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Evaluarea se desfagoara dupa procedura de mai jos.

e In timpul semestrului va avea loc evaluarea continud (EC) care va avea ponderea de 50%
din nota finala si va cuprinde doua componente:

— un examen partial (EP): in s@ptdmana 7, 8 sau 9, la seminar studentii vor sustine un
examen partial scris (cu durata de 100 de minute), iar nota obtinutd va avea ponderea
de 50% din EC; EP nu se poate reface si nu se poate sustine in sesiune; exclusiv pe
baza unor motive bine intemeiate, EP se poate sustine la o data ulterioara in timpul
semestrului;

— activitatea de seminar (AS): activitatea si calitatea raspunsurilor din timpul desfagurarii
seminarelor vor genera o noté ce va avea o pondere de 50% din EC.

e In sesiune va avea loc evaluarea finali (EF) care va avea o pondere de 50% din nota finald
si care consta dintr-o proba scrisa si in fata calculatorului de 0,54+1=1,5 ore. O conditie
necesara pentru promovare este ca nota de la EF sa fie minim 4,5. Odata ce acesta conditie
este indeplinita se va calcula nota finala, care va fi rotunjirea la cel mai apropiat numar
natural din intervalul [1, 10] a valorii
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Prefata

Scopul acestei lucrari este acela de a prezenta unele completari si dezvoltari ulterioare unui prim
curs de baza de Teoria optimizarii neliniare. Avem in vedere o aprofundare a conditiilor de
optimalitate pentru probleme cu restrictii functionale si, mai ales, descrierea catorva algoritmi
pentru aproximarea punctelor de extrem in probleme de optimizare. De asemenea, un accent
special este pus pe aspectele de ordin practic ale rezultatelor si tehnicilor prezentate. Pentru
implementarile propuse se pot folosi coduri Matlab/Octave.

Materialul prezentat are dou# parti principale. In prima dintre acestea, facem un studiu detal-
iat al conditiilor necesare si suficiente de ordinul intéi si de ordinul al doilea pentru probleme de
optimizare cu restrictii si descriem mai multe aplicatii mai putin imediate ale acestora. Motivatia
unui studiu care poate parea prea teoretic intr-un curs care are cuvantul ,practic” in titlu este
oferita de dictonul O teorie corecta este cel mai practic lucru care exista (F.W. Dorpfeld,1873).

In a doua parte, motivatd de faptul c& nu toate problemele de optimizare pot fi complet
rezolvate, din lipsa instrumentelor necesare rezolvarii unor ecuatii neliniare, studiem algoritmi de
optimizare si algoritmi de determinare a radacinilor unor functii, din nou pe baza unor fundamente
teoretice solide. Astfel, din aceasta perspectiva, practica este teorie aplicata. Un alt aspect des
intalnit, mai ales spre finalul celei de-a doua parti, este caracterul euristic al unor metode numerice
care au motivatii teoretice solide, dar nu sunt intru totul justificate aici din punct de vedere
matematic, mai ales din lipsa spatiului. Pentru aceste metode existenta teoriei "din spate" este
usor de acceptat, tocmai datorita faptului cad metodele de baza sunt complet acoperite din acest
punct de vedere.

Prin urmare, aceasta lucrare igi propune sa prezinte rezultate si tehnici deja consacrate, iar
aranjarea materialului, selectarea exemplelor ilustrative, ordonarea codurilor utilizate reprezinta
punctul de vedere al autorului asupra acestui domeniu. Monografiile indicate la bibliografie contin
multe extensii gi completari semnificative ale chestiunilor ce se regasesc in lucrarea de fata.
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Capitolul 1

Optimizare - exemple si elemente
recapitulative

1.1 Exemple de probleme practice

1.1.1 Probleme fara restrictii

Exemplul 1.1.1 Functia rezultata folosind Principiul lui Fermat pentru modelarea problemei
refractiei luminii care trece din punctul (0, a) (cu a > 0) dintr-un mediu (aer) in punctul (b, ¢) (cu
b> 0, c <0) din alt mediu (apd) este f : R — R,

fla) = \/m+ (b—x)z—i—CQ,

U1 V2

unde v; este viteza luminii in primul mediu, iar v, este viteza luminii in al doilea mediu. Aceasta
functie trebuie minimizata.

Exemplu numeric (ce va fi studiat): a = 10; (b, ¢) = (30, —40) ; v; = 299702 km/s, v, = 228849
km/s.

Exemplul 1.1.2 Modelarea problemei de mai jos conduce de asemenea la minimizarea unei
functii. Un sportiv inoata intr-un lac si se afla in larg la o distanta de 5km fata de mal. El
trebuie sa ajunga pe uscat intr-un punct aflat la 7km in lungul tarmului fata de pozitia sa in
raport cu tdrmul. Stiind c& sportivul aleargd cu 6m/s si inoatd cu 2m/s, si se determine timpul
minim in care poate ajunge la destinatie.

Exercitiul 1.1 Sa se modeleze problema de mai sus.

Exemplul 1.1.3 O bacterie are forma unei elipse de dimensiuni a,b > 0, a > b. Coeficientul de
frecare cu lichidul in care se afla este dat de
4dmpa

T=—.
In (%) -3

Ludm b =1gi p=1 (apa). Se cere determinarea lui a astfel incat 7 sa fie minim.



Exercitiul 1.2 Sa se rezolve problema de mai sus.

Exemplul 1.1.4 Un conducator al unui oras-stat italian din secolul 14 trebuie sa angajeze o
armata. Exista doua tipuri de soldati ce pot fi angajati: mercenari sau cetateni alesi prin tragere
la sorti. Fie ¢ € [0, 1] proportia de cetéteni (si, evident, 1 — ¢ proportia de mercenari). Fiecare
dintre cele doua tipuri de soldati comporta un risc. Mercenarii sunt oportunisti si pot specula
unele momente pentru a obtine profituri suplimentare, ceea ce diminueaza avutia conducatorului,
notatd cu w. Notdm cu v € [0, 1] "gradul de oportunism" al unui (fiecarui) mercenar. Pe de altd
parte, soldatii cetateni pot avea optiuni politice in favoarea sau impotriva conducatorului, ceea ce
ar putea conduce la indepartarea acestuia de la putere pe calea armelor. Daca notam cu g € [0, 1]
proportia de cetateni favorabili din punct de vedere politic conducatorului, gradul de adversitate
va fi ¢(1 — g). Pentru a stabili ce proportie din fiecare categorie angajeaza, conducatorul are de
rezolvat agadar problema
max (1 —c(1—g))(w—wv(l—2c)),
c€[0,1]
adica
max (1 —c(1—g))(1—v(l—c¢)).
c€[0,1]

Exercitiul 1.3 Sa se rezolve problema de mai sus gi sa se interpreteze rezultatele.

1.1.2 Probleme cu restrictii

Exemplul 1.1.5 (problema dietei) Fie z; cantitatea de produs de alimentatie de tipul i. Pen-
tru fiecare tip de produs costul pe unitate este ¢;. Se doreste minimizarea costului total

§ G

i

pentru asigurarea unei alimentatii potrivite. Astfel, notam cu a;; continutul de nutrient j dintr-o
unitate de produs ¢ si b; cantitatea necesara din acest nutrient. Deci avem restrictiile

Zai]‘l’i Z bj, VJ

Evident, trebuie sa avem si z; > 0 pentru orice .

Exemplul 1.1.6 Se doreste construirea unui bloc paralelipipedic avind n nivele, o addncime a
subsolului notata cu d si o inaltime a suprasolulul notata cu h. Dimensiunile amprentei la sol sunt
[ si w. Se doreste ca suprafata utild sa fie de cel putin 20000 m?, fiecare nivel si fie inalt de 3.5
m, iar dimensiunea terenului determina ca [, w sa fie sub 50 m. Din motive estetice, se doreste
ca l/w = ¢ = 1.618 (numairul de aur). Costurile de incilzire/ricire sunt 100 u.m./an/m? pentru
suprafata supraterand iar bugetul de 225000 u.m./an. Problema este aceea de a minimiza spatiul
de excavat pentru a fi indeplinite toate aceste conditii. Modeland problema, se ajunge la

min dlw



cu restrictiile

nlw > 20000
[ = pw <50
d+h=3.5n

100 (2h1 + 2hw + lw) < 225000.

Folosind aceste relatii si neglijand faptul ca n este intreg, eliminam [, n si ajungem la problema
de minimizare cu variabilele d, w, h
min dw?
cu
70000
(d+h)w® > ——
2

50
w < —

@
2 (p + 1) hw + pw? < 2250.

Exemplul 1.1.7 Avem un sistem de esafodaj cu patru fire A, B,C, D care suporta respectiv
tensiunile 200, 100, 200, 100 construit astfel:

- de un plafon sunt prinse trei fire, A, C, D, in acesta ordine, cu distantele dintre ele de 2 si 10
m;

- la capetele firelor C', D, aflate la acelasi nivel se afla o platforma de masa neglijabila;

- de aceasta platforma la 2 m de D inspre C este prins un fir B care coboara pana la acelasi
nivel cu firul A;

- la capetele firelor A, B se afla o platforma de masa neglijabila.

- pe cele doua platforme se ageaza, la mijloc, cate un corp cu greutatile x; si respectiv x,.

Problema este de a determina masa maxima ce poate fi suportata de sistem, deci trebuie
sd maximizdm (x; + x2) tindnd cont de ecuatiile de echilibru. Dacd notam cu Ty, T, Tc, Tp
tensiunile din cele patru fire, ecuatiile devin

ro=T4+Tg
1+ T =Tc+1Th
Sy = 1075
bxy + 8T = 10Tp.
Modelarea problemei conduce deci la
max (] + z2)

cu

2o =Ty + 1B

214+ Ty =To+ T

Sy = 1015

5x1 + 81Tg = 101,

Ty < 200, T < 100, Te < 200, Tp < 100.



Se observa ca tensiunile pot fi eliminate pentru ca

X
n:%:é
) T
To=2421
C=707" 3
2.%’2 T
T, =224 22
D=5 T

si se ajunge la problema
max (z1 + )

cu

o < 200

x1 <400

51 + 29 < 2000
5x1 + 4xo < 1000.

Mai mult, unele din aceste restrictii le includ pe altele (de exemplu, ultima pe penultima) pentru
ca x1,xy > 0 gi putem sa reducem problema la

max (z1 + )
cu

0 <xy <200
0 S T
o511 + 4xe < 1000.

Exercitiul 1.4 Sa se rezolve problema de mai sus.

Exemplul 1.1.8 O companie doregte sa investeascd 75000 unitdti monetare (u.m.) pentru achiz-
itionarea unor masini de tip A, B si C. O magina A costa 1500 u.m. si produce un beneficiu anual
de 315 u.m.; o magina B costa 1750 u.m. si produce un beneficiu anual de 450 u.m.; o magina C'
costa 1375 u.m. si produce un beneficiu anual de 275 u.m. Toate masinile au nevoie de intretinere
si perioade de pauza, astfel: pentru o magina A intretinerea costa 20 u.m. gi e nevoie de 34 de zile
de pauza anual, pentru o masina B intretinerea costa 27 u.m. si e nevoie de 29 de zile de pauza
anual, pentru o magind C' intretinerea costa 25 u.m. si e nevoie de 24 de zile de pauza anual.
Bugetul maxim anual pentru intretinere este de 1000 u.m., iar compania doreste ca numarul de
zile de pauza a tuturor masinilor sa nu depageasca 800 pe an. Chestiunea este cate magini de
fiecare tip e de dorit sa fie achizitionate pentru maximizarea profitului. Daca notam numarul
maginilor de ficare tip cu a, b si respectiv ¢, avem de maximizat

315a + 4500 + 275¢



cu restrictiile

1500a + 17500 + 1375¢ < 75000
20a + 27b + 25¢ < 1000
34a + 29b + 24c¢ < 800.

De asemenea, din motive evidente, trebuie sa avem a, b, c € N. Aceasta ultima restrictie schimba
complet natura problemei, plasidnd-o in categoria problemelor de optimizare cu intregi, iar in acest
curs nu ne vom ocupa de aceasta categorie de probleme.

Exercitiul 1.5 Fie A, B doua surse situate in punctele (0,1) gi (2,1) care emit aceeasi cantitate
de energie. Pe azxa Ox este plasat un receptor. Daca energia captata de receptor este invers
proportionala cu patratul distantei fata de sursa, sa se determine pozitia acestui astfel incdt raportul
dintre energia captata de la sursa A si energia captata de la sursa B sa fie mazim.

Exercitiul 1.6 Se doreste construirea unei cutii parelelipipedice cu baza patrat si fara capac cu
volumul de 100. Determinati dimensiunile unei astfel de cutii astfel incat materialul folosit sa fie

Exercitiul 1.7 O fabrica doreste sa vinda n exemplare dintr-un produs astfel incdt profitul sa
fie mazim. Cercetarile de piata arati ca la un pret de 1,5 u.m./exemplar se vand 5000 de exem-
plare, iar pentru fiecare reducere de 0,1 uw.m./ezemplar se vor vinde in plus 1000 de exemplare.
Presupunem ca exista niste costuri de start a productier de 2000 u.m., iar costul de productie al
fiecarui exemplar este 0.5 u.m. Sa se modeleze problema si sa se determine profitul mazim, pretul
de vdnzare si n.

Exercitiul 1.8 Determinati dreptunghiul cu aria cea mai mare care poate fi inclus in epigraful
functiei v — 22 si care se afla sub linia de nivel y = a, unde a > 0.

Exercitiul 1.9 Intr-o sferd dati se include cel mai mare con circular drept posibil. St se deter-
mine raportul volumelor celor doud corpuri.

1.2 Cadrul general si rezultate de existenta a solutiilor —
recapitulare

Fie U C R? o multime nevida si deschisa, f : U — R o functie i M C U o multime nevida.
Suntem interesati sa studiem problema minimizarii functiei f atunci cdnd argumentul acesteia
parcurge multimea M. Formal, vom scrie aceasta problema in forma urmatoare:

(P) min f(z), x € M.

Multimea M se va numi multimea punctelor fezabile ale problemei (P) sau multimea constran-
gerilor sau, inca, multimea restrictiilor.

Sa spunem de la inceput ca ne vom ocupa de minimizarea functiei f, dar rezultate referitoare
la maximizarea sa pot fi obtinute aplicAnd rezultatele de minimizare functiei —f in baza relatiei
max f = —min(—f). Pentru inceput, si definim notiunea de solutie asociatd problemei (P).
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Definitia 1.2.1 Spunem ca T € M este solutie locala (sau, simplu, solutie) pentru problema (P)
sau punct de minim pentru functia f pe multimea M daca exista o vecinatate V' a punctului T
astfel incat f(z) < f(x) pentru orice x € M NV,

Dacd V' = RP, se mai spune c T este solutie globald pentru problema (P) sau punct de minim
global pentru f pe M.

Sa remarcam ca ¥ € M nu este punct de minim pentru functia f pe multimea M daca si numai
daca exista un sir (z,) C M, =, — T astfel incat f(x,) < f(Z) pentru orice n.

Observatia 1.2.2 In general, vom distinge doud mari situatii pentru studiul problemei (P) : cazul
in care M = U si cazul in care M este intersectia dintre o multime inchisd a lui RP i U. In primul
caz vom spune ca problema de optimizare (P) este fara restrictii (sau constrangeri) in timp ce in al
doilea caz vorbim despre o problema cu restrictii (constrangeri). Sa mai observam ca in Definitia
daca T € int M, atunci T este solutie locald gi a problemei fara restrictii (este suficient
sa micgoram vecinatatea V' astfel incat V- C M ). Deci in cazul problemelor cu restrictii cazul
interesant (care nu se reduce la cazul unei probleme fara restrictii) este cazul in care T € Fr M.
Daca @ € int M mai spunem si ca restrictia este inactiva.

Un rol important il vor juca multimile de nivel ale unei functii. Avand o functie f : R? — R,
daca v € R,

N,f = {x € R | f(z) < v} = f (00, ]).

S& observam cd dacd v > inf,ege f(2) atunci N, f # () iar dacd f este continud atunci N, f
este inchisa.

Teorema 1.2.3 (Teorema lui Weierstrass) Daci M C RP este o multime compacta si [ :
M — R este o functie continua, atunci problema minimizarii lui f pe M si problema mazximizarii
lui f pe M au solutii globale.

Teorema 1.2.4 Fie f : RP — R o functie continua st M C RP o multime nevida si inchisa. Daca
exista v > infyep f(x) astfel incat multimea de nivel a lui f relativ la M, adica M NN, f = {x €
M | f(x) < v}, este marginita, atunci f igi atinge minimul global pe M.

Rezultatele de mai sus asigura existenta punctelor de minim in conditii de compactitate a
multimilor de nivel. Evident, marginirea inferioara a functiei este conditie necesara pentru exis-
tenta minimului, dar este clar ca marginirea multimilor de nivel nu este o astfel de conditie. De
exemplu functia f : R — R, f(z) = (z — 1)%e¢™" igi atinge minimul (global) in T = 1, valoarea
minim4 este 0, dar N, f nu este marginita pentru nicio valoare v > 0 = inf{ f(z) | = € R}.

Evident, in teorema de mai sus, daca M este marginita, atunci ipoteza este automat verificata.
Cazul interesant este acela in care M este nemarginita, situatie in care ipoteza este verificata daca
impunem functiei f o conditie de coercivitate.

Propozitia 1.2.5 Fie f : R? — R o functie i M C RP o multime nevida, inchisa si nemarginita.
Daca limgep o —oo f(x) = 00 (i.e., pentru orice (x,) C M, ||z,|| — oo are loc f(x,) — o0) atunci
multimea N, f N M este marginita pentru orice v > inf,cpr f(2).



1.3 Conditii de optimalitate — recapitulare si completari

Definitia 1.3.1 Fie M C RP o multime nevida g1 x € cl M. Un vector u € RP se numeste tangent
la multimea M in T daca exista (t,) C (0,00),t, — 0 gi (u,) — u astfel incdt pentru orice n € N,

T+ thu, € M.

Evident este suficient ca relatia de mai sus sa aiba loc pentru orice n € N de la un loc incolo
(pentru n suficient de mare).

Teorema 1.3.2 Multimea, notata T(M,T), a tuturor vectorilor tangenti la M in T este un con
inchis, numit conul tangent (in sens Bouligand) la M in T.

Propozitia 1.3.3 Daci ) # M C R si T € cl M, atunci are loc relatia T(M,z) = T(M,T).
Daca® € int M, atunci T(M,T) = RP.

Vom nota cu N(M,Z) polara lui T'(M,Zz) (i.e. N(M,z) :=T(M,Z)") si vom numi acest con
conul normal la M in .
Daca multimea M este convexa, atunci conul Bouligand are urmatoarea forma speciala.

Propozitia 1.3.4 Fie ) # M C RP conveza si T € M. Atunci
T(M,z) =clR, (M —7),

ar
N(M,Z) ={u e RP | (u,c—7) <0,Yc € M}.

Teorema 1.3.5 (Conditia necesara de ordinul I) Dacd T este solutie locala pentru problema
(P) i f este diferentiabila in T, atunci V f(T)(u) > 0 pentru orice u € T(M,T).

Observatia 1.3.6 Conditia din concluzia teoremei precedente se mai scrie, echivalent,
—-Vf(@) e N(M,7).

Observatia 1.3.7 Tindnd cont de Propozitia daca in teorema de mai sus, T € int M
(restrictie inactiva), obtinem V f(ZT)(u) > 0 pentru orice u € RP. Din liniaritatea lui V f(T),
deducem V f(T) = 0, adica Teorema lui Fermat.

Exemplul 1.3.8 (restrictii geometrice) Fie f : R? — R,

2 .1’2

f($):—331—2x2—2331x2+%+72

si multimea restrictiilor
M::{xGRQ‘ml—I—ngl, x>0, a:gzo}.

S& consideram, ca in discutia teoreticd, problema (P) a minimizarii lui f pe M.
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Functia f este continud, iar M este compactd, deci problema (P) admite cel putin o solutie
globala.

Datorita faptului ca inegalitatile ce definesc multimea M sunt liniare, avem o imagine geomet-
ricd clard a multimii (un triunghi dreptunghic cu varfurile in punctele (0,0), (0,1), (1,0)).

Daca ar exista un punct de minim 7 in interiorul lui M atunci acel punct ar fi un minim fara
restrictii (conform Observatiei [1.2.2)), deci, din Teorema lui Fermat, V f(Z) = 0. Dar

V(@) = (-1+7 — 275, -2 — 27 + 72)
si rezolvand sistemul gasim solutia T = (—%, —%) care nu apartine lui M. Deci problema nu are
solutii in int M.
Observam ca putem calcula relativ simplu conurile tangent si normal la M in punctele de pe

frontiera gi apoi sa verificim indeplinirea conditiei necesare de optimalitate: —V f(Z) € N(M,T)

(Teorema [1.3.5)).

Astfel, daca punctul T este
— pe segmentul deschis de capete (0,1), (1,0) :
T(M,Z) ={u € R?|u; +uy <0}; N(M,7) =R, {(1,1)};
— pe segmentul deschis de capete (0,0), (0,1) :
T(M,Z)={u e R?|u; >0}; N(M,7) =R, {(-1,0)};
— pe segmentul deschis de capete (0,0), (1,0) :
T(M7E) = {U < RQ | ug > O}a N(M>f) = R+{(07 _1)};
— punctul (0,1) :
T(M,Z) ={u€R?|u; +uy <0, u; >0}
N(M.,7) = {a(1,1) + b(—1,0) | a,b > 0} ;
— punctul (1,0) :
T(M,Z) ={u€R?|u; +uy <0, uyg >0}
N(M,z) ={a(1,1) +b(0,—1) | a,b > 0} ;
— punctul (0,0) :
T(M,Z) = {u € R?|u; >0, uy > 0};
N(M,z) = {a(—1,0) + b(0,—1) | a,b > 0}.

Prin calcul direct, se verifica faptul ca un singur punct satisface conditia necesara de optimal-
12

itate: T = (5, 3) . Prin urmare, conform discutiei precedente, acesta este singurul punct de minim
al problemei.

Putem, de asemenea, si ne punem problema maximului global al lui f pe M (a cdrui existenta
este asigurata de Teorema lui Weierstrass), problema echivalentd cu gasirea minimului lui —f pe
M. Repetand discutia precedenta, gasim doua puncte ce verifica conditia necesara de optimalitate
(ie. Vf(T) € N(M,7)): T = (0,0) si T = (1,0). Dar f(0,0) = 0, iar f(1,0) = =271, deci (0,0)

este punctul de maxim.



Exemplul 1.3.9 Sa calculam conurile tangente si conurile normale in diferite puncte la multimea
M C RP,

P
M = {x:(xl,xg,...,xp) ERP|z; >0, Viel,p, inzl}’

i=1
numita simplexul unitate. Aceasta multime este, evident, convexa si inchisa. Conform celor de
mai sus, pentru fiecare T € M,

T(M,7) = IR, (M — )
=cl{ueRl|Ja>0, e M, u=alxr—7)}.

Fie u din multimea din membrul drept. Este clar cd, pe de o parte, Y »_, u; = 0 iar, pe de altd
parte, dacd T; = 0, atunci u; > 0. Notdm cu [(Z) := {z clp|z= 0} . Deducem ca

p
T(M,7) C {ueRp | Zui:0§i u; >0, Vi e ](E)}.

=1

Sa demonstram incluziunea inversa. Este simplu de verificat ca multimea din dreapta este inchisa.
Fie u din aceastd multime. Daca u = 0, atunci, evident, u € T'(M,T). Dacd u # 0 atunci trebuie
sd ardtdm cd existd o > 0 cu T + au € M. Pe de o parte, faptul cd Y | (T; + ou;) = 1 este clar
pentru orice a. Daca nu exista indici ¢ cu u; < 0, atunci si faptul ca Z; + au; > 0, pentru orice
i € 1, p este evident si deci u € T'(M,T). Presupunem acum ci multimea J a indicilor pentru care
u; < 0 este nevidd. Atunci J C 1,p\ I(Z), deci T; > 0 pentru orice j € J. Alegem atunci « strict
pozitiv cu
o < min{—u;'z; | j € J}

si avem din nou ca T; + au; > 0, pentru orice i € 1, p. Prin urmare si in acest caz v € T(M,T),
deci are loc egalitatea.
In continuare, aratam ca

N(M,z) ={(a,qa,...,a) € R? | a € R}
+{veRl|v; <0, Viel(®), v,=0,i¢I(Z)}.

Pentru aceasta consideram elementele
a = (1,1,...,1), a; = —(1,0,...,0), ..., a, = —(0,0,...,1)
si observam urmétoarea scriere echivalenta a lui T'(M, T) :
T(M,z) ={u € RP|{ag,u) <0, (—ag,u) <0, (a;,u) <0, Viel(T)}.
Polara acestei multimi este

N(M,z) =  awag — Bag + Z aa; | o, By >0, Vi€ I(T)

i€I(T)



Intr-adevar, faptul ca multimea din dreapta este inclusa in conul normal este evident, iar incluzi-
unea inversa rezulta din Lema lui Farkas, intrucat:

ve NMT) < (u,v) <0,YVueT(M,T)
< Yu e R”: [(ag,u) <0, (—ag,u) <0, (a;,u) <0, Viel(T)|= (uv) <O.

Astfel, se ajunge la forma anuntata a conului normal.

Exemplul 1.3.10 (optimizare pe simplexul unitate) Fie f : R? — R convex3 si diferentia-
bild. Dacd dorim si minimizam aceasta functie pe simplexul unitate (a se vedea Exemplul ,
atunci, conform Propozitiei[1.3.15] T € M este punct de minim pentru f pe M dacd si numai daca
—Vf(x) € N(M,Z). Din forma particulard a lui N(M,T), deducem ci aceastd conditie se scrie

gj; (Z) = ¢, (constanta), Vi ¢ I(T)
SJJ; () > ¢, Viel(T).

3 * p _ : . o ni _.no np v RS

Fie nq,...,n, e N*, Y7 n; =N >0sifie f: RP — R, f(z) = —2]"25?...2,". S& minimizam

aceasta functie pe simplexul unitate din RP. Evident ca problema are solutie, f fiind continua,

iar M compacta. Cum f este nula dacd macar una dintre componentele argumentului este zero,
solutiile se vor gasi in multimea

P
{xERp|x,->0, Vi €1, p, inzl}.

i=1

Cu notatiile din Exemplul [1.3.9, aceasta inseamna I(Z) = (. Mai intai, conditia necesard de
optimalitate —V f(Z) € N(M,T), se scrie, tinand cont de expresia conului normal (Exemplul
1.3.9)

i o o v T

— f(T) = ¢, constanta, Vi € 1, p,

Z;
adica n
— = ¢/, constanta, Vi € 1, p.

i

Cum Y7 7, =1¢1> " n;=N, gisim

n; . —
_i = X 4 S 1, .
X N 1 p

Cum problema are solutie si un singur punct verifica conditia necesara, deducem ca acel punct
este solutia cautata.

Observatia 1.3.11 O alta abordare in cazul Exemplelor|1.5.8 si|1.5.10} consta in transformarea
restrictiilor geometrice in restrictii functionale si aplicarea Teoremei Karush-Kuhn-Tucker pe care
o vom reaminti intr-un capitol ulterior.
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O prima intrebare este daca reciproca Teoremei [I.3.5] este adevarata. Raspunsul este negativ.
Astfel, este suficient sd considerdm acelagi exemplul functiei f: R — R, f(z) = 2® si T = 0.

Se pot insa impune conditii suplimentare asa incit sa avem unele echivalente si cel mai impor-
tant caz este cel al functiilor convexe.

Teorema 1.3.12 Fie U C RP o multime convexa si deschisa st fie f : U — R o functie convexa
gt diferentiabila pe U. Urmatoarele afirmatic sunt echivalente:

(i) T este un minim global al lui f;

(ii) T este un minim local al lui f;

(i1i) T este punct critic al lui f (i.e. Vf(T)=0).

Aga cum se observa, in cazul functiilor convexe, conditia de ordinul I (in cazul fara constrangeri)
este necesara si suficienta pentru optimalitate.
Privitor la natura punctelor de extrem pentru o functie convexa, dam rezultatele de mai jos.

Propozitia 1.3.13 Fie M C RP o multime convexa gi fie f : M — R o functie convexa. Daca

T € M este punct de minim local pentru f pe M atunci T este punct de minim global pentru f pe
M.

Propozitia 1.3.14 Fie M C RP o multime convexa i fie f : M — R o functie convexa. Multimea
punctelor de minim ale lui f pe M este convexa. Daca, in plus, f este strict convexa, atunci aceasta
multime are cel mult un element.

In cazul cu restrictii, pentru functiile convexe conditia necesara de optimalitate de ordinul I se
scrie intr-o forma speciala si, in plus, este si conditie suficienta.

Propozitia 1.3.15 Fie U C R? o multime convezxa si deschisa si fie f : U — R o functie convexa
st diferentiabila pe U. Fie M C U convexa. Elementul @ € M este punct de minim pentru f pe M
daca §t numai daca

-V f(@) € N(M,z).

Revenind la Teoremele si[l.3.18] intarind conditiile din concluziile rezultatelor precedente,
obtinem conditii suficiente de optimalitate.
Rezultatele anuntate sunt urmatoarele.

Teorema 1.3.16 Presupunem ca | este diferentiabila in T € M i
V@) (u) >0, Vue T(M,z) \ {0}.
Atunci T este solutie locala pentru problema (P). O

Observatia 1.3.17 In Problema de mai jos, vom vedea ca se pot deduce mai multe con-
cluzii in cadrul teoremer anterioare. Deocamdata, am fost interesati doar de precizarea unei conditii
suficiente de optimalitate.

Prezentam acum o cunoscuta conditie necesara de optimalitate de ordinul al doilea, pentru
problema fara restrictii.
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Teorema 1.3.18 (Conditia necesard de ordinul al II-lea) Daci f este de clasa C?, iar T €
int M este punct de minim local pentru f, atunci V f(T) = 0 gi V2f(T) este pozitiv semidefinita
(adica V? f(T)(u,u) > 0 pentru orice u € RP).

Evident, cu o demonstratie similara, se constata ca daca T € int M este punct de maxim local
pentru f, atunci Vf(Z) = 0 si V?f(T) este negativ semidefinita (adicd V?f(T)(u,u) < 0 pentru
orice u € RP). Se poate cu usurinta observa, din rezultatul de mai sus si din demonstratia sa, ca
dacd V2 f(T) nu este nici pozitiv semidefinita nici negativ semidefinitd (caz in care spunem ci este
nedefinitd) atunci Z nu este punct de extrem.

In privinta conditiilor suficiente de ordinul al doilea, are loc urm#torul rezultat.

Teorema 1.3.19 Presupunem ca f este de clasa C*, Vf(T) =0 si
V2f(@)(u,u) >0, Yu € T(M,7) \ {0}.
Atunci T este solutie locala pentru problema (P).
In cazul farg restrictii, rezultatul de mai sus se reduce la urm#torul corolar.

Corolarul 1.3.20 Fie f de clasa C?. Daca T € int M este punct critic pentru f gi V2 f(T) este
pozitiv definita (i.e. V2f(T)(u,u) > 0 pentru orice u € R? \ {0}), atunci T este solutie locald
pentru f.

De fapt, in Teoremele [1.3.16] si [1.3.19] se obtin relatii mai tari decat simpla minimalitate.
Introducem mai intai o definitie.

Definitia 1.3.21 Fie a > 0. Spunem ca T € M este o solutie stricta locala de ordin o pentru (P)
sau punct de minim local strict de ordin v pentru f pe M daca exista €, > 0 astfel incdt pentru
orice v € M N B(Z,¢),

f@) = f@) + e -]

Observatia 1.3.22 Sa observam ca pentru functii diferentiabile notiunea de solutie stricta locala
de ordin 1 este specifici cazului cu restrictii active (adicaT € M \int M ): daca | este diferentiabila
in T € int M, atunci T nu poate fi solutie strictd locald de ordin 1. Intr-adevdr, dacd T € int M
ar fi solutie stricta locala de ordin 1, atunci, pe de o parte, V f(Z) =0 (din Teorema lui Fermat),
iar, pe de alta parte, V f(T) # 0 din definitia solutiei stricte.

O alta caracteristica importanta a unei solutii este aceea de a fi izolata, adica proprietatea ca
pe o intreaga vecindtate a sa sa nu mai existe alta solutie. Acest lucru este important din punct
de vedere practic pentru aplicarea eficienta a algoritmilor de cautare a solutiei. Au loc rezultatele
cuprinse in rezultatele de mai jos.

Teorema 1.3.23 Presupunem ca f este diferentiabila in T € M si consideram urmatoarele afir-
matii:

(1) Vf(@)(u) > 0, pentru orice uw € T(M,Z) \ {0};

(it) =V f(T) €int N (M,7);
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(111) T este solutie stricta locala de ordinul o = 1 pentru problema (P);

(iv) T este solutie izolata pentru problema (P).

Sa se arate ca (i) <= (ii) <= (i17). Daca, in plus, M este convezd gi f este continuu
diferentiabila in T, sa se arate ca (i) = (iv).
Demonstratie Aritim echivalenta primelor dou# conditii. Incepem cu implicatia (i) == (i) .
Cum V f(T) este continua si T'(M,7) NS (0,1) este compactd, folosind ipoteza, exista p > 0 astfel
incat Vf(Z)(u) > p pentru orice T'(M,z) NS (0,1). Deducem ca pentru orice u € T(M,T),

Vi@ (u) > pl|u|. Fieve D(=Vf(ZT),n) =-Vf@) +D(0,u)siuecT(M,T). Atunci existad
z € D(0,1) astfel incat v = =V f (T) + pz si avem

v(u) = (=Vf(T) + pz) (u) = =V (T) (v) + pz (u) < pllu] = pllul] =0,

deci v € N (M, 7). Deci (ii) are loc.

Demonstram implicatia (i) = (). Fie ¢ > 0 astfel incat -V f (z) + D (0,e) C N (M,7T).
Pentru orice uw € T (M, T) si orice z € D (0,¢), avem (—V f(Z) + z) (u) <0, adicd Vf(Z) (u) >
z(u), de unde, V f(Z) (u) > € ||ul| . Deci (i) are loc.

Ardtdm implicatia (i) == (i4i). Presupunem, prin reducere la absurd, ci T nu este solutie
strictd de ordin 1. Atunci, negand definitia, deducem ca existd un sir (z,) — @, (z,) C M astfel
incat pentru orice n € N*,

f(xn) < f(T) + n! |z, — ||
In virtutea acestei inegalititi,
T, # T, Vn € N*.

Cum f este diferentiabild, existd un sir de numere reale (7,) — 0 astfel incat pentru orice n € N,
flan) = F(T) + V(@) (20 = T) + Yo |20 — T

Combinand cele doua relatii, avem
n"lzn =3l > V@) (@0 = T) + Y 2 — 7,

de unde, prin impartire la numarul nenul ||z, — Z|| deducem

" >Vf(f)<u P

Cum sirul ( TZa=Z_ > este marginit, exista un subsir convergent al acestuia. Limita, notata u, a

)+%AMEW. (1.1)

llzn—2||
respectivului subgir este nenuld (chiar de norma 1) si, in plus, din faptul ca ||z, — Z|| — 0, deducem
cd u € T(M,Z). Prin urmare v € T'(M,T) \ {0} si trecand la limitd in relatia (1.1]) avem

0> Vf(T)(u),

ceea ce contrazice ipoteza.

Ardtam ca (iti) = (i). Fiew € T(M,T) \ {0}. Conform definitiei vectorului tangent, exista
(t,) C (0,00), t, — 0 si (u,) — u astfel incat pentru orice n, T + t,u, € M. Atunci, pentru n
suficient de mare,

F(@ + thun) > f(Z) + € |[thun] -
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Cum f este diferentiabild in 7, exista (5,) — 0 astfel incat
Obtinem, pentru n suficient de mare,
VI @) (un) 2 (€= Ba) llunll = 271 Jun]l -
Prin trecere la limita,
V(@) (u) =27 Jul| > 0,

adica concluzia.

In final, ardtdm c& (ii) == (iv) in ipoteza suplimentars ci M este convexd si f este
continuu diferentiabild in 7. Fie ¢ > 0 astfel incat -V f (Z) + D (0,¢) C N (M, T) . Presupunem,
prin reducere la absurd, ca existd un sir de solutii (x,) C M \ {Z} cu z, — 7. Conform unei
consecinte binecunoscute a Teoremei Hahn-Banach, pentru fiecare n existd z, cu ||z,]| = 1 si
2, (T —x,) = ||T — 2] . Fie (v,) = (=Vf (z,) — 2 'e2,). Din continuitatea diferentialei in T,
deducem ci v,, € N (M, T) pentru orice n suficient de mare. Din conditia necesara de optimalitate
deordinul I, =V f (z,) € N (M, x,). Cum M este convexd, T—z,, € T (M, z,) six,—T € T (M,T).
Atunci =V f (z,) (T — x,) < 0siv, (z, — T) <0, deci pentru n mare (v, + V[ (x,)) (T — z,) > 0.
Obtinem —2'¢z, (T — x,) > 0, de unde deducem ci —2~'¢ ||T — x,|| > 0. In mod evident, ultima
relatie reprezinta o contradictie. U

Teorema 1.3.24 Presupunem ca f este de clasa C*, Vf(T) =0 si
V(@) (u,u) >0, Yu € T(M,7) \ {0}.
Sa se arate ca T este solutie stricta locald de ordinul o = 2 pentru problema (P).

Demonstratie Ca mai sus, presupunem prin reducere la absurd cd nu are loc concluzia. Atunci,
existd (z,) — 7, (x,) C M \ {T} astfel incat pentru orice n € N*,

flea) < f@) + 07 lza — 7]

Din Teorema lui Taylor, pentru orice n € N exista ¢, pe segmentul ce uneste = cu z,, astfel incat

_ _ 1 _ _
f(xn) — f(@) = V(@) (2, —T) + §V2f(0n)($n —7,T, — T)
1
= §V2f(cn)(xn — T,y — ).
Obtinem
—1 —112 1 2 — —
n ||, — || > EV flen)(xn — T, 2, — @),
de unde, pentru finalizarea demonstratiei, impartim la ||z, — EHQ si repetam argumentele de la
implicatia (i) = (iii) de mai sus. O

Definitia 1.3.25 Consideram problema (P). Spunem ci u € RP \ {0} este directie fezabila in
x € M daca exista a > 0 astfel incit v + fu € M pentru orice 5 € [0,a]. Notam cu F (M,T)
multimea directiilor fezabile in T.
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Exercitiul 1.10 In notatiile definitiei precedente, si se arate ci:
(i) multimea F (M,T) U {0} este un con, nu neaparat inchis;
(ii) cl (F (M,z)U{0}) C T (M,T), iar incluziunea poate fi stricta;
(111) daca M este conveza, atunci cl (F (M,z)U{0}) =T (M,T).

Problema 1.11 Sa se arate urmatoarea conditie necesara de optimalitate de ordinul al doilea
pentru, problema (P) : daca f este de clasa C* §i T € M este solutie pentru (P) atunci pentru
orice u, directie fezabila in T pentru care V f (T) (u) = 0 avem V2f () (u,u) > 0.

