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Prefa̧t¼a

Scopul acestei lucr¼ari este acela de a prezenta unele complet¼ari şi dezvolt¼ari ulterioare unui prim
curs de baz¼a de Teoria optimiz¼arii neliniare. Avem în vedere o aprofundare a condi̧tiilor de
optimalitate pentru probleme cu restriçtii funçtionale şi, mai ales, descrierea câtorva algoritmi
pentru aproximarea punctelor de extrem în probleme de optimizare. De asemenea, un accent
special este pus pe aspectele de ordin practic ale rezultatelor şi tehnicilor prezentate. Pentru
implement¼arile propuse se pot folosi coduri Matlab/Octave.
Materialul prezentat are dou¼a p¼aŗti principale. În prima dintre acestea, facem un studiu detal-

iat al condi̧tiilor necesare şi su�ciente de ordinul întâi şi de ordinul al doilea pentru probleme de
optimizare cu restriçtii şi descriem mai multe aplica̧tii mai pu̧tin imediate ale acestora. Motiva̧tia
unui studiu care poate p¼area prea teoretic într-un curs care are cuvântul �practic� în titlu este
oferit¼a de dictonul O teorie corect¼a este cel mai practic lucru care exist¼a (F.W. Dörpfeld,1873).
În a doua parte, motivat¼a de faptul c¼a nu toate problemele de optimizare pot � complet

rezolvate, din lipsa instrumentelor necesare rezolv¼arii unor ecua̧tii neliniare, studiem algoritmi de
optimizare şi algoritmi de determinare a r¼ad¼acinilor unor funçtii, din nou pe baza unor fundamente
teoretice solide. Astfel, din aceast¼a perspectiv¼a, practica este teorie aplicat¼a. Un alt aspect des
întâlnit, mai ales spre �nalul celei de-a doua p¼aŗti, este caracterul euristic al unor metode numerice
care au motiva̧tii teoretice solide, dar nu sunt întru totul justi�cate aici din punct de vedere
matematic, mai ales din lipsa spa̧tiului. Pentru aceste metode existeņta teoriei "din spate" este
uşor de acceptat, tocmai datorit¼a faptului c¼a metodele de baz¼a sunt complet acoperite din acest
punct de vedere.
Prin urmare, aceast¼a lucrare î̧si propune s¼a prezinte rezultate şi tehnici deja consacrate, iar

aranjarea materialului, selectarea exemplelor ilustrative, ordonarea codurilor utilizate reprezint¼a
punctul de vedere al autorului asupra acestui domeniu. Monogra�ile indicate la bibliogra�e coņtin
multe extensii şi complet¼ari semni�cative ale chestiunilor ce se reg¼asesc în lucrarea de fa̧t¼a.
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Capitolul 1

Optimizare - exemple şi elemente
recapitulative

1.1 Exemple de probleme practice

1.1.1 Probleme f¼ar¼a restriçtii

Exemplul 1.1.1 Funçtia rezultat¼a folosind Principiul lui Fermat pentru modelarea problemei
refraçtiei luminii care trece din punctul (0; a) (cu a > 0) dintr-un mediu (aer) în punctul (b; c) (cu
b > 0; c < 0) din alt mediu (ap¼a) este f : R! R;

f(x) =

p
a2 + x2

v1
+

p
(b� x)2 + c2

v2
;

unde v1 este viteza luminii în primul mediu, iar v2 este viteza luminii în al doilea mediu. Aceast¼a
funçtie trebuie minimizat¼a.
Exemplu numeric (ce va �studiat): a = 10; (b; c) = (30;�40) ; v1 = 299702 km/s, v2 = 228849

km/s.

Exemplul 1.1.2 Modelarea problemei de mai jos conduce de asemenea la minimizarea unei
funçtii. Un sportiv înoat¼a într-un lac şi se a�¼a în larg la o distaņt¼a de 5km fa̧t¼a de mal. El
trebuie s¼a ajung¼a pe uscat într-un punct a�at la 7km în lungul ţ¼armului fa̧t¼a de pozi̧tia sa în
raport cu ţ¼armul. Ştiind c¼a sportivul alearg¼a cu 6m=s şi înoat¼a cu 2m=s, s¼a se determine timpul
minim în care poate ajunge la destina̧tie.

Exerci̧tiul 1.1 S¼a se modeleze problema de mai sus.

Exemplul 1.1.3 O bacterie are forma unei elipse de dimensiuni a; b > 0; a > b: Coe�cientul de
frecare cu lichidul în care se a�¼a este dat de

� =
4��a

ln
�
2a
b

�
� 1

2

:

Lu¼am b = 1 şi � = 1 (ap¼a). Se cere determinarea lui a astfel încât � s¼a �e minim.
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Exerci̧tiul 1.2 S¼a se rezolve problema de mai sus.

Exemplul 1.1.4 Un conduc¼ator al unui oras-stat italian din secolul 14 trebuie s¼a angajeze o
armat¼a. Exist¼a dou¼a tipuri de solda̧ti ce pot � angaja̧ti: mercenari sau cet¼a̧teni aleşi prin tragere
la soŗti. Fie c 2 [0; 1] propoŗtia de cet¼a̧teni (̧si, evident, 1 � c propoŗtia de mercenari). Fiecare
dintre cele dou¼a tipuri de solda̧ti comport¼a un risc. Mercenarii sunt oportuni̧sti şi pot specula
unele momente pentru a ob̧tine pro�turi suplimentare, ceea ce diminueaz¼a avu̧tia conduc¼atorului,
notat¼a cu w: Not¼am cu v 2 [0; 1] "gradul de oportunism" al unui (�ec¼arui) mercenar. Pe de alt¼a
parte, solda̧tii cet¼a̧teni pot avea op̧tiuni politice în favoarea sau împotriva conduc¼atorului, ceea ce
ar putea conduce la îndep¼artarea acestuia de la putere pe calea armelor. Dac¼a not¼am cu g 2 [0; 1]
propoŗtia de cet¼a̧teni favorabili din punct de vedere politic conduc¼atorului, gradul de adversitate
va � c (1� g) : Pentru a stabili ce propoŗtie din �ecare categorie angajeaz¼a, conduc¼atorul are de
rezolvat aşadar problema

max
c2[0;1]

(1� c (1� g)) (w � wv (1� c)) ;

adic¼a
max
c2[0;1]

(1� c (1� g)) (1� v (1� c)) :

Exerci̧tiul 1.3 S¼a se rezolve problema de mai sus şi s¼a se interpreteze rezultatele.

1.1.2 Probleme cu restriçtii

Exemplul 1.1.5 (problema dietei) Fie xi cantitatea de produs de alimenta̧tie de tipul i. Pen-
tru �ecare tip de produs costul pe unitate este ci: Se doreşte minimizarea costului totalX

i

cixi

pentru asigurarea unei alimenta̧tii potrivite. Astfel, not¼am cu aij coņtinutul de nutrient j dintr-o
unitate de produs i şi bj cantitatea necesar¼a din acest nutrient. Deci avem restriçtiileX

i

aijxi � bj; 8j:

Evident, trebuie s¼a avem şi xi � 0 pentru orice i:

Exemplul 1.1.6 Se doreşte construirea unui bloc paralelipipedic având n nivele, o adâncime a
subsolului notat¼a cu d şi o în¼aļtime a suprasolulul notat¼a cu h: Dimensiunile amprentei la sol sunt
l şi w: Se doreşte ca suprafa̧ta util¼a s¼a �e de cel pu̧tin 20000 m2, �ecare nivel s¼a �e înalt de 3:5
m; iar dimensiunea terenului determin¼a ca l; w s¼a �e sub 50 m: Din motive estetice, se doreşte
ca l=w = ' w 1:618 (num¼arul de aur). Costurile de înc¼alzire/r¼acire sunt 100 u.m./an/m2 pentru
suprafat¼a suprateran¼a iar bugetul de 225000 u:m:=an. Problema este aceea de a minimiza spa̧tiul
de excavat pentru a � îndeplinite toate aceste condi̧tii. Modelând problema, se ajunge la

min dlw
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cu restriçtiile

nlw � 20000
l = 'w � 50

d+ h = 3:5n

100 (2hl + 2hw + lw) � 225000:

Folosind aceste rela̧tii şi neglijând faptul c¼a n este întreg, elimin¼am l; n şi ajungem la problema
de minimizare cu variabilele d; w; h

min dw2

cu

(d+ h)w2 � 70000

'

w � 50

'

2 ('+ 1)hw + 'w2 � 2250:

Exemplul 1.1.7 Avem un sistem de eşafodaj cu patru �re A;B;C;D care suport¼a respectiv
tensiunile 200; 100; 200; 100 construit astfel:
- de un plafon sunt prinse trei �re, A;C;D; în acest¼a ordine, cu distaņtele dintre ele de 2 şi 10

m;
- la capetele �relor C; D; a�ate la acelaşi nivel se a�¼a o platform¼a de mas¼a neglijabil¼a;
- de aceast¼a platform¼a la 2 m de D înspre C este prins un �r B care coboar¼a pân¼a la acelaşi

nivel cu �rul A;
- la capetele �relor A; B se a�¼a o platform¼a de mas¼a neglijabil¼a.
- pe cele dou¼a platforme se aşeaz¼a, la mijloc, câte un corp cu greut¼a̧tile x1 şi respectiv x2:
Problema este de a determina masa maxim¼a ce poate � suportat¼a de sistem, deci trebuie

s¼a maximiz¼am (x1 + x2) ţinând cont de ecua̧tiile de echilibru. Dac¼a not¼am cu TA; TB; TC ; TD
tensiunile din cele patru �re, ecua̧tiile devin

x2 = TA + TB

x1 + TB = TC + TD

5x2 = 10TB

5x1 + 8TB = 10TD:

Modelarea problemei conduce deci la
max (x1 + x2)

cu

x2 = TA + TB

x1 + TB = TC + TD

5x2 = 10TB

5x1 + 8TB = 10TD;

TA � 200; TB � 100; TC � 200; TD � 100:
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Se observ¼a c¼a tensiunile pot � eliminate pentru c¼a

TA = TB =
x2
2

TC =
x2
10
+
x1
2

TD =
2x2
5
+
x1
2

şi se ajunge la problema
max (x1 + x2)

cu

x2 � 200
x1 � 400
5x1 + x2 � 2000
5x1 + 4x2 � 1000:

Mai mult, unele din aceste restriçtii le includ pe altele (de exemplu, ultima pe penultima) pentru
c¼a x1; x2 � 0 şi putem s¼a reducem problema la

max (x1 + x2)

cu

0 � x2 � 200
0 � x1

5x1 + 4x2 � 1000:

Exerci̧tiul 1.4 S¼a se rezolve problema de mai sus.

Exemplul 1.1.8 O companie doreşte s¼a investeasc¼a 75000 unit¼a̧ti monetare (u.m.) pentru achiz-
i̧tionarea unor maşini de tip A;B şi C: O maşin¼a A cost¼a 1500 u.m. şi produce un bene�ciu anual
de 315 u.m.; o maşin¼a B cost¼a 1750 u.m. şi produce un bene�ciu anual de 450 u.m.; o maşin¼a C
cost¼a 1375 u.m. şi produce un bene�ciu anual de 275 u.m. Toate maşinile au nevoie de întrȩtinere
şi perioade de pauz¼a, astfel: pentru o maşin¼a A întrȩtinerea cost¼a 20 u.m. şi e nevoie de 34 de zile
de pauz¼a anual, pentru o maşin¼a B întrȩtinerea cost¼a 27 u.m. şi e nevoie de 29 de zile de pauz¼a
anual, pentru o maşin¼a C întrȩtinerea cost¼a 25 u.m. şi e nevoie de 24 de zile de pauz¼a anual.
Bugetul maxim anual pentru întrȩtinere este de 1000 u.m., iar compania doreşte ca num¼arul de
zile de pauz¼a a tuturor maşinilor s¼a nu dep¼aşeasc¼a 800 pe an. Chestiunea este câte maşini de
�ecare tip e de dorit s¼a �e achizi̧tionate pentru maximizarea pro�tului. Dac¼a not¼am num¼arul
maşinilor de �care tip cu a; b şi respectiv c; avem de maximizat

315a+ 450b+ 275c

4



cu restriçtiile

1500a+ 1750b+ 1375c � 75000
20a+ 27b+ 25c � 1000
34a+ 29b+ 24c � 800:

De asemenea, din motive evidente, trebuie s¼a avem a; b; c 2 N: Aceast¼a ultim¼a restriçtie schimb¼a
complet natura problemei, plasând-o în categoria problemelor de optimizare cu întregi, iar în acest
curs nu ne vom ocupa de aceast¼a categorie de probleme.

Exerci̧tiul 1.5 Fie A; B dou¼a surse situate în punctele (0; 1) şi (2; 1) care emit aceeaşi cantitate
de energie. Pe axa 0x este plasat un receptor. Dac¼a energia captat¼a de receptor este invers
proporţional¼a cu p¼atratul distanţei faţ¼a de surs¼a, s¼a se determine poziţia acestui astfel încât raportul
dintre energia captat¼a de la sursa A şi energia captat¼a de la sursa B s¼a �e maxim.

Exerci̧tiul 1.6 Se doreşte construirea unei cutii parelelipipedice cu baza p¼atrat şi f¼ar¼a capac cu
volumul de 100. Determinaţi dimensiunile unei astfel de cutii astfel încât materialul folosit s¼a �e
minim.

Exerci̧tiul 1.7 O fabric¼a doreşte s¼a vând¼a n exemplare dintr-un produs astfel încât pro�tul s¼a
�e maxim. Cercet¼arile de piaţ¼a arat¼a c¼a la un preţ de 1,5 u.m./exemplar se vând 5000 de exem-
plare, iar pentru �ecare reducere de 0,1 u.m./exemplar se vor vinde în plus 1000 de exemplare.
Presupunem c¼a exist¼a nişte costuri de start a producţiei de 2000 u.m., iar costul de producţie al
�ec¼arui exemplar este 0.5 u.m. S¼a se modeleze problema şi s¼a se determine pro�tul maxim, preţul
de vânzare şi n:

Exerci̧tiul 1.8 Determinaţi dreptunghiul cu aria cea mai mare care poate � inclus în epigraful
funcţiei x 7! x2 şi care se a�¼a sub linia de nivel y = a; unde a > 0:

Exerci̧tiul 1.9 Într-o sfer¼a dat¼a se include cel mai mare con circular drept posibil. S¼a se deter-
mine raportul volumelor celor dou¼a corpuri.

1.2 Cadrul general şi rezultate de existeņt¼a a solu̧tiilor �
recapitulare

Fie U � Rp o muļtime nevid¼a şi deschis¼a, f : U ! R o funçtie şi M � U o muļtime nevid¼a.
Suntem interesa̧ti s¼a studiem problema minimiz¼arii funçtiei f atunci când argumentul acesteia
parcurge muļtimea M: Formal, vom scrie aceast¼a problem¼a în forma urm¼atoare:

(P ) min f(x); x 2M:

Muļtimea M se va numi muļtimea punctelor fezabile ale problemei (P ) sau muļtimea constrân-
gerilor sau, înc¼a, muļtimea restriçtiilor.
S¼a spunem de la început c¼a ne vom ocupa de minimizarea funçtiei f; dar rezultate referitoare

la maximizarea sa pot � ob̧tinute aplicând rezultatele de minimizare funçtiei �f în baza rela̧tiei
max f = �min(�f): Pentru început, s¼a de�nim no̧tiunea de solu̧tie asociat¼a problemei (P ):
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De�ni̧tia 1.2.1 Spunem c¼a x 2M este soluţie local¼a (sau, simplu, soluţie) pentru problema (P )
sau punct de minim pentru funcţia f pe mulţimea M dac¼a exist¼a o vecin¼atate V a punctului x
astfel încât f(x) � f(x) pentru orice x 2M \ V:

Dac¼a V = Rp; se mai spune c¼a x este solu̧tie global¼a pentru problema (P ) sau punct de minim
global pentru f pe M .
S¼a remarc¼am c¼a x 2M nu este punct de minim pentru funçtia f pe muļtimeaM dac¼a şi numai

dac¼a exist¼a un şir (xn) �M; xn ! x astfel încât f(xn) < f(x) pentru orice n:

Observa̧tia 1.2.2 În general, vom distinge dou¼a mari situaţii pentru studiul problemei (P ) : cazul
în care M = U şi cazul în care M este intersecţia dintre o mulţime închis¼a a lui Rp şi U: În primul
caz vom spune c¼a problema de optimizare (P ) este f¼ar¼a restricţii (sau constrângeri) în timp ce în al
doilea caz vorbim despre o problem¼a cu restricţii (constrângeri). S¼a mai observ¼am c¼a în De�niţia
1.2.1, dac¼a x 2 intM; atunci x este soluţie local¼a şi a problemei f¼ar¼a restricţii (este su�cient
s¼a micşor¼am vecin¼atatea V astfel încât V � M). Deci în cazul problemelor cu restricţii cazul
interesant (care nu se reduce la cazul unei probleme f¼ar¼a restricţii) este cazul în care x 2 FrM:
Dac¼a x 2 intM mai spunem şi c¼a restricţia este inactiv¼a.

Un rol important îl vor juca muļtimile de nivel ale unei funçtii. Având o funçtie f : Rp ! R;
dac¼a � 2 R;

N�f := fx 2 Rp j f(x) � �g = f�1((�1; �]):

S¼a observ¼am c¼a dac¼a � > infx2Rp f(x) atunci N�f 6= ; iar dac¼a f este continu¼a atunci N�f
este închis¼a.

Teorema 1.2.3 (Teorema lui Weierstrass) Dac¼a M � Rp este o mulţime compact¼a şi f :
M ! R este o funcţie continu¼a, atunci problema minimiz¼arii lui f pe M şi problema maximiz¼arii
lui f pe M au soluţii globale.

Teorema 1.2.4 Fie f : Rp ! R o funcţie continu¼a şi M � Rp o mulţime nevid¼a şi închis¼a. Dac¼a
exist¼a � > infx2M f(x) astfel încât mulţimea de nivel a lui f relativ la M; adic¼a M \N�f = fx 2
M j f(x) � �g; este m¼arginit¼a, atunci f îşi atinge minimul global pe M:

Rezultatele de mai sus asigur¼a existeņta punctelor de minim în condi̧tii de compactitate a
muļtimilor de nivel. Evident, m¼arginirea inferioar¼a a funçtiei este condi̧tie necesar¼a pentru exis-
teņta minimului, dar este clar c¼a m¼arginirea muļtimilor de nivel nu este o astfel de condi̧tie. De
exemplu funçtia f : R ! R; f(x) = (x � 1)2e�x î̧si atinge minimul (global) în x = 1; valoarea
minim¼a este 0; dar N�f nu este m¼arginit¼a pentru nicio valoare � > 0 = infff(x) j x 2 Rg:
Evident, în teorema de mai sus, dac¼aM este m¼arginit¼a, atunci ipoteza este automat veri�cat¼a.

Cazul interesant este acela în careM este nem¼arginit¼a, situa̧tie în care ipoteza este veri�cat¼a dac¼a
impunem funçtiei f o condi̧tie de coercivitate.

Propozi̧tia 1.2.5 Fie f : Rp ! R o funcţie şi M � Rp o mulţime nevid¼a, închis¼a şi nem¼arginit¼a.
Dac¼a limx2M;kxk!1 f(x) =1 (i.e., pentru orice (xn) �M; kxnk ! 1 are loc f(xn)!1) atunci
mulţimea N�f \M este m¼arginit¼a pentru orice � > infx2M f(x):
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1.3 Condi̧tii de optimalitate �recapitulare şi complet¼ari

De�ni̧tia 1.3.1 FieM � Rp o mulţime nevid¼a şi x 2 clM . Un vector u 2 Rp se numeşte tangent
la mulţimea M în x dac¼a exist¼a (tn) � (0;1); tn ! 0 şi (un)! u astfel încât pentru orice n 2 N;

x+ tnun 2M:

Evident este su�cient ca rela̧tia de mai sus s¼a aib¼a loc pentru orice n 2 N de la un loc încolo
(pentru n su�cient de mare).

Teorema 1.3.2 Mulţimea, notat¼a T (M;x); a tuturor vectorilor tangenţi la M în x este un con
închis, numit conul tangent (în sens Bouligand) la M în x:

Propozi̧tia 1.3.3 Dac¼a ; 6= M � Rp şi x 2 clM; atunci are loc relaţia T (M;x) = T (M;x):
Dac¼a x 2 intM; atunci T (M;x) = Rp:

Vom nota cu N(M;x) polara lui T (M;x) (i.e. N(M;x) := T (M;x)�) şi vom numi acest con
conul normal la M în x:
Dac¼a muļtimea M este convex¼a, atunci conul Bouligand are urm¼atoarea form¼a special¼a.

Propozi̧tia 1.3.4 Fie ; 6=M � Rp convex¼a şi x 2M: Atunci

T (M;x) = clR+(M � x);

iar
N(M;x) = fu 2 Rp j hu; c� xi � 0;8c 2Mg:

Teorema 1.3.5 (Condi̧tia necesar¼a de ordinul I) Dac¼a x este soluţie local¼a pentru problema
(P ) şi f este diferenţiabil¼a în x; atunci rf(x)(u) � 0 pentru orice u 2 T (M;x):

Observa̧tia 1.3.6 Condiţia din concluzia teoremei precedente se mai scrie, echivalent,

�rf(x) 2 N(M;x):

Observa̧tia 1.3.7 Ţinând cont de Propoziţia 1.3.3, dac¼a în teorema de mai sus, x 2 intM
(restricţie inactiv¼a), obţinem rf(x)(u) � 0 pentru orice u 2 Rp: Din liniaritatea lui rf(x);
deducem rf(x) = 0; adic¼a Teorema lui Fermat.

Exemplul 1.3.8 (restriçtii geometrice) Fie f : R2 ! R;

f(x) = �x1 � 2x2 � 2x1x2 +
x21
2
+
x22
2

şi muļtimea restriçtiilor

M :=
�
x 2 R2 j x1 + x2 � 1; x1 � 0; x2 � 0

	
:

S¼a consider¼am, ca în discu̧tia teoretic¼a, problema (P ) a minimiz¼arii lui f pe M:
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Funçtia f este continu¼a, iar M este compact¼a, deci problema (P ) admite cel pu̧tin o solu̧tie
global¼a.
Datorit¼a faptului c¼a inegalit¼a̧tile ce de�nesc muļtimeaM sunt liniare, avem o imagine geomet-

ric¼a clar¼a a muļtimii (un triunghi dreptunghic cu vârfurile în punctele (0; 0); (0; 1); (1; 0)).
Dac¼a ar exista un punct de minim x în interiorul lui M atunci acel punct ar � un minim f¼ar¼a

restriçtii (conform Observa̧tiei 1.2.2), deci, din Teorema lui Fermat, rf(x) = 0: Dar

rf(x) = (�1 + x1 � 2x2;�2� 2x1 + x2)

şi rezolvând sistemul g¼asim solu̧tia x = (�5
3
;�4

3
) care nu apaŗtine lui M: Deci problema nu are

solu̧tii în intM:
Observ¼am c¼a putem calcula relativ simplu conurile tangent şi normal la M în punctele de pe

frontier¼a şi apoi s¼a veri�c¼am îndeplinirea condi̧tiei necesare de optimalitate: �rf(x) 2 N(M;x)
(Teorema 1.3.5).
Astfel, dac¼a punctul x este

�pe segmentul deschis de capete (0; 1); (1; 0) :

T (M;x) = fu 2 R2 j u1 + u2 � 0g; N(M;x) = R+f(1; 1)g;

�pe segmentul deschis de capete (0; 0); (0; 1) :

T (M;x) = fu 2 R2 j u1 � 0g; N(M;x) = R+f(�1; 0)g;

�pe segmentul deschis de capete (0; 0); (1; 0) :

T (M;x) = fu 2 R2 j u2 � 0g; N(M;x) = R+f(0;�1)g;

�punctul (0; 1) :

T (M;x) = fu 2 R2 j u1 + u2 � 0; u1 � 0g
N(M;x) = fa(1; 1) + b(�1; 0) j a; b � 0g ;

�punctul (1; 0) :

T (M;x) = fu 2 R2 j u1 + u2 � 0; u2 � 0g
N(M;x) = fa(1; 1) + b(0;�1) j a; b � 0g ;

�punctul (0; 0) :

T (M;x) = fu 2 R2 j u1 � 0; u2 � 0g;
N(M;x) = fa(�1; 0) + b(0;�1) j a; b � 0g :

Prin calcul direct, se veri�c¼a faptul c¼a un singur punct satisface condi̧tia necesar¼a de optimal-
itate: x =

�
1
3
; 2
3

�
: Prin urmare, conform discu̧tiei precedente, acesta este singurul punct de minim

al problemei.
Putem, de asemenea, s¼a ne punem problema maximului global al lui f peM (a c¼arui existeņt¼a

este asigurat¼a de Teorema lui Weierstrass), problem¼a echivalent¼a cu g¼asirea minimului lui �f pe
M: Repetând discu̧tia precedent¼a, g¼asim dou¼a puncte ce veri�c¼a condi̧tia necesar¼a de optimalitate
(i.e. rf(x) 2 N(M;x)): x = (0; 0) şi x = (1; 0): Dar f(0; 0) = 0; iar f(1; 0) = �2�1; deci (0; 0)
este punctul de maxim.
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Exemplul 1.3.9 S¼a calcul¼am conurile tangente şi conurile normale în diferite puncte la muļtimea
M � Rp;

M =

(
x = (x1; x2; :::; xp) 2 Rp j xi � 0; 8i 2 1; p;

pX
i=1

xi = 1

)
;

numit¼a simplexul unitate. Aceast¼a muļtime este, evident, convex¼a şi închis¼a. Conform celor de
mai sus, pentru �ecare x 2M;

T (M;x) = clR+(M � x)

= cl fu 2 Rp j 9� � 0; x 2M; u = �(x� x)g :

Fie u din muļtimea din membrul drept. Este clar c¼a, pe de o parte,
Pp

i=1 ui = 0 iar, pe de alt¼a
parte, dac¼a xi = 0; atunci ui � 0: Not¼am cu I(x) :=

�
i 2 1; p j xi = 0

	
: Deducem c¼a

T (M;x) �
(
u 2 Rp j

pX
i=1

ui = 0 şi ui � 0; 8i 2 I(x)
)
:

S¼a demonstr¼am incluziunea invers¼a. Este simplu de veri�cat c¼a muļtimea din dreapta este închis¼a.
Fie u din aceast¼a muļtime. Dac¼a u = 0; atunci, evident, u 2 T (M;x): Dac¼a u 6= 0 atunci trebuie
s¼a ar¼at¼am c¼a exist¼a � > 0 cu x + �u 2 M: Pe de o parte, faptul c¼a

Pp
i=1(xi + �ui) = 1 este clar

pentru orice �. Dac¼a nu exist¼a indici i cu ui < 0; atunci şi faptul c¼a xi + �ui � 0; pentru orice
i 2 1; p este evident şi deci u 2 T (M;x): Presupunem acum c¼a muļtimea J a indicilor pentru care
uj < 0 este nevid¼a. Atunci J � 1; p n I(x); deci xj > 0 pentru orice j 2 J: Alegem atunci � strict
pozitiv cu

� < minf�u�1j xj j j 2 Jg

şi avem din nou c¼a xi + �ui � 0; pentru orice i 2 1; p: Prin urmare şi în acest caz u 2 T (M;x),
deci are loc egalitatea.
În continuare, ar¼at¼am c¼a

N(M;x) = f(a; a; :::; a) 2 Rp j a 2 Rg
+ fv 2 Rp j vi � 0; 8i 2 I(x); vi = 0; i =2 I(x)g :

Pentru aceasta consider¼am elementele

a0 = (1; 1; :::; 1); a1 = �(1; 0; :::; 0); :::; an = �(0; 0; :::; 1)

şi observ¼am urm¼atoarea scriere echivalent¼a a lui T (M;x) :

T (M;x) = fu 2 Rp j ha0; ui � 0; h�a0; ui � 0; hai; ui � 0; 8i 2 I(x)g :

Polara acestei muļtimi este

N(M;x) =

8<:�a0 � �a0 +
X
i2I(x)

�iai j �; �; �i � 0; 8i 2 I(x)

9=; :
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Într-adev¼ar, faptul c¼a muļtimea din dreapta este inclus¼a în conul normal este evident, iar incluzi-
unea invers¼a rezult¼a din Lema lui Farkas, întrucât:

v 2 N(M;x) () hu; vi � 0;8u 2 T (M;x)

() 8u 2 Rp : [ha0; ui � 0; h�a0; ui � 0; hai; ui � 0; 8i 2 I(x)]) hu; vi � 0:

Astfel, se ajunge la forma anuņtat¼a a conului normal.

Exemplul 1.3.10 (optimizare pe simplexul unitate) Fie f : Rp ! R convex¼a şi difereņtia-
bil¼a. Dac¼a dorim s¼a minimiz¼am aceast¼a funçtie pe simplexul unitate (a se vedea Exemplul 1.3.9),
atunci, conform Propozi̧tiei 1.3.15, x 2M este punct de minim pentru f peM dac¼a şi numai dac¼a
�rf(x) 2 N(M;x): Din forma particular¼a a lui N(M;x); deducem c¼a aceast¼a condi̧tie se scrie

@f

@xi
(x) = c; (constant¼a), 8i =2 I(x)

@f

@xi
(x) � c; 8i 2 I(x):

Fie n1; :::; np 2 N�;
Pp

i=1 ni = N > 0 şi �e f : Rp ! R; f(x) = �xn11 xn22 :::x
np
p : S¼a minimiz¼am

aceast¼a funçtie pe simplexul unitate din Rp: Evident c¼a problema are solu̧tie, f �ind continu¼a,
iar M compact¼a. Cum f este nul¼a dac¼a m¼acar una dintre componentele argumentului este zero,
solu̧tiile se vor g¼asi în muļtimea(

x 2 Rp j xi > 0; 8i 2 1; p;
pX
i=1

xi = 1

)
:

Cu nota̧tiile din Exemplul 1.3.9, aceasta înseamn¼a I(x) = ;: Mai întâi, condi̧tia necesar¼a de
optimalitate �rf(x) 2 N(M;x); se scrie, ţinând cont de expresia conului normal (Exemplul
1.3.9)

ni
xi
f(x) = c; constant¼a, 8i 2 1; p;

adic¼a
ni
xi
= c0; constant¼a, 8i 2 1; p:

Cum
Pp

i=1 xi = 1 şi
Pp

i=1 ni = N; g¼asim

xi =
ni
N
; 8i 2 1; p:

Cum problema are solu̧tie şi un singur punct veri�c¼a condi̧tia necesar¼a, deducem c¼a acel punct
este solu̧tia c¼autat¼a.

Observa̧tia 1.3.11 O alt¼a abordare în cazul Exemplelor 1.3.8 şi 1.3.10 const¼a în transformarea
restricţiilor geometrice în restricţii funcţionale şi aplicarea Teoremei Karush-Kuhn-Tucker pe care
o vom reaminti într-un capitol ulterior.
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O prima întrebare este dac¼a reciproca Teoremei 1.3.5 este adev¼arat¼a. R¼aspunsul este negativ.
Astfel, este su�cient s¼a consider¼am acelaşi exemplul funçtiei f : R! R; f(x) = x3 şi x = 0:
Se pot îns¼a impune condi̧tii suplimentare aşa încât s¼a avem unele echivaleņte şi cel mai impor-

tant caz este cel al funçtiilor convexe.

Teorema 1.3.12 Fie U � Rp o mulţime convex¼a şi deschis¼a şi �e f : U ! R o funcţie convex¼a
şi diferenţiabil¼a pe U: Urm¼atoarele a�rmaţii sunt echivalente:
(i) x este un minim global al lui f ;
(ii) x este un minim local al lui f ;
(iii) x este punct critic al lui f (i.e. rf(x) = 0).

Aşa cum se observ¼a, în cazul funçtiilor convexe, condi̧tia de ordinul I (în cazul f¼ar¼a constrângeri)
este necesar¼a şi su�cient¼a pentru optimalitate.
Privitor la natura punctelor de extrem pentru o funçtie convex¼a, d¼am rezultatele de mai jos.

Propozi̧tia 1.3.13 Fie M � Rp o mulţime convex¼a şi �e f : M ! R o funcţie convex¼a. Dac¼a
x 2M este punct de minim local pentru f pe M atunci x este punct de minim global pentru f pe
M:

Propozi̧tia 1.3.14 FieM � Rp o mulţime convex¼a şi �e f :M ! R o funcţie convex¼a. Mulţimea
punctelor de minim ale lui f peM este convex¼a. Dac¼a, în plus, f este strict convex¼a, atunci aceast¼a
mulţime are cel mult un element.

În cazul cu restriçtii, pentru funçtiile convexe condi̧tia necesar¼a de optimalitate de ordinul I se
scrie într-o form¼a special¼a şi, în plus, este şi condi̧tie su�cient¼a.

Propozi̧tia 1.3.15 Fie U � Rp o mulţime convex¼a şi deschis¼a şi �e f : U ! R o funcţie convex¼a
şi diferenţiabil¼a pe U: Fie M � U convex¼a. Elementul x 2M este punct de minim pentru f pe M
dac¼a şi numai dac¼a

�rf(x) 2 N(M;x):

Revenind la Teoremele 1.3.5 şi 1.3.18, înt¼arind condi̧tiile din concluziile rezultatelor precedente,
ob̧tinem condi̧tii su�ciente de optimalitate.
Rezultatele anuņtate sunt urm¼atoarele.

Teorema 1.3.16 Presupunem c¼a f este diferenţiabil¼a în x 2M şi

rf(x)(u) > 0; 8u 2 T (M;x) n f0g:

Atunci x este soluţie local¼a pentru problema (P ): �

Observa̧tia 1.3.17 În Problema 1.3.23 de mai jos, vom vedea c¼a se pot deduce mai multe con-
cluzii în cadrul teoremei anterioare. Deocamdat¼a, am fost interesaţi doar de precizarea unei condiţii
su�ciente de optimalitate.

Prezent¼am acum o cunoscut¼a condi̧tie necesar¼a de optimalitate de ordinul al doilea, pentru
problema f¼ar¼a restriçtii.
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Teorema 1.3.18 (Condi̧tia necesar¼a de ordinul al II-lea) Dac¼a f este de clas¼a C2; iar x 2
intM este punct de minim local pentru f; atunci rf(x) = 0 şi r2f(x) este pozitiv semide�nit¼a
(adic¼a r2f(x)(u; u) � 0 pentru orice u 2 Rp).

Evident, cu o demonstra̧tie similar¼a, se constat¼a c¼a dac¼a x 2 intM este punct de maxim local
pentru f; atunci rf(x) = 0 şi r2f(x) este negativ semide�nit¼a (adic¼a r2f(x)(u; u) � 0 pentru
orice u 2 Rp). Se poate cu uşuriņt¼a observa, din rezultatul de mai sus şi din demonstra̧tia sa, c¼a
dac¼a r2f(x) nu este nici pozitiv semide�nit¼a nici negativ semide�nit¼a (caz în care spunem c¼a este
nede�nit¼a) atunci x nu este punct de extrem.
În priviņta condi̧tiilor su�ciente de ordinul al doilea, are loc urm¼atorul rezultat.

Teorema 1.3.19 Presupunem c¼a f este de clas¼a C2; rf(x) = 0 şi

r2f(x)(u; u) > 0; 8u 2 T (M;x) n f0g:

Atunci x este soluţie local¼a pentru problema (P ):

În cazul f¼ar¼a restriçtii, rezultatul de mai sus se reduce la urm¼atorul corolar.

Corolarul 1.3.20 Fie f de clas¼a C2. Dac¼a x 2 intM este punct critic pentru f şi r2f(x) este
pozitiv de�nit¼a (i.e. r2f(x)(u; u) > 0 pentru orice u 2 Rp n f0g), atunci x este soluţie local¼a
pentru f:

De fapt, în Teoremele 1.3.16 şi 1.3.19 se ob̧tin rela̧tii mai tari decât simpla minimalitate.
Introducem mai întâi o de�ni̧tie.

De�ni̧tia 1.3.21 Fie � > 0: Spunem c¼a x 2M este o soluţie strict¼a local¼a de ordin � pentru (P )
sau punct de minim local strict de ordin � pentru f pe M dac¼a exist¼a "; ` > 0 astfel încât pentru
orice x 2M \B(x; ");

f(x) � f(x) + ` kx� xk� :

Observa̧tia 1.3.22 S¼a observ¼am c¼a pentru funcţii diferenţiabile noţiunea de soluţie strict¼a local¼a
de ordin 1 este speci�c¼a cazului cu restricţii active (adic¼a x 2MnintM): dac¼a f este diferenţiabil¼a
în x 2 intM; atunci x nu poate � soluţie strict¼a local¼a de ordin 1. Într-adev¼ar, dac¼a x 2 intM
ar � soluţie strict¼a local¼a de ordin 1; atunci, pe de o parte, rf(x) = 0 (din Teorema lui Fermat),
iar, pe de alt¼a parte, rf(x) 6= 0 din de�niţia soluţiei stricte.

O alt¼a caracteristic¼a important¼a a unei solu̧tii este aceea de a � izolat¼a, adic¼a proprietatea ca
pe o întreag¼a vecin¼atate a sa s¼a nu mai existe alt¼a solu̧tie. Acest lucru este important din punct
de vedere practic pentru aplicarea e�cient¼a a algoritmilor de c¼autare a solu̧tiei. Au loc rezultatele
cuprinse în rezultatele de mai jos.

