzf] < [|Sz]], Vo € X.

Astfel, conform Lemei [5.6.11} (i) implica
(—L,1) cp(S)=2p(T) -1,

deci (ii) are loc.
Invers, (i) implicd faptul cd (—1,1) C p(S5), deci o (S) C (—o0,—1] U [1,00). Astfel,
o (S71) ¢ [~1,1] si din Propozitia S~ <1, ceea ce implici (i). O

Problema 112 Fie T': (C'([0,1]), [[-lo) = (€' ([0,1]), |-l 0)

T (/) (:v>=/oxf(t)dt-

(i) Sa se arate ca T este liniar, continuu §i compact.
(i1) Sa se arate ca pentru orice X # 0 i orice g € C'([0,1]), problema Cauchy

h— AW =g,
h(0) =0

are solutie unica §i sa se gaseasca dspectrul operatorului T'. Sa se precizeze daca 0 este valoare
proprie pentru T'.

Solutie (1) Faptul ca T este liniar i continuu se aratd in mod obignuit. Pentru a ardta compacti-
tatea, adica pentru a arata ca T’ (DC([OJ])) este relativ compacta, folosim Teorema Arzela-Ascoli.
Din nou, marginirea este clara:

ITfI < Iflloe» ¥ € C([0,1])

In plus,

Tf(2) =T ) < [[fllc |z =yl <z =yl, Vf € Dogony, Yo,y € [0,1],

de unde rezulta echicontinuitatea familiei de functii T (DC([O,”)) .
(ii) Folosind formula variatiei constantelor, obtinem solutia unica a problemei Cauchy din
enunt in forma



Folosind aceasta pentru h = T'f, deducem ca pentru orice A # 0, operatorul 7" — \id este
bijectiv. Pe de alta parte, T nu este surjectiv pentru ca toate functiile din imaginea sa sunt
de clasd C*'. Deci o (T) = {0}. Totusi, 0 nu este valoare proprie pentru c& daci considerim

f €KerT, atunci f = (Tf) = 0. O
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Addendum — Spatii liniare reale vs.
spatii liniare complexe

Aga cum am anuntat de la inceput, vom face o scurta trecere in revista a similaritatilor si
deosebirilor dintre rezultatele principale ale acestei lucrari atunci cdnd se lucreaza cu spatii
liniare normate reale (cum am procedat pana acum) si atunci cand se considera spatii liniare
complexe (peste C).

Fie deci E = C si X spatiu liniar normat peste C. Definitia normei se modifica doar la a
doua axioma, acolo unde acum « € C. O functionala liniara pe X ia acum valori in C si toti
scalarii implicati in definitie sunt din C. Dualul si norma duala se definesc si se noteaza similar.

Este evident ca un spatiu liniar X peste C este gi un spatiu liniar peste R (notam acest spatiu
prin Xg) aga incat, atunci cind avem o normé pe un spatiu liniar complex, avem si o norma
peste spatiul liniar real corespunzitor. Intre elementele dualului unui spatiu liniar complex
(notat, cum am spus, prin X*) si elementele dualului spatiului liniar real corespunzitor, pe
care il notam Xp, avem relatiile date de rezultatul de mai jos.

Propozitia 6.5.3 Fie f : X — C liniara (peste C) siu: Xg — R, u=Re f (unde Re noteaza
partea reald a unui numar complex). Atunciu este liniara (peste R) si f (1) = u(-)—i-u(i-(+)).
Reciproc, daca u : Xg — R este liniara (peste R), atunci f : X — C definita prin f(-) =
u(-)—i-u(i-()) este liniara (peste C).
In plus, cu aceste notatii, f € X* dacd §i numai dact u € Xi gi in acest caz, ||f| . =

In varianta algebrici a Teoremei Hahn-Banach (Teorema , pentru a pastra concluzia
trebuie ca p s fie o seminorma, in timp ce varianta topologicd a aceleiasi teoreme (Teorema
ramane neschimbata pentru spatii liniare normate complexe. Legat de teoremele de
separare a multimilor convexe, notiunea de hiperplan devine:

H={re X |Ref(x)=0a},

unde f : X — C este liniara, neidentic nula gi @ € R. Cu aceasta modificare, teoremele de
separare capata o forma specifica, usor de dedus din aceste fapte.

Rezultatele din Capitolele 4 si 5 raméan practic neschimbate, iar modificarile de demonstratie
sunt usor de dedus.

Probabil cea mai semnificativa diferenta intre spatiile liniare complexe si cele reale apare
in contextul spatiilor Hilbert. Reluam definitia produsului scalar in acest context si o parte de
rezultatele subsecvente cu modificarile necesare.
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Definitia 6.5.4 Fie X spatiu liniar peste C. Se numegte produs scalar pe X o functie (-,-) :
X x X — C avind urmatoarele proprietati:

(i) (z,x) > 0 pentru orice v € X gi (x,z) =0 daca i numai daca x = 0;

(i) (ax + By, z) = a{x,2) + By, 2), pentru orice o, f € C, x,y,z € X;

(i11) (x,y) = (y,x), pentru orice x,y € X, unde Z este conjugatul numarului complex z;
Perechea (X, (-,-)) se numeste spatiu cu produs scalar.

Din nou, definitia normei si a conceptului de spatiu Hilbert sunt aceleasi. Identitatea paralel-
ogramului este neschimbata. In general, rezultatele pe care nu le reluam aici sunt neschimbate
in acest cadru, singurele modificari survenind in demonstratii si fiind relativ evidente.

Propozitia 6.5.5 Fie (X, (-,)) un spatiu liniar complex cu produs scalar. Atunci:
() 1) < ol gl pemtru orice 7.y € X; 2
(it) 4 {(x,y) = ||z +wy||” — |z — y||” +i||lx +iy||” —i||lx — iy|”, pentru orice x,y € X.