Exercitiul 1.12 Sa se determine punctele de extrem local ale functiilor de mai jos (probleme fara
restrictii):

(i) f:R* > R, f(r1,79) = (822 — 61179 + 323)e2711372;

(ii) f:R* = R, f(xy,79) = x122™ 7725

(iii) f R = R, f(x1,20) = 2179 (22 + 22 — 4);

(iii) [ R3 = R, f(x1, 19, 73) = 223 + 23 + 22 — 429 + 873 — 5;

(iv) f:R3 = R, f(x1,29,73) = xoIn(1 + 27 + 23);

() f: R =R, f(z1, 22, 73) = T179€%3;

(vi) f:R3\ {0} = R, f(x1,22,73) = L+ + 2+ %

Exercitiul 1.13 Fie f : R?> — R. Consideram problema (P) a minimizarii lui f cu restrictiile

1 >0, 29 > 0. Stiind ca V f(0) # 0, g—gfl (0) <0 gi g—;; (0) <0 sa se arate ci 0 nu este solutie a
problemei (P).
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Capitolul 2

Elemente teoretice si practice in
optimizarea cu restrictii

2.1 Teorema Karush-Kuhn-Tucker — recapitulare

Problema generala (P) considerata anterior are restrictia x € M. De cele mai multe ori in practica
aceastd multime M a punctelor fezabile este definitd prin intermediul unor functii. Fie agadar
g:RP — R"gi h: RP — R™ functii de clasd C'. Evident, ¢ si h pot fi gandite ca fiind de forma
g = (91,92, -, gn), respectiv h = (hq, ha, ..., hy,) unde unde g; : RP - R (i € I,n) si h; : R? = R
(j € 1,m) sunt de clasa C*.

Consideram ca multimea punctelor fezabile este

M:={zxeU|g(z) <0, h(z) =0} C R”.

Se observa ca avem doud tipuri de restrictii: restrictii cu inegalitati si restrictii cu egalitati. Fie
x € M. Daci pentru un indice i € 1,n, g;(x) < 0, atunci, din continuitatea lui g, existd o intreaga
vecinatate V' a lui z astfel incat g;(y) < 0 pentru orice y € V. Aceasta face ca, in cazul in care
cercetam dacd x este solutie locald a problemei (P), restrictia ¢g; < 0 si nu influenteze efectiv
multimea punctelor u pentru care trebuie sd comparam f(z) cu f(u). De aceea, in acest caz,
spunem ca restrictia g; < 0 este inactiva in x. Astfel, ne intereseaza ca astfel de restrictii sa fie
eliminate din discutie. Pentru € M, notam multimea indicilor restrictiilor inegalitati active prin

A@) ={ieTn|g@) =0}

Pentru a reaminti conditiile necesare de optimalitate de ordinul I pentru aceasta formulare a
problemei este necesara recapitularea unor conditii numite conditii de calificare. O conditie de
calificare este orice conditie care poate fi folosita pentru a avea loc rezultatul de mai jos.

Teorema 2.1.1 (Teorema Karush-Kuhn-Tucker) Fie T € M solutie a problemei (P). Presupunem
ca are loc o conditie de calificare. Atunci exista A = (A, Ag, ..., \p) € R™ = (1, io, -y fm) € R™,
astfel incdt

V(T)+ ZAngi(f) + Zujwj(z) =0 (2.1)
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§t
X >0, \gi(T) =0, pentru orice i € 1,n. (2.2)

In principiu, conditiile de calificare trebuie si fie legate de punctul de referintd (T in cazul
nostru). De fiecare data cand nu vor fi dubii cu privire la punctul de referintd vom evita precizarea
acestuia, pentru usurarea expunerii.

Observatia 2.1.2 Doua dintre cele mai importante conditii de calificare sunt prezentate mai jos.
Prima dintre acestea se numeste conditia de liniara independenta (in T ) i se formuleaza astfel:
multimea {Vg;(T) | i € A(T)} U{Vh;(T) | j € 1,m} este liniar independenta.
A doua se numeste conditia de calificare Mangasarian-Fromovitz (in T ): multimea {Vh;(Z) |
j € 1,m} este liniar independentd si exista u € RP astfel incdt

VA(T)(u) = 0 si Vgi(T)(u) < 0, Vi € AT).

FEste usor de observat ca daca are loc conditia de liniara independenta in © € M, atunci are
loc conditia Mangasarian-Fromouitz in T. Totusi, cele doud conditii nu sunt echivalente.

Exista gi alte conditii de calificare, mai slabe, dar care sunt mai greu de verificat in practica
pentru, ca presupun, printre altele, calculul conului tangent la M in 7.

Cele doua conditii de calificare de mai sus se refera la sisteme generale de restrictii. Sa discutam
acum conditii speciale referitoare la cazuri particulare ale datelor problemei. Mai intai, precizam
faptul ca in anumite ipoteze, conditia Karush-Kuhn-Tucker este si suficienta.

Definitia 2.1.3 Spunem ca problema (P) este convexa daca U este convexa, f este convexrd pe
U, functiile g;,i € 1,n sunt conveze, iar functia h este afind.

Teorema 2.1.4 Presupunem cd problema (P) este convera. Fie T € M. Daca exista (A, pu) €
R™ x R™ astfel incat au loc relatiile (2.1) si (2.2) atunci T este solutie pentru (P) (sau minim al
lui f pe M ).

Definitia 2.1.5 Spunem ca sistemul de restrictii asociat problemei (P) este de tip conver daca
restrictiile cu inegalitati sunt exprimate prin functitc convexe, in timp ce restrictiile cu egalitati
sunt date cu functii afine, adica (gi)z‘eﬁ sunt convexe §i h este afind. In acest context, spunem
ca are loc conditia Slater daca existd u € RP astfel incat h(u) =0 si g(u) < 0.

Teorema 2.1.6 Daca sistemul de restrictii asociat problemei (P) este de tip convex, atunci
conditia Slater este o conditie de calificare.

Definitia 2.1.7 Spunem ca sistemul de restrictii asociat problemei (P) este de tip afin daca atdt
restrictitle cu inegalitati, cdt i ce restrictiile cu egalitati sunt date prin functii afine.

Sa consideram acum cazul unui sistem de restrictii de tip afin. Astfel, vom considera o matrice
A de tip n X p, o matrice B de tip m x psi b € R”, ¢ € R™. Astfel multimea M devine M =

{r € R? | Az < b, Bx = ¢}, unde relatia "<" este inteleasd ca avand loc pe componente. Deci
g(x) = Ax — b, h(z) = Bx —c.
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Teorema 2.1.8 Daca sistemul de restrictit este de tip afin, atunci este satisfacuta o conditie de
calificare, deci Teorema |2.1.1] are loc fara verificarea explicita a unei conditii de calificare.

Functia L : U x R"*™ — R,

Lz, (\ ) +ZA%9@ )+ D hihy (@)

se numegte lagrangianul problemei (P). Astfel, concluzia din relatia (2.1)) se poate scrie
V.L(T, (A 1) =0,

iar elementele (A, 1) € R x R™ se numesc multiplicatori Lagrange. Denumirea se datoreazi
faptului ca pentru prima data o astfel de metoda de a converti o problema de optimizare cu
restrictii intr-o problema fara restrictii prin intermediul unor noi nedeterminate a aparut in unele
dintre lucrarile lui Lagrange legate de probleme de calculul variatiilor. Este clar ca teorema
precedenta nu asigura unicitatea acestor multiplicatori.

Teorema asigurd conditii necesare de optimalitate pentru problema (P). Dacd in loc
de minimizare dorim sa maximizam functia obiectiv sub aceleasi restrictii, atunci, din faptul ca
max f = —min(—f), conditia necesara se scrie

~Vf(@ +Z)\ng +ZN9W

S& mai observim c4 in lipsa constrangerilor inegalititi, tinand seama de faptul c& h(z) = 0 este
totuna cu —h(z) = 0, conditia necesarad se poate scrie, atat pentru minime cat gi pentru maxime,
in forma

f(@) + Z 1;Vh;(x) = 0.

Revenind la rezultatul principal, sa observam doua lucruri. Mai intai, daca problema nu are
restrictii (de exemplu, U = M = RP), atunci relatia se reduce la conditia necesara de
optimalitate de ordinul I (Teorema lui Fermat): Vf(Z) = 0. A doua observatie este ca relatia
(2.1) nu are loc in general fard o conditie de calificare.

Exemplul 2.1.9 Fie a,b,z € RP si ¢, d € R. Rezolvam problema minimizarii normei euclidiene a
lui x cu restrictiile (a, z) < ¢, (b, z) < d. Functia obiectiv este strict convexa si coerciva, restrictiile
sunt liniare. Deci, daca multimea punctelor fexabile este nevida, problema are exact o solutie,
iar conditiile Karush-Kuhn-Tucker sunt necesare si suficiente. Deci solutia x este caracterizata de
faptul ca exista A;, Ay > 0 astfel incat

2¢ + Ma+ Ab=0

A ((a,z) —c) =0
Ao ((b,x) — d) = 0.
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Avem mai multe cazuri de luat in considerare.
Cazul 1: A\ = Ay = 0. Atunci daca ¢,d > 0, x = 0 este punct fezabil si solutie a problemei.
Cazul 2: Ay =0, Ay # 0. Atunci ecuatia (b, z) —d = 0 se scrie

<b,x — d_l)2> =0,
161l
b

.y 1 . .« s . . .
adicd x € HZIT + {b}~, iar minimalitatea normei conduce la z = #. Atunci Ay = —#. Astfel,

pentru ca = s& fie solutie a sistemului, trebuie ca d < 0 si d (a,b) < c||b||*.
Cazul 3: \; # 0, Ay = 0. Atunci, ca in cazul anterior, z = %% Avem \; =

llal**
aibg loc relatiile ¢ < 0, ¢ (a,b) < d ||a||®.
Cazul 4: \; # 0, A2 # 0. Determindm multiplicatorii folosind relatiile (a,x) = ¢, (b,z) = d si
inmultind scalar in mod corespunzator prima ecuatie. Obtinem

_ 2
llaf?

si trebuie sa

||a||2/\1 + {a,b) Ay = —2¢
(a,b) Ay + [|b]|* Ao = —2d.

Determinantul acestui sistem este ||al|* ||b]|> — (a, b)* care este nenul daci a,b nu sunt coliniari,
caz in care gasim

_2(d{a,b) — b))
lal® 1817 = {a,2)?

_2(c(ab) — dfa]?)
ol 01— (a0

1

2

Astfel,
1
Tr = —5 (/\1(1 + )\Qb) .

Pentru ca acesta si fie solutie trebuie ca d (a,b) > ¢||b]|*, ¢ {a,b) > d||a|*.

Incheiem aceasta sectiune cu cateva exercitii recapitulative.

Exercitiul 2.1 Rezolvati problema minimizarii globale a expresiei 13 + x5 — 3129 cu restrictia
2 2
x]+x5—6<0.

Exercitiul 2.2 Rezolvali problema minimizarii globale a expresiei 3 +x3—4x,—6x4 cu restrictiile
T14+ 2o 2> 7, x1 — 29 < 2.

Exercitiul 2.3 Rezolvati problema
min (2xf — 323 — 2:1:1) cu 3 + 15 < 1.
Exercitiul 2.4 Rezolvati problema

max (—x% + 119 — 21‘; 4+ + xQ) cu 2x1 + x9 < 1.
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Exercitiul 2.5 Rezolvati problema
min (31 + 22) cu 23 + 25 — 5 < 0.
Exercitiul 2.6 Rezolvati problema
min(x?+x§—14x1—6x2—7) cu 1+ 29 <2, &1+ 229 < 3.
Exercitiul 2.7 Rezolvati problema
min(xf+2(x2+1)2) cu —T1+T9=2, —x1— 29— 1<0.
Exercitiul 2.8 Rezolvati problema
min (x? + 22— 21 (30 — 1) — 25 (35 — .172)) cu o3+ 23 < 250, 2y + 39 < 16, 21 >0, 29 > 0.

Exercitiul 2.9 Fie problema min (23 + 23 — zow3 + xg) cu restrictiile t1 — x9 > 1,21 = x3 §i
x3 > 0. Determinati solutia sau solutiile problemer.

Exercitiul 2.10 Rezolvati problema
min(xf—l—xgjtxg) cuxy+ T2+ 23=0, x1+2x9+ 323 —1=0.
Exercitiul 2.11 Gasiti extremele globale ale expresiei
(21 + 22+ 23) cuxt +a3+a5=4, 23 <1.
Exercitiul 2.12 Gasiti extremele globale ale expresiei
(r172 + T23 + T173)

astfel incdat:

(i) 22 + 23 + 22 = 1;

(ii) 22+ 23+ 22 =1, 31 — 29 + 23 = 0.

Exercitiul 2.13 Fie a € R3. Sa se gaseasca valorile extreme ale produsului scalar {a,z) cu re-
strictiile JJ% + x% + x% =1, 2129 + Tox3 + 2123 = 0.

Exercitiul 2.14 Sa se gaseasca valorile extreme ale expresiei x% + x2 pe elipsa x3 + 223 = 1.

Exercitiul 2.15 Fie f : R? — R, f(zy,72) = 522 + dwywg + 23 i h : R2 — R, h(zy,29) =
3z + 2x9 + 5. Consideram problema minimizarii lui f cu restrictia h(x) = 0. Sa se arate ca
problema are solutie unica §i apoi sa se determine solutia precum si multiplicatorul Lagrange
[t asociat. Sa se arate ca apoi ca solutia determinata este minim global fara restrictii pentru
functia x* — L(x,1). Se pastreaza aceste concluzii pentru problema minimizarii lui f : R? — R,
f(z1,29) = 22 — 23 — 324 cu restrictia egalitate h(x) = 0, unde h : R? — R, h(z1,79) = 227
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Exercitiul 2.16 Fien € N* g1 a; > 0, pentru orice © € 1,n. Sa se determine minimul expresies

n

E aix?

=1

supusa la constringerea
n
E T; = C,
i=1

unde c este o constanta data. Care este maximul expresiei sub aceeasi restrictie?

Exercitiul 2.17 Sa se studieze problema minimizarii expresiei x1 + x3 + ... + x, (n > 2) pentru
X1, Lo, ..., Ty > 0 cu restrictia r1 - To - ... - ¥, = 1 i apoi sa se deduca inegalitatea mediilor.

2.2 Semnificatia practica a multiplicatorilor Lagrange

In rezolvarea problemelor de optimizare cu restrictii functionale considerate anterior, rolul multi-
plicatorilor a fost unul auxiliar. Uneori, aflarea punctelor de extrem din sistemului Karush-Kuhn-
Tucker necesita determinarea acestora, alteori nu. Totusi, determinarea efectiva a multiplicatorilor
este importanta din perspectiva unei semnificatii practice pe care o vom investiga mai jos.

Exemplul 2.2.1 (Planificare economica - 1) Trei generatoare electrice deservesc un obiectiv
pentru care trebuie sa genereze o energie totala de 952 Mw. Fiecare dintre cele trei generatoare
contribuie cu o energie x;, iar costurile specifice sunt respectiv

1+ 0.0625x1 Euro/Mw
1+ 0.012525 Euro/Mw
1+ 0.0250x3 Euro/Mw.

Dorim sa determindm cantitatea de energie care trebuie livrata de fiecare generator in parte pentru
un cost minim.
Modelarea problemei conduce la

min (z1 + 0.062527 + 25 + 0.012523 + 23 + 0.0250273)

cu restrictia r; + z2 + 3 = 952.

Este usor de vizut cd problema este convexa iar sistemul de restrictii este afin. Asadar, (xy, 22, x3)
este solutie daca si numai daca exista pu € R astfel incat

1+2-0.062521 +p =0
1+2-0.012529 +p =0
14+2-0.0250x3 4+ =10
T, 4+ 19 + 23 = 952.
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Acest sistem se scrie

01251 = -1 —p
0.02520 = -1 —p
0.05x3 =—-1—p
Ty + Ty + x3 = 952.

Obtinem p = —15, z; = 112, 25 = 560, x3 = 280. Valoarea minim4 a functiei de cost (i.e., valoarea
in acest punct) este 7616.

In continuare, diim o interpretare (care va fi pe alocuri euristicd), pe o problema abstracta, a
valorii multiplicatorilor, pentru ca apoi sa revenim la problema concreta de mai sus.

S& presupunem ci f,v : R*— R (dimensiunea 2 nu este esentiald) sunt doud functii de clasa
O si cd avem problema

min f(x,y) cuv(z,y) = c.

In ipoteza ci problema are solutie si Teorema Karush-Kuhn-Tucker este aplicabils, daca (Z,7)
este solutie a acestei probleme, exista u € R astfel incat

Vi@ y) +pVo(T,y) = 0.

In particular, obtinem ci
_ Of (= =
v

(atunci cand impartirile sunt permise) ceea ce sugereazd cd p reprezintd o cuantificare a variatiei
lui f atunci cand v variaza. Acest lucru poate fi justificat ceva mai riguros dupa cum urmeaza.
Presupunem ca variaza valoarea lui c¢. Atunci solutia problemei gi multiplicatorul i pot fi inter-
pretate ca functii de c. De asemenea, definim F'(¢) = f(Z(c),y(c)) si presupunem ci toate aceste
functii sunt diferentiabile (lucru care, in anumite ipoteze, are loc). Atunci, pe baza regulii lantului
si a faptului ca

of ov of _ ov

2 010).5(6) = —n(0) 31 (0.7 500 5(6) = () w(0). 310
F(0) = G @(e) 7o) (0) + 5 (@(0). 7))
= e) 22 (7(e), ) () u<c>§—;<f<c>,y<c>>y'<c>

= —(0) (G ) + 5 w0 7T @)
Dar v(Z(¢),y(c)) = ¢, prin derivare, conduce la

S0 TET) + 5 @ T (€)= 1



Prin urmare,

adica ceea ce am intuit anterior.

Revenind la problema concreta discutata, daca sarcina de alimentare totala creste cu o unitate,
atunci, cum —pu = 15, functia obiectiv isi cregte valoarea miniméa cu aproximativ 15 Euro (conform
Teoremei lui Lagrange). Din acest motiv, valorile multiplicatorilor in astfel de probleme se numesc
"shadow prices" in teoria economica.

Exemplul 2.2.2 (Planificare economica - 2) O mica fabricd produce doud tipuri din acelasi
produs (de exemplu, chipsuri de cartofi). Pentru fiecare sortiment sunt necesare trei operatiuni
principale: tdierea (felierea), prajirea, impachetarea. Urmatorul tabel prezintd minutele necesare
pentru procesarea unui kilogram din fiecare sortiment.

taiere | prajire | impachetare
tipul 1 2 4 4
tipul 2 4 ) 2

Presupunem ca pentru un ciclu de productie, masinile care fac cele trei operatiuni au autonomii
de 345, 480 si respectiv 330 de minute. Stiind ca profitul este de 2 Euro si respectiv 1,5 Euro per
fiecare kilogram din cele doua sortimente, sa se determine cate kilograme din fiecare sortiment
trebuie produse in fiecare ciclu pentru maximizarea profitului.

Modelam matematic acest enunt si obtinem problema de optimizare

3
max (235 + §y) cu 2z + 4y < 345,4x + 5y < 480, 4z + 2y < 330,
ceea ce este echivalent cu determinarea solutiilor problemei de minimizare
) 3
min (—2x — §y) cu 2z + 4y < 345,42 + Sy < 480, 4x + 2y < 330.

Problema este convexa, iar multimile de nivel relativ la multimea punctelor fezabile sunt compacte,
deci problema are solutie globald. Sistemul de restrictii este afin, deci putem scrie: (z,y) € M
este solutie a problemei daca si numai daca exista «a, 5,y > 0 astfel incat

<—2, —g) Fa(2,4) 4 8(4,5) +7(4,2) = (0,0)

a2e+4y—345)=0
B (4x + by — 480) =0
v (42 + 2y — 330) = 0
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adica
20+ 48 + 4y =2

do+ 5642y =

3

2
a(2x +4y —345) =0
B (4x + 5y —480) =0
v (4x + 2y — 330) =0
a,B,7v>0
2z + 4y < 345
4z + by < 480
4z 4 2y < 330.

Consideram mai multe cazuri.

1. Situatia a = 8 = v = 0 este imposibila (de exemplu, pe baza primei ecuatii).

2. Pe baza primelor doua ecuatii deducem ca si situatia in care doi dintre acesti multiplicatori
sunt nuli este imposibila.

3. Daca toti multiplicatorii sunt nenuli, obtinem din ecuatiile 3,4, 5, un sistem incompatibil.

4. Daca o = 0, 8, # 0 obtinem

b= %;’y: é;xz %;yzm
Aceste valori verifica toate ecuatiile si inecuatiile sistemului de mai sus, deci (%, 50) este solutie
a problemei. Observam ci valoarea functiei obiectiv pentru problema initiald (de maxim) in acest
punct este 190 (deci valoarea profitului este de 190 de Euro).

5. Daca 8 = 0,«,y # 0 obtinem valorile z = %, y = 60 care nu este punct fezabil pentru ca
nu satisface a doua restrictie.

6. Daca v = 0,a, # 0 obtinem o valoare negativa pentru «, deci nu avem solutie in acest
caz.

Prin urmare, unica solutie a problemei este x = %, y = 50. Pentru aceasta solutie, multipli-
catorii corespunzatori celor trei restrictii sunt (0, é, %) .

Observatii de felul celei de dupa Problema 1 relativ la shadow prices sunt valabile gi pentru
probleme cu mai multe restrictii. Astfel, multiplicatorii « = 0, 3 = é, v = % corespunzatori solutiei
(%,50) reprezintd (aproximativ) valorile cu care se modificd functia obiectiv (in particular si
profitul) dacd de modificd cu o unitate valoarea din dreapta restrictiilor respective. Astfel, daca
magina de taiere isi creste timpul de functionare cu un minut, valoarea profitului nu se modifica.
Daca magina de prajire isi creste timpul de functionare cu un minut, valoarea profitului creste
cu % ~ 0,17 Euro (—( < 0, deci scade functia de minimizat, adica creste cea de maximizat), iar
magina de impachetare isi creste timpul de functionare cu un minut, valoarea profitului creste cu
1

3 ~ 0,34 Euro. Deci, in principiu, fabricantul va fi interesat sa creasca in primul rand timpul de

functionare al acestei magini.

Exemplul 2.2.3 Fie problema maximizarii expresiei 2xy + 3y cu restrictiile 4z +y = 10, z,y > 0.
Se verificd faptul c& punctul de maxim este (271, 8), valoarea maxima este 32, iar multiplicatorul
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asociat restrictiei egalitate (singura activd) este p = 4. Deci, dacd se inlocuieste 10 cu 11 in
formularea problemei ar trebui ca valoarea maxima sa fie aproximativ 32 + 4 = 36. Se constata
prin calcul direct ca de fapt aceasta valoare este 36.125.

Exercitiul 2.18 Determinati dimensiunile unei cutii de arie totala minima avand volumul v > 0.
Interpretatt valoarea multiplicatorului asociat restrictier in punctul solutie.

Exercitiul 2.19 Determinatli dimensiunile unui vas cilindric care are volumul v > 0 i pentru
care aria este minima. Dati o interpretare valorii multiplicatorulut asociat restrictiei in punctul
solutie.

2.3 O selectie de probleme

In aceasts sectiune prezentim o selectie de probleme care sunt ivite din chestiuni aplicative si care
pot fi tratate cu metodele studiate pana in acest moment.
Problema 2.20 Se da un elipsoid de ecuatie

1'2 y2 2,2

Stmt a1

unde a,b,c > 0. Sa se determine paralelipipedul de volum mazim care poate fi inlus in interiorul
geometric al elipsoidului precum si raportul volumelor celor doua corpuri.

Solutie Notam cu 2z, 2y, 2z laturile paralelipipedului. Problema poate fi formalizata astfel:

max 8xyz
cu restrictiile
2 2 2
Yy
; + b_2 + 6_2 <1,
x7 y7 Z > 0

Evident, problema are solutie, iar dacd (z,y,z) e solutie, z,y,z > 0. De asemenea, Teorema
Karush-Kuhn-Tucker este aplicabild, deci dacd (x,y,z) e solutie, cu notatiile evidente, existd
A > 0 astfel incat

—Vf(x,y,2)+ AVg(z,y,2z) =0.

Avem 9 5 9
x Y z
8yz = /\E’ 8rz = )\ﬁ’ 8xry = /\6—2.
Inmultind doud cate doud ecuatiile deducem
1 1 1
=A—y=A—;0=A—.
: 4ab’ Y 4ac’ . 4bc
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Este clar ca restrictia este activa in punctul solutie (altfel, gradientul ar trebui sa fie zero in acest
punct, ceea ce atrage faptul ca avem coordonate nule), deci

B 4abc

A :
V3
adica
a b c
rT=—y=—;2=—.
VBT
Raportul volumelor este
Vo, 83 2
Ve 33 (4m) V3r’
adica aproximativ 0, 3675. U

Problema 2.21 Minimizarea unei energii de tip Coulomb. Consideram N puncte in R3. Acestea
determina C3% triunghiuri (posibil genenerate) si deci 27'N (N — 1) (N — 2) unghiuri, notate 0;.
Functie de energie locala care trebuie minimizata are forma

By {N(]\;—l)

unde Fy suma tuturor cos0;. Deci problema este de a maximiza global aceasta suma. Sa se rezolve
aceasta problema pentru cazurile N =3 si N = 4.

+FN:|7

Solutie Pentru N = 3, trebuie determinate solutiile globale ale problemei
max (cos 0y + cos 0y + cos 03)

cu restrictiile 6; + 0, + 03 = 7, 6; > 0, i € 1,3. Evident, problema are solutie. Daca (6, 0y, 05)
este solutie, atunci toate coordonatele sunt strict pozitive. Intr-adevir, de exemplu 3 cos g = %,
iar daca #; = 0, atunci cosf; + cosfy + cosf3 = 1 + cos by + cos (m — 03) = 1. Este aplicabila
Teorema Karush-Kuhn-Tucker si facand calculele obtinem ca pentru solutie toate sinusurile sunt
egale. Daca un unghi, de exemplu 6y, ar fi mai mare sau egal decat 7/2, at cos 0] +cos 0y +cos 05 <
cos By 4 cos B3 < /2, ceea ce nu e posibil pentru o solutie globald. Deci toate unghiurile sunt egale
cu 7/3. Deci tringhiul trebuie si fie echilateral.

Pentru cazul N = 4, bazandu-ne pe cazul deja studiat, deducem ca configuratia optimala este
un tetraedru regulat. Este de notat si faptul ca pentru N > 5 problema nu este complet rezolvata

inca. O

Problema 2.22 (Metoda celor mai mici patrate - un caz neliniar) Metoda celor mai mici pa-
trate consta in a determina valorile optimale ale parametrilor unui model astfel incdt acesta sa se
potriveasca cdat mai bine unor date masurate. Astfel sa presupunem ca avem doud seturi de date
(Ti)ictm 8% (Yi)sern, unde n € N\ {0} si cd este natural sa ne gandim ca ele sunt legate printr-o
relatie patratica de forma y = a; + asx + asx?, unde ai, a, as € R. Dorim atunci sa determinam
ai, as, as care minimizeaza f : R® — R,

n

f(a) = Z (yi — (a1 + asz; + CL3.CIZ'?>)2.
i=1

Sa se studieze aceasta problema.
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Solutie Daca notam matricea

1 x 22
¥ — 1 2y 22
1 =z, 22
atunci pentru orice a € R? avem f(a) = || Xa' —y|°, unde y = (y1,...,yn)". Astfel, f este

compunerea dintre patratul normei si functia afind, notatd ¢, a — Xa' — y. Evident, f este de
clasa C* si
Vi@ (w) = V[ (¢ (a) (Vh(a) (u) = 2(Xa' —y, Xu') = 2(X" (Xa' —y) ,u)
=2(a, X'Xu") —2(y,Xu"), Yu e R®.
Apoi,
V2f (a) (u,v) = 2 <U,XtXut> , Yu,v € R3.
Astfel,
V2 f (a) (u,u) = 2 (u, X Xu') = 2(Xu', Xu") = HXutH2 >0, Yu € R,

deci f este convexa. Cum problema este fara restrictii iar f este convexa, solutiile sunt punctulele
critice al gradientului, adicd punctele a pentru care X' (Xa' —y) = 0, adicad X' Xa' = X'y.

De fapt,
n n 2
. n > it x; > it xé
n n n

XX = Zflzl :E; Zglzl x% Zﬁfl x;il

D1 Ti 2T D T
o . 1y . . Y —1

Dacd X'X este inversabild, atunci solutia este unica: o' = (X'X)" X'y. O

Problema 2.23 (Minimizarea unei energii electrostatice) Fie n > 2 un numar natural. Notam
cu D multimea elementelor din R™ cu toate coordonatele distincte gi definim f : D — R prin

fa) = et = 3 (-,

1<i<j<n

care modeleaza un tip de energie electrostatica a unui sistem.

(i) Sa se arate ca f igi atinge minimul global pe D.

(ii) Fie a € D un punct de minim global al lui f pe D. Notam cu H functia polinomiala
t— 11", (t —a;). Sa se arate ca

H" (a;) — 4a;H' (a;) =0, Vi € 1,n

St
H' — 4tH = —4nH.

(11i) Sa se precizeze o modalitate de determinare a punctelor de minim global.
(v) Particularizali pentrun =2 gin = 3.
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Solutie (i) Multimea D este deschisd R", fiind intersectia deschisilor {z € R" | z; # z;} cu 1 <
i < j < n. Frontiera lui D este formata din cele 2~ 'n (n — 1) hiperplane inchise de ecuatii z; = z;
cul <i1<j5<n.

Dacid = € D si ||z]| — oo, este clar cd f(z) — oco. Dacd x € D ¢i © — y € FrD din nou,
f (z) — o00. Deci, a minimiza pe f pe D revine la a minimiza pe f pe o multime de forma

{x € R" | max|z;| <7, min |z; —x;] > 6} ,
i€ln 1<i<j<n
unde r,e > 0. Cum aceasta este compacta si f este continua, deducem ca f isi atinge minimul
global pe D. Observam de asemenea cd dacd a = (aq, ..., a, ) este un astfel de punct atunci orice alt
punct avand aceleasi coordonate dar in alta ordene este minim globla la rdndul sau. Deci odata
cu un minim avem de fapt n! minime.
(ii) Pentru ¢ € 1, n, notam
Qi) =[] (t—ay.
i
Este clar ci pentru i € 1,n, H' (a;) = Q; (a;) , iar derivarea relatiei H (t) = (t — a;) Q; (t) conduce
la
H (1) =2Q; (1) + QF (1) (t — ai),
deci H” (a;) = 2Q)’ (a;) . Derivand @); avem

Q=3 T t-a=S"2Y wsa, jetn\ it

t—a
i kikA] i i

deci
1

ai—aj'

Q; (a;) = Q; (a;) )
J#i
Teorema lui Fermat pentru a, conduce la

1
Qai—z =0, Vieln.

T
Combinand toate aceste relatii gasim
H” (al) — 4aiH' (CLZ) = O, Vi € 1,_71

Pentru a justifica urmétoare relatie, constatam ca functiile polinomiale H” — 4tH' si H sunt de
grad n gi se anuleaza in (a;) . Asadar, existd o constantd reald c astfel incat H” — 4tH' = cH,

i€ln
iar identificarea coeficientilor lui t" duce la ¢ = —4n.
(iii) Se observa céa polinomul H este caracterizat de relatia H” — 4tH' = —4nH. Daca scriem

H (t) = t" + ¢, 1t" 1 + ... + 1t + ¢p, atunci relatia de mai sus permite determinarea coeficientilor
lui H. Apoi, rezolvarea ecuatiei H (t) = 0, da cele n componente ale solutiei a. Asadar problema
are n! solutii ce se obtin de maniera indicata.

(iv) Pentru n = 2, gésim H () = t* — 4~! care se anuleaza in 27! i —27'. Deci minimele sunt
(271 —27Y) gi (—271,271) | iar valoarea minimé a lui f este 271
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Pentru n = 3, H (t) = t> — 3 - 47t care se anuleaza in 0 si —27'v/3 5i —27'v/3. Deci minimele
sunt tripletele obtinute prin permutarea acestor numere. Valoarea minimi a lui f este 271 -3 —

In(3-471-V/3). O

Problema 2.24 (Minimizarea unei energii intr-un volum dat) O forma de energie a unei particule
intr-un paralelipiped de laturi a,b,c > 0 are forma

1 1 1
E(a,b,c):C’(E—i-b—Q%-g),

unde C' este o constanta (definitd pe baza constantei lui Plank si a masei particulei). Sa se
determine, folosind Teorema Karush-Kuhn-Tucker, paralelipipedul de volum fixat v > 0 care
minimizeazd aceastd energie. Apoi, sa se verifice ca functia v — inf {F (a,b,c) | abc = v} este
derivabila g1 sa se comenteze legatura dintre derivata acestei functii st valoarea multiplicatorulus
Lagrange al problemei.

Solutie Folosind metoda obignuita se obtine solutia (v, /v, ¢/v) , deci cubul de volum v. Multipli-
catorul este . = 2Cv™3. Apoi, functia v — inf {E (a,b, ¢) | abc = v}, notaté ¢ este ¢ (v) = 203,
este derivabild i ¢’ (v) = —pu, adica rezultatul agteptat, avand in vederew semnificatia practica a
multiplicatorilor. O

Problema 2.25 Se infasoara o cutie paralelipipedica cu o panglica de lungime ¢ > 0. Se trece
panglica de cdte doua ori pe doua dintre fetele paralelipipedului si de 4 ori pe celelalte doua. Sa
se determine cutia de volum maximal care poate fi infasurata in acest fel. Studiati de asemenea
stabilitatea valorii optimale in raport cu data £.

Solutie Cu notatiile evidente, avem de maximizat abc cu restrictiile 2a + 2b + 4¢c < /, a,b,c > 0.
Ultimele restrictii pot fi considerate inactive si din nou discutia este cea obisnuita. Se obtine

solutia
I
(av b7 C) - <67 67 E) )

si = 1447102, Valoarea optimald este 43271¢3. Constatdm si aici legitura dintre derivata acestei
functii si . O

Problema 2.26 Se considera tetraedrele de baza un triunghi fixat si de inaltime fixata. Sa se
determine, daca exista tetraedrele de arie laterala minima.

Solutie Notam triunghiul de la baza cu ABC si inaltimea cu h > 0. Notam de asemenea cu a, b, ¢
laturile triunghiului ABC, cu H piciorul indltimii pe baza ABC' si cu hy, hs, hs distantele de la H
la a, b, c, respectiv. Problema se scrie ca minimizarea lui

ay/h?+ h3 4+ by/h? + k% + c\/h? + h3
v v v

cu restrictia
ah1 —|— bhg —f- Chg = 0
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O analiza de tipul celor deja utilizate arata ca problema are solutie si ca solutia satisface h; =
hs = hs. Deci piramida optima este cea in care varful se proiecteaza in centrul cercului inscris
bazei.

De altfel, problema poate fi formulata cu un convex compact C' ca baza in locul unui triunghi,
iar in acest caz general se stie ca exista un unic punct in C care realizeaza minimul cerut, insa
determinarea si caracterizarea acestuia reprezinta o problema deschisa. 0

Problema 2.27 In spatiul afin euclidian de dimensiune 3 cu reperul (01, j, k) consideram tetrae-
dre de tip OABC, unde A, B,C se afla pe cele trei axe avind coordonata menuld strict pozitiva.
Fie P = (a,b,c) un punct cu toate coordonatele strict pozitive.

(i) Sa se arate ca patratul ariei triunghiului ABC' este egal cu suma patratelor ariilor triunghi-
urilor OAB, OAC, OBC.

(11) Construim triunghiuri ABC' care contin acest punct in interior. Consideram problema de
determinarii triunghiului de arie minima. Sa se arate ca problema are solutie, sa se determine
teoretic solutia gi sa se calculeze in cazurile (a,b,c) = (1,1,1) gi (a,b,c) = (1,4,6).

Solutie Fie A = (u,0,0), B = (0,v,0), C = (0,0,w) cu u,v,w > 0. Planul ABC' are ecuatia

x z
S A Y
u v w
Fie €2 proiectia lui O pe acest plan. Atunci
1
09] =
ErEeh

Atunci, volumul tetraedrului OABC este

uvw
V - 3_1./4,430 |OQ| = T

Deci

1 1 1 1
AABczﬁuvw @+ﬁ+ﬁ

2 2 2
Aue)’ = (5) + () +(F)
adica suma patratelor ariilor triunghiurilor OAB, OAC, OBC.
(ii) Conform punctului anterior problema de minimizare se poate scrie sub forma minimizarii

functiei f: R3 — R, f (u,v,w) = u*v? + v?w? + v*w? cu restrictiile

a by

uoovw

u>0,v>0w>0.

deci

Observam ci daca (u, v, w) satisface restrictiile, atunci u > a, v > b, w > ¢, deci

f (u,v,w) > min (az, b2, 02) (u2 + 0% + w2) ,
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astfel conditia de coercivitate este satisfacuta. Deci problema admite solutie globala.
Evident, avem doar o singura restrictie activa, h (u,v,w) = 0, unde h : R® — R,

b
h(u,v,w)z%—i—;—i—%—l.

Este clar ca are loc conditia de liniara independenta in toate punctele fezabile. Problema nu e
convexd, deci pentru o solutie (u,v,w) exista A > 0 astfel incat

Vi (u,v,w)+ AVh (u,v,w) = 0.

Se obtine sistemul

2v (u2+w2) —A—==0
2w (u2 + 02) —A— =0.
w
Putem scrie .
20> (v2 + w2) = )\g, 202 (u2 + w2) = \—, 2uw? (u2 + 212) = )\E,
u v w
iar prin adunare, pentru ca h (u, v, w) = 0 obtinem 4f (u,v,w) = A. Rescriem sistemul astfel:

U (u2 + 0% + w2) =2a (u2v2 + utw? + v2w2)
v (u2 + 0% + w2) =2b (u21)2 + utw? + U2w2)

w (u2 + 0% + w2) = 2c (u2v2 + w?w? + v? 2) .

Dar u # 2a, v # 2b, w # 2¢, deci

2a
w?v? 4+ vPw? = ———v’w?
u— 2a
2b
viw? + u? = ulw?
v—2b
2c
w?v? + ww? = v2u?.
w — 2¢
Scazand primele doua ecuatii gasim
2a 2b
Ww? — 2wt = 2,2 u2w2,
u — 2a v—2b

de unde

care se reduce la
u(u—2a)=wv(v—2b).
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Astfel, gasim
u(u—2a)=v(v—2b) =w(w—2).

Notam cu ¢t > 0 aceasta valoare comuna si avem
u=a+Vt+a?=b+vVt+b=c+ Vt+ci
Cum h (u,v,w) =0, t > 0 este solutie a ecuatiei

a b c
+ + =1
a+Vt+a? b+ t+ b2 c+t+c?

Este usor de vazut ca aceasta ecuatie are o singura radacina strict pozitiva. Deci determinarea
solutiei problemei depinde de determinarea acestei radacini.

Evident, pentru (a,b,c) = (1,1,1), se observa cd t = 3 este radacina cautatd siu =v =w =3
este solutia problemei.

Pentru (a, b, c) = (1,4, 6) trebuie gdsita radacina ¢ cu aproximatie (a se Exercitiul . O

Problema 2.28 Demonstrarea Teoremei fundamentale a algebrei (Orice polinom cu coeficienti
complecsi admite o radacing complexa) folosind metodele Teoriei optimizarii.

Solutie Fie
P(z) =apz" + apn_12p-1+ ... + a1z + ay,
unde n € N\ {0},a; € C (i € 1,n), a, # 0.
Observam ci nu se pierde din generalitate daca presupunem coeficientii reali: polinomul Q(z) =

P(z)P(Zz) are coeficienti reali si dacd z* este o raddcind a sa, atunci z* sau z* este radacind pentru
P.

Consideram functia
2
f(z)=1P(2)[".
Evident, f este o functie continua. Apoi, f este coerciva, adica lim.|_. f(2) = 400, lucru care
se observa din scrierea
0 2 n—1 2
k n k
F) =1zt = (anl - 2" =D lal - 121" )
k=0 k=0
Aceasta conditie de coercivitate, impreuna cu continuitatea asigura faptul ca f este marginita

inferior gi isi atinge marginea inferioara: exista z* such that f(z*) = infc f. Acum este suficient
sa aratam ca f(z*) = 0. Fie polinomul

R(z) = P(z* + 2),
la rdndul sau un polinom de grad n,

R(z) =byz" + ... + byz + by, b, # 0.
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Trebuie sa aratam ca 0 este radacina a acestui polinom, adica by = 0. Presupunem ca nu este cazul
i notdm cu s primul numar natural nenul pentru care b, # 0, deci R(z) = by + bsz® + ... + b, 2".
Pentru fiecare 0 € [0, 27). consideram functia ¢y : R — R,

2

Y

wo(t) = |R(te"”)

adici functia f evaluatd in lungul dreptei care trece prin z* avand directia . Cateva calcule
simple arata ca putem scrie

wo(t) = |bo| + 2t° Re(bsboe™®) + ot*).