Teorema 1.3.23 Presupunem c¼a f este diferenţiabil¼a în x 2 M şi consider¼am urm¼atoarele a�r-
maţii:
(i) rf(x)(u) > 0; pentru orice u 2 T (M;x) n f0g;
(ii) �rf (x) 2 intN (M;x) ;
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(iii) x este soluţie strict¼a local¼a de ordinul � = 1 pentru problema (P );
(iv) x este soluţie izolat¼a pentru problema (P ) :
S¼a se arate c¼a (i) () (ii) () (iii) : Dac¼a, în plus, M este convex¼a şi f este continuu

diferenţiabil¼a în x, s¼a se arate c¼a (i) =) (iv) :

Demonstraţie Ar¼at¼am echivaleņta primelor dou¼a condi̧tii. Începem cu implica̧tia (i) =) (ii) :
Cum rf(x) este continu¼a şi T (M;x)\S (0; 1) este compact¼a, folosind ipoteza, exist¼a � > 0 astfel
încât rf (x) (u) � � pentru orice T (M;x) \ S (0; 1) : Deducem c¼a pentru orice u 2 T (M;x);
rf (x) (u) � � kuk : Fie v 2 D (�rf (x) ; �) = �rf (x) +D (0; �) şi u 2 T (M;x): Atunci exist¼a
z 2 D (0; 1) astfel încât v = �rf (x) + �z şi avem

v (u) = (�rf (x) + �z) (u) = �rf (x) (u) + �z (u) � � kuk � � kuk = 0;

deci v 2 N (M;x) : Deci (ii) are loc.
Demonstr¼am implica̧tia (ii) =) (i) : Fie " > 0 astfel încât �rf (x) + D (0; ") � N (M;x) :

Pentru orice u 2 T (M;x) şi orice z 2 D (0; ") ; avem (�rf (x) + z) (u) � 0; adic¼a rf (x) (u) �
z (u) ; de unde, rf (x) (u) � " kuk : Deci (i) are loc.
Ar¼at¼am implica̧tia (i) =) (iii). Presupunem, prin reducere la absurd, c¼a x nu este solu̧tie

strict¼a de ordin 1: Atunci, negând de�ni̧tia, deducem c¼a exist¼a un şir (xn) ! x; (xn) � M astfel
încât pentru orice n 2 N�;

f(xn) < f(x) + n�1 kxn � xk :
În virtutea acestei inegalit¼a̧ti,

xn 6= x; 8n 2 N�:
Cum f este difereņtiabil¼a, exist¼a un şir de numere reale (
n)! 0 astfel încât pentru orice n 2 N;

f(xn) = f(x) +rf(x)(xn � x) + 
n kxn � xk :

Combinând cele dou¼a rela̧tii, avem

n�1 kxn � xk > rf(x)(xn � x) + 
n kxn � xk ;

de unde, prin împ¼aŗtire la num¼arul nenul kxn � xk deducem

n�1 > rf(x)
�

xn � x

kxn � xk

�
+ 
n; 8n 2 N�: (1.1)

Cum şirul
�

xn�x
kxn�xk

�
este m¼arginit, exist¼a un subşir convergent al acestuia. Limita, notat¼a u; a

respectivului subşir este nenul¼a (chiar de norm¼a 1) şi, în plus, din faptul c¼a kxn � xk ! 0; deducem
c¼a u 2 T (M;x): Prin urmare u 2 T (M;x) n f0g şi trecând la limit¼a în rela̧tia (1:1) avem

0 � rf(x)(u);

ceea ce contrazice ipoteza.
Ar¼at¼am c¼a (iii) =) (i) : Fie u 2 T (M;x) n f0g: Conform de�ni̧tiei vectorului tangent, exist¼a

(tn) � (0;1) ; tn ! 0 şi (un) ! u astfel încât pentru orice n; x + tnun 2 M: Atunci, pentru n
su�cient de mare,

f(x+ tnun) � f(x) + ` ktnunk :
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Cum f este difereņtiabil¼a în x; exist¼a (�n)! 0 astfel încât

f(x+ tnun)� f(x) = tnrf (x) (un) + �ntn kunk ; 8n:

Ob̧tinem, pentru n su�cient de mare,

rf (x) (un) � (`� �n) kunk � 2�1l kunk :

Prin trecere la limit¼a,
rf (x) (u) � 2�1` kuk > 0;

adic¼a concluzia.
În �nal, ar¼at¼am c¼a (ii) =) (iv) în ipoteza suplimentar¼a c¼a M este convex¼a şi f este

continuu difereņtiabil¼a în x. Fie " > 0 astfel încât �rf (x) +D (0; ") � N (M;x) : Presupunem,
prin reducere la absurd, c¼a exist¼a un şir de solu̧tii (xn) � M n fxg cu xn ! x: Conform unei
conseciņte binecunoscute a Teoremei Hahn-Banach, pentru �ecare n exist¼a zn cu kznk = 1 şi
zn (x� xn) = kx� xnk : Fie (vn) = (�rf (xn)� 2�1"zn) : Din continuitatea difereņtialei în x;
deducem c¼a vn 2 N (M;x) pentru orice n su�cient de mare. Din condi̧tia necesar¼a de optimalitate
de ordinul I,�rf (xn) 2 N (M;xn) : CumM este convex¼a, x�xn 2 T (M;xn) şi xn�x 2 T (M;x) :
Atunci �rf (xn) (x� xn) � 0 şi vn (xn � x) � 0, deci pentru n mare (vn +rf (xn)) (x� xn) � 0:
Ob̧tinem �2�1"zn (x� xn) � 0; de unde deducem c¼a �2�1" kx� xnk � 0: În mod evident, ultima
rela̧tie reprezint¼a o contradiçtie. �

Teorema 1.3.24 Presupunem c¼a f este de clas¼a C2; rf(x) = 0 şi

r2f(x)(u; u) > 0; 8u 2 T (M;x) n f0g:

S¼a se arate c¼a x este soluţie strict¼a local¼a de ordinul � = 2 pentru problema (P ):

Demonstraţie Ca mai sus, presupunem prin reducere la absurd c¼a nu are loc concluzia. Atunci,
exist¼a (xn)! x; (xn) �M n fxg astfel încât pentru orice n 2 N�;

f(xn) < f(x) + n�1 kxn � xk2 :

Din Teorema lui Taylor, pentru orice n 2 N exist¼a cn pe segmentul ce uneşte x cu xn astfel încât

f(xn)� f(x) = rf(x)(xn � x) +
1

2
r2f(cn)(xn � x; xn � x)

=
1

2
r2f(cn)(xn � x; xn � x):

Ob̧tinem

n�1 kxn � xk2 > 1

2
r2f(cn)(xn � x; xn � x);

de unde, pentru �nalizarea demonstra̧tiei, împ¼aŗtim la kxn � xk2 şi repet¼am argumentele de la
implica̧tia (i) =) (iii) de mai sus. �

De�ni̧tia 1.3.25 Consider¼am problema (P ): Spunem c¼a u 2 Rp n f0g este direcţie fezabil¼a în
x 2 M dac¼a exist¼a � > 0 astfel încât x + �u 2 M pentru orice � 2 [0; �] : Not¼am cu F (M;x)
mulţimea direcţiilor fezabile în x:

14



Exerci̧tiul 1.10 În notaţiile de�niţiei precedente, s¼a se arate c¼a:
(i) mulţimea F (M;x) [ f0g este un con, nu neaparat închis;
(ii) cl (F (M;x) [ f0g) � T (M;x) ; iar incluziunea poate � strict¼a;
(iii) dac¼a M este convex¼a, atunci cl (F (M;x) [ f0g) = T (M;x) :

Problema 1.11 S¼a se arate urm¼atoarea condiţie necesar¼a de optimalitate de ordinul al doilea
pentru problema (P ) : dac¼a f este de clas¼a C2 şi x 2 M este soluţie pentru (P ) atunci pentru
orice u; direcţie fezabil¼a în x pentru care rf (x) (u) = 0 avem r2f (x) (u; u) � 0:

Exerci̧tiul 1.12 S¼a se determine punctele de extrem local ale funcţiilor de mai jos (probleme f¼ar¼a
restricţii):
(i) f : R2 ! R; f(x1; x2) = (8x21 � 6x1x2 + 3x22)e2x1+3x2 ;
(ii) f : R2 ! R; f(x1; x2) = x1x

2
2e
x1�x2 ;

(iii) f : R2 ! R; f(x1; x2) = x1x2 (x
2
1 + x22 � 4) ;

(iii) f : R3 ! R; f(x1; x2; x3) = 2x21 + x22 + x23 � 4x2 + 8x3 � 5;
(iv) f : R3 ! R; f(x1; x2; x3) = x2 ln(1 + x

2
1 + x23);

(v) f : R3 ! R; f(x1; x2; x3) = x1x2e
x3 ;

(vi) f : R3 n f0g ! R; f(x1; x2; x3) = x1
x2
+ x2

4
+ x3

x1
+ 1

x3
:

Exerci̧tiul 1.13 Fie f : R2 ! R: Consider¼am problema (P ) a minimiz¼arii lui f cu restricţiile
x1 � 0; x2 � 0: Ştiind c¼a rf (0) 6= 0; @f

@x1
(0) � 0 şi @f

@x2
(0) � 0 s¼a se arate c¼a 0 nu este soluţie a

problemei (P ):
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Capitolul 2

Elemente teoretice şi practice în
optimizarea cu restriçtii

2.1 Teorema Karush-Kuhn-Tucker �recapitulare

Problema general¼a (P ) considerat¼a anterior are restriçtia x 2M: De cele mai multe ori în practic¼a
aceast¼a muļtime M a punctelor fezabile este de�nit¼a prin intermediul unor funçtii. Fie aşadar
g : Rp ! Rn şi h : Rp ! Rm funçtii de clas¼a C1: Evident, g şi h pot � gândite ca �ind de forma
g = (g1; g2; :::; gn); respectiv h = (h1; h2; :::; hm) unde unde gi : Rp ! R (i 2 1; n) şi hj : Rp ! R
(j 2 1;m) sunt de clas¼a C1.
Consider¼am c¼a muļtimea punctelor fezabile este

M := fx 2 U j g(x) � 0; h(x) = 0g � Rp:

Se observ¼a c¼a avem dou¼a tipuri de restriçtii: restriçtii cu inegalit¼a̧ti şi restriçtii cu egalit¼a̧ti. Fie
x 2M: Dac¼a pentru un indice i 2 1; n; gi(x) < 0; atunci, din continuitatea lui g; exist¼a o întreag¼a
vecin¼atate V a lui x astfel încât gi(y) < 0 pentru orice y 2 V: Aceasta face ca, în cazul în care
cercet¼am dac¼a x este solu̧tie local¼a a problemei (P ); restriçtia gi � 0 s¼a nu in�ueņteze efectiv
muļtimea punctelor u pentru care trebuie s¼a compar¼am f(x) cu f(u): De aceea, în acest caz,
spunem c¼a restriçtia gi � 0 este inactiv¼a în x: Astfel, ne intereseaz¼a ca astfel de restriçtii s¼a �e
eliminate din discu̧tie. Pentru x 2M; not¼am muļtimea indicilor restriçtiilor inegalit¼a̧ti active prin

A(x) = fi 2 1; n j gi(x) = 0g:

Pentru a reaminti condi̧tiile necesare de optimalitate de ordinul I pentru aceast¼a formulare a
problemei este necesar¼a recapitularea unor condi̧tii numite condi̧tii de cali�care. O condi̧tie de
cali�care este orice condi̧tie care poate � folosit¼a pentru a avea loc rezultatul de mai jos.

Teorema 2.1.1 (Teorema Karush-Kuhn-Tucker) Fie x 2M soluţie a problemei (P ): Presupunem
c¼a are loc o condiţie de cali�care: Atunci exist¼a � = (�1; �2; :::; �n) 2 Rn; � = (�1; �2; :::; �m) 2 Rm;
astfel încât

rf(x) +
nX
i=1

�irgi(x) +
mX
j=1

�jrhj(x) = 0 (2.1)
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şi
�i � 0; �igi(x) = 0; pentru orice i 2 1; n. (2.2)

În principiu, condi̧tiile de cali�care trebuie s¼a �e legate de punctul de referiņt¼a (x în cazul
nostru): De �ecare dat¼a când nu vor �dubii cu privire la punctul de referiņt¼a vom evita precizarea
acestuia, pentru uşurarea expunerii.

Observa̧tia 2.1.2 Dou¼a dintre cele mai importante condiţii de cali�care sunt prezentate mai jos.
Prima dintre acestea se numeşte condiţia de liniar¼a independenţ¼a (în x) şi se formuleaz¼a astfel:

mulţimea frgi(x) j i 2 A(x)g [ frhj(x) j j 2 1;mg este liniar independent¼a.
A doua se numeşte condiţia de cali�care Mangasarian-Fromovitz (în x): mulţimea frhj(x) j

j 2 1;mg este liniar independent¼a şi exist¼a u 2 Rp astfel încât

rh(x)(u) = 0 şi rgi(x)(u) < 0; 8i 2 A(x):

Este uşor de observat c¼a dac¼a are loc condiţia de liniar¼a independenţ¼a în x 2 M; atunci are
loc condiţia Mangasarian-Fromovitz în x. Totuşi, cele dou¼a condiţii nu sunt echivalente.
Exist¼a şi alte condiţii de cali�care, mai slabe, dar care sunt mai greu de veri�cat în practic¼a

pentru c¼a presupun, printre altele, calculul conului tangent la M în x:

Cele dou¼a condi̧tii de cali�care de mai sus se refer¼a la sisteme generale de restriçtii. S¼a discut¼am
acum condi̧tii speciale referitoare la cazuri particulare ale datelor problemei. Mai întâi, preciz¼am
faptul c¼a în anumite ipoteze, condi̧tia Karush-Kuhn-Tucker este şi su�cient¼a.

De�ni̧tia 2.1.3 Spunem c¼a problema (P ) este convex¼a dac¼a U este convex¼a, f este convex¼a pe
U; funcţiile gi; i 2 1; n sunt convexe, iar funcţia h este a�n¼a.

Teorema 2.1.4 Presupunem c¼a problema (P ) este convex¼a. Fie x 2 M: Dac¼a exist¼a (�; �) 2
Rn � Rm astfel încât au loc relaţiile (2:1) şi (2:2) atunci x este soluţie pentru (P ) (sau minim al
lui f pe M).

De�ni̧tia 2.1.5 Spunem c¼a sistemul de restricţii asociat problemei (P ) este de tip convex dac¼a
restricţiile cu inegalit¼aţi sunt exprimate prin funcţii convexe, în timp ce restricţiile cu egalit¼aţi
sunt date cu funcţii a�ne, adic¼a (gi)i21;n sunt convexe şi h este a�n¼a. În acest context, spunem
c¼a are loc condiţia Slater dac¼a exist¼a u 2 Rp astfel încât h(u) = 0 şi g(u) < 0:

Teorema 2.1.6 Dac¼a sistemul de restricţii asociat problemei (P ) este de tip convex, atunci
condiţia Slater este o condiţie de cali�care.

De�ni̧tia 2.1.7 Spunem c¼a sistemul de restricţii asociat problemei (P ) este de tip a�n dac¼a atât
restricţiile cu inegalit¼aţi, cât şi ce restricţiile cu egalit¼aţi sunt date prin funcţii a�ne.

S¼a consider¼am acum cazul unui sistem de restriçtii de tip a�n. Astfel, vom considera o matrice
A de tip n � p; o matrice B de tip m � p şi b 2 Rn; c 2 Rm: Astfel muļtimea M devine M =
fx 2 Rp j Ax � b; Bx = cg; unde rela̧tia "�" este îņteleas¼a ca având loc pe componente. Deci
g(x) = Ax� b; h(x) = Bx� c:
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Teorema 2.1.8 Dac¼a sistemul de restricţii este de tip a�n, atunci este satisf¼acut¼a o condiţie de
cali�care, deci Teorema 2.1.1 are loc f¼ar¼a veri�carea explicit¼a a unei condiţii de cali�care.

Funçtia L : U � Rn+m ! R;

L(x; (�; �)) := f(x) +
nX
i=1

�igi(x) +

mX
j=1

�jhj(x)

se numeşte lagrangianul problemei (P ): Astfel, concluzia din rela̧tia (2:1) se poate scrie

rxL(x; (�; �)) = 0;

iar elementele (�; �) 2 Rn+ � Rm se numesc multiplicatori Lagrange. Denumirea se datoreaz¼a
faptului c¼a pentru prima dat¼a o astfel de metod¼a de a converti o problem¼a de optimizare cu
restriçtii într-o problem¼a f¼ar¼a restriçtii prin intermediul unor noi nedeterminate a ap¼arut în unele
dintre lucr¼arile lui Lagrange legate de probleme de calculul varia̧tiilor. Este clar c¼a teorema
precedent¼a nu asigur¼a unicitatea acestor multiplicatori.
Teorema 2.1.1 asigur¼a condi̧tii necesare de optimalitate pentru problema (P ): Dac¼a în loc

de minimizare dorim s¼a maximiz¼am funçtia obiectiv sub aceleaşi restriçtii, atunci, din faptul c¼a
max f = �min(�f); condi̧tia necesar¼a (2.1) se scrie

�rf(x) +
nX
i=1

�irgi(x) +
mX
j=1

�jrhj(x) = 0:

S¼a mai observ¼am c¼a în lipsa constrângerilor inegalit¼a̧ti, ţinând seama de faptul c¼a h(x) = 0 este
totuna cu �h(x) = 0; condi̧tia necesar¼a se poate scrie, atât pentru minime cât şi pentru maxime,
în forma

rf(x) +
mX
j=1

�jrhj(x) = 0:

Revenind la rezultatul principal, s¼a observ¼am dou¼a lucruri. Mai întâi, dac¼a problema nu are
restriçtii (de exemplu, U = M = Rp), atunci rela̧tia (2.1) se reduce la condi̧tia necesar¼a de
optimalitate de ordinul I (Teorema lui Fermat): rf(x) = 0: A doua observa̧tie este c¼a rela̧tia
(2.1) nu are loc în general f¼ar¼a o condi̧tie de cali�care.

Exemplul 2.1.9 Fie a; b; x 2 Rp şi c; d 2 R: Rezolv¼am problema minimiz¼arii normei euclidiene a
lui x cu restriçtiile ha; xi � c; hb; xi � d: Funçtia obiectiv este strict convex¼a şi coerciv¼a, restriçtiile
sunt liniare. Deci, dac¼a muļtimea punctelor fexabile este nevid¼a, problema are exact o solu̧tie,
iar condi̧tiile Karush-Kuhn-Tucker sunt necesare şi su�ciente. Deci solu̧tia x este caracterizat¼a de
faptul c¼a exist¼a �1; �2 � 0 astfel încât

2x+ �1a+ �2b = 0

�1 (ha; xi � c) = 0

�2 (hb; xi � d) = 0:
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Avem mai multe cazuri de luat în considerare.
Cazul 1: �1 = �2 = 0: Atunci dac¼a c; d � 0, x = 0 este punct fezabil şi solu̧tie a problemei.
Cazul 2: �1 = 0; �2 6= 0: Atunci ecua̧tia hb; xi � d = 0 se scrie�

b; x� db

kbk2
�
= 0;

adic¼a x 2 db
kbk2 + fbg

? ; iar minimalitatea normei conduce la x = db
kbk2 : Atunci �2 = �

2d
kbk2 : Astfel,

pentru ca x s¼a �e solu̧tie a sistemului, trebuie ca d < 0 şi d ha; bi � c kbk2 :
Cazul 3: �1 6= 0; �2 = 0: Atunci, ca în cazul anterior, x = da

kak2 : Avem �1 = � 2c
kak2 şi trebuie s¼a

aib¼a loc rela̧tiile c < 0; c ha; bi � d kak2 :
Cazul 4: �1 6= 0; �2 6= 0: Determin¼am multiplicatorii folosind rela̧tiile ha; xi = c; hb; xi = d şi

înmuļtind scalar în mod corespunz¼ator prima ecua̧tie. Ob̧tinem

kak2 �1 + ha; bi�2 = �2c
ha; bi�1 + kbk2 �2 = �2d:

Determinantul acestui sistem este kak2 kbk2 � ha; bi2 care este nenul dac¼a a; b nu sunt coliniari,
caz în care g¼asim

�1 =
2
�
d ha; bi � c kbk2

�
kak2 kbk2 � ha; bi2

�2 =
2
�
c ha; bi � d kak2

�
kak2 kbk2 � ha; bi2

:

Astfel,

x = �1
2
(�1a+ �2b) :

Pentru ca acesta s¼a �e solu̧tie trebuie ca d ha; bi > c kbk2 ; c ha; bi > d kak2 :

Încheiem aceast¼a seçtiune cu câteva exerci̧tii recapitulative.

Exerci̧tiul 2.1 Rezolvaţi problema minimiz¼arii globale a expresiei x21 + x22 � 3x1x2 cu restricţia
x21 + x22 � 6 � 0:

Exerci̧tiul 2.2 Rezolvaţi problema minimiz¼arii globale a expresiei x21+x
2
2�4x1�6x2 cu restricţiile

x1 + x2 � 7; x1 � x2 � 2:

Exerci̧tiul 2.3 Rezolvaţi problema

min
�
2x21 � 3x22 � 2x1

�
cu x21 + x22 � 1:

Exerci̧tiul 2.4 Rezolvaţi problema

max
�
�x21 + x1x2 � 2x22 + x1 + x2

�
cu 2x1 + x2 � 1:

19



Exerci̧tiul 2.5 Rezolvaţi problema

min (3x1 + x2) cu x21 + x22 � 5 � 0:

Exerci̧tiul 2.6 Rezolvaţi problema

min
�
x21 + x22 � 14x1 � 6x2 � 7

�
cu x1 + x2 � 2; x1 + 2x2 � 3:

Exerci̧tiul 2.7 Rezolvaţi problema

min
�
x21 + 2 (x2 + 1)

2� cu � x1 + x2 = 2; � x1 � x2 � 1 � 0:

Exerci̧tiul 2.8 Rezolvaţi problema

min
�
x21 + x22 � x1 (30� x1)� x2 (35� x2)

�
cu x21 + x22 � 250; x1 + x2 � 16; x1 � 0; x2 � 0:

Exerci̧tiul 2.9 Fie problema min (x21 + x22 � x2x3 + x23) cu restricţiile x1 � x2 � 1; x1 = x3 şi
x3 � 0: Determinaţi soluţia sau soluţiile problemei.

Exerci̧tiul 2.10 Rezolvaţi problema

min
�
x21 + x22 + x23

�
cu x1 + x2 + x3 = 0; x1 + 2x2 + 3x3 � 1 = 0:

Exerci̧tiul 2.11 G¼asiţi extremele globale ale expresiei

(x1 + x2 + x3) cu x21 + x22 + x23 = 4; x3 � 1:

Exerci̧tiul 2.12 G¼asiţi extremele globale ale expresiei

(x1x2 + x2x3 + x1x3)

astfel încât:
(i) x21 + x22 + x23 = 1;
(ii) x21 + x22 + x23 = 1; x1 � x2 + x3 = 0:

Exerci̧tiul 2.13 Fie a 2 R3: S¼a se g¼aseasc¼a valorile extreme ale produsului scalar ha; xi cu re-
stricţiile x21 + x22 + x23 = 1; x1x2 + x2x3 + x1x3 = 0:

Exerci̧tiul 2.14 S¼a se g¼aseasc¼a valorile extreme ale expresiei x21 + x22 pe elipsa x
2
1 + 2x

2
2 = 1:

Exerci̧tiul 2.15 Fie f : R2 ! R; f(x1; x2) = 5x21 + 4x1x2 + x22 şi h : R2 ! R; h(x1; x2) =
3x1 + 2x2 + 5: Consider¼am problema minimiz¼arii lui f cu restricţia h(x) = 0: S¼a se arate c¼a
problema are soluţie unic¼a şi apoi s¼a se determine soluţia precum şi multiplicatorul Lagrange
�� asociat. S¼a se arate c¼a apoi c¼a soluţia determinat¼a este minim global f¼ar¼a restricţii pentru
funcţia x ! L(x; ��): Se p¼astreaz¼a aceste concluzii pentru problema minimiz¼arii lui f : R2 ! R;
f(x1; x2) = x21 � x22 � 3x2 cu restricţia egalitate h(x) = 0; unde h : R2 ! R; h(x1; x2) = x2?
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Exerci̧tiul 2.16 Fie n 2 N� şi ai > 0; pentru orice i 2 1; n: S¼a se determine minimul expresiei
nX
i=1

aix
2
i

supus¼a la constrângerea
nX
i=1

xi = c;

unde c este o constant¼a dat¼a. Care este maximul expresiei sub aceeaşi restricţie?

Exerci̧tiul 2.17 S¼a se studieze problema minimiz¼arii expresiei x1 + x2 + :::+ xn (n � 2) pentru
x1; x2; :::; xn > 0 cu restricţia x1 � x2 � ::: � xn = 1 şi apoi s¼a se deduc¼a inegalitatea mediilor.

2.2 Semni�ca̧tia practic¼a a multiplicatorilor Lagrange

În rezolvarea problemelor de optimizare cu restriçtii funçtionale considerate anterior, rolul multi-
plicatorilor a fost unul auxiliar. Uneori, a�area punctelor de extrem din sistemului Karush-Kuhn-
Tucker necesit¼a determinarea acestora, alteori nu. Totuşi, determinarea efectiv¼a a multiplicatorilor
este important¼a din perspectiva unei semni�ca̧tii practice pe care o vom investiga mai jos.

Exemplul 2.2.1 (Plani�care economic¼a - 1) Trei generatoare electrice deservesc un obiectiv
pentru care trebuie s¼a genereze o energie total¼a de 952 Mw. Fiecare dintre cele trei generatoare
contribuie cu o energie xi; iar costurile speci�ce sunt respectiv

1 + 0:0625x1 Euro/Mw

1 + 0:0125x2 Euro/Mw

1 + 0:0250x3 Euro/Mw.

Dorim s¼a determin¼am cantitatea de energie care trebuie livrat¼a de �ecare generator în parte pentru
un cost minim.
Modelarea problemei conduce la

min
�
x1 + 0:0625x

2
1 + x2 + 0:0125x

2
2 + x3 + 0:0250x

2
3

�
cu restriçtia x1 + x2 + x3 = 952:

Este uşor de v¼azut c¼a problema este convex¼a iar sistemul de restriçtii este a�n. Aşadar, (x1; x2; x3)
este solu̧tie dac¼a şi numai dac¼a exist¼a � 2 R astfel încât

1 + 2 � 0:0625x1 + � = 0

1 + 2 � 0:0125x2 + � = 0

1 + 2 � 0:0250x3 + � = 0

x1 + x2 + x3 = 952:
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Acest sistem se scrie

0:125x1 = �1� �

0:025x2 = �1� �

0:05x3 = �1� �

x1 + x2 + x3 = 952:

Ob̧tinem � = �15; x1 = 112; x2 = 560; x3 = 280: Valoarea minim¼a a funçtiei de cost (i.e., valoarea
în acest punct) este 7616.
În continuare, d¼am o interpretare (care va � pe alocuri euristic¼a), pe o problem¼a abstract¼a, a

valorii multiplicatorilor, pentru ca apoi s¼a revenim la problema concret¼a de mai sus.
S¼a presupunem c¼a f; v : R2! R (dimensiunea 2 nu este eseņtial¼a) sunt dou¼a funçtii de clas¼a

C1 şi c¼a avem problema
min f(x; y) cu v(x; y) = c:

În ipoteza c¼a problema are solu̧tie şi Teorema Karush-Kuhn-Tucker este aplicabil¼a, dac¼a (x; y)
este solu̧tie a acestei probleme, exist¼a � 2 R astfel încât

rf(x; y) + �rv(x; y) = 0:

În particular, ob̧tinem c¼a

�� =
@f
@x
(x; y)

@v
@x
(x; y)

=

@f
@y
(x; y)

@v
@y
(x; y)

;

(atunci când împ¼aŗtirile sunt permise) ceea ce sugereaz¼a c¼a � reprezint¼a o cuanti�care a varia̧tiei
lui f atunci când v variaz¼a. Acest lucru poate � justi�cat ceva mai riguros dup¼a cum urmeaz¼a.
Presupunem c¼a variaz¼a valoarea lui c: Atunci solu̧tia problemei şi multiplicatorul � pot � inter-
pretate ca funçtii de c: De asemenea, de�nim F (c) = f(x(c); y(c)) şi presupunem c¼a toate aceste
funçtii sunt difereņtiabile (lucru care, în anumite ipoteze, are loc). Atunci, pe baza regulii laņtului
şi a faptului c¼a

@f

@x
(x(c); y(c)) = ��(c)@v

@x
(x(c); y(c));

@f

@y
(x(c); y(c)) = ��(c)@v

@y
(x(c); y(c))

avem

F 0(c) =
@f

@x
(x(c); y(c))x0(c) +

@f

@y
(x(c); y(c))y0(c)

= ��(c)@v
@x
(x(c); y(c))x0(c)� �(c)

@v

@y
(x(c); y(c))y0(c)

= ��(c)
�
@v

@x
(x(c); y(c))x0(c) +

@v

@y
(x(c); y(c))y0(c)

�
:

Dar v(x(c); y(c)) = c; prin derivare, conduce la

@v

@x
(x(c); y(c))x0(c) +

@v

@y
(x(c); y(c))y0(c) = 1:
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Prin urmare,
F 0(c) = ��(c);

adic¼a ceea ce am intuit anterior.
Revenind la problema concret¼a discutat¼a, dac¼a sarcina de alimentare total¼a creşte cu o unitate,

atunci, cum �� = 15; funçtia obiectiv î̧si creşte valoarea minim¼a cu aproximativ 15 Euro (conform
Teoremei lui Lagrange). Din acest motiv, valorile multiplicatorilor în astfel de probleme se numesc
"shadow prices" în teoria economic¼a.

Exemplul 2.2.2 (Plani�care economic¼a - 2) O mic¼a fabric¼a produce dou¼a tipuri din acelaşi
produs (de exemplu, chipsuri de carto�). Pentru �ecare sortiment sunt necesare trei opera̧tiuni
principale: t¼aierea (felierea), pr¼ajirea, împachetarea. Urm¼atorul tabel prezint¼a minutele necesare
pentru procesarea unui kilogram din �ecare sortiment.

t¼aiere pr¼ajire împachetare
tipul 1 2 4 4
tipul 2 4 5 2

Presupunem c¼a pentru un ciclu de produçtie, maşinile care fac cele trei opera̧tiuni au autonomii
de 345, 480 şi respectiv 330 de minute. Ştiind c¼a pro�tul este de 2 Euro şi respectiv 1; 5 Euro per
�ecare kilogram din cele dou¼a sortimente, s¼a se determine câte kilograme din �ecare sortiment
trebuie produse în �ecare ciclu pentru maximizarea pro�tului.
Model¼am matematic acest enuņt şi ob̧tinem problema de optimizare

max

�
2x+

3

2
y

�
cu 2x+ 4y � 345; 4x+ 5y � 480; 4x+ 2y � 330;

ceea ce este echivalent cu determinarea solu̧tiilor problemei de minimizare

min

�
�2x� 3

2
y

�
cu 2x+ 4y � 345; 4x+ 5y � 480; 4x+ 2y � 330:

Problema este convex¼a, iar muļtimile de nivel relativ la muļtimea punctelor fezabile sunt compacte,
deci problema are solu̧tie global¼a. Sistemul de restriçtii este a�n, deci putem scrie: (x; y) 2 M
este solu̧tie a problemei dac¼a şi numai dac¼a exist¼a �; �; 
 � 0 astfel încât�

�2;�3
2

�
+ � (2; 4) + � (4; 5) + 
 (4; 2) = (0; 0)

� (2x+ 4y � 345) = 0
� (4x+ 5y � 480) = 0

 (4x+ 2y � 330) = 0

23



adic¼a

2�+ 4� + 4
 = 2

4�+ 5� + 2
 =
3

2
� (2x+ 4y � 345) = 0
� (4x+ 5y � 480) = 0

 (4x+ 2y � 330) = 0
�; �; 
 � 0
2x+ 4y � 345
4x+ 5y � 480
4x+ 2y � 330:

Consider¼am mai multe cazuri.
1. Situa̧tia � = � = 
 = 0 este imposibil¼a (de exemplu, pe baza primei ecua̧tii).
2. Pe baza primelor dou¼a ecua̧tii deducem c¼a şi situa̧tia în care doi dintre aceşti multiplicatori

sunt nuli este imposibil¼a.
3. Dac¼a to̧ti multiplicatorii sunt nenuli, ob̧tinem din ecua̧tiile 3; 4; 5; un sistem incompatibil.
4. Dac¼a � = 0; �; 
 6= 0 ob̧tinem

� =
1

6
; 
 =

1

3
;x =

115

2
; y = 50:

Aceste valori veri�c¼a toate ecua̧tiile şi inecua̧tiile sistemului de mai sus, deci
�
115
2
; 50
�
este solu̧tie

a problemei. Observ¼am c¼a valoarea funçtiei obiectiv pentru problema ini̧tial¼a (de maxim) în acest
punct este 190 (deci valoarea pro�tului este de 190 de Euro).
5. Dac¼a � = 0; �; 
 6= 0 ob̧tinem valorile x = 105

2
; y = 60 care nu este punct fezabil pentru c¼a

nu satisface a doua restriçtie.
6. Dac¼a 
 = 0; �; � 6= 0 ob̧tinem o valoare negativ¼a pentru �; deci nu avem solu̧tie în acest

caz.
Prin urmare, unica solu̧tie a problemei este x = 115

2
; y = 50: Pentru aceast¼a solu̧tie, multipli-

catorii corespunz¼atori celor trei restriçtii sunt
�
0; 1

6
; 1
3

�
:

Observa̧tii de felul celei de dup¼a Problema 1 relativ la shadow prices sunt valabile şi pentru
probleme cu mai multe restriçtii. Astfel, multiplicatorii � = 0; � = 1

6
; 
 = 1

3
corespunz¼atori solu̧tiei

(115
2
; 50) reprezint¼a (aproximativ) valorile cu care se modi�c¼a funçtia obiectiv (în particular şi

pro�tul) dac¼a de modi�c¼a cu o unitate valoarea din dreapta restriçtiilor respective. Astfel, dac¼a
maşina de t¼aiere î̧si creşte timpul de funçtionare cu un minut, valoarea pro�tului nu se modi�c¼a.
Dac¼a maşina de pr¼ajire î̧si creşte timpul de funçtionare cu un minut, valoarea pro�tului creşte
cu 1

6
� 0; 17 Euro (�� < 0; deci scade funçtia de minimizat, adic¼a creşte cea de maximizat), iar

maşina de împachetare î̧si creşte timpul de funçtionare cu un minut, valoarea pro�tului creşte cu
1
3
� 0; 34 Euro. Deci, în principiu, fabricantul va � interesat s¼a creasc¼a în primul rând timpul de

funçtionare al acestei maşini.

Exemplul 2.2.3 Fie problema maximiz¼arii expresiei 2xy+3y cu restriçtiile 4x+y = 10; x; y > 0:
Se veri�c¼a faptul c¼a punctul de maxim este (2�1; 8) ; valoarea maxim¼a este 32, iar multiplicatorul

24



asociat restriçtiei egalitate (singura activ¼a) este � = 4: Deci, dac¼a se înlocuieşte 10 cu 11 în
formularea problemei ar trebui ca valoarea maxim¼a s¼a �e aproximativ 32 + 4 = 36: Se constat¼a
prin calcul direct c¼a de fapt aceast¼a valoare este 36:125.

Exerci̧tiul 2.18 Determinaţi dimensiunile unei cutii de arie total¼a minim¼a având volumul v > 0.
Interpretaţi valoarea multiplicatorului asociat restricţiei în punctul soluţie.

Exerci̧tiul 2.19 Determinaţi dimensiunile unui vas cilindric care are volumul v > 0 şi pentru
care aria este minim¼a. Daţi o interpretare valorii multiplicatorului asociat restricţiei în punctul
soluţie.

2.3 O seleçtie de probleme

În aceast¼a seçtiune prezent¼am o seleçtie de probleme care sunt ivite din chestiuni aplicative şi care
pot � tratate cu metodele studiate pân¼a în acest moment.

Problema 2.20 Se d¼a un elipsoid de ecuaţie

x2

a2
+
y2

b2
+
z2

c2
= 1;

unde a; b; c > 0: S¼a se determine paralelipipedul de volum maxim care poate � inlus în interiorul
geometric al elipsoidului precum şi raportul volumelor celor dou¼a corpuri.