Teorema 6.5.6 (existenta elementului de cea mai buna aproximare) Fie (X, (-,-)) un
spatiu Hilbert complex si C' C X o multime nevida, convexd si inchisa. Atunci, pentru orice
x € X exista un unic element y € C' astfel incat

d(z,C) = [lz—yll.
In plus, y este caracterizat de proprietatile y € C gi Re (x — y,u — y) < 0 pentru orice u € C.

Urmatoarele modificiri semnificative apar la Teorema lui Stampacchia (Teorema |5.5.2) si
Lema Lax-Milgram (Teorema [5.5.3).

Fie (X, (-, -)) un spatiu liniar complex cu produs scalar. Considerdm o aplicatie a : X x X —
C cu urmatoarele proprietati:

- pentru orice y € X, x +— a(z,y) este liniard gi pentru orice z € X, y — a(x,y) este
liniara;

- a este continua, adica exista ¢ > 0 astfel incat pentru orice z,y € X,

la(z,9)] < cllzlyll;
- a este coerciva, adica exista a > 0 astfel incat pentru orice u € X
allul|* < Rea (u,u).
Teorema 6.5.7 (Teorema lui Stampacchia — cazul complex) Fie X spatiu Hilbert com-

plex i a o aplicatiecare satisface proprietatile de mai sus. Fie C C X nevida, inchisa i convexa.
Atunci, pentru orice x* € X* exista un unic u € C' astfel incdt

Rea (u,v —u) > Rez* (v —u), Yv e C.

Mai mult, daca a(z,y) = a(y,x) pentru orice x,y € X, u este caracterizat de proprietatile

{ ueC,
la(u,u) — Rez* (u) = minyec {3a (v,v) — Rea* (v)}.

2
Noua forma a Lemei Lax-Milgram este acum evidenta.
In ceea ce priveste rezultatele de teorie spectrals, cadrul spatiilor Hilbert complexe ofers un
cadru mult mai potrivit dezvoltarilor necesare, iar diferentele fata de cadrul descris in aceasta
lucrare sunt notabile, motiv pentru care consultarea surselor bibliografice este indicata.
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Modele de evaluari scrise

Model examen partial

Subiectul 1. Functionala Minkowski asociatd unei multimi convexe, deschise ce contine ele-
mentul 0. Definitie si demonstrarea subliniaritatii.

Subiectul 2. Fie p,q € (1,00), p < ¢. S& se arate ca ? C (% iar scufundarea canonica

Fo(eH,) = (e ,)
f@)=a

este aplicatie liniara continua. Sa se determine norma lui f.
Subiectul 3. Fie urmitoarea submultime a lui (¢, ||-]|,) :

A={z=(23),cp € | |2za| £ 1, Vn € P}.
Sa se arate ca A este convexa, inchisa, absorbanta, iar

int A= {z=(2,),p €| |2n| <1, Vn € P}.

Subiectul 4. Fie T': C ([0,2]) — C ([0, 2]) dat prin

7(f) (@)= [ 45 @, Vo€ 0.2
0
S4 se arate ca T" este bine definit si liniar. Pe C' ([0, 2]) considerdam normele

1£1ly = max [f(#)],

te(0,2]
£l = / £ ()] dt.

Sa se studieze continuitatea lui 7" atunci cdnd pe domeniu se considera ||-||, , iar pe codomeniu
se considera |||, .

Barem de notare:
1p din oficiu; Subiectul 1: 1,5p; Subiectul 2: 2,5p; Subiectul 3: 2,5p; Subiectul 4: 2,5p

Timp de lucru: 100 minute
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Model verificare scrisa

Subiectul 1. Si se enunte Teorema lui Baire (intr-una din cele doua forme) si sd se enunte si
sa se demonstreze Principiul marginirii uniforme.

Subiectul 2. Studiati convergenta slabé si convergenta slab-stelatd a vectorilor unitari din ¢*.
Barem de notare:

1p din oficiu; Subiectul 1: Baire 2p; PMU - enunt 3p; PMU - demonstratie 4p; Subiectul 2:
studiul convergentei w — 4p; studiul convergentei w* — 5p.

Timp de lucru: 50 minute
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Model evaluare finala

Subiectul 1. Conceptul de operator compact (definitie). Sa se arate cd multimea operatorilor
compacti formeaza un subspatiu liniar inchis in spatiul operatorilor liniari si continui.

Subiectul 2. Fie X un subspatiu liniar inchis al lui (C'([0,1]), [|-]|..) astfel incat toate ele-
mentele sale sunt functii de clasd C"'. Folosind operatorul T': X — C'([0,1]), T (f) = f’, si se
arate ca existd M > 0 astfel incat pentru orice f € X cu || f]|, < 1 are loc ||f'|| ., < M.

Subiectul 3. Fie (X, ||-||) un spatiu liniar normat si (x,,) un gir de elemente din X astfel incat
toti termenii se afld intr-o submultime compacta in topologia normei. Si se arate cd daca (x,,)
este slab convergent, atunci este tare convergent.

Subiectul 4. Studiati convergenta slaba a sirului vectorilor unitari in spatiile 7 (p € [1, 00)).

Subiectul 5. Pe spatiul ¢ considerim norma standard |-||, si norma ||-|| := |||, + ||| - S&
se arate cd cele doud norme sunt echivalente, (¢2,||-||,) este spatiu Hilbert, dar (¢2,]-]|) nu este
spatiu Hilbert.

Barem de notare:
1p din oficiu; Subiectul 1: 1,5p; Subiectul 2: 1,5p; Subiectul 3: 1,5p; Subiectul 4: 2,5; Subiectul
5: 2,0

Timp de lucru: 2 ore
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