In plus, stim c& pentru orice 6 € [0,27), t = 0 este punct de minim pentru gy, deci, in particular,
©}(0) = 0, adici s > 2. De asemenca, | (0) = 0, pentru k € T, s — 1 si 5 (0) = 25! Re(b,boe™*?).
Din conditiile de optimalitate cunoscute, trebuie ca primul ordin k£ pentru care gpék)(O) # 0 sa fie
par si go(k)(O) > 0. Aceasta inseamni c& s este par si ci Re(bsbpe??) > 0 pentru orice 6 € [0, 27).

Cum b,by # 0, putem scrie acest numér sub forma u + iv cu u,v € R si u? +v? # 0. Atunci

Re(bsboe™?) = Re [(u + iv)(cos s + i sin s0)]
= ucos st — vsin s = Vu? + v2cos(sb + p),

unde p este argumentul lui u + iv. Evident, atunci cand € variazd in intervalul [0, 27), aceastd
expresie ia toate valorile dintre —Vu2 + 2 si Vu? 4+ 02, deci nu este mereu pozitiva, ceea ce

reprezinta o contradictie. Presupunerea facuta este deci falsa, ceea ce inseamna ca by = 0, adica
P(z*) = 0. O

Problema 2.29 Fien € N\{0} gi (o)
mazTimizZarii expresiel

T » B numere reale strict pozitive. Sa se rezolve problema

H (Iz —+ CYZ')
i€ln

cu restrictitle x; > 0 pentru orice i € 1,n i

2.4 Un exemplu, doua intrebari
Sa consideram urmatoarea problema de optimizare cu restrictii.
Exercitiul 2.30 Sa se determine minimul global al expresiei

(14 2o+ 13) cuat+ai+axi=4, v3>1.

Se parcurg urmatorii pasi:
I se aratd ca exista solutie (Teorema lui Weierstrass);
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11. se arata ca are loc conditia de liniara independenta in toate punctele fezabile studiind separat
cazul in care restrictia inegalitate este activa, respectiv inactiva,
1I1. se aplica Teorema Krush-Kuhn-Tucker i se determina punctele care sunt potentiale solutit,

. o R .. . . . A o 2 2 2 o
tar odata cu ele, multiplicatoritc Lagrange asociati, obtindndu-se xr = 75 f f) cu A = 0,
:——,x—(\/;,\/;>cu/\:1— %,u:—%@,x:(—\/» \/;> cu A =1+

1
H= \/g
1V. se determina solutia globala, v = (—\/g, —\/g, 1).

Studiind acesti pasi si calculele implicate, ne punem urmatoarele intrebari:

- este imperios necesara etapa (relativ dificila din punct de vedere tehnic) a verificarii unei
conditii de calificare?

- putem preciza natura punctelor care satisfac Teorema Krush-Kuhn-Tucker, dar nu sunt min-
ime globale?

In continuare, incercam sa dam, pe rand, un raspuns acestor chestiuni.

2.5 Conditiile Fritz John

Aga cum am v#zut, pentru problema (P) cu restrictii functionale, avem conditiile de optimalitate
date de Teorema Karush-Kuhn-Tucker (Teorema [2.1.1]) care pentru aplicare necesita verificarea
unei conditii de calificare. In multe carti (cu profil mai cu seams ingineresc) aceasti teoremi este
aplicata fara verificarea unei asemenea conditii. Evident, acest lucru este gresit, dar exista unele
motive, pe care le discutam mai jos, pentru care o asemenea abordare conduce totusi, in multe
situatii, la rezultate corecte.

Prezentam deci unele conditii de optimalitate, numite conditiile Fritz John, in care functia
obiectiv si functiile ce definesc restrictiile sunt implicate nediferentiat. Aceste conditii sunt apropi-
ate ca forma de conditiile Karush-Kuhn-Tucker dar difera printr-un aspect care se dovedeste es-
ential in determinarea punctelor de extrem.

Rezultatul de mai jos referd la conditii necesare de optimalitate pentru problema (P) cu re-
strictii functionale fara nicio ipoteza in plus in afara cadrului general precizat mai sus. Aceste
conditii au fost obtinute de catre Fritz John in 1948, motiv pentru care poartd numele acestui
matematician.

Teorema 2.5.1 Fie T € M solutie a problemei (P). Atunci exista A\g € R, Ao > 0, A =
(A, A2y oo M) € R o= (g, ploy ooy ) € R™, cu proprietatea ci Ng + ||A|| + [|u]] # O astfel
incdt

AV f(T +2Avg, +Zu]Vh

$t
Xi >0, \gi(T) =0, pentru orice i € 1,n.

34



Demonstratie Fie § > 0 astfel incat D(z,d) C U si pentru orice x € M N D(7,9), f(7) < f(x).
Pentru fiecare k € N* consideram functia ¢y : D(Z,d) — R data prin

oule) = Flx) + 5 3 (6 @)+ & D (hy(a))? + 5l — 7P

=1 7=1

unde g;" (z) = max{g;(z),0}. Evident, ¢}, isi atinge minimul pe D(Z,d) si notdm cu x;, un astfel
de punct de minim. De asemenea,

n

k )2 k 1 _ _ _

erle) = Flon) + 5 Y (0 (@) + 5 D (hi(ww))” + 5 ok — 7 < ou(@) = £(2).
i=1 7j=1

Din faptul cd (zx) este un gir marginit, iar f este continud pe D(Z,d), deducem ca (f(zy)) este

un sir marginit. Facand & — oo in relatia de mai sus, obtinem

n

lim " (g (24))" = 0

k—oo
i=1

klim (h;(z1))* = 0.
j=1

Tot marginirea lui (xy) asigura faptul cd putem extrage un subsir convergent al acestui gir. Fara
a mai modifica indicii, putem scrie x, — z* € D(T,0), iar relatiile anterioare asigura faptul ca
x* € M. Mai mult, inegalitatea de mai sus ne permite sa scriem

Flan) + 3 e — TP < 72,

de unde, prin trecere la limita,

F@) + 5 e =7 < S@)

Dar, pe de alta parte, f(Z) < f(z*), deci ||z* — || = 0, adicd 2* = Z. Prin urmare, x;, — 7.

O observatie esentiald este ca ¢y este diferentiabild intrucat functiile (scalare) care ar putea
pune probleme, i.e., g; (), sunt ridicate la patrat si V (gf())2 () = 2¢;(z)Vgi(z). De fapt,
(g (x))2 este compunerea dintre functia scalari derivabild ¢ — (¢7)* si functia g;.

Cum zj; este minim pentru ¢ pe D(T,d) si pentru k suficient de mare x; se afla in interiorul
bilei D(Z,¢), concluziondm ca pentru acele numere k putem aplica Teorema lui Fermat, adica

Vgok(ask) =0.

Punénd aceste lucruri impreuna, putem scrie

Vi(e) + kY g5 (@) Vgilar) + k> hi(ae) Vhi(e) + a2, — F =0, (2.3)

i=1 j=1
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pentru orice k suficient de mare. Notdm pentrui € 1,n, j € 1,m, of = kg (zx), B} = kh;(zy) si
k k
= \/1 +>0, af) +2 0 (BZ’“) . Este clar cd 7" > 0 si notam \j == -5, A} == of, pff := f—i

Se observa ca .
() +Z A3 (W) =1,
=1 7j=1

deci sirurile (A§), (Af), (45) (i € I,n, j € 1,m) sunt marginite. Prin urmare, vor exista subsiruri
(indexate la fel) convergente in R la nigte scalari pe care ii notam

AO) )‘19 AQ) tety >\TL7 K1, 2, vy tim

§i care nu pot fi simultan zero. Pozitivitatea sirurilor (\}), (A¥) (i € 1,n) atrage pozitivitatea
limitelor \g, A1, Ag, ..., A,. Acum, impértind relatia (2.3)) la ¥, se obtine

m

. 1
AN f () + Z N gi(xr) + Zushj(zk) + %(:L'k —7)=0.

i=1 j=1

Prin trecere la limitd (k — c0) se obtine prima relatie cautatd. Ar&tdm acum a doua relatie. Fie
i € 1,n. Daca \; = 0, atunci nu avem nimic de demonstrat. Contrar, daci )\; > 0, din definitia
lui \; deducem c& pentru k suficient de mare g;" () > 0, deci g;" (z) = gi(x1,). Relatia

0 < gi(wg) — ¢:(T) <0

conduce la concluzia ¢;(Z) = 0. Deci, si cea de-a doua concluzie are loc gi teorema este complet
demonstrata. O

Daca comparam Teorema [2.1.1] cu Teorema observam urmatoarea diferenta: scalarul
asociat functiei obiectiv este de aceasta data nenul, iar acesta este inconvenientul major al teoremei
de mai sus si anume ca nu elimina posibilitatea ca scalarul asociat functiei obiectiv sa fie nul. Astfel,
exista riscul ca prea multe puncte fezabile sa verifice conditiile Fritz John, iar aplicarea teoremei
sd nu aducd precizari importante. De exemplu, daca un punct fezabil z satisface Vg;(z) = 0
pentru un ¢ € A(z) sau Vh;(z) = 0 pentru un j € 1,m, atunci el satisface conditiile Fritz-John
(cu A\p = 0), functia obiectiv nemaiavand niciun rol de jucat. Conditiile de calificare prezente
in Teorema [2.1.1] evita tocmai situatia A\g = 0. De exemplu, avand in vedere Observatia [2.1.2]
pentru a demonstra ca cele doua conditii din respectivul rezultat sunt de calificare, este suficient sa
aratam acest lucru pentru conditia Mangasarian-Fromovitz. Acest lucru este evident daca aplicam
Teorema si rationam prin reducere la absurd: daca A\g = 0 atunci

> AV +ZMJWL

1€A(T)

Inmultind scalar cu vectorul v din conditia Mangasarian-Fromovitz deducem ca

> Xi(Vgi(@),u) =0

1€A(T)
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de unde se obtine \; = 0 pentru orice i € A(Z). Deci
> uiVhi(x) =0,
j=1

iar conditia de liniard independenta asupra gradientilor {Vh;(T) | j € 1, m} atrage faptul c& y; = 0
pentru orice j € 1, m. Reunind aceste deductii ajungem la contradictie cu relatia |Xo|+|| ||+ 1] #
0. Deci A\g # 0.

[ustram modul de functionare a Teoremei prin cateva exercitii concrete.

Exercitiul 2.31 Fie problema de minimizare a functiei f : R? — R,
fzy,m5) = (z1 — 3)% + (29 — 2)*
cu restrictia g(z) <0, unde g : R? — R*,
g(x1,20) = (22 + 25 — 5,21 + 229 — 4, —11, —T).

(i) Sa se arate, folosind un desen, ca (2,1) este solutie a problemei.
(i1) Sa se arate ca au loc conditiile Fritz John in acest punct.
(111) Studiati indeplinirea conditiilor Fritz John in (0,0) gi concluzionati.

Solutie (i) Se poate observa grafic c8 T = (2, 1) este solutie a problemei desenand mulmea punctelor
fezabile si interpretand functia obiectiv ca fiind patratul distantei de la (z1,22) la (3,2).

(ii) Pentru 7 = (2,1) avem A(Z) = {1,2}. Dorim sa verificim conditiile Fritz John in acest
punct. Astfel, din a doua conditie, cum 3,4 ¢ A(Z), deducem cd A3 = Ay = 0. Cum Vf(T) =
(—2,-2), Vg1 (T) = (4,2), Vgao(T) = (1,2), trebuie sa gasim numere reale pozitive Ao, A1, Ag > 0,
nu toate nule, astfel incat

Ao(—2,—2) + A\ (4,2) + Mo(1,2) = (0,0).

Obtinem A\ = %/\0 Si Ag = %)\0, deci alegdnd Ay > 0, prima conditie Fritz John este indeplinita.

(iii) Sa vedem acum daca punctul z = (0, 0) satisface conditiile. De aceastd data A(z) = {3, 4},
deci Ay = Ag = 0. Avem Vf(z) = (—=6,—4), Vgs(x) = (—1,0), Vga(z) = (0, —1). Un calcul simplu
arata ca ecuatia

Ao(—6, —4) + A3(—1,0) + A4(0, —1) = (0,0)

nu admite solutie (Ao, A3, A4) nenuld cu toate componentele pozitive. Deci = nu indeplineste
conditiile Fritz John, asadar nu este solutie pentru problema data. U

Exercitiul 2.32 Fie problema de minimizare a functiei f : (0,00)x(0,00) — R, f(x1,22) = —225
cu restrictia g(x) <0, unde g : R? — R3, g(x1,20) = (x1 — 22 — 2, —1 + 23 + 2,11 + 79 — 6).

(i) Desenati multimea punctelor fezabile gi determinati grafic solutia.

(ii) Sa se arate ca toate punctele fezabile satisfac conditiile Fritz John.

(11i) Care sunt punctele in care au loc conditiile Karush-Kuhn-Tucker. Comentati
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Solutie (i) Multimea M a punctelor fezabile este segmentul [(2,0), (4,2)] \ {(2,0)} si solutia este
T =(4,2).

(i), (iii) Este ugor de observat ca orice punct fezabil satisface conditiile Fritz John, dar solutia
este singurul pentru care putem alege \g # 0. Intr-adevir, dacii = este un punct fezabil diferit de
solutie, atunci A3 = 0, A\;y = Ay si Ay = 0. Deci, in acest caz, aplicarea conditiilor Karush-Kuhn-
Tucker determina solutia, ceea ce nu se intdmpla pentru conditiile Fritz John. Observam ca toate
restrictiile sunt afine, deci se poate aplica Teorema Karush-Kuhn-Tucker. 0

Exercitiul 2.33 Fie problema minimizirii functiei (x2 4+ x2) cu restrictia 22 — (x4 — 1)° = 0.
(i) Sa se arate ca problema are solutie.
(i1) Care sunt punctele in care au loc conditiile Fritz John? Comentati

Solutie (i) Cum functia obiectiv este coerciva, problema are solutie globala.
(ii) Se poate cu usurinta verifica cd singurul punct care satisface conditiile Fritz John este
(0,1) . Deci acest punct este solutia problemei. O

Exercitiul 2.34 Fie f : R? — R si g : R*> — R? definite prin f(x1,22) = 71 §1 g(71,22) =
(—.1'2 + (1 — $1)3,$2).
(i) Determinati solutia folosind structura particulara a problemei.

(i1) Sa se arate cd in punctul solutie au loc conditiile Fritz John, dar nu au loc conditiile
Karush-Kuhn-Tucker.

Solutie (i) Se verifica faptul cd T = (1,0) este solutie pentru problema asociata
(ii) Conditiile Fritz John sunt indeplinite cu Ag = 0. Conditia nu are loc. O
Punem acum in lumina si o situatie in care putem asigura conditii suficiente de optimalitate.
Teorema 2.5.2 FieT € M un punct fezabil pentru problema (P). Presupunem cd au loc conditiile

din concluzia Teoremei adica existda \g € R, g > 0, A = (A, A,.., ) € R =
(1, f2, oy phn) € R™, cu proprietatea ca No + ||N|| + ||p]| # O astfel incat

MNVEE) + D> ANVa(@) + Y 4 Vhi(@) =0

§t
X >0, \gi(T) =0, pentru orice i € 1,n.

Daca multimea de vectori

{)\ovf(f% (AiVgi (5))1‘6,4(5) » (1 Vhy (f))jzm}

formeaza un sistem de generatori pentru RP, atunci T este solutie pentru problema (P).
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Demonstratie. Presupunem, prin reducere la absurd, ca T nu este solutie (locald) a problemei (P).
Deci, exista un sir (z;) de puncte fezabile astfel incat x, — T ¢i f (zx) < f (T) pentru orice k.
Atunci, pentru orice k, x # T si

1
il

Notdm cu () sirul de numere strict pozitive convergent la 0, (||x; — Z||) si cu (dy) sirul de vectori

(zx — 7).

T =T+ o — T|| ——— ||

de norma 1, (m (rg — )) Fard a restrange generalitatea, putem presupune ca (dy) este

convergent la un vector d de norma 1. Folosind faptul ca functiile implicate sunt de clasa ot
existd nigte siruri (o), (B;);c A@) (yi)j crom cu limita 0 astfel incat pentru orice k

0> f (f + tkdk) — f (I) = thf< ) (dk) + tray,
0> g; (T + trdy) — gi (T) = txVg; (T) (dp) 4ty Vi€ A(T),
0= hj (T + tkdk) - hj (x) = thh (T) (dk) + tk’yi, Viel,m

Impértim in fiecare relatie de mai sus cu () si prin trecere la limits avem
V@) (d) <0, Vg (z)(d) <0, Vie A(T), Vh;(T)(d) =0, Vj € 1l,m.
Cum, din conditiile Fritz John, avem

V(T Z AiVgi(T) (d) + > 11;Vhy(T) (d) = 0,
j=1

zeA
deducem ca

Din ipoteza ca multimea de vectori

{PVI@), V0@ a1 (@), 1

formeaza un sistem de generatori pentru R?, obtinem ca d = 0, ceea ce este imposibil, intrucat
|d|| = 1. O

2.6 Conditii de optimalitate de ordinul al doilea

Conditiile de optimalitate studiate pana acum in cazul cu restrictii sunt conditii de ordinul 7
intrucat implica doar diferentialele de ordinul intai ale functiilor ce definesc problema. Uneori,
aceste conditii nu rezolva complet problema mai ales atunci cind avem puncte care indeplinesc
conditiile necesare Karush-Kuhn-Tucker, dar nu sunt solutii globale. A decide daca respectivele
puncte sunt sau nu solutii (locale) este o chestiune la care conditiile mentionate nu pot raspunde.
Studiem mai intai un exemplu care ilustreaza aceste comentarii.
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Exemplul 2.6.1 Fie problema minimizarii functiei de doud variabile reale f (z,y) = —3 (z + 1)°—
5+ 1)? cu restrictiile ¢y (z,y) =22 + 42 —2 <0, g2 (2,y) =y — 1 < 0. Se constatd cu usurinti
ca multimea punctelor fezabile este compacta, deci problema are solutie globala. Sistemul de re-
strictii este convex si are loc conditia Slater. Se aplica Teorema Karush-Kuhn-Tucker si obtinem
ca posibilele solutii ale problemei sunt

(1,1) cu multiplicatorii (A1, A2) = (1,0)
(—1,1) cu multiplicatorii (A1, A2) = (0, 2)
(—1,—1) cu multiplicatorii (A, A2) = (0,0).

Calculul valorilor functiei in aceste puncte aratd cd (1,1) este solutie globala.
Pentru celelate doua puncte nu putem insa decide.
S& incercam sa aplicim Teorema pentru (—1,1). Avem:

A(-1,1) ={1,2}, do =1, A\ =0, \p = 2,
Vi(-1,1)=(0,-2),Vg (-1,1) = (=2,2),Vga (—1,1) = (0,1).
Este ugor de vazut cd vectorii AoV f (—1,1), A\ Vg1 (—1,1), A2V g2 (—1,1) nu formeazd un sistem

de generatori pentru R?, deci teorema nu se poate aplica.
Pentru (-1, —1) avem:

A(_17 _1) = {1}7/\0 =1,A =0,
Vf(=1,-1)=(0,0),Vg (—1,—-1) = (-2,-2),
si nici de aceastd datd AoV f (=1, —1), A1 Vg1 (—1, —1) nu formeaza un sistem de generatori pentru

R2.
Astfel, pentru cele doua puncte in discutie va trebui si aplicam alte rezultate.

In continuarea acestei sectiuni obtinem conditii de optim de ordinul al doilea pentru problema
cu restrictii functionale, aga incit vom presupune ci functiile sunt de clasa C2.

Teorema 2.6.2 (Conditie necesara de ordinul II) Presupunem ca T este punct solutie pen-
tru problema (P) gi ca au loc conditiile Karush-Kuhn-Tucker cu multiplicatorii A, . Dacd gradi-
entit activ,

Vgi(T), i € A(T), Vhi(@), j €T,m

sunt lintar independenti, atunci pentru orice directie u € RP ce satisface
V() (u) =0, Vie A(Z), Vh;(@)(u)=0, Vjelm (2.4)

avem

VL@, A ) (uu) > 0
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Demonstratie. Consideram functia ® : R? — R@4A@+m ce are drept componente functiile g;,
i € A(T), h;, j = 1,m. In baza conditiei de liniard independenta a gradientilor activi, rezulta ca
V®(T) este surjectiv, deci in baza Teoremei lui Lyusternik vom avea ci

T(®71(0),7) = Ker V(7).

Atunci orice vector u ce satisface (2.4), fiind din Ker V®(z), va fi din T(®7%(0),7), adici
vor exista (f,) C (0,00), t, — 0 si up, — u astfel incat T + tpu, € ®~(0) pentru orice k, deci
Gi(T + truy) = 0, pentru orice i € A(T) si hj(T + tyuy) = 0, pentru orice j = 1, m. In particular,
pentru orice k suficient de mare, T + t,u; este punct fezabil. Dar

L@ M\ p) = f@) + > Xgi(@) + Y pihy(T) = f(T)
i=1 j=1
L(Z + tywg, \, 1) = f(E + ) + Y Nigi(@ + o) + Y pihy (T + o) = f (T + tgur) , Vk.
i=1 j=1
Deci, existd un gir (ay) cu limita 0 astfel incat pentru k suficient de mare,

0 < f(T+ tyur) — f(T)
= L(f"i_ tkulw)\nu) - L(fa )‘mu)

t2
=t Vo L(T, A, 1) (ur) + fviL(i A, 1) (g, k) + 8 [k

1 _ 2
=t §V§L(1’, A, ) (ug) + [Jur]]” o
Impéartind la {2 gi trecand la la limit&, avand in vedere si faptul c& ||uy ||2 oy, — 0, obtinem concluzia
dorita. ]

Putem obtine chiar o rafinare a acestui rezultat facdnd observatia ca pot exista restrictii cu
inegalitati active pentru care multiplicatorul sa fie 0. Consideram multimea indicilor activi strict
data prin

As(@)={ie A@) | \i > 0}.

Corolarul 2.6.3 Presupunem ca T este punct solutie pentru problema (P) si ca au loc conditiile
Karush-Kuhn-Tucker cu multiplicatorii A\, u. Daca vectori

Vg(7), i € A(T), Vh;(@), j €1,m
sunt liniar independenti, atunci pentru orice directie u ce satisface
Vgi(T) (u) =0, Vi € AJ(T), Vhy(T) (u) =0, Vjelm

avem
V2L(Z, A\, p)(u,u) >0
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Demonstratie. Se repeta demonstratia anterioara, considerand doar acele restrictii g; pentru care
multiplicatorii sunt strict pozitivi. 0

Exemplul 2.6.4 Revenim la discutarea punctelor ce satisfac conditiile Karusk-Kuhn-Tucker din
Exemplul pentru care nu am putut decide daca sunt solutii. Lagrangianul este

1 1
L((%y),)\h)@):—§($+1)2—§(y+1>2+>\1 (m2+y2—2)+/\2(y—1).

Avem c& V2L((x,y), A1, \2) se identificd cu matricea hessiand corespunzitoare care este (2\; — 1) Io.
Incepem cu punctul (—1,1) pentru care avem A (—1,1) = {1,2},A; =0, Ay = 2.
Dorim sa aplicim Teorema [2.6.2l Cum Vg (—1,1) = (=2,2),Vga(—1,1) = (0, 1) sunt liniar
independenti, ciutdm u = (uy,uz) € R? pentru care
Vg (—1,1) (u) =0,Vga (—1,1) (u) = 0.

Singurul vector care satisface aceste conditii este vectorul nul. Evident, pentru acest vector, are
loc conditia din concluzia teoremei, deci in continuare nu putem sa decidem.

Incercam aplicarea Corolarului [2.6.3] “ Avem A, (—1,1) = {2} si Vgo (—1,1) = (0, ) (0,0)
satisface conditia de liniara independenta. Cautam v = (ul, uy) € R? pentru care Vg (—1,1) (u) =
0 si gisim mulimea vectorilor {u € R? | u; € R si up = 0} . Cum

V%a:,y)L((_L 1) s AL )‘2) (U,, u) = _u% - U,g,

este evident ca nu are loc concluzia din Teorema Astfel, punctul in cauza nu este solutie.
Pentru (—1,—1). Avem A (—1,—1) = {1}, Vg1 (—1,—1) # (0,0), iar vectorii u = (u1,us) €
R? pentru care Vg; (—1,—1) (u) = 0 sunt {u € R? | u; + us = 0} . Cum si in acest caz

v(:py L(( 1 _1) ) )\17 )\2) (U,,U) = —U? - u§7
este evident ca nu are loc concluzia din Teorema Astfel, punctul (-1, —1) nu este solutie.

Exemplul 2.6.5 Similar, punctele ramase in discutie la Exemplul nu sunt puncte de minim
local pentru ca nu verifica conditiile necesare de ordinul al doilea.

Prezentam in continuare o conditie suficienta de ordinul al doilea.

Teorema 2.6.6 (Conditie suficienta de ordinul IT) Presupunem ca T este un punct fezabil
pentru problema (P) ce satisface conditiile Karush-Kuhn-Tucker cu multiplicatorii \, . Daca

VaL(@, A, ) (u,u) > 0
pentru orice u € RP \ {0} ce satisface

V(@) (u) < 0, Vi € A@)\A, (7).
Vi (@) () = 0, Vi € A,(T), (2.5)
Vhy(@)(w) = 0, Vj € T,m,

atunci T este solutie strictd de ordin 2 pentru (P) .
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Demonstratie. Sa presupunem, prin reducere la absurd, ca T nu este solutie stricta de ordin 2
pentru (P). Atunci, pentru orice k € N*, vom gasi =, € B (E, %) N M astfel incat

_ 1 _
Flaw) < @) + £ Ml = z||*.
o w _ . . Tp — T
Observam ca x; # T pentru orice k. Definind u, = ﬁ
T — T

eventual la un subsir, ca uy — u, cu |jul| = 1. Cum V,L(Z, A, 1) = 0 din conditiile Karush-Kuhn-
Tucker, rationand ca mai sus, gasim un sir (a4) cu limita 0 astfel incat pentru orice k suficient de

, putem presupune, trecand

mare,

Dl =212 > flex) — F@) > Lizg A ) — LT A 1)

1
= V.L(T, A\ p)(zr, —T) + §ViL(f, M) (e — T zp — T) + ||ok — Z|° o
1
= §V2L(T, M)z — T xp — T) + |2k — Z|° o,

de unde, impartind la ||z — f||2 si trecand la limita pentru k£ — oo, obtinem

V2L(T, \, 1) (u, u) < 0.
Pe de alta parte, existd din nou niste siruri (8x) , (72), () (unde i € A(%), j € I,m) cu limita

0 astfel incat
1
“lan =TI > flan) = f(@) = V@) (0 = T) + [lzx — 7| By,
0> gi(zx) — 9:(T) = ng( ) (2p —T) + |lzr — T e, Vi€ A(T),
0 = hj(ar) — hj(T) = Vh;(T) (2 — T) + ||z — Zl| ek, Vj € I,m.
Impartind inegalititile prin ||z; — Z|| si trecand la limitd pentru & — oo, obtinem
Vf(7)(u) <0,
Vgi(T) (u) < 0, Vi € A(T),
Vhi(Z)(u) =0, Vj € 1,m.
Daci ar exista un i € A4(7) astfel incat Vg;(7) (u) < 0, atunci, multiplicand relatiile anterioare

respectiv cu 1, \;,i € A(T), 4, j € 1, m si adunandu-le, obtinem

0= V,L(T A\ p)(u) = ( T) + Z)\ Vi (T) + Zuth ) w)

= + ) AVgi(T) (u) <0,
1€A(T)

ceea ce este imposibil. Deci u satisface (2.5} , iar V2L(7, A, i) (u, u) < 0, ceea ce ne di o contradictie
Prin urmare, presupunerea fiacuta este falsd, iar teorema este complet

O

cu ipotezele teoremei.
demonstrata.

Obtinem urmatorul corolar.
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Corolarul 2.6.7 Presupunem ca T este un punct fezabil pentru problema (P) ce satisface conditi-
ile Karush-Kuhn-Tucker cu multiplicatorii \, pi, iar \; > 0 pentru oricei € A(T). Daca V2L(T; \, )
e pozitiv definita pe subspatiul

{u|Vgi(@) (u) =0, i € A(T), Vhj(T)(u) =0, j € Lm},
atunci T este solutie strictd de ordin 2 pentru (P) .

Exemplul 2.6.8 (Utilizarea conditiilor de optimalitate) Fie problema minimizarii functiei
de doud variabile reale f (z,y) = — (z +1)* — (y + 1)* cu restrictiile g, (z,y) = 22 +y* — 3 < 0,
go (w,y) = —2% + 2y < 0. Se constatd cu usurintd cd multimea punctelor fezabile este compacti,
deci problema are solutie globala. O imagine geometrica asupra problemei ofera unele infor-
matii importante, dar dorim sa utilizam conditiile analitice pe care le avem la dispozitie si care
functioneaza si in contexte in care nu putem vizualiza structura problemei sau nu putem extrage
informatii din aceasta. Se verifica conditia de liniara independenta in toate punctele fezabile. Se
aplica Teorema Karush-Kuhn-Tucker si obtinem ca posibilele solutii are problemei sunt

(—=1,—1) cu multiplicatorii (A1, \2) = (0,0),

3 1 1 1
V2, 1> cu multiplicatorii (A;, Ay) = (— +—, = — _> ’
( P (2o = {5 222 22

3 1 1 1
(- ) cu multiplicatorii (A1, A2) = (— ) )
2 222 2\/5

2
( \/7 \/7> cu multiplicatorii (A1, Ay) = (1 - \/;, 0) 7

(a,b) cu multiplicatorii (A1, Ag) = (0,6),

unde @ este singura riadacing reald a ecuatiei 6 4+ 6% — 6 — 3= 0,
1
=——— b=0—-1
T o
Studiind ecuatia 6% +6% — 0 — 2 = () se poate constata ca unica sa solutie reala este in intervalul
(1,1+87Y). Lafel, be (0,87%),ae (-2 —3).

Prin calculul direct a valorilor functiei obiectiv in aceste puncte, deducem ca (\/5, 1) este
solutia globala.
Consideram acum punctul ( \/_ 1) §1 1ncercam sa verlﬁca,m concluzia Teoremei 2l Ambele

restrictii sunt active, \g = 1, \; = 2 5 ﬁ’ Ay = + 3 f Astfel, e evident ca Vectoru



formeaz& un sistem de generatori pentru R?, deci sunt satisficute conditiile suficiente. Astfel,
punctul (—\/5, 1) este solutie locala a problemei.

Continuam cu punctul (—1, —1). Cum multiplicatorii sunt nuli, nu vom avea suficienti vectori
nenuli printre cei ce trebuie considerati in Teorema (ar trebui cel putin doi) care sa formeze
un sistem de generatori pentru R2. Deci, in acest caz nu putem decide.

Pentru punctul (—\/g , —\/g> doar prima inegalitate este activa. Avem vectorii
3 3 3 3
—Al=, /=] =-211—1/=,1—4/=
v (-V35) = (-5
3 3 2 3 3
a2 2 =92(1=4/2 D Y
won (-5 3) -2 (- 5) (V33

care nu sunt liniari independenti, deci nu formeaza sistem de generatori. Nici pentru acest punct
nu putem decide deocamdata.

In sfargit, ludm punctul (a,b) de mai sus pe care il cunoastem doar cu aproximatie. A doua
restrictie este activa in acest punct. Tindnd seama de relatiile dintre a, b si 0 avem vectorii

Vf(a,b)=-2(a+1,0)
AV (a,b) =0 (—2a,2) =20 (—a,l)

care nu sunt liniari independenti. Din nou, nu putem decide.

Trecem la investigarea conditiilor de ordinul al doilea pentru punctele de mai sus.

Pentru (—1,—1) ambele restrictii sunt inactive si deci ne intereseaza hessiana lui f in acest
punct care este —2/[;. Pe baza conditiilor necesare de ordinul al doilea pentru probleme fara
restrictii concluziondm ca de fapt (—1, —1) este punct de maxim pentru f, deci nu este solutie a
problemei considerate.

Pentru (—\/g, —\/gb , cum Vg, (—\/g, —\/§> # (0,0) are loc conditia de liniara indepen-

denta din Teorema Multimea directiilor ce trebuie considerate este

3 3
Matricea asociata lui V%x’y)L <<—\/§, —\/§> , (1 — \/g, 0)) este —2\/5_72, deci nu este pozitiv

3 3 .
T 5) nu este solutie.

Pentru (a,b), Vg (a,b) # (0,0), deci loc conditia de liniard independentd din Teorema [2.6.2]
Multimea directiilor pe care le avem in vedere este

semidefinita pe multimea de mai sus. Deducem ca (—

{ueR*|Vgs(a,b) (u) =0} ={u€eR®| —au; +uy =0}

Matricea asociatd lui V2L, ) ((a,b), (0,0)) este

<2(—%—1) _02)7
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deci nu este pozitiv semidefinitd pe multimea directiilor de mai sus. Deducem c& (a,b) nu este
solutie.

In sfarsit mai facem observatia ci punctelor ce sunt solutie, adic (\/5, 1) si (—\/5, 1), li se
poate aplica Teorema pentru a concluziona ca sunt de fapt solutii stricte de ordin 2.

Exemplul 2.6.9 Fie problema minimizirii expresiei —23y cu restrictia  +y < 6. Mai intai,
se observd ci problema nu are solutie globalf. In orice caz, Teorema Karush-Kuhn-Tucker este
aplicabild. Rezolvand sistemul Karush-Kuhn-Tucker obtinem urméatoarele puncte: (0,y) cu y <
6siA=0; (%,%) cu A\ = (%)3. Pentru punctele de forma (0,y) cu y < 6, valoarea functiei
obiectiv este 0 si se observa ca mereu gasim un sir de puncte fezabile convergent la punctul
in cauza pentru care valorile functiei obiectiv sunt pozitive. Deci acestea nu sunt puncte de
extrem. Cercetam acum natura punctului (9 §) prin studiul conditiei suficiente de ordinul al
doilea: Teorema [2.6.6, Multimea directiilor u # 0 care satisfac ipotezele acestei teorema este

272
{u e R*\ {0} | u; + up = 0} . Avem pentru orice z si orice astfel de directie
V2L(x, \)(u,u) = —6xyus — 62°ujuy = 6zui (v — 7)),

deci 0 3
2 J— J—
%L((Q, 2) N u) > 0.

Astfel (g, %) este solutie locala a problemei.

Exercitiul 2.35 Sa se studieze problema minimizarii gt problema maximizarii locale a expresiei
xyz cu restrictia vy + vz + yz = 8.

Exercitiul 2.36 Sa se studieze problema minimizarii i problema maximizarii locale a expresiet
xyz cu restrictia x +y + z = 1.

Exercitiul 2.37 Sa se studieze problema minimizarii i problema maximizarii locale a expresiet
y* — a* cu restrictia x — y? < 0.
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Capitolul 3

Solvabilitate si aproximare

3.1 Solvabilitatea problemelor de optimizare

Fie P € R[X] un polinom de grad mai mare sau egal decat 5. Ecuatia P(z) = 0 cu necunoscuta
x € R poate fi redusi la problema de optimizare fara restrictii min P%(z) cu # € R. Asa cum stim,
ecuatia algebrica nu poate fi rezolvata in general, deci nici problema de optimizare asociata nu
poate fi rezolvata.

De fapt, in multe cazuri, rezolvarea unei probleme de optimizare se rezuma la rezolvarea unei
ecuatii algebrice sau a unui sistem de ecuatii (de exemplu, pe baza Teoremei lui Fermat sau a
Teoremei Karush-Kuhn-Tucker) care nu pot fi rezolvate prin metode directe.

S4 discutdm un alt model general. In multe probleme, in multe domenii ale matematicii, avem
urmatorul model: considerim f; : R? — R si a; € R cu i € 1,¢q; cu aceste date, problema este
aceea de a gasi x € RP astfel incat

Din nou, aceasta problema poate fi usor convertita intr-o problema de optimizare fara restrictii:
q
. 2
mlnz (fi () —ay)”.
i=1

Bineinteles, daca ar exista o metoda generala de a rezolva problema de optimizare de mai sus
atunci toate problemele de forma ar fi rezolvabile. Dar stim ca aceasta este imposibil. Deci,
in general, problemele de optimizare nu sunt rezolvabile. Clasa problemelor de tipul celor de mai
sus este prea vastd pentru exista o metods universals care s3 le rezolve pe toate. In afarsi de aceste
asertiuni care sunt mai degraba euristice, vom arata riguros ca, intr-adevar, asa stau lucrurile.
Astfel, vom incepe in capitolul urmator studiul unor proceduri numerice. Trebuie precizat de
la inceput ca nu exista o metoda numerica universala, ci o multitudine de metode, fiecare adaptata
caracteristicilor unei clase particulare de probleme. Dacid avem o problema (P), o vom include
intr-o clasa (C') de probleme avand caracteristici comune. Pentru implementarea oricarei scheme
numerice, trebuie sa stim o parte a problemei (P) pe care o tratam, parte pe care o numim model
si care consta de obicei din formularea problemei, a clasei de componente functionale g.a. Pentru
a incadra problema (P) intr-o clasd (C) si a o rezolva, metoda trebuie si colecteze informatii
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specifice despre (P). Procesul de colectare a datelor se numegte oracol. Un oracol (O) raspunde
unor intrebari succesive ale metodei. Astfel, metoda (M) incearca sa rezolve problema colectand
si prelucrand raspunsurile oracolului.

In general, fiecare problem# poate fi descrisd prin mai multe modele, aga cum se poate de
asemenea ca pentru fiecare problema sa avem diferite tipuri de oracole.

Pentru o metoda numerica, acceptiunea sintagmei "rezolvare a problemei" este aceea de de-
terminare a unei solutii aproximative cu o acuratete € > 0 dinainte stabilitd. Aceasta inseamna
cd pentru fiecare metoda trebuie sa definim un criteriu de oprire (notat (7%)).

Schema iterativd generald de aplicare a unei metode (M) unei probleme (P) este urmé&toarea:

Datele de intrare: se dau un punct de start zy (sau mai multe date, informatii initiale) si o
acuratete (tolerantd) € > 0.

Initializare: k =0, I_; = (), unde k este contorul de iteratii, iar I; este multimea de informatii
acumulate la pasul k.

Bucla principald: 1. Se invoca oracolul in punctul zy, notat O (xy). 2. Se actualizeaza infor-
matiile: I, = Iy_1U(zg, O (xx)) . 3. Se aplicd metoda (M) multimii I, si se obtine punctul z. ;. 4.
Se verifica criteriul (7%) : daca are loc, se scrie rspunsul final T = x4 1; dacd nu, se scrie k = k+1
si se merge din nou la pasul 1.

Din punct de vedere computational, efortul cel mai mare este in bucla principala la pasul 1
(invocarea oracolului) si la pasul 3 (generarea punctului urmator).

Astfel putem vorbi despre:

— complexitatea analitica: numarul de invocari ale oracolului necesar pentru rezolvarea prob-
lemei cu acuratetea ¢;

— complexitatea aritmetica: numarul de operatii aritmetice necesar pentru rezolvarea problemei
cu acuratetea e.

Evident, complexitatea aritmetica este mai realistica, dar de obicei este corelata cu cea analitica
prin gradul de complexitate a oracolului si metodei.