Soluţie Not¼am cu 2x; 2y; 2z laturile paralelipipedului. Problema poate � formalizat¼a astfel:

max 8xyz

cu restriçtiile

x2

a2
+
y2

b2
+
z2

c2
� 1;

x; y; z � 0:

Evident, problema are solu̧tie, iar dac¼a (x; y; z) e solu̧tie, x; y; z > 0: De asemenea, Teorema
Karush-Kuhn-Tucker este aplicabil¼a, deci dac¼a (x; y; z) e solu̧tie, cu nota̧tiile evidente, exist¼a
� � 0 astfel încât

�rf (x; y; z) + �rg (x; y; z) = 0:
Avem

8yz = �
2x

a2
; 8xz = �

2y

b2
; 8xy = �

2z

c2
:

Înmuļtind dou¼a câte dou¼a ecua̧tiile deducem

z = �
1

4ab
; y = �

1

4ac
;x = �

1

4bc
:
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Este clar c¼a restriçtia este activ¼a în punctul solu̧tie (altfel, gradientul ar trebui sa �e zero în acest
punct, ceea ce atrage faptul c¼a avem coordonate nule), deci

� =
4abcp
3
;

adic¼a

x =
ap
3
; y =

bp
3
; z =

cp
3
:

Raportul volumelor este
Vp
Ve
=

8 � 3
3
p
3 � (4�)

=
2p
3�
;

adic¼a aproximativ 0; 3675: �

Problema 2.21 Minimizarea unei energii de tip Coulomb. Consider¼am N puncte în R3: Acestea
determin¼a C3N triunghiuri (posibil genenerate) şi deci 2�1N (N � 1) (N � 2) unghiuri, notate �i:
Funcţie de energie local¼a care trebuie minimizat¼a are forma

EN = �
�
N (N � 1)

2
+ FN

�
;

unde FN suma tuturor cos �i: Deci problema este de a maximiza global aceast¼a sum¼a. S¼a se rezolve
aceast¼a problem¼a pentru cazurile N = 3 şi N = 4:

Soluţie Pentru N = 3; trebuie determinate solu̧tiile globale ale problemei

max (cos �1 + cos �2 + cos �3)

cu restriçtiile �1 + �2 + �3 = �; �i � 0; i 2 1; 3: Evident, problema are solu̧tie. Dac¼a (�1; �2; �3)
este solu̧tie, atunci toate coordonatele sunt strict pozitive. Într-adev¼ar, de exemplu 3 cos �3 =

3
2
;

iar dac¼a �1 = 0; atunci cos �1 + cos �2 + cos �3 = 1 + cos �2 + cos (� � �2) = 1: Este aplicabil¼a
Teorema Karush-Kuhn-Tucker şi f¼acând calculele ob̧tinem c¼a pentru solu̧tie toate sinusurile sunt
egale. Dac¼a un unghi, de exemplu �1; ar �mai mare sau egal decât �=2; at cos �1+cos �2+cos �3 �
cos �2+cos �3 �

p
2; ceea ce nu e posibil pentru o solu̧tie global¼a. Deci toate unghiurile sunt egale

cu �=3: Deci tringhiul trebuie s¼a �e echilateral.
Pentru cazul N = 4; bazându-ne pe cazul deja studiat, deducem c¼a con�gura̧tia optimal¼a este

un tetraedru regulat. Este de notat şi faptul c¼a pentru N � 5 problema nu este complet rezolvat¼a
înc¼a. �

Problema 2.22 (Metoda celor mai mici p¼atrate - un caz neliniar) Metoda celor mai mici p¼a-
trate const¼a în a determina valorile optimale ale parametrilor unui model astfel încât acesta s¼a se
potriveasc¼a cât mai bine unor date m¼asurate. Astfel s¼a presupunem c¼a avem dou¼a seturi de date
(xi)i21;n şi (yi)i21;n, unde n 2 N n f0g şi c¼a este natural s¼a ne gândim c¼a ele sunt legate printr-o
relaţie p¼atratic¼a de forma y = a1 + a2x+ a3x

2; unde a1; a2; a3 2 R: Dorim atunci s¼a determin¼am
a1; a2; a3 care minimizeaz¼a f : R3 ! R;

f (a) =

nX
i=1

�
yi �

�
a1 + a2xi + a3x

2
i

��2
:

S¼a se studieze aceast¼a problem¼a.
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Soluţie Dac¼a not¼am matricea

X =

0BB@
1 x1 x21
1 x2 x22
::: ::: :::
1 xn x2n

1CCA ;

atunci pentru orice a 2 R3 avem f (a) = kXat � yk2 ; unde y = (y1; :::; yn)
t : Astfel, f este

compunerea dintre p¼atratul normei şi funçtia a�n¼a, notat¼a '; a 7! Xat � y: Evident, f este de
clas¼a C1 şi

rf (a) (u) = rk�k2 (' (a)) (rh (a) (u)) = 2


Xat � y;Xut

�
= 2



X t
�
Xat � y

�
; u
�

= 2


a;X tXut

�
� 2



y;Xut

�
; 8u 2 R3:

Apoi,
r2f (a) (u; v) = 2



v;X tXut

�
; 8u; v 2 R3:

Astfel,
r2f (a) (u; u) = 2



u;X tXut

�
= 2



Xut; Xut

�
=


Xut

2 � 0; 8u 2 R3;

deci f este convex¼a. Cum problema este f¼ar¼a restriçtii iar f este convex¼a, solu̧tiile sunt punctulele
critice al gradientului, adic¼a punctele a pentru care X t (Xat � y) = 0; adic¼a X tXat = X ty:
De fapt,

X tX =

0@ n
Pn

i=1 xi
Pn

i=1 x
2
iPn

i=1 xi
Pn

i=1 x
2
i

Pn
i=1 x

3
iPn

i=1 x
2
i

Pn
i=1 x

3
i

Pn
i=1 x

4
i

1A :

Dac¼a X tX este inversabil¼a, atunci solu̧tia este unic¼a: at = (X tX)
�1
X ty: �

Problema 2.23 (Minimizarea unei energii electrostatice) Fie n � 2 un num¼ar natural. Not¼am
cu D mulţimea elementelor din Rn cu toate coordonatele distincte şi de�nim f : D ! R prin

f (x) =
nX
i=1

x2i �
X

1�i<j�n
ln (jxi � xjj) ;

care modeleaz¼a un tip de energie electrostatic¼a a unui sistem.
(i) S¼a se arate c¼a f îşi atinge minimul global pe D.
(ii) Fie a 2 D un punct de minim global al lui f pe D: Not¼am cu H funcţia polinomial¼a

t 7! �ni=1 (t� ai) : S¼a se arate c¼a

H 00 (ai)� 4aiH 0 (ai) = 0; 8i 2 1; n

şi
H 00 � 4tH 0 = �4nH:

(iii) S¼a se precizeze o modalitate de determinare a punctelor de minim global.
(iv) Particularizaţi pentru n = 2 şi n = 3:
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Soluţie (i) Muļtimea D este deschis¼a Rn; �ind interseçtia deschi̧silor fx 2 Rn j xi 6= xjg cu 1 �
i < j � n: Frontiera lui D este format¼a din cele 2�1n (n� 1) hiperplane închise de ecua̧tii xi = xj
cu 1 � i < j � n:
Dac¼a x 2 D şi kxk ! 1; este clar c¼a f (x) ! 1: Dac¼a x 2 D şi x ! y 2 FrD din nou,

f (x)!1: Deci, a minimiza pe f pe D revine la a minimiza pe f pe o muļtime de forma�
x 2 Rn j max

i21;n
jxij � r; min

1�i<j�n
jxi � xjj � "

�
;

unde r; " > 0: Cum aceasta este compact¼a şi f este continu¼a, deducem c¼a f î̧si atinge minimul
global pe D: Observ¼am de asemenea c¼a dac¼a a = (a1; :::; an) este un astfel de punct atunci orice alt
punct având aceleaşi coordonate dar în alt¼a ordene este minim globla la rândul s¼au. Deci odat¼a
cu un minim avem de fapt n! minime.
(ii) Pentru i 2 1; n; not¼am

Qi (t) =
Y
j 6=i

(t� aj) :

Este clar c¼a pentru i 2 1; n; H 0 (ai) = Qi (ai) ; iar derivarea rela̧tiei H (t) = (t� ai)Qi (t) conduce
la

H 00 (t) = 2Q0i (t) +Q00i (t) (t� ai) ;

deci H 00 (ai) = 2Q
0
i (ai) : Derivând Qi avem

Q0i (t) =
X
j 6=i

Y
k 6=i;k 6=j

(t� ak) =
X
j 6=i

Qi (t)

t� aj
; 8t 6= aj; j 2 1; n n fig :

deci
Q0i (ai) = Qi (ai)

X
j 6=i

1

ai � aj
:

Teorema lui Fermat pentru a; conduce la

2ai �
X
j 6=i

1

ai � aj
= 0; 8i 2 1; n:

Combinând toate aceste rela̧tii g¼asim

H 00 (ai)� 4aiH 0 (ai) = 0; 8i 2 1; n:

Pentru a justi�ca urm¼atoare rela̧tie, constat¼am c¼a funçtiile polinomiale H 00 � 4tH 0 şi H sunt de
grad n şi se anuleaz¼a în (ai)i21;n : Aşadar, exist¼a o constant¼a real¼a c astfel încât H

00 � 4tH 0 = cH,
iar identi�carea coe�cieņtilor lui tn duce la c = �4n:
(iii) Se observ¼a c¼a polinomul H este caracterizat de rela̧tia H 00 � 4tH 0 = �4nH: Dac¼a scriem

H (t) = tn + cn�1t
n�1 + :::+ c1t+ c0; atunci rela̧tia de mai sus permite determinarea coe�cieņtilor

lui H: Apoi, rezolvarea ecua̧tiei H (t) = 0; d¼a cele n componente ale solu̧tiei a: Aşadar problema
are n! solu̧tii ce se ob̧tin de maniera indicat¼a.
(iv) Pentru n = 2; g¼asim H (t) = t2 � 4�1 care se anuleaz¼a în 2�1 şi �2�1: Deci minimele sunt

(2�1;�2�1) şi (�2�1; 2�1) ; iar valoarea minim¼a a lui f este 2�1:
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Pentru n = 3; H (t) = t3 � 3 � 4�1t care se anuleaz¼a în 0 şi �2�1
p
3 şi �2�1

p
3: Deci minimele

sunt tripletele ob̧tinute prin permutarea acestor numere. Valoarea minim¼a a lui f este 2�1 � 3 �
ln
�
3 � 4�1 �

p
3
�
: �

Problema 2.24 (Minimizarea unei energii într-un volum dat) O form¼a de energie a unei particule
într-un paralelipiped de laturi a; b; c > 0 are forma

E (a; b; c) = C

�
1

a2
+
1

b2
+
1

c2

�
;

unde C este o constant¼a (de�nit¼a pe baza constantei lui Plank şi a masei particulei). S¼a se
determine, folosind Teorema Karush-Kuhn-Tucker, paralelipipedul de volum �xat v > 0 care
minimizeaz¼a aceast¼a energie. Apoi, s¼a se veri�ce c¼a funcţia v 7! inf fE (a; b; c) j abc = vg este
derivabil¼a şi s¼a se comenteze leg¼atura dintre derivata acestei funcţii şi valoarea multiplicatorului
Lagrange al problemei.

Soluţie Folosind metoda obi̧snuit¼a se ob̧tine solu̧tia ( 3
p
v; 3
p
v; 3
p
v) ; deci cubul de volum v:Multipli-

catorul este � = 2Cv�
5
3 : Apoi, funçtia v 7! inf fE (a; b; c) j abc = vg ; notat¼a ' este ' (v) = 2Cv 23 ;

este derivabil¼a şi '0 (v) = ��; adic¼a rezultatul aşteptat, având în vederew semni�ca̧tia practic¼a a
multiplicatorilor. �

Problema 2.25 Se înf¼aşoar¼a o cutie paralelipipedic¼a cu o panglic¼a de lungime ` > 0: Se trece
panglica de câte dou¼a ori pe dou¼a dintre feţele paralelipipedului şi de 4 ori pe celelalte dou¼a. S¼a
se determine cutia de volum maximal care poate � înf¼aşurat¼a în acest fel. Studiaţi de asemenea
stabilitatea valorii optimale în raport cu data `:

Soluţie Cu nota̧tiile evidente, avem de maximizat abc cu restriçtiile 2a + 2b + 4c � `; a; b; c � 0:
Ultimele restriçtii pot � considerate inactive şi din nou discu̧tia este cea obi̧snuit¼a. Se ob̧tine
solu̧tia

(a; b; c) =

�
`

6
;
`

6
;
`

12

�
;

şi � = 144�1`2: Valoarea optimal¼a este 432�1`3: Constat¼am şi aici leg¼atura dintre derivata acestei
funçtii şi �: �

Problema 2.26 Se consider¼a tetraedrele de baz¼a un triunghi �xat şi de în¼alţime �xat¼a. S¼a se
determine, dac¼a exist¼a tetraedrele de arie lateral¼a minim¼a.

Soluţie Not¼am triunghiul de la baz¼a cu ABC şi în¼aļtimea cu h > 0. Not¼am de asemenea cu a; b; c
laturile triunghiului ABC, cu H piciorul în¼aļtimii pe baza ABC şi cu h1; h2; h3 distaņtele de la H
la a; b; c; respectiv. Problema se scrie ca minimizarea lui

a
q
h2 + h21 + b

q
h2 + h22 + c

q
h2 + h23

cu restriçtia
ah1 + bh2 + ch3 = 0:
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O analiz¼a de tipul celor deja utilizate arat¼a c¼a problema are solu̧tie şi c¼a solu̧tia satisface h1 =
h2 = h3: Deci piramida optim¼a este cea în care vârful se proiecteaz¼a în centrul cercului înscris
bazei.

De altfel, problema poate � formulat¼a cu un convex compact C ca baz¼a în locul unui triunghi,
iar în acest caz general se ştie c¼a exist¼a un unic punct în C care realizeaz¼a minimul cerut, îns¼a
determinarea şi caracterizarea acestuia reprezint¼a o problem¼a deschis¼a. �

Problema 2.27 În spaţiul a�n euclidian de dimensiune 3 cu reperul (O; i; j; k) consider¼am tetrae-
dre de tip OABC, unde A;B;C se a�¼a pe cele trei axe având coordonata nenul¼a strict pozitiv¼a.
Fie P = (a; b; c) un punct cu toate coordonatele strict pozitive.
(i) S¼a se arate c¼a p¼atratul ariei triunghiului ABC este egal cu suma p¼atratelor ariilor triunghi-

urilor OAB; OAC; OBC:
(ii) Construim triunghiuri ABC care conţin acest punct în interior. Consider¼am problema de

determin¼arii triunghiului de arie minim¼a. S¼a se arate c¼a problema are soluţie, s¼a se determine
teoretic soluţia şi s¼a se calculeze în cazurile (a; b; c) = (1; 1; 1) şi (a; b; c) = (1; 4; 6) :

Soluţie Fie A = (u; 0; 0) ; B = (0; v; 0) ; C = (0; 0; w) cu u; v; w > 0: Planul ABC are ecua̧tia

x

u
+
y

v
+
z

w
= 1:

Fie 
 proieçtia lui O pe acest plan. Atunci

jO
j = 1q
1
u2
+ 1

v2
+ 1

w2

:

Atunci, volumul tetraedrului OABC este

V = 3�1AABC jO
j =
uvw

6
:

Deci

AABC =
1

2
uvw

r
1

u2
+
1

v2
+
1

w2

deci
(AABC)2 =

�uv
2

�2
+
�uw
2

�2
+
�vw
2

�2
;

adic¼a suma p¼atratelor ariilor triunghiurilor OAB; OAC; OBC:
(ii) Conform punctului anterior problema de minimizare se poate scrie sub forma minimiz¼arii

funçtiei f : R3 ! R; f (u; v; w) = u2v2 + u2w2 + v2w2 cu restriçtiile

a

u
+
b

v
+
c

w
= 1;

u > 0; v > 0; w > 0:

Observ¼am c¼a dac¼a (u; v; w) satisface restriçtiile, atunci u � a; v � b; w � c; deci

f (u; v; w) � min
�
a2; b2; c2

� �
u2 + v2 + w2

�
;
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astfel condi̧tia de coercivitate este satisf¼acut¼a. Deci problema admite solu̧tie global¼a.
Evident, avem doar o singur¼a restriçtie activ¼a, h (u; v; w) = 0; unde h : R3 ! R;

h (u; v; w) =
a

u
+
b

v
+
c

w
� 1:

Este clar c¼a are loc condi̧tia de liniar¼a independeņt¼a în toate punctele fezabile. Problema nu e
convex¼a, deci pentru o solu̧tie (u; v; w) exist¼a � � 0 astfel încât

rf (u; v; w) + �rh (u; v; w) = 0:

Se ob̧tine sistemul

2u
�
v2 + w2

�
� �

a

u2
= 0

2v
�
u2 + w2

�
� �

b

v2
= 0

2w
�
u2 + v2

�
� �

c

w2
= 0:

Putem scrie

2u2
�
v2 + w2

�
= �

a

u
; 2v2

�
u2 + w2

�
= �

b

v
; 2w2

�
u2 + v2

�
= �

c

w
;

iar prin adunare, pentru c¼a h (u; v; w) = 0 ob̧tinem 4f (u; v; w) = �: Rescriem sistemul astfel:

u
�
u2 + v2 + w2

�
= 2a

�
u2v2 + u2w2 + v2w2

�
v
�
u2 + v2 + w2

�
= 2b

�
u2v2 + u2w2 + v2w2

�
w
�
u2 + v2 + w2

�
= 2c

�
u2v2 + u2w2 + v2w2

�
:

Dar u 6= 2a; v 6= 2b; w 6= 2c; deci

u2v2 + u2w2 =
2a

u� 2av
2w2

v2w2 + u2v2 =
2b

v � 2bu
2w2

w2v2 + u2w2 =
2c

w � 2cv
2u2:

Sc¼azând primele dou¼a ecua̧tii g¼asim

u2w2 � v2w2 =
2a

u� 2av
2w2 � 2b

v � 2bu
2w2;

de unde �
1 +

2b

v � 2b

�
u2w2 =

�
1 +

2a

u� 2a

�
v2w2;

care se reduce la
u (u� 2a) = v (v � 2b) :

31



Astfel, g¼asim
u (u� 2a) = v (v � 2b) = w (w � 2c) :

Not¼am cu t > 0 aceast¼a valoare comun¼a şi avem

u = a+
p
t+ a2 = b+

p
t+ b2 = c+

p
t+ c2:

Cum h (u; v; w) = 0, t > 0 este solu̧tie a ecua̧tiei

a

a+
p
t+ a2

+
b

b+
p
t+ b2

+
c

c+
p
t+ c2

= 1:

Este uşor de v¼azut c¼a aceast¼a ecua̧tie are o singur¼a r¼ad¼acin¼a strict pozitiv¼a. Deci determinarea
solu̧tiei problemei depinde de determinarea acestei r¼ad¼acini.
Evident, pentru (a; b; c) = (1; 1; 1) ; se observ¼a c¼a t = 3 este r¼ad¼acina c¼autat¼a şi u = v = w = 3

este solu̧tia problemei.
Pentru (a; b; c) = (1; 4; 6) trebuie g¼asit¼a r¼ad¼acina t cu aproxima̧tie (a se Exerci̧tiul 3.14). �

Problema 2.28 Demonstrarea Teoremei fundamentale a algebrei (Orice polinom cu coe�cienţi
complecşi admite o r¼ad¼acin¼a complex¼a) folosind metodele Teoriei optimiz¼arii.

Soluţie Fie
P (z) = anz

n + an�1zn�1 + :::+ a1z + a0;

unde n 2 N n f0g; ai 2 C (i 2 1; n), an 6= 0:
Observ¼am c¼a nu se pierde din generalitate dac¼a presupunem coe�cieņtii reali: polinomulQ(z) =

P (z)P (�z) are coe�cieņti reali şi dac¼a z� este o rad¼acin¼a a sa, atunci z� sau z� este r¼ad¼acin¼a pentru
P:
Consider¼am funçtia

f(z) = jP (z)j2 :
Evident, f este o funçtie continu¼a. Apoi, f este coerciv¼a, adic¼a limjzj!1 f(z) = +1; lucru care
se observ¼a din scrierea

f(z) =

�����
1X
k=0

akz
k

�����
2

�
 
janj � jzjn �

n�1X
k=0

jakj � jzjk
!2

:

Aceast¼a condi̧tie de coercivitate, împreun¼a cu continuitatea asigur¼a faptul c¼a f este m¼arginit¼a
inferior şi î̧si atinge marginea inferioar¼a: exist¼a z� such that f(z�) = infC f: Acum este su�cient
s¼a ar¼at¼am c¼a f(z�) = 0: Fie polinomul

R(z) = P (z� + z);

la rândul s¼au un polinom de grad n;

R(z) = bnz
n + :::+ b1z + b0; bn 6= 0:
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Trebuie s¼a ar¼at¼am c¼a 0 este r¼ad¼acin¼a a acestui polinom, adic¼a b0 = 0: Presupunem c¼a nu este cazul
şi not¼am cu s primul num¼ar natural nenul pentru care bs 6= 0; deci R(z) = b0 + bsz

s + ::: + bnz
n:

Pentru �ecare � 2 [0; 2�): consider¼am funçtia '� : R! R;

'�(t) =
��R(tei�)��2 ;

adic¼a funçtia f evaluat¼a în lungul dreptei care trece prin z� având direçtia ei�: Câteva calcule
simple arat¼a c¼a putem scrie

'�(t) = jb0j+ 2tsRe(bsb0eis�) + o(ts):

În plus, ştim c¼a pentru orice � 2 [0; 2�); t = 0 este punct de minim pentru '�; deci, în particular,
'0�(0) = 0; adic¼a s � 2: De asemenea, '

(k)
� (0) = 0; pentru k 2 1; s� 1 şi '

(s)
� (0) = 2s! Re(bsb0e

is�):

Din condi̧tiile de optimalitate cunoscute, trebuie ca primul ordin k pentru care '(k)� (0) 6= 0 s¼a �e
par şi '(k)� (0) > 0: Aceasta înseamn¼a c¼a s este par şi c¼a Re(bsb0e

is�) � 0 pentru orice � 2 [0; 2�):
Cum bsb0 6= 0; putem scrie acest num¼ar sub forma u+ iv cu u; v 2 R şi u2 + v2 6= 0: Atunci

Re(bsb0e
is�) = Re [(u+ iv)(cos s� + i sin s�)]

= u cos s� � v sin s� =
p
u2 + v2 cos(s� + �);

unde � este argumentul lui u + iv: Evident, atunci când � variaz¼a în intervalul [0; 2�); aceast¼a
expresie ia toate valorile dintre �

p
u2 + v2 şi

p
u2 + v2; deci nu este mereu pozitiv¼a, ceea ce

reprezint¼a o contradiçtie. Presupunerea f¼acut¼a este deci fals¼a, ceea ce înseamn¼a c¼a b0 = 0; adic¼a
P (z�) = 0. �

Problema 2.29 Fie n 2 Nnf0g şi (�i)i21;n ; � numere reale strict pozitive. S¼a se rezolve problema
maximiz¼arii expresiei Y

i21;n

(xi + �i)

cu restricţiile xi � 0 pentru orice i 2 1; n şiX
i21;n

xi = �:

2.4 Un exemplu, dou¼a întreb¼ari

S¼a consider¼am urm¼atoarea problem¼a de optimizare cu restriçtii.

Exerci̧tiul 2.30 S¼a se determine minimul global al expresiei

(x1 + x2 + x3) cu x21 + x22 + x23 = 4; x3 � 1:

Se parcurg urm¼atorii paşi:
I. se arat¼a c¼a exist¼a soluţie (Teorema lui Weierstrass);
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II. se arat¼a c¼a are loc condiţia de liniar¼a independenţ¼a în toate punctele fezabile studiind separat
cazul în care restricţia inegalitate este activ¼a, respectiv inactiv¼a;
III. se aplic¼a Teorema Krush-Kuhn-Tucker şi se determin¼a punctele care sunt potenţiale soluţii,

iar odat¼a cu ele, multiplicatorii Lagrange asociaţi, obţinându-se x =
�
2p
3
; 2p

3
; 2p

3

�
cu � = 0;

� = �
p
3
4
; x =

�q
3
2
;
q

3
2
; 1
�
cu � = 1 �

q
2
3
; � = � 1p

6
; x =

�
�
q

3
2
;�
q

3
2
; 1
�
cu � = 1 +

q
2
3
;

� = 1p
6
:

IV. se determin¼a soluţia global¼a, x =
�
�
q

3
2
;�
q

3
2
; 1
�
.

Studiind aceşti paşi şi calculele implicate, ne punem urm¼atoarele întreb¼ari:
- este imperios necesar¼a etapa (relativ di�cil¼a din punct de vedere tehnic) a veri�c¼arii unei

condi̧tii de cali�care?
- putem preciza natura punctelor care satisfac Teorema Krush-Kuhn-Tucker, dar nu sunt min-

ime globale?

În continuare, încerc¼am s¼a d¼am, pe rând, un r¼aspuns acestor chestiuni.

2.5 Condi̧tiile Fritz John

Aşa cum am v¼azut, pentru problema (P ) cu restriçtii funçtionale, avem condi̧tiile de optimalitate
date de Teorema Karush-Kuhn-Tucker (Teorema 2.1.1) care pentru aplicare necesit¼a veri�carea
unei condi̧tii de cali�care. În multe c¼aŗti (cu pro�l mai cu seam¼a ingineresc) aceast¼a teorem¼a este
aplicat¼a f¼ar¼a veri�carea unei asemenea condi̧tii. Evident, acest lucru este greşit, dar exist¼a unele
motive, pe care le discut¼am mai jos, pentru care o asemenea abordare conduce totuşi, în multe
situa̧tii, la rezultate corecte.
Prezent¼am deci unele condi̧tii de optimalitate, numite condi̧tiile Fritz John, în care funçtia

obiectiv şi funçtiile ce de�nesc restriçtiile sunt implicate nedifereņtiat. Aceste condi̧tii sunt apropi-
ate ca form¼a de condi̧tiile Karush-Kuhn-Tucker dar difer¼a printr-un aspect care se dovedeşte es-
eņtial în determinarea punctelor de extrem.
Rezultatul de mai jos refer¼a la condi̧tii necesare de optimalitate pentru problema (P ) cu re-

striçtii funçtionale f¼ar¼a nicio ipotez¼a în plus în afara cadrului general precizat mai sus. Aceste
condi̧tii au fost ob̧tinute de c¼atre Fritz John în 1948, motiv pentru care poart¼a numele acestui
matematician.

Teorema 2.5.1 Fie x 2 M soluţie a problemei (P ): Atunci exist¼a �0 2 R; �0 � 0; � =
(�1; �2; :::; �n) 2 Rn; � = (�1; �2; :::; �m) 2 Rm; cu proprietatea c¼a �0 + k�k + k�k 6= 0 astfel
încât

�0rf(x) +
nX
i=1

�irgi(x) +
mX
j=1

�jrhj(x) = 0

şi
�i � 0; �igi(x) = 0; pentru orice i 2 1; n.
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Demonstraţie Fie � > 0 astfel încât D(x; �) � U şi pentru orice x 2 M \ D(x; �); f(x) � f(x):
Pentru �ecare k 2 N� consider¼am funçtia 'k : D(x; �)! R dat¼a prin

'k(x) = f(x) +
k

2

nX
i=1

�
g+i (x)

�2
+
k

2

mX
j=1

(hj(x))
2 +

1

2
kx� xk2 ;

unde g+i (x) = maxfgi(x); 0g: Evident, 'k î̧si atinge minimul pe D(x; �) şi not¼am cu xk un astfel
de punct de minim. De asemenea,

'k(xk) = f(xk) +
k

2

nX
i=1

�
g+i (xk)

�2
+
k

2

mX
j=1

(hj(xk))
2 +

1

2
kxk � xk2 � 'k(x) = f(x):

Din faptul c¼a (xk) este un şir m¼arginit, iar f este continu¼a pe D(x; �); deducem c¼a (f(xk)) este
un şir m¼arginit. F¼acând k !1 în rela̧tia de mai sus, ob̧tinem

lim
k!1

nX
i=1

�
g+i (xk)

�2
= 0

lim
k!1

mX
j=1

(hj(xk))
2 = 0:

Tot m¼arginirea lui (xk) asigur¼a faptul c¼a putem extrage un subşir convergent al acestui şir. F¼ar¼a
a mai modi�ca indicii, putem scrie xk ! x� 2 D(x; �); iar rela̧tiile anterioare asigur¼a faptul c¼a
x� 2M: Mai mult, inegalitatea de mai sus ne permite s¼a scriem

f(xk) +
1

2
kxk � xk2 � f(x);

de unde, prin trecere la limit¼a,

f(x�) +
1

2
kx� � xk2 � f(x):

Dar, pe de alt¼a parte, f(x) � f(x�); deci kx� � xk = 0; adic¼a x� = x: Prin urmare, xk ! x.
O observa̧tie eseņtial¼a este c¼a 'k este difereņtiabil¼a întrucât funçtiile (scalare) care ar putea

pune probleme, i.e., g+i (x); sunt ridicate la p¼atrat şi r
�
g+i (�)

�2
(x) = 2g+i (x)rgi(x): De fapt,�

g+i (x)
�2
este compunerea dintre funçtia scalar¼a derivabil¼a t! (t+)

2 şi funçtia gi:
Cum xk este minim pentru 'k pe D(x; �) şi pentru k su�cient de mare xk se a�¼a în interiorul

bilei D(x; �), concluzion¼am c¼a pentru acele numere k putem aplica Teorema lui Fermat, adic¼a

r'k(xk) = 0:

Punând aceste lucruri împreun¼a, putem scrie

rf(xk) + k

nX
i=1

g+i (xk)rgi(xk) + k

mX
j=1

hj(xk)rhj(xk) + xk � x = 0; (2.3)
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pentru orice k su�cient de mare. Not¼am pentru i 2 1; n; j 2 1;m; �ki := kg+i (xk), �
k
j := khj(xk) şi


k =
q
1 +

Pn
i=1

�
�ki
�2
+
Pm

j=1

�
�ki
�2
: Este clar c¼a 
k > 0 şi not¼am �k0 :=

1

k
; �ki :=

�ki

k
; �kj :=

�kj

k
:

Se observ¼a c¼a �
�k0
�2
+

nX
i=1

�
�ki
�2
+

mX
j=1

�
�kj
�2
= 1;

deci şirurile (�k0); (�
k
i ); (�

k
j ) (i 2 1; n; j 2 1;m) sunt m¼arginite. Prin urmare, vor exista subşiruri

(indexate la fel) convergente în R la ni̧ste scalari pe care îi not¼am

�0; �1; �2; :::; �n; �1; �2; :::; �m

şi care nu pot � simultan zero. Pozitivitatea şirurilor (�k0); (�
k
i ) (i 2 1; n) atrage pozitivitatea

limitelor �0; �1; �2; :::; �n: Acum, împ¼aŗtind rela̧tia (2.3) la 
k; se ob̧tine

�k0rf(xk) +
nX
i=1

�kirgi(xk) +
mX
j=1

�kjrhj(xk) +
1


k
(xk � x) = 0:

Prin trecere la limit¼a (k !1) se ob̧tine prima rela̧tie c¼autat¼a. Ar¼at¼am acum a doua rela̧tie. Fie
i 2 1; n: Dac¼a �i = 0; atunci nu avem nimic de demonstrat. Contrar, dac¼a �i > 0; din de�ni̧tia
lui �i deducem c¼a pentru k su�cient de mare g+i (xk) > 0; deci g

+
i (xk) = gi(xk): Rela̧tia

0 < gi(xk)! gi(x) � 0

conduce la concluzia gi(x) = 0: Deci, şi cea de-a doua concluzie are loc şi teorema este complet
demonstrat¼a. �
Dac¼a compar¼am Teorema 2.1.1 cu Teorema 2.5.1 observ¼am urm¼atoarea difereņt¼a: scalarul

asociat funçtiei obiectiv este de aceast¼a dat¼a nenul, iar acesta este inconvenientul major al teoremei
de mai sus şi anume c¼a nu elimin¼a posibilitatea ca scalarul asociat funçtiei obiectiv s¼a �e nul. Astfel,
exist¼a riscul ca prea multe puncte fezabile s¼a veri�ce condi̧tiile Fritz John, iar aplicarea teoremei
s¼a nu aduc¼a preciz¼ari importante. De exemplu, dac¼a un punct fezabil x satisface rgi(x) = 0
pentru un i 2 A(x) sau rhj(x) = 0 pentru un j 2 1;m; atunci el satisface condi̧tiile Fritz-John
(cu �0 = 0), funçtia obiectiv nemaiavând niciun rol de jucat. Condi̧tiile de cali�care prezente
în Teorema 2.1.1 evit¼a tocmai situa̧tia �0 = 0. De exemplu, având în vedere Observa̧tia 2.1.2,
pentru a demonstra c¼a cele dou¼a condi̧tii din respectivul rezultat sunt de cali�care, este su�cient s¼a
ar¼at¼am acest lucru pentru condi̧tia Mangasarian-Fromovitz. Acest lucru este evident dac¼a aplic¼am
Teorema 2.5.1 şi ra̧tion¼am prin reducere la absurd: dac¼a �0 = 0 atunciX

i2A(x)

�irgi(x) +
mX
j=1

�jrhj(x) = 0:

Înmuļtind scalar cu vectorul u din condi̧tia Mangasarian-Fromovitz deducem c¼aX
i2A(x)

�i hrgi(x); ui = 0
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de unde se ob̧tine �i = 0 pentru orice i 2 A(x): Deci
mX
j=1

�jrhj(x) = 0;

iar condi̧tia de liniar¼a independeņt¼a asupra gradieņtilor frhj(x) j j 2 1;mg atrage faptul c¼a �j = 0
pentru orice j 2 1;m: Reunind aceste deduçtii ajungem la contradiçtie cu rela̧tia j�0j+k�k+k�k 6=
0: Deci �0 6= 0:
Ilustr¼am modul de funçtionare a Teoremei 2.5.1 prin câteva exerci̧tii concrete.

Exerci̧tiul 2.31 Fie problema de minimizare a funcţiei f : R2 ! R;

f(x1; x2) = (x1 � 3)2 + (x2 � 2)2

cu restricţia g(x) � 0; unde g : R2 ! R4;

g(x1; x2) = (x
2
1 + x22 � 5; x1 + 2x2 � 4;�x1;�x2):

(i) S¼a se arate, folosind un desen, c¼a (2; 1) este soluţie a problemei.
(ii) S¼a se arate c¼a au loc condiţiile Fritz John în acest punct.
(iii) Studiaţi îndeplinirea condiţiilor Fritz John în (0; 0) şi concluzionaţi.

Soluţie (i) Se poate observa gra�c c¼a x = (2; 1) este solu̧tie a problemei desenând mulmea punctelor
fezabile şi interpretând funçtia obiectiv ca �ind p¼atratul distaņtei de la (x1; x2) la (3; 2) :
(ii) Pentru x = (2; 1) avem A(x) = f1; 2g: Dorim s¼a veri�c¼am condi̧tiile Fritz John în acest

punct. Astfel, din a doua condi̧tie, cum 3; 4 =2 A(x); deducem c¼a �3 = �4 = 0: Cum rf(x) =
(�2;�2); rg1(x) = (4; 2); rg2(x) = (1; 2); trebuie s¼a g¼asim numere reale pozitive �0; �1; �2 � 0,
nu toate nule, astfel încât

�0(�2;�2) + �1(4; 2) + �2(1; 2) = (0; 0):

Ob̧tinem �1 =
1
3
�0 şi �2 = 2

3
�0; deci alegând �0 > 0; prima condi̧tie Fritz John este îndeplinit¼a.

(iii) S¼a vedem acum dac¼a punctul x = (0; 0) satisface condi̧tiile. De aceast¼a dat¼a A(x) = f3; 4g;
deci �1 = �2 = 0: Avem rf(x) = (�6;�4); rg3(x) = (�1; 0); rg4(x) = (0;�1): Un calcul simplu
arat¼a c¼a ecua̧tia

�0(�6;�4) + �3(�1; 0) + �4(0;�1) = (0; 0)
nu admite solu̧tie (�0; �3; �4) nenul¼a cu toate componentele pozitive. Deci x nu îndeplineşte
condi̧tiile Fritz John, aşadar nu este solu̧tie pentru problema dat¼a. �

Exerci̧tiul 2.32 Fie problema de minimizare a funcţiei f : (0;1)�(0;1)! R; f(x1; x2) = �2x2
cu restricţia g(x) � 0; unde g : R2 ! R3; g(x1; x2) = (x1 � x2 � 2;�x1 + x2 + 2; x1 + x2 � 6):
(i) Desenaţi mulţimea punctelor fezabile şi determinaţi gra�c soluţia.
(ii) S¼a se arate c¼a toate punctele fezabile satisfac condiţiile Fritz John.
(iii) Care sunt punctele în care au loc condiţiile Karush-Kuhn-Tucker. Comentaţi
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Soluţie (i) Muļtimea M a punctelor fezabile este segmentul [(2; 0); (4; 2)] n f(2; 0)g şi solu̧tia este
x = (4; 2):
(ii), (iii) Este uşor de observat c¼a orice punct fezabil satisface condi̧tiile Fritz John, dar solu̧tia

este singurul pentru care putem alege �0 6= 0: Într-adev¼ar, dac¼a x este un punct fezabil diferit de
solu̧tie, atunci �3 = 0; �1 = �2 şi �0 = 0: Deci, în acest caz, aplicarea condi̧tiilor Karush-Kuhn-
Tucker determin¼a solu̧tia, ceea ce nu se întâmpl¼a pentru condi̧tiile Fritz John. Observ¼am c¼a toate
restriçtiile sunt a�ne, deci se poate aplica Teorema Karush-Kuhn-Tucker. �

Exerci̧tiul 2.33 Fie problema minimiz¼arii funcţiei (x21 + x22) cu restricţia x
2
1 � (x2 � 1)

3 = 0:
(i) S¼a se arate c¼a problema are soluţie.
(ii) Care sunt punctele în care au loc condiţiile Fritz John? Comentaţi

Soluţie (i) Cum funçtia obiectiv este coerciv¼a, problema are solu̧tie global¼a.
(ii) Se poate cu uşuriņt¼a veri�ca c¼a singurul punct care satisface condi̧tiile Fritz John este

(0; 1) : Deci acest punct este solu̧tia problemei. �

Exerci̧tiul 2.34 Fie f : R2 ! R şi g : R2 ! R2 de�nite prin f(x1; x2) = x1 şi g(x1; x2) =
(�x2 + (1� x1)

3; x2):
(i) Determinaţi soluţia folosind structura particular¼a a problemei.
(ii) S¼a se arate c¼a în punctul soluţie au loc condiţiile Fritz John, dar nu au loc condiţiile

Karush-Kuhn-Tucker.

Soluţie (i) Se veri�c¼a faptul c¼a x = (1; 0) este solu̧tie pentru problema asociat¼a

(ii) Condi̧tiile Fritz John sunt îndeplinite cu �0 = 0: Condi̧tia (2.1) nu are loc. �

Punem acum în lumin¼a şi o situa̧tie în care putem asigura condi̧tii su�ciente de optimalitate.

Teorema 2.5.2 Fie x 2M un punct fezabil pentru problema (P ): Presupunem c¼a au loc condiţiile
din concluzia Teoremei 2.5.1, adic¼a exist¼a �0 2 R; �0 � 0; � = (�1; �2; :::; �n) 2 Rn; � =
(�1; �2; :::; �m) 2 Rm; cu proprietatea c¼a �0 + k�k+ k�k 6= 0 astfel încât

�0rf(x) +
nX
i=1

�irgi(x) +
mX
j=1

�jrhj(x) = 0

şi
�i � 0; �igi(x) = 0; pentru orice i 2 1; n.