In general, pentru un model functional al unei probleme de optimizare putem aplica diferite
tipuri de oracole:

- oracol de ordin zero: returneaza valoarea functiilor (derivative-free, in terminologie engleza);

- oracol de ordin intéi: returneaza valoarea functiilor si a gradientilor de ordinul intai (first-
order gradient methods);

- oracol de ordinul al doilea: returneaza valoarea functiilor si a gradientilor de ordinul intai si
al doilea (second-order gradient methods).

Vom aplica acest limbaj formal unei clase particulare de probleme. Fie D C RP,
D:={xeR|z;€[0,1], VieIp}=[0,1.

si f: RP — R o functie L—Lipschitz pe D in raport cu norma oo (reamintim cid |z|| =
max;c7; |74|), adica

If (z) = f )| < Ll -yl , Yo,y € D.

Consideram o metoda foarte simpla de a rezolva problema

(Pp) min f (z) cux € D.
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Evident, problema are solutie globala (Teorema lui Weierstrass), iar metoda pe care o folosim este
metoda retelei (grilei) uniforme care consta din urmatoarele:
1. Pentru n dat, calculam punctele:
i1 g ip
n Y n PR n )

unde (i1, dg, ..., 7,) € {0,1,...,n}”. Sunt (n + 1)” astfel de puncte.

2. Calculam f in toate aceste puncte si il alegem pe cel (sau pe unul din cele) pentru care f
are valoarea cea mai mica.

3. Returndm punctul selectat, notat 7, si f (7).

Agadar, aceastd metodd imparte multimea punctelor fezabile intr-o retea uniforma (echidis-
tanta), calculeaza minimul functiei in nodurile acestei retele si returneaza aceasta valoare. Deci,
este 0 metoda cu oracol de ordin zero si fara influenta informatei acumulate in punctele testate.
Dorim sa determinam eficienta acestei metode.

Teorema 3.1.1 Daca f* este valoarea minima globala a problemei (Pr) §i T este punctul returnat
de metoda retelei uniforme, atunci

L

< —

@)~ f < o
Demonstratie. Fie z* un punct de minim global pentru f, adicd f (x ) = f*. Atunci z* se afla
intr-unul dintre cuburile generalizate ale retelei, adicd existd (iy, iz, ...,7,) € {0,1,...,n}" astfel

incat, pe componente, au loc relatiile

—_ * —_
T = Xy in,ip) ST S T(ig41intl,iptl) = Y-

Evident, y; — x; =
definim punctul v p

% si x7 € [z, pentru orice ¢ € 1,p. Considerdm punctul u = $ (z +y) si
rin

yi, daca =} > u;
v; = )
! x;, In caz contrar.

Din nou este simplu de observat ca
|'U7;—[L'i’§%, VZELp.

Cum v este nod al retelei, avem

L

F@ @) < flo) - f@) < Liv-ale <o

adica concluzia. 0
Cu notatiile din teorema anterioara, pentru metoda de mai sus scopul este ca
f@)—f<e
Obtinem consecinta urmatoare.
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Corolarul 3.1.2 Complezitatea analitica a problemei (Pr) pentru metoda retelei uniforme este

cel mult
L p
([2]+2)

Demonstratie. Fie n = [é} + 1. Deci n > é si din teorema de mai sus avem
L
T)—ff<—<e.
F@ <o
Deci, invocand oracolul de cel mult (n+1)7 = ([%} + 2)p ori obtinem solutia problemei cu
acuratetea dorita. 0

Este foarte interesant ca are loc gi rezultatul de mai jos.

Teorema 3.1.3 Flie ¢ < % Atunci, pentru orice metoda cu oracol de ordin zero, complexitatea
analitica a problemei (Pp) este cel putin [é]p

Demonstratie. Fie n = [%} . Din ipoteza deducem ca n > 1. Presupunem ca exista o metoda cu
oracol de ordin zero pentru care sunt suficiente N < n? invocari ale oracolului pentru a rezolva
orice problema de tip (Pr). Fie u € D astfel incat

1
u+—ee D,
n

unde e = (1,1, ..., 1) si astfel incat nu existd puncte de control (in care s fie invocat oracolul) in
multimea

1
E:{m€D|u§x§u—l——e}.
n

Fiev=u-+ %e. Atunci
1
{een el <o}

Definim functia g : D — R,
g (z) = min{0, L{jz — vl —€}.

Observam ca are valoarea minima —e si difera de 0 doar in multimea

13
F:{ Dz — <—}.
reD |-l <

Cum 7 < 2i, deducem ca
n
FcCFk.
In particular, v nu este punct de control, iar g (v) = —e. Deci, chiar daca oracolul indica valoarea

exactd a lui f in toate punctele de control ale metodei (adica 0), acuratetea nu poate fi mai buna
de €.
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In final, arftdm si ci ¢ este L—Lipschitz. Intr-adevar, daci z,y € F sau z,y ¢ I, inegalitatea
din proprietatea Lipschitz este evidenta. Presupunem ca x € F ¢i y ¢ F. Atunci

g
9@) =gl =c—Llw=vl=L(F =l =vl.) < Ly = vl =l =vl.0)
< Llle =yl

ceea ce completeaza demonstratia afirmatiei facute.
Prin urmare, pentru a fi siguri de acuratetea doritd pentru toate problemele de tip (Pr) nu
putem lua mai putin de [2—L€]p puncte. 0]

Exemplul 3.1.4 Evaluam consecintele rezultatului de mai sus in cazul in care L = 2, p = 10,
¢ = 0.01. Pentru a rezolva problema cu acuratetea ¢ trebuie sa invocam oracolul (sd evaluam
functia) in cel putin 100'® = 10?° puncte. Avand in vedere c& functia obiectiv are p = 10 functii
coordonate, pentru calculul fiecareia trebuind cel putin o operatie algebrica, inseamna ca avem de
facut cel putin 10?! operatii. Spre exemplu, dacs computerul pe care lucrdm este capabil si faca
10'2 operatii pe secundi, inseamna ci e nevoie de 10° secunde. Un an are mai putin de 3,2 - 107
secunde, astfel ca timpul de calcul ar fi de peste 31 de ani.

Exercitiul 3.1 Sa se testeze metoda grilei uniforme printr-un program Matlab/Octave pentru
functia f : R — R, f(z) = 2% — 42° + 323 + 62 desendnd mai intdi graficul pentru a observa
pozitionarea punctelor de minim.

Pentru functii de mai multe variabile, am vazut ca algoritmii de ordin zero pot fi foarte
costisitori din punct de vedere computational. Prezentam totusi un algoritm de tip grila uniforma,
studiul putand fi, o data plus, instructiv.

Mai intai prezentam niste functii test si ne vom ocupa de reprezentari grafice. Astfel, vom
ilustra codurile preponderent pe urmatoarele functii

e Functia lui Rosenbrock, f : R? — R,

flx,y) =100(y — 2%)* + (1 — 2)%;

o f:RZ - R,
f(x,y) = 2% +y* + 42%y® — 3oy + 20 + y;
o f:R2 - R,
flzy)=1+y)a” +y%
o f:R2 - R,
f(2,y) = 0.6 x y* + 5222 — Ty + sin (zy) — 5y;
o f:R?2 =R,

2

f(:z:,y)leO( x2+(y+1)2—1)2+90( x2+(y—1)2—1) — (202 + 40y).
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Implementare 3.2 De exemplu, pentru a reprezenta a treia functie si liniile sale de nivel, folosim
codul de mai jos.

desem m_m_var.m (figier de rulare)

[x,y]l=meshgrid(-5:.01:5);

Z=x."6+y. 4+4 . xx. "2 . %y. "2-3 . kxX. *y+2. *x+y;

mesh(x,y,z)

%iar pentru a desena curbele de nivel:

[c,h]l=contour(x,y,z,70);

clabel(c,h);

Implementare 3.3 O alta varianta este urmatoarea:
% Rosenbrock’s function
clear all
clc
[x1,x2] = meshgrid(-2:.03:2,-2:.03:2);
z = 100*%(x2-x1.72).72+(1-x1).72;
surf(x1,x2,z);
shading interp
view (170,20)
xlabel(’x1’)
ylabel(’x2’)
zlabel (°f(x1,x2)°)

Exercitiul 3.4 Sa se implementeze un algoritm de tip grila unifoma pentru aceste functii.

Discutatea teoretica a punctelor de minim pentru aceste functii poate fi dificila. Daca pentru
functia Rosenbrock exista un singur astfel de punct, (1, 1), si acesta este exact determinat teoretic,
pentru celelalte discutia poate fi mai complicata, iar in unele cazuri imposibil de finalizat.

Algoritmii de tip grild uniformi prezentati se refers la determinarea punctelor de minim. In
acest curs, vom discuta de asemenea algoritmi de determinare a zerourilor unor functii, tocmai
pentru ca exista o stransa legatura intre aceasta chestiune si problemele de extrem. De altfel, orice
algoritm de aproximare a zerourilor unei functii se poate trasforma intr-un algoritm de aproximare
a punctelor de optim prin aplicarea sa asupra gradientului functiei (conform Teoremei lui Fermat).

Un algoritm simplu de aproximare a zerourilor unei functii reale de o variabila, este oferit de
reale a < b pentru care f(a)f(b) < 0. Atunci, f are o radacind in (a, b). Pentru usurinta expunerii,
presupunem ci aceastd solutie este unicd. Vom genera doud siruri (ax) si (bx) astfel: ag = a,
by = b. Fie g = 271 (ag + by). Daci f(x) = 0 atunci z, este solutia ciutata si iterarea se opreste.
Astfel, daca f(ag)f(zo) < 0 alegem a; = ag si by = xp, iar dacd f(xo)f(by) < 0 alegem a; = xo
si by = byg. Continuam procedeul luand x; = 27!(a; + b;). Procedand recurent, ne apropiem cu
(1) de solutie, injumitstind la fiecare pas intervalul in care se giseste solutia. In general, aceasti
convergenta nu este foarte rapida, dar in unele cazuri este eficienta.

Exemplul de mai jos reflecta aceste observatii.
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Exemplul 3.1.5 Consideram functia f: R*? — R
f(z,y) = a* — 162% + 52 + y* — 16y* + 5y.

Desenand graficul constatam ca functia are patru puncte de minim local si un punct de maxim
local. Vrem sa gasim aceste puncte. Primul pas este sa determinam punctele critice, ceea ce,
datorits simetriei in x si y, revine la rezolvarea ecuatiei 4u — 32u + 5 = 0. Asociem functia

0 :R—R, o(u) = 4u® — 32u + 5 si constatdm ca aceasta are trei zerouri u; € <—oo, —%) ,
Uy € (—%5, %) , U3 € (%i, oo) .Cum ¢ (ug) > 0, ¢’ (u2) < 0, ¢’ (uz) > 0, constituind matricea

hessiana a functiei initiale, deducem ca urmatoarele puncte sunt de minim local: (u1,u1), (uq,us),
(us,u1), (us,us). De asemenea, (us,us) este maxim local.
In plus, functia fiind coerciva, ea admite un punct de minim global. O aproximare a punctelor

uy, uz (de exemplu u; € <—3, —%) , Uz € (%5, 3)) si variatia lui ¢ : R — R, ¢ (v) = v* —160% +
5v aratd cd (u1,u1) este punctul de minim global pentru c& v (uq) < v (u3) .
Deci pentru a aproxima punctele de extrem ale functiei date, trebuie sa aproximam solutiile

ecuatiei 4u® — 32u + 5 = 0, lucru care se poate face cu metoda descrisd mai sus.

Exercitiul 3.5 Sa se implementeze metoda injumatatirii intervalului pentru finalizarea exemplu-
lui anterior.

Exercitiul 3.6 Sa se implementeze metoda injumatatirii intervalului pentru functia f : R — R,
f(x)=2%—2—2.

3.2 Metode numerice, in general — algoritmi iterativi

De foarte multe ori pot aparea probleme de optimizare pentru care nu putem rezolva sistemele
ce dau punctele critice ale functiei obiectiv (in cazul problemelor fard restrictii) sau punctele
critice ale lagrangianului (la problemele cu restrictii). Pentru astfel de probleme, sunt necesari
algoritmi pentru aproximarea solutiilor. Ca de obicei, si pentru proiectarea algoritmilor, exista o
neta diferenta intre problemele cu restrictii si cele fara restrictii.

Toti algoritmii pe care ii vom studia sunt iterativi (adica solutia (i.e., aproximarea punctului
ciutat) este gasitd calculand termenii unui gir pand la un rang dat de un criteriu de oprire a
algoritmului) si cer precizarea unui punct de start pe care il notam cu z,. Este bine ca acest punct
sa fie el insusi o cAt mai bund aproximare a solutiei cautate (mai ales daca aceasta nu este unici).
De exemplu, functia f: R — R,

6 3
o 9

fla)=F -3 -2

are doua puncte de minim si doua radacini reale nenule. Daca se pleaca cu o valoare xy apropiata
de unul dintre aceste puncte, atunci este probabil ca algoritmul (pentru rezolvarea ecuatiei sau
pentru gasirea punctelor de extrem) si giseasca o aproximare a acelui punct.

Revenind la discutia generala, dupa alegerea lui xq, algoritmul genereaza un sir de iteratii
(xr)ken care au scopul de a se apropia de solutie (solutie a unei ecuatii sau punct de optim).
Generarea acestui sir se va opri atunci cand nu se mai pot face progrese in incercarea de apropiere
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de solutie (conform regulii interne a algoritmului de generare a iteratiilor) sau cand a fost atinsa o
anumita acuratete dinainte stabilita (care se definegte printr-un criteriu de oprire). Orice algoritm
trebuie sa implementeze o regula interna de generare a unei noi iteratii utilizand iteratiile deja
existente. In general, fiecare nous iteratie trebuie si realizeze o apropiere de solutie, dar exista si
algoritmi nemonotoni, pentru care descresterea nu trebuie sa se produca neaparat la fiecare pas.

In termeni matematici, un algorithm iterativ poate fi descris ca avand forma unei recurente de
tipul

Tp1 = Al(zr), Vk >0,
o € RP,

unde A : R? — RP este o functie.Totusi, in practica, datorita implementarii pe diferite computere,
de catre diferiti programatori care pot interpreta diferit secventele sintactice ale programului ce
implementeaza algoritmul, datorita acumularii rotunjirilor numerice care si ele pot diferi in cazul
unor software-uri diferite, este mai realistic sa consideram A ca fiind o multifunctie. De fapt, in
realitate, dacd A este functia de mai sus, relatia dintre xyyq si x) este xp1 = A (zx) + €5, unde
¢, este un element provenit din diferentele de aproximare descrise. Datorita faptului ca acest gy
are un caracter aleatoriu, este mai firesc sa il incorporam in A (xy) care devine astfel o multime.
In acest fel, proprietitile generale ce pot fi deduse pentru un algoritm astfel modelat se pistreazs
pentru diferite implementari ale acestuia gi chiar pentru algoritmi similari. Astfel, cu aceasta
abordare, algoritmul general de mai sus capata forma

Tr41 € A (xk), Vk >0, (32)
Tg € RP.

Definitia 3.2.1 O multifunctie A : RP = RP se numeste inchisa in T € D daca pentru orice doud
giruri convergente (xy), (yp) cu xx — T, yp — 7 §i Yr € A (xx) pentru orice k, are loc gy € A(T).
O multifunctie inchisa in toate punctele unei multimi se numeste inchisa pe acea multime.

Exemplul 3.2.2 1. Multifunctia A : R = R data prin
Alx) :{ g%(a:+2)}, dacd z > 1

4—111:}, daca z <1

nu este inchisa in T = 1. Pentru a observa acest lucru este suficient sa analizam cazul girului

1
2. Multifunctia A : R = R, A (z) = [2?, 00) este inchisd pe R.

In cadrul oricdrui algoritm iterativ o functie specifica (de obicei functia obiectiv in cazul prob-
lemelor de optimizare) cunoagte o descrestere pand in momentul cand convergenta (aproximarea)
dorita se realizeaza. Aceasta sugereaza definitia de mai jos.

Definitia 3.2.3 Fie S C R? o multime. Consideram un algoritm de forma (3.2)). O functie
continua ¢ : RP — R se numeste functie de descrestere pentru S si algoritmul A daca sunt
satisfacute urmatoarele proprietati:

(1) pentru orice x € S siy € A(x), avem ¢ (y) < ¢ (x);

(i1) pentru orice x ¢ S siy € A(x), avem ¢ (y) < ¢ (z) .
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Exemplul 3.2.4 Functia ¢ : R — R, ¢ (x) = |z| este o functie de descregtere pentru S = {0} si
A:R—R, A(x) =4""a.

Teorema 3.2.5 Fie un algoritm de forma . Fie S multimea solutitlor problemer studiate.
Presupunem ca au loc urmatoarele conditii:

(i) sirul (zy) este conlinut intr-o multime compacta;

(11) A este inchisa pe RP \ S;

(111) existd o functie continud ¢ : RP — R de descrestere pentru S gi A.

Atunci orice punct limita al lui (vg) se afld in S.

Demonstratie Fie T un punct limitd al lui (z) si (z,), subsir al lui () cu limita Z. Cum ¢ este
continua,

lim g (24,) = ¢ (7).

Cum sirul (¢ (z5)) este monoton descrescitor iar un subsir al siu este convergent, deducem ca
intreg sirul este convergent la aceeasi limita, ¢ (7).

Presupunem, prin reducere la absurd cad T ¢ S. Din prima ipotezd, existd un punct limita,
notat u, al girului (1), . Ca mai sus, limyp (x541) = ¢ (u), deci ¢ (T) = ¢ (u) . Pe de alta parte,
ipoteza (ii) asigurd u € A (Z), deci, conform (iii), ¢ (u) < ¢ (T), ceea ce reprezintd o contradictie.
O

Observatia 3.2.6 In rezultatul anterior data initiald poate fi arbitrar aleasd, deci in ipotezele
date algoritmul are proprietatt globale de convergenta.

Corolarul 3.2.7 In ipotezele Teoremez’ daca S este formata dintr-un singur punct T, atunci

Demonstratie Din prima ipoteza a teoremei, sirul are un punct limita care, conform teoremei si
ipotezei rezultatului de fata coincide cu Z. Daca girul nu ar converge la T, ar mai avea un punct
limita diferit de T care ar trebui sa fie din S ceea ce nu este posibil. O

Exemplul 3.2.8 Consideram problem minimizarii lui f : R — R, f (x) = |z| i algoritmul definit
de A: R =2 R data prin
{i(z+2)}, dacdi z > 1
_ )3 )
Afz) { {ix}, daca x < 1.

Acest algoritm nu este convergent global (pentru orice datd initiald). Intr-adevir, dacd luim
xro = 4, atunci 7, — 2. Se observa cid pentru rg = —4, rp — 2. Am vazut mai sus (Exemplul

3.2.2)) c& A nu este inchisd in 1.

Exemplul 3.2.9 Consideram problem minimizarii lui f: R — R, f (x) = 2? si algoritmul definit
de A: R =2 R data prin
Afw) = {— (2 +1))

Acest algoritm nu este convergent pentru ca pentru orice data initiala sirul generat are limita —oo.
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Exemplul 3.2.10 Consideram problem minimizarii lui f : R — R, f (z) = |x — 1| si algoritmul
definit de A : R = R data prin
Ax) = {~VIel}

Acest algoritm este convergent pentru orice data initiala z¢ € R.

O problema foarte importanta din punct de vedere practic atunci cand este studiat un algoritm
este viteza sa de convergenta.

Definitia 3.2.11 (viteza de convergentd) Fie (x)ren C RP un gir convergent la T € RP cu
xTr # T pentru orice k € N*. Spunem ca:

(1) (zx) converge liniar dacd exista r € (0,1) (numit rata de convergenta) astfel incat pentru
orice k suficient de mare,

w7
2% — |
(ii) (zx) converge superliniar daca
bl =l

(11i) (x) converge patratic daca exista M > 0 astfel incdt pentru orice k suficient de mare,

2541 — 7]

g —z*

Evident, convergenta patratica implica convergenta superliniara care, la randul sau implica
convergenta liniara. Pentru convergenta liniara rata r este importanta pentru viteza de conver-
genta, in timp ce pentru convergenta patratica dependenta de M este mai putin importanta.
Folosind modelul oferit de definitia convergentei patratice, putem defini convergente de orice or-
din; spunem ca avem o convergenta de ordin # > 1 daca exista M > 0 astfel incat pentru orice k
suficient de mare

[Zr41 — 7|

|z —|°

Exemplul 3.2.12 (i) Sirul ( (l)k> este liniar convergent la 1 cu rata r = %
(i) Sirul (1 + 7%
(iii) Sirul (1 +(

(i
) converge superliniar la 1.
1
2

) ) converge patratic la 1.

Exemplul 3.2.13 Reamintim ca dacad I C R este un interval inchis f : I — I este o functie
derivabild astfel incat derivata sa este marginita (in modul) pe I de o constanta strict subunitara,
atunci pentru orice datd initiald xq € [ iteratia Picard definita de z41 = f(zx), K > 0 este
convergent catre unicul punct fix T al lui f din /. Presupunem c& f este de clasa C!.

Se poate observa fara dificultate cd daca punctul fix nu este atins (sirul este nestationar),

atunci B B
T SO T o gy e ()

ZL‘k—T I’k—f
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Astfel, observam c4, in general avem de-a face cu o convergenté cel putin liniard de rata |f’' (7)|.

In cazul cel mai bun in care f'(z) = 0 putem avea convergente mai bune decit convergenta
liniars. In general, in contextul de mai sus, dacg f’ (T) =0 si f este de clasd C? atunci, aplicand
de doua ori regula lui L’Hoépital avem:

o J@ -7 @

v (2 — 7)2 9

deci pentru orice iteratie Picard nestationara

li Tht1 — T . f”(f)
1m —9 = s

adica o convergenta patratica.

Sa considerdm functia f : [0,1] — [0,1] data prin f(z) = ;7. Aceasta este o contractie si are
un singur punct fix care este unica solutie pozitivd a ecuatiei 2*> + z — 1 = 0 (care are valoarea
aproximativa T ~ 0.6823), iar sirul iteratiilor Picard satisface:

— = T) = ——= = —27° ~ —0.6353.
Ty — T (@) (1+72)?
Deci, practic pentru k suficient de mare, la fiecare pas al iteratiei, eroarea se multiplica (in valoare
absolutd) cu aproximativ 0.6353.

S ludm si cazul functiei f : [v/2,00) — [v/2,00) dat# prin

+ —.
2
Este usor de verificat c& f este bine definit# (inegalitatea mediilor). In plus,

@l =5

2x2§

57
deci f este contractie si are ca unic punct fix 7 = v/2. Se observi ci f/(Z) = 0 si, deci, pentru

orice iteratie Picard nestationara

Tpt1 — T 1 1 ["(@)
= — = s
(I’k — f)2 21% 2\/§ 2

deci avem o convergenta patratica.

Exercitiul 3.7 Sa se implementeze acest algoritm pentru functiile de mai sus.

O alta clasa de viteze de convergenta este definita mai jos.

Definitia 3.2.14 (r—convergentd) Fie (x))ren+ C RP un gir convergent la T € RP. Spunem ca
(71) converge r—liniar (r—superliniar, r—patratic) daca exista un gir (yYi),cn- CaTe este convergent
liniar (superliniar, patratic) la 0 astfel incat pentru orice k

|zr —Z|| < yr.
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Exemplul 3.2.15 Sirul
) 1+ (%)k , daca k este par
1+ (%)k , daca k este impar

este r—liniar convergent la 1, dar nu este liniar convergent la 1.

Observatia 3.2.16 Vitezele de convergenta in sensul Definitiei [3.2.11] implica r— convergentele
corespunzatoare, in timp ce reciprocele sunt, in general, false, asa cum arata exemplul anterior.

Exercitiul 3.8 Studiatli viteza de convergenta a sirului (%) .

Exercitiul 3.9 Fie f: R?2 — R definita prin f (x) = ||z||>. Aratati ca iteratiile

1
Ty = (1 + 2—k) (cos k,sin k)

satisfac f (vry1) < f(xx) pentru orice k > 0. Aratati ca orice punct de pe sfera (cercul) unitate
este punct limita al lui (i) .

Exercitiul 3.10 Studiati viteza de convergenta si r— convergenta sirului

3.3 Un algoritm reprezentativ: metoda lui Newton

Aceasta sectiune se ocupa cu studiul unei celebre metode, atribuita lui Newton, de a determina
cu aproximatie ridscinile unor ecuatii neliniare. In plus, aceastd metods ilustreazs foarte bine
ideile generale expuse despre algoritmii iterativi in sectiunea precedenta.

Sa remarcam ca aplicarea conditiilor de optimalitate transforma o problema de optimizare in
problema rezolvarii unei ecuatii sau a unui sistem de ecuatii (de cele mai multe ori neliniare si
chiar imposibil de rezolvat exact). Un alt argument pentru studiul acestui algoritm in cadrul
unui curs de Teoria optimizarii ar fi acela ca, in fond, problema rezolvarii unei ecuatii de forma
f(z) = 0 este echivalentd cu problema determinarii solutiilor globale ale problemei de optimizare
fara restrictii min f2.

Metoda lui Newton este una dintre cele mai cunoscute metode iterative de a aproxima radacinile
functiilor care au proprietati de diferentiabilitate suficient de bune. Vom vedea ca acest algoritm
este unul local pentru ca data initiala trebuie aleasa suficient de aproape de solutie, dar convergenta
este patratica, adica foarte buna.

Fie f : RP— R? o functie de clasi C! i fie T o rddacing simpld a lui f (i.e., f(Z) = 0 i Vf(T)
este nesingulard). Consideram o valoare z suficient de apropiata de T (vom discuta sensul acestei
apropieri ceva mai tarziu).

Sirul iteratiilor Newton porneste de la ecuatia

0= fwr) + V[(wp)(@ria — z1). (3-3)
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Aceasta ecuatie, din care se obtine valoarea lui z;,; arata de ce este important sa avem solutie
simpla si de ce trebuie sa pornim din apropierea lui ¥ : trebuie ca z( sa fie intr-o vecinatate a lui
T in care V f este inversabila, iar o astfel de vecinatate exista tocmai pentru ca V f este continua
si nesingulara in 7. Astfel, definim formal iteratia Newton prin:

LTet1 = T — Vf(l’k)_l(f(l’k)) (34)

Asga cum deja se vede din relatiile anterioare si se va vedea si in continuare, unele dificultati in
aplicarea acestei metode pot fi rezumate astfel:

e dacid Vf(xy) este singulard, nu putem defini xy1;

e calculul exact al lui V f(x;)~! poate fi costisitor din punct de vedere computational;

e e dificil de stiut a priori cd V f(T) este nesingulara.

Dup4i prezentarea riguroass a metodei vom reveni asupra unor aspecte de acest tip. Inainte de

a prezenta rezultatul principal privind convergenta metodei lui Newton prezentam o proprietate
ajutdtoare a functiilor de clasa C*.

Lema 3.3.1 Fie D C R? o multime deschisa si convexd, f : D — RP o functie de clasa C' pe D
six,y € D. Atunci

1
Flo) = fe)+ [ Vfattly =)= o)
unde integrarea §i egalitatea se inleleg pe componente.
Demonstratie. Reamintim ca pentru orice z,y € D, multimea
L,={teR|ty+(1—t)z € D}

este un interval care contine intervalul [0, 1].
Pentru fiecare functie coordonatd f; cu i € 1, p definim functia scalard «; : I, — R,

a; (t) = fi(ty+ (1 —t)x) = fi(zx +t(y—x)).
Evident,
ap(t) =Vfi(z+t(y—a)(y—a).
Cum [0,1] C I, si
1
a; (1) —a; (0) = / o (t) dt,

0

deducem .
=@ = [ Vet tl—a) -

ceea ce reprezinta concluzia. 0

In cele ce urmeaza privim o matrice de tip p X p (cum ar fi diferentiala lui f) ca operator liniar
de la R? la R? inzestrat cu norma operatoriald generata de |||, pe RP. Prezentdm o proprietate a
normei ||-||, pe R? (pe care o notdm ||-||) de care avem nevoie in continuare.
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Lema 3.3.2 Fieg: R — RP, g = (¢;)
peR si fie a,b € R cu a < b. Atunci

|[swa] < [1owna
v = (/abg,- (t) dt)i6 e RP.

1p

i1y astfel incdt toate functiile g; sunt Riemann integrabile

Demonstratie. Fie

Avem

p p b p b
ol = > = v [yt =Y [ vignte)a
i=1 i=1 @ =17

b b b
-/ <Zw <t>> i = [ o.g(0)) d

b b
Jollg )11t = o] |l 2]

<

si prin simplificare cu ||v|| (cazul v = 0 este evident) obtinem concluzia. O

Teorema 3.3.3 Fie D C R? o multime deschisd si convexd, f : D — RP o functie de clasa C*
pe D. Fie T o solutie simpla a ecuatiei f(x) =0 gi fie (xg) un sir de iteratii generate de ecuatia
(54). Atunci exista e > 0 astfel incat daci xo € D (T,e) C D toate elementele sirului sunt bine

definite gi raman in D (T, ) gi (xg) converge superliniar la T, adica

T -
tim W2 =2 (3.5)
koo |lzp — 7|
In plus, dacd Vf este Lipschitz pe D (ZT,€) atunci convergenta este patratica, adica existd
K > 0 astfel incdt

|[zk1 — Z|

e — 7

< K, Vk. (3.6)

Demonstratie. Fie M > 0 gi € > 0 astfel incat D (T,e) C D si pentru orice x € D (T,¢) au loc
simultan urmatoarele:

_ 1
V7 (@)~ VI @ < 557

V[ (x) este inversabila
|V f (a:)_lH < M.

Astfel de numere pozitive exista, pe baza ipotezelor considerate.
Daca zy = 7, atunci iteratia Newton este stationara si concluziile sunt evidente.
Fie g € D (7,e) \ {T} si x; definit de iteratia Newton, adica

1 = 20 — V f(z0) " (f(20))-
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Atunci

21 —T=19—T— Vf(2o) " (f(20))
=V f(z0) ' (Vf(20) (x0 — T) — [ (x0)) .

Pe baza lemei anterioare putem scrie
1
1 — T = Vf(ﬂfg)_l (Vf(ﬁo) (370 - f) - / Vf(f + 1 (270 - f))($0 - T)dt)
0

1
=V (a0) ( | 950 = 1@+ o — 7)) (20 - 7) dt) |
0
Deci, aplicand inclusiv Lema [3.3.2]

loy = 7| < M

[ (V50 =916+t = 2) (70 - ) dtH
<M / |V f (o) — VT +t (0 — 7)) (20 — T)]| dt

< Mz — 7| / IV (x0) = V(& + (0 — 7)) dt

1 1
< M- o~ 7 = £ flzo — 7
In particular, 2, € D (7, ) si repetand inductiv calculele de mai sus deducem c (2;,) C D (T, €)

si pentru orice k

st — 7] < Mlex — 7 / IV (e2) — VI +t (2 — 7)) dt

Daca unul dintre punctele sirului este T, atunci sirul devine stationar si deci concluziile sunt clare.
Contrar, deducem, pentru orice k,

1
1
2k1 = T < M [z — 7| / IV fze) = V(@ +t(zp = D) dt < 3 llow =]
0

de unde xp — 7 si

2541 — 7|
[k — 7|

<M / IV £ () — VI (& + t (2 — 7)) .

Cum, pe baza faptului cd z;, — T i a continuitatii lui Vf, Vf(xy) — V(T + t(zx —T)) — 0,
deducem ca
lim 12 =T
[z — |
Presupunem acum cd V f este Lipschitz pe D (7, ). Atunci, existd L > 0 astfel incat pentru
orice x,y € D (T,¢),

IVF(y) = V@) < Ly -«
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Asa cum am demonstrat mai sus, in cazul nestationar, pentru orice k,

|ze1 —
(R

<M / IV () — V(@ + (7))t

1
SM/ Lllzn — (7 +t (e — 3)|| dt
0

1
ML
=ML [ (-t = 2 o -]
0

Asadar, pentru K = % obtinem -

||$k+1 - $||

o =z ~
ceea ce demonstreaza rezultatul. O

Observatia 3.3.4 Algoritmul lui Newton este local, data initiala trebuind aleasa aprope de solutie.

In continuare, implementam metoda lui Newton si discutam consecinte ale acesteia. Incepem
cu cazul functiilor reale de o variabila reala, adica situatia p = 1.

In cazul p = 1 ecuatia |) devine
f(zx)

T T )

Astfel, iteratia xj,; este punctul in care tangenta la graficul lui f in punctul (zy, f(zx))
intersecteaza axa Ox. Discutam unele posibilitati de a alege punctul z( suficient de aproape de
solutie astfel incat metoda lui Newton sa convearga la punctul cautat. O prima posibilitate
(empirica) este aceea de a studia graficul functiei si de a alege o valoare xy care pare a fi destul
de apropiata solutiei. O alta varianta ar fi de a aplica o altd metoda de aproximare a radacinilor
unei functii a carei convergenta este mai lenta, dar care totusi dupa céteva iteratii ne duce in
apropierea solutiei, moment din care putem alege x si aplica metoda lui Newton pentru accelerarea
convergentei.

Implementam acum metoda lui Newton.

Implementare 3.11 Testam metoda lui Newton pentru functia f : R — R data de relatia

flz)=az+¢"+ -5

1+ 22

care are o radacing simpla in intervalul (—2,0) dupa cum se poate constata din studiul graficului
sau. Plecand cu data initiala xq = 1.5 aproximam, folosind metoda lui Newton, aceasta solutie cu
rapiditate, asa cum arata programul de mai jos:

functie=0(x) [x+exp(x)+10/(1+x~2)-5];

%desen

fplot(functie, [-3,3]);
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functie_der=0@(x) [1+exp(x)-20*x/(1+x72)"2];
%Newton
x=-1.5;x_precedent=-1;n=0;eps=10"(-6) ;maxiter=50;
while abs(x-x_precedent)>eps && n<maxiter
X_precedent=x

x=x-functie(x)/functie_der(x);

n=n+1;
end
X
n
functie(x)
care returneaza:
x = -0.90456
n =234
ans = 8.8818e-16
Daca se pleaca cu data initiala w = —1.5, atunci se obtine valoarea de mai sus dupa doar 5 iteratii.

Observatia 3.3.5 Fie f : R — R o functie ce clasa C3, strict convexd si coerciva. Atunci f are
un unic punct de minim global T care este solulia ecuatiei f' (T) = 0. Astfel, pentru aproximarea
sa, putem folosi metoda lui Newton. Astfel, iteratia devine

f' ()

T ()

Vom reveni asupra generalizarilor acestei observatii intr-o sectiune ulterioara.

Observatia 3.3.6 Metoda lui Newton aplicata problemelor de optimizare (Observatia are
un oracol de ordinul al doilea.

Exercitiul 3.12 Fie f : R — R, f(z) = 22%+3e~%*. Sa se arate ca f este strict convexd si admite
punct de minim. Sa se testeze metoda descrisd mai sus pentru a aproxima punctul de minim.

Totusi, aplicarea metodei lui Newton pentru determinarea unui punct de minim presupune cal-
culul primelor doua derivate, proces ce poate fi anevoios. Pe de altd parte, in cadrul implementarii
niciodata metoda nu este lipsita de aproximari a calculelor de pe parcursul generarii iteratiilor.
Din acest motiv ne putem gandi la o varianta de aproximare a derivatelor la fiecare pas pe baza
relatiilor

flatt)—fle—1)

R 37

Astfel de inlocuiri conduc la metode numite de tip cvasi-Newton. Este intuitiv rezonabil sa credem
cd aceste metode pastreaza proprietati bune de convergentad (desi poate nu de vitezd patratica).
Nu vom demonstra efectiv convergenta metodei derivate pe baza inlocuirilor anterioare, dar o vom
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testa si vom constata comportarea ei foarte buna. In sectiunea urmatoare vom studia in detaliu
o astfel de metoda.

Mai intai implementdm aceste observatii pentru a (re)gisi radicina functiei f(x) = © + e* +

10 _ 5, fird a mai calcula efectiv derivata acesteia.

1+22

Implementare 3.13 delx=0.01;
functie=0(x) [x+exp(x)+10/(1+x"2)-5];
x=-1.5;x_precedent=-1;n=0;eps=10"(-6) ;maxiter=50;
while abs(x-x_precedent)>eps && n<maxiter
x_precedent=x;
derivata=(functie(x+delx) - functie(x-delx) )/(2*delx);
x=x-functie(x)/derivata;
n=n+1;
end
X
n

Exercitiul 3.14 Sa se rezolve al doilea caz numeric de la Problema |2.27.

Exercitiul 3.15 Sa se determine minimul functiei f : [30,70] — R,

~204165.5 N 10400
330—22  x—20’

[ ()

aprorimdnd numeric ambele derivate.

Implementam acum metoda lui Newton pentru dimensiuni mai mari decat 1. Cautam solutii
pentru sistemul
T+ To+ T3 = 3
24+ x4 22=5
el 4+ x1xy — ;173 = 1.

Implementare 3.16 Exemplificim prin codul urmaétor:

Newton _sistem (figier functie)

function a=Newton_sistem(f,J,x0,tol)
xvechi=x0;

n=0;

xnou=x0-J(x0) "~ (1) * (£ (x0));

while norm(xnou-xvechi)>tol %&& n<nrit
xvechi=xnou;
xnou=xvechi-J(xvechi) "~ (-1) *xf (xvechi) ;
n=n+1;

end

disp(xnou)
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disp(n)
end

folosit cu comanda

f=0(x) [x(1)+x(2)+x(3)-3;x(1)"2+x(2)"2+x(3)"2-5; exp(x(1))+x(1)*x(2)-x(1)*x(3)-1];
f_der=0(x) [1,1,1;2*%x(1),2%x(2),2*x(3);exp(x(1))+x(2)-x(3),x(1),-x(1)];
Newton_sistem(f,f_der,[1;0;1],10°(-6))

care returneaza
1.224394
-0.093133
1.868739

5

Deci, in acest caz, metoda lui Newton returneaza dupa 5 iteratii, folosind data initiala (1,0, 1)
si toleranta 107°, solutia aproximativa (1.224394, —0.093133, 1.868739) pentru sistemul mentionat.
De remarcat cd solutia (0,2, 1) se obtine cu o altd alegere a datei initiale.

Exercitiul 3.17 Sa se scrie niste functii newton, newton_optim, cvasinewton, cvasinewton_optr
pentru metodele Newton si cvasi-Newton discutate mai sus, dupa modelul Implementare [3.10,

Exercitiul 3.18 Sa se determine minimul functiei de la Exemplul|1.1.1].

Exercitiul 3.19 Deteminati minimele functier f : R — R,

1 3 3
f(x)= 5:65 - 4—0364 - 5x3 — 7.

Exercitiul 3.20 Fie girul de numere reale dat prin xo =1 gi

223 + 3

Ty,

Tpt+1 =

Sa se arate ca (z,), este o iteratie Newton pentru o functie care se va determina. Ce se poate
spune despre convergenta lui (x,),?

Exercitiul 3.21 Fie girul de numere reale dat prin xo =1 gi

T2 + 2

Tpt1 = , Vn > 0.

n
Sa se arate ca (x,), este o iteratie Newton pentru o funclie care se va determina. Studiati
convergenta sirului (x,) §i, in caz afirmativ, determinati-i limita.
Exercitiul 3.22 Sa se aproxzimeze minimul functiei f : (0,00) — R

—0.75

flw) = 1+ 22

1
— 0.65z arctg —.
x
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Exercitiul 3.23 Sa se aproximeze punctele de extrem local ale functiei de la Exemplul de
mai sus folosind metoda lui Newton pentru ecuatia 4u® — 32u + 5 = 0 cu diverse date initiale.

Exercitiul 3.24 Sa se determine solutii aproximative pentru sistemele de mai jos cu datele in-
wtiale indicate:
(Z) (:E07y0) = (17 2) )
1+y?—422 =0 .
3+2—a2—y*=0"
(“) (l’o, yO) = (17 2) )
y—a3=0 )
36 — 422 — 92 =0’
y—a2*+322 — 4o =0
yP—x—-2=0 ’
(Z’U) (I0>y0) = (07 ]-) )
2 —2r—y+21t=0
44y —y=0 ’
(”U) ($07 yO) = (27 15) )

3+y—a22=0
3—xy=0.

3.4 Aplicatie la functia I/, a lui Lambert

Fie f : R — R data prin f (x) = xze”. Este usor de vazut cd aceasta functie este indefinit derivabilad
si, tindnd cont de dezvoltatea lui e” in serie de puteri, chiar analitica pe R. De asemenea, pentru
orice = € R,
(@)= (z+1)e
[ () =(z+2)e”,
deci:
(i) f are un punct de extrem, x = —1, care este punct de minim global (e de observat ca
lim, oo f(2) =0 si lim, o f (x) = 00);
(ii) f este strict descrescatoare pe (—oo, —1] §i strict crescatoare pe [—1, 00);
(i) T f = [ 210c) £ ((—oes 1) = [-1,0). £ (-Loo)) = [ L0);
(iv) f are un singur punct de inflexiune, x = —2, este strict concavd pe (—oo, —2] si strict
convexa pe [—2, 00).
Consideram doua restrictii bijective ale lui f, astfel:

fii]-1,00) = [-1,00), fi(z) = e,
fo i (=00, —1] — [—%,0) , fa(x) = xe®.

Inversa lui f; se numegte functia lui Lambert si se noteaza in mod traditional prin W, deci

1
W {_E’oo) — [-1,00), W (y) =z, unde y = ze”.
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Din cauza faptului ca, in general, ecuatia xze® = y nu poate fi rezolvata, nu se poate indica o forma
explicita pentru W. Graficul lui W este simetric fata de prima bisectoare in raport cu graficul lui

-

y 107
05+
T 3
X
05+
10+
Graficul lui W
Unele valori ale lui W pot fi calculate. De exemplu,
1 1
w <——) =—1; W(0)=0;, W <—§1n2> =—In2; Wi(e) =
e
Putem de asemenea scrie W (y) eV ® = y, pentru orice y > —1. Cum f] (z) # 0 pentru orice

x > —1, functia W este derivabila pe (—%, oo) si pentru orice punct y din acest interval deducem
urmatoarele formule:

, R 1 o
W(y)_f’(x)_(:v—l—l)ex7 unde y = ze”;
, e_W(y)

VW = Ty

A ) )
W(y)—y(1+W(y)),dacay7é0.

Cum f; este indefinit derivabild pe (—1,00), deducem ca W este indefinit derivabila pe (—é, oo) .
Derivand in formulele anterioare, avem:

e () 1)
W=y ey
g DG

y2 (W (y) +1)°

Din acest calcul deducem stricta concavitate a functiei W.

O metoda de a aproxima valorile lui W (pe tot domeniul sdu de definitie) este si rezolvam
aproximativ ecuatia (in necunoscuta x) xe® —y = 0, de exemplu prin metoda lui Newton. Astfel,
cu o datd apropiatd de solutie (pentru y aproape de 0 alegem data intiald aproape de 0, pentru y
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mare alegem data initiald Iny, de exemplu) folosim iteratia Newton

xnewn _ y
Tn+1 = Tp —
(ze” —y),, (wn)
_ Tatye ™
oz, +1

pentru a aproxima cu viteza patratica valoarea lui z, adicd a lui W (y) .

Exercitiul 3.25 Sa se scrie un program care sa determine toate valorile lui W (n) cun € 1,100.

Cum am precizat, f; este analitici. De asemenea, f](0) = 1 # 0 si pe baza unui rezultat
numit Teorema lui Lagrange de inversiune, se obtine ca inversa W a lui f; este local analitica in
jurul lui 0, iar dezvoltarea sa este

o) yn
n=1 ’

unde

Deci,

n=1
Este ugor de vazut ca raza de convergenta a acestei serii este %, deci dezvoltarea e valabila pe
intervalul (—l l) .
e

S& calculdm o primitiva lui W, cu schimbarea de variabild y = fi(x) (adicd y = ze® gi © =
W(y))
/W(y)dy:/$($+1)€xd.r:6x (ﬁz—a:—}—l) +C=yW(y)—y+e"W 4 C.

Astfel, de exemplu,
/ W(y)dy=e—e+e—1=e—1.
0

Avand in vedere imaginile functiilor f; si fa, este clar ca putem vorbi despre W (f (z))
orice z € R. Evident, dacd x > —1, W (f (z)) = W (f1 (x)) = z. Pentru x < —1, W (f
W (f2(x)) # x. Este clar ca

pentru
(

) =

W(f(x)+1 lim x—i—l_l

lim =1 =
a\—1 r+1 aN—1z+ 1
Ne punem problem existentei (si a valorii) limitei
LW (@)1
z,/—1 z+1

Avem urmatorul rezultat mai general.
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Teorema 3.4.1 Fiep: R — R 17 € R un punct de extrem local pentru ¢. Presupunem ca exista
o vecinatate V' a lui T astfel incdt ¢ este analitica pe V' gi @' () # 0 pentru orice x € V\ {T}.
Atunci:
(1) exista € > 0 astfel incat ¢ este strict monotona pe [T — €, T| gi pe [T,T + €| ;
(i1) daca 1 este inversa lui ¢ pe [T, T + €|, exista § > 0 astfel incdt 1) o ¢ este corect definita
pe [T — 0, ] i
(Yop)(x)—=

lim — =—1.
z,/'T Tr—X

Demonstratie. Facem demonstratia ambelor puncte. Stim ca, pe V. ¢ se scrie ca

o () :Zan(x—f)n.

Cum f este neconstanta, exista IV, cel mai mic numar natural nenul pentru care ay # 0. Deci
p(x)=as+ Y ap(z—T)"

Definim, pe V, functia F (z) = 3220y a, (z —T)" " si avem
o) =ag+ (x—7)" F (2).

Cum seria ce defineste F' are aceeasi raza de convergenta ca si ¢, deducem ca F' este continua in
z. In plus, F (Z) = any # 0 i prin urmare F' are semn constant in apropierea lui Z, deci existd
e > 0 astfel incat F' are semn constant pe [T —e,T+¢| §i [T —e,T+¢| C V. Cum T este extrem
pentru o, N este numér par. Din ipoteza ¢’ (z) # 0 pentru z € V'\ {Z}, pentru cd T este punct de
extrem, deducem ci ¢’ este pozitiva gi respectiv negativa pe cele doud zone ale lui V' : VN (—o00, T)
si VN (T, 00) . Deci ¢ este strict monotond, de monotonii diferite pe [T — ¢, 7| si pe [Z,T + ¢] . Fie ¢
inversa lui ¢ pe [Z, T + ¢] . Din monotonia descrisa anterior, exista § € (0, ¢) astfel incat ¢ o  este
corect definita pe [T — §,7|. Fiex € (T — 0,T) . Atunci notdm z = (¢ o ) (x) . Avem z € (Z,T + ¢)
si

p(z2) =(po (o)) (r)=((porh)op)(r)
= (o) (p(7) =¢(z).

Deci
ap+ (z =)V F(2) = ap + (x — ) F (2),
adica
0>2"T - Flz)
x—T F(z2)
Pentru  — 7 avem z — 7 gi continuitatea lui F' ne conduce la concluzia privind limita. 0
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Observatia 3.4.2 Rezultatul nu are loc daca ¢ este doar derivabila in T. De exemplu, functia
¢ : R — R data prin
(z) = { 22, pentru x < 0
v 23, pentru x > 0

este deriwabild, T = 0 este punct de minim, iar inversa ramurii din dreapta este functia /x. Dar

)
) x
lim — = —o0.
z,/0 X
Corolarul 3.4.3 Are loc egalitatea
lim Y@+
z /-1 z+1

Prezentam cateva aplicatii ale functiei W.
Aplicatia 1. Prima aplicatie a functiei W pe care o mentionam este exprimarea solutiilor unor
ecuatii ce nu pot fi rezolvate explicit. Un astfel de exemplu este ecuatia

ar + b+ ce™ =0
unde a,b,c,d € R cu a,d # 0. Atunci ecuatia

e are solutia unica

_bd
daca numarul CdeT“ > 0;

e are solutiile

daca cde™ € [-1,0);
Y

a e’
cde_% < 1

e nu are solutie daca <= <

Intr-adevir, ecuatia initiald se scrie echivalent astfel
(ax +b)e ™ = —¢

bd d

(—dx — —> emde = &

a a
(—da: - %> e = gZe_%.
a a



Deci obtinem concluziile prezentate mai sus.

Aplicatia 2. Prezentam acum o aplicatie in mecanica. Consideram un proiectil care este aruncat
de la sol (din origine) sub un unghi 6 cu viteza v. Dorim s& gtim distanta R (pe axa ox pozitiva)
la care proiectilul cade pe sol.

Consideram mai intai cazul fara frecare (rezistentd). Ecuatiile diferentiale care descriu migcarea
sunt

2’ =0,
y// = —g.
Integram de doud ori gi tinem seama de conditiile initiale, z (0) = y (0) = 0, 2/ (0) = vcos¥b,
y' (0) = vsinf, pentru a gasi

x(t) = (vcosh)t

1
y(t) = —§gt2 + (vsin ) t.

E clar ca traiectoria este o parabold si impunénd conditia y () = 0 solutia nenuld ne conduce la

2 2
R = Lsin@cosé’: U—sin29.
g g

Deci distanta maxima va fi cAnd unghiul 6 este 7.
Consideram acum cazul in care migcarea proiectilului intAmpina o rezistenta proportionala cu
viteza sa. Constanta de proportionalitate se noteaza cu k. Acum ecuatiile migcarii sunt

2 = —kx',

n_

y'=—g—ky.
Folosind 2’ (0) = vcos#, 3/ (0) = vsinf avem
2 (t) = (veosf) e ¥,
1
Y (t) = T (—g+ (g+ kvsing) e ™).
Integram si utilizdm x (0) = y (0) = 0 pentru a gasi
1
x(t) = e (veosh (1—e™™)),
1 : —kt :
y(t) = w2 (—ktg+ g+ kvsind — e (g + kvsin6)) .

Ca mai sus, trebuie sa rezolvam ecuatia y (t) = 0, care de data aceasta nu mai este atat de simpla.
Observam ca aceasta ecuatie este de tipul celei de mai sus. Mai precis,

k k
y(t) =0 << —kt—|—1+§sin0—e_kt <1+§Siﬂ9> =0.
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Notam, pentru simplitate, u = — <1 + 5 sin 9) si ecuatia devine

—kt—u—+eFu=0.

Cum numarul care decidea asupra solutilor acestui tip de ecuatie este acum ue" € [—%,0),
aplicand formula de mai sus gasim solutiile

—u 1 u
tl—T—i‘EW(UG ),

—u 1 u
t2—7+EW,1(ue )

Este esential de remarcat faptul cad u < —1, deci W_; (ue") = u, adicd to = 0 (timpul de start).
Pe de alta parte, din acelagi motiv, W (ue") # u, deci t; corespunde distantei cautate. Inlocuind

in r avem 1
R=— 0(1— u—W (ue™) )

k’U COS ( (& )
W(ue") W (ue*)

ue

Cum e~

, avem

R = 1vc:os@ (1 — M) )
k U

Deci, in final,

1 W ((—1 — %” sin 9) e_l_%sm@)
R=—-vcosf |1+
k 14 % sin g
Observatia 3.4.4 Remarcam ca atunci cdnd k — 0 valoarea lui R tinde la valoarea din cazul
fara rezistenta. Cu notatiile de mai sus, u = —1 — % sinf, avem
1 wsind
ko g(u+1)

deci, conform calculului anterior,
R(k) = _v*sinfcosf - W (ue®)
g(u+1)
v?sin 20 W (ue*) — u
2 u(u+1)

u

Cum u /' —1, pentru k \, 0 avem
v? sin 260 W (ue*) — u

lim R (k) = li
) = O
v?sin20 . W (ue) —u—1+1
= ——— lim
29 u/-1 u—+1
:_’U2Sin29 lim W(ue“)+1_1
29 u,/—1 u—l—l
_ v*sin26
g )

adicd rezultatul agteptat. Mentionam ca pentru ultima limita s-a folosit Corolarul [3.4.3
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Aplicatia 3. A treia aplicatie se refera la un aspect din teoria retelelor aleatorii si, in particular, la
o estimare a vitezei de propagare a unei pandemii. Fie o populatie de N persoane. Presupunem ca
fiecare persoand se afld in contact cu un numaér de a persoane la intdmplare (a poate fi o expectanta,
neconstantd pentru toate persoanele, si nu neaparat numdr intreg). Dacd o persoana este infectata
cu o boala transmisibila si boala se transmite tuturor celor cu care este in contanct, ne intereseaza
numarul total de persoane care se vor infecta. Sau, mai bine spus, care este probabilitatea ca
intreaga populatie sa fie infectata?

Pentru a transpune problema in limbajul initial, N reprezinta un numar de neuroni si fiecare
are a axoni ce pot forma sinapse cu alti neuroni. Conexiunile axonilor sunt echiprobabile (in
particular, un neuron poate face mai multe sinapse cu un alt neuron). Spunem cd un neuron B
este la t axoni de A daca t este cel mai mic numar de axoni prin care A si B sunt conectati.
Exident, se poate ca A si B s nu fie conectati, caz in care ¢ nu exists. In descrierea modelului, a
neuroni, aleatoriu, sunt la un axon de fiecare neuron A.

Fie A un neuron. Notadm cu z (N, a,t) numarul de neuroni aflati la cel mult ¢ axoni de A.
Conectivitatea slaba a retelei se defineste prin

x(N,a,N)

7(N7a):T.

Cum lucrdm cu N, a fixate, notdm x (N, a,t) prin z (t) si scrien formula de mai sus prin

z (V)
.

Vom descrie in continuare un argument euristic pentru deducerea valorii lui 7. Mentionam ca, pe
baza unui efort considerabil, se poate arata ca argumentul poate fi facut riguros.
Cautdm sd exprimam numarul de neuroni aflati la exact ¢ axoni de A, adica valoarea x (t + 1) —

z(t).
Consideram experimentul de a plasa la intAmplare s bile in N cutii. Valoarea asteptata a
numarului de cutii ocupate de macar o bila este data de

"-(-4))

La fiecare pas a (z (t) — x (t — 1)) noi neuroni sunt conectati, deci la pasul (¢ + 1) vor fi conectati

1\ ele(=a(t=1)
Nl1-(1-%
(%)

a(z(t)—z(t—1))
:U(t—i—l)—:v(t):(N—x(t))(1—(1—%) >

noi neuroni. Deci

Notam
y(t)=N—=z(t)
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(numarul de neuroni neconectati de A dupd ¢ pasi) si ecuatia se scrie

1\ 2E-D-y(®)
tr )=yt (1- -
y(t+1) w>( N>

1 ay(t) 1 ay(t—1)
tr1) (11— — —yt)(1-
vern(1-5) o (i-5)

1 ay(t)
t+1)11——
yl )< N)

este o constantd pe care o notam prin K. Astfel,

Sau

deci

—ay(t)
y(t+1)—K(1—%) | (3.9)
Dar
y(0) =N -1,

deci, conform (j3.8)),
y(1) = (N -1 N

Obtinem
K =N""N(N—1)"+,

Evident y (t) este o cantitate descrescatoare in ¢, deci atunci cand N creste si ¢ creste, intuim din
(13.9) ca limita y a acestei cantitati va satisface ecuatia

y=(N-1) (1 - %)aw_y) |

Pentru N mare acesta valoare poate fi aproximata prin

N e“%_l) ,
deci .
N

poate fi aproximata prin solutia ecuatiei

y=1—e".
Astfel, conform Aplicatiei 1,
W (—ae™®)

vy=1+ .
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Astfel, revenind la problema pandemiei, daca in medie o persoana are contact aleatoriu cu a
persoane, atunci numarul de persoane infectate va fi

Ny:N(HM).

a

Folosind software-ul de calcul stiintific Octave, putem calcula procentajul de infectii in cadrul
populatiei.

Astfel, functia W se afla in pachetul symbolic care trebuie instalat prin comanda pkg install
-forge symbolic. De exemplu, folosind codul

a=0;

for k=2:10
a=1+lambertw(-k*exp(-k))/k

endfor

obtinem valorile 0.79681, 0.94048, 0.98017, 0.99302, 0.99748, 0.99908, 0.99966, 0.99988,
0.99995.
Deci,

e pentru a = 2, vor fi infectati 79, 68% din membrii populatiei;
e pentru a = 3, vor fi infectati 94, 04% din membrii populatiei;
e pentru a = 4, vor fi infectati 98, 01% din membrii populatiei;
e pentru a = 5, vor fi infectati 99,30% din membrii populatiei;

e pentru a = 10, vor fi infectati 99,99% din membrii populatiei.

Exercitiul 3.26 Sa se scrie un program propriu de determinare aproximativa a valorilor de mai
sus.

3.5 O metoda cvasi-Newton: metoda secantei

Discutam in cazul functiilor de o variabila o alternativa la metoda lui Newton despre care am
vazut ca are o viteza de convergenta foarte buna, dar necesita la fiecare pas calculul derivatei
intr-un punct, calcul ce in unele situatii poate fi costisitor din punct de vedere computational.
Ideea noii metode, intitulatd metoda secantei (pentru motive pe care le vom intelege in curand),
este de a inlocui derivata din calculul iteratiei Newton

f (zr)

Try1 = Tk — f, (fL'k)

[6)



cu o aproximare a sa (deci este o metoda de tip cvasi-Newton). Astfel, obtinem o iteratie de forma

f ()
di

Tpt1 = Tk —

unde
f (o + hi) — f(x1)
hy ’
raport care pentru hy mic aproximeaza f’ (z;) . Pentru alegerea lui hy se poate proceda in diverse
moduri, dar in metoda secantei se alege hy = 1 — x;. Astfel, iteratia devine

d, =

Tp—1 — Tk
fxr) = f ()

Evident, pentru ca recurenta sa fie definita, este nevoie de doua date initiale zg, x1. O ilustrare
graficd a semnificatiei iteratiei de mai sus justifica numele metodei. Este de asemenea usor de
intuit ca limita h;, — 0 nu este automat satisfacuta, ci depinde de unele detalii tehnice legate de
alegerea datelor initiale. Pe de alta parte, noua iteratie nu face decat o singura evaluare a lui f la
fiecare pas.

Prezentam acum detaliile matematice ale convergentei acestei metode.

Th1 = 2 — f(ak)

Lema 3.5.1 Flie f :[a,b] — R o functie derivabila astfel incdt

p= inf |f (z)| > 0.

z€la,b]
Atunci exista H > 0 astfel incdt pentru orice x € |a, b] si orice h € [—H, H] astfel incit x+h € |a, b]

e fla+h) - f ()
h

> L
=2

Demonstratie. Presupunem, prin reducere la absurd, ci existd (x) C [a,b], hy — 0 astfel incét
zy, + hy € [a,b] cu
he) —
J op o+ ) = J (@) < H, Vk.
hy, 2

Conform Teoremei lui Lagrange, pentru fiecare k, exista vy intre xp + hy si ;. astfel incat

f (g + hi) — f(x)
R,

= f" () -
Cum () C (a,b), aceasta relatie contrazice ipoteza. O

Urmitoarea lemd este continutd in demonstratia Teoremei [3.3.3] dar o prezentam explicit.

Lema 3.5.2 Fie f : [a,b] — R o functie derivabila astfel incat f' este Lipschitz de constanta
L > 0 pe [a,b]. Atunci pentru orice x,y € [a, b]

W)~ F @)~ F @) - 2)| < & (— ).
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Demonstratie. Scrierea

|f () = f )= (@) (y — )| =

Yy
[ @ - riaa
si ipoteza asigura concluzia. U

Teorema 3.5.3 Flie f : [a,b] — R o functie derivabila astfel incdt

(i) [ se anuleazd intr-un punct T € (a,b);

(Z’L) = inf:EE[a,b] ‘f, ($)| > 0;

(111) f" este Lipschitz de constanta L > 0 pe [a,b].

Atunci exista 0,m > 0 astfel incat pentru orice data initiala vo € (T — 6, T+ 9) §i orice gir
[y} € (= m)\ {0} , iteratiile

Dy,

f(zr+ hy) — f (1)

sunt bine definite gi raman in intervalul (T — 0,T + ) §i, mai mult, v, — T.

Try1 = 2 — f(ak)

Demonstratie. Pentru buna definire este suficient ca xp+hy, xx € (a,b) pentru orice k (cf. Teoremei
lui Lagrange si ipotezei (ii)), lucru care se va realiza pentru alegeri potrivite ale constantelor § si
1, dupa cum se va vedea mai jos.

Definim ¢, = T — x;, pentru orice k. Din Lema |3.5.1],

f(ox + hi) = f(x1)
D,

dp = > g
daca |hg| < H si xg, 2 + hy, € (a,b). Alegem deci {hy} C (—H, H) . Presupunem pentru moment
cd xy, si Tx + hy sunt in (a,b) . Atunci,

f (zx)

Ekt1 =T — Tp41 =T — Tk +

deci, folosind si Lema [3.5.2]

] < ﬁ (IF @) = f () = f (o) eal + i — £ (@) exl)
2 (Llel | Llhl|exl
()

7

IA




Am gasit astfel estimarea,

= |

leral < = (lexl + |hn]) lex]

in ipotezele mai sus mentionate.

Trecem acum la demonstratia efectiva a concluziei. Fie 6 € (0,1), fie p = min{|Z — al, |T — b|}
si 6 = min {2, g—g} ,n=min{H,d}. Fie (z;) un gir de iteratii generat ca in enuntul rezultatului.
Pentru a obtine concluziile este suficient sa aratam ca

lekt1] < Olex|, VE.

Pentru k = 0, z¢ € (a,b), o + ho € (a,b) (din alegerea constantelor) si putem aplica estimarea
anterioara

L L L _Ou
le1] < = (leo| + [hol) [eo] < — 20 |eo| < — 2=+ |eo| = b ]eo].
Iz Iz po 2L
Inductiv, se obtine inegalitatea anuntata si demonstratia este incheiata. 0

Corolarul 3.5.4 In ipotezele Teoremei daca hy — 0, atunci convergenta lui () este
superliniara.

Demonstratie. Din demonstratia Teoremei [3.5.3 deducem
2L
k] < Imax{|€k| [Pl } lex], VE = 0.

Cum &, — 0 (conform Teoremei [3.5.3) si hy — 0 (conform ipotezei), avem si max {|ex|, |hx|}-
Astfel, are loc convergenta superliniara. O

In continuare, precizam ordinul de convergenta al metodei secantei. Din nou, incepem cu un
rezultat ajutator.

Lema 3.5.5 Fie f : [a,b] — R de doua ori derivabila si x,y,z € |a,b] puncte distincte. Atunci
erista u € (min{x,y, 2} ,max{z,y, z}) astfel incat

fy)=f) _ [(@)-f®)
=R = A )
e(x,y,z) = P =

Demonstratie Consideram functia polinomiala

(u—x)+e(@y,2) (u—1x)(u—-y)

si constatam cd f(x) = p(z), f(y) = p(y), f(2) = p(z). Aplicand Teorema lui Rolle functiei
f — p, gisim doud zerouri are derivatei sale si tot din Teorema lui Rolle pentru (f — p)’ gisim u
astfel incat (f — p)” (u) = 0, ceea ce conduce la concluzie. O
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Teorema 3.5.6 Fie f € C?([a,b]) astfel incdt
(i) f se anuleaza intr-un punct T € (a,b);
(ii) 11 = infyepoy | (2)] > 0
(ZM’) L= SUPzea,b] |f” (ZU)| > 0.
Daca metoda secantei cu datele initiale xg, 1 € [a,b] converge la T atunci exista C > 0 astfel
incat
lex1] < C'lex|”, Vk,

unde @ = %5 este numarul de aur.

Demonstratie. Pentru orice k avem

Tp—1 — Tk

f(@e—1) = f (zk)
= —¢cr — f(xn) f(zr) — f (zp_1)

f@—f(eg)  f(er)—F(op_1)
ToTg Tk TE—1
T—Tp—1

fer)—f(er_1)
Tp—Tk—1
- (vx)
BRI

—Epy1 = Tpp1 — T = — T — [ (xp)

= Ek€k-1

"

unde wuy, v, € (a,b). Existenta lui vy rezultd din Teorema lui Lagrange, in timp ce existenta lui
() rezultd din Lema [3.5.5 De asemenea, este clar ¢& (ug), (vg) — T.

Din ipoteza,

2L
lekt1] < 7 lek| |lek—1], Yk > 0.

Notam M := % Cum |e,_1| — 0, deducem c& ordinul de convergenta ar putea fi mai mare decat
1.

Ardtam ci ordinul de convergentd este ¢, solutia supraunitars a ecuatiei p*> = p + 1. Pentru
determina ordinul de convergenta, cautam doua constante C' si p > 1 astfel incat pentru orice k

suficient de mare sa avem
leps1] < C yfk’p-

Atunci,
leka| < Clexl” < CP e [P

lers1] < M ep]ler—1] < MC |ep]”.

Este suficient ca

crt = MC
pPP=p+1,

deundep:<p§iC’:Mé. O
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Observatia 3.5.7 Asadar, in anumite ipoteze metoda secantei are ordinul de convergenta p. Cum
©? > 2, iar uneori doud iteratii ale acestei metode sunt mai rapide decdt o iteratie a metodei lui
Newton, in astfel de cazuri, metoda secantei este mai eficienta.

Exercitiul 3.27 Sa se implementeze metoda secantei (eventual, pentru una dintre functiile stu-
diate la metoda lui Newton).

Observatia 3.5.8 Metoda secanter aplicata derivatei conduce la o metoda de ordin 1 pentru aprox-
imarea punctelor critice (de minim, in unele cazuri).

Exercitiul 3.28 Sa se foloseasca metoda secantei pentru determinarea minimului functier de la
Ezxemplul (cu derivata calculata exact §i/sau numeric).

Exercitiul 3.29 Folositt metoda injumatatirii intervalului, metoda lui Newton, metoda cvasi-
Newton st metoda secantei pentru a aproxima radacini ale ecuatiilor de mai jos.

(i) cosz — xe®* = 0; (ii) x* —x —10=0; (i11) v — e =0; (i) e * (2* —br +2)+1=0;

(v) & —sinz —271 =0; (vi) e = 3Inx; (vii) e ' +10sin 2z — 5 = 0;

(viii) sin 2z — e ' = 0; (iz) 3z +sinzx — e =0 (z) tgx —x — 1 =0; (z1) —52* + €* = 0.
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Capitolul 4

Algoritmi pentru probleme de
optimizare fara restrictii

Aga cum am putut constata, multe dintre problemele de optimizare nu pot fi rezolvate exact.
De asemenea, nu exista o metoda universala de aproximare a solutiilor, ci doar unele principii
generale privind designul majoritatii algoritmilor pe care ii consideram. Pe baza acestor principii
vom incerca s& construim clase de algoritmi ce sunt eficienti pentru clase specifice (particulare)
de probleme. In acest capitol ne ocupam de algoritmi pentru probleme fars restrictii.

Pana in acest moment, am discutat deja cativa algoritmi pentru aproximarea punctelor de
minim, dar cei mai eficienti dintre acestia sunt bazati pe metode de determinare a zerourilor
unei functii aplicate diferentialei functiei de minimizat (metoda lui Newton si metoda secantei).
In acest capitol vom studia algoritmi care sunt de la bun inceput conceputi pentru minimizare.
Astfel, incepem cu algoritmi de ordin zero pentru functii de o variabila, stiut fiind faptul ca astfel
de algoritmi sunt greoi din punct de vedere computational pentru dimensiuni mari (a se vedea
Exemplul si vom continua cu algoritmi de ordin superior in cazul general.

4.1 Algoritmi de ordin zero pentru functii de o variabila

Prima categorie de algoritmi de care ne ocupam este cu oracol de ordin zero, adica fara diferentiale,
baza reprezentand-o cunoasterea functiei obiectiv in punctele de control. Deci, in principiu, acesti
algoritmi functioneaza si pentru functii nediferentiabile.

Asa cum am vazut (Teorema , pentru mai functii de mai multe variabile, complexitatea
metodelor de ordin zero este descurajanta, motiv pentru care ne vom concentra, mai ales, pe cazul
functiilor de o variabila reala. Mai mult, functiile de care ne vom ocupa vor fi continue si definite
pe intervale compacte. In plus, vom impune o proprietate foarte importants, numitd proprietatea,
de unimodalitate.

Fie deci f : [a,b] — R o functie continui (a,b € R, a < b). In virtutea Teoremei lui Weierstrass,
existd T € [a, b], un punct in care f isi atinge minimul global pe [a,b] . Cum ciutdm metode de a
aproxima un astfel de punct, este rezonabil sa consideram ca T € (a,b), pentru cd, in caz contrar,
T este cunoscut cu exactitate. Spunem ca f este unimodald daca este strict descrescatoare pe [a, T|
si strict crescdtoare pe [Z,b]. Evident, in aceastd ipotezd, T este unicul punct de minim global
pentru f.
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4.1.1 Delimitarea (bracketing) punctului de minim

Fie deci f : [a,b] — R continud gi unimodald. Fie T € (a,b) unicul sdu punct de minim. Ne
intereseaza si determindm un interval mai restrans in care se giseste T. Fie z € (a,b). Daca
f(a) < f(x), cum f este unimodald, putem spune ca T € (a,x). Altfel, dacd f (a) > f (), nu
se poate spune nimic cu privire la pozitionarea lui = in raport cu cele doua intervale delimitate
de 7. Ideea este aceea de a creste suficient de incet punctul z plecdnd din a astfel incat sa nu il
depasim pe 7.

Implementare 4.1 Ilustram aceastd discutie cu urmatorul cod Matlab/Octave:
functie=0(x) [x*x-sqrt(17)*x+3];
fplot (functie, [-2,71);
a=-2; b=7; s=0.0001; x=0; k=0;
while functie(a)>functie(a+ts)
a=a+s; k=k+1;
endwhile
a
functie(a)
k

care returneaza: a = 2.0616; ans = -1.2500; k = 40616

Exercitiul 4.2 Sa se deseneze gaficul functiei f : R —= R, f(x) = 2% — 425 + 323 + 62 (a se
vedea §i Exercizjwl pe diferite intervale si sa de deduca faptul ca exista doua puncte de minim.
Apoi, sa de delimiteze in jurul fiecarui minim un interval pe care functia este unimodala gt sa se
aproximeze aceste puncte prin metoda de mai sus.

Chiar daca este un procedeu simplu si oarecum euristic, aceasta metoda ilustreaza o idee ce
se intalneste des gi la algoritmi mai sofisticati, si anume ideea unei miscari progresive in directia
potrivitd cu un pas mic (dar totugi nu prea mic, pentru a evita un calcul prea costisitor).

Putem imbunatati metoda de mai sus dupa principiul retelei echidistante, astfel: alegem un
numdar natural nenul n > 1 de subdiviziuni egale ale intervalului [a,b], deci lungimea fiecirei
subdiviziuni este 6 := (b — a) /n. Calculim valoarea lui f in toate numerele a + id cu i € 0,n
si alegem punctul in care se obtine cea mai mica valoare. Obtinem un punct x,;, si o valoare
f (Zmin) , iar intervalul de cdutare pentru pasul urméator este [T, — J, Tmin + 0] . Pe acest nou
interval de lungime 26 folosim acelagi procedeu: recalculam noul ¢ si aga mai departe. Procesul de
cautare se va termina cand lungimea intervalului de cautare este mai mica decat o valoare € > 0
prestabilita.

Exercitiul 4.3 Sa se implementeze aceasta metoda pe functia de la exercitiul anterior.

Asa cum am vazut, acest algoritm este destul de costisitor din punct de vedere computational
pentru cd presupune calcularea functiei (invocarea oracolului de ordin zero) in multe puncte.
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In orice caz, pentru orice algoritm de acest tip apare problema determinirii punctelor a si b
intre care facem cautarea. Aceasta poate fi rezolvata astfel: alegem u un punct arbitrar i § > 0
o constanta. Daca

flu=0)=f(u) = f(u+td),

atunci, cu siguranti, pe baza unimodalit#tii, punctul de minim se afl§ la dreapta lui . In acest caz,
ne deplasdm la dreapta cu constanta ¢ atat timp cat este respectatd conditia f (u) > f (u+9).
Daca acesta conditie nu este respectatd, inseamna ca minimul se afla in (v — 0, u 4+ §) . Un ration-
ament similar se face daca

flu=29)<f(u) < f(ut9).

Daca niciuna dintre conditiile de mai sus nu se intdmpla pentru alegerea u, cerem o alta data
initiald (unele rationamente ar permite si spunem ca punctul de minim e relativ aproape de wu,
deci noua daté initiald nu trebuie si fie foarte departe de alegerea anterioara).

Exercitiul 4.4 Sa se implementeze aceasta idee pentru functia f : R — R, f (z) = 2> — /172 +3.

O altd metoda de delimitare a punctului (punctelor) de minim, dar si a unor intervale pe care
functia este unimodulara, e bazata pe o vizualizare grafica. Pentru codul aferent reprezentarilor
grafice ale functiilor de o variabila, dar si o lista de functii pe care se pot testa codurile din aceasta
sectiune prezentam liniile Matlab/Octave de mai jos.

Implementare 4.5 Codul desen o _var.m (figier de rulare):
%functie=0(x) [sqrt(abs(x))];a=-2;b=4
%functie=0(x) [x~2+27/x];a=2;b=2.5;
hfunctie=0@(x) [x"2-sqrt(17)*x+3];a=1;b=4;
%functie=0@(x) [204165.5./(330-2*x) + 10400./(x-20)];a=40;b=90;
%functie=0(x) [x"6-4*x~5+3*x"3+6%*x];a=-1;b=-0.5;
%functie=0(x) [3*exp(x)-x"3+b*x];a=-3;b=3;
%hfunctie=0@(x) [-5*x"2+exp(x)];a=1;b=4;
hfunctie=0@(x) [sqrt(x~2+25)/2+(7-x)/6];a=0;b=7;
%functie=0(x) [max((x"6), (3*x-1)"2)];a=-2;b=2;
%functie=@(x) [sqrt(100+x~2)/299702+sqrt ((30-x)~2+1600)/228849] ;a=0,b=40;
functie=0(x) [4*pi/(log(2*x)-1/2)*x];a=1;b=7;
%functie=0(x) [exp(x)-2%x~2];a=0;b=4;
fplot (functie, [a,b]);
set(gca, ’XAxisLocation’, ’origin’)
set(gca, ’YAxisLocation’, ’origin’)

Exemplul 4.1.1 Unele dintre functiile de mai sus provin din chestiuni cu caracter practic ce nu
pot fi tratate cu ugurinta prin metodele clasice de determinare cu exactitate a punctelor de extrem
(a se vedea prima sectiune a lucrarii).
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4.1.2 Metoda sectiunii de aur

Prima metoda mai elaborata pe care o prezentam este bazata pe o observatie simpla si pe un
detaliu tehnic, nu chiar simplu la rdndul sau.

Ideea este una similara celei de mai sus si consta in micgorarea intervalului ce contine punctul
de minim pana la atingerea unui criteriu de oprire. Avem in vedere doud lucruri: o reducere optima
a lungimii intervalului ce delimiteaza punctul de minim si un numar cat mai mic de invocari ale
oracolului.

Fie f : [a,b] — R o functie continud unimodald, ca mai sus. Fie 1,25 € [a,0] cua < 1 <
o < b. Dacad f(x1) < f(x2), atunci, cu sigurantd, T € (a,z2|, iar altfel T € (x1,b). Deci, in
orice caz putem micsora intervalul. Ideea este de a alege judicios punctele x; si x5 in asa fel incat
sa avem o descrestere semnificativa a lungimii intervalului, indiferent de care parte a intervalului
initial este indepartata. O alta cerinta este de a proceda suficient de eficient astfel incat acel punct
dintre x; si x9 care raméne in interiorul noului interval ce delimiteaza minimul sa poata servi ca
punct intermediar pentru urmatorul pas al iteratiei. Daca aceasta a doua cerinta este indeplinita,
atunci la noul pas este necesara evaluarea lui f doar intr-un punct.

De exemplu, ne-am putea gandi la impartirea intervalului initial in trei parti egale, adica sa
ludm z; = a+ 5 (b—a) si 22 = a + 2 (b—a). Procedand astfel, dacd f(z1) < f(x2) atunci
trebuie sa retinem intervalul (a,z) iar acum z; este punctul din mijloc al acestui interval. Deci,
pentru urmatorul pas, daca alegem un singur punct (pentru a economisi efort computational)
acest punct nu va oferi simetrie impartirii intervalului. Deci, aceastd impartire nu este optimala
din acest punct de vedere.

Fie p € (3,1) si 21 = pa+ (1—p)b, 3 = (1 —p)a + pb. Aceastd diviziune permite ca
proportia din lungimea initiala care va fi eliminata sa fie aceeasi in oricare dintre cele doua cazuri.
Consideram, la fiecare pas, aceasta impartire a intervalului. Astfel, dorim ca punctul ce raméane in
interval dupa primul pas sa fie unul din punctele ce respecta aceastd reguld. Daca f (z1) < f (x9)
atunci trebuie si retinem intervalul (a, zs]. Pe baza cerintelor formulate:

[)31:(1—,0)@+p$2,

(x1 va fi al doilea punct pentru pasul urmétor, pentru ca, altfel, 21 = pa + (1 — p) xa, ceea ce
conduce la pa+ (1 — p)b = pa + (1 — p) x2, adicd x5 = b, ceea ce este fals), deci

pa+(1—=p)b=(1—-pla+p((1—p)a+pb),
adica
pPPp—1=0,

ceea ce conduce la
V5 —1
2

(pentru ci p > 271).
Daci f (x1) > f (x2) trebuie sd retinem intervalul (z1,b). Din nou, trebuie ca:

xe = pr1+ (1 — p)b,
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(22 va fi al primul punct la pasul urmétor) deci

(I=p)a+pb=p(pa+(1=p)b)+(1-p)b,

si din nou

-1
p= \/52 ~ 0.6180339.

In primul caz trebuie s& alegem primul punct la pasul al doilea ca fiind (1 —p)a+ pxsy, iar in
al doilea caz alegem al doilea punct ca fiind pz; + (1 — p) b.
Numele acestei metode provine din faptul ca, de exemplu,

To—a  p _\/g—l—l
b—ay 1—p 2

~ 1.618034,

acest numar fiind numit raportul de aur si fiind traditional notat cu .

Aceasta metoda asigura faptul ca intervalul ce delimiteaza minimul se micsoreaza la fiecare
pas astfel incat noua lungime este aproximativ 0.618034 din lungimea celei precedente. Mai mult,
incepand de la al doilea pas o singura noua evaluare a functiei este necesara.

Din nou, cautarea se termina cand lungimea intervalului este mai mica decat o valoare prescrisa.
Aproximarea minimului este mijlocul intervalului final.

Implementare 4.6 Ilustram metoda prin codul de mai jos:

functie=0@(x) [3*exp(x)-x"3+5*x];a=-3;b=3;
fplot(functie, [-3,3]);
eps=0.00001;rho=0.618034; intervallength=b-a;i=0;
while (intervallength>eps)
x1=rho*a+(1-rho)*b;x2=(1-rho)*a+rho*b;
if functie(xl)<=functie(x2)

b=x2;

else

a=x1;

endif

intervallength=b-a;

i=i+1;

endwhile
x=(a+b) /2

i
functie(x)

cere returneaza: x = -1.3846, i = 28, ans = -3.5173.

Codul de mai sus nu este optimal pentru ca evalueaza functia de doua ori la fiecare pas.