Dac¼a mulţimea de vectorin
�0rf(x); (�irgi(x))i2A(x) ; (�jrhj(x))j=1;m

o
formeaz¼a un sistem de generatori pentru Rp; atunci x este soluţie pentru problema (P ):
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Demonstraţie. Presupunem, prin reducere la absurd, c¼a x nu este solu̧tie (local¼a) a problemei (P ):
Deci, exist¼a un şir (xk) de puncte fezabile astfel încât xk ! x şi f (xk) < f (x) pentru orice k:
Atunci, pentru orice k, xk 6= x şi

xk = x+ kxk � xk 1

kxk � xk (xk � x) :

Not¼am cu (tk) şirul de numere strict pozitive convergent la 0; (kxk � xk) şi cu (dk) şirul de vectori
de norm¼a 1;

�
1

kxk�xk (xk � x)
�
: F¼ar¼a a restrânge generalitatea, putem presupune c¼a (dk) este

convergent la un vector d de norm¼a 1: Folosind faptul c¼a funçtiile implicate sunt de clas¼a C1;
exist¼a ni̧ste şiruri (�k) ; (�ik)i2A(x) ;

�

jk
�
j21;m cu limita 0 astfel încât pentru orice k

0 > f (x+ tkdk)� f (x) = tkrf (x) (dk) + tk�k;

0 � gi (x+ tkdk)� gi (x) = tkrgi (x) (dk) + tk�
i
k; 8i 2 A (x) ;

0 = hj (x+ tkdk)� hj (x) = tkrhj (x) (dk) + tk

j
k; 8i 2 1;m:

Împ¼aŗtim în �ecare rela̧tie de mai sus cu (tk) şi prin trecere la limit¼a avem

rf (x) (d) � 0; rgi (x) (d) � 0; 8i 2 A (x) ; rhj (x) (d) = 0; 8j 2 1;m:

Cum, din condi̧tiile Fritz John, avem

�0rf(x) (d) +
X
i2A(x)

�irgi(x) (d) +
mX
j=1

�jrhj(x) (d) = 0;

deducem c¼a

�0rf (x) (d) = 0; �irgi (x) (d) = 0; 8i 2 A (x) ; �jrhj (x) (d) = 0; 8j 2 1;m:

Din ipoteza c¼a muļtimea de vectorin
�0rf(x); (�irgi(x))i2A(x) ; (�jrhj(x))j=1;m

o
formeaz¼a un sistem de generatori pentru Rp; ob̧tinem c¼a d = 0; ceea ce este imposibil, întrucât
kdk = 1: �

2.6 Condi̧tii de optimalitate de ordinul al doilea

Condi̧tiile de optimalitate studiate pân¼a acum în cazul cu restriçtii sunt condi̧tii de ordinul I
întrucât implic¼a doar difereņtialele de ordinul întâi ale funçtiilor ce de�nesc problema. Uneori,
aceste condi̧tii nu rezolv¼a complet problema mai ales atunci când avem puncte care îndeplinesc
condi̧tiile necesare Karush-Kuhn-Tucker, dar nu sunt solu̧tii globale. A decide dac¼a respectivele
puncte sunt sau nu solu̧tii (locale) este o chestiune la care condi̧tiile meņtionate nu pot r¼aspunde.
Studiem mai întâi un exemplu care ilustreaz¼a aceste comentarii.
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Exemplul 2.6.1 Fie problemaminimiz¼arii funçtiei de dou¼a variabile reale f (x; y) = �1
2
(x+ 1)2�

1
2
(y + 1)2 cu restriçtiile g1 (x; y) = x2 + y2 � 2 � 0; g2 (x; y) = y � 1 � 0: Se constat¼a cu uşuriņt¼a
c¼a muļtimea punctelor fezabile este compact¼a, deci problema are solu̧tie global¼a. Sistemul de re-
striçtii este convex şi are loc condi̧tia Slater. Se aplic¼a Teorema Karush-Kuhn-Tucker şi ob̧tinem
c¼a posibilele solu̧tii ale problemei sunt

(1; 1) cu multiplicatorii (�1; �2) = (1; 0)

(�1; 1) cu multiplicatorii (�1; �2) = (0; 2)
(�1;�1) cu multiplicatorii (�1; �2) = (0; 0) :

Calculul valorilor funçtiei în aceste puncte arat¼a c¼a (1; 1) este solu̧tie global¼a.
Pentru celelate dou¼a puncte nu putem îns¼a decide.
S¼a încerc¼am s¼a aplic¼am Teorema 2.5.2 pentru (�1; 1) : Avem:

A (�1; 1) = f1; 2g ; �0 = 1; �1 = 0; �2 = 2;
rf (�1; 1) = (0;�2) ;rg1 (�1; 1) = (�2; 2) ;rg2 (�1; 1) = (0; 1) :

Este uşor de v¼azut c¼a vectorii �0rf (�1; 1) ; �1rg1 (�1; 1) ; �2rg2 (�1; 1) nu formeaz¼a un sistem
de generatori pentru R2; deci teorema nu se poate aplica.
Pentru (�1;�1) avem:

A (�1;�1) = f1g ; �0 = 1; �1 = 0;
rf (�1;�1) = (0; 0) ;rg1 (�1;�1) = (�2;�2) ;

şi nici de aceast¼a dat¼a �0rf (�1;�1) ; �1rg1 (�1;�1) nu formeaz¼a un sistem de generatori pentru
R2:
Astfel, pentru cele dou¼a puncte în discu̧tie va trebui s¼a aplic¼am alte rezultate.

În continuarea acestei seçtiuni ob̧tinem condi̧tii de optim de ordinul al doilea pentru problema
cu restriçtii funçtionale, aşa încât vom presupune c¼a funçtiile sunt de clas¼a C2:

Teorema 2.6.2 (Condi̧tie necesar¼a de ordinul II) Presupunem c¼a x este punct soluţie pen-
tru problema (P ) şi c¼a au loc condiţiile Karush-Kuhn-Tucker cu multiplicatorii �; �: Dac¼a gradi-
enţii activi,

rgi(x); i 2 A(x); rhj(x); j 2 1;m
sunt liniar independenţi, atunci pentru orice direcţie u 2 Rp ce satisface

rgi(x) (u) = 0; 8i 2 A(x); rhj(x) (u) = 0; 8j 2 1;m (2.4)

avem
r2
xL(x; �; �)(u; u) � 0:
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Demonstraţie. Consider¼am funçtia � : Rp ! RcardA(x)+m ce are drept componente funçtiile gi;
i 2 A(x); hj; j = 1;m: În baza condi̧tiei de liniar¼a independeņt¼a a gradieņtilor activi, rezult¼a c¼a
r�(x) este surjectiv, deci în baza Teoremei lui Lyusternik vom avea c¼a

T (��1(0); x) = Kerr�(x):

Atunci orice vector u ce satisface (2.4), �ind din Kerr�(x); va � din T (��1(0); x); adic¼a
vor exista (tk) � (0;1) ; tk ! 0 şi uk ! u astfel încât x + tkuk 2 ��1(0) pentru orice k; deci
gi(x + tkuk) = 0; pentru orice i 2 A(x) şi hj(x + tkuk) = 0; pentru orice j = 1;m: În particular,
pentru orice k su�cient de mare, x+ tkuk este punct fezabil. Dar

L(x; �; �) = f(x) +

nX
i=1

�igi(x) +

mX
j=1

�jhj(x) = f (x)

L(x+ tkuk; �; �) = f(x+ tkuk) +

nX
i=1

�igi(x+ tkuk) +

mX
j=1

�jhj(x+ tkuk) = f (x+ tkuk) ; 8k:

Deci, exist¼a un şir (�k) cu limita 0 astfel încât pentru k su�cient de mare,

0 � f(x+ tkuk)� f(x)

= L(x+ tkuk; �; �)� L(x; �; �)

= tkrxL(x; �; �) (uk) +
t2k
2
r2
xL(x; �; �)(uk; uk) + t2k kukk

2 �k

= t2k

�
1

2
r2
xL(x; �; �)(uk) + kukk

2 �k

�
:

Împ¼aŗtind la t2k şi trecând la la limit¼a, având în vedere şi faptul c¼a kukk
2 �k ! 0; ob̧tinem concluzia

dorit¼a. �

Putem ob̧tine chiar o ra�nare a acestui rezultat f¼acând observa̧tia c¼a pot exista restriçtii cu
inegalit¼a̧ti active pentru care multiplicatorul s¼a �e 0: Consider¼am muļtimea indicilor activi strict
dat¼a prin

As (x) = fi 2 A (x) j �i > 0g :

Corolarul 2.6.3 Presupunem c¼a x este punct soluţie pentru problema (P ) şi c¼a au loc condiţiile
Karush-Kuhn-Tucker cu multiplicatorii �; �: Dac¼a vectorii

rgi(x); i 2 As(x); rhj(x); j 2 1;m

sunt liniar independenţi, atunci pentru orice direcţie u ce satisface

rgi(x) (u) = 0; 8i 2 As(x); rhj(x) (u) = 0; 8j 2 1;m

avem
r2
xL(x; �; �)(u; u) � 0:
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Demonstraţie. Se repet¼a demonstra̧tia anterioar¼a, considerând doar acele restriçtii gi pentru care
multiplicatorii sunt strict pozitivi. �

Exemplul 2.6.4 Revenim la discutarea punctelor ce satisfac condi̧tiile Karusk-Kuhn-Tucker din
Exemplul 2.6.1 pentru care nu am putut decide dac¼a sunt solu̧tii. Lagrangianul este

L ((x; y) ; �1; �2) = �
1

2
(x+ 1)2 � 1

2
(y + 1)2 + �1

�
x2 + y2 � 2

�
+ �2 (y � 1) :

Avem c¼ar2
xL((x; y) ; �1; �2) se identi�c¼a cu matricea hessian¼a corespunz¼atoare care este (2�1 � 1) I2:

Începem cu punctul (�1; 1) pentru care avem A (�1; 1) = f1; 2g ; �1 = 0; �2 = 2:
Dorim s¼a aplic¼am Teorema 2.6.2. Cum rg1 (�1; 1) = (�2; 2) ;rg2 (�1; 1) = (0; 1) sunt liniar

independeņti, c¼aut¼am u = (u1; u2) 2 R2 pentru care

rg1 (�1; 1) (u) = 0;rg2 (�1; 1) (u) = 0:

Singurul vector care satisface aceste condi̧tii este vectorul nul. Evident, pentru acest vector, are
loc condi̧tia din concluzia teoremei, deci în continuare nu putem s¼a decidem.
Încerc¼am aplicarea Corolarului 2.6.3. Avem As (�1; 1) = f2g şi rg2 (�1; 1) = (0; 1) 6= (0; 0)

satisface condi̧tia de liniar¼a independeņt¼a. C¼aut¼am u = (u1; u2) 2 R2 pentru carerg2 (�1; 1) (u) =
0 şi g¼asim muļtimea vectorilor fu 2 R2 j u1 2 R şi u2 = 0g : Cum

r2
(x;y)L((�1; 1) ; �1; �2) (u; u) = �u21 � u22;

este evident c¼a nu are loc concluzia din Teorema 2.6.3. Astfel, punctul în cauz¼a nu este solu̧tie.
Pentru (�1;�1) : Avem A (�1;�1) = f1g ; rg1 (�1;�1) 6= (0; 0) ; iar vectorii u = (u1; u2) 2

R2 pentru care rg1 (�1;�1) (u) = 0 sunt fu 2 R2 j u1 + u2 = 0g : Cum şi în acest caz

r2
(x;y)L((�1;�1) ; �1; �2) (u; u) = �u21 � u22;

este evident c¼a nu are loc concluzia din Teorema 2.6.2. Astfel, punctul (�1;�1) nu este solu̧tie.

Exemplul 2.6.5 Similar, punctele r¼amase în discu̧tie la Exemplul 2.30 nu sunt puncte de minim
local pentru c¼a nu veri�c¼a condi̧tiile necesare de ordinul al doilea.

Prezent¼am în continuare o condi̧tie su�cient¼a de ordinul al doilea.

Teorema 2.6.6 (Condi̧tie su�cient¼a de ordinul II) Presupunem c¼a x este un punct fezabil
pentru problema (P ) ce satisface condiţiile Karush-Kuhn-Tucker cu multiplicatorii �; �: Dac¼a

r2
xL(x; �; �)(u; u) > 0

pentru orice u 2 Rp n f0g ce satisface

rgi(x)(u) � 0; 8i 2 A(x)nAs (x) ;
rgi(x)(u) = 0; 8i 2 As(x); (2.5)

rhj(x)(u) = 0; 8j 2 1;m;

atunci x este soluţie strict¼a de ordin 2 pentru (P ) :
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Demonstraţie. S¼a presupunem, prin reducere la absurd, c¼a x nu este solu̧tie strict¼a de ordin 2
pentru (P ) : Atunci, pentru orice k 2 N�; vom g¼asi xk 2 B

�
x; 1

k

�
\M astfel încât

f(xk) < f(x) +
1

k
kxk � xk2 :

Observ¼am c¼a xk 6= x pentru orice k: De�nind uk =
xk � x

kxk � xk ; putem presupune, trecând

eventual la un subşir, c¼a uk ! u; cu kuk = 1: Cum rxL(x; �; �) = 0 din condi̧tiile Karush-Kuhn-
Tucker, ra̧tionând ca mai sus, g¼asim un şir (�k) cu limita 0 astfel încât pentru orice k su�cient de
mare,

1

k
kxk � xk2 > f(xk)� f(x) � L(xk; �; �)� L(x; �; �)

= rxL(x; �; �)(xk � x) +
1

2
r2
xL(x; �; �)(xk � x; xk � x) + kxk � xk2 �k

=
1

2
r2
xL(x; �; �)(xk � x; xk � x) + kxk � xk2 �k;

de unde, împ¼aŗtind la kxk � xk2 şi trecând la limit¼a pentru k !1; ob̧tinem

r2
xL(x; �; �)(u; u) � 0:

Pe de alt¼a parte, exist¼a din nou ni̧ste şiruri (�k) ; (
ik) ;
�
"jk
� �
unde i 2 A(x); j 2 1;m

�
cu limita

0 astfel încât
1

k
kxk � xk2 > f(xk)� f(x) = rf(x) (xk � x) + kxk � xk �k;

0 � gi(xk)� gi(x) = rgi(x) (xk � x) + kxk � xk 
k; 8i 2 A(x);
0 = hj(xk)� hj(x) = rhj(x) (xk � x) + kxk � xk "k; 8j 2 1;m:

Împ¼aŗtind inegalit¼a̧tile prin kxk � xk şi trecând la limit¼a pentru k !1; ob̧tinem

rf(x)(u) � 0;
rgi(x) (u) � 0; 8i 2 A(x);
rhj(x) (u) = 0; 8j 2 1;m:

Dac¼a ar exista un i 2 As(x) astfel încâtrgi(x) (u) < 0, atunci, multiplicând rela̧tiile anterioare
respectiv cu 1; �i; i 2 A(x); �j; j 2 1;m şi adunându-le, ob̧tinem

0 = rxL(x; �; �)(u) =

 
rf(x) +

nX
i=1

�irgi(x) +
mX
j=1

�jrhj(x)
!
(u)

= rf(x) (u) +
X
i2A(x)

�irgi(x) (u) < 0;

ceea ce este imposibil. Deci u satisface (2.5), iarr2
xL(x; �; �)(u; u) � 0; ceea ce ne d¼a o contradiçtie

cu ipotezele teoremei. Prin urmare, presupunerea f¼acut¼a este fals¼a, iar teorema este complet
demonstrat¼a. �

Ob̧tinem urm¼atorul corolar.
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Corolarul 2.6.7 Presupunem c¼a x este un punct fezabil pentru problema (P ) ce satisface condiţi-
ile Karush-Kuhn-Tucker cu multiplicatorii �; �; iar �i > 0 pentru orice i 2 A(x). Dac¼ar2

xL(x;�; �)
e pozitiv de�nit¼a pe subspaţiul�

u j rgi(x) (u) = 0; i 2 A(x); rhj(x) (u) = 0; j 2 1;m
	
;

atunci x este soluţie strict¼a de ordin 2 pentru (P ) :

Exemplul 2.6.8 (Utilizarea condi̧tiilor de optimalitate) Fie problema minimiz¼arii funçtiei
de dou¼a variabile reale f (x; y) = � (x+ 1)2 � (y + 1)2 cu restriçtiile g1 (x; y) = x2 + y2 � 3 � 0;
g2 (x; y) = �x2 + 2y � 0: Se constat¼a cu uşuriņt¼a c¼a muļtimea punctelor fezabile este compact¼a,
deci problema are solu̧tie global¼a. O imagine geometric¼a asupra problemei ofer¼a unele infor-
ma̧tii importante, dar dorim s¼a utiliz¼am condi̧tiile analitice pe care le avem la dispozi̧tie şi care
funçtioneaz¼a şi în contexte în care nu putem vizualiza structura problemei sau nu putem extrage
informa̧tii din aceasta. Se veri�c¼a condi̧tia de liniar¼a independeņt¼a în toate punctele fezabile. Se
aplic¼a Teorema Karush-Kuhn-Tucker şi ob̧tinem c¼a posibilele solu̧tii are problemei sunt

(�1;�1) cu multiplicatorii (�1; �2) = (0; 0) ;�p
2; 1
�
cu multiplicatorii (�1; �2) =

�
3

2
+

1

2
p
2
;
1

2
� 1

2
p
2

�
;

�
�
p
2; 1
�
cu multiplicatorii (�1; �2) =

�
3

2
� 1

2
p
2
;
1

2
+

1

2
p
2

�
; 

�
r
3

2
;�
r
3

2

!
cu multiplicatorii (�1; �2) =

 
1�

r
2

3
; 0

!
;

(a; b) cu multiplicatorii (�1; �2) = (0; �) ;

unde � este singura r¼ad¼acin¼a real¼a a ecua̧tiei �3 + �2 � � � 3
2
= 0;

a = � 1

� + 1
; b = � � 1:

Studiind ecua̧tia �3+�2��� 3
2
= 0 se poate constata c¼a unica sa solu̧tie real¼a este în intervalul

(1; 1 + 8�1) : La fel, b 2 (0; 8�1) ; a 2
�
�2�1;� 8

17

�
:

Prin calculul direct a valorilor funçtiei obiectiv în aceste puncte, deducem c¼a
�p
2; 1
�
este

solu̧tia global¼a.
Consider¼am acum punctul

�
�
p
2; 1
�
şi încerc¼am s¼a veri�c¼am concluzia Teoremei 2.5.2. Ambele

restriçtii sunt active, �0 = 1; �1 = 3
2
� 1

2
p
2
; �2 =

1
2
+ 1

2
p
2
: Astfel, e evident c¼a vectorii

rf
�
�
p
2; 1
�
=
�
�2
�
�
p
2 + 1

�
;�4

�
;

�1rg1
�
�
p
2; 1
�
= 2

�
3

2
� 1

2
p
2

��
�
p
2; 1
�
;

�2rg2
�
�
p
2; 1
�
=

�
1

2
+

1

2
p
2

��
2
p
2; 2
�
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formeaz¼a un sistem de generatori pentru R2; deci sunt satisf¼acute condi̧tiile su�ciente. Astfel,
punctul

�
�
p
2; 1
�
este solu̧tie local¼a a problemei.

Continu¼am cu punctul (�1;�1) : Cum multiplicatorii sunt nuli, nu vom avea su�cieņti vectori
nenuli printre cei ce trebuie considera̧ti în Teorema 2.5.2 (ar trebui cel pu̧tin doi) care s¼a formeze
un sistem de generatori pentru R2: Deci, în acest caz nu putem decide.

Pentru punctul
�
�
q

3
2
;�
q

3
2

�
doar prima inegalitate este activ¼a. Avem vectorii

rf
 
�
r
3

2
;�
r
3

2

!
= �2

 
1�

r
3

2
; 1�

r
3

2

!

�1rg1

 
�
r
3

2
;�
r
3

2

!
= 2

 
1�

r
2

3

! 
�
r
3

2
;�
r
3

2

!
care nu sunt liniari independeņti, deci nu formeaz¼a sistem de generatori. Nici pentru acest punct
nu putem decide deocamdat¼a.
În sfâŗsit, lu¼am punctul (a; b) de mai sus pe care îl cunoaştem doar cu aproxima̧tie. A doua

restriçtie este activ¼a în acest punct. Ţinând seama de rela̧tiile dintre a; b şi � avem vectorii

rf (a; b) = �2 (a+ 1; �)
�2rg2 (a; b) = � (�2a; 2) = 2� (�a; 1)

care nu sunt liniari independeņti. Din nou, nu putem decide.
Trecem la investigarea condi̧tiilor de ordinul al doilea pentru punctele de mai sus.
Pentru (�1;�1) ambele restriçtii sunt inactive şi deci ne intereseaz¼a hessiana lui f în acest

punct care este �2I2: Pe baza condi̧tiilor necesare de ordinul al doilea pentru probleme f¼ar¼a
restriçtii concluzion¼am c¼a de fapt (�1;�1) este punct de maxim pentru f; deci nu este solu̧tie a
problemei considerate.

Pentru
�
�
q

3
2
;�
q

3
2

�
; cum rg1

�
�
q

3
2
;�
q

3
2

�
6= (0; 0) are loc condi̧tia de liniar¼a indepen-

deņt¼a din Teorema 2.6.2. Muļtimea direçtiilor ce trebuie considerate este(
u 2 R2 j rg1

 
�
r
3

2
;�
r
3

2

!
(u) = 0

)
=
�
u 2 R2 j u1 + u2 = 0

	
:

Matricea asociat¼a lui r2
(x;y)L

��
�
q

3
2
;�
q

3
2

�
;
�
1�

q
2
3
; 0
��

este �2
q

2
3
I2; deci nu este pozitiv

semide�nit¼a pe muļtimea de mai sus. Deducem c¼a
�
�
q

3
2
;�
q

3
2

�
nu este solu̧tie.

Pentru (a; b) ; rg2 (a; b) 6= (0; 0) ; deci loc condi̧tia de liniar¼a independeņt¼a din Teorema 2.6.2.
Muļtimea direçtiilor pe care le avem în vedere este�

u 2 R2 j rg2 (a; b) (u) = 0
	
=
�
u 2 R2 j �au1 + u2 = 0

	
:

Matricea asociat¼a lui r2L(x;y) ((a; b) ; (0; �)) este�
2 (�� � 1) 0

0 �2

�
;
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deci nu este pozitiv semide�nit¼a pe muļtimea direçtiilor de mai sus. Deducem c¼a (a; b) nu este
solu̧tie.
În sfâŗsit mai facem observa̧tia c¼a punctelor ce sunt solu̧tie, adic¼a

�p
2; 1
�
şi
�
�
p
2; 1
�
, li se

poate aplica Teorema 2.6.6 pentru a concluziona c¼a sunt de fapt solu̧tii stricte de ordin 2:

Exemplul 2.6.9 Fie problema minimiz¼arii expresiei �x3y cu restriçtia x + y � 6: Mai întâi,
se observ¼a c¼a problema nu are solu̧tie global¼a. În orice caz, Teorema Karush-Kuhn-Tucker este
aplicabil¼a. Rezolvând sistemul Karush-Kuhn-Tucker ob̧tinem urm¼atoarele puncte: (0; y) cu y �
6 şi � = 0;

�
9
2
; 3
2

�
cu � =

�
9
2

�3
: Pentru punctele de forma (0; y) cu y � 6; valoarea funçtiei

obiectiv este 0 şi se observ¼a c¼a mereu g¼asim un şir de puncte fezabile convergent la punctul
în cauz¼a pentru care valorile funçtiei obiectiv sunt pozitive. Deci acestea nu sunt puncte de
extrem. Cercet¼am acum natura punctului

�
9
2
; 3
2

�
prin studiul condi̧tiei su�ciente de ordinul al

doilea: Teorema 2.6.6. Muļtimea direçtiilor u 6= 0 care satisfac ipotezele acestei teorema este
fu 2 R2 n f0g j u1 + u2 = 0g : Avem pentru orice x şi orice astfel de direçtie

r2
xL(x; �)(u; u) = �6xyu21 � 6x2u1u2 = 6xu21 (x� y) ;

deci

r2
xL(

�
9

2
;
3

2

�
; �)(u; u) > 0:

Astfel
�
9
2
; 3
2

�
este solu̧tie local¼a a problemei.

Exerci̧tiul 2.35 S¼a se studieze problema minimiz¼arii şi problema maximiz¼arii locale a expresiei
xyz cu restricţia xy + xz + yz = 8:

Exerci̧tiul 2.36 S¼a se studieze problema minimiz¼arii şi problema maximiz¼arii locale a expresiei
xyz cu restricţia x+ y + z = 1:

Exerci̧tiul 2.37 S¼a se studieze problema minimiz¼arii şi problema maximiz¼arii locale a expresiei
y4 � x4 cu restricţia x� y2 � 0:
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Capitolul 3

Solvabilitate şi aproximare

3.1 Solvabilitatea problemelor de optimizare

Fie P 2 R[X] un polinom de grad mai mare sau egal decât 5: Ecua̧tia P (x) = 0 cu necunoscuta
x 2 R poate � redus¼a la problema de optimizare f¼ar¼a restriçtii minP 2(x) cu x 2 R: Aşa cum ştim,
ecua̧tia algebric¼a nu poate � rezolvat¼a în general, deci nici problema de optimizare asociat¼a nu
poate � rezolvat¼a.
De fapt, în multe cazuri, rezolvarea unei probleme de optimizare se rezum¼a la rezolvarea unei

ecua̧tii algebrice sau a unui sistem de ecua̧tii (de exemplu, pe baza Teoremei lui Fermat sau a
Teoremei Karush-Kuhn-Tucker) care nu pot � rezolvate prin metode directe.
S¼a discut¼am un alt model general. În multe probleme, în multe domenii ale matematicii, avem

urm¼atorul model: consider¼am fi : Rp ! R şi ai 2 R cu i 2 1; q; cu aceste date, problema este
aceea de a g¼asi x 2 Rp astfel încât

fi (x) = ai; 8i 2 1; q: (3.1)

Din nou, aceast¼a problem¼a poate � uşor convertit¼a într-o problem¼a de optimizare f¼ar¼a restriçtii:

min

qX
i=1

(fi (x)� ai)
2 :

Bineîņteles, dac¼a ar exista o metod¼a general¼a de a rezolva problema de optimizare de mai sus
atunci toate problemele de forma (3.1) ar � rezolvabile. Dar ştim c¼a aceasta este imposibil. Deci,
în general, problemele de optimizare nu sunt rezolvabile. Clasa problemelor de tipul celor de mai
sus este prea vast¼a pentru exista o metod¼a universal¼a care s¼a le rezolve pe toate. În afar¼a de aceste
aseŗtiuni care sunt mai degrab¼a euristice, vom ar¼ata riguros c¼a, într-adev¼ar, aşa stau lucrurile.
Astfel, vom începe în capitolul urm¼ator studiul unor proceduri numerice. Trebuie precizat de

la început c¼a nu exist¼a o metod¼a numeric¼a universal¼a, ci o multitudine de metode, �ecare adaptat¼a
caracteristicilor unei clase particulare de probleme. Dac¼a avem o problem¼a (P ) ; o vom include
într-o clas¼a (C) de probleme având caracteristici comune. Pentru implementarea oric¼arei scheme
numerice, trebuie s¼a ştim o parte a problemei (P ) pe care o trat¼am, parte pe care o numim model
şi care const¼a de obicei din formularea problemei, a clasei de componente funçtionale ş.a. Pentru
a încadra problema (P ) într-o clas¼a (C) şi a o rezolva, metoda trebuie s¼a colecteze informa̧tii
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speci�ce despre (P ). Procesul de colectare a datelor se numeşte oracol. Un oracol (O) r¼aspunde
unor întreb¼ari succesive ale metodei. Astfel, metoda (M) încearc¼a s¼a rezolve problema colectând
şi prelucrând r¼aspunsurile oracolului.
În general, �ecare problem¼a poate � descris¼a prin mai multe modele, aşa cum se poate de

asemenea ca pentru �ecare problem¼a s¼a avem diferite tipuri de oracole.
Pentru o metod¼a numeric¼a, accep̧tiunea sintagmei "rezolvare a problemei" este aceea de de-

terminare a unei solu̧tii aproximative cu o acuratȩte " > 0 dinainte stabilit¼a. Aceast¼a înseamn¼a
c¼a pentru �ecare metod¼a trebuie s¼a de�nim un criteriu de oprire (notat (T")).
Schema iterativ¼a general¼a de aplicare a unei metode (M) unei probleme (P ) este urm¼atoarea:
Datele de intrare: se dau un punct de start x0 (sau mai multe date, informa̧tii ini̧tiale) şi o

acuratȩte (toleraņt¼a) " > 0:
Ini̧tializare: k = 0; I�1 = ;; unde k este contorul de itera̧tii, iar Ik este muļtimea de informa̧tii

acumulate la pasul k:
Bucla principal¼a: 1. Se invoc¼a oracolul în punctul xk; notat O (xk) : 2. Se actualizeaz¼a infor-

ma̧tiile: Ik = Ik�1[(xk; O (xk)) : 3. Se aplic¼a metoda (M) muļtimii Ik şi se ob̧tine punctul xk+1: 4.
Se veri�c¼a criteriul (T") : dac¼a are loc, se scrie r¼aspunsul �nal x = xk+1; dac¼a nu, se scrie k = k+1
şi se merge din nou la pasul 1.

Din punct de vedere computa̧tional, efortul cel mai mare este în bucla principal¼a la pasul 1
(invocarea oracolului) şi la pasul 3 (generarea punctului urm¼ator).
Astfel putem vorbi despre:
�complexitatea analitic¼a: num¼arul de invoc¼ari ale oracolului necesar pentru rezolvarea prob-

lemei cu acuratȩtea ";
�complexitatea aritmetic¼a: num¼arul de opera̧tii aritmetice necesar pentru rezolvarea problemei

cu acuratȩtea ":
Evident, complexitatea aritmetic¼a este mai realistic¼a, dar de obicei este corelat¼a cu cea analitic¼a

prin gradul de complexitate a oracolului şi metodei.
În general, pentru un model funçtional al unei probleme de optimizare putem aplica diferite

tipuri de oracole:
- oracol de ordin zero: returneaz¼a valoarea funçtiilor (derivative-free, în terminologie englez¼a);
- oracol de ordin întâi: returneaz¼a valoarea funçtiilor şi a gradieņtilor de ordinul întâi (�rst-

order gradient methods);
- oracol de ordinul al doilea: returneaz¼a valoarea funçtiilor şi a gradieņtilor de ordinul întâi şi

al doilea (second-order gradient methods).

Vom aplica acest limbaj formal unei clase particulare de probleme. Fie D � Rp;

D :=
�
x 2 Rp j xi 2 [0; 1]; 8i 2 1; p

	
= [0; 1]p :

şi f : Rp ! R o funçtie L�Lipschitz pe D în raport cu norma 1 (reamintim c¼a kxk1 =
maxi21;p jxij); adic¼a

jf (x)� f (y)j � L kx� yk1 ; 8x; y 2 D:
Consider¼am o metod¼a foarte simpl¼a de a rezolva problema

(PL) min f (x) cu x 2 D:

48



Evident, problema are solu̧tie global¼a (Teorema lui Weierstrass), iar metoda pe care o folosim este
metoda rȩtelei (grilei) uniforme care const¼a din urm¼atoarele:
1. Pentru n dat, calcul¼am punctele: �

i1
n
;
i2
n
; :::;

ip
n

�
;

unde (i1; i2; :::; ip) 2 f0; 1; :::; ngp : Sunt (n+ 1)p astfel de puncte.
2. Calcul¼am f în toate aceste puncte şi îl alegem pe cel (sau pe unul din cele) pentru care f

are valoarea cea mai mic¼a.
3. Return¼am punctul selectat, notat x; şi f (x) :
Aşadar, aceast¼a metod¼a împarte muļtimea punctelor fezabile într-o rȩtea uniform¼a (echidis-

tant¼a), calculeaz¼a minimul funçtiei în nodurile acestei rȩtele şi returneaz¼a aceast¼a valoare. Deci,
este o metod¼a cu oracol de ordin zero şi f¼ar¼a in�ueņta informa̧tei acumulate în punctele testate.
Dorim s¼a determin¼am e�cieņta acestei metode.

Teorema 3.1.1 Dac¼a f � este valoarea minim¼a global¼a a problemei (PL) şi x este punctul returnat
de metoda reţelei uniforme, atunci

f (x)� f � � L

2n
:

Demonstraţie. Fie x� un punct de minim global pentru f , adic¼a f (x�) = f �: Atunci x� se a�¼a
într-unul dintre cuburile generalizate ale rȩtelei, adic¼a exist¼a (i1; i2; :::; ip) 2 f0; 1; :::; ngp astfel
încât, pe componente, au loc rela̧tiile

x = x(i1;i2;:::;ip) � x� � x(i1+1;i2+1;:::;ip+1) = y:

Evident, yi � xi =
1
n
şi x�i 2 [xi; yi] pentru orice i 2 1; p: Consider¼am punctul u = 1

2
(x+ y) şi

de�nim punctul v prin

vi =

�
yi; dac¼a x�i � ui
xi; în caz contrar.

Din nou este simplu de observat c¼a

jvi � x�i j �
1

2n
; 8i 2 1; p:

Cum v este nod al rȩtelei, avem

f (x)� f (x�) � f (v)� f (x�) � L kv � x�k1 �
L

2n
;

adic¼a concluzia. �

Cu nota̧tiile din teorema anterioar¼a, pentru metoda de mai sus scopul este ca

f (x)� f � < ":

Ob̧tinem conseciņta urm¼atoare.
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Corolarul 3.1.2 Complexitatea analitic¼a a problemei (PL) pentru metoda reţelei uniforme este
cel mult ��

L

2"

�
+ 2

�p
:

Demonstraţie. Fie n =
�
L
2"

�
+ 1: Deci n > L

2"
şi din teorema de mai sus avem

f (x)� f � � L

2n
< ":

Deci, invocând oracolul de cel mult (n+ 1)p =
��

L
2"

�
+ 2
�p
ori ob̧tinem solu̧tia problemei cu

acuratȩtea dorit¼a. �

Este foarte interesant c¼a are loc şi rezultatul de mai jos.

Teorema 3.1.3 Fie " < L
2
: Atunci, pentru orice metod¼a cu oracol de ordin zero, complexitatea

analitic¼a a problemei (PL) este cel puţin
�
L
2"

�p
:

Demonstraţie. Fie n =
�
L
2"

�
: Din ipotez¼a deducem c¼a n � 1: Presupunem c¼a exist¼a o metod¼a cu

oracol de ordin zero pentru care sunt su�ciente N < np invoc¼ari ale oracolului pentru a rezolva
orice problem¼a de tip (PL) : Fie u 2 D astfel încât

u+
1

n
e 2 D;

unde e = (1; 1; :::; 1) şi astfel încât nu exist¼a puncte de control (în care s¼a �e invocat oracolul) în
muļtimea

E =

�
x 2 D j u � x � u+

1

n
e

�
:

Fie v = u+ 1
2n
e: Atunci

E =

�
x 2 D j kx� vk1 �

1

2n

�
:

De�nim funçtia g : D ! R;
g (x) = min f0; L kx� vk1 � "g :

Observ¼am c¼a are valoarea minim¼a �" şi difer¼a de 0 doar în muļtimea

F =
n
x 2 D j kx� vk1 <

"

L

o
:

Cum "
L
� 1

2n
; deducem c¼a

F � E:

În particular, v nu este punct de control, iar g (v) = �": Deci, chiar dac¼a oracolul indic¼a valoarea
exact¼a a lui f în toate punctele de control ale metodei (adic¼a 0), acuratȩtea nu poate �mai bun¼a
de ":
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În �nal, ar¼at¼am şi c¼a g este L�Lipschitz. Într-adev¼ar, dac¼a x; y 2 F sau x; y =2 F; inegalitatea
din proprietatea Lipschitz este evident¼a. Presupunem c¼a x 2 F şi y =2 F: Atunci

jg (x)� g (y)j = "� L kx� vk1 = L
� "
L
� kx� vk1

�
� L (ky � vk1 � kx� vk1)

� L kx� yk1 ;

ceea ce completeaz¼a demonstra̧tia a�rma̧tiei f¼acute.
Prin urmare, pentru a � siguri de acuratȩtea dorit¼a pentru toate problemele de tip (PL) nu

putem lua mai pu̧tin de
�
L
2"

�p
puncte. �

Exemplul 3.1.4 Evalu¼am conseciņtele rezultatului de mai sus în cazul în care L = 2; p = 10;
" = 0:01: Pentru a rezolva problema cu acuratȩtea " trebuie s¼a invoc¼am oracolul (s¼a evalu¼am
funçtia) în cel pu̧tin 10010 = 1020 puncte. Având în vedere c¼a funçtia obiectiv are p = 10 funçtii
coordonate, pentru calculul �ec¼areia trebuind cel pu̧tin o opera̧tie algebric¼a, înseamn¼a c¼a avem de
f¼acut cel pu̧tin 1021 opera̧tii. Spre exemplu, dac¼a computerul pe care lucr¼am este capabil s¼a fac¼a
1012 opera̧tii pe secund¼a, înseamn¼a c¼a e nevoie de 109 secunde. Un an are mai pu̧tin de 3; 2 � 107
secunde, astfel c¼a timpul de calcul ar � de peste 31 de ani.

Exerci̧tiul 3.1 S¼a se testeze metoda grilei uniforme printr-un program Matlab/Octave pentru
funcţia f : R! R, f (x) = x6 � 4x5 + 3x3 + 6x desenând mai întâi gra�cul pentru a observa
poziţionarea punctelor de minim.