Exercitiul 4.7 Sa se implemeteze un cod care sa remedieze aceasta problema.
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Vom dori ca pe viitor sa utilizam aceasta metoda pentru diverse functii, motiv pentru care
vom prefera unele variante care sa implementeze o functie Matlab/Octave.

Exercitiul 4.8 Sa se scrie o functie care sa implementeze acest algoritm.

4.1.3 Metoda Fibonacci

Urmatoarea metoda pe care o prezentam este apropiata de cea precedenta, dar de data aceasta,
raportul de diviziune nu este constant la toti pasii, ci se bazeaza pe termenii girului lui Fibonacci
pentru construirea acestuia. Amintim principalele elemente despre acest sir necesare in continuare.

Propozitia 4.1.2 (Sirul lui Fibonacci) Fie sirul (F),~,, este definit cu termenii initiali Fy =
0, F1 =1 gi prin relatia de recurenta:

Fy=Fy 1+ Fys, Vk > 2.

Atunci:
(1) pentru orice k > 0,

(i)
B
1m = .
Foa 7

(iii) Seria

5

o0
=1k

este convergenta.

Demonstratie. (1) O demonstratie se poate face prin inductie.
O alta demonstratie, prin care sa se ajunga la forma anuntata a girului este urmatoarea.
Observam ca puterile radacinilor ecuatiei

?—r—1=0.

satisfac relatia de recurenta. Radacinile acestei ecuatii sunt

145

2

1-5
-

¥

Y=

Deducem ca pentru orice numere reale a, b, termenii sirului (a@k + bwk)k satisfac relatia de re-
curenta. Cum datele initiale impreuna cu relatia de recurenta definesc in mod unic termenii girului,
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inseamna ca prin determinarea valorilor a, b pentru respectarea datelor initiale, sirul obtinut este

sirul lui Fibonacci. Conditiile

a+b=0
ap+byp =1

conduc la

de unde deducem formula de demonstrat.
(ii) Folosind punctul anterior putem scrie

(1+«/5>k _ (1\/5>k
) 2 2
= lim

Fk*l <1+\/5>k:1 B (1_\/5)]61

lim

2

(iii) Pe baza punctului de mai sus,

F 1
lim—— = = <1
k+1 2

si din criteriul raportului pentru serii cu termeni pozitivi obtinem concluzia.

O

Prezentam acum metoda anuntata. Cum am spus, procedam ca la metoda sectiunii de aur,
dar fara a avea un raport constant, dar ca mai inainte, la pasul cu numarul k& functia este testata
in doud puncte z}, si 2 din interiorul intervalului de delimitare [ay, bi] $i dorim s pastrim unul
dintre aceste puncte drept capat al noului interval, iar pe celalalt ca punct interior. La iteratia k
intervalul are o lungime aflata in proportia r; € [%, 1) cu intervalul precedent. Astfel pentru orice

k,

QL + (1 — T‘k) bk

xi:r
a:i:(l—rk)ak+rkbk.

Presupunem, fiard a restrange generalitatea, ca f(z3) < f(x7), deci agy

ap §i bp1 = 73

Renotdm punctul z; prin z7,, (a se vedea cazul corespunzitor de la metoda sectiunii de aur).

Atunci, lungimea noului interval de cautare este

dk+1 =T (bk - (lk) .

Mai mult,
2 1 2
Ty, — Tp = bry1 — Tpyy

si avem

l’i—l’}gz(1—T]€)6Lk+7’kbk—7‘kak—(1—Tk)bk
:(2rk—1)(bk—ak).
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In plus,

b1 — Ty = b1 — (1 — Tog1) g1 — Topaber = (1= 7os1) (brgr — Qrsr)

= (1= 7pq2) 71 (b — ag) -

Astfel, obtinem
2r, — 1= (1 — rgq1) Tk

adica
1-— Tk
Th+1 = .
Tk

In acest moment utiliz&m termenii sirului lui Fibonacci.
Fixam n > 2 si definim raportul 7 ca fiind

F,_ 1
b e [5,1), Vk e {1,2,..,n—2}.

T =
ank+1
Atunci -
_ n—k
— l=550  Foaa
k+1 — Frr - F . .
tn—k n—
Fn—k+1
Deci,
- Fn—l
1=
F,
si
Fn72 F2

1
ro = iy Ty = — = —.
2 anl )ty 2 F3 2
La pasul urmator nu mai putem adauga un nou punct pentru ca r,,_; ar fi % = 1. Astfel, algoritmul
se termina dupa n — 2 pasi, unde n este numarul natural fixat mai sus. Avem
Fy F 1 1

Ed _9 = ——dn_g =..= —d1 = —(b—CL),

dTL— — T'p— dn— — n
P 2t = s Fy F, ",

deci putem fixa n astfel incat % (b — a) este mai mic decét o constantd pozitiva data.

Cum limita lui <%> este é = p, pentru n mare acest algoritm este practic echivalent cu

algoritmul sectiunii de aur.

Implementare 4.9 Prezentam o ilustrare de baza pentru aceasta metoda.
functie=0(x) [3*exp(x)-x"3+5%x];a=-3;b=3;
n=40;
fib=zeros(1,n);
fib(1)=1;
fib(2)=1;
for i=3:n;
fib(i)=fib(i-2)+fib(i-1);

88



endfor
for i=n:-1:3
r=fib(i-1)/fib(i);
x1=r*a+(1-r)*b;
x2=(1-1)*a+r*b;
if functie(x1l)<=functie(x2)
b=x2;
else
a=x1;
endif
endfor
(atb)/2
functie((a+b)/2)

Exercitiul 4.10 Sa se modifice codul de mai sus astfel incdat oracolul sa fie la fiecare pas invocat
o singurd data (deci cu pastrarea punctului intermediar).

Observatia 4.1.3 Avantajul acestor algoritmi este acela ca, oracolul fiind de ordin 0, se aplica
§t functiilor nederivabile, asa cum se vede din lista functitlor pentru care deja le-am implementat.

Exercitiul 4.11 Sa se implementeze metoda secantei pentru derivata in scopul aproximarii punctelor
de minim pentru functiile studiate mai sus.

Exercitiul 4.12 Sa se implementeze metoda injumatatirii intervalului pentru derivata in scopul
aprozimarit punctelor de minim pentru functiile studiate mai sus.

Exercitiul 4.13 Sa se recapituleze i sa se compare pe exemplele concrete de mai jos metodele de
ordin 0, 1, 2 pentru optimizarea functiilor de o variabila studiate.

(i) f(z) =2 (x —3)* + €5z € [0,4];

(ii) f(z) = 32* + (x — 1)*, 2 € [0,4];

(i17) f (z) = —4xsinz, z € [0,7];

(iv) f(z) =3z* + 12272 — 5, z € [0.1,4] ;

(v) f(z) =2z*+ 16271 z € [1,5].

Exercitiul 4.14 Reprezentdand grafic functiile de mai jos, sa se observe ca sunt unimodale pe
intervalele indicate si sa se determine punctul de minim prin metodele anterioare.

(i) f(x) = —b2® +42* — 122% + 112? — 22 + 1, z € [-0.5,0.5] ;

(i) f (v) = In* (x — 2) + In* (10 — 2) — 22, 2 € [6,9.9];

(iii) f (x) = —3zsin (0.75z) + e 2%, z € [0, 27 ;

(w) f(x) =e* +5e ", zel0,1];

() f(x)=02zInz+ (x —2.3)%, z €[0.5,2.5].

Pentru functii de mai multe variabile, am vazut ca algoritmii de ordin zero pot fi foarte
costisitori din punct de vedere computational. Pentru a obtine algoritmi eficienti pentru astfel de
functii sunt necesare metode de ordin superior.
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4.2 Algoritmi de ordinul intai (metode de tip gradient)

Exista mai multe modele generale de proiectare a algoritmilor cu oracol de ordinul intai pentru opti-
mizarea libers de constrangeri. In aceasts sectiune vom studia cateva dintre aceste metode. Avan-
tajul considerarii diferentialei este ca putem renunta la unimodalitate, intrucat semnul derivatei ne
indica daca in vecinatatea punctului functia creste sau scade, iar dezavantajele sunt ca nu putem
trata functii nediferentiabile si metodele ne indica, in general, ca ne indreptam catre puncte critice
care, in absenta convexitatii, ar putea sa nu fie puncte de extrem.

4.2.1 Descrierea metodei directiei de descrestere (gradient descent,
GD)

Pentru inceput, ne concentram pe modelul numit "cautarea directiei de descrestere".

Scopul acestui algoritm este acela de a realiza la fiecare pas o descrestere a functiei obiectiv
f:RF - R, de clasid C? (i.e. f(zpi1) < f(zy)). Algoritmul calculeazi la fiecare pas k, o directie
pr (un vector de pe sfera unitate) si un pas oy > 0 de miscare pe directia py. Astfel, plecand de
la iteratia xj, noua iteratie va fi

Tl = Tk + AEPE- (41)

Primul punct al iteratiei, adicd xg, se alege arbitrar (vom vedea ulterior c&, si de aceastd data,
este indicat ca x, si satisfaci anumite cerinte). In cadrul acestei scheme sunt importante atat
alegerea directiei cat si a pasului.

Alegerea directiei Din formula lui Taylor, pentru «, p fixate, exista ¢ € (0, «) astfel incat

Flox +ap) = F(x) +aV (@) (p) + 50V (s + t9) (7. p),

adica
Flae +0p) — (o) = o [V () (p) + 5V F (o + ) (0.9)] (1.2

Oprindu-ne cu evaluarea la diferentiala de ordinul intai, directia pe care f descreste cel mai mult
este datd de solutia problemei de minimizare pe bila unitate inchisd a functiei (in variabila p),
p+— Vf(zg)(p). Cum

V() (p) = IpI IV f (i)l cos 6 = [|V f ()| cos 0

unde 6 este unghiul dintre p gi V f(zy), este clar cd minimul este atins pentru

_ V(@)
PV @l

dac ||V f(xx)|| # 0. Deci daci s-a atins un punct critic, atunci nu putem inainta. In caz contrar,
alegerea lui p; de forma de mai sus se numesgte metoda celei mai bune (sau celei mai abrupte)
descresteri (steepest descent method, in limba englezd). Pe de alta parte, orice directie pentru
care unghiul cu V f(z;) este mai mare de § (i.e. cosf < 0) produce o descrestere a functiei f daca
« este suficient de mic (conform (4.2))), intrucat ultimul termen contine «, deci tinde mai rapid
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ctre zero. O astfel de directie (pentru care V f(x)(px) < 0) se numeste directie de descrestere
(gradient descent).

Alegerea pasului Apare acum problema alegerii lui «y. Exista mai multe variante pentru
aceasta alegere. Le vom enumera pe cele mai importante dintre ele si vom detalia consecintele
celor mai populare dintre aceste posibilitati.

Regula minimizarii exzacte Alegerea ideald este minimul, pentru o > 0, al functiei a — f(xy +
apy), dar, din punct de vedere practic, problema aceasta nu este neapéarat una simplu de rezolvat.
Totusi, aplicarea algoritmului sectiunii de aur conduce la o solutie aproximativa a acestei probleme.

Regula minimizarii limitate Alegem oy, astfel incat

flze +ape) < f(xp+tpe), VE€(0,9],

unde s > 0 este o cantitate dinainte stabilita. Astfel, trebuie s& minimizam de fapt a — f(zx+aps)
pe [0, s] . Din nou, aceastd problema intermediara poate fi una dificil de implementat.

Regula factorului constant Alegem

Tpe1 =z — BV f (25)

unde 5 > 0 este dat (adica o, = S|V f (zx)]|. Aceasta este o variatie a metodei celei mai bune
directii de descrestere, dar vom vedea ca functioneaza pentru functii f avand unele proprietati
suplimentare. In plus, in general, ea trebuie combinati si cu alte idei. Dacd f(zj, + SV f (x3)) >
f(zx) atunci factorul 8 trebuie micgorat (procedura ce se numeste backtracking).

Regula Armijo Fie a > 0, 5 € (0,1) si c € (0,1). Se testeaza inegalitatea

fxg) +c (Bia) Vf(xe)(pr) > f (Ik + Biozpk) ,1=0,1,2,... (4.3)

iterativ pornind cu ¢ = 0 (sau, mai practic, cu valoarea lui 7 obtinuta la precedenta iteratie).
Ideea este cd dorim ca descregterea functiei sa fie suficient de mare. Primul test, pentru i = 0 (sau
pentru ¢ specificat mai sus) adicd pentru pasul a (respectiv pasul ay) este

f(wr) +caV f (o) (pe) > f (21 + apy) .

Daca inegalitatea de mai sus este satisfacutd alegem xp1 =z + apy (adicd oy, = a). Altfel, pasul
se micgoreaza la fa i efectudm testul (pentru i = 1)

[ (@k) + cBaV f(a)(pe) > [ (zr + Bap) .
Continuand procedeul in acelasi fel, obtinem o metoda foarte practica.

Observatia 4.2.1 [teratiile prevazute de Requla Armijo pentru determinarea pasului se termind
la un moment dat. Demonstram aceastd asertiune. FEvident, atunci cdnd i este foarte mare,
t := B« este foarte apropiat de 0. Presupunem ca

f (SCk + tpk) > f (.Tk) + CtVf(SL’k)(pk), Vt.
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Cum f este de clasa C*, existd o functie 6 continua in 0, cu lim;_ @ = 0 astfel incdt

f(@r+tpe) = f (@) + 0V f (@) (o) + 0 (1) -
Obtinem
0(t)

(0= D) VF(@)(pr) + = <0

Pentrut — 0 (adica pentru i — o0), deducem
(¢ = 1) Vf(zr)(pr) <0,
ceea ce este fals.

Regula Wolfe Fie 0 < ¢; < ¢g < 1. Alegem «y, ca fiind un numar a > 0 satisfacAnd urmatoarele
doua conditii
{ f(xk + apk) < f(xk) + clavf(xk)(pk)v (4 4)
2V f (i) (pr) < V [k + apr)(pr). '

In general, prima conditie (care este conditia Armijo de mai sus) poate fi satisfacuta de valori «
foarte mici, lucru impiedicat de a doua conditie.
Consistenta acestor conditii este aratata riguros mai jos.

Propozitia 4.2.2 Fie f : R? — R de clasa C', p; o directie de descrestere in x;, §i 0 < ¢ <
co < 1. Daca f este marginiti inferior pe multimea {xy + A\px | A > 0} atunci exista o« > 0 care
satisface conditiile din requla Wolfe.

Demonstratie Conform ipotezei, functia o — f(z) 4+ apy) este marginitd inferior pe (0, 00).
Pentru orice o > 0 exista t € (0, «) astfel incat

P+ ape) = f(a) + aV F(ee) (oe) + 5079 F (i + tp1) (o1 )

= f(xr) + caV f(zy)(pr) + o |(1—c1) Vf(ze)(pr) + %QVQf(xk +tpr) (e, Pr) |

Cum ¢; € (0,1) si Vf(zr)(pr) < 0, pentru orice « suficient de mic avem
fee 4 ape) < fan) + 10V f () (pr),
deci, tinand cont de proprietatea de marginire, ecuatia (in «)
f(zr + api) = f(zi) + aaV f(z) (pr)

are cel putin o solutie strict pozitiva. Din continuitatea (in «) a functiilor implicate, exista o cea
mai micd solutie pozitivd pe care o notdm cu «’. Evident, pentru orice a € (0, /) are loc prima
conditie. Aplicand din nou Formula lui Taylor, existd o” € (0,a’) cu

fan +a'pr) = far) + &V f(ap + o"pr) (),

deci

V(@ + o"pe)(pe) = etV f (zi)(p) > 2V f (zk) (pr)-
Asadar, pentru o are loc si a doua conditie. Cum pentru o’ inegalitatile din ambele conditii sunt
stricte, exista chiar un interval in jurul acestui punct pe care aceste conditii sunt indeplinite. [

Vom vedea ulterior unele criterii de oprire pentru algoritmi bazati pe Regula Wolfe.
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4.2.2 Convergenta metodei directiei de descrestere. Cazul general

Discutam acum convergenta metodei celei mai bune descresteri pentru cele mai importante dintre
regulile de mai sus: Regula Armijo si Regula Wolfe.

O prima cerinta pentru a avea rezultate de convergenta semnificative este legata de unghiul
dintre V f(xy) si directia (vectorul de norma 1) py. Dacd notdm cu 6, acest unghi, atunci impunem
sa existe € > 0 astfel incat pentru orice k

V£ () (pr)
IV f (i)

Astfel, chiar daca p, nu este cea mai buna directie de descrestere, cerem totusi ca unghiul sa nu
se apropie oricat de mult de 7. Evident, in cazul alegerii celei mai bune directii de descrestere

cos 6, = —1 pentru orice k, deci conditia are loc.

cos by, = € [-1,—e). (4.5)

Observatia 4.2.3 Sa consideram functia f : R — R data prin

al carei grafic este redat mai jos.

Este clar ca folosind chiar cea mai buna directie de descrestere pentru o data initiala o < —0.6
(de exemplu) vom obtine o descregtere infinitd, deci metoda nu converge la punctul de minim. De
aceea, §i pentru aceastd metodd, ideea de a aproxima (grafic sau prin alta tehnicd) in prima
istanta punctul de minim pentru o alegere potrivita a datei initiale este importanta.

-1.0 -0.5 02 0.5 )%0
-0.4

Teorema 4.2.4 Fie (xy) sir de vectori generati dupa formula de recurenta

Tpy1 = T + QgPk,

unde directiile (pi) satisfac (4.5) si pasii (au) satisfac Regula Armijo (4.3)) cu parametrii o, B, c.

Daca @ este un punct limita al sirului (xy) , atunci T este punct critic ol lui f (adica V f(Z) =0).

Demonstratie. Fara a restrange generalitatea, putem presupune ca () este convergent la T, iar
(pr) este convergent la o directie p. Dacd pasul oy a fost validat la incercarea i in (4.3)), atunci
avem

[ (xr) = f (xr + oupr) > —corV f(ar)(pr) > ecay |V f(z)]) (4.6)
iar dacd incercarea ¢ — 1 este invalida
P01 (0+ %) < 2000 (47)
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Presupunem, prin reducere la absurd, cd Vf(Z) # 0. Cum (f (zx)) este descrescitor la f (T)
deducem ca

f (o) = f (vp + cwpr) = [ (21) — f (¥p41) — 0,
deci
aV f (@) (px) — 0.

Dar, pe baza (4.5)), prin trecere la limitd, Vf(Z)(p) < 0, deci ap — 0. Aceasta implica fap-
tul cd pentru k mare alegerea pasului trece prin procedura de ajustare (backtracking), adica se
intampla (4.7)) . Folosind Teorema lui Lagrange (pentru functii de mai multe variabile), exista

2k € (T, T + %pk astfel incat

a a
— 2V f (21) (p) € —c—=V (1) (p)-
g B
Cum 2z, — 7, prin simplificare si trecere la limita obtinem contradictia Vf (Z) (p) > 0. Deci
Vf (@) =0. O

Corolarul 4.2.5 Presupunem ca directiile de cautare satisfac (4.5) . Daca (ay) sunt alesi dupd
Regula minimizarii exacte sau Regula minimizarii limitate, atunci orice punct limita al lui (xy)
este punct critic pentru f.

Demonstratie. Presupunem ca un subsir (zy,) converge la un punct T care nu e critic. Fie
Tk, = Tk, + Ok, Pk, punctul ales dupa Regula Armijo. Atunci, pentru orice 7,

f(or,) = f(@r) > f () = f (@rq1) > —cow, (f (21,) , Pr,) -

Cum f(xzx) — f(T) avem f (zx,) — f(2k.+1) — 0 si ca in demonstratia teoremei precedente,
C_Vkr — 0.

Pe baza relatiei (4.7)) ,

f@m—f6%+%%m)§%%WW%MmJ

Urménd rationamentul din rezultatul precedent, ajungem la aceeasi contradictie. U

Discutam acum convergenta algoritmului de cautare a directiei de descrestere pentru Regula
Wolfe.

Teorema 4.2.6 (Zoutendijk) Fie iteratia (4.1) in care (pg) sunt directii de descrestere, iar (o)
sunt pasi ce satisfac conditiile Wolfe. Presupunem ci f este de clasa C' si marginita inferior, iar
V f este Lipschitz. Atunci seria

o0

S cos” 0, 1V £ ()

k=0
este convergenta.

In particular, dacd este satisfacutd conditia (4.5) , atunci pentru orice punct limita T al lui
(x) avem Vf(Z) = 0.
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Demonstratie Din conditiile Wolfe, pentru fiecare £ € N*,

V f(zr + cwpi) (pe) — Vf (k) (k) = (c2 = 1)V f(21) (pr),

adica
Vf(@rr1) (k) — V(1) (pr) > (2 = D)V f(2x) (pr),

iar din conditia Lipschitz asupra diferentialei exista o constanta L astfel incat,

IV f(zh1) = Vi (ze)ll < Lll2gen — 2l

de unde,
(Vf(@rer) = Vf(xr)) () < L |lxl|*

Deducem
S G~ LV f(xr)(pr)

ap =~ 3
L [[px|

Tinand din nou seama de inegalitatea V f(xy)(px) < 0,

e = 1 (V) (o)

f(@ry1) < flan) +a

L ||101c||2
Dar 2
Vilz
V@I o2, 19 £ @),
Hpk”
deci
02_1

f(xr) = flon) <o cos® O ||V f (a)]|” -

Sumand relatiile deducem

f(@r) < fzo) + a1 =

k

-1

=3 cost 01 |V ().
1=0

Cum ¢y — 1 < 0, din marginirea inferioara a functiei f, obtinem convergenta seriei din enunt.
Convergenta demonstrata asigura faptul ca

cos? 0, ||Vf(mk)||2 — 0.

Daca alegerea lui py se face astfel incat are loc conditia (4.5)), atunci Vf(x) — 0. Acum este
evident ca dacd T este punct limitd pentru (xy), atunci T este punct critic. U

Observatia 4.2.7 Algoritmii de mai sus se aplica si functiilor convexe, determindndu-se puncte
de minim global (pentru ca punctele critice au aceasti proprietate) dar, cum vom vedea, forma
particularda a convexitatii permite elaborarea unor algoritmi specifici puternici.
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Implementare 4.15 Implementam acum metoda celei mai bune descresteri cu regula Armijo
pentru o functie de o variabild reald. Asdar, directia se alege

V(=)
PE= IV @l

daca ||V f(x)|| # 0 iar, in ceea ce priveste pasul oy, vom utiliza doar conditia de tip Armijo

f(op 4+ agpr) < f(zr) + cowV (@) (pr),

unde ¢ € (0,1). Astfel, vom testa la fiecare pas daca se indeplinegte conditia, iar in caz contrar,
il vom inmulti pe ay, cu un factor subunitar (8) pentru a scidea pasul. Ca de obicei, criteriul de
oprire utilizeaza valoarea absoluta a derivatei.

Pentru exemplificare alegem functia f : R — R, f(z) = 3¢” — 23 4 5x care a fost discutata si
mai sus dintr-o alta perspectiva. Astfel, avem codul de mai jos

funct=0(x) 3*exp(x)-x"3+5*x;

der=0(x) 3*exp(x)-3*x~2+5;

tol=1e-3;u=5; u_vechi=1; n=0; beta=0.5;

c=0.01; alpha=1;

%steepest descent

while abs(der(u))>tol

u_vechi=u;
while funct(u_vechi-alpha*der(u_vechi)/abs(der(u_vechi)))>=funct(u_vechi)-c*alphax*.
alpha=beta*alpha;

end

u=u-alphaxder(u)/abs(der(u)) ;

n=n+1;

end

u

n

alpha

der (u)

u = -1.3845; n = 12; alpha = 0.00024414; ans = 0.00063161
Deci algoritmul se opreste atunci cand valoarea absoluta a derivatei in punctul curent este suficient
de mica. Evolutia descresterii pasului si a gradientului poate fi de asemenea elocventa.

Exercitiul 4.16 Sa se implementeze metoda celei mai bune descresteri cu requla Armijo pentru
care derivata se va calcula numeric (a se vedea ).

Implementare 4.17 Scriem acum un cod pentru aplicarea metodei functiei Rosenbrock, functie-
test de doud variabile reale pentru care gtim c& unicul punct de minim este (1,1).

funct=0(x) 100.0*%(x(2)-x(1)"2)"2 + (1-x(1))"2;

dif_fct=0(x) [-2*(1-x(1))-400%x(1)*(x(2)-x(1)"2),200%(x(2)-x(1)"2)];

n=0; beta=0.5;

c=0.01; alpha=1;
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u_vechi=[0, 0];u=[-1.5, 2];v=u;
%steepest descent
while norm(dif_fct(u))>10"(-7)
u_vechi=u;
% u=u-alphaxdif_fct(u)/norm(dif_fct(u));
v=[v;ul;
while funct(u_vechi-alpha*dif_fct(u_vechi)/norm(dif_fct(u_vechi)))>=funct(u_vechi
alpha=beta*alpha;
end
u=u-alpha*dif_fct(u)/norm(dif_fct(uw));v=[v;ul;
n=n+1;
end
u
n
alpha
plot(v(:,1),v(:,2),’-’);hold on;
plot(1,1,’r*’);hold on; [x,y] = meshgrid (-2:0.2:2,-1:0.2:4);
z1=100*%(y-x.72) ."2 + (1-x).72;
[c,h] = contour(x,y,z1,100);
In cazul acesei metode se poate observa ci sunt necesare foarte multe iteratii, dar punctul de

start poate fi indepartat de solutie.

Exercitiul 4.18 Sa se implementeze algoritmul celei mai bune directii de descrestere pentru
functia f : R — R, f(z) = e® — 227

Exercitiul 4.19 Fie f : R — R, f(z) = 222 + 3e7%*. Si se arate ca f este strict convexd si
admite punct de minim. Sa se determine acest punct cu aproximatie folosind metoda lui Newton
(aplicata lui f'(x) = 0) i metoda celei mai bune descregteri.

Exercitiul 4.20 Sa se arate ca functia f : R — R, f(x) = 2* — 2%+ —1 admite un singur punct
de minim. Sa se aproximeze acest punct folosind metoda celei mai bune descregteri.

Exercitiul 4.21 Sa se testeze metoda cautari directiei de descrestere cu data initiala (—1,—1)
pentru functia f: R? — R,

f(z,y) =2* — 162° + 5z + y* — 16> + 5y.

Exercitiul 4.22 Sa se implementeze metoda pentru f : R* - R, f (z,y) = 42® — 3zy +y*. Sa
se observe faptul ca minimul (care este originea) gasindu-se intr-o zond mai accesibila a graficului,
numarul de iteratii este semnificativ mai mic.

Exercitiul 4.23 Si se determine teoretic punctul de minim pentru f : R? — R datd prin
fzy) =22 (1+9y)° + 19> g si se aplice metoda de mai sus.

Exercitiul 4.24 Sa se aplice metoda de mai sus pentru f : R? — R,

fey) = 2% +y' + 40y — 3oy + 20 + .
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Incheiem aceasta sectiune folosind si Regula minimizarii exacte pe care o implementam cu
ajutorul algoritmului raportului de aur. De asemenea, folosim un cod care calculeaza aproximativ
gradientul functiei de minimizat.

Implementare 4.25 fisier functie
function fx = func_multivar(x)
fx= x(1)76+x(2) ~4+4*xx (1) "2*xx(2) "2-3*x (1) *x (2) +2*xx (1) +x(2) ;
fisier functie
function deriv = grad_vec(x,delx)

XvVec = X;
xvecl = x;

for i = 1:length(x)
XvVec = X;

xvecl = x;

xvec(i) = x(i) + delx;

xvecl(i) = x(i) - delx;
deriv(i) = (func_multivar(xvec) - func_multivar(xvecl) )/(2*xdelx);
end
fisier functie
function [alphal,falphal] = golden funct(x,search)
a =-5; b =>5; rho = 0.618034; epsilon = le-5;
alphal = rhoxa+(1-rho)x*b;

alpha2 =(1-rho)*at+rho*b;
falphal = func_multivar(x+alphal*search);
falpha2 = func_multivar(x+alpha2*search);
while abs(alphal-alpha2)>epsilon

if falphal > falpha2

a = alphal;

alphal = alpha2;

falphal = falpha2;

alpha2 =(1-rho)*a+rho*b;

falpha2 = func_multivar(x+alpha2*search);

else

b = alpha2;

alpha2 = alphal;

falpha2 = falphal;

alphal = rho*at+(1-rho)x*b;

falphal = func_multivar (x+alphal*search) ;

end

end

alphal=(alphal+alpha?2)/2;
falphal=func_multivar (x+alphal*search) ;
figsier de rulare
u_vechi=[0, 0];u=[-1, 2];v=u;
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n=0;

delx = 10.7(-3);

pk=-grad_vec(u,delx)/norm(grad_vec(u,delx));

[alpha,val_alphal=golden_funct (u,pk) ;

%exact minimization rule

while norm(grad_vec(u,delx))>10"(-4)

u_vechi=u;

pk=-grad_vec(u,delx)/norm(grad_vec(u,delx)) ;

[alpha,val_alphal=golden_funct (u,pk) ;

u=utalpha*pk;

v=[v;ul;

n=n+1;

end

u

n

alpha

norm(grad_vec(u,delx))

Se poate observa ca aceasta metoda functioneaza foarte greoi pe functia Rosenbrock din cauza
specificitatii acestei functii si e de recomandat inlocuirea valorii 10~* cu 1072 in testul de stop.

Exercitiul 4.26 Fie f: R — R, f(z) = 2" + 2® + 1. Sa se arate ca ecuatia f(x) = 0 admite o
singura radacinag reala, T. Sa se justifice faptul ca @ este punct de minim global pentru F' : R — R,
F(x) = [} f(s)ds. Sa se aprozimeze T folosind metoda celei mai bune descresteri. S se compare cu
metoda lui Newton aplicata direct ecuatiei. Similar pentru functia f : (0,00) — R, f(x) = Inz+6z.

Exercitiul 4.27 Fie f : R? — R,
f (z,y) = 0.6y* + 52* — Ty* + sin (zy) — by.

(i) Sa se reprezinte grafic functia f pe patratul [—5, 5]2 1 sa se deduca existenta a doud puncte
de mintm local.
(i1) Sa se aprozimeze punctele de minim local folosind metodele de mai sus.

Exercitiul 4.28 Fie f : R? — R,
f(2,y) = 0.70* + 69> — 82% + cos (zy) — 8.

(i) St se reprezinte grafic functia f pe patratul [—5,5]°.
(ii) Sa se aproximeze punctele de minim local folosind metodele de mai sus.

Exercitiul 4.29 Fie f : R? — R data prin
f(x) = 2% + 223 + 4wy + 4as.

Consideram metoda celei mai bune descresteri cu regula minimizarii exacte si data initiald (0,0) .

Sa se arate ca .
2 1
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st sa se deduca punctul de minim.
Exercitiul 4.30 Fie f : R? — R data prin
f () = 527 — 9129 + 4.07525 + 1.

(1) Sa se rezolve problema minimizarii lui f folosind metoda directiei de descrestere (cu diverse
requli de determinare a pasului).

(ii) Sa se explice de ce metoda mentionatd necesita un numar relativ mare de iteratii pentru
aproximarea minimulu.

Exercitiul 4.31 Sa se rezolve problema minimizarii functiei f : R® — R data prin
f(@) = (21 45)" + (224 8)" + (w5 + 7)° + 22703 + daa}
prin metodele studiate. Sa se testeze metodele pentru datele initiale (1,1,1), (—2.3,0,0), (0,2, —12).
Exercitiul 4.32 Fie f : R? — R data prin
f(x)= (x%—l—x%—l)?—i-(xl%—xg— 1)

Sa se reprezinte grafic, sa se gaseasca punctele de minim global si sa se arate ca (\?’/F, \3/4_1> este
un punct critic care nu este extrem local. Sa se utilizeze metoda cautarii directiei de descrestere
(cu diverse reguli de determinare a pasului) pentru datele initiale (4,4), (4,—4), (—4,4), (—4,—4)
st sa se justifice rezultatele obtinute.

Exercitiul 4.33 Fie f : R? — R data prin
f (.CC) — xﬁengxfflo(mlfxg)Q.

Sa se reprezinte grafic pe [—1.5, —0.5]2 §i sa se utilizeze metoda cautarii directiei de descregtere (cu
diverse requli de determinare a pasului) pentru datele initiale (—3,-3), (—=3,3), (3,-3), (3,3).

Exercitiul 4.34 Fie f : R?> — R data prin
f (ZL’) — _xgelfm§f20(:p1712)2'

Sa se reprezinte grafic gi sa se utilizeze metoda cautarii directiei de descregtere (cu diverse requli
de determinare a pasului) pentru datele initiale (0.1,0.1), (0.8,0.1), (1.1,0.1).

4.2.3 Convergenta metodei directiei de descrestere. Cazul convex

Atunci cand adaugam proprietati suplimnetare functiilor pe care le studiem, putem demonstra
ca algoritmii sunt mai eficienti decat in cazul general. Exemplificam cu algoritmul directiei de
decrestere pentru functii convexe.
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Astfel, in acasta sectiune, in cadrul rezultatelor principale consideram f : R?P — R o functie
convexa, diferentiabila cu diferentiala Lipschitz. Presupunem deci, pe ldnga convexitate, ca exista
L > 0 astfel incat

IVf (@) =Vfl<Llz—yl, Vo,y eR”.

Aceasts din urmi ipotezs a fost intélnitd si la Teorema lui Zoutendijk (Teorema 4.2.6). Incepem
cu un rezultat tehnic care pune in evidenta rolul proprietatii Lipschitz a diferentialei in obtinerea
unei majorari a functiei date (nu neaparat convexa in acest caz) printr-o functie patratica.

Lema 4.2.8 Daca f : RP — R este diferentiabila, cu diferentiala L— Lipschitz, atunci

L
fFly) = fl@)+ (Vi) y—2)+5lly - zl*, Va,y € RP, (4.8)
Demonstratie. Fie z,y € RP §i ¢, , : R — R,
Pye(A) =My + (1 -N)z).
Avem

e (1) — @y (0) = / SN dh =g (0) + / (0 () — & (0)) dA.

Inlocuind si folosind ipoteza, obtinem
f<y>—f<x>—<w<x>,y—x>=/o (Vf (@ + Ay — ) = Vf (1), y — 2) dA
< ||y—x||/0 IVF (2 £ Ay — ) — VF ()] dr

2 ! L 2
<y -l [ Adx= 2y -l
0

Aceasta este concluzia. [l

Exercitiul 4.35 Sa se arate ca conditia (@ este echivalenta cu convezitatea functiei RP 5 x —

5 lzl” = f ().

Exercitiul 4.36 Folosind functia R > x — —e® sa se arate ca conditia (@ nu implica faptul
ca diferentiala lui [ este Lipschitz.

Exercitiul 4.37 Consideram f : R — R data prin

322, daca |z < 2
—3224 32— 1, daca x € [Z 1}
. 5 ) 37
f(z) = _%12 —3r —1, daca x € [—1, —%]
|| — %2, daca |x| > 1.

Sa se arate ca f este diferentiabila (derivabila), iar cea mai mica constantd Lipschitz pentru
derivata este 3. Sa se arate ca f satisface conditia (@) pentru L = % (folosind, eventual, un

grafic).

101



Observatia 4.2.9 Asadar, pentru o functie f : RP — R o functie convera, diferentiabila cu
diferentiala L— Lipschitz, pentru orice x,y € RP

FO V@) o) S F@ <TG+ (V@) m—n+ 5 ly—al  (49)

Privita in raport cu x, adica pentru y fizat, estimarea inferioara (din partea stinga) este o functie
afina, in timp ce estimarea superioara (din partea dreapta) este o functie patratica. Aceasta functie
se scrie ca

M) =1 W)+ (V)2 — ) + &y — aff
1

T — <y -7V (y))

2

S IVFWIF+ £ )

2
st are minimul global in

_ 1
T=Y— va (y) -

Aceasta sugereaza urmatoare abordare algoritmica: data fiind iteratia xy, la pasul urmator, mini-
mizam estimarea superioard pentru care luam y = xy. Aceasta conduce deci la

1
Thi1 = Tp — ZVf (z1),

adica la metoda celer mai bune descrestert cu pas

IV (@)

ap = —————.

L

Aceasta observatie este ilustrata prin evercitiul de mai jos, iar consistenta acestei metode este
demonstrata riguros dupa aceea.

Exercitiul 4.38 Fie f : R — R data prin

f(:i:):%(x—1)2——ln(x2+1)+3.
Avem
fe)=r—1- 5
2 (2
e P Gl ik (VAP

(22 +1)

Deci f este strict convexa pe R. Se poate cu ugurinta constata ca |f" (x)| < 1.25 pentru orice x,
deci f' este Lipschitz de constanta L = 1.25.
(i) Pentruy = 3, sa se reprezinte pentru x € [0, 6] in acelasi grafic cele trei functii din estimarea

[E9).

(i1) Rezolvand ecuatia f'(x) =0 sa se aproximeze punctul de minim.
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(111) Folosind iteratia
1
Th+1 = T — zvf (@)

cu data initiala xo = 3 sa se determine x; §i sa se compare cu punctul de minim determinat
anterior.

Cum spuneam, demonstram acum faptul ca iteratia intuita mai sus si apoi ilustratd prin
exemplul anterior conduce la un punct de minim. Incepem cu un rezultat ajutator care pune in
evidenta caracterizari ale proprietatii Lipschitz pentru diferentiala in cazul functiilor convexe.

Lema 4.2.10 Daca [ : R? — R este conveza si diferentiabila pe C, atunci urmatoarele afirmatii

sunt echivalente:
(i) diferentiala lui f este L— Lipschitz, adica

V5 (@) =V @)l < Lz =yl Yo,y € B
(i)
S IV @) = VG < F ()~ 7 @)~ (VF () y =2 < 5y = ol Vary € R
(iii)
FIVF @) = VF @I < (V)= V5 @)y~ o) < Ly~ o, Yo,y € R

Demonstratie. (1) = (i7) Ca in lema de mai sus se obtine a doua inegalitate de la (7).
Pentru a proba prima inegalitate de la (i7), fixdm = si definim functia convexa diferentiabild
g : RP — R prin
gW) = 1) —(Vf(z),y).

Evident, pentru orice y € R?

Vg(y) =Vfly)—Vf(z)
si cum Vg (z) = 0 si g este convexi, deducem c& = este punct de minim global pentru g. In plus,
este simplu de observat ca diferentiala lui g este L—Lipschitz. Astfel, folosind si lema anterioara,
avem, pentru orice y € RP,
2

g(x)<g (y - %Vg (y)) <g(y) + <Vg F —%Vg (y)> + g H%Vg (v)

1 2
=9 =57 Vg™
Inlocuim si avem
1
fla) =V f(2),2) < fy) = (Vf(2),y) = 57 IVf(2) = Vf WII*,
si (i) este complet demonstrata.
(11) = (i17) Scriem relatiile de la (ii) pentru cuplurile (z,y) si (y,x) si le adunam.

(14i) = (i) Evident. O
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Teorema 4.2.11 Fie f : RP — R o functie convexa, diferentiabila cu diferentiala L— Lipschitz.
Presupunem ca f admite punct de minim gi consideram urmatoarea metoda a cautarii directiei de
descrestere

o € RP,

1
LTet+1 = Tk — sz (xk), vk 2 0.

Atunci, daca V f (xy) # 0, pentru orice k, (xy) converge la un punct de minim T al lui f, (|zx — T||)
este strict descrescator la 0 si au loc urmatoarele estimari

_ 5L
e = 1@ = e e

lim & (f (@) = £ (7)) = 0.

Demonstratie. Conform Lemei

2

o) = £ (@) < =L 197 @l + 5 | 797 @)

L
2

1
= —57 IV @I = =5 lawes — aill®, k.

In particular, f (z511) < f (x3) pentru orice k intrucat am presupus cid Vf (x;) # 0, pentru
orice k.

Fie z* un punct de minim (global, pentru ca f este convexd) al lui f.

Fard a restrange generalitatea, presupunem ca zj, # x*, pentru orice k (in caz contrar, girul
este stationar gi de la un loc incolo V f (z) = 0, ceea ce am presupus ci nu se intdmpla).

Pentru a scurta scrierea, notam, pentru orice k

wy, = f () — wieanpf (z) = f(2p) = f(27).

Din cele de mai sus si din Lema avem

L
Wht1 — Wy < D) |Tps1 — l‘kH27 vk,

si
wk+1<wk§<Vf(x),xk—x>+§||xk—x ||2:§||xk—x ||2, VEk.

Avem, tot pe baza convexitatii,

deci

wp < = (Vf (), 2" =) <V (@) Jex = 27| = Lllanen — wll llax — 27|, k.
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Deducem

L
f(@r) = f(Try1) = wp — Wi > 5 [
L ( wy, >2 B w? - Wi,y
= 2 \ L |z — o oL ||z — z*||* ~ 2L ||z — z*|*

Rescriem inegalitatea de mai sus astfel:
1 1 w !
— < (1 + %) . Yk
Wi~ Wit 2L ||z — x|

L
wen £ 5 o =",

Cum

obtinem ca
Wi+1

2L ||zx — z*|

Pe de alta parte, este simplu de observat ca

IN

1
1

1 1 4t
Vi 0, - — <1 ==
E{’4}’1+t— 5

deci
1 1 2
<

—<— - -~ Vk.
Wi~ Wg1 5L ||z — x¥|

Sumam aceste relatii de la 0 la £ — 1 si obtinem

k—1
1 1 2 9
0<—<—— 23 gy —a*
< o Sm el
ceea ce ne conduce la relatia

F o) — inf f(2) oL V.

<
veR T 230 Ml — a7

Ar#tam in continuare ca (||z; — z*||) este strict descrescator. Avem, folosind faptul c& Vf (z*) =0
si Lema

1 2

T —x" — sz (k)

l2psr — 27| =

2

_ % (xx — %,V f () — V. ()

VS @l VS (@)l
L2 L2

1
o 4 | 195 o)

< ey — 2|12 + < |lwp — z*|*, VK,
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adica ceea ce dorim.
In particular, (zj) este marginit, deci are un subsir (zy,) convergent la un punct pe care il
notam 7. Dar, am vazut mai sus,

F (@) = F (@) < f (i) = F (1) < —5= |97 (2 )P,

si trecand la limita deducem
1 2
<_1 —
0<—— VS @I,

adicd V f (T) = 0 i T este punct de minim global. Cum z* de mai sus este un punct de minim global
ales la intamplare, deducem c& toate calculele sunt valabile si pentru 7 in loc de z*. In particular,
(||xx — T||) este strict descrescitor gi are loc inegalitatea din concluzie. Aceasta inseamna c& girul
(x1) este convergent la T.
Demonstram acum ultima concluzie. Definim (ay) = (||z — f||72) , ir care este crescator cu
limita 4+00. Relatia
5L

< Vk
= E—1 -
222‘:0 |z; — ||

f () — f(T)

se rescrie in forma .
k—1 -
_ 5L (1
k(f (zn) = f(T)) < DY (EZ%) , Vk.
=0
Pentru a obtine concluzia, este suficient sa aratam ca
k—1
Z o — +00.
i=0

Fie M > 0 si n € N astfel incat o > M pentru orice k > n. Atunci

| =

2n—1 2n—1
1 1 M
il > >
on = O"—Qn;a’— 2

2 . . . . — v s 1 k—1 v
In plus, este ugor de verificat, pe baza monotoniei lui (||xx — Z||) c& sirul <E Yo ai> este cresci-

tor. Aceste observatii incheie demonstratia. 0
[lustram aceasta teorie.

Implementare 4.39 Chiar daca nu determinam exact constanta L, putem incerca mai multe
variante (dacd o constanta este bund, atunci orice constantd mai mare este de asemenea buna).

L=50;

f m=0(x) [20%x(1) "4+5*xx(1) "2+ x(2) " 4+x(2) " 2+x(2)+3*x(1)*x(2)];

f_m_g=0(x) [80*x(1)"3+10*x(1)+3*x(2),4*x(2) "3+2xx(2)+1+3*x(1)];

u=[-0.9 0.9];v=u;

while norm(f_m_g(u))>10"(-3) % i=1:maxiter

u=u-(1/L)*f_m_g(u) ;v=[v;ul;
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end

u

f_m_g(uw)

plot(v(:,1),v(:,2),’-?);hold on; hold on;
[x,y] = meshgrid (-1:0.2:1,-1:0.2:1);
z1=20.*x. 4+5*x. "2+y. "4+y. "2+y+3 . kx . Xy ;
[c,h] = contour(x,y,z1,100);

Exercitiul 4.40 Si se implementeze metoda de mai sus pentru f : R? — R datd prin

flx,y) = 202% + y* + .

4.2.4 Posibilitati de accelerare a metodei gradient descent

Algoritmul gradient descent poate avansa foarte lent in regiuni plate ale graficului functiei obiectiv,
dupa cum am vazut deja la unele functii considerate anterior (de exemplu, functia Rosenbrock).
Cateva solutii pentru evitarea acestei dificultati sunt prezentate prezentate in continuare, intr-o
maniera euristica

O euristica simpld, cunoscutd sub denumirea de metoda impulsului (sau momentum method,
sau, incd, heavy ball method), constd in a avansa mai repede in directii care s-au dovedit eficiente
anterior gi a incetini in directii unde gradientul s-a schimbat brusc, similar cu o bila care se
rostogoleste la vale. Aceasta poate fi implementata astfel:

My = ymy, — aV f (zy),

Thy1 = Tp + Mpy1,

unde my se numeste impuls, my = 0 51 0 < v < 1. O valoare tipica pentru 7 este 0.9. Pentru
~v = 0, metoda devine gradient descent obignuita.
Observam ca my, este ca o medie exponential ponderata a gradientilor anteriori:

k
mis1 = ymy, — aVf () = 7*my — oV f (@) —aVf (o) == —a ) 'Vf(z1-4).
=0

Deoarece actualizam parametrii folosind media gradientului myg,1, si nu ultimul gradient,
V[ (xy), observim ca gradientii anteriori pot influenta iteratia curenta. In plus, atunci cand
vom combina aceastd metodd cu Stochastic Gradient Descent (a se vedea mai jos), se vor putea
observa efectele unui minibatch mai mare, fara costuri computationale suplimentare.

O problema care poate aparea in momentum method este ca poate sa nu incetineasca suficient
in partea de jos a unei "v&i", cauzand oscilatii. Metoda gradientului accelerat Nesterov (sau
Nesterov accelerated gradient) modifica metoda de tip gradient descent pentru a include un pas
de extrapolare, astfel:

Tpr1 = T + O () — Tp21)

Tk+1 = 55k+1 - Oékvf (Ek+1) )
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sau, altfel zis,
g1 = T + B (v — k1) — .V f (z + B (2, — 25-1)) -

Aceasta este, in mod esential, o forma de "a privi inainte" cu un pas, care poate reduce nivelul
oscilatiei.

Gradientul accelerat Nesterov poate fi rescris in aceeasi forma ca momentum method. In acest
caz, impulsul este actualizat folosind gradientul la noua locatie prevazuta:

mys1 = Bmy — aV f(zp + Bmy,),
Tkl = Th + Mgy1-

Aceasta explica de ce metoda gradientului accelerat Nesterov este numita uneori Nesterov
momentum. De asemenea, arata cum aceastd metoda poate fi mai rapida decat momentum method
standard: vectorul de impuls indica deja, in linii mari, in directia corecta, astfel incat masurarea
gradientului la noua locatie, x; + fmy, si nu la locatia curenta, xj, poate fi mai precisa.

Metoda gradientului accelerat Nesterov este demonstrabil mai rapida decat gradientul descen-
dent pentru functii convexe, pentru [ si a; sunt alese corespunzator. Se numeste "accelerat"
datorita acestei imbunatatiri, care este optima pentru metodele de tip gradient descent folosind
doar informatii de ordinul intai, atunci cadnd functia obiectiv este convexa si are gradienti Lipschitz
continui. In practicd, totusi, aceastii metods poate fi mai lents decat steepest descent, si poate
deveni instabila pentru alegeri nepotrivite ale lui 3 si a.

Implementare 4.41 Consideram urmatoarea implementare a GD pentru functia Rosenbrock.
% GD pentru minimizarea functiei Rosenbrock (convexa)
clc; clear;
tic
f=0(x, y) (1 -x).7"2+ 100 * (y - x.72).72;
grad_f = 0(x, y) [-2 * (1 - x) - 400 * x .*x (y - x.72); 200 *x (y - x.72)];
% data initiala
x = -1.5;
y =2;
% parametri GD
alpha = 0.001; % Learning rate

tolerance = le-6; % toleranta

max_iters = 10000; % numarul maxim de iteratii
iter = 0;

x_vals = x;

y_vals = y;

while iter < max_iters

grad = grad_f(x, y);

x_new = x - alpha * grad(1l);

y_new = y - alpha * grad(2);

% criteriul de oprire

if norm([x_new - x, y_new - y]) < tolerance
break;
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end

X = X_new;
y = y_new;

x_vals = [x_vals; x];
y_vals = [y_vals; y]l;
iter = iter + 1;
end

% rezultatele

fprintf (’Punct de minim (x, y) = (4f, %f) after %d iterations\n’, x, y, iter);
fprintf (’Valoare minima = %f\n’, f(x, y));

% Plot functie

[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);

Z=1fX, Y);

figure;

contour(X, Y, Z, 50);

hold on;

plot(x_vals, y_vals, ’r.-’, ’LineWidth’, 1.5, ’MarkerSize’, 10);

plot(x_vals(1), y_vals(1l), ’go’, ’MarkerSize’, 10, ’LineWidth’, 2); % punctul de
start

plot(x_vals(end), y_vals(end), ’bo’, ’MarkerSize’, 10, ’LineWidth’, 2); % punctul

final

title(’GD veritabil’);

xlabel(’x’);

ylabel(’y’);

legend(’Contururi’, ’GD traiectorie’, ’Punct start’, ’Punct final’);

grid on;

hold off;

toc

care returneaza

Minimum found at (x, y) = (0.990202, 0.980461) after 10000 iterations

Minimum value of the Rosenbrock function = 0.000096

Sa se implementeze pe acest model GD cu impuls si GD cu impuls Nesterov si sd se compare
rezultatul cu metoda GD originala de mai sus.

4.2.5 Algoritmi specifici machine learning bazati pe metoda directiei
de descrestere

Descriem acum, fara demonstratii privind convergenta, cativa algoritmi derivati din metoda di-

rectiei de descrestere care sunt adaptati specificitatii unor probleme ce apar recurent in machine

learning. Incercam sa prezenta la nivel euristic, intuitiv motivele pentru care aceste variatii sunt
mai potrivite anumitor probleme de mari dimensiuni decat algoritmul original.
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Stochastic Gradient Descent

Se considera un set de date de antrenament, {(a;,y;)} cua; € Rsiy € RP) ce urmeazi o

distributie necunoscuta. Functia obiectiv este:

1 1 <
= - i = — C(h(x,ai),yi)-
PICEEDUCINANY
Exemplu de functie de pierdere ("loss functions"): "square loss":

C(h(2yai) y) = > My — (2, a)]

i€ln

i=1,n’

Vom considera algoritmul de tipul steepest descent method (or gradient descent, GD):

Tpy1 = T — BV f (2r)

(adica ag, = B ||V f (zx)]| , pentru orice k), unde gradientul functiei obiectiv este

=S VAW

Factorul 8 > 0 se numeste ratd de invatare (learning rate). Daca folosim acest algoritm, costul
computational creste liniar cu n. Asadar, cu cat setul de date de antrenament este mai mare, cu
atat costul computational pentru fiecare iteratie este mai mare.

Stochastic Gradient Descent (SGD) reduce costul computational la fiecare iteratie. Fie m < n.
La fiecare pas se alege o multime Z de indici (adica un lot, minibatch) avand cardinalul m si
actualizam iteratia dupa formula

Tk+1 = m vaz l"k

€T

Acest algoritm se bazeaza pe observatia (ce poate fi riguros demonstrata) conform careia, daca
multimile Z sunt aleator alese, atunci gradientul stochastic este un estimator nedeplasat al gradi-

entului complet, i.e.,
(II\ > Vfi(z ) =V/f(z), Yz €RP.

€T

Implementare 4.42 Consideram exemplul f : R? — R,
fla,y) = (=2 +(y=3)" + 2@+ 1)* + (y = D)* + (x — 1)* +2(y + 2)*,

adicd suma functiilor f; : R? = R (i € 1, 3),

fly) = (@=2"+ -3 folzy) =20+ + @y -1 fzy) =(-1)"+2y+2)"
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Sa se scrie un program care sa implementeze SGD cu rata de invatare este constanta 0.05, ruleaza
100 de iteratii si alege cate unul din cei trei gradienti cu egald probabilitate (minibatch de cardinal
1). Pentru selectia gradientilor se poate utiliza codul:
r = randi(3); % selecteaza random 1, 2 sau 3
ifr ==
grad = grad _fl(x, y);
elseif r ==
grad = grad f2(x, y);
else
grad = grad _f3(x, y);
end
Sa se compare cu algoritmul directiei de descrestere corespunzator.

Implementare 4.43 Sa se implementeze SGD cu minibatch de cardinal 2 pentru minimizarea
functiei de mai sus. Sa se compare cu metoda GD originala.

Desi rata teoretica de convergenta a SGD este mai lenta decat cea a GD pe intregul set de
date de antrenament {1,2,...,n}, in practicd SGD este adesea mai rapid, deoarece timpul pentru
fiecare pas este mult mai scézut (intr-un program Matlab/Octave timpul de executie este afigat
prin includerea intructiunilor tic...toc la inceputul, respectiv sfargitul secventei avute in vedere).
Pe de alta parte, se pot considera rate de invatare dinamice. Pentru a intelege de ce SGD poate
progresa mai rapid decat GD pe intregul set de date, sa presupunem ca avem un set de date format
dintr-un singur exemplu duplicat de K ori. Antrenarea pe intregul set de date va fi (cel putin)
de K ori mai lenta decat SGD, deoarece va pierde timp calculand gradientul pentru exemplele
repetate. Chiar gi in absenta duplicatelor, antrenarea pe intregul set de date poate fi ineficienta,
deoarece, la inceputul antrenarii, parametrii nu sunt bine estimati, ceea ce face ca evaluarea in
detaliu a gradientului poate sa nu merite efortul.

SGD preconditionat

Se poare considera de asemenea un SGD preconditionat, care presupune urmatoarea actualizare:

T+l = T — OékMk_IVf ({L‘k) s

unde M}, este o matrice de preconditionare, de obicei aleasa pozitiv definita. Din pacate, zgomotul
din estimarile gradientului face dificila estimarea fiabila a matricei hessiene, ceea ce complica uti-
lizarea metodelor discutate anterior. De asemenea, este costisitor sa aflam directia de descrestere
folosind o matrice de preconditionare completa. Prin urmare, in practica vom folosi de obicei o
matrice diagonala M;. Aceste preconditionari nu folosesc neaparat informatii de ordinul doi, dar
adesea duc la accelerari in comparatie cu SGD simplu.

AdaGrad

Metoda AdaGrad (de la "gradient adaptiv") a fost conceputa initial pentru optimizarea functiilor
obiectiv convexe unde multe componente ale gradientului sunt zero; aceasta corespunde situatiei
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cand anumite caracteristici sunt foarte rar intalnite in input, cum ar fi cuvintele rare. Actualizarea
are forma pe componente, pentru fiecare d = 1, p:

073

Tk+1,d = T,d — —F/———=0k,d»
VvV Sk,d +¢€

unde gy 4 reprezinta componenta d a vectorului gradient g, = V f (zy) ,

k

2

Sk,d = E 9i.d
i=1

reprezinta suma componentelor gradientilor la patrat, iar € > 0 este un termen pozitiv mic introdus
pentru a evita impartirea la zero.
Vazuta ca SGD preconditionat, aceasta este echivalenta cu

1
My, = diag (s® +¢)2
si este un exemplu de rata de invatare adaptativa.

RMSProp si AdaDelta

O caracteristica definitorie a algoritmului AdaGrad este ca termenul de la numitor devine mare
in timp, deci rata efectiva de invatare scade. Degi necesara pentru a asigura convergenta, poate
influenta in mod negativ performanta daca numitorul devine mare prea repede.

O metoda alternativa este de a utiliza o medie ponderata exponential a patratelor gradientilor
precedenti, in locul sumei acestora:

Sk+1,d = ﬁshd + (1 - ﬁ)gz,d‘

In practici, se foloseste de obicei 3 ~ 0.9, care df mai multi importantd iteratiilor recente. In
acest caz,

v/ Sk,d ~ RMS (91:k,d) =

unde RMS provine de la "root mean squared". Actualizarea generala a metodei RMSProp este:

Ak

Lk+1,d — Thkd = ———F7———=0Gkd-
vV Sk,d + €

Metoda AdaDelta extinde aceasta idee addaugdnd o medie ponderatda exponential a actual-
izarilor anterioare astfel:

\/ 5k—1,d +é
Tktld — Thd = —Op— F————— Gk.d>
\/Skd T €

unde
Ok.d = Bok—1,a+ (1 — B)(Tht1,a — l'k,d)27
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iar sy q are aceeasi expresie ca la metoda RMSProp de mai sus. Metoda are avantajul ca numara-
torul si numitorul se pot simplifica printr-un ordin de marime, deci ramanem doar cu multiplicarea
pe componente a gradientului cu un scalar. Aceasta elimina nevoia de a adapta rata de invatare
ag, pe care o putem alege 1, insa deoarece aceste rate adaptative nu descresc, aceste metode nu
converg in mod sigur la o solutie.

Adam

Este posibil si combindm RMSProp cu metoda impulsului (momentum method). In particular,
calculdim EWMA, o medie ponderata exponentiald a gradientilor (ca in metoda impulsului) si a
gradienttilor la patrat (ca in RMSProp):

my = Bimi—1 + (1 — B1)gr,
sk = Basp—1 + (1 — B2) g2,

unde in a doua ecuatie egalitatea se realizeaza pe componente. Facem apoi urmatoarea actualizare
(unde egalitatea este inteleasi pe componente):

1
Tl — Tp = —Qp—F——
\VSk+ €

Metoda rezultata este cunoscuta sub numele de Adam, nume care provine de la "adaptive moment
estimation".

Valorile standard pentru constante sunt 3; = 0.9, B = 0.999 si € = 107%. (Daci setdm (3; = 0
si nu folosim corectia de bias, recuperdm RMSProp, care nu utilizeazd momentum). Pentru rata
de invatare generala, se obignuiegte sa folosim o valoare fixa, cum ar fi ap = 0.001. Din nou,
deoarece rata de invatare adaptiva poate sa nu scada in timp, convergenta nu este garantata.

Daca initializam mgy = sy = 0, atunci estimarile initiale vor fi conduse catre valori mici.
Se recomanda, prin urmare, utilizarea momentelor corectate pentru bias, care cresc valorile mai
devreme in procesul de optimizare. Aceste estimari sunt date de:

mi.

A my Sk
my = ———— Sp = ———.
1—py 1— 5

~

Yogi

Cand se utilizeaza metode de scalare diagonald, rata generalda de invatare este determinata de
agM, ! care se schimb4 in timp. Prin urmare, aceste metode sunt adesea numite metode cu ratd
de tnvatare adaptiva. Totusi, ele necesita in continuare setarea unei rate de invatare initiale ay.

Deoarece metodele EWMA sunt utilizate de obicei in cadru stochastic, unde estimarile gradi-
entului au zgomot, adaptarea ratei de invatare poate duce la pierderea convergentei chiar gi pentru
probleme convexe. Au fost propuse diverse solutii la aceasta problema. De exemplu, actualizarea
Yogi modifica Adam prin inlocuirea:

sk = Basr1+ (1 —B2) gi = sp_1+ (1 — B2) (g7 — sr_1)
cu
sk = sp-1 + (1= B2) (g — s1-1) © sgn(gg — su-1),
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unde sgn reprezinta functia signum, avand valoarea 1 pentru numere strict pozitive, —1 pentru
numere strict negative si 0 pentru 0.
Agadar, am obtinut urmatorul algoritm.
ADAM (Adaptive Moment Estimation)
Pasul 1: Introducere pas «, introducere 31, 52 € [0, 1), introducere constantd e > 0, introducere
parametru initial z(®
Introducere mg =0, so =0, k=0
Pasul 2: Calculeaza gradient gp = V f ()
Calculeaza biased first moment estimate: my = Simy_1 + (1 — 51) gk
Calculeazd biased second moment estimate: s, = s;_14(1—32) (g7 — sk_1) ©sgn(g? — sx_1)
Calculeaza bias-corrected first moment: m; = f_gf
(k)

1-p%

Calculeaza bias-corrected second moment: $, =
Calculeaza noul zjy1: g1 = x) — ak\/ﬁmk
Pasul 3: metoda converge; se afiseazd xx1 $i f (Tgr1) -
Comparativ cu celelalte metode prezentate, algoritmiul Adam se comporta mai bine, in special
aplicat pentru retele neuronale de tip multilayer.

4.2.6 Convergenta metodei directiei de descrestere. Cazul functiilor
patratice

S& analizam cazul functiei f : R? — R definitd prin f(z) = 3 (Qz, z) + (b, z) unde Q este o matrice
patratica de dimensiune p, simetrica, pozitiv definita, iar b € RP.

Evident, functia este strict convexa si are multimile de nivel marginite, deci exista un unic
punct de minim dat de ecuatia V f(z) = 0, adicd Qx + b = 0. Deci minimul este T = —Q~'b.

Pentru probleme de mari dimensiuni calculul lui Q! poate fi costisitor din punct de vedere
computational.

Sa studiem acum comportarea algoritmului celei mai bune directii de descrestere cu pasul dat
de Regula minimizarii exacte.

Astfel, oy € RP i pentru orice k > 0,

Tpy1 = Tk + Qppy,

unde

_ V(@) _ 1
P = I ol TQm o) @)

iar «y este minimul functiei scalare o — f(xx + apy).

Presupunem cé gradientul nu se anuleazad in punctele iteratiei (adicd Qzy + b # 0), ceea ce,
tinand cont de convexitatea problemei, este echivalent cu faptul c& f(x;) > f, unde f este valoarea
minima a functiei.

Astfel,

f(zp +ape) = f(xx) + %(12 (Qpr, pi) + a (Qzy + b, py) -
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iar aceasta functie are punctul de minim in

(Qui +b,pr) 1Qzy, + b’
(Qpr, Pr) (Q(Qup +b),Qry + D)

A — —

Deci iteratia este

1Qay + bl
(Q(Qur+1b),Qup + 1) "
_ 1Qxy, + b])? o
=t OO ) Qo) Y
Qs + b2

(Q (Qzi + 1), Quy +b)
Observatia 4.2.12 Dacd f : R?2 — R are forma

Th1 = Tk +

(Qxy, + b)

:l‘k—

f(z,y) = az® + Bry + vy + 6z + ey,

atunci pentru a fi scrisa in forma standard de mai sus, avem
2a0 8 .
= ib=(0,¢).
Q < 5 2 ) sib=(0,¢)

Exercitiul 4.44 Sa se implementeze algoritmul descris mai sus.

Este clar ca rezultatele generale de convergenta pentru metoda celei mai bune descresteri
se aplica si acestei iteratiei de mai sus. Particularitatile problemei conduc la un rezultat de
convergenta specific acestui caz. Pentru o discutie a acestor aspecte este nevoie sa utilizam mai
multe rezultate de algebra liniara pe care le trecem in revista aici. Mai intai, reamintim ca daca A
este o matrice reald patratica (de dimensiune p), atunci un vector nenul = € RP se numeste vector
propriu pentru A daca exista A € C astfel incat Az = Ax. Scalarul A se numegte valoare proprie a
matricii A. In general, A are n valori proprii (dintre care unele pot coincide). Este bine-cunoscut
faptul ca in cazul unei matrici patratice toate valorile proprii sunt numere reale. Daca, in plus,
matricea este pozitiv definita, acestea sunt toate strict pozitive. Are loc urmatoarea teorema de
descompunere ortogonala.

Teorema 4.2.13 Fie A o matrice patratica de dimensiune p. Atunci exista o matrice U de di-
mensiune p cu proprietatea U'U = UU' = I gi o matrice diagonala D = diag (dy, ...,d,) astfel
incat U'AU = D.

Mai mult, coloanele matricii U reprezintd o baza ortonormala a spativlui RP formata din vectori
proprii §i elementele lui D sunt valorile proprii corespunzatoare.

O consecinta a Teoremei este ca urma matricii A este suma valorilor sale proprii, iar
determinamtul lui A este produsul valorilor sale proprii.

Pentru inceput este nevoie de o inegalitate (numitd Inegalitatea lui Kantorovici) privind valorile
proprii ale unei matrici de tipul celei de mai sus.
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Lema 4.2.14 Fie () o matrice patratica, simetrica, pozitiv definita de dimensiune p. Atunci pen-
tru orice x € RP are loc

ol < (@r,2) - (Q M x) < <¢W ¢M>Mﬁ

unde Amax §T Amin TEPTEZINGA Cea mai mare §i respectiv cea mai mica valoare proprie a lui Q).

Demonstratie Este suficient sa demonstram inegalitatea pentru orice x de norma 1. Asa cum am
amintit in introducere, valorile proprii ale lui () sunt reale strict pozitive si, fara a restrange gene-
ralitatea, le ordonam descrescator: Amax = A1 > A2 > ... > A\, = Apin. Notam matricea diagonala
avand valorile proprii pe diagonala principald, in ordinea precizatd, cu D := diag(A1, Ag, ..., Ap).
In plus, conform Teoremei existd o matrice ortogonald B cu proprietatea cd Q = B'DB.
Atunci Q' = (B'DB)™' = B'D™'B, iar D! = diag(\;', A3, ..., A 1). Deci

(Qz,z) = (B'DBux,z) = (DBz, Bz)

(Q7'z,2) = (B'D"'Bx,z) = (D' Bz, B) .

Pe de alta parte, aplicatia = — (Bz) este o bijectie de la sfera unitate a lui R? in ea insasi deci,
pentru a obtine relatia din enunt, este suficient sa demonstram ca pentru orice u € R? de norma

1 are loc )
_ 1 A\ A
1§<Du,u>-<D 1u,u>§é—l<~/)\—p+\/)\—?> I

Daca A\; = ), atunci are loc egalitatea. Presupunem ca )\, < A;. Avem

(Du,u) Zu2)\z, (Du, u) iuf)\i
i=1 v

Atunci prima inegalitate revine la
p 1 p
2
< () ()
=1 =1

(S uth) — &N

adica

=1

Cum Y7  u? = 1, inegalitatea anterioard rezultd din inegalitatea lui Jensen aplicatd functiei

convexe (0,00) 3z — =

Pentru a doua inegalitate, sa observam ca pentru orice 7 € 1, p,




intrucat A\, < A; < Ay, Deci

bS]
=N
| =

—_

Obtinem

(o) E)=(E) 14555

S0 O Ay 5 wh)

111 211
AN,

Functia de gradul al doilea
AN+ A, = A)
Ay

A=

A1 +)\p
2

isi atinge maximul pentru A = , deci

Demonstratia este completa. U
Teorema 4.2.15 Cu notatiile de mai sus are loc inegalitatea

c—1
c+1

f(wk)—minfé(f(:vo)—minf)< )2k, Vk >0,

unde ¢ = Apax/Amin, UNde Amax §0 Amin TEPTEZINGG cea mai mare §i respectiv cea mai mica valoare
proprie a lui Q).

Demonstratie. Notam, pentru orice k,

€k = f(xk) min f7

Folosind calculele de mai sus, avem
Tk
Py = —v >
17l
3
o
<Qrk7 Tk> ’
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1
Cht1 = €k + 50413 (Qpr, pr) + ou Qi + b, )

1 ‘ ’
1 el (@riore) el <rk,— 7"k:>

2 <Q’I“k,7"k>2 ||T‘k;||2 <Qrkark> ||T/€||
P L2 S
2 <QTI€7TI€>’

Similar,

o= f ()~ [ () = (VF () ta— ) + 3 (Q w— ) 2~ )

:%(Q(mk—f),xk—@:%<ka+b,xk+Q—1b>

1
= 5 <Q717“k,7’k> s VEk.

Astfel, prin aplicarea Inegalitatii lui Kantorovici, obtinem

Crt1 _ 1— 11 ||7”kH4 —1_ 1 2 ||7”kH4
ek 2€k<Q7“k,7”k> 2(Q7 g, i) (QTk, Th)
S VY (e |
<Q lrkark> <Qrk7rk )\1

:1_4()‘max+)\mm)
Amax . )\min
2 2
s — Ao -1
)\max )\mln ()\max )\rmn) _ (C ) ’ Vk

=1-4 2 2
()\max + )\min) (/\max + )\min) ¢+ 1

Aceasta asigura validitatea concluziei. O

Observatia 4.2.16 Daca numarul ¢ este foarte mare, atunci valoarea <= +1 este aproape de 1, ceea
ce face ca viteza de convergentda a metodei sa fie lenta, in general.

Exercitiul 4.45 Fie f : R?> — R data prin
f(x) =22 + 235 — 0.2z,29 — 2.22; + 2.275.

(1) Sa se determine punctul de minim al lui f.
(i1) Aplicand metoda celei mai bune descresteri pentru x = (2,3) sa se determine teoretic i
practic cdte iteratii sunt necesare pentru ca f(x;) — min f < 10710,

4.2.7 Metoda gradientilor conjugati

Metoda pe care o prezentam acum se refera la rezolvarea unui sistem de ecuatii liniare de forma
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unde () este o matrice patratica de dimensiune p, simetrica gi pozitiv definita. Este de observat ca

rezolvarea sistemului de mai sus este echivalenta cu minimizarea functiei patratice strict convexe
q:RP — R,

1
a(x) = 5 (Qr,w) = (b,7)
pentru ca
Vg (z) = Qx —b.
Notam

r(z) :=Vq(r) =Qx —b.

Definitia 4.2.17 Fie () o matrice patratica de dimensiune p, simetrica st pozitiv definita. Definim
pe RP x RP aplicatia cu valori reale

<xay>Q = (Q%w )
numit (Q—produs scalar.

Observatia 4.2.18 Se verifica usor ca aplicatia de mai sus este intr-adevar un produs scalar, iar
norma corespunzatoare, numita (Q—normda, este

lzllg = V(Qu,2).

Definitia 4.2.19 O multime de directii (i.e., vectori nenuli) (d;);ci7 (unde k € N\ {0}) se
numesgte (Q— ortogonala, iar elementele sale (Q— conjugate daca

Idillg #0, Vi€ 1k gi (di,dj), =0, Vi,j € 1k, i # j.
Lema 4.2.20 O multime de directii Q— conjugate este liniar independenta.

Demonstratie. Fie (d;);c17 (unde k € N'\ {0}) o multime de directii —conjugate si fie (ci);c1;
numere reale. Daca Zle o;d; = 0, atunci, pentru orice j € 1, k,

k k
0= <Z Oéidi,de> = Zai <dza Qd]> = ||d]||zg :
i=1 =1

Obtinem astfel ca toti scalarii sunt nuli. O

Observatia 4.2.21 Daca (d;),c17 (k € N\{0}) este o multime de directii Q— conjugate si ro € RP,
atunci a minimiza functia q pe subspatiul afin

A = xy + span <(dz)zeﬁ>

. y k
revine la urmatorul argument: pentru A > x = xo + Y, a;d; (unde (a;),.7% sunt numere reale)
avem, folosind (Q— conjugarea,

k

1
a; (ro, d;) + B Z aza; (Qd;, d;)

i,7=1

q(x) = q(zo) +

= q(x0) + [ai (ro,d;) + %a? (Qd;, dz>:| )

-, -,
Il > |l B
= =
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deci minimul lui g pe A se obtine minimizdnd separat pentru fiecare a;; avem minimul

— : (ro, d;)

T =22+ izlaidi, unde a; = _W
Observatia 4.2.22 Avdnd o multime de vectori liniar independenti (Ui)z'efk putem genera, prin
procedeul Gram-Schmidt, o multime de directit Q— conjugate (d;);17 astfel incdt span <(v,) ielT:) =
span <(d1)zeﬁ> . Procedeul este descris mai jos.

Alegem dy = vy. Daca am construit (d;), 5=, definim

i—1
dl' =v; + Zﬁjd]‘,
j=1

unde coeficientii B; sunt determinati astfel: cum dorim ca (d;, dl>Q = 0 pentru orice | < 1, trebuie
ca

Jj=1

i—1
ozume:<w+§:@@@>
Q

i—1
= (vi,di)o + Y B {dj di) g = (vi,di)g + B {di i)y, VI < i
j=1

deci (v, d)
Vi, Qi)
— , Vi<
: <dl7dl>Q
st astfel
i—1 <Uz' d> i—1 <QU d>
d; = v; — PR g =, — ke L

Consideram metoda de mai jos, numita metoda directiilor conjugate.
Fie zg € RP i (d;) (n € N*) este o multime de directii )—conjugate. Pentru k € 0,n — 1,
definim
(rr, i)

Tpy1 = Tp — mdk, unde 7, = Vq () = Qxy — b. (4.10)

Astfel, conform Observatiei [£.2.21] 41 este minimul lui ¢ pe subspatiul 1—dimensional

1€0,n—1

{z, + ady | a € R}.

Are loc rezultatul urmator care deschide calea catre metoda gradientilor conjugati.
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Teorema 4.2.23 Fie v € R si (d;);55—1 este o multime de directii Q—conjugate. Fie (r;);c15

punctele generate pe baza metodei directiilor conjugate de mai sus. Atunci pentru orice k € 1, p,

x este minimum global al functiei q pe subspatiul afin k—dimensional xo + span <(d,~)iem> )
In particular, solutia ecuatiei Qr = b poate fi gisitd in cel mult p pagi. Mai mult, pentru orice
kclpsiic0,k—1, (r, di) = 0.

Demonstratie. Fie k € 1, p. Conform Observatiei [4.2.21],

k—1

<7“0,dz'>
T ‘— X + Z ——di,
i=0 <le7dz>

este minimul lui ¢ pe zg + span <(dl) i€m> . Aratam ca aceste elemente coincid cu cele definite

prin relatia (4.10). Daca, pentrui € 0,k — 1, x € 2 + span ((dj)jem> , atunci exista (7;),; 571

astfel incat

i—1
xr = xg+ Z ’}/jdj
7=0

si atunci
i—1
V() =ro+ Y Qd;
=0
si
i—1
(Va (@), di) = (ro,di) + Y 7, (Qd;, di) = (ro,d;).
=0

Alegem = = x; € xy + span ((dj)jeo’i—_J si deducem

<7”i,di> = <T07di>-
Astfel deducem ca pentru orice 1 € 0,p — 1

(ro, d;) . (13, d;)

(Qdi, i) (Qdi,d;)’

de unde obtinem prima concluzie.
Acum, a doua concluzie este evidenta.
Pentru ultima concluzie, observam c& pentru orice k € 1,p, z; minimizeaza (fara restrictii)

functia h : R — R
K1
h (0,715 -+ M—1) = ¢ <£U0 + Z%’dz) -

i=0
ceea ce inseamna ca pentru orice ¢ € 0,k — 1

oh
Vi

(707717 "'77]671) = <Vq (xk) ,d2> =0.
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Demonstratia este completa. 0

Metoda gradientilor conjugati este o metoda a directiilor conjugate in care se construiesc la
fiecare pas directii () —conjugate folosind procedeul Gram-Schmidt aplicat vectorilor (—Vq (z;)) 0 -
Se observa faptul ca modul de definire, la fiecare pas, al elementelor z; asigura ipoteza de liniara
independents necesari aplicirii procedeului mentionat. In versiunea sa preliminars, metoda este
urmatoarea.

Se alege o € R? gi se defineste dg = —Vq (xg) = —ro.

Atéata timp cat r, # 0 definim

(Qry, d;)
d = —rp + d;,
B
(Qdy, di)’

Thy1 = Tk + Oékdk.
Alegerea lui oy, provine din Metoda directiilor conjugate si din faptul ca, pe baza Teoremei [4.2.23],

k—1 QT
<’f'k,dk>:< T’H—Z k, >:—“T’]{;”2, VEk.

Jj=

Asga cum e descrisa mai sus, metoda este costisitoare din punct de vedere computational din cauza
formulei directiilor di. Urmatorul rezultat permite simplificarea semnificativa a acestei formule.

Teorema 4.2.24 Daca elementele (1;),.5% nu sunt zero, atunci ele sunt mutual QQ—ortogonale si

2
Il

Irial*

dy, = =11 + Brdi—1, unde By =

Demonstratie. Cum (d;);c57—7 sunt generafi prin procedeul Gram-Schmidt din (—r;) avem

span ((di)i€m> = span ((Ti)iem> :

Cum (d;);co7=7 sunt Q—conjugati, din Teorema [4.2.23, 7 este Q—ortogonal pe toti vectorii
(di);com=1 » deci si pe vectorii (;),.07=7 , ceea ce implica prima parte a concluziei.

In particular, o; # 0 pentru orice i € 0,k — 1. Atunci

. Tit1 — L\ (Qzit1 —b) — (Qu; —b) Tl —
Qd; = Q ( o ) =

= . Vie0,k—1.

«; Q;
Deci,
1 _
<Qrk7 dz> = <rk7 de> = ; <Tk,Ti+1 - ’ri> ) Vi € 07 k—1.

)
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Astfel,
(Qri,d;) =0, Vi € 0,k —2

2
Tk
(@ric i) = 14
Ok—1
Substituim in expresia lui dj, si avem
2 2
dk = —Tk —|— ||Tk” = —TL + Mdk 1
g1 (Qdg—1,dy—1) e’ ’
ceea ce incheie demonstratia. O

Pe baza teoremei tocmai demonstrate, putem formula Metoda gradientilor conjugati astfel:
Se alege xy € R? i se definegte dg = —Vq (z9) = —ro.
Atata timp cat r; # 0 definim

el
<Qdk7dk>7

Tpt1 = Tp + apdy,

Tht1 = Tk + 0 Qdy,

ap —

el
Brt1 = 5
7%l
A1 = —Tht1 + Brp1di.

Teoretic, Metoda gradientilor conjugati determina exact solutia in cel mult p pagi. Totusi, din
cauza rotunjirilor din cadrul calculelor, aceasta este o situatie rara in practica. In schimb, este o
metoda eficienta pentru sisteme cu dimensiune mare.

Implementare 4.46 Sa se scrie o functe function x=conj_grad(A,b,x,maxiter) care sa ilus-
treze aceasta metoda pe un sistem liniar generat aleatoriu dupa modelul de mai jos:

clear

dim=12;

b=10*rand (dim,1)

B=10*rand (dim,dim)

A=BxB’

x=zeros(dim,1);

maxiter=dim+3;

conj_grad(A,b,x,maxiter);

4.3 Algoritmi de ordinul al doilea

Metodele de ordinul al doilea (adicd avand oracol de ordinul al doilea) sunt, in comparatie cu
metodele de ordin zero sau unu, mai costisitoare din punct de vedere computational, dar au, in
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general, o convergenta mai buna. Cea mai reprezentativa metoda de acest tip este metoda lui
Newton adaptata problemelor de optimizare pe care o detaliem mai jos. Exista apoi unele metode
care combina aceasta metoda cu unele tehnici pe care le-am studiat anterior.

4.3.1 Metoda lui Newton in optimizare

Exercitiul 4.47 Pentru a reaminti metoda lui Newton, sa se implementeze pentru rezolvarea
aproximativa a sistemului
3ty +y* =1
{ xt + oy =1

Sa se testeze cu datele initiale (1,1), (—1,—1), (—=1,1).