Pentru funçtii de mai multe variabile, am v¼azut c¼a algoritmii de ordin zero pot � foarte
costisitori din punct de vedere computa̧tional. Prezent¼am totuşi un algoritm de tip gril¼a uniform¼a,
studiul putând �, o dat¼a plus, instructiv.
Mai întâi prezent¼am ni̧ste funçtii test şi ne vom ocupa de reprezent¼ari gra�ce. Astfel, vom

ilustra codurile preponderent pe urm¼atoarele funçtii

� Funçtia lui Rosenbrock, f : R2 ! R;

f (x; y) = 100(y � x2)2 + (1� x)2 ;

� f : R2 ! R;
f (x; y) = x6 + y4 + 4x2y2 � 3xy + 2x+ y;

� f : R2 ! R;
f (x; y) = (1 + y)3x2 + y2;

� f : R2 ! R;
f (x; y) = 0:6 � y4 + 5x22� 7y2 + sin (xy)� 5y;

� f : R2 ! R;

f (x; y) = 100

�q
x2 + (y + 1)2 � 1

�2
+ 90

�q
x2 + (y � 1)2 � 1

�2
� (20x+ 40y):
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Implementare 3.2 De exemplu, pentru a reprezenta a treia funçtie şi liniile sale de nivel, folosim
codul de mai jos.
desem_m_m_var.m (�̧sier de rulare)
[x,y]=meshgrid(-5:.01:5);
z=x.^6+y.^4+4.*x.^2.*y.^2-3.*x.*y+2.*x+y;
mesh(x,y,z)
%iar pentru a desena curbele de nivel:
[c,h]=contour(x,y,z,70);
clabel(c,h);

Implementare 3.3 O alt¼a variant¼a este urm¼atoarea:
% Rosenbrock�s function
clear all
clc
[x1,x2] = meshgrid(-2:.03:2,-2:.03:2);
z = 100*(x2-x1.^2).^2+(1-x1).^2;
surf(x1,x2,z);
shading interp
view (170,20)
xlabel(�x1�)
ylabel(�x2�)
zlabel(�f(x1,x2)�)

Exerci̧tiul 3.4 S¼a se implementeze un algoritm de tip gril¼a unifom¼a pentru aceste funcţii.

Discutatea teoretic¼a a punctelor de minim pentru aceste funçtii poate � di�cil¼a. Dac¼a pentru
funçtia Rosenbrock exist¼a un singur astfel de punct, (1; 1) ; şi acesta este exact determinat teoretic,
pentru celelalte discu̧tia poate �mai complicat¼a, iar în unele cazuri imposibil de �nalizat.
Algoritmii de tip gril¼a uniform¼a prezenta̧ti se refer¼a la determinarea punctelor de minim. În

acest curs, vom discuta de asemenea algoritmi de determinare a zerourilor unor funçtii, tocmai
pentru c¼a exist¼a o strâns¼a leg¼atur¼a între aceast¼a chestiune şi problemele de extrem. De altfel, orice
algoritm de aproximare a zerourilor unei funçtii se poate trasforma într-un algoritm de aproximare
a punctelor de optim prin aplicarea sa asupra gradientului funçtiei (conform Teoremei lui Fermat).
Un algoritm simplu de aproximare a zerourilor unei funçtii reale de o variabil¼a, este oferit de

metoda înjum¼at¼a̧tirii intervalului. S¼a presupunem c¼a avem o funçtie continu¼a f şi dou¼a numere
reale a < b pentru care f(a)f(b) < 0: Atunci, f are o r¼ad¼acin¼a în (a; b): Pentru uşuriņta expunerii,
presupunem c¼a aceast¼a solu̧tie este unic¼a. Vom genera dou¼a şiruri (ak) şi (bk) astfel: a0 = a;
b0 = b: Fie x0 = 2�1(a0 + b0): Dac¼a f(x0) = 0 atunci x0 este solu̧tia c¼autat¼a şi iterarea se opreşte.
Astfel, dac¼a f(a0)f(x0) < 0 alegem a1 = a0 şi b1 = x0; iar dac¼a f(x0)f(b0) < 0 alegem a1 = x0
şi b1 = b0: Continu¼am procedeul luând x1 = 2�1(a1 + b1): Procedând recurent, ne apropiem cu
(xk) de solu̧tie, înjum¼at¼a̧tind la �ecare pas intervalul în care se g¼aseşte solu̧tia. În general, aceast¼a
convergeņt¼a nu este foarte rapid¼a, dar în unele cazuri este e�cient¼a.
Exemplul de mai jos re�ect¼a aceste observa̧tii.
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Exemplul 3.1.5 Consider¼am funçtia f : R2 ! R

f (x; y) = x4 � 16x2 + 5x+ y4 � 16y2 + 5y:

Desenând gra�cul constat¼am c¼a funçtia are patru puncte de minim local şi un punct de maxim
local. Vrem s¼a g¼asim aceste puncte. Primul pas este s¼a determin¼am punctele critice, ceea ce,
datorit¼a simetriei în x şi y; revine la rezolvarea ecua̧tiei 4u3 � 32u + 5 = 0: Asociem funçtia
' : R! R; ' (u) = 4u3 � 32u + 5 şi constat¼am c¼a aceasta are trei zerouri u1 2

�
�1;�2

p
2p
3

�
;

u2 2
�
�2

p
2p
3
; 2
p
2p
3

�
; u3 2

�
2
p
2p
3
;1
�
: Cum '0 (u1) > 0; '

0 (u2) < 0; '
0 (u3) > 0; constituind matricea

hessiana a funçtiei ini̧tiale, deducem c¼a urm¼atoarele puncte sunt de minim local: (u1; u1) ; (u1; u3) ;
(u3; u1) ; (u3; u3). De asemenea, (u2; u2) este maxim local.
În plus, funçtia �ind coerciv¼a, ea admite un punct de minim global. O aproximare a punctelor

u1; u3 (de exemplu u1 2
�
�3;�2

p
2p
3

�
; u3 2

�
2
p
2p
3
; 3
�
) şi varia̧tia lui  : R! R;  (v) = v4�16v2+

5v arat¼a c¼a (u1; u1) este punctul de minim global pentru c¼a  (u1) <  (u3) :
Deci pentru a aproxima punctele de extrem ale funçtiei date, trebuie s¼a aproxim¼am solu̧tiile

ecua̧tiei 4u3 � 32u+ 5 = 0; lucru care se poate face cu metoda descris¼a mai sus.

Exerci̧tiul 3.5 S¼a se implementeze metoda înjum¼at¼aţirii intervalului pentru �nalizarea exemplu-
lui anterior.

Exerci̧tiul 3.6 S¼a se implementeze metoda înjum¼at¼aţirii intervalului pentru funcţia f : R! R;
f (x) = x3 � x� 2.

3.2 Metode numerice, în general �algoritmi iterativi

De foarte multe ori pot ap¼area probleme de optimizare pentru care nu putem rezolva sistemele
ce dau punctele critice ale funçtiei obiectiv (în cazul problemelor f¼ar¼a restriçtii) sau punctele
critice ale lagrangianului (la problemele cu restriçtii). Pentru astfel de probleme, sunt necesari
algoritmi pentru aproximarea solu̧tiilor. Ca de obicei, şi pentru proiectarea algoritmilor, exist¼a o
net¼a difereņt¼a între problemele cu restriçtii şi cele f¼ar¼a restriçtii.
To̧ti algoritmii pe care îi vom studia sunt iterativi (adic¼a solu̧tia (i.e., aproximarea punctului

c¼autat) este g¼asit¼a calculând termenii unui şir pân¼a la un rang dat de un criteriu de oprire a
algoritmului) şi cer precizarea unui punct de start pe care îl not¼am cu x0: Este bine ca acest punct
s¼a �e el însuşi o cât mai bun¼a aproximare a solu̧tiei c¼autate (mai ales dac¼a aceasta nu este unic¼a).
De exemplu, funçtia f : R! R;

f(x) =
x6

6
� x3

3
� x2

are dou¼a puncte de minim şi dou¼a r¼ad¼acini reale nenule. Dac¼a se pleac¼a cu o valoare x0 apropiat¼a
de unul dintre aceste puncte, atunci este probabil ca algoritmul (pentru rezolvarea ecua̧tiei sau
pentru g¼asirea punctelor de extrem) s¼a g¼aseasc¼a o aproximare a acelui punct.
Revenind la discu̧tia general¼a, dup¼a alegerea lui x0, algoritmul genereaz¼a un şir de itera̧tii

(xk)k2N care au scopul de a se apropia de solu̧tie (solu̧tie a unei ecua̧tii sau punct de optim).
Generarea acestui şir se va opri atunci când nu se mai pot face progrese în încercarea de apropiere
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de solu̧tie (conform regulii interne a algoritmului de generare a itera̧tiilor) sau când a fost atins¼a o
anumit¼a acuratȩte dinainte stabilit¼a (care se de�neşte printr-un criteriu de oprire). Orice algoritm
trebuie s¼a implementeze o regul¼a intern¼a de generare a unei noi itera̧tii utilizând itera̧tiile deja
existente. În general, �ecare nou¼a itera̧tie trebuie s¼a realizeze o apropiere de solu̧tie, dar exist¼a şi
algoritmi nemonotoni, pentru care descreşterea nu trebuie s¼a se produc¼a neap¼arat la �ecare pas.
În termeni matematici, un algorithm iterativ poate �descris ca având forma unei recureņte de

tipul

xk+1 = A (xk) ; 8k � 0;
x0 2 Rp;

unde A : Rp ! Rp este o funçtie.Totuşi, în practic¼a, datorit¼a implement¼arii pe diferite computere,
de c¼atre diferi̧ti programatori care pot interpreta diferit secveņtele sintactice ale programului ce
implementeaz¼a algoritmul, datorit¼a acumul¼arii rotunjirilor numerice care şi ele pot diferi în cazul
unor software-uri diferite, este mai realistic s¼a consider¼am A ca �ind o multifunçtie. De fapt, în
realitate, dac¼a A este funçtia de mai sus, rela̧tia dintre xk+1 şi xk este xk+1 = A (xk) + "k; unde
"k este un element provenit din difereņtele de aproximare descrise. Datorit¼a faptului c¼a acest "k
are un caracter aleatoriu, este mai �resc s¼a îl încorpor¼am în A (xk) care devine astfel o muļtime.
În acest fel, propriet¼a̧tile generale ce pot � deduse pentru un algoritm astfel modelat se p¼astreaz¼a
pentru diferite implement¼ari ale acestuia şi chiar pentru algoritmi similari. Astfel, cu aceast¼a
abordare, algoritmul general de mai sus cap¼at¼a forma

xk+1 2 A (xk) ; 8k � 0; (3.2)

x0 2 Rp:
De�ni̧tia 3.2.1 O multifuncţie A : Rp � Rp se numeşte închis¼a în x 2 D dac¼a pentru orice dou¼a
şiruri convergente (xk) ; (yk) cu xk ! x; yk ! y şi yk 2 A (xk) pentru orice k; are loc y 2 A (x).
O multifuncţie închis¼a în toate punctele unei mulţimi se numeşte închis¼a pe acea mulţime.

Exemplul 3.2.2 1. Multifunçtia A : R� R dat¼a prin

A (x) =

� �
1
2
(x+ 2)

	
; dac¼a x > 1�

1
4
x
	
; dac¼a x � 1

nu este închis¼a în x = 1: Pentru a observa acest lucru este su�cient s¼a analiz¼am cazul şirului

xk = 1 +
1

2k
; 8k � 0:

2. Multifunçtia A : R� R; A (x) = [x2;1) este închis¼a pe R:

În cadrul oric¼arui algoritm iterativ o funçtie speci�c¼a (de obicei funçtia obiectiv în cazul prob-
lemelor de optimizare) cunoaşte o descreştere pân¼a în momentul când convergeņta (aproximarea)
dorit¼a se realizeaz¼a. Aceasta sugereaz¼a de�ni̧tia de mai jos.

De�ni̧tia 3.2.3 Fie S � Rp o mulţime. Consider¼am un algoritm de forma (3:2) : O funcţie
continu¼a ' : Rp ! R se numeşte funcţie de descreştere pentru S şi algoritmul A dac¼a sunt
satisf¼acute urm¼atoarele propriet¼aţi:
(i) pentru orice x 2 S şi y 2 A (x) ; avem ' (y) � ' (x) ;
(ii) pentru orice x =2 S şi y 2 A (x), avem ' (y) < ' (x) :
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Exemplul 3.2.4 Funçtia ' : R! R; ' (x) = jxj este o funçtie de descreştere pentru S = f0g şi
A : R! R; A (x) = 4�1x:

Teorema 3.2.5 Fie un algoritm de forma (3:2) : Fie S mulţimea soluţiilor problemei studiate.
Presupunem c¼a au loc urm¼atoarele condiţii:
(i) şirul (xk) este conţinut într-o mulţime compact¼a;
(ii) A este închis¼a pe Rp n S;
(iii) exist¼a o funcţie continu¼a ' : Rp ! R de descreştere pentru S şi A.
Atunci orice punct limit¼a al lui (xk) se a�¼a în S:

Demonstraţie Fie x un punct limit¼a al lui (xk) şi (xkr)r subşir al lui (xk) cu limita x: Cum ' este
continu¼a,

lim
r
' (xkr) = ' (x) :

Cum şirul (' (xk)) este monoton descresc¼ator iar un subşir al s¼au este convergent, deducem c¼a
întreg şirul este convergent la aceeaşi limit¼a, ' (x) :
Presupunem, prin reducere la absurd c¼a x =2 S: Din prima ipotez¼a, exist¼a un punct limit¼a,

notat u; al şirului (xk+1)k : Ca mai sus, limk' (xk+1) = ' (u) ; deci ' (x) = ' (u) : Pe de alt¼a parte,
ipoteza (ii) asigur¼a u 2 A (x) ; deci, conform (iii), ' (u) < ' (x) ; ceea ce reprezint¼a o contradiçtie.
�

Observa̧tia 3.2.6 În rezultatul anterior data iniţial¼a poate � arbitrar aleas¼a, deci în ipotezele
date algoritmul are propriet¼aţi globale de convergenţ¼a.

Corolarul 3.2.7 În ipotezele Teoremei 3.2.5, dac¼a S este format¼a dintr-un singur punct x, atunci
(xk)! x:

Demonstraţie Din prima ipotez¼a a teoremei, şirul are un punct limit¼a care, conform teoremei şi
ipotezei rezultatului de fa̧t¼a coincide cu x: Dac¼a şirul nu ar converge la x; ar mai avea un punct
limit¼a diferit de x care ar trebui s¼a �e din S ceea ce nu este posibil. �

Exemplul 3.2.8 Consider¼am problem minimiz¼arii lui f : R! R; f (x) = jxj şi algoritmul de�nit
de A : R� R dat¼a prin

A (x) =

� �
1
2
(x+ 2)

	
; dac¼a x > 1�

1
4
x
	
; dac¼a x � 1:

Acest algoritm nu este convergent global (pentru orice dat¼a ini̧tial¼a). Într-adev¼ar, dac¼a lu¼am
x0 = 4; atunci xk ! 2: Se observ¼a c¼a pentru x0 = �4; xk ! 2: Am v¼azut mai sus (Exemplul
3.2.2) c¼a A nu este închis¼a în 1:

Exemplul 3.2.9 Consider¼am problem minimiz¼arii lui f : R! R; f (x) = x3 şi algoritmul de�nit
de A : R� R dat¼a prin

A (x) =
�
�
�
x2 + 1

�	
Acest algoritm nu este convergent pentru c¼a pentru orice dat¼a ini̧tial¼a şirul generat are limita �1.
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Exemplul 3.2.10 Consider¼am problem minimiz¼arii lui f : R! R; f (x) = jx� 1j şi algoritmul
de�nit de A : R� R dat¼a prin

A (x) =
n
�
p
jxj
o

Acest algoritm este convergent pentru orice dat¼a ini̧tial¼a x0 2 R:

O problem¼a foarte important¼a din punct de vedere practic atunci când este studiat un algoritm
este viteza sa de convergeņt¼a.

De�ni̧tia 3.2.11 (vitez¼a de convergeņt¼a) Fie (xk)k2N� � Rp un şir convergent la x 2 Rp cu
xk 6= x pentru orice k 2 N�: Spunem c¼a:
(i) (xk) converge liniar dac¼a exist¼a r 2 (0; 1) (numit rat¼a de convergenţ¼a) astfel încât pentru

orice k su�cient de mare,
kxk+1 � xk
kxk � xk � r;

(ii) (xk) converge superliniar dac¼a

lim
k

kxk+1 � xk
kxk � xk = 0;

(iii) (xk) converge p¼atratic dac¼a exist¼a M > 0 astfel încât pentru orice k su�cient de mare,

kxk+1 � xk
kxk � xk2

�M:

Evident, convergeņta p¼atratic¼a implic¼a convergeņta superliniar¼a care, la rândul s¼au implic¼a
convergeņta liniar¼a. Pentru convergeņta liniar¼a rata r este important¼a pentru viteza de conver-
geņt¼a, în timp ce pentru convergeņta p¼atratic¼a dependeņta de M este mai pu̧tin important¼a.
Folosind modelul oferit de de�ni̧tia convergeņtei p¼atratice, putem de�ni convergeņte de orice or-
din; spunem c¼a avem o convergeņt¼a de ordin � > 1 dac¼a exist¼a M > 0 astfel încât pentru orice k
su�cient de mare

kxk+1 � xk
kxk � xk�

�M:

Exemplul 3.2.12 (i) Şirul
�
1 +

�
1
2

�k�
este liniar convergent la 1 cu rata r = 1

2
:

(ii) Şirul
�
1 + 1

kk

�
converge superliniar la 1:

(iii) Şirul
�
1 +

�
1
2

�2k�
converge p¼atratic la 1:

Exemplul 3.2.13 Reamintim c¼a dac¼a I � R este un interval închis f : I ! I este o funçtie
derivabil¼a astfel încât derivata sa este m¼arginit¼a (în modul) pe I de o constant¼a strict subunitar¼a,
atunci pentru orice dat¼a ini̧tial¼a x0 2 I itera̧tia Picard de�nit¼a de xk+1 = f(xk); k � 0 este
convergent¼a c¼atre unicul punct �x x al lui f din I: Presupunem c¼a f este de clas¼a C1:
Se poate observa f¼ar¼a di�cultate c¼a dac¼a punctul �x nu este atins (̧sirul este nesta̧tionar),

atunci
xk+1 � x

xk � x
=
f(xk)� x

xk � x

k!1! f 0(x) 2 (�1; 1) :
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Astfel, observ¼am c¼a, în general avem de-a face cu o convergeņt¼a cel pu̧tin liniar¼a de rat¼a jf 0 (x)j.
În cazul cel mai bun în care f 0(x) = 0 putem avea convergeņte mai bune decât convergeņta

liniar¼a. În general, în contextul de mai sus, dac¼a f 0(x) = 0 şi f este de clas¼a C2 atunci, aplicând
de dou¼a ori regula lui L�Hôpital avem:

lim
x!x

f(x)� x

(x� x)2
=
f 00(x)

2
;

deci pentru orice itera̧tie Picard nesta̧tionar¼a

lim
k!1

xk+1 � x

(xk � x)2
=
f 00(x)

2
;

adic¼a o convergeņt¼a p¼atratic¼a.
S¼a consider¼am funçtia f : [0; 1]! [0; 1] dat¼a prin f(x) = 1

1+x2
: Aceasta este o contraçtie şi are

un singur punct �x care este unica solu̧tie pozitiv¼a a ecua̧tiei x3 + x � 1 = 0 (care are valoarea
aproximativ¼a x � 0:6823), iar şirul itera̧tiilor Picard satisface:

xk+1 � x

xk � x

n!1! f 0(x) =
�2x

(1 + x2)2
= �2x3 � �0:6353:

Deci, practic pentru k su�cient de mare, la �ecare pas al itera̧tiei, eroarea se multiplic¼a (în valoare
absolut¼a) cu aproximativ 0:6353:
S¼a lu¼am şi cazul funçtiei f : [

p
2;1)! [

p
2;1) dat¼a prin

f(x) =
x

2
+
1

x
:

Este uşor de veri�cat c¼a f este bine de�nit¼a (inegalitatea mediilor). În plus,

jf 0(x)j =
����12 � 1

x2

���� � 1

2
;

deci f este contraçtie şi are ca unic punct �x x =
p
2: Se observ¼a c¼a f 0(x) = 0 şi, deci, pentru

orice itera̧tie Picard nesta̧tionar¼a

xk+1 � x

(xk � x)2
=

1

2xk
! 1

2
p
2
=
f 00(x)

2
;

deci avem o convergeņt¼a p¼atratic¼a.

Exerci̧tiul 3.7 S¼a se implementeze acest algoritm pentru funcţiile de mai sus.

O alt¼a clas¼a de viteze de convergeņt¼a este de�nit¼a mai jos.

De�ni̧tia 3.2.14 (r�convergeņt¼a) Fie (xk)k2N� � Rp un şir convergent la x 2 Rp: Spunem c¼a
(xk) converge r�liniar (r�superliniar, r�p¼atratic) dac¼a exist¼a un şir (yk)k2N� care este convergent
liniar (superliniar, p¼atratic) la 0 astfel încât pentru orice k

kxk � xk � yk:
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Exemplul 3.2.15 Şirul

xk =

(
1 +

�
1
2

�k
; dac¼a k este par

1 +
�
1
3

�k
; dac¼a k este impar

este r�liniar convergent la 1; dar nu este liniar convergent la 1:

Observa̧tia 3.2.16 Vitezele de convergenţ¼a în sensul De�niţiei 3.2.11 implic¼a r�convergenţele
corespunz¼atoare, în timp ce reciprocele sunt, în general, false, aşa cum arat¼a exemplul anterior.

Exerci̧tiul 3.8 Studiaţi viteza de convergenţ¼a a şirului
�
1
k!

�
:

Exerci̧tiul 3.9 Fie f : R2 ! R de�nit¼a prin f (x) = kxk2 : Ar¼ataţi c¼a iteraţiile

xk =

�
1 +

1

2k

�
(cos k; sin k)

satisfac f (xk+1) < f (xk) pentru orice k � 0: Ar¼ataţi c¼a orice punct de pe sfera (cercul) unitate
este punct limit¼a al lui (xk) :

Exerci̧tiul 3.10 Studiaţi viteza de convergenţ¼a şi r�convergenţa şirului

xk =

( �
1
4

�2k
; dac¼a k este par

xk�1
k
; dac¼a k este impar.

3.3 Un algoritm reprezentativ: metoda lui Newton

Aceast¼a seçtiune se ocup¼a cu studiul unei celebre metode, atribuit¼a lui Newton, de a determina
cu aproxima̧tie r¼ad¼acinile unor ecua̧tii neliniare. În plus, aceast¼a metod¼a ilustreaz¼a foarte bine
ideile generale expuse despre algoritmii iterativi în seçtiunea precedent¼a.
S¼a remarc¼am c¼a aplicarea condi̧tiilor de optimalitate transform¼a o problem¼a de optimizare în

problema rezolv¼arii unei ecua̧tii sau a unui sistem de ecua̧tii (de cele mai multe ori neliniare şi
chiar imposibil de rezolvat exact). Un alt argument pentru studiul acestui algoritm în cadrul
unui curs de Teoria optimiz¼arii ar � acela c¼a, în fond, problema rezolv¼arii unei ecua̧tii de forma
f(x) = 0 este echivalent¼a cu problema determin¼arii solu̧tiilor globale ale problemei de optimizare
f¼ar¼a restriçtii min f 2:
Metoda lui Newton este una dintre cele mai cunoscute metode iterative de a aproxima r¼ad¼acinile

funçtiilor care au propriet¼a̧ti de difereņtiabilitate su�cient de bune. Vom vedea c¼a acest algoritm
este unul local pentru c¼a data ini̧tial¼a trebuie aleas¼a su�cient de aproape de solu̧tie, dar convergeņta
este p¼atratic¼a, adic¼a foarte bun¼a.
Fie f : Rp! Rp o funçtie de clas¼a C1 şi �e x o r¼ad¼acin¼a simpl¼a a lui f (i.e., f(�x) = 0 şi rf(x)

este nesingular¼a). Consider¼am o valoare x0 su�cient de apropiat¼a de x (vom discuta sensul acestei
apropieri ceva mai târziu).
Şirul itera̧tiilor Newton porneşte de la ecua̧tia

0 = f(xk) +rf(xk)(xk+1 � xk): (3.3)
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Aceast¼a ecua̧tie, din care se ob̧tine valoarea lui xk+1 arat¼a de ce este important s¼a avem solu̧tie
simpl¼a şi de ce trebuie s¼a pornim din apropierea lui x : trebuie ca x0 s¼a �e într-o vecin¼atate a lui
x în care rf este inversabil¼a, iar o astfel de vecin¼atate exist¼a tocmai pentru c¼a rf este continu¼a
şi nesingular¼a în x: Astfel, de�nim formal itera̧tia Newton prin:

xk+1 = xk �rf(xk)�1(f(xk)): (3.4)

Aşa cum deja se vede din rela̧tiile anterioare şi se va vedea şi în continuare, unele di�cult¼a̧ti în
aplicarea acestei metode pot � rezumate astfel:

� dac¼a rf(xk) este singular¼a, nu putem de�ni xk+1;

� calculul exact al lui rf(xk)�1 poate � costisitor din punct de vedere computa̧tional;

� e di�cil de ştiut a priori c¼a rf(x) este nesingular¼a.

Dup¼a prezentarea riguroas¼a a metodei vom reveni asupra unor aspecte de acest tip. Înainte de
a prezenta rezultatul principal privind convergeņta metodei lui Newton prezent¼am o proprietate
ajut¼atoare a funçtiilor de clas¼a C1:

Lema 3.3.1 Fie D � Rp o mulţime deschis¼a şi convex¼a, f : D ! Rp o funcţie de clas¼a C1 pe D
şi x; y 2 D: Atunci

f(y) = f(x) +

Z 1

0

rf(x+ t (y � x))(y � x)dt;

unde integrarea şi egalitatea se înţeleg pe componente.

Demonstraţie. Reamintim c¼a pentru orice x; y 2 D; muļtimea

Iy;x = ft 2 R jty + (1� t)x 2 Dg

este un interval care coņtine intervalul [0; 1] :
Pentru �ecare funçtie coordonat¼a fi cu i 2 1; p de�nim funçtia scalar¼a �i : Iy;x ! R;

�i (t) = fi (ty + (1� t)x) = fi (x+ t (y � x)) :

Evident,
�0i (t) = rfi (x+ t (y � x)) (y � x) :

Cum [0; 1] � Iy;x şi

�i (1)� �i (0) =

Z 1

0

�0i (t) dt;

deducem

fi (y)� fi (x) =

Z 1

0

rfi (x+ t (y � x)) (y � x) dt;

ceea ce reprezint¼a concluzia. �

În cele ce urmeaz¼a privim o matrice de tip p�p (cum ar �difereņtiala lui f) ca operator liniar
de la Rp la Rp înzestrat cu norma operatorial¼a generat¼a de k�k2 pe Rp: Prezent¼am o proprietate a
normei k�k2 pe Rp (pe care o not¼am k�k) de care avem nevoie în continuare.
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Lema 3.3.2 Fie g : R! Rp; g = (gi)i21;p astfel încât toate funcţiile gi sunt Riemann integrabile
pe R şi �e a; b 2 R cu a < b: Atunci



Z b

a

g (t) dt





 � Z b

a

kg (t)k dt:

Demonstraţie. Fie

v =

�Z b

a

gi (t) dt

�
i21;p

2 Rp:

Avem

kvk2 =
pX
i=1

v2i =

pX
i=1

vi

Z b

a

gi (t) dt =

pX
i=1

Z b

a

vigi (t) dt

=

Z b

a

 
pX
i=1

vigi (t)

!
dt =

Z b

a

hv; g (t)i dt

�
Z b

a

kvk kg (t)k dt = kvk
Z b

a

kg (t)k dt

şi prin simpli�care cu kvk (cazul v = 0 este evident) ob̧tinem concluzia. �

Teorema 3.3.3 Fie D � Rp o mulţime deschis¼a şi convex¼a, f : D ! Rp o funcţie de clas¼a C1
pe D. Fie x o soluţie simpl¼a a ecuaţiei f(x) = 0 şi �e (xk) un şir de iteraţii generate de ecuaţia
(3.4). Atunci exist¼a " > 0 astfel încât dac¼a x0 2 D (x; ") � D toate elementele şirului sunt bine
de�nite şi r¼amân în D (x; ") şi (xk) converge superliniar la x; adic¼a

lim
k!1

kxk+1 � xk
kxk � xk = 0: (3.5)

În plus, dac¼a rf este Lipschitz pe D (x; ") atunci convergenţa este p¼atratic¼a, adic¼a exist¼a
K > 0 astfel încât

kxk+1 � xk
kxk � xk2

� K; 8k: (3.6)

Demonstraţie. Fie M > 0 şi " > 0 astfel încât D (x; ") � D şi pentru orice x 2 D (x; ") au loc
simultan urm¼atoarele:

krf (x)�rf (x)k � 1

4M
rf (x) este inversabil¼a

rf (x)�1

 < M:

Astfel de numere pozitive exist¼a, pe baza ipotezelor considerate.
Dac¼a x0 = x; atunci itera̧tia Newton este sta̧tionar¼a şi concluziile sunt evidente.
Fie x0 2 D (x; ") n fxg şi x1 de�nit de itera̧tia Newton, adic¼a

x1 = x0 �rf(x0)�1(f(x0)):
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Atunci

x1 � x = x0 � x�rf(x0)�1(f(x0))
= rf(x0)�1 (rf(x0) (x0 � x)� f (x0)) :

Pe baza lemei anterioare putem scrie

x1 � x = rf(x0)�1
�
rf(x0) (x0 � x)�

Z 1

0

rf(x+ t (x0 � x))(x0 � x)dt

�
= rf(x0)�1

�Z 1

0

(rf(x0)�rf(x+ t (x0 � x))) (x0 � x) dt

�
:

Deci, aplicând inclusiv Lema 3.3.2,

kx1 � xk �M





Z 1

0

(rf(x0)�rf(x+ t (x0 � x))) (x0 � x) dt






�M

Z 1

0

k(rf(x0)�rf(x+ t (x0 � x))) (x0 � x)k dt

�M kx0 � xk
Z 1

0

krf(x0)�rf(x+ t (x0 � x))k dt

�M � 1

2M
kx0 � xk = 1

2
kx0 � xk :

În particular, x1 2 D (x; ") şi repetând inductiv calculele de mai sus deducem c¼a (xk) � D (x; ")
şi pentru orice k

kxk+1 � xk �M kxk � xk
Z 1

0

krf(xk)�rf(x+ t (xk � x))k dt

Dac¼a unul dintre punctele şirului este x; atunci şirul devine sta̧tionar şi deci concluziile sunt clare.
Contrar, deducem, pentru orice k;

kxk+1 � xk �M kxk � xk
Z 1

0

krf(xk)�rf(x+ t (xk � x))k dt � 1

2
kxk � xk ;

de unde xk ! x şi

kxk+1 � xk
kxk � xk �M

Z 1

0

krf(xk)�rf(x+ t (xk � x))k dt:

Cum, pe baza faptului c¼a xk ! x şi a continuit¼a̧tii lui rf; rf(xk) � rf(x + t (xk � x)) ! 0;
deducem c¼a

lim
kxk+1 � xk
kxk � xk = 0:

Presupunem acum c¼a rf este Lipschitz pe D (x; "). Atunci, exist¼a L > 0 astfel încât pentru
orice x; y 2 D (x; ") ;

krf (y)�rf (x)k � L ky � xk :
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Aşa cum am demonstrat mai sus, în cazul nesta̧tionar, pentru orice k;

kxk+1 � xk
kxk � xk �M

Z 1

0

krf(xk)�rf(x+ t (xk � x))k dt

�M

Z 1

0

L kxk � (x+ t (xk � x))k dt

=ML kxk � xk
Z 1

0

(1� t) dt =
ML

2
kxk � xk :

Aşadar, pentru K = ML
2
ob̧tinem

kxk+1 � xk
kxk � xk2

� K;

ceea ce demonstreaz¼a rezultatul. �

Observa̧tia 3.3.4 Algoritmul lui Newton este local, data iniţial¼a trebuind aleas¼a aprope de soluţie.

În continuare, implement¼am metoda lui Newton şi discut¼am conseciņte ale acesteia. Începem
cu cazul funçtiilor reale de o variabil¼a real¼a, adic¼a situa̧tia p = 1:
În cazul p = 1 ecua̧tia (3.4) devine

xk+1 = xk �
f(xk)

f 0(xk)
:

Astfel, itera̧tia xk+1 este punctul în care tangenta la gra�cul lui f în punctul (xk; f(xk))
intersecteaz¼a axa Ox: Discut¼am unele posibilit¼a̧ti de a alege punctul x0 su�cient de aproape de
solu̧tie astfel încât metoda lui Newton s¼a convearg¼a la punctul c¼autat. O prim¼a posibilitate
(empiric¼a) este aceea de a studia gra�cul funçtiei şi de a alege o valoare x0 care pare a � destul
de apropiat¼a solu̧tiei. O alt¼a variant¼a ar � de a aplica o alt¼a metod¼a de aproximare a r¼ad¼acinilor
unei funçtii a c¼arei convergeņt¼a este mai lent¼a, dar care totuşi dup¼a câteva itera̧tii ne duce în
apropierea solu̧tiei, moment din care putem alege x0 şi aplica metoda lui Newton pentru accelerarea
convergeņtei.

Implement¼am acum metoda lui Newton.

Implementare 3.11 Test¼am metoda lui Newton pentru funçtia f : R! R dat¼a de rela̧tia

f(x) = x+ ex +
10

1 + x2
� 5

care are o r¼ad¼acin¼a simpl¼a în intervalul (�2; 0) dup¼a cum se poate constata din studiul gra�cului
s¼au. Plecând cu data ini̧tial¼a x0 = 1:5 aproxim¼am, folosind metoda lui Newton, aceast¼a solu̧tie cu
rapiditate, aşa cum arat¼a programul de mai jos:
functie=@(x) [x+exp(x)+10/(1+x^2)-5];
%desen
fplot(functie,[-3,3]);
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functie_der=@(x) [1+exp(x)-20*x/(1+x^2)^2];
%Newton
x=-1.5;x_precedent=-1;n=0;eps=10^(-6);maxiter=50;
while abs(x-x_precedent)>eps && n<maxiter
x_precedent=x
x=x-functie(x)/functie_der(x);
n=n+1;
end
x
n
functie(x)

care returneaz¼a:
x = -0.90456
n = 34
ans = 8.8818e-16

Dac¼a se pleac¼a cu data ini̧tial¼a u = �1:5; atunci se ob̧tine valoarea de mai sus dup¼a doar 5 itera̧tii.

Observa̧tia 3.3.5 Fie f : R! R o funcţie ce clas¼a C3; strict convex¼a şi coerciv¼a. Atunci f are
un unic punct de minim global x care este soluţia ecuaţiei f 0 (x) = 0: Astfel, pentru aproximarea
sa, putem folosi metoda lui Newton. Astfel, iteraţia devine

xk+1 = xk �
f 0 (xk)

f 00 (xk)
:

Vom reveni asupra generaliz¼arilor acestei observaţii într-o secţiune ulterioar¼a.

Observa̧tia 3.3.6 Metoda lui Newton aplicat¼a problemelor de optimizare (Observaţia 3.3.5) are
un oracol de ordinul al doilea.

Exerci̧tiul 3.12 Fie f : R! R; f(x) = 2x2+3e�2x: S¼a se arate c¼a f este strict convex¼a şi admite
punct de minim. S¼a se testeze metoda descris¼a mai sus pentru a aproxima punctul de minim.

Totuşi, aplicarea metodei lui Newton pentru determinarea unui punct de minim presupune cal-
culul primelor dou¼a derivate, proces ce poate �anevoios. Pe de alt¼a parte, în cadrul implement¼arii
niciodat¼a metoda nu este lipsit¼a de aproxim¼ari a calculelor de pe parcursul gener¼arii itera̧tiilor.
Din acest motiv ne putem gândi la o variant¼a de aproximare a derivatelor la �ecare pas pe baza
rela̧tiilor

lim
t!0

f (x+ t)� f (x� t)

2t
= f 0 (x) ; (3.7)

lim
t!0

f (x+ t) + f (x� t)� 2f (x)
t2

= f 00 (x) :

Astfel de înlocuiri conduc la metode numite de tip cvasi-Newton. Este intuitiv rezonabil s¼a credem
c¼a aceste metode p¼astreaz¼a propriet¼a̧ti bune de convergeņt¼a (deşi poate nu de vitez¼a p¼atratic¼a).
Nu vom demonstra efectiv convergeņta metodei derivate pe baza înlocuirilor anterioare, dar o vom
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testa şi vom constata comportarea ei foarte bun¼a. În seçtiunea urm¼atoare vom studia în detaliu
o astfel de metod¼a.

Mai întâi implement¼am aceste observa̧tii pentru a (re)g¼asi r¼ad¼acina funçtiei f(x) = x + ex +
10
1+x2

� 5; f¼ar¼a a mai calcula efectiv derivata acesteia.

Implementare 3.13 delx=0.01;
functie=@(x) [x+exp(x)+10/(1+x^2)-5];
x=-1.5;x_precedent=-1;n=0;eps=10^(-6);maxiter=50;
while abs(x-x_precedent)>eps && n<maxiter
x_precedent=x;
derivata=(functie(x+delx) - functie(x-delx) )/(2*delx);
x=x-functie(x)/derivata;
n=n+1;
end
x
n

Exerci̧tiul 3.14 S¼a se rezolve al doilea caz numeric de la Problema 2.27.

Exerci̧tiul 3.15 S¼a se determine minimul funcţiei f : [30; 70]! R,

f (x) =
204165:5

330� 2x +
10400

x� 20 ;

aproximând numeric ambele derivate.

Implement¼am acum metoda lui Newton pentru dimensiuni mai mari decât 1: C¼aut¼am solu̧tii
pentru sistemul 8<:

x1 + x2 + x3 = 3
x21 + x22 + x23 = 5
ex1 + x1x2 � x1x3 = 1:

Implementare 3.16 Exempli�c¼am prin codul urm¼ator:

Newton_sistem (�̧sier funçtie)
function a=Newton_sistem(f,J,x0,tol)
xvechi=x0;
n=0;
xnou=x0-J(x0)^(-1)*(f(x0));
while norm(xnou-xvechi)>tol %&& n<nrit
xvechi=xnou;
xnou=xvechi-J(xvechi)^(-1)*f(xvechi);
n=n+1;
end
disp(xnou)
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disp(n)
end

folosit cu comanda
f=@(x) [x(1)+x(2)+x(3)-3;x(1)^2+x(2)^2+x(3)^2-5; exp(x(1))+x(1)*x(2)-x(1)*x(3)-1];
f_der=@(x) [1,1,1;2*x(1),2*x(2),2*x(3);exp(x(1))+x(2)-x(3),x(1),-x(1)];
Newton_sistem(f,f_der,[1;0;1],10^(-6))

care returneaz¼a
1.224394
-0.093133
1.868739
5

Deci, în acest caz, metoda lui Newton returneaz¼a dup¼a 5 itera̧tii, folosind data ini̧tial¼a (1; 0; 1)
şi toleraņta 10�6; solu̧tia aproximativ¼a (1:224394;�0:093133; 1:868739) pentru sistemul meņtionat.
De remarcat c¼a solu̧tia (0; 2; 1) se ob̧tine cu o alt¼a alegere a datei ini̧tiale.

Exerci̧tiul 3.17 S¼a se scrie nişte funcţii newton, newton_optim, cvasinewton, cvasinewton_optim
pentru metodele Newton şi cvasi-Newton discutate mai sus, dup¼a modelul Implementare 3.16.

Exerci̧tiul 3.18 S¼a se determine minimul funcţiei de la Exemplul 1.1.1.

Exerci̧tiul 3.19 Deteminaţi minimele funcţiei f : R! R;

f (x) =
1

2
x5 � 3

40
x4 � 3

5
x3 � 7x:

Exerci̧tiul 3.20 Fie şirul de numere reale dat prin x0 = 1 şi

xn+1 =
2x3n + 3

3x2n
; 8n � 0:

S¼a se arate c¼a (xn)n este o iteraţie Newton pentru o funcţie care se va determina. Ce se poate
spune despre convergenţa lui (xn)n?

Exerci̧tiul 3.21 Fie şirul de numere reale dat prin x0 = 1 şi

xn+1 =
x2n + 2

2xn
; 8n � 0:

S¼a se arate c¼a (xn)n este o iteraţie Newton pentru o funcţie care se va determina. Studiaţi
convergenţa şirului (xn) şi, în caz a�rmativ, determinaţi-i limita.

Exerci̧tiul 3.22 S¼a se aproximeze minimul funcţiei f : (0;1)! R

f (x) =
�0:75
1 + x2

� 0:65x arctg 1
x
:
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Exerci̧tiul 3.23 S¼a se aproximeze punctele de extrem local ale funcţiei de la Exemplul 3.1.5 de
mai sus folosind metoda lui Newton pentru ecuaţia 4u3 � 32u+ 5 = 0 cu diverse date iniţiale.

Exerci̧tiul 3.24 S¼a se determine soluţii aproximative pentru sistemele de mai jos cu datele in-
iţiale indicate:
(i) (x0; y0) = (1; 2) ; �

1 + y2 � 4x2 = 0
3 + 2y � x2 � y2 = 0

;

(ii) (x0; y0) = (1; 2) ; �
y � x3 = 0
36� 4x2 � 9y2 = 0 ;

(iii) (x0; y0) = (�0:5;�1:5) ; �
y � x3 + 3x2 � 4x = 0
y2 � x� 2 = 0 ;

(iv) (x0; y0) = (0; 1) ; �
x2 � 2x� y + 2�1 = 0
x2 + 4y2 � y = 0

;

(v) (x0; y0) = (2; 1:5) ; �
3 + y � x2 = 0
3� xy = 0:

3.4 Aplica̧tie la funçtia W; a lui Lambert

Fie f : R! R dat¼a prin f (x) = xex: Este uşor de v¼azut c¼a aceast¼a funçtie este inde�nit derivabil¼a
şi, ţinând cont de dezvoltatea lui ex în serie de puteri, chiar analitic¼a pe R: De asemenea, pentru
orice x 2 R;

f 0 (x) = (x+ 1) ex

f 00 (x) = (x+ 2) ex;

deci:
(i) f are un punct de extrem, x = �1; care este punct de minim global (e de observat c¼a

limx!�1 f (x) = 0 şi limx!1 f (x) =1);
(ii) f este strict descresc¼atoare pe (�1;�1] şi strict cresc¼atoare pe [�1;1);
(iii) Im f =

�
�1
e
;1
�
; f ((�1;�1]) =

�
�1
e
; 0
�
; f ([�1;1)) =

�
�1
e
;1
�
;

(iv) f are un singur punct de in�exiune, x = �2; este strict concav¼a pe (�1;�2] şi strict
convex¼a pe [�2;1):
Consider¼am dou¼a restriçtii bijective ale lui f; astfel:

f1 : [�1;1)!
�
�1
e
;1
�
; f1 (x) = xex;

f2 : (�1;�1]!
�
�1
e
; 0
�
; f2 (x) = xex:

Inversa lui f1 se numeşte funçtia lui Lambert şi se noteaz¼a în mod tradi̧tional prin W; deci

W :

�
�1
e
;1
�
! [�1;1); W (y) = x; unde y = xex:
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Din cauza faptului c¼a, în general, ecua̧tia xex = y nu poate �rezolvat¼a, nu se poate indica o form¼a
explicit¼a pentru W: Gra�cul lui W este simetric fa̧t¼a de prima bisectoare în raport cu gra�cul lui
f1:

1 2 3

­1.0

­0.5

0.5

1.0

x

y

Gra�cul lui W

Unele valori ale lui W pot � calculate. De exemplu,

W

�
�1
e

�
= �1; W (0) = 0; W

�
�1
2
ln 2

�
= � ln 2; W (e) = 1:

Putem de asemenea scrie W (y) eW (y) = y; pentru orice y � �1
e
: Cum f 01 (x) 6= 0 pentru orice

x > �1; funçtia W este derivabil¼a pe
�
�1
e
;1
�
şi pentru orice punct y din acest interval deducem

urm¼atoarele formule:

W 0 (y) =
1

f 0 (x)
=

1

(x+ 1) ex
; unde y = xex;

W 0 (y) =
e�W (y)

1 +W (y)
;

W 0 (y) =
W (y)

y (1 +W (y))
; dac¼a y 6= 0:

Cum f1 este inde�nit derivabil¼a pe (�1;1) ; deducem c¼a W este inde�nit derivabil¼a pe
�
�1
e
;1
�
:

Derivând în formulele anterioare, avem:

W 00 (y) = �e
�2W (y) (W (y) + 2)

(W (y) + 1)3
;

W 00 (y) = �W
2 (y) (W (y) + 2)

y2 (W (y) + 1)3
; dac¼a y 6= 0:

Din acest calcul deducem stricta concavitate a funçtiei W:
O metod¼a de a aproxima valorile lui W (pe tot domeniul s¼au de de�ni̧tie) este s¼a rezolv¼am

aproximativ ecua̧tia (în necunoscuta x) xex� y = 0; de exemplu prin metoda lui Newton. Astfel,
cu o dat¼a apropiat¼a de solu̧tie (pentru y aproape de 0 alegem data iņtial¼a aproape de 0; pentru y
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mare alegem data ini̧tial¼a ln y; de exemplu) folosim itera̧tia Newton

xn+1 = xn �
xne

xn � y

(xex � y)0x (xn)

=
x2n + ye�xn

xn + 1
;

pentru a aproxima cu vitez¼a p¼atratic¼a valoarea lui x; adic¼a a lui W (y) :

Exerci̧tiul 3.25 S¼a se scrie un program care s¼a determine toate valorile lui W (n) cu n 2 1; 100:

Cum am precizat, f1 este analitic¼a. De asemenea, f 01 (0) = 1 6= 0 şi pe baza unui rezultat
numit Teorema lui Lagrange de inversiune, se ob̧tine c¼a inversa W a lui f1 este local analitic¼a în
jurul lui 0; iar dezvoltarea sa este

W (y) =
1X
n=1

wn
yn

n!
;

unde

wn = lim
x!0

��
x

f (x)

�n�(n�1)
= lim

x!0

�
e�nx

�(n�1)
= (�n)n�1 :

Deci,

W (y) =
1X
n=1

(�n)n�1

n!
yn:

Este uşor de v¼azut c¼a raza de convergeņt¼a a acestei serii este 1
e
; deci dezvoltarea e valabil¼a pe

intervalul
�
�1
e
; 1
e

�
:

S¼a calcul¼am o primitiv¼a lui W; cu schimbarea de variabil¼a y = f1(x) (adic¼a y = xex şi x =
W (y)) Z

W (y) dy =

Z
x (x+ 1) exdx = ex

�
x2 � x+ 1

�
+ C = yW (y)� y + eW (y) + C:

Astfel, de exemplu, Z e

0

W (y) dy = e� e+ e� 1 = e� 1:

Având în vedere imaginile funçtiilor f1 şi f2, este clar c¼a putem vorbi despre W (f (x)) pentru
orice x 2 R: Evident, dac¼a x � �1; W (f (x)) = W (f1 (x)) = x: Pentru x < �1; W (f (x)) =
W (f2 (x)) 6= x: Este clar c¼a

lim
x&�1

W (f (x)) + 1

x+ 1
= lim

x&�1

x+ 1

x+ 1
= 1:

Ne punem problem existeņtei (̧si a valorii) limitei

lim
x%�1

W (f (x)) + 1

x+ 1
:

Avem urm¼atorul rezultat mai general.
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Teorema 3.4.1 Fie ' : R! R şi x 2 R un punct de extrem local pentru ': Presupunem c¼a exist¼a
o vecin¼atate V a lui x astfel încât ' este analitic¼a pe V şi '0 (x) 6= 0 pentru orice x 2 V n fxg :
Atunci:
(i) exist¼a " > 0 astfel încât ' este strict monoton¼a pe [x� "; x] şi pe [x; x+ "] ;
(ii) dac¼a  este inversa lui ' pe [x; x+ "] ; exist¼a � > 0 astfel încât  � ' este corect de�nit¼a

pe [x� �; x] şi

lim
x%x

( � ') (x)� x

x� x
= �1:

Demonstraţie. Facem demonstra̧tia ambelor puncte. Ştim c¼a, pe V; ' se scrie ca

' (x) =

1X
n=0

an (x� x)n :

Cum f este neconstant¼a, exist¼a N; cel mai mic num¼ar natural nenul pentru care aN 6= 0: Deci

' (x) = a0 +
1X
n=N

an (x� x)n :

De�nim, pe V , funçtia F (x) =
P1

n=N an (x� x)n�N şi avem

' (x) = a0 + (x� x)N F (x) :

Cum seria ce de�neşte F are aceeaşi raz¼a de convergeņt¼a ca şi '; deducem c¼a F este continu¼a în
x: În plus, F (x) = aN 6= 0 şi prin urmare F are semn constant în apropierea lui x; deci exist¼a
" > 0 astfel încât F are semn constant pe [x� "; x+ "] şi [x� "; x+ "] � V: Cum x este extrem
pentru '; N este num¼ar par. Din ipoteza '0 (x) 6= 0 pentru x 2 V n fxg ; pentru c¼a x este punct de
extrem, deducem c¼a '0 este pozitiv¼a şi respectiv negativ¼a pe cele dou¼a zone ale lui V : V \(�1; x)
şi V \(x;1) : Deci ' este strict monoton¼a, de monotonii diferite pe [x� "; x] şi pe [x; x+ "] : Fie  
inversa lui ' pe [x; x+ "] : Din monotonia descris¼a anterior, exist¼a � 2 (0; ") astfel încât  �' este
corect de�nit¼a pe [x� �; x] : Fie x 2 (x� �; x) : Atunci not¼am z = ( � ') (x) : Avem z 2 (x; x+ ")
şi

' (z) = (' � ( � ')) (x) = ((' �  ) � ') (x)
= (' �  ) (' (x)) = ' (x) :

Deci
a0 + (z � x)N F (z) = a0 + (x� x)N F (x) ;

adic¼a

0 >
z � x

x� x
= � N

s
F (x)

F (z)
:

Pentru x! x avem z ! x şi continuitatea lui F ne conduce la concluzia privind limita. �
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Observa̧tia 3.4.2 Rezultatul nu are loc dac¼a ' este doar derivabil¼a în x: De exemplu, funcţia
' : R! R dat¼a prin

' (x) =

�
x2; pentru x < 0
x3; pentru x � 0

este derivabil¼a, x = 0 este punct de minim, iar inversa ramurii din dreapta este funcţia 3
p
x: Dar

lim
x%0

3
p
x2

x
= �1:

Corolarul 3.4.3 Are loc egalitatea

lim
x%�1

W (f (x)) + 1

x+ 1
= �1:

Prezent¼am câteva aplica̧tii ale funçtiei W:
Aplica̧tia 1. Prima aplica̧tie a funçtiei W pe care o meņtion¼am este exprimarea solu̧tiilor unor
ecua̧tii ce nu pot � rezolvate explicit. Un astfel de exemplu este ecua̧tia

ax+ b+ cedx = 0

unde a; b; c; d 2 R cu a; d 6= 0. Atunci ecua̧tia

� are solu̧tia unic¼a

x = � b
a
� 1
d
W

 
cde�

bd
a

a

!
:

dac¼a num¼arul cde
� bd
a

a
� 0;

� are solu̧tiile

x = � b
a
� 1
d
W

 
cde�

bd
a

a

!

x = � b
a
� 1
d
W�1

 
cde�

bd
a

a

!

dac¼a cde�
bd
a

a
2
�
�1
e
; 0
�
;

� nu are solu̧tie dac¼a cde�
bd
a

a
< �1

e
:

Într-adev¼ar, ecua̧tia ini̧tial¼a se scrie echivalent astfel

(ax+ b) e�dx = �c�
�dx� bd

a

�
e�dx =

cd

a�
�dx� bd

a

�
e�dx�

bd
a =

cd

a
e�

bd
a :
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Deci ob̧tinem concluziile prezentate mai sus.

Aplica̧tia 2. Prezent¼am acum o aplica̧tie în mecanic¼a. Consider¼am un proiectil care este aruncat
de la sol (din origine) sub un unghi � cu viteza v: Dorim s¼a ştim distaņta R (pe axa ox pozitiv¼a)
la care proiectilul cade pe sol.
Consider¼ammai întâi cazul f¼ar¼a frecare (rezisteņt¼a). Ecua̧tiile difereņtiale care descriu mi̧scarea

sunt

x00 = 0;

y00 = �g:

Integr¼am de dou¼a ori şi ţinem seama de condi̧tiile ini̧tiale, x (0) = y (0) = 0; x0 (0) = v cos �;
y0 (0) = v sin �; pentru a g¼asi

x (t) = (v cos �) t

y (t) = �1
2
gt2 + (v sin �) t:

E clar c¼a traiectoria este o parabol¼a şi impunând condi̧tia y (t) = 0 solu̧tia nenul¼a ne conduce la

R =
2v2

g
sin � cos � =

v2

g
sin 2�:

Deci distaņta maxim¼a va � când unghiul � este �
4
:

Consider¼am acum cazul în care mi̧scarea proiectilului întâmpin¼a o rezisteņt¼a propoŗtional¼a cu
viteza sa. Constanta de propoŗtionalitate se noteaz¼a cu k: Acum ecua̧tiile mi̧sc¼arii sunt

x00 = �kx0;
y00 = �g � ky0:

Folosind x0 (0) = v cos �; y0 (0) = v sin � avem

x0 (t) = (v cos �) e�kt;

y0 (t) =
1

k

�
�g + (g + kv sin �) e�kt

�
:

Integr¼am şi utiliz¼am x (0) = y (0) = 0 pentru a g¼asi

x (t) =
1

k

�
v cos �

�
1� e�kt

��
;

y (t) =
1

k2
�
�ktg + g + kv sin � � e�kt (g + kv sin �)

�
:

Ca mai sus, trebuie s¼a rezolv¼am ecua̧tia y (t) = 0; care de data aceasta nu mai este atât de simpl¼a.
Observ¼am c¼a aceast¼a ecua̧tie este de tipul celei de mai sus. Mai precis,

y (t) = 0 () �kt+ 1 + kv

g
sin � � e�kt

�
1 +

kv

g
sin �

�
= 0:
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Not¼am, pentru simplitate, u = �
�
1 + kv

g
sin �

�
şi ecua̧tia devine

�kt� u+ e�ktu = 0:

Cum num¼arul care decidea asupra solu̧tilor acestui tip de ecua̧tie este acum ueu 2
�
�1
e
; 0
�
;

aplicând formula de mai sus g¼asim solu̧tiile

t1 =
�u
k
+
1

k
W (ueu) ;

t2 =
�u
k
+
1

k
W�1 (ue

u) :

Este eseņtial de remarcat faptul c¼a u < �1; deci W�1 (ue
u) = u; adic¼a t2 = 0 (timpul de start).

Pe de alt¼a parte, din acelaşi motiv, W (ueu) 6= u, deci t1 corespunde distaņtei c¼autate. Înlocuind
în x avem

R =
1

k
v cos �

�
1� eu�W (ueu)

�
:

Cum e�W (ueu) = W (ueu)
ueu

; avem

R =
1

k
v cos �

�
1� W (ueu)

u

�
:

Deci, în �nal,

R =
1

k
v cos �

0@1 + W
��
�1� kv

g
sin �

�
e�1�

kv
g
sin �
�

1 + kv
g
sin �

1A :

Observa̧tia 3.4.4 Remarc¼am c¼a atunci când k ! 0 valoarea lui R tinde la valoarea din cazul
f¼ar¼a rezistenţ¼a. Cu notaţiile de mai sus, u = �1� kv

g
sin �; avem

1

k
= � v sin �

g (u+ 1)

deci, conform calculului anterior,

R (k) = �v
2 sin � cos �

g (u+ 1)

�
1� W (ueu)

u

�
=
v2 sin 2�

2g

W (ueu)� u

u (u+ 1)
:

Cum u% �1; pentru k & 0 avem

lim
k&0

R (k) =
v2 sin 2�

2g
lim
u%�1

W (ueu)� u

u (u+ 1)

= �v
2 sin 2�

2g
lim
u%�1

W (ueu)� u� 1 + 1
u+ 1

= �v
2 sin 2�

2g
lim
u%�1

�
W (ueu) + 1

u+ 1
� 1
�

=
v2 sin 2�

g
;

adic¼a rezultatul aşteptat. Menţion¼am c¼a pentru ultima limit¼a s-a folosit Corolarul 3.4.3.
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Aplica̧tia 3. A treia aplica̧tie se refer¼a la un aspect din teoria rȩtelelor aleatorii şi, în particular, la
o estimare a vitezei de propagare a unei pandemii. Fie o popula̧tie de N persoane. Presupunem c¼a
�ecare persoan¼a se a�¼a în contact cu un num¼ar de a persoane la întâmplare (a poate �o expectaņt¼a,
neconstant¼a pentru toate persoanele, şi nu neaparat num¼ar întreg). Dac¼a o persoan¼a este infectat¼a
cu o boal¼a transmisibil¼a şi boala se transmite tuturor celor cu care este în contanct, ne intereseaz¼a
num¼arul total de persoane care se vor infecta. Sau, mai bine spus, care este probabilitatea ca
întreaga popula̧tie s¼a �e infectat¼a?

Pentru a transpune problema în limbajul ini̧tial, N reprezint¼a un num¼ar de neuroni şi �ecare
are a axoni ce pot forma sinapse cu aļti neuroni. Conexiunile axonilor sunt echiprobabile (în
particular, un neuron poate face mai multe sinapse cu un alt neuron). Spunem c¼a un neuron B
este la t axoni de A dac¼a t este cel mai mic num¼ar de axoni prin care A şi B sunt conecta̧ti.
Exident, se poate ca A şi B s¼a nu �e conecta̧ti, caz în care t nu exist¼a. În descrierea modelului, a
neuroni, aleatoriu, sunt la un axon de �ecare neuron A:
Fie A un neuron. Not¼am cu x (N; a; t) num¼arul de neuroni a�a̧ti la cel mult t axoni de A:

Conectivitatea slab¼a a rȩtelei se de�neşte prin


 (N; a) =
x (N; a;N)

N
:

Cum lucr¼am cu N; a �xate, not¼am x (N; a; t) prin x (t) şi scrien formula de mai sus prin


 =
x (N)

N
:

Vom descrie în continuare un argument euristic pentru deducerea valorii lui 
: Meņtion¼am c¼a, pe
baza unui efort considerabil, se poate ar¼ata c¼a argumentul poate � f¼acut riguros.
C¼aut¼am s¼a exprim¼am num¼arul de neuroni a�a̧ti la exact t axoni de A; adic¼a valoarea x (t+ 1)�

x (t) :
Consider¼am experimentul de a plasa la întâmplare s bile în N cutii. Valoarea aşteptat¼a a

num¼arului de cutii ocupate de m¼acar o bil¼a este dat¼a de

N

�
1�

�
1� 1

N

�s�
: (3.8)

La �ecare pas a (x (t)� x (t� 1)) noi neuroni sunt conecta̧ti, deci la pasul (t+ 1) vor � conecta̧ti

N

 
1�

�
1� 1

N

�a(x(t)�x(t�1))!
noi neuroni. Deci

x (t+ 1)� x (t) = (N � x (t))

 
1�

�
1� 1

N

�a(x(t)�x(t�1))!
:

Not¼am
y (t) = N � x (t)
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(num¼arul de neuroni neconecta̧ti de A dup¼a t paşi) şi ecua̧tia se scrie

y (t+ 1) = y (t)

�
1� 1

N

�a(y(t�1)�y(t))
;

sau

y (t+ 1)

�
1� 1

N

�ay(t)
= y (t)

�
1� 1

N

�ay(t�1)
;

deci

y (t+ 1)

�
1� 1

N

�ay(t)
este o constant¼a pe care o not¼am prin K: Astfel,

y (t+ 1) = K

�
1� 1

N

��ay(t)
: (3.9)

Dar
y (0) = N � 1;

deci, conform (3.8),
y (1) = (N � 1)a+1N�a:

Ob̧tinem
K = N�aN (N � 1)aN+1 :

Evident y (t) este o cantitate descresc¼atoare în t; deci atunci când N creşte şi t creşte, intuim din
(3.9) c¼a limita y a acestei cantit¼a̧ti va satisface ecua̧tia

y = (N � 1)
�
1� 1

N

�a(N�y)
:

Pentru N mare acest¼a valoare poate � aproximat¼a prin

Nea(
y
N
�1);

deci


 = 1� y(t)

N

poate � aproximat¼a prin solu̧tia ecua̧tiei


 = 1� e�a
:

Astfel, conform Aplica̧tiei 1;


 = 1 +
W (�ae�a)

a
:
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Astfel, revenind la problema pandemiei, dac¼a în medie o persoan¼a are contact aleatoriu cu a
persoane, atunci num¼arul de persoane infectate va �

N
 = N

�
1 +

W (�ae�a)
a

�
:

Folosind software-ul de calcul ştiiņti�c Octave, putem calcula procentajul de infeçtii în cadrul
popula̧tiei.
Astfel, funçtiaW se a�¼a în pachetul symbolic care trebuie instalat prin comanda pkg install

-forge symbolic. De exemplu, folosind codul

a=0;
for k=2:10

a=1+lambertw(-k*exp(-k))/k
endfor

ob̧tinem valorile 0.79681, 0.94048, 0.98017, 0.99302, 0.99748, 0.99908, 0.99966, 0.99988,
0.99995.
Deci,

� pentru a = 2; vor � infecta̧ti 79; 68% din membrii popula̧tiei;

� pentru a = 3; vor � infecta̧ti 94; 04% din membrii popula̧tiei;

� pentru a = 4; vor � infecta̧ti 98; 01% din membrii popula̧tiei;

� pentru a = 5; vor � infecta̧ti 99; 30% din membrii popula̧tiei;

� pentru a = 10; vor � infecta̧ti 99; 99% din membrii popula̧tiei.

Exerci̧tiul 3.26 S¼a se scrie un program propriu de determinare aproximativ¼a a valorilor de mai
sus.

3.5 O metod¼a cvasi-Newton: metoda secantei

Discut¼am în cazul funçtiilor de o variabil¼a o alternativ¼a la metoda lui Newton despre care am
v¼azut c¼a are o vitez¼a de convergeņt¼a foarte bun¼a, dar necesit¼a la �ecare pas calculul derivatei
într-un punct, calcul ce în unele situa̧tii poate � costisitor din punct de vedere computa̧tional.
Ideea noii metode, intitulat¼a metoda secantei (pentru motive pe care le vom îņtelege în curând),
este de a înlocui derivata din calculul itera̧tiei Newton

xk+1 = xk �
f (xk)

f 0 (xk)

75



cu o aproximare a sa (deci este o metod¼a de tip cvasi-Newton). Astfel, ob̧tinem o itera̧tie de forma

xk+1 = xk �
f (xk)

dk
;

unde

dk =
f (xk + hk)� f (xk)

hk
;

raport care pentru hk mic aproximeaz¼a f 0 (xk) : Pentru alegerea lui hk se poate proceda în diverse
moduri, dar în metoda secantei se alege hk = xk�1 � xk: Astfel, itera̧tia devine

xk+1 = xk � f (xk)
xk�1 � xk

f (xk�1)� f (xk)
:

Evident, pentru ca recureņta s¼a �e de�nit¼a, este nevoie de dou¼a date ini̧tiale x0; x1: O ilustrare
gra�c¼a a semni�ca̧tiei itera̧tiei de mai sus justi�c¼a numele metodei. Este de asemenea uşor de
intuit c¼a limita hk ! 0 nu este automat satisf¼acut¼a, ci depinde de unele detalii tehnice legate de
alegerea datelor ini̧tiale. Pe de alt¼a parte, noua itera̧tie nu face decât o singur¼a evaluare a lui f la
�ecare pas.
Prezent¼am acum detaliile matematice ale convergeņtei acestei metode.

Lema 3.5.1 Fie f : [a; b]! R o funcţie derivabil¼a astfel încât

� = inf
x2[a;b]

jf 0 (x)j > 0:

Atunci exist¼a H > 0 astfel încât pentru orice x 2 [a; b] şi orice h 2 [�H;H] astfel încât x+h 2 [a; b]
avem ����f (x+ h)� f (x)

h

���� � �

2
:

Demonstraţie. Presupunem, prin reducere la absurd, c¼a exist¼a (xk) � [a; b] ; hk ! 0 astfel încât
xk + hk 2 [a; b] cu ����f (xk + hk)� f (xk)

hk

���� < �

2
; 8k:

Conform Teoremei lui Lagrange, pentru �ecare k; exist¼a �k între xk + hk şi xk astfel încât

f (xk + hk)� f (xk)

hk
= f 0 (�k) :

Cum (�k) � (a; b) ; aceast¼a rela̧tie contrazice ipoteza. �

Urm¼atoarea lem¼a este coņtinut¼a în demonstra̧tia Teoremei 3.3.3, dar o prezent¼am explicit.

Lema 3.5.2 Fie f : [a; b] ! R o funcţie derivabil¼a astfel încât f 0 este Lipschitz de constant¼a
L > 0 pe [a; b] : Atunci pentru orice x; y 2 [a; b]

jf (y)� f (x)� f 0 (x) (y � x)j � L

2
(x� y)2 :
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Demonstraţie. Scrierea

jf (y)� f (x)� f 0 (x) (y � x)j =
����Z y

x

(f 0 (t)� f 0 (x)) dt

����
şi ipoteza asigur¼a concluzia. �

Teorema 3.5.3 Fie f : [a; b]! R o funcţie derivabil¼a astfel încât
(i) f se anuleaz¼a într-un punct x 2 (a; b) ;
(ii) � = infx2[a;b] jf 0 (x)j > 0;
(iii) f 0 este Lipschitz de constant¼a L > 0 pe [a; b] :
Atunci exist¼a �; � > 0 astfel încât pentru orice dat¼a iniţial¼a x0 2 (x� �; x+ �) şi orice şir

fhkg � (��; �) n f0g ; iteraţiile

xk+1 = xk � f (xk)
hk

f (xk + hk)� f (xk)

sunt bine de�nite şi r¼amân în intervalul (x� �; x+ �) şi, mai mult, xk ! x.

Demonstraţie. Pentru buna de�nire este su�cient ca xk+hk; xk 2 (a; b) pentru orice k (cf. Teoremei
lui Lagrange şi ipotezei (ii)), lucru care se va realiza pentru alegeri potrivite ale constantelor � şi
�; dup¼a cum se va vedea mai jos.
De�nim "k = x� xk pentru orice k: Din Lema 3.5.1,

dk =

����f (xk + hk)� f (xk)

hk

���� � �

2

dac¼a jhkj � H şi xk; xk + hk 2 (a; b) : Alegem deci fhkg � (�H;H) : Presupunem pentru moment
c¼a xk şi xk + hk sunt în (a; b) : Atunci,

"k+1 = x� xk+1 = x� xk +
f (xk)

dk

= x� xk +
f (xk)

dk
� f (x)

dk

= "k +
f (xk)� f (x)

dk

=
1

dk
(f (xk)� f (x) + "kdk)

=
1

dk
(f (xk)� f (x) + f 0 (xk) "k + "kdk � f 0 (xk) "k) ;

deci, folosind şi Lema 3.5.2,

j"k+1j �
1

jdkj
(jf (x)� f (xk)� f 0 (xk) "kj+ jdk � f 0 (xk)j j"kj)

� 2

�

 
L j"kj2

2
+
L jhkj j"kj

2

!
:
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Am g¼asit astfel estimarea,

j"k+1j �
L

�
(j"kj+ jhkj) j"kj

în ipotezele mai sus meņtionate.

Trecem acum la demonstra̧tia efectiv¼a a concluziei. Fie � 2 (0; 1) ; �e � = min fjx� aj ; jx� bjg
şi � = min

�
�
2
; ��
2L

	
; � = min fH; �g : Fie (xk) un şir de itera̧tii generat ca în enuņtul rezultatului.

Pentru a ob̧tine concluziile este su�cient s¼a ar¼at¼am c¼a

j"k+1j � � j"kj ; 8k:

Pentru k = 0, x0 2 (a; b) ; x0 + h0 2 (a; b) (din alegerea constantelor) şi putem aplica estimarea
anterioar¼a

j"1j �
L

�
(j"0j+ jh0j) j"0j �

L

�
� 2� � j"0j �

L

�
� 2 ��
2L
� j"0j = � j"0j :

Inductiv, se ob̧tine inegalitatea anuņtat¼a şi demonstra̧tia este încheiat¼a. �

Corolarul 3.5.4 În ipotezele Teoremei 3.5.3, dac¼a hk ! 0; atunci convergenţa lui (xk) este
superliniar¼a.

Demonstraţie. Din demonstra̧tia Teoremei 3.5.3 deducem

j"k+1j �
2L

�
max fj"kj ; jhkjg j"kj ; 8k � 0:

Cum "k ! 0 (conform Teoremei 3.5.3) şi hk ! 0 (conform ipotezei); avem şi max fj"kj ; jhkjg :
Astfel, are loc convergeņta superliniar¼a. �

În continuare, preciz¼am ordinul de convergeņt¼a al metodei secantei. Din nou, începem cu un
rezultat ajut¼ator.

Lema 3.5.5 Fie f : [a; b] ! R de dou¼a ori derivabil¼a şi x; y; z 2 [a; b] puncte distincte. Atunci
exist¼a u 2 (min fx; y; zg ;max fx; y; zg) astfel încât

e (x; y; z) :=

f(y)�f(z)
y�z � f(x)�f(y)

x�y

z � x
=
f 00 (u)

2
:

Demonstraţie Consider¼am funçtia polinomial¼a

p (u) = f (x) +
f (y)� f (x)

y � x
(u� x) + e (x; y; z) (u� x) (u� y)

şi constat¼am c¼a f (x) = p (x) ; f (y) = p (y) ; f (z) = p (z) : Aplicând Teorema lui Rolle funçtiei
f � p; g¼asim dou¼a zerouri are derivatei sale şi tot din Teorema lui Rolle pentru (f � p)0 g¼asim u
astfel încât (f � p)00 (u) = 0; ceea ce conduce la concluzie. �
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Teorema 3.5.6 Fie f 2 C2 ([a; b]) astfel încât
(i) f se anuleaz¼a într-un punct x 2 (a; b) ;
(ii) � = infx2[a;b] jf 0 (x)j > 0;
(iii) L = supx2[a;b] jf 00 (x)j > 0:
Dac¼a metoda secantei cu datele iniţiale x0; x1 2 [a; b] converge la x atunci exist¼a C > 0 astfel

încât
j"k+1j � C j"kj' ; 8k;

unde ' = 1+
p
5

2
este num¼arul de aur.

Demonstraţie. Pentru orice k avem

�"k+1 = xk+1 � x = xk � x� f (xk)
xk�1 � xk

f (xk�1)� f (xk)

= �"k � f (xk)
xk � xk�1

f (xk)� f (xk�1)

= "k"k�1

f(x)�f(xk)
x�xk

� f(xk)�f(xk�1)
xk�xk�1

x�xk�1
f(xk)�f(xk�1)
xk�xk�1

:

= "k"k�1
f 00 (vk)

2f 0 (uk)
;

unde uk; vk 2 (a; b) : Existeņta lui vk rezult¼a din Teorema lui Lagrange, în timp ce existeņta lui
(vk) rezult¼a din Lema 3.5.5. De asemenea, este clar c¼a (uk) ; (vk)! x:
Din ipotez¼a,

j"k+1j �
2L

�
j"kj j"k�1j ; 8k � 0:

Not¼am M := 2L
�
: Cum j"k�1j ! 0; deducem c¼a ordinul de convergeņt¼a ar putea �mai mare decât

1.
Ar¼at¼am c¼a ordinul de convergeņt¼a este '; solu̧tia supraunitar¼a a ecua̧tiei p2 = p + 1: Pentru

determina ordinul de convergeņt¼a, c¼aut¼am dou¼a constante C şi p > 1 astfel încât pentru orice k
su�cient de mare s¼a avem

j"k+1j � C j"kjp :
Atunci,

j"k+1j � C j"kjp � Cp+1 j"k�1jp
2

şi
j"k+1j �M j"kj j"k�1j �MC j"k�1jp :

Este su�cient ca

Cp+1 =MC

p2 = p+ 1;

de unde p = ' şi C =M
1
' : �

79



Observa̧tia 3.5.7 Aşadar, în anumite ipoteze metoda secantei are ordinul de convergenţ¼a ': Cum
'2 > 2; iar uneori dou¼a iteraţii ale acestei metode sunt mai rapide decât o iteraţie a metodei lui
Newton, în astfel de cazuri, metoda secantei este mai e�cient¼a.

Exerci̧tiul 3.27 S¼a se implementeze metoda secantei (eventual, pentru una dintre funcţiile stu-
diate la metoda lui Newton).

Observa̧tia 3.5.8 Metoda secantei aplicat¼a derivatei conduce la o metod¼a de ordin 1 pentru aprox-
imarea punctelor critice (de minim, în unele cazuri).

Exerci̧tiul 3.28 S¼a se foloseasc¼a metoda secantei pentru determinarea minimului funcţiei de la
Exemplul 1.1.1 (cu derivata calculat¼a exact şi/sau numeric).

Exerci̧tiul 3.29 Folosiţi metoda înjum¼at¼aţirii intervalului, metoda lui Newton, metoda cvasi-
Newton şi metoda secantei pentru a aproxima r¼ad¼acini ale ecuaţiilor de mai jos.
(i) cosx� xex = 0; (ii) x4 � x� 10 = 0; (iii) x� e�x = 0; (iv) e�x (x2 � 5x+ 2) + 1 = 0;
(v) x� sin x� 2�1 = 0; (vi) e�x = 3 lnx; (vii) ex2�1 + 10 sin 2x� 5 = 0;
(viii) sin 2x� ex�1 = 0; (ix) 3x+ sinx� ex = 0 (x) tg x� x� 1 = 0; (xi) �5x2 + ex = 0.
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Capitolul 4

Algoritmi pentru probleme de
optimizare f¼ar¼a restriçtii

Aşa cum am putut constata, multe dintre problemele de optimizare nu pot � rezolvate exact.
De asemenea, nu exist¼a o metod¼a universal¼a de aproximare a solu̧tiilor, ci doar unele principii
generale privind designul majorit¼a̧tii algoritmilor pe care îi consider¼am. Pe baza acestor principii
vom încerca s¼a construim clase de algoritmi ce sunt e�cieņti pentru clase speci�ce (particulare)
de probleme. În acest capitol ne ocup¼am de algoritmi pentru probleme f¼ar¼a restriçtii.
Pân¼a în acest moment, am discutat deja câ̧tiva algoritmi pentru aproximarea punctelor de

minim, dar cei mai e�cieņti dintre aceştia sunt baza̧ti pe metode de determinare a zerourilor
unei funçtii aplicate difereņtialei funçtiei de minimizat (metoda lui Newton şi metoda secantei).
În acest capitol vom studia algoritmi care sunt de la bun început concepu̧ti pentru minimizare.
Astfel, începem cu algoritmi de ordin zero pentru funçtii de o variabil¼a, ştiut �ind faptul c¼a astfel
de algoritmi sunt greoi din punct de vedere computa̧tional pentru dimensiuni mari (a se vedea
Exemplul 3.1.4) şi vom continua cu algoritmi de ordin superior în cazul general.