Aga cum am ardtat pe scurt in Observatia [3.3.5, metoda lui Newton poate fi folositd si la
probleme de optimizare, fiind in acest context o metoda cu oracol de ordinul al doilea. Aplicata
ecuatiei V f (z) = 0, metoda lui Newton returneazd o aproximare a unui punct critic. Ca de obicei,
in conditii de convexitate obtinem convergenta catre un punct de minim global. Pentru o functie
f :RP — R iteratia devine

Thy1 = Ty — Hf_l () Vf (1)

unde H; (z) noteazad matricea Hessiand a lui f in .
Metoda lui Newton poate fi rezumata astfel:
Pasul 1: se dau z (punctul de start), e1,2 > 0 (tolerante), Az > 0 (pentru calculul gradien-
tului);
Pasul al 2-lea: fiind calculat xzy, se calculeaza Vf (zy), Hf (x1), gradientul si Hessiana in xy;
pe = —H; "' (2) Vf (1) (directia de cdutare);
se actualizeaza i1 = T + pi;
dacd ||xg41 — zx]| > €1 sau |V f (2p11)]| > €2
atunci se merge la Pasul 2
altfel se merge la Pasul 3
Pasul al 3-lea: metoda converge. Se afiseaza xpi1 si f (Tr41) -

Prezentam doua modele de aplicare a acestei metode.
Exercitiul 4.48 Sa se implementeze aceasta metoda pentru functiile test deja utilizate.

Implementare 4.49 Putem folosi de asemenea un program care si calculeze (cu aproximatie)
hessiana, asa incat sa nu fim nevoiti sa calculam prin derivare directa aceasta matrice.
function sec_deriv = hessian(x,delx)
for i = 1:length(x)
for j = 1:length(x)
if i == j
temp = x;
temp(i) = x(i) + delx;
terml = func_multivar(temp);
temp = Xx;
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temp(i) = x(i) - delx;

term2 = func_multivar (temp);

temp = Xx;

term3 = func_multivar(x);

sec_deriv(i,j) = (terml-2*term3+term2)/(delx"2);

else

temp = Xx;

temp(i) = x(i) + delx;
temp(j) = x(j) + delx;

terml = func_multivar (temp);
temp = Xx;

temp(i) = x(i) + delx;
temp(j) = x(j) - delx;

term2 = func_multivar (temp);
temp = Xx;

temp(i) = x(i) - delx;
temp(j) = x(j) + delx;

term3 = func_multivar(temp);
temp = Xx;

temp(i) = x(i) - delx;

temp(j) = x(j) - delx;

term4 = func_multivar(temp);

sec_deriv(i,j) = (terml-term2-term3+term4)/(4*delx"2);
end

end

end

Exercitiul 4.50 Folosind aceasta functie, sa se implementeze din nou metoda lui Newton (a se
vedea funct multivar gi grad vec de mai sus).

4.3.2 Metode derivate din metodele fundamentale

Metoda cautarii directiei de descrestere, metoda gradientilor conjugati si metoda lui Newton sunt
metode fundamentale in optimizarea fara restrictii. Pe baza lor au fost derivate si alte metode
care fie sunt hibride, in sensul ca prin constructia lor combina caracteristici ale celor trei metode
de baza, fie sunt aproximative, in sensul ca ofera posibilitati de evitare a calculului elementelor
celor mai costisitoare din punct de vedere computational ale acestora (ca de exemplu, calculul
Hessianei in cazul metodei lui Newton).

Prezentdm mai jos, fra demonstratii privind convergenta, principalele metode derivate. In
orice caz, fiind vorba de variatii ale metodelor de baza, consideram ca, prin insasi natura lor, acesti
algoritmi pot fi intelesi, acceptati si folositi cu usurinta.
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1. Metoda lui Newton modificata
Pasul 1: se dau zg (punctul de start), e1,e2 > 0 (tolerante), Az > 0 (pentru calculul gradien-
tului);
Pasul al 2-lea: fiind calculat zy, se calculeaza V f (z), Hy (x)) , gradientul si Hessiana in x;
Dk = —HJTI () Vf (zr) (directia de cautare);
se minimizeaza o — f (zx + api) (utilizand, de exemplu, metoda sectiunii de aur) i se
obtine «;
se actualizeaza w1 = ) + apy;
dacd ||xg41 — zk]| > €1 sau |V f (2p41)]| > €2
atunci se merge la Pasul 2
altfel se merge la Pasul 3
Pasul al 3-lea: metoda converge. Se afiseaza xyy1 si f (Tgs1) -

In unele situatii aceasta metoda este mai rapida decat metoda lui Newton. Spre comparatie,
aceasta metoda mai cauta un pas « suplimentar fata de metoda lui Newton, deci combina metoda
clasica cu metoda cautarii directiei de descrestere.

Exercitiul 4.51 Sa se exemplifice aceasta metoda folosindu-se functiile Matlab/Octave deja prezen-
tate.

2. Metoda Levenberg—Marquardt
Pasul 1: se dau xy (punctul de start), 1,9 > 0 (tolerante), Az > 0 (pentru calculul gradien-
tului), A > 0 (o valoare mare);
Pasul al 2-lea: fiind calculat zy, se calculeaza V f (z), Hy (xy) , gradientul si Hessiana in wy;
pr = — [Hy (z) + \]' V£ (23) (directia de ciutare);
se actualizeaza w1 = i + pi;
dacd f (z41) < f (k)
atunci A devine \/2
altfel A devine 2\
dacd ||xgy1 — zx]| > €1 sau |V f (2p11)]| > €2
atunci se merge la Pasul 2
altfel se merge la Pasul 3
Pasul al 3-lea: metoda converge. Se afiseaza xp1 si f (zry1) -

Se poate observa ca si aceastd metoda este una hibrid intre metoda lui Newton si metoda
cautarii directiei de descrestere.

Exercitiul 4.52 Sa se exemplifice aceasti metoda folosindu-se functiile Matlab/Octave deja prezen-
tate.

3. Metoda Fletcher-Reeves a gradientilor conjugati
Pasul 1: se dau z (punctul de start), e1,2 > 0 (tolerante), Az > 0 (pentru calculul gradien-
tului);
se minimizeaza o — f (rg — aVf (x)) (utilizdnd, de exemplu, metoda sectiunii de aur)
si se obtine «;
se calculeazd z1 = xg — aV f (x0)
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Pasul al 2-lea: fiind calculate valorile lui z; pana la rangul k, se procedeaza astfel:

S = — IV )l
se calculeazd p, = —V f (x)) + N far O (=Vf(xr_1))

se minimizeazd o — f (25 + apy) (utilizdnd, de exemplu, metoda sectiunii de aur) si se
obtine «;
se actualizeaza 1 = T + apy;
daca ||xgs1 — zg|| > €1 sau |V (zp11)]| > €2
atunci se merge la Pasul 2
altfel se merge la Pasul 3
Pasul al 3-lea: metoda converge. Se afiseaza xpi1 si f (Tr41) -

Aceasta metoda este o extindere la functii nu neaparat patratice a metodei gradientilor con-
jugati. In particular, este o metoda de ordinul intai.

Exercitiul 4.53 Sa se exemplifice aceasti metoda folosindu-se functiile Matlab/Octave deja prezen-
tate.

4. Metoda Davidon—Fletcher—Powell (Metoda DFP)

Ideea acestei metode este de a evita calculul Hessianei in metoda lui Newton, folosind in schimb
o aproximare a inversei acesteia. Este o metoda de ordinul intai cu convergenta patratica, mai
fiind numita si metoda quasi-Newton.

Aproximarea inversei Hessianei in punctul curent se face printr-un sir de matrici (Ay), cu
primul termen identitatea care respecta recurenta

(Tpy1 — fﬂk)t (Try1 — 1)
(Tr1 — k) (Vf (2p41) = Vf (ﬂfk))t
A (VS (wh1) = VS (@) (VS (@) = VS () A
(VS (wr41) = VI (21) Ae (Vf (2r41) = Vf (22))"

Metoda poate fi descrisa astfel:
Pasul 1: se dau z (punctul de start), e1,2 > 0 (tolerante), Az > 0 (pentru calculul gradien-
tului), matricea A initializata cu identitatea,;
se minimizeaza o — f (xg — aV f (x)) (utilizdnd, de exemplu, metoda sectiunii de aur)
si se obtine «;
se calculeazd z1 = g — aV f (x¢)
Pasul al 2-lea: Fiind calculate valorile lui ; pana la rangul k si ale lui A; pana la rangul k —1,
se procedeaza astfel:
se calculeaza Ay dupa formula de mai sus; se calculeaza pp = — ALV f (xx) ;
se minimizeazd o — f (25 + apy) (utilizdnd, de exemplu, metoda sectiunii de aur) si se
obtine «;
se actualizeaza xy 1 = T + apy;
dacd ||xgi1 — zg|| > €1 sau |V f (2p11)]| > €2
atunci se merge la Pasul 2
altfel se merge la Pasul 3
Pasul al 3-lea: metoda converge. Se afiseaza xp1 si f (zr41) -

Appr = A +
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Exercitiul 4.54 Sa se exemplifice aceasti metoda folosindu-se functiile Matlab/Octave deja prezen-
tate.

5. Metoda Broyden—Fletcher—Goldfarb—Shanno (Metoda BFGS)

Din nou, ideea este de a evita calculul Hessianei in metoda lui Newton, folosind in schimb o
aproximare a acesteia. Deci de data aceasta se aproximeaza Hessiana (nu inversa sa) in punctul
curent prin sirul de matrici (Ax) cu primul termen identitatea care respectd recurenta

(VS (@e1) = Vf (@0) (VS (2r01) = VS (@) Vf (@) V()
(Vf (@i1) = Vf (28)) (wr51 — 21)" V[ () g

unde py este definit in descrierea de mai jos a metodei:
Pasul 1: se dau z (punctul de start), e1,e2 > 0 (tolerante), Az > 0 (pentru calculul gradien-
tului), matricea A initializata cu identitatea,;
se minimizeazad o — f (xg — aV f(xo)) (utilizand, de exemplu, metoda sectiunii de aur)
si se obtine «;
se calculeazd ©; = xo — aV f (20)
Pasul al 2-lea: Fiind calculate valorile lui ; pana la rangul k si ale lui A; pana la rangul k —1,
se procedeaza astfel:
se calculeaza Ay dupa formula de mai sus; se calculeaza p, = —A,;lv f(zr);
se minimizeazd o — f (25 + apy) (utilizdnd, de exemplu, metoda sectiunii de aur) si se
obtine «;
se actualizeaza xp.1 = x) + apyg;
dacdl ||xgs1 — zgl| > €1 sau |V f (zp11)]| > €2
atunci se merge la Pasul 2
altfel se merge la Pasul 3
Pasul al 3-lea: metoda converge. Se afiseaza xpi1 si f (Tr41) -

Appr = Ay +

Exercitiul 4.55 Sa se exemplifice aceasti metoda folosindu-se functiile Matlab/Octave deja prezen-
tate.

Exercitiul 4.56 Sa se testeze gi sa se compare metodele pe functia Rosenbrock.
Exercitiul 4.57 Fie f : R?> — R data prin
flr,y) = +o+y—3-sinB(z+y).

Sa se arate deseneze graficul gi liniile de contur pe [—1, 1]2 gt sa se deduca faptul ca [ are doua
puncte de minim local. Sa se verifice ca (0,0) nu este un astfel de punct. Sa se foloseasca metodele
anterioare pentru a aprorima minimele.

Exercitiul 4.58 Fie sistemul

3x—cosyz—%:0
322 — 6252 +2y —1=0
e ™ +4+2024+9.1=0.
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Sa se aproximeze o solutie a acestui sistem folosind metodele anterioare pentru functia f : R® — R,
3 2 2 2 2 —z 2
fwy,2) = (3r—cosyz— 5 ) + (3% =625y +-2y — 1)" + (e + 202+ 9.1)".

Exercitiul 4.59 Fie sistemul (supradeterminat)

-y +ao—3y=2
$3—y4:—2
2+ + 22 —y=—1.1.

Sa se aproximeze solutii a acestui sistem folosind metodele anterioare pentru functia construita ca
la exercitiul anterior pentru datele initiale (1.5, —1.75), (1.5,1.5).

Exercitiul 4.60 Sa se compare metodele studiate pe cazul minimizarii functiei lui Himmelblau,
f:R? — R date prin
2 2
f@)= (21422 —11)" + (25 + 2, = 7)
luénd diverse date initiale (se va reprezenta grafic i se va constata ca functia are patru puncte de
minim local).

Exercitiul 4.61 Sa se verifice pe cazul functiei f : R? — R date prin
f(z) = 2% + 32129 + 523

ludnd data initiald v = (1,1) ca

(i) iteratia pentru generarea matricilor (Ay), din metoda DFP conduce la o aproximare a
inversei hessianei functiei;

(i) iteratia pentru generarea matricilor (Ay), din metoda BFGS conduce la o aproximare a
hessianer functiei.

Exercitiul 4.62 Fie f : R* — R,
f(x) = (21 + 10%2)2 +5 (x5 — I4)2 + (zg — 2x3)2 + 100 (21 — x4)4 )

Verificati ca 0 € R* este singurul punct de minim global si cG nu existd alte puncte de minim local.
Testati pe functia f
(i) metoda celei mai bune descresteri cu datele initiale (—2,—1,1,2), (200, —200, 100, —100) ;
(i1) metodele derivate din metoda lui Newton.

Exercitiul 4.63 Sa presupunem ca din observarea unui fenomen fizic la momentele t; rezulta
datele m;, conform tabelului urmator:

l 1 2 3 4 ) 6
t; 0.2 0.4 0.6 0.8 0.9 095 |
m; | 0.7123 | 1.754 | 4.852 | 22.27 | 94.91 | 388.2
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In plus, presupunem ca se observd un comportament de tip t** in jurul lui 0 si un comportament
de tip m in gurul lui 1. Legea sugeratd de comportare la fiecare moment t depinde de tre:

parametri x1, Ta, T3 §i este modelatd de functia f : R — R,

f(z) = xst™ ==

Functia de minimizat pentru a gasi modelul cel mai apropiat de aceste date este, conform metodei
celor mai mici patrate (a se vedea gi Problema ,

2

6
1
L T __
v Z {ml sl (1—t;)®

i=1

Determinati parametrii modelului si valoarea totala a patratelor abaterilor minimizdnd functia de
mai sus prin diverse metode.

Exercitiul 4.64 Sa se testeze metodele studiate pe urmatoarele functii test:
(i) functia Beale, f : R* — R data prin

f(x)=(15—mz + x1x2)2 + (2.25 — T+ xlxg)Q + (2.625 — 1+ mlxg)Q ,

pentru care punctul de minim global este (3,0.5), iar valoarea minima globala este 0;
(ii) functia ,camila cu trei cocoase”, f: R? — R data prin
G
f(x) =222 — 1.0527 + El + 2129 + 73,

pentru care punctul de minim global este (0,0), iar valoarea minima globala este 0
(iii) functia Branin, f : R? — R data prin

5.1 )

2
1
Fe)= (- prt+ o= 6) 410 (1= Jeos(en) 410,
Ar2 T 8

pentru care, printre minimele globale se regisesc punctele (—m,12.275), (m,2.275), (9.42478,2.475),
1ar valoarea minima globala este 0.397887.

4.4 Cazul functiilor cu valori vectoriale: optimizare Pareto

Optimizarea Pareto (dupd numele economistului italian W. F. Pareto) se ocupa de situatia in care
minimizarea (sau maximizarea) se face dupa mai multe criterii, unele fiind in concurenta cu altele.
Formalizarea matematica a acestei idei este prezentata succint mai jos.

Ca de obicei, considerdam p € N\ {0} .

Definitia 4.4.1 O submultime nevida C' C RP se numeste con daca are loc proprietatea

Ve e O,VAeER, :=1[0,00) : Az € C.
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Conform acestei definitii, orice con contine elementul 0. Daca A C R? este o multime nevida,
atunci multimea

RJ’_A = {)\G‘)\GR.,_,GEC}

este con, numit conul generat de A.

Propozitia 4.4.2 Un con C este multime convexa daca si numai daca C' + C' C C.

Prin urmare, un con convex este o multime nevida inchisa la adunare si la inmultirea cu scalari
pozitivi.
Definitia 4.4.3 (i) Un con C se numeste propriu daca C # {0} gi C' # RP.

(i) Un con C' se numeste punctat daca C' N (—C) = {0}.

Urmaétorul rezultat arata ca un con introduce pe RP o relatie de ordine (partiald) compatibila
cu structura de spatiu liniar.

Teorema 4.4.4 Fie RP un spatiu liniar $i C C RP un con. Atunci relatia
Reo = {(x1,22) € RP X RP | 29 — 27 € C'}

este reflexiva §i

Vxl, To € RP,V)\ S R+, l’chlCQ = )\lec)\ZL'Q (411)

Vo, xg,x € RP, 21Rews = (11 + 2)Re(22 + ). (4.12)

Mai mult, C' este convexr daca st numai daca R¢ este tranzitiva si, respectiv, C' este punctat
daca st numai daca Re este antisimetrica.

Invers, daca R este o relatie reflexiva pe RP care satisface §t , atunci C':= {x €
RP | ORx} este con si R = Re.

Demonstratie. Toate afirmatiile se verifica direct, pe baza definitiilor. O

Observatia 4.4.5 Pentrup =1 si C' =R, , R¢ coincide cu ordinea naturald pe R.

Avand in vedere aceasta teorema, daca C' este con convex punctat vom scrie z; <¢ =5 in loc
de 21 Rczs.

Exercitiul 4.65 Fie C' C R? un con convex inchis punctat cu interior nevid. Sa se arate ca:
(i) C'+int C' = int C}
(1)) RF\ —int C + C =RP\ —int C' gi (R?\ —C)U {0} + C = (R?\ —C) U {0} ;
(111) daca x € int C' gi * € CT\ {0}, atunci z*(x) > 0.

Exercitiul 4.66 Fie C C R? un con inchis convex cu interior nevid i ) # A C RP. Sa se arate
ca urmatoarele afirmatic sunt echivalente:

(i) AN —int C = {;

(ii) cl AN —int C = ;

(iii) (A+ C) N —int C = ();

(iv) cl(con(A+ C)) N —int C = ().

131



Exercitiul 4.67 Fie C C R? un con inchis convezr cu interior nevid care nu coincide cu RP gi
e € int K. Sa se arate ca:

(i) C+1[0,00)e C C,

(i) C' + (0,00)e = int C}

(i1i) Re — C' = RP;

(iv) pentru orice v € RP, x +Re ¢ C.

Definitia 4.4.6 Consideram R? ca fiind ordonat cu ordinea partiala indusa de un con convex,
punctat, propriu C i A C RP o multime nevida.

(i) Un punct ® € A se numeste minim tare al multimii A (in raport cu conul C') daca T <¢ x
pentru orice x € A, sau, echivalent, A C T+ C.

(1)) Un punct T € A se numeste minim Pareto al multimii A (in raport cu conul C') daca
r €A, x <¢ T implica x =T, sau, echivalent, AN (T — C) ={7}.

(111) Presupunem ca C are interior nevid. Un punct T € A se numeste minim slab al multimii
A (in raport cu conul C) daca AN (T — int C) = 0.

Observatia 4.4.7 FEste evident ca definitia minimului Pareto este echivalenta cu oricare dintre
relatiile

(A=7)n(=C) = {0},
ANz -C)={z}

§t
(A+CO)n(z - C) = {7}

Avdnd in vedere incluziunea C + int C' C int C, definitia minimului slab este echivalenta cu
(A—7)N(—intC) =0,
AN(T —intC) =0,
(A+C)N (T —intC) =10

$t cu
T¢ A+intC.

Multimea punctelor de minim tare (minim Pareto, minim slab) ale multimii A va fi notata
cu IMin(A,C) (respectiv, Min(A,C), WMin(A,C)). Evident, daca int C' # 0, IMin(A,C) C
Min(A,C) Cc WMin(A,C).

Observatia 4.4.8 Pentrup =1 g1 C = R, , toate notiunile de mai sus coincid cu minimalitatea
scalara standard.

Exercitiul 4.68 Sa se ilustreze minimalitatea Pareto, cautand multimea punctelor optimale Pareto
in raport cu R% pentru un grup de puncte generate aleator tn primul cadran.

Exercitiul 4.69 Sa se genereze 50 puncte echidistante pe un cerc §i sa se identifice dintre aceste
punctele optimale in sens Pareto (din nou, in raport cu R3 ).
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Definitia 4.4.9 Fie f : R" — R? unde n,p € N\ {0}, C C R? un con convex inchis punctat
popriu §i A C R™ o multime inchisa. Spunem ca T € A este minim (slab) Pareto pentru f pe A
daca f (T) este minim (slab) Pareto al multimii f (A) .

Urmatorul rezultat prezintd o situatie in care gasirea unui minim Pareto pentru o functie
vectoriala se reduce la gasirea unui minim pentru o functie scalara.

Propozitia 4.4.10 Cu notatiile din Definitial4.4.9, consideram C =R, w € int R} cu ! w; =
1. Fie g: R" — R,

p
g(x) =) wif;(x).
i=1
Daca T € A este punct de minim (global) pe A pentru g, atunci T este minim Pareto pentru f pe
A.

Demonstratie. Presupunem, prin reducere la absurd, cad T nu este minim Pareto pentru f pe A.
Atunci existd = € A astfel incat pentru orice i € 1,n, f; (x) < fi (T) si existd j € 1,n astfel incat
fi(z) < f; (Z). Inmultind aceste inegalitatii cu scalarii w; > 0 corespunzatori si adunandu-le,
obtinem ¢ (z) < ¢ (T), ceea ce reprezinta o contradictie. O
Exercitiul 4.70 Fie f : R? — R2,

f (@) = (af + a3, (21— 1)* + (22 = 3)°) .

Sa se scrie un program care sa determine puncte de minim Pareto penru f (pe R? ) prin metoda
descrisa in Propozitia|{.4.10 (de exemplu, prin modificarea corespunzatoare a metodei DFP).

4.5 Obtinerea unor algoritmi pentru probleme cu restrictii
- o0 metoda de penalizare

In cazul problemelor cu restrictii, cei mai importanti algoritmi derivi din metodele studiate pentru
probleme fara restrictii pe baza unor rezultate teoretice care transforma problemele din prima
categorie in probleme din a doua categorie.

Vom considera doua probleme concrete pentru ilustrarea teoriei.

Mai intai, fie f, g1, go : R? — R date respectiv prin

fz) = (21— 1)" + (22 — 5)*
g (2) = —2 + 25— 4
gg(x):—(x1—2)2+x2—3.

Studiem problema
(P1) min f (z) cu g1 (z) <0,g2 (z) <O0.

Este evident ca problema admite solutie. O analiza geometrica, combinata cu una analitica, arata

ca solutia este
3 3\’
r=(x1,29) = 1,4 + 1 = (0.75,4.5625) .
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Apoi, consideram problema (P,) a minimizarii lui f: R — R, f (z) = 2% — 8x + 3 cu restrictia
g(x) <0,unde g: R — R, g(z) =z — 1. Evident, solutia este z = 1.

Evident, exista si algoritmi directi cum ar fi algoritmul grilei uniforme care pot fi adaptati
foarte usor.

Exercitiul 4.71 Sa se implementeze un algoritm de tipul grilei uniforme adaptat pentru problema
(Py).

Vom constata ca metodele de aproximare a solutiilor problemelor cu restrictii se reduc, prin
diverse procedee, la minimizarea unor familii de functii fara restrictii pentru care se pot aplica
algoritmii studiati anterior.

O metoda mai elaborata pe care o descriem este bazata pe o tehnica numita penalizare. Ideea
este de a ingloba restrictiile problemei intr-o functie, numita termen de penalizare, astfel incat
rezolvarea problemei fara restrictii care consta din minimizarea functiei obiectiv adunata cu acest
termen sa conduca la aproximarea solutiei problemei initiale. De regula, trebuie considerata o
familie parametrica de termeni de penalizare pentru a obtine o aproximare buna a solutiei pe care
o cautam. Prezentam in continuare aspectele matematice cele mai relevante ale acestei abordari.

Consideram problema generala cu restrictii

min f () cux € M,

unde f : R? — R este o functie neteda si M C RP este o multime inchisa. Dorim sa aproximam
solutiile acestei probleme aceasta prin intermediul solutiilor problemelor fara restrictii de forma

min (f (z) + 7P (x)),

unde v > 0 gi P : R? — R este o functie. Constanta v se numeste parametru de penalizare, iar
functia P se numegte functie de penalizare, adica o functie care satisface definitia de mai jos.

Definitia 4.5.1 O functie P : RP — R se numegte functie de penalizare pentru problema generala
cu restrictit daca este continua, cu valori nenegative §i

P(z)=0 <= z € M.

Ideea este ca o astfel de functie "penalizeaza" punctele din afara multimii M astfel incat acestea
nu pot fi solutii pentru problema fara restrictii asociatd mai sus.

Exemplul 4.5.2 Fie
M={zeR|g(x) <0}

unde g : R? — R” este o functie diferentiabila, iar inegalitatea este inteleasa pe coordonate.
Atunci functia P : RP — R data prin

P(x) = _Z max {0, g; ()}
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este o functie de penalizare. Evident, aceasta functie este una nediferentiabila, in general.
O alta posibilitate este sa alegem P : R — R data prin

n

P(x) =) (max{0,g; (2)})*,

i=1
iar aceasta este o functie de penalizare diferentiabila.

Exemplul 4.5.3 Fie
M ={xeRP|h(z)=0}

unde h : RP — R™ este o functie diferentiabila. Atunci functia P : R? — R data prin
P(r) =Y 1 ()
i=1

este o functie de penalizare.

Exercitiul 4.72 Sa se scrie prima varianta a functiei de penalizare din exemplul anterior pentru
g:R—R?
g(5) = (12— (3 + 1))

Studiati diferentiabilitatea si graficul functier de penalizare.

Exemplul 4.5.4 Fie () o matrice patratica simetrica de dimensiune p. Consideram aplicatia
f:RP - R,
flz) = (Qz, )

si problema minimizarii si maximizarii acesteia pe sfera unitate din RP, adica pe multimea
{zr eR"[|lz|| =1}

Evident, in ambele cazuri exista solutie, sfera fiind compacta.
Sa remarcam ca intr-un punct = de pe sfera conul tangent Bouligand la acesta este multimea

{ueR” [ (z,u) =0}
(Teorema lui Lyusternik), deci conul normal corespunzitor este
{az | z € R}.

Atunci, conform teoremei care da conditii necesare de optimalitate de ordinul I, un punct T de pe
sfera este solutie a problemei de minimizare sau de maximizare daca exista y € R cu

QT = pr,

adica

p=(Qz,7).
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(Aceeasi concluzie rezultd prin aplicarea Teoremei Karush-Kuhn-Tucker.) Deducem de aici ca
punctele ce satisfac conditiile de optimalitate pentru problemele noastre corespund vectorilor
proprii de norma 1 ai lui @, iar valorile functiei f in acele puncte sunt valorile proprii ale lui
@. Concluziondm ca cea mai mare valoare proprie a lui f este Apax = max;=1 (Qz, ), in timp
ce cea mai mica este Appn = min,|—; (Qx, ) . Prin normalizare se obtine

Q) Qo)

ax = nax 5
2RO} a]

min 5 -
<R (0} ]

. o . . . 2 .
Sa& consideram acum pentru problema de mai sus functia de penalizare P (z) = (||93||2 —1) s
un parametru v > 0. Conform ideii generale, problema fara restrictii asociata este

. 2
min ((Qx,x) + (||33H2 —1) ) .
O solutie 7, a acestei probleme trebuie sa satisfaca, conform Teoremei lui Fermat, ecuatia
— — 112 —
2Q7, + 4y (”x”/H - 1) Ty =0,
adica
— — 2\ —
Oz, =27 (1- |7, |*) %,
ceea ce Inseamna in particular ca 7, este vector propriu al lui Q).
In plus, valoarea proprie asociatd este 2 (1 — H@HQ), deci

)\min S 27 (1 - HEVHQ) S )\max'

Astfel,

>\min AInax

2y 2y
si pentru 7 — oo, norma lui 7, tinde la 1, deci 7, tinde (mécar pe un subsir) la un punct fezabil
al problemei initiale.

— 112
<1—|=z" <

Lema 4.5.5 Fie P o functie de penalizare pentru problema minimizarii lui f () cux € M. FieT
o solutie globala a acestei probleme si (yx) un gir strict crescator de numere reale pozitive. Pentru
fiecare k € N consideram functia q : RP — R data prin

i (2) = [ (2) + P (2).

Presupunem ca fiecare dintre aceste functii admite un punct de minim global x. Atunci, pentru
orice k au loc urmatoarele:

(1) Q1 (Thi1) 2> qr (T)

(i) P(xp41) < P(an);

(ii1) [ (2pr1) = f () 5

() [(Z) = qu (zr) = [ ().
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Demonstratie. (i) Pe baza monotoniei lui (7;) avem

Q1 (Thi1) = [ (@rr1) + 1 P (@r11) > f (2r51) + 9P (0p41) -

Pe de alta parte, cum z; e punct de minim global pentru g, avem

ar (zr) = f(zr) + P (vr) < f (Thy1) + 9P (Tr41) -

Astfel obtinem prima concluzie.
(ii) Avem, ca mai sus,

@ (zr) = f () + P (2r) < f (Tp41) + P (Tp41)

Q1 (Trer1) = f (@) + Yo P (1) < f (20) + Ve P ()
inegalitati care adunate conduc la
VP (z1r) + Y1 P (Thy1) < P (0p41) + e P () -

Deducem ca
(Vi1 — ) P (@rg1) < (Vo1 — ) P (z) -

Cum 741 > Y obtinem ca P (xpy1) < P (xy) .
(iii) Putem scrie din nou

ar (wx) = f(zr) + P (x1) < f (@rg1) + P (Tp41) s

deci, folosind (ii),
[ @ri1) = f (z) + o (P (k) = P2n41)) = f ()
(iv) Avem
f @)+ P (T) > g (vx) = f (z1) + L (78) -

Dar T este punct fezabil pentru problema initiala, deci P (T) = 0. Astfel,
[ (@) > a (wx) = f (2x) + WP (z1) 2> f (1) -
Demonstratia este completa. U
Rezultatul urmator este esential pentru fundamentarea metodei de penalizare.

Teorema 4.5.6 Cu notatiile de mai sus, in ipotezele Lemei dacd v, — 00, atunci orice
punct limita ol girului (zy) este solutie a problemei cu restrictii.

Demonstratie. Fie (zy,) un subsir al lui (x) convergent la un punct z*. Conform Lemei {4.5.5,
sirul (gx (z)) este crescator si marginit superior de f (7). Deci exista limita reald g al lui (gx (z))
$1¢ < f(Z). Cum f este continud, avem

lin f (a,) = f (%) < (@),
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Dar sirul cu termenii
Vi P (vx,) = g, (1) — [ ()

este convergent la g — f (z*). Tot din lema precedenta, sirul (P (zy)) este descrescator gi marginit
inferior de 0, deci este convergent. Cum ~y;, — 00, deducem ca P (xy,) — 0, iar pe baza continuitatii

lui P,

0=UlmP (xy,) =P (limxy,) = P (z).
Deci z* e punct fezabil pentru problema cu restrictii si cum f (z*) < f (%), deducem ca z* este la
randul sau o solutie globala a acestei probleme. 0

Observatia 4.5.7 Conform rezultatului precedent, pentru convergenta trebuie sa consideram un
sir de parametri v, — Q.
Ideal ar fi sa gasim o solutie a problemer initiale minimizdnd doar o functie de tip

fC)+aP()
cu v > 0, caz in care functia de penalizare se numeste evacta. Cum vom vedea in exemplul

urmator, o astfel de functie nu poate fi diferentiabila, in general.

Exemplul 4.5.8 Fie problema minimizarii functiei f : R — R, f (z) =5 — 3z pentru x € [0,1].
Evident, T = 1 este solutia problemei. Presupunem ca utilizam o functie de penalizare diferentia-
bild. Cum P este nuld pe [0,1], P’ (1) = 0. Atunci, pentru orice v > 0,

(f +7P) (1) = =3 #0,

deci punctul Z nu satisface conditia necesara de minimalitate fara restrictii pentru (f + v P) . Deci
P nu este o functie de penalizare exacta.

Pe baza acestei teorii, putem prezenta o metoda de aproximare a solutiilor unei probleme cu
restrictii functionale de tipul

min f () cug(x) <0, h(z)=0,

unde f:RP - R, g : R? — R", h: R? — R™, cu notatiile standard.
Astfel, in notatiile de mai sus, consideram functia de penalizare

n m

P ()= (max{0,g; ()})* + )} ()

i—1 j=1

si sirul de parametri

= max {1’ ooy wiew } |

unde max {0, g (xx_1)} e inteles pe componente.

O altd posibilitate de alegere a lui v, este 10log (k + 1) .

Concret, functia f + ;P este la fiecare pas minimizata folosind o metoda cadt mai rapida din
cazul problemelor fara restrictii, iar un bun candidat este metoda DFP intrucat nu face apel la
diferentiala a doua care ar putea sa nu existe in cazul lui P.
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Implementare 4.73 Mai intai, evidentiem pe baza unui desen comportamentul functiei de pe-
nalizare in cazul problemei (P;) la varierea (cresterea) parametrului .

f=0(x) [x"2-8*x+3];

a=-7;b=5b;

g=0(x) [x-1];

fplot (£, [a,b]l);

set(gca, ’XAxisLocation’, ’origin’)

set(gca, ’YAxisLocation’, ’origin’)

hold on;

f1=0(x) [f(x)+4*max(0,g(x))"2];

fplot(£f1,[a,b]);

hold on;

£2=0(x) [f(x)+8*max(0,g(x))"2];

fplot(£2, [a,bl);

hold on;

£3=0(x) [f(x)+12*max(0,g(x))"2];

fplot(£3, [a,b]);

Exercitiul 4.74 Sa se scrie figierele care determind solutia problemei (Py) folosind algoritmul
sectiunii de aur pentru functia penalizata (prin cresterea progresivd a parametrului ).

Exercitiul 4.75 Sa se scrie fisierele care adapteaza metoda DFP pentru determinarea solutiei
problemei (Py).

Observatia 4.5.9 O metoda foarte simpla, dar eficienta in unele situatii, bazata de asemenea
pe ideea penalizarii, este prezentatd in continuare. Consideram problema generald cu restrictii
functionale si date netede (in notatia standard):

min f () cug(z) <0, h(z)=0,

unde f : RP — R, g: RP — R" h: RP — R™. Pentru metoda pe care o vom prezenta, o inegalitate
de tipul h; (x) = 0 se scrie echivalent in forma (hj (z) <0 gi —h; (z) <0), de aceea ne vom ocupa
de problema cu inegalitati:

min f () cu g (z) <0,

unde g = (g1, .-, gn) - Algoritmul propus este urmatorul:
Pasul 1. Se alege yo = (1,...,1) € R" (un parametru) si x_1 =0 € R? (o data initiala), € > 0
(o toleranta)

Pasul 2. Date fiind vy, = (y,@)zeﬁ € R" gi v_1 € RP minimizam functia (fara restrictii)

f(z)+ Z eVi9i (@)
i=1

cu data initiala xp_q. Fie xp punct de minim pentru aceasta functie.
Daca toate produsele y;.g; (x) (i € 1,n) sunt mai mici in valoare absolutd decdt € atunci x; e
aprorimarea pe care o cautam.
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Altfel, actualizam pentru i € 1,n
ylim—l _ eyigi($k)yi.
Rezultatul de convergenta a acestui algoritm este urmatorul: daca sirurile obtinute pe baza pasilor
anteriori satisfac
v1.gi (z) — 0,Vi € 1,n gi v — T,

atunct T este solutie a problemei cu restrictii.

Pentru a demonstra, este suficient sa avem in vedere cazul n = 1. Astfel, consideram g : RP —
R.

Mai intdi aratam ca T este punct fezabil. Presupundnd contrariul, g (T) > 0, deci g (x)) > 0
pentru k suficient de mare. Obtinem:

(zx)

Ypr1 = 9y >y,

Deci (yi) este un gir crescator si cum yo > 0, acesta nu poate avea limita 0. Aceastd observatie
este in contradictie cu ipoteza yrg; () — 0. Deducem ca g (T) < 0, deci T este fezabil.

Presupunem, tot prin reducere la absurd, c@ pentru orice p > 0 exista x, € B (T, p) N M astfel
incat f (z,) < f(T). Atunci pentru orice k.

fx,) +emd@) < f(z,)+1< f(T)+1.
Cum yrqg () — 0 si 1, — T, pentru k suficient de mare avem
Yrg g y D
f(z,) + eUrd(@0) < f (z,) +1 < f(xz)+ eYkI(Tk)

Ultima inegalitate contrazice minimalitatea lui xy.
Asadar, convergenta mentionata are loc.

140



Modele de examene scrise

Model examen partial

Subiectul 1. Fie multimea M = {z € R?* |z +y < 1}. S4 se scrie expresia conului tangent la
M in (2,—-1). Fie f : R? — R o functie de clasi C'. S& se scrie conditia necesard de optimalitate
de ordinul I astfel incat (2,—1) sd fie solutie locald a problemei de optimizare min f (z,y) cu
(z,y) € M.

Subiectul 2. Se doreste construirea unei cutii parelelipipedice cu baza patrat si fara capac cu
volumul de 100. Determinati dimensiunile unei astfel de cutii astfel incat materialul folosit sa fie
minim.

Subiectul 3. Fie f,g : R? — R date prin f(z,y) = (2 +1)> + 42 si g(z,y) = —x3 + 42
Consideram problema minimizarii lui f (x,y) cu restrictia g (z,y) < 0.

(i) Sa se verifice dacd are loc conditia Mangasarian-Fromovitz in (0, 0) .

(ii) Sa se determine punctele care satisfac conditiile de optimalitate Fritz John.

(iii) S4 se determine solutiile problemei.

Subiectul 4. Fie f,g,h : R? — R date prin f(z,9) = (zt —1)>+y—2, g(z,y) = z +y — 2
si h(x,y) =y — 2z — 1. Considerdm problema minimizarii lui f (x,y) cu restrictiile g (z,y) < 0,
h(x,y) = 0.

(i) Sa se gdseascd punctele care satisfac conditiile de optimalitate Karush-Kuhn-Tucker.

(ii) Sa se verifice daca conditiile suficiente de ordinul al doilea au loc in aceste puncte si sa se
concluzioneze.

Barem de notare:

1. 1p — baza; conul tangent 4p; conditia necesara de optimalitate 5p.

2. 1p — baza; modelarea 2p; rezolvarea problemei 5p; concluzia 2p.

3. 1p — baza; conditia MF: 2p; punctele Fritz John 5; solutiile 2p.

4. 1p — baza; punctele Karush-Kuhn-Tucker 4p; conditia suficienta de ordinul al doilea 4p;
concluzia 1p.

Timp de lucru: 100 minute
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Model examen final

Partea I (30’) (scris) Metoda celei mai bune descresteri cu regula minimizarii exacte. Descriere,
convergenta

Partea a II-a (60°) (scristcalculator) Fie sistemul (supradeterminat)

S4 se aproximeze solutii ale acestui sistem folosind pentru functia f : R? — R,
flxy) = (xQ—y2+x—3y—2)2—|— (x3—y4—|—2)2—|— (x2—|—y3—|—2x—y—|—1.1)2,

cu data initiald (1.5, —1.75), una dintre metodele de mai jos:
(1) metoda lui Newton;
(2) metoda celei mai bune directii de descregtere cu regula minimizarii exacte;
(3) metoda Levenberg—Marquardt;
(4) metoda Davidon—Fletcher—Powell.

Sa se descrie pe scurt, in scris, metoda folosita.
Barem de notare:
1p — oficiu;

Partea I: enunt 1 p, demonstratie 2 p.
Partea a II-a: implementare 4p, descrierea metodei 2p.
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