4.1 Algoritmi de ordin zero pentru funçtii de o variabil¼a

Prima categorie de algoritmi de care ne ocup¼am este cu oracol de ordin zero, adic¼a f¼ar¼a difereņtiale,
baza reprezentând-o cunoaşterea funçtiei obiectiv în punctele de control. Deci, în principiu, aceşti
algoritmi funçtioneaz¼a şi pentru funçtii nedifereņtiabile.
Aşa cum am v¼azut (Teorema 3.1.3), pentru mai funçtii de mai multe variabile, complexitatea

metodelor de ordin zero este descurajant¼a, motiv pentru care ne vom concentra, mai ales, pe cazul
funçtiilor de o variabil¼a real¼a. Mai mult, funçtiile de care ne vom ocupa vor � continue şi de�nite
pe intervale compacte. În plus, vom impune o proprietate foarte important¼a, numit¼a proprietatea
de unimodalitate.
Fie deci f : [a; b]! R o funçtie continu¼a (a; b 2 R, a < b). În virtutea Teoremei lui Weierstrass,

exist¼a x 2 [a; b], un punct în care f î̧si atinge minimul global pe [a; b] : Cum c¼aut¼am metode de a
aproxima un astfel de punct, este rezonabil s¼a consider¼am c¼a x 2 (a; b), pentru c¼a, în caz contrar,
x este cunoscut cu exactitate. Spunem c¼a f este unimodal¼a dac¼a este strict descresc¼atoare pe [a; x]
şi strict cresc¼atoare pe [x; b] : Evident, în aceast¼a ipotez¼a, x este unicul punct de minim global
pentru f .
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4.1.1 Delimitarea (bracketing) punctului de minim

Fie deci f : [a; b] ! R continu¼a şi unimodal¼a. Fie x 2 (a; b) unicul s¼au punct de minim. Ne
intereseaz¼a s¼a determin¼am un interval mai restrâns în care se g¼aseşte x. Fie x 2 (a; b) : Dac¼a
f (a) < f (x) ; cum f este unimodal¼a, putem spune c¼a x 2 (a; x) : Altfel, dac¼a f (a) > f (x) ; nu
se poate spune nimic cu privire la pozi̧tionarea lui x în raport cu cele dou¼a intervale delimitate
de x. Ideea este aceea de a creşte su�cient de încet punctul x plecând din a astfel încât s¼a nu îl
dep¼aşim pe x:

Implementare 4.1 Ilustr¼am aceast¼a discu̧tie cu urm¼atorul cod Matlab/Octave:
functie=@(x) [x*x-sqrt(17)*x+3];
fplot(functie, [-2,7]);
a=-2; b=7; s=0.0001; x=0; k=0;
while functie(a)>functie(a+s)
a=a+s; k=k+1;
endwhile
a
functie(a)
k

care returneaz¼a: a = 2.0616; ans = -1.2500; k = 40616

Exerci̧tiul 4.2 S¼a se deseneze ga�cul funcţiei f : R! R, f (x) = x6 � 4x5 + 3x3 + 6x (a se
vedea şi Exerciţiul 3.1) pe diferite intervale şi s¼a de deduc¼a faptul c¼a exist¼a dou¼a puncte de minim.
Apoi, s¼a de delimiteze în jurul �ec¼arui minim un interval pe care funcţia este unimodal¼a şi s¼a se
aproximeze aceste puncte prin metoda de mai sus.

Chiar dac¼a este un procedeu simplu şi oarecum euristic, aceast¼a metod¼a ilustreaz¼a o idee ce
se întâlneşte des şi la algoritmi mai so�stica̧ti, şi anume ideea unei mi̧sc¼ari progresive în direçtia
potrivit¼a cu un pas mic (dar totuşi nu prea mic, pentru a evita un calcul prea costisitor).
Putem îmbun¼at¼a̧ti metoda de mai sus dup¼a principiul rȩtelei echidistante, astfel: alegem un

num¼ar natural nenul n > 1 de subdiviziuni egale ale intervalului [a; b] ; deci lungimea �ec¼arei
subdiviziuni este � := (b� a) =n: Calcul¼am valoarea lui f în toate numerele a + i� cu i 2 0; n
şi alegem punctul în care se ob̧tine cea mai mic¼a valoare. Ob̧tinem un punct xmin şi o valoare
f (xmin) ; iar intervalul de c¼autare pentru pasul urm¼ator este [xmin � �; xmin + �] : Pe acest nou
interval de lungime 2� folosim acelaşi procedeu: recalcul¼am noul � şi aşa mai departe. Procesul de
c¼autare se va termina când lungimea intervalului de c¼autare este mai mic¼a decât o valoare " > 0
prestabilit¼a.

Exerci̧tiul 4.3 S¼a se implementeze aceast¼a metod¼a pe funcţia de la exerciţiul anterior.

Aşa cum am v¼azut, acest algoritm este destul de costisitor din punct de vedere computa̧tional
pentru c¼a presupune calcularea funçtiei (invocarea oracolului de ordin zero) în multe puncte.
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În orice caz, pentru orice algoritm de acest tip apare problema determin¼arii punctelor a şi b
între care facem c¼autarea. Aceasta poate � rezolvat¼a astfel: alegem u un punct arbitrar şi � > 0
o constant¼a. Dac¼a

f (u� �) � f (u) � f (u+ �) ;

atunci, cu siguraņt¼a, pe baza unimodalit¼a̧tii, punctul de minim se a�¼a la dreapta lui u: În acest caz,
ne deplas¼am la dreapta cu constanta � atât timp cât este respectat¼a condi̧tia f (u) � f (u+ �) :
Dac¼a acest¼a condi̧tie nu este respectat¼a, înseamn¼a c¼a minimul se a�¼a în (u� �; u+ �) : Un ra̧tion-
ament similar se face dac¼a

f (u� �) � f (u) � f (u+ �) :

Dac¼a niciuna dintre condi̧tiile de mai sus nu se întâmpl¼a pentru alegerea u; cerem o alt¼a dat¼a
ini̧tial¼a (unele ra̧tionamente ar permite s¼a spunem c¼a punctul de minim e relativ aproape de u;
deci noua dat¼a ini̧tial¼a nu trebuie s¼a �e foarte departe de alegerea anterioar¼a).

Exerci̧tiul 4.4 S¼a se implementeze aceast¼a idee pentru funcţia f : R! R; f (x) = x2�
p
17x+3:

O alt¼a metod¼a de delimitare a punctului (punctelor) de minim, dar şi a unor intervale pe care
funçtia este unimodular¼a, e bazat¼a pe o vizualizare gra�c¼a. Pentru codul aferent reprezent¼arilor
gra�ce ale funçtiilor de o variabil¼a, dar şi o list¼a de funçtii pe care se pot testa codurile din aceast¼a
seçtiune prezent¼am liniile Matlab/Octave de mai jos.

Implementare 4.5 Codul desen_o_var.m (�̧sier de rulare):
%functie=@(x) [sqrt(abs(x))];a=-2;b=4
%functie=@(x) [x^2+27/x];a=2;b=2.5;
%functie=@(x) [x^2-sqrt(17)*x+3];a=1;b=4;
%functie=@(x) [204165.5./(330-2*x) + 10400./(x-20)];a=40;b=90;
%functie=@(x) [x^6-4*x^5+3*x^3+6*x];a=-1;b=-0.5;
%functie=@(x) [3*exp(x)-x^3+5*x];a=-3;b=3;
%functie=@(x) [-5*x^2+exp(x)];a=1;b=4;
%functie=@(x) [sqrt(x^2+25)/2+(7-x)/6];a=0;b=7;
%functie=@(x) [max((x^6),(3*x-1)^2)];a=-2;b=2;
%functie=@(x) [sqrt(100+x^2)/299702+sqrt((30-x)^2+1600)/228849];a=0,b=40;
functie=@(x) [4*pi/(log(2*x)-1/2)*x];a=1;b=7;
%functie=@(x) [exp(x)-2*x^2];a=0;b=4;
fplot(functie,[a,b]);
set(gca, �XAxisLocation�, �origin�)
set(gca, �YAxisLocation�, �origin�)

Exemplul 4.1.1 Unele dintre funçtiile de mai sus provin din chestiuni cu caracter practic ce nu
pot �tratate cu uşuriņt¼a prin metodele clasice de determinare cu exactitate a punctelor de extrem
(a se vedea prima seçtiune a lucr¼arii).
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4.1.2 Metoda seçtiunii de aur

Prima metod¼a mai elaborat¼a pe care o prezent¼am este bazat¼a pe o observa̧tie simpl¼a şi pe un
detaliu tehnic, nu chiar simplu la rândul s¼au.
Ideea este una similar¼a celei de mai sus şi const¼a în micşorarea intervalului ce coņtine punctul

de minim pân¼a la atingerea unui criteriu de oprire. Avem în vedere dou¼a lucruri: o reducere optim¼a
a lungimii intervalului ce delimiteaz¼a punctul de minim şi un num¼ar cât mai mic de invoc¼ari ale
oracolului.
Fie f : [a; b] ! R o funçtie continu¼a unimodal¼a, ca mai sus. Fie x1; x2 2 [a; b] cu a < x1 <

x2 < b: Dac¼a f (x1) � f (x2) ; atunci, cu siguraņt¼a, x 2 (a; x2]; iar altfel x 2 (x1; b) : Deci, în
orice caz putem micşora intervalul. Ideea este de a alege judicios punctele x1 şi x2 în aşa fel încât
s¼a avem o descreştere semni�cativ¼a a lungimii intervalului, indiferent de care parte a intervalului
ini̧tial este îndep¼artat¼a. O alt¼a ceriņt¼a este de a proceda su�cient de e�cient astfel încât acel punct
dintre x1 şi x2 care r¼amâne în interiorul noului interval ce delimiteaz¼a minimul s¼a poat¼a servi ca
punct intermediar pentru urm¼atorul pas al itera̧tiei. Dac¼a aceast¼a a doua ceriņt¼a este îndeplinit¼a,
atunci la noul pas este necesar¼a evaluarea lui f doar într-un punct.
De exemplu, ne-am putea gândi la împ¼aŗtirea intervalului ini̧tial în trei p¼aŗti egale, adic¼a s¼a

lu¼am x1 = a + 1
3
(b� a) şi x2 = a + 2

3
(b� a) : Procedând astfel, dac¼a f (x1) < f (x2) atunci

trebuie s¼a rȩtinem intervalul (a; x2) iar acum x1 este punctul din mijloc al acestui interval. Deci,
pentru urm¼atorul pas, dac¼a alegem un singur punct (pentru a economisi efort computa̧tional)
acest punct nu va oferi simetrie împ¼aŗtirii intervalului. Deci, aceast¼a împ¼aŗtire nu este optimal¼a
din acest punct de vedere.
Fie � 2

�
1
2
; 1
�
şi x1 = �a + (1� �) b, x2 = (1� �) a + �b: Aceast¼a diviziune permite ca

propoŗtia din lungimea ini̧tial¼a care va �eliminat¼a s¼a �e aceeaşi în oricare dintre cele dou¼a cazuri.
Consider¼am, la �ecare pas, aceast¼a împ¼aŗtire a intervalului. Astfel, dorim ca punctul ce r¼amâne în
interval dup¼a primul pas s¼a �e unul din punctele ce respect¼a aceast¼a regul¼a. Dac¼a f (x1) � f (x2)
atunci trebuie s¼a rȩtinem intervalul (a; x2]. Pe baza ceriņtelor formulate:

x1 = (1� �) a+ �x2;

(x1 va � al doilea punct pentru pasul urm¼ator, pentru c¼a, altfel, x1 = �a + (1� �)x2; ceea ce
conduce la �a+ (1� �) b = �a+ (1� �)x2; adic¼a x2 = b; ceea ce este fals), deci

�a+ (1� �) b = (1� �) a+ � ((1� �) a+ �b) ;

adic¼a
�2 + �� 1 = 0;

ceea ce conduce la

� =

p
5� 1
2

(pentru c¼a � > 2�1).
Dac¼a f (x1) > f (x2) trebuie s¼a rȩtinem intervalul (x1; b). Din nou, trebuie ca:

x2 = �x1 + (1� �) b;
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(x2 va � al primul punct la pasul urm¼ator) deci

(1� �) a+ �b = � (�a+ (1� �) b) + (1� �) b;

şi din nou

� =

p
5� 1
2

' 0:6180339:

În primul caz trebuie s¼a alegem primul punct la pasul al doilea ca �ind (1� �) a+ �x2; iar în
al doilea caz alegem al doilea punct ca �ind �x1 + (1� �) b:
Numele acestei metode provine din faptul c¼a, de exemplu,

x2 � a

b� x2
=

�

1� �
=

p
5 + 1

2
' 1:618034;

acest num¼ar �ind numit raportul de aur şi �ind tradi̧tional notat cu '.
Aceast¼a metod¼a asigur¼a faptul c¼a intervalul ce delimiteaz¼a minimul se micşoreaz¼a la �ecare

pas astfel încât noua lungime este aproximativ 0:618034 din lungimea celei precedente. Mai mult,
începând de la al doilea pas o singur¼a nou¼a evaluare a funçtiei este necesar¼a.
Din nou, c¼autarea se termin¼a când lungimea intervalului este mai mic¼a decât o valoare prescris¼a.

Aproximarea minimului este mijlocul intervalului �nal.

Implementare 4.6 Ilustr¼am metoda prin codul de mai jos:

functie=@(x) [3*exp(x)-x^3+5*x];a=-3;b=3;
fplot(functie,[-3,3]);
eps=0.00001;rho=0.618034;intervallength=b-a;i=0;
while (intervallength>eps)
x1=rho*a+(1-rho)*b;x2=(1-rho)*a+rho*b;
if functie(x1)<=functie(x2)
b=x2;
else
a=x1;
endif
intervallength=b-a;
i=i+1;
endwhile
x=(a+b)/2
i
functie(x)

cere returneaz¼a: x = -1.3846, i = 28, ans = -3.5173.

Codul de mai sus nu este optimal pentru c¼a evalueaz¼a funçtia de dou¼a ori la �ecare pas.

Exerci̧tiul 4.7 S¼a se implemeteze un cod care s¼a remedieze aceast¼a problem¼a.
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Vom dori ca pe viitor s¼a utiliz¼am aceast¼a metod¼a pentru diverse funçtii, motiv pentru care
vom prefera unele variante care s¼a implementeze o funçtie Matlab/Octave.

Exerci̧tiul 4.8 S¼a se scrie o funcţie care s¼a implementeze acest algoritm.

4.1.3 Metoda Fibonacci

Urm¼atoarea metod¼a pe care o prezent¼am este apropiat¼a de cea precedent¼a, dar de data aceasta,
raportul de diviziune nu este constant la to̧ti paşii, ci se bazeaz¼a pe termenii şirului lui Fibonacci
pentru construirea acestuia. Amintim principalele elemente despre acest şir necesare în continuare.

Propozi̧tia 4.1.2 (Şirul lui Fibonacci) Fie şirul (Fk)k�0 ; este de�nit cu termenii iniţiali F0 =
0; F1 = 1 şi prin relaţia de recurenţ¼a:

Fk = Fk�1 + Fk�2; 8k � 2:

Atunci:
(i) pentru orice k � 0;

Fk =
1p
5

0@ 1 +p5
2

!k
�
 
1�

p
5

2

!k1A :

(ii)

lim
Fk
Fk�1

= ':

(iii) Seria
1X
k=1

1

Fk

este convergent¼a.

Demonstraţie. (i) O demonstra̧tie se poate face prin induçtie.
O alt¼a demonstra̧tie, prin care s¼a se ajung¼a la forma anuņtat¼a a şirului este urm¼atoarea.

Observ¼am c¼a puterile r¼ad¼acinilor ecua̧tiei

x2 � x� 1 = 0:

satisfac rela̧tia de recureņt¼a. R¼ad¼acinile acestei ecua̧tii sunt

' =
1 +

p
5

2

 =
1�

p
5

2
:

Deducem c¼a pentru orice numere reale a; b; termenii şirului
�
a'k + b k

�
k
satisfac rela̧tia de re-

cureņt¼a. Cum datele ini̧tiale împreun¼a cu rela̧tia de recureņt¼a de�nesc în mod unic termenii şirului,
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înseamn¼a c¼a prin determinarea valorilor a; b pentru respectarea datelor ini̧tiale, şirul ob̧tinut este
şirul lui Fibonacci. Condi̧tiile

a+ b = 0

a'+ b = 1

conduc la
a = �b = 1p

5
;

de unde deducem formula de demonstrat.
(ii) Folosind punctul anterior putem scrie

lim
Fk
Fk�1

= lim

�
1+
p
5

2

�k
�
�
1�
p
5

2

�k
�
1+
p
5

2

�k�1
�
�
1�
p
5

2

�k�1 = ':

(iii) Pe baza punctului de mai sus,

lim
Fk
Fk+1

=
1

'
< 1

şi din criteriul raportului pentru serii cu termeni pozitivi ob̧tinem concluzia. �

Prezent¼am acum metoda anuņtat¼a. Cum am spus, proced¼am ca la metoda seçtiunii de aur,
dar f¼ar¼a a avea un raport constant, dar ca mai înainte, la pasul cu num¼arul k funçtia este testat¼a
în dou¼a puncte x1k şi x

2
k din interiorul intervalului de delimitare [ak; bk] şi dorim s¼a p¼astr¼am unul

dintre aceste puncte drept cap¼at al noului interval, iar pe cel¼alalt ca punct interior. La itera̧tia k
intervalul are o lungime a�at¼a în propoŗtia rk 2

�
1
2
; 1
�
cu intervalul precedent. Astfel pentru orice

k;

x1k = rkak + (1� rk) bk

x2k = (1� rk) ak + rkbk:

Presupunem, f¼ar¼a a restrânge generalitatea, c¼a f (x1k) � f (x2k) ; deci ak+1 = ak şi bk+1 = x2k:
Renot¼am punctul x1k prin x

2
k+1 (a se vedea cazul corespunz¼ator de la metoda seçtiunii de aur).

Atunci, lungimea noului interval de c¼autare este

dk+1 = rk (bk � ak) :

Mai mult,
x2k � x1k = bk+1 � x2k+1

şi avem

x2k � x1k = (1� rk) ak + rkbk � rkak � (1� rk) bk

= (2rk � 1) (bk � ak) :
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În plus,

bk+1 � x2k+1 = bk+1 � (1� rk+1) ak+1 � rk+1bk+1 = (1� rk+1) (bk+1 � ak+1)

= (1� rk+1) rk (bk � ak) :

Astfel, ob̧tinem
2rk � 1 = (1� rk+1) rk;

adic¼a
rk+1 =

1� rk
rk

:

În acest moment utiliz¼am termenii şirului lui Fibonacci.
Fix¼am n > 2 şi de�nim raportul rk ca �ind

rk =
Fn�k
Fn�k+1

2
�
1

2
; 1

�
; 8k 2 f1; 2; :::; n� 2g :

Atunci

rk+1 =
1� Fn�k

Fn�k+1
Fn�k
Fn�k+1

=
Fn�k�1
Fn�k

:

Deci,

r1 =
Fn�1
Fn

şi

r2 =
Fn�2
Fn�1

; :::; rn�2 =
F2
F3
=
1

2
:

La pasul urm¼ator nu mai putem ad¼auga un nou punct pentru c¼a rn�1 ar � F1
F2
= 1: Astfel, algoritmul

se termin¼a dup¼a n� 2 paşi, unde n este num¼arul natural �xat mai sus. Avem

dn�1 = rn�2dn�2 =
F2
F3
dn�2 =

F2
F3

F3
F4
dn�3 = ::: =

1

Fn
d1 =

1

Fn
(b� a) ;

deci putem �xa n astfel încât 1
Fn
(b� a) este mai mic decât o constant¼a pozitiv¼a dat¼a.

Cum limita lui
�

Fk
Fk+1

�
este 1

'
= �; pentru n mare acest algoritm este practic echivalent cu

algoritmul seçtiunii de aur.

Implementare 4.9 Prezent¼am o ilustrare de baz¼a pentru aceast¼a metod¼a.
functie=@(x) [3*exp(x)-x^3+5*x];a=-3;b=3;
n=40;
fib=zeros(1,n);
fib(1)=1;
fib(2)=1;
for i=3:n;
fib(i)=fib(i-2)+fib(i-1);
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endfor
for i=n:-1:3
r=fib(i-1)/fib(i);
x1=r*a+(1-r)*b;
x2=(1-r)*a+r*b;
if functie(x1)<=functie(x2)
b=x2;
else
a=x1;
endif
endfor
(a+b)/2
functie((a+b)/2)

Exerci̧tiul 4.10 S¼a se modi�ce codul de mai sus astfel încât oracolul s¼a �e la �ecare pas invocat
o singur¼a dat¼a (deci cu p¼astrarea punctului intermediar).

Observa̧tia 4.1.3 Avantajul acestor algoritmi este acela c¼a, oracolul �ind de ordin 0; se aplic¼a
şi funcţiilor nederivabile, aşa cum se vede din lista funcţiilor pentru care deja le-am implementat.

Exerci̧tiul 4.11 S¼a se implementeze metoda secantei pentru derivat¼a în scopul aproxim¼arii punctelor
de minim pentru funcţiile studiate mai sus.

Exerci̧tiul 4.12 S¼a se implementeze metoda înjum¼at¼aţirii intervalului pentru derivat¼a în scopul
aproxim¼arii punctelor de minim pentru funcţiile studiate mai sus.

Exerci̧tiul 4.13 S¼a se recapituleze şi s¼a se compare pe exemplele concrete de mai jos metodele de
ordin 0; 1; 2 pentru optimizarea funcţiilor de o variabil¼a studiate.
(i) f (x) = 2 (x� 3)2 + e0:5x

2
; x 2 [0; 4] ;

(ii) f (x) = 3x4 + (x� 1)2 ; x 2 [0; 4] ;
(iii) f (x) = �4x sin x; x 2 [0; �] ;
(iv) f (x) = 3x2 + 12x�3 � 5; x 2 [0:1; 4] ;
(v) f (x) = 2x2 + 16x�1; x 2 [1; 5] :

Exerci̧tiul 4.14 Reprezentând gra�c funcţiile de mai jos, s¼a se observe c¼a sunt unimodale pe
intervalele indicate şi s¼a se determine punctul de minim prin metodele anterioare.
(i) f (x) = �5x5 + 4x4 � 12x3 + 11x2 � 2x+ 1; x 2 [�0:5; 0:5] ;
(ii) f (x) = ln2 (x� 2) + ln2 (10� x)� x0:2; x 2 [6; 9:9] ;
(iii) f (x) = �3x sin (0:75x) + e�2x; x 2 [0; 2�] ;
(iv) f (x) = e3x + 5e�2x; x 2 [0; 1] ;
(v) f (x) = 0:2x lnx+ (x� 2:3)2 ; x 2 [0:5; 2:5] :

Pentru funçtii de mai multe variabile, am v¼azut c¼a algoritmii de ordin zero pot � foarte
costisitori din punct de vedere computa̧tional. Pentru a ob̧tine algoritmi e�cieņti pentru astfel de
funçtii sunt necesare metode de ordin superior.
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4.2 Algoritmi de ordinul întâi (metode de tip gradient)

Exist¼a mai multe modele generale de proiectare a algoritmilor cu oracol de ordinul întâi pentru opti-
mizarea liber¼a de constrângeri. În aceast¼a seçtiune vom studia câteva dintre aceste metode. Avan-
tajul consider¼arii difereņtialei este c¼a putem renuņta la unimodalitate, întrucât semnul derivatei ne
indic¼a dac¼a în vecin¼atatea punctului funçtia creşte sau scade, iar dezavantajele sunt c¼a nu putem
trata funçtii nedifereņtiabile şi metodele ne indic¼a, în general, c¼a ne îndrept¼am c¼atre puncte critice
care, în abseņta convexit¼a̧tii, ar putea s¼a nu �e puncte de extrem.

4.2.1 Descrierea metodei direçtiei de descreştere (gradient descent,
GD)

Pentru început, ne concentr¼am pe modelul numit "c¼autarea direçtiei de descreştere".
Scopul acestui algoritm este acela de a realiza la �ecare pas o descreştere a funçtiei obiectiv

f : Rp ! R; de clas¼a C2 (i.e. f(xk+1) < f(xk)): Algoritmul calculeaz¼a la �ecare pas k; o direçtie
pk (un vector de pe sfera unitate) şi un pas �k > 0 de mi̧scare pe direçtia pk: Astfel, plecând de
la itera̧tia xk; noua itera̧tie va �

xk+1 = xk + �kpk: (4.1)

Primul punct al itera̧tiei, adic¼a x0; se alege arbitrar (vom vedea ulterior c¼a, şi de aceast¼a dat¼a,
este indicat ca x0 s¼a satisfac¼a anumite ceriņte). În cadrul acestei scheme sunt importante atât
alegerea direçtiei cât şi a pasului.
Alegerea direçtiei Din formula lui Taylor, pentru �; p �xate, exist¼a t 2 (0; �) astfel încât

f(xk + �p) = f(xk) + �rf(xk)(p) +
1

2
�2r2f(xk + tp)(p; p);

adic¼a

f(xk + �p)� f(xk) = �

�
rf(xk)(p) +

1

2
�r2f(xk + tp)(p; p)

�
: (4.2)

Oprindu-ne cu evaluarea la difereņtiala de ordinul întâi, direçtia pe care f descreşte cel mai mult
este dat¼a de solu̧tia problemei de minimizare pe bila unitate închis¼a a funçtiei (în variabila p),
p 7! rf(xk)(p). Cum

rf(xk)(p) = kpk krf(xk)k cos � = krf(xk)k cos �

unde � este unghiul dintre p şi rf(xk); este clar c¼a minimul este atins pentru

p = � rf(xk)
krf(xk)k

dac¼a krf(xk)k 6= 0: Deci dac¼a s-a atins un punct critic, atunci nu putem înainta. În caz contrar,
alegerea lui pk de forma de mai sus se numeşte metoda celei mai bune (sau celei mai abrupte)
descreşteri (steepest descent method, în limba englez¼a). Pe de alt¼a parte, orice direçtie pentru
care unghiul cu rf(xk) este mai mare de �

2
(i.e. cos � < 0) produce o descreştere a funçtiei f dac¼a

� este su�cient de mic (conform (4.2)), întrucât ultimul termen coņtine �; deci tinde mai rapid
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c¼atre zero: O astfel de direçtie (pentru care rf(xk)(pk) < 0) se numeşte direçtie de descreştere
(gradient descent).

Alegerea pasului Apare acum problema alegerii lui �k: Exist¼a mai multe variante pentru
aceast¼a alegere. Le vom enumera pe cele mai importante dintre ele şi vom detalia conseciņtele
celor mai populare dintre aceste posibilit¼a̧ti.

Regula minimiz¼arii exacte Alegerea ideal¼a este minimul, pentru � > 0; al funçtiei � 7! f(xk +
�pk); dar, din punct de vedere practic, problema aceasta nu este neap¼arat una simplu de rezolvat.
Totuşi, aplicarea algoritmului seçtiunii de aur conduce la o solu̧tie aproximativ¼a a acestei probleme.

Regula minimiz¼arii limitate Alegem �k astfel încât

f(xk + �pk) � f (xk + tpk) ; 8t 2 [0; s] ;

unde s > 0 este o cantitate dinainte stabilit¼a. Astfel, trebuie s¼a minimiz¼am de fapt � 7! f(xk+�pk)
pe [0; s] : Din nou, aceast¼a problem¼a intermediar¼a poate � una di�cil de implementat.

Regula factorului constant Alegem

xk+1 = xk � �rf (xk)

unde � > 0 este dat (adic¼a �k = � krf (xk)k. Aceasta este o varia̧tie a metodei celei mai bune
direçtii de descreştere, dar vom vedea c¼a funçtioneaz¼a pentru funçtii f având unele propriet¼a̧ti
suplimentare. În plus, în general, ea trebuie combinat¼a şi cu alte idei. Dac¼a f(xk + �rf (xk)) �
f(xk) atunci factorul � trebuie micşorat (procedur¼a ce se numeşte backtracking).

Regula Armijo Fie � > 0; � 2 (0; 1) şi c 2 (0; 1) : Se testeaz¼a inegalitatea

f (xk) + c
�
�i�
�
rf(xk)(pk) > f

�
xk + �i�pk

�
; i = 0; 1; 2; ::: (4.3)

iterativ pornind cu i = 0 (sau, mai practic, cu valoarea lui i ob̧tinut¼a la precedenta itera̧tie).
Ideea este c¼a dorim ca descreşterea funçtiei s¼a �e su�cient de mare. Primul test, pentru i = 0 (sau
pentru i speci�cat mai sus) adic¼a pentru pasul � (respectiv pasul �k) este

f (xk) + c�rf(xk)(pk) > f (xk + �pk) :

Dac¼a inegalitatea de mai sus este satisf¼acut¼a alegem xk+1 = xk+�pk (adic¼a �k = �). Altfel, pasul
se micşoreaz¼a la �� şi efectu¼am testul (pentru i = 1)

f (xk) + c��rf(xk)(pk) > f (xk + ��pk) :

Continuând procedeul în acelaşi fel, ob̧tinem o metod¼a foarte practic¼a.

Observa̧tia 4.2.1 Iteraţiile prev¼azute de Regula Armijo pentru determinarea pasului se termin¼a
la un moment dat. Demonstr¼am aceast¼a aserţiune. Evident, atunci când i este foarte mare,
t := �i� este foarte apropiat de 0: Presupunem c¼a

f (xk + tpk) � f (xk) + ctrf(xk)(pk); 8t:
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Cum f este de clas¼a C1; exist¼a o funcţie � continu¼a în 0, cu limt!0
�(t)
t
= 0 astfel încât

f (xk + tpk) = f (xk) + trf(xk)(pk) + � (t) :

Obţinem

(c� 1)rf(xk)(pk) +
� (t)

t
� 0:

Pentru t! 0 (adic¼a pentru i!1), deducem
(c� 1)rf(xk)(pk) � 0;

ceea ce este fals.

Regula Wolfe Fie 0 < c1 < c2 < 1: Alegem �k ca �ind un num¼ar � > 0 satisf¼acând urm¼atoarele
dou¼a condi̧tii �

f(xk + �pk) < f(xk) + c1�rf(xk)(pk);
c2rf(xk)(pk) � rf(xk + �pk)(pk):

(4.4)

În general, prima condi̧tie (care este condi̧tia Armijo de mai sus) poate � satisf¼acut¼a de valori �
foarte mici, lucru împiedicat de a doua condi̧tie.
Consisteņta acestor condi̧tii este ar¼atat¼a riguros mai jos.

Propozi̧tia 4.2.2 Fie f : Rp ! R de clas¼a C1; pk o direcţie de descreştere în xk şi 0 < c1 <
c2 < 1: Dac¼a f este m¼arginit¼a inferior pe mulţimea fxk + �pk j � > 0g atunci exist¼a � > 0 care
satisface condiţiile din regula Wolfe.

Demonstraţie Conform ipotezei, funçtia � 7! f(xk + �pk) este m¼arginit¼a inferior pe (0;1):
Pentru orice � > 0 exist¼a t 2 (0; �) astfel încât

f(xk + �pk) = f(xk) + �rf(xk)(pk) +
1

2
�2r2f(xk + tpk)(pk; pk)

= f(xk) + c1�rf(xk)(pk) + �

�
(1� c1)rf(xk)(pk) +

1

2
�r2f(xk + tpk)(pk; pk)

�
;

Cum c1 2 (0; 1) şi rf(xk)(pk) < 0; pentru orice � su�cient de mic avem
f(xk + �pk) < f(xk) + c1�rf(xk)(pk);

deci, ţinând cont de proprietatea de m¼arginire, ecua̧tia (în �)

f(xk + �pk) = f(xk) + c1�rf(xk)(pk)
are cel pu̧tin o solu̧tie strict pozitiv¼a. Din continuitatea (în �) a funçtiilor implicate, exist¼a o cea
mai mic¼a solu̧tie pozitiv¼a pe care o not¼am cu �0: Evident, pentru orice � 2 (0; �0) are loc prima
condi̧tie. Aplicând din nou Formula lui Taylor, exist¼a �00 2 (0; �0) cu

f(xk + �0pk) = f(xk) + �0rf(xk + �00pk)(pk);

deci
rf(xk + �00pk)(pk) = c1rf(xk)(pk) > c2rf(xk)(pk):

Aşadar, pentru �00 are loc şi a doua condi̧tie. Cum pentru �00 inegalit¼a̧tile din ambele condi̧tii sunt
stricte, exist¼a chiar un interval în jurul acestui punct pe care aceste condi̧tii sunt îndeplinite. �

Vom vedea ulterior unele criterii de oprire pentru algoritmi baza̧ti pe Regula Wolfe.
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4.2.2 Convergeņta metodei direçtiei de descreştere. Cazul general

Discut¼am acum convergeņta metodei celei mai bune descreşteri pentru cele mai importante dintre
regulile de mai sus: Regula Armijo şi Regula Wolfe.
O prim¼a ceriņt¼a pentru a avea rezultate de convergeņt¼a semni�cative este legat¼a de unghiul

dintre rf(xk) şi direçtia (vectorul de norm¼a 1) pk: Dac¼a not¼am cu �k acest unghi, atunci impunem
s¼a existe " > 0 astfel încât pentru orice k

cos �k =
rf(xk)(pk)
krf(xk)k

2 [�1;�"): (4.5)

Astfel, chiar dac¼a pk nu este cea mai bun¼a direçtie de descreştere, cerem totuşi ca unghiul s¼a nu
se apropie oricât de mult de �

2
: Evident, în cazul alegerii celei mai bune direçtii de descreştere

cos �k = �1 pentru orice k; deci condi̧tia are loc.

Observa̧tia 4.2.3 S¼a consider¼am funcţia f : R! R dat¼a prin

f (x) = x3 � x

x2 + 1

al c¼arei gra�c este redat mai jos.
Este clar c¼a folosind chiar cea mai bun¼a direcţie de descreştere pentru o dat¼a iniţial¼a x0 < �0:6

(de exemplu) vom obţine o descreştere in�nit¼a, deci metoda nu converge la punctul de minim. De
aceea, şi pentru aceast¼a metod¼a, ideea de a aproxima (gra�c sau prin alt¼a tehnic¼a) în prim¼a
instanţ¼a punctul de minim pentru o alegere potrivit¼a a datei iniţiale este important¼a.

­1.0 ­0.5 0.5 1.0

­0.4
­0.2

0.2
0.4

x

y

Teorema 4.2.4 Fie (xk) şir de vectori generaţi dup¼a formula de recurenţ¼a

xk+1 = xk + �kpk;

unde direcţiile (pk) satisfac (4:5) şi paşii (�k) satisfac Regula Armijo (4:3) cu parametrii �; �; c:
Dac¼a x este un punct limit¼a al şirului (xk) ; atunci x este punct critic al lui f (adic¼a rf (x) = 0).

Demonstraţie. F¼ar¼a a restrânge generalitatea, putem presupune c¼a (xk) este convergent la x; iar
(pk) este convergent la o direçtie p: Dac¼a pasul �k a fost validat la încercarea i în (4:3), atunci
avem

f (xk)� f (xk + �kpk) > �c�krf(xk)(pk) � "c�k krf(xk)k ; (4.6)

iar dac¼a încercarea i� 1 este invalid¼a

f (xk)� f

�
xk +

�k
�
pk

�
� �c�k

�
rf(xk)(pk): (4.7)
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Presupunem, prin reducere la absurd, c¼a rf (x) 6= 0: Cum (f (xk)) este descresc¼ator la f (x)
deducem c¼a

f (xk)� f (xk + �kpk) = f (xk)� f (xk+1)! 0;

deci
�krf(xk)(pk)! 0:

Dar, pe baza (4:5) ; prin trecere la limit¼a, rf (x) (p) < 0; deci �k ! 0: Aceasta implic¼a fap-
tul c¼a pentru k mare alegerea pasului trece prin procedura de ajustare (backtracking), adic¼a se
întâmpl¼a (4:7) : Folosind Teorema lui Lagrange (pentru funçtii de mai multe variabile), exist¼a

zk 2
�
xk; xk +

�k
�
pk

�
astfel încât

��k
�
rf (zk) (pk) � �c

�k
�
rf(xk)(pk):

Cum zk ! x; prin simpli�care şi trecere la limit¼a ob̧tinem contradiçtia rf (x) (p) � 0: Deci
rf (x) = 0: �

Corolarul 4.2.5 Presupunem c¼a direcţiile de c¼autare satisfac (4:5) : Dac¼a (�k) sunt aleşi dup¼a
Regula minimiz¼arii exacte sau Regula minimiz¼arii limitate, atunci orice punct limit¼a al lui (xk)
este punct critic pentru f:

Demonstraţie. Presupunem c¼a un subşir (xkr) converge la un punct x care nu e critic. Fie
xkr = xkr + ��krpkr punctul ales dup¼a Regula Armijo. Atunci, pentru orice r;

f (xkr)� f (xkr+1) � f (xkr)� f (xkr+1) � �c��kr hf (xkr) ; pkri :

Cum f (xk) ! f(x) avem f (xkr) � f (xkr+1) ! 0 şi ca în demonstra̧tia teoremei precedente,
��kr ! 0:
Pe baza rela̧tiei (4:7) ;

f (xkr)� f

�
xkr +

��kr
�
pkr

�
� �c ��kr

�
rf(xkr)(pkr):

Urmând ra̧tionamentul din rezultatul precedent, ajungem la aceeaşi contradiçtie. �

Discut¼am acum convergeņta algoritmului de c¼autare a direçtiei de descreştere pentru Regula
Wolfe.

Teorema 4.2.6 (Zoutendijk) Fie iteraţia (4.1) în care (pk) sunt direcţii de descreştere, iar (�k)
sunt paşi ce satisfac condiţiile Wolfe. Presupunem c¼a f este de clas¼a C1 şi m¼arginit¼a inferior, iar
rf este Lipschitz. Atunci seria

1X
k=0

cos2 �k krf(xk)k2

este convergent¼a.
În particular, dac¼a este satisf¼acut¼a condiţia (4:5) ; atunci pentru orice punct limit¼a x al lui

(xk) avem rf (x) = 0:
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Demonstraţie Din condi̧tiile Wolfe, pentru �ecare k 2 N�;

rf(xk + �kpk)(pk)�rf(xk)(pk) � (c2 � 1)rf(xk)(pk);

adic¼a
rf(xk+1)(pk)�rf(xk)(pk) � (c2 � 1)rf(xk)(pk);

iar din condi̧tia Lipschitz asupra difereņtialei exist¼a o constant¼a L astfel încât,

krf(xk+1)�rf(xk)k � L kxk+1 � xkk ;

de unde,
(rf(xk+1)�rf(xk)) (pk) � �kL kpkk2 :

Deducem

�k �
c2 � 1
L

rf(xk)(pk)
kpkk2

:

Ţinând din nou seama de inegalitatea rf(xk)(pk) < 0;

f(xk+1) � f(xk) + c1
c2 � 1
L

(rf(xk)(pk))2

kpkk2
:

Dar
(rf(xk)(pk))2

kpkk2
= cos2 �k krf(xk)k2 ;

deci
f(xk+1)� f(xk) � c1

c2 � 1
L

cos2 �k krf(xk)k2 :

Sumând rela̧tiile deducem

f(xk+1) � f(x0) + c1
c2 � 1
L

kX
i=0

cos2 �i krf(xi)k2 :

Cum c2 � 1 < 0; din m¼arginirea inferioar¼a a funçtiei f; ob̧tinem convergeņta seriei din enuņt.
Convergeņta demonstrat¼a asigur¼a faptul c¼a

cos2 �k krf(xk)k2 ! 0:

Dac¼a alegerea lui pk se face astfel încât are loc condi̧tia (4:5), atunci rf(xk) ! 0: Acum este
evident c¼a dac¼a x este punct limit¼a pentru (xk), atunci x este punct critic. �

Observa̧tia 4.2.7 Algoritmii de mai sus se aplic¼a şi funcţiilor convexe, determinându-se puncte
de minim global (pentru c¼a punctele critice au aceast¼a proprietate) dar, cum vom vedea, forma
particular¼a a convexit¼aţii permite elaborarea unor algoritmi speci�ci puternici.
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Implementare 4.15 Implement¼am acum metoda celei mai bune descreşteri cu regula Armijo
pentru o funçtie de o variabil¼a real¼a. Aşdar, direçtia se alege

pk = �
rf(xk)
krf(xk)k

dac¼a krf(xk)k 6= 0 iar, în ceea ce priveşte pasul �k; vom utiliza doar condi̧tia de tip Armijo

f(xk + �kpk) < f(xk) + c�krf(xk)(pk);

unde c 2 (0; 1) : Astfel, vom testa la �ecare pas dac¼a se îndeplineşte condi̧tia, iar în caz contrar,
îl vom înmuļti pe �k cu un factor subunitar (�) pentru a sc¼adea pasul. Ca de obicei, criteriul de
oprire utilizeaz¼a valoarea absolut¼a a derivatei.
Pentru exempli�care alegem funçtia f : R! R, f(x) = 3ex � x3 + 5x care a fost discutat¼a şi

mai sus dintr-o alt¼a perspectiv¼a. Astfel, avem codul de mai jos
funct=@(x) 3*exp(x)-x^3+5*x;
der=@(x) 3*exp(x)-3*x^2+5;
tol=1e-3;u=5; u_vechi=1; n=0; beta=0.5;
c=0.01; alpha=1;
%steepest descent
while abs(der(u))>tol
u_vechi=u;
while funct(u_vechi-alpha*der(u_vechi)/abs(der(u_vechi)))>=funct(u_vechi)-c*alpha*abs(der(u_vechi))
alpha=beta*alpha;
end
u=u-alpha*der(u)/abs(der(u));
n=n+1;
end
u
n
alpha
der(u)
u = -1.3845; n = 12; alpha = 0.00024414; ans = 0.00063161

Deci algoritmul se opreşte atunci când valoarea absolut¼a a derivatei în punctul curent este su�cient
de mic¼a. Evolu̧tia descreşterii pasului şi a gradientului poate � de asemenea elocvent¼a.

Exerci̧tiul 4.16 S¼a se implementeze metoda celei mai bune descreşteri cu regula Armijo pentru
care derivata se va calcula numeric (a se vedea (3.7)).

Implementare 4.17 Scriem acum un cod pentru aplicarea metodei funçtiei Rosenbrock, funçtie-
test de dou¼a variabile reale pentru care ştim c¼a unicul punct de minim este (1; 1) :
funct=@(x) 100.0*(x(2)-x(1)^2)^2 + (1-x(1))^2;
dif_fct=@(x) [-2*(1-x(1))-400*x(1)*(x(2)-x(1)^2),200*(x(2)-x(1)^2)];
n=0; beta=0.5;
c=0.01; alpha=1;
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u_vechi=[0, 0];u=[-1.5, 2];v=u;
%steepest descent
while norm(dif_fct(u))>10^(-7)
u_vechi=u;
% u=u-alpha*dif_fct(u)/norm(dif_fct(u));
v=[v;u];
while funct(u_vechi-alpha*dif_fct(u_vechi)/norm(dif_fct(u_vechi)))>=funct(u_vechi)-c*alpha*norm(dif_fct(u_vechi))
alpha=beta*alpha;
end
u=u-alpha*dif_fct(u)/norm(dif_fct(u));v=[v;u];
n=n+1;
end
u
n
alpha
plot(v(:,1),v(:,2),�-�);hold on;
plot(1,1,�r*�);hold on;[x,y] = meshgrid (-2:0.2:2,-1:0.2:4);
z1=100*(y-x.^2).^2 + (1-x).^2;
[c,h] = contour(x,y,z1,100);
În cazul acesei metode se poate observa c¼a sunt necesare foarte multe itera̧tii, dar punctul de

start poate � îndep¼artat de solu̧tie.

Exerci̧tiul 4.18 S¼a se implementeze algoritmul celei mai bune direcţii de descreştere pentru
funcţia f : R! R, f(x) = ex � 2x2.

Exerci̧tiul 4.19 Fie f : R ! R; f(x) = 2x2 + 3e�2x: S¼a se arate c¼a f este strict convex¼a şi
admite punct de minim. S¼a se determine acest punct cu aproximaţie folosind metoda lui Newton
(aplicat¼a lui f 0(x) = 0) şi metoda celei mai bune descreşteri.

Exerci̧tiul 4.20 S¼a se arate c¼a funcţia f : R! R; f(x) = x4�x2+x�1 admite un singur punct
de minim. S¼a se aproximeze acest punct folosind metoda celei mai bune descreşteri.

Exerci̧tiul 4.21 S¼a se testeze metoda c¼aut¼ari direcţiei de descreştere cu data iniţial¼a (�1;�1)
pentru funcţia f : R2 ! R;

f (x; y) = x4 � 16x2 + 5x+ y4 � 16y2 + 5y:

Exerci̧tiul 4.22 S¼a se implementeze metoda pentru f : R2 ! R, f (x; y) = 4x2 � 3xy + y2. S¼a
se observe faptul c¼a minimul (care este originea) g¼asindu-se într-o zon¼a mai accesibil¼a a gra�cului,
num¼arul de iteraţii este semni�cativ mai mic.

Exerci̧tiul 4.23 S¼a se determine teoretic punctul de minim pentru f : R2 ! R dat¼a prin
f (x; y) = x2 (1 + y)3 + y2 şi s¼a se aplice metoda de mai sus.

Exerci̧tiul 4.24 S¼a se aplice metoda de mai sus pentru f : R2 ! R;

f (x; y) = x6 + y4 + 4x2y2 � 3xy + 2x+ y:
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Încheiem aceast¼a seçtiune folosind şi Regula minimiz¼arii exacte pe care o implement¼am cu
ajutorul algoritmului raportului de aur. De asemenea, folosim un cod care calculeaz¼a aproximativ
gradientul funçtiei de minimizat.

Implementare 4.25 �̧sier funçtie
function fx = func_multivar(x)
fx= x(1)^6+x(2)^4+4*x(1)^2*x(2)^2-3*x(1)*x(2)+2*x(1)+x(2);
�̧sier funçtie
function deriv = grad_vec(x,delx)
xvec = x;
xvec1 = x;
for i = 1:length(x)
xvec = x;
xvec1 = x;
xvec(i) = x(i) + delx;
xvec1(i) = x(i) - delx;
deriv(i) = (func_multivar(xvec) - func_multivar(xvec1) )/(2*delx);
end
�̧sier funçtie
function [alpha1,falpha1] = golden_funct(x,search)
a = -5; b = 5; rho = 0.618034; epsilon = 1e-5;
alpha1 = rho*a+(1-rho)*b;
alpha2 =(1-rho)*a+rho*b;
falpha1 = func_multivar(x+alpha1*search);
falpha2 = func_multivar(x+alpha2*search);
while abs(alpha1-alpha2)>epsilon
if falpha1 > falpha2
a = alpha1;
alpha1 = alpha2;
falpha1 = falpha2;
alpha2 =(1-rho)*a+rho*b;
falpha2 = func_multivar(x+alpha2*search);

else
b = alpha2;
alpha2 = alpha1;
falpha2 = falpha1;
alpha1 = rho*a+(1-rho)*b;
falpha1 = func_multivar(x+alpha1*search);

end
end
alpha1=(alpha1+alpha2)/2;
falpha1=func_multivar(x+alpha1*search);
�̧sier de rulare
u_vechi=[0, 0];u=[-1, 2];v=u;
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n=0;
delx = 10.^(-3);
pk=-grad_vec(u,delx)/norm(grad_vec(u,delx));
[alpha,val_alpha]=golden_funct(u,pk);
%exact minimization rule
while norm(grad_vec(u,delx))>10^(-4)
u_vechi=u;
pk=-grad_vec(u,delx)/norm(grad_vec(u,delx));
[alpha,val_alpha]=golden_funct(u,pk);
u=u+alpha*pk;
v=[v;u];
n=n+1;
end
u
n
alpha
norm(grad_vec(u,delx))
Se poate observa c¼a aceast¼a metod¼a funçtioneaz¼a foarte greoi pe funçtia Rosenbrock din cauza

speci�cit¼a̧tii acestei funçtii şi e de recomandat înlocuirea valorii 10�4 cu 10�2 în testul de stop.

Exerci̧tiul 4.26 Fie f : R! R; f(x) = x7 + x3 + 1: S¼a se arate c¼a ecuaţia f(x) = 0 admite o
singur¼a r¼ad¼acin¼a real¼a, x. S¼a se justi�ce faptul c¼a x este punct de minim global pentru F : R! R;
F (x) =

R x
0
f(s)ds: S¼a se aproximeze x folosind metoda celei mai bune descreşteri. S¼a se compare cu

metoda lui Newton aplicat¼a direct ecuaţiei. Similar pentru funcţia f : (0;1)! R; f(x) = lnx+6x:

Exerci̧tiul 4.27 Fie f : R2 ! R;

f (x; y) = 0:6y4 + 5x2 � 7y2 + sin (xy)� 5y:

(i) S¼a se reprezinte gra�c funcţia f pe p¼atratul [�5; 5]2 şi s¼a se deduc¼a existenţa a dou¼a puncte
de minim local.
(ii) S¼a se aproximeze punctele de minim local folosind metodele de mai sus.

Exerci̧tiul 4.28 Fie f : R2 ! R;

f (x; y) = 0:7x4 + 6y2 � 8x2 + cos (xy)� 8x:

(i) S¼a se reprezinte gra�c funcţia f pe p¼atratul [�5; 5]2.
(ii) S¼a se aproximeze punctele de minim local folosind metodele de mai sus.

Exerci̧tiul 4.29 Fie f : R2 ! R dat¼a prin

f (x) = x21 + 2x
2
2 + 4x1 + 4x2:

Consider¼am metoda celei mai bune descreşteri cu regula minimiz¼arii exacte şi data iniţial¼a (0; 0) :
S¼a se arate c¼a

xk =

 
2

3k
� 2;

�
�1
3

�k
� 1
!
; 8k
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şi s¼a se deduc¼a punctul de minim.

Exerci̧tiul 4.30 Fie f : R2 ! R dat¼a prin

f (x) = 5x21 � 9x1x2 + 4:075x22 + x1:

(i) S¼a se rezolve problema minimiz¼arii lui f folosind metoda direcţiei de descreştere (cu diverse
reguli de determinare a pasului).
(ii) S¼a se explice de ce metoda menţionat¼a necesit¼a un num¼ar relativ mare de iteraţii pentru

aproximarea minimului.

Exerci̧tiul 4.31 S¼a se rezolve problema minimiz¼arii funcţiei f : R3 ! R dat¼a prin

f (x) = (x1 + 5)
2 + (x2 + 8)

2 + (x3 + 7)
2 + 2x21x

2
2 + 4x

2
1x
2
3

prin metodele studiate. S¼a se testeze metodele pentru datele iniţiale (1; 1; 1) ; (�2:3; 0; 0) ; (0; 2;�12) :

Exerci̧tiul 4.32 Fie f : R2 ! R dat¼a prin

f (x) =
�
x21 + x22 � 1

�2
+ (x1 + x2 � 1)2 :

S¼a se reprezinte gra�c, s¼a se g¼aseasc¼a punctele de minim global şi s¼a se arate c¼a
�

3
p
4�1;

3
p
4�1
�
este

un punct critic care nu este extrem local. S¼a se utilizeze metoda c¼aut¼arii direcţiei de descreştere
(cu diverse reguli de determinare a pasului) pentru datele iniţiale (4; 4) ; (4;�4) ; (�4; 4) ; (�4;�4)
şi s¼a se justi�ce rezultatele obţinute.

Exerci̧tiul 4.33 Fie f : R2 ! R dat¼a prin

f (x) = x31e
x2�x21�10(x1�x2)

2

:

S¼a se reprezinte gra�c pe [�1:5;�0:5]2 şi s¼a se utilizeze metoda c¼aut¼arii direcţiei de descreştere (cu
diverse reguli de determinare a pasului) pentru datele iniţiale (�3;�3) ; (�3; 3) ; (3;�3) ; (3; 3) :

Exerci̧tiul 4.34 Fie f : R2 ! R dat¼a prin

f (x) = �x22e1�x
2
1�20(x1�x2)

2

:

S¼a se reprezinte gra�c şi s¼a se utilizeze metoda c¼aut¼arii direcţiei de descreştere (cu diverse reguli
de determinare a pasului) pentru datele iniţiale (0:1; 0:1) ; (0:8; 0:1) ; (1:1; 0:1) :

4.2.3 Convergeņta metodei direçtiei de descreştere. Cazul convex

Atunci când ad¼aug¼am propriet¼a̧ti suplimnetare funçtiilor pe care le studiem, putem demonstra
c¼a algoritmii sunt mai e�cieņti decât în cazul general. Exempli�c¼am cu algoritmul direçtiei de
decreştere pentru funçtii convexe.
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Astfel, în acast¼a seçtiune, în cadrul rezultatelor principale consider¼am f : Rp ! R o funçtie
convex¼a, difereņtiabil¼a cu difereņtiala Lipschitz. Presupunem deci, pe lâng¼a convexitate, c¼a exist¼a
L > 0 astfel încât

krf (x)�rf (y)k � L kx� yk ; 8x; y 2 Rp:
Aceast¼a din urm¼a ipotez¼a a fost întâlnit¼a şi la Teorema lui Zoutendijk (Teorema 4.2.6). Începem
cu un rezultat tehnic care pune în evideņt¼a rolul propriet¼a̧tii Lipschitz a difereņtialei în ob̧tinerea
unei major¼ari a funçtiei date (nu neaparat convex¼a în acest caz) printr-o funçtie p¼atratic¼a.

Lema 4.2.8 Dac¼a f : Rp ! R este diferenţiabil¼a, cu diferenţiala L�Lipschitz, atunci

f (y) � f (x) + hrf (x) ; y � xi+ L

2
ky � xk2 ; 8x; y 2 Rp: (4.8)

Demonstraţie. Fie x; y 2 Rp şi 'y;x : R! R;

'y;x (�) = f (�y + (1� �)x) :

Avem

'y;x (1)� 'y;x (0) =

Z 1

0

'0y;x (�) d� = '0y;x (0) +

Z 1

0

�
'0y;x (�)� '0y;x (0)

�
d�:

Înlocuind şi folosind ipoteza, ob̧tinem

f (y)� f (x)� hrf (x) ; y � xi =
Z 1

0

hrf (x+ � (y � x))�rf (x) ; y � xi d�

� ky � xk
Z 1

0

krf (x+ � (y � x))�rf (x)k d�

� ky � xk2
Z 1

0

�d� =
L

2
ky � xk2 :

Aceasta este concluzia. �

Exerci̧tiul 4.35 S¼a se arate c¼a condiţia (4.8) este echivalent¼a cu convexitatea funcţiei Rp 3 x 7!
L
2
kxk2 � f (x) :

Exerci̧tiul 4.36 Folosind funcţia R 3 x 7! �ex s¼a se arate c¼a condiţia (4.8) nu implic¼a faptul
c¼a diferenţiala lui f este Lipschitz.

Exerci̧tiul 4.37 Consider¼am f : R! R dat¼a prin

f (x) =

8>><>>:
3
4
x2; dac¼a jxj < 2

3

�3
2
x2 + 3x� 1; dac¼a x 2

�
2
3
; 1
�

�3
2
x2 � 3x� 1; dac¼a x 2

�
�1;�2

3

�
jxj � x2

1
; dac¼a jxj > 1:

S¼a se arate c¼a f este diferenţiabil¼a (derivabil¼a), iar cea mai mic¼a constant¼a Lipschitz pentru
derivat¼a este 3: S¼a se arate c¼a f satisface condiţia (4.8) pentru L = 3

2
(folosind, eventual, un

gra�c).
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Observa̧tia 4.2.9 Aşadar, pentru o funcţie f : Rp ! R o funcţie convex¼a, diferenţiabil¼a cu
diferenţiala L�Lipschitz, pentru orice x; y 2 Rp

f (y) + hrf (y) ; x� yi � f (x) � f (y) + hrf (y) ; x� yi+ L

2
ky � xk2 : (4.9)

Privit¼a în raport cu x; adic¼a pentru y �xat, estimarea inferioar¼a (din partea stâng¼a) este o funcţie
a�n¼a, în timp ce estimarea superioar¼a (din partea dreapt¼a) este o funcţie p¼atratic¼a. Aceast¼a funcţie
se scrie ca

h (x) = f (y) + hrf (y) ; x� yi+ L

2
ky � xk2

=
L

2





x� �y � 1

L
rf (y)

�



2 � 1

2L
krf (y)k2 + f (y)

şi are minimul global în

x = y � 1

L
rf (y) :

Aceasta sugereaz¼a urm¼atoare abordare algoritmic¼a: dat¼a �ind iteraţia xk, la pasul urm¼ator, mini-
miz¼am estimarea superioar¼a pentru care lu¼am y = xk: Aceasta conduce deci la

xk+1 = xk �
1

L
rf (xk) ;

adic¼a la metoda celei mai bune descreşteri cu pas

�k =
krf (xk)k

L
:

Aceast¼a observaţie este ilustrat¼a prin exerciţiul de mai jos, iar consistenţa acestei metode este
demonstrat¼a riguros dup¼a aceea.

Exerci̧tiul 4.38 Fie f : R! R dat¼a prin

f (x) =
1

2
(x� 1)2 � 1

2
ln
�
x2 + 1

�
+ 3:

Avem

f 0 (x) = x� 1� x

x2 + 1
;

f 00 (x) =
x2 (x2 + 3)

(x2 + 1)2
; 8x 2 R:

Deci f este strict convex¼a pe R. Se poate cu uşurinţ¼a constata c¼a jf 00 (x)j � 1:25 pentru orice x;
deci f 0 este Lipschitz de constant¼a L = 1:25:
(i) Pentru y = 3; s¼a se reprezinte pentru x 2 [0; 6] în acelaşi gra�c cele trei funcţii din estimarea

(4:9) :
(ii) Rezolvând ecuaţia f 0 (x) = 0 s¼a se aproximeze punctul de minim.
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(iii) Folosind iteraţia

xk+1 = xk �
1

L
rf (xk)

cu data iniţial¼a x0 = 3 s¼a se determine x7 şi s¼a se compare cu punctul de minim determinat
anterior.

Cum spuneam, demonstr¼am acum faptul c¼a itera̧tia intuit¼a mai sus şi apoi ilustrat¼a prin
exemplul anterior conduce la un punct de minim. Începem cu un rezultat ajut¼ator care pune în
evideņt¼a caracteriz¼ari ale propriet¼a̧tii Lipschitz pentru difereņtial¼a în cazul funçtiilor convexe.

Lema 4.2.10 Dac¼a f : Rp ! R este convex¼a şi diferenţiabil¼a pe C; atunci urm¼atoarele a�rmaţii
sunt echivalente:
(i) diferenţiala lui f este L�Lipschitz, adic¼a

krf (x)�rf (y)k � L kx� yk ; 8x; y 2 Rp;

(ii)

1

2L
krf (x)�rf (y)k2 � f (y)� f (x)� hrf (x) ; y � xi � L

2
ky � xk2 ; 8x; y 2 Rp;

(iii)

1

L
krf (x)�rf (y)k2 � hrf (y)�rf (x) ; y � xi � L ky � xk2 ; 8x; y 2 Rp:

Demonstraţie. (i) =) (ii) Ca în lema de mai sus se ob̧tine a doua inegalitate de la (ii) :
Pentru a proba prima inegalitate de la (ii) ; �x¼am x şi de�nim funçtia convex¼a difereņtiabil¼a

g : Rp ! R prin
g (y) = f (y)� hrf (x) ; yi :

Evident, pentru orice y 2 Rp
rg (y) = rf (y)�rf (x)

şi cum rg (x) = 0 şi g este convex¼a, deducem c¼a x este punct de minim global pentru g: În plus,
este simplu de observat c¼a difereņtiala lui g este L�Lipschitz. Astfel, folosind şi lema anterioar¼a,
avem, pentru orice y 2 Rp;

g (x) � g

�
y � 1

L
rg (y)

�
� g (y) +

�
rg (y) ;� 1

L
rg (y)

�
+
L

2





 1Lrg (y)




2

= g (y)� 1

2L
krg (y)k2 :

Înlocuim şi avem

f (x)� hrf (x) ; xi � f (y)� hrf (x) ; yi � 1

2L
krf (x)�rf (y)k2 ;

şi (ii) este complet demonstrat¼a.
(ii) =) (iii) Scriem rela̧tiile de la (ii) pentru cuplurile (x; y) şi (y; x) şi le adun¼am.
(iii) =) (i) Evident. �
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Teorema 4.2.11 Fie f : Rp ! R o funcţie convex¼a, diferenţiabil¼a cu diferenţiala L�Lipschitz.
Presupunem c¼a f admite punct de minim şi consider¼am urm¼atoarea metod¼a a c¼aut¼arii direcţiei de
descreştere

x0 2 Rp;

xk+1 = xk �
1

L
rf (xk) ; 8k � 0:

Atunci, dac¼arf (xk) 6= 0; pentru orice k; (xk) converge la un punct de minim x al lui f; (kxk � xk)
este strict descresc¼ator la 0 şi au loc urm¼atoarele estim¼ari

f (xk)� f (x) � 5L

2
Pk�1

i=0 kxi � xk�2
; 8k

lim
k
k (f (xk)� f (x)) = 0:

Demonstraţie. Conform Lemei 4.2.8,

f (xk+1)� f (xk) � �
1

L
krf (xk)k2 +

L

2





 1Lrf (xk)




2

= � 1

2L
krf (xk)k2 = �

L

2
kxk+1 � xkk2 ; 8k:

În particular, f (xk+1) < f (xk) pentru orice k întrucât am presupus c¼a rf (xk) 6= 0; pentru
orice k:
Fie x� un punct de minim (global, pentru c¼a f este convex¼a) al lui f:
F¼ar¼a a restrânge generalitatea, presupunem c¼a xk 6= x�; pentru orice k (în caz contrar, şirul

este sta̧tionar şi de la un loc încolo rf (xk) = 0; ceea ce am presupus c¼a nu se întâmpl¼a).
Pentru a scurta scrierea, not¼am, pentru orice k

wk = f (xk)� inf
x2Rp

f (x) = f (xk)� f (x�) :

Din cele de mai sus şi din Lema 4.2.8 avem

wk+1 � wk � �
L

2
kxk+1 � xkk2 ; 8k;

şi

wk+1 < wk � hrf (x�) ; xk � x�i+ L

2
kxk � x�k2 = L

2
kxk � x�k2 ; 8k:

Avem, tot pe baza convexit¼a̧tii,

f (x�) � f (xk) + hrf (xk) ; x� � xki ; 8k;

deci

wk � �hrf (xk) ; x� � xki � krf (xk)k kxk � x�k = L kxk+1 � xkk kxk � x�k ; 8k:
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Deducem

f (xk)� f (xk+1) = wk � wk+1 �
L

2
kxk+1 � xkk2

� L

2

�
wk

L kxk � x�k

�2
=

w2k
2L kxk � x�k2

�
w2k+1

2L kxk � x�k2
; 8k:

Rescriem inegalitatea de mai sus astfel:

1

wk
� 1

wk+1

�
1 +

wk+1

2L kxk � x�k2
��1

; 8k:

Cum

wk+1 �
L

2
kxk � x�k2 ;

ob̧tinem c¼a
wk+1

2L kxk � x�k2
� 1

4
:

Pe de alt¼a parte, este simplu de observat c¼a

8t 2
�
0;
1

4

�
;

1

1 + t
� 1� 4t

5
;

deci
1

wk
� 1

wk+1
� 2

5L kxk � x�k2
; 8k:

Sum¼am aceste rela̧tii de la 0 la k � 1 şi ob̧tinem

0 � 1

w0
� 1

wk
� 2

5L

k�1X
i=0

kxi � x�k�2 ;

ceea ce ne conduce la rela̧tia

f (xk)� inf
x2Rp

f (x) � 5L

2
Pk�1

i=0 kxi � x�k�2
; 8k:

Ar¼at¼am în continuare c¼a (kxk � x�k) este strict descresc¼ator. Avem, folosind faptul c¼arf (x�) = 0
şi Lema 4.2.10,

kxk+1 � x�k2 =




xk � x� � 1

L
rf (xk)





2
= kxk � x�k2 +





 1Lrf (xk)




2 � 2

L
hxk � x�;rf (xk)�rf (x�)i

� kxk � x�k2 + krf (xk)k
2

L2
� 2krf (xk)k

2

L2
< kxk � x�k2 ; 8k;
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adic¼a ceea ce dorim.
În particular, (xk) este m¼arginit, deci are un subşir (xkr) convergent la un punct pe care îl

not¼am x: Dar, am v¼azut mai sus,

f
�
xkr+1

�
� f (xkr) � f (xkr+1)� f (xkr) � �

1

2L
krf (xkr)k

2 ; 8r

şi trecând la limit¼a deducem

0 � � 1

2L
krf (x)k2 ;

adic¼arf (x) = 0 şi x este punct de minim global. Cum x� de mai sus este un punct de minim global
ales la întâmplare, deducem c¼a toate calculele sunt valabile şi pentru x în loc de x�: În particular,
(kxk � xk) este strict descresc¼ator şi are loc inegalitatea din concluzie. Aceasta înseamn¼a c¼a şirul
(xk) este convergent la x:
Demonstr¼am acum ultima concluzie. De�nim (�k) =

�
kxk � xk�2

�
; şir care este cresc¼ator cu

limita +1: Rela̧tia

f (xk)� f (x) � 5L

2
Pk�1

i=0 kxi � xk�2
; 8k

se rescrie în forma

k (f (xk)� f (x)) � 5L

2

 
1

k

k�1X
i=0

�i

!�1
; 8k:

Pentru a ob̧tine concluzia, este su�cient s¼a ar¼at¼am c¼a

1

k

k�1X
i=0

�i ! +1:

Fie M > 0 şi n 2 N astfel încât �k �M pentru orice k � n: Atunci

1

2n

2n�1X
i=0

�i �
1

2n

2n�1X
i=n

�i �
M

2
:

În plus, este uşor de veri�cat, pe baza monotoniei lui (kxk � xk) c¼a şirul
�
1
k

Pk�1
i=0 �i

�
este cresc¼a-

tor. Aceste observa̧tii încheie demonstra̧tia. �

Ilustr¼am aceast¼a teorie.

Implementare 4.39 Chiar dac¼a nu determin¼am exact constanta L; putem încerca mai multe
variante (dac¼a o constant¼a este bun¼a, atunci orice constant¼a mai mare este de asemenea bun¼a).
L=50;
f_m=@(x) [20*x(1)^4+5*x(1)^2+ x(2)^4+x(2)^2+x(2)+3*x(1)*x(2)];
f_m_g=@(x) [80*x(1)^3+10*x(1)+3*x(2),4*x(2)^3+2*x(2)+1+3*x(1)];
u=[-0.9 0.9];v=u;
while norm(f_m_g(u))>10^(-3) % i=1:maxiter
u=u-(1/L)*f_m_g(u);v=[v;u];
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end
u
f_m_g(u)
plot(v(:,1),v(:,2),�-�);hold on; hold on;
[x,y] = meshgrid (-1:0.2:1,-1:0.2:1);
z1=20.*x.^4+5*x.^2+y.^4+y.^2+y+3.*x.*y;
[c,h] = contour(x,y,z1,100);

Exerci̧tiul 4.40 S¼a se implementeze metoda de mai sus pentru f : R2 ! R dat¼a prin

f (x; y) = 20x2 + y4 + y:

4.2.4 Posibilit¼a̧ti de accelerare a metodei gradient descent

Algoritmul gradient descent poate avansa foarte lent în regiuni plate ale gra�cului funçtiei obiectiv,
dup¼a cum am v¼azut deja la unele funçtii considerate anterior (de exemplu, funçtia Rosenbrock).
Câteva solu̧tii pentru evitarea acestei di�cult¼a̧ti sunt prezentate prezentate în continuare, într-o
manier¼a euristic¼a
O euristic¼a simpl¼a, cunoscut¼a sub denumirea de metoda impulsului (sau momentum method,

sau, înc¼a, heavy ball method), const¼a în a avansa mai repede în direçtii care s-au dovedit e�ciente
anterior şi a încetini în direçtii unde gradientul s-a schimbat brusc, similar cu o bil¼a care se
rostogoleşte la vale. Aceasta poate � implementat¼a astfel:

mk+1 = 
mk � �rf (xk) ;
xk+1 = xk +mk+1;

unde mk se numeşte impuls, m0 = 0 şi 0 < 
 < 1. O valoare tipic¼a pentru 
 este 0:9. Pentru

 = 0, metoda devine gradient descent obi̧snuit¼a.
Observ¼am ca mk este ca o medie exponeņtial ponderat¼a a gradieņtilor anteriori:

mk+1 = 
mk � �rf (xk) = 
2mk�1 � �
rf (xk�1)� �rf (xk) = � � � = ��
kX
i=0


irf (xk�i) :

Deoarece actualiz¼am parametrii folosind media gradientului mk+1, şi nu ultimul gradient,
rf (xk), observ¼am ca gradieņtii anteriori pot in�ueņta itera̧tia curent¼a. În plus, atunci când
vom combina aceast¼a metod¼a cu Stochastic Gradient Descent (a se vedea mai jos), se vor putea
observa efectele unui minibatch mai mare, f¼ar¼a costuri computa̧tionale suplimentare.

O problem¼a care poate ap¼area în momentum method este c¼a poate s¼a nu încetineasc¼a su�cient
în partea de jos a unei "v¼ai", cauzând oscila̧tii. Metoda gradientului accelerat Nesterov (sau
Nesterov accelerated gradient) modi�c¼a metoda de tip gradient descent pentru a include un pas
de extrapolare, astfel:

exk+1 = xk + � (xk � xk�1) ;

xk+1 = exk+1 � �krf (exk+1) ;
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sau, altfel zis,
xk+1 = xk + � (xk � xk�1)� �krf (xk + � (xk � xk�1)) :

Aceasta este, în mod eseņtial, o form¼a de "a privi înainte" cu un pas, care poate reduce nivelul
oscila̧tiei.
Gradientul accelerat Nesterov poate � rescris în aceeaşi form¼a ca momentum method. În acest

caz, impulsul este actualizat folosind gradientul la noua loca̧tie prevazut¼a:

mk+1 = �mk � �rf(xk + �mk);

xk+1 = xk +mk+1:

Aceasta explic¼a de ce metoda gradientului accelerat Nesterov este numit¼a uneori Nesterov
momentum. De asemenea, arat¼a cum aceast¼a metod¼a poate �mai rapid¼a decât momentummethod
standard: vectorul de impuls indic¼a deja, în linii mari, în direçtia corect¼a, astfel încât m¼asurarea
gradientului la noua loca̧tie, xk + �mk, şi nu la loca̧tia curent¼a, xk, poate �mai precis¼a.
Metoda gradientului accelerat Nesterov este demonstrabil mai rapid¼a decât gradientul descen-

dent pentru funçtii convexe, pentru � şi �k sunt alese corespunz¼ator. Se numeşte "accelerat"
datorit¼a acestei îmbun¼at¼a̧tiri, care este optim¼a pentru metodele de tip gradient descent folosind
doar informa̧tii de ordinul întâi, atunci când funçtia obiectiv este convex¼a şi are gradieņti Lipschitz
continui. În practic¼a, totuşi, aceast¼a metod¼a poate � mai lent¼a decât steepest descent, şi poate
deveni instabil¼a pentru alegeri nepotrivite ale lui � şi �:

Implementare 4.41 Consider¼am urm¼atoarea implementare a GD pentru funçtia Rosenbrock.
% GD pentru minimizarea functiei Rosenbrock (convexa)
clc; clear;
tic
f = @(x, y) (1 - x).^2 + 100 * (y - x.^2).^2;
grad_f = @(x, y) [-2 * (1 - x) - 400 * x .* (y - x.^2); 200 * (y - x.^2)];
% data initiala
x = -1.5;
y =2;
% parametri GD
alpha = 0.001; % Learning rate
tolerance = 1e-6; % toleranta
max_iters = 10000; % numarul maxim de iteratii
iter = 0;
x_vals = x;
y_vals = y;
while iter < max_iters
grad = grad_f(x, y);
x_new = x - alpha * grad(1);
y_new = y - alpha * grad(2);
% criteriul de oprire
if norm([x_new - x, y_new - y]) < tolerance
break;
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end
x = x_new;
y = y_new;
x_vals = [x_vals; x];
y_vals = [y_vals; y];
iter = iter + 1;
end
% rezultatele
fprintf(�Punct de minim (x, y) = (%f, %f) after %d iterationsnn�, x, y, iter);
fprintf(�Valoare minima = %fnn�, f(x, y));
% Plot functie
[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);
Z = f(X, Y);
figure;
contour(X, Y, Z, 50);
hold on;
plot(x_vals, y_vals, �r.-�, �LineWidth�, 1.5, �MarkerSize�, 10);
plot(x_vals(1), y_vals(1), �go�, �MarkerSize�, 10, �LineWidth�, 2); % punctul de

start
plot(x_vals(end), y_vals(end), �bo�, �MarkerSize�, 10, �LineWidth�, 2); % punctul

final
title(�GD veritabil�);
xlabel(�x�);
ylabel(�y�);
legend(�Contururi�, �GD traiectorie�, �Punct start�, �Punct final�);
grid on;
hold off;
toc
care returneaz¼a
Minimum found at (x, y) = (0.990202, 0.980461) after 10000 iterations
Minimum value of the Rosenbrock function = 0.000096
S¼a se implementeze pe acest model GD cu impuls şi GD cu impuls Nesterov şi s¼a se compare

rezultatul cu metoda GD original¼a de mai sus.

4.2.5 Algoritmi speci�ci machine learning baza̧ti pe metoda direçtiei
de descreştere

Descriem acum, f¼ar¼a demonstra̧tii privind convergeņta, câ̧tiva algoritmi deriva̧ti din metoda di-
reçtiei de descreştere care sunt adapta̧ti speci�cit¼a̧tii unor probleme ce apar recurent în machine
learning. Încerc¼am s¼a prezent¼a la nivel euristic, intuitiv motivele pentru care aceste varia̧tii sunt
mai potrivite anumitor probleme de mari dimensiuni decât algoritmul original.
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Stochastic Gradient Descent

Se consider¼a un set de date de antrenament, f(ai; yi)gi=1;n, cu ai 2 R şi yi 2 Rp, ce urmeaz¼a o
distribu̧tie necunoscut¼a. Funçtia obiectiv este:

f (x) =
1

n

nX
i=1

fi (x) =
1

n

nX
i=1

` (h (x; ai) ; yi) :

Exemplu de funçtie de pierdere ("loss functions"): "square loss":

` (h (x; ai) ; yi) =
X
i21;n

kyi � h (x; ai)k2 :

Vom considera algoritmul de tipul steepest descent method (or gradient descent, GD):

xk+1 = xk � �rf (xk) ;
(adic¼a �k = � krf (xk)k ; pentru orice k), unde gradientul funçtiei obiectiv este

rf (x) = 1

n

nX
i=1

rfi (x) :

Factorul � > 0 se numeşte rat¼a de înv¼a̧tare (learning rate). Dac¼a folosim acest algoritm, costul
computa̧tional creşte liniar cu n: Aşadar, cu cât setul de date de antrenament este mai mare, cu
atât costul computa̧tional pentru �ecare itera̧tie este mai mare.
Stochastic Gradient Descent (SGD) reduce costul computa̧tional la �ecare itera̧tie. Fie m < n.

La �ecare pas se alege o muļtime I de indici (adic¼a un lot, minibatch) având cardinalul m şi
actualiz¼am itera̧tia dup¼a formula

xk+1 = xk � � � 1jIj
X
i2I
rfi (xk) :

Acest algoritm se bazeaz¼a pe observa̧tia (ce poate � riguros demonstrat¼a) conform c¼areia, dac¼a
muļtimile I sunt aleator alese, atunci gradientul stochastic este un estimator nedeplasat al gradi-
entului complet, i.e.,

E

 
1

jIj
X
i2I
rfi (x)

!
= rf (x) ; 8x 2 Rp:

Implementare 4.42 Consider¼am exemplul f : R2 ! R,

f(x; y) = (x� 2)2 + (y � 3)2 + 2(x+ 1)2 + (y � 1)2 + (x� 1)2 + 2(y + 2)2;

adic¼a suma funçtiilor fi : R2 ! R (i 2 1; 3),

f1(x; y) = (x� 2)2 + (y � 3)2; f2 (x; y) = 2(x+ 1)2 + (y � 1)2; f3 (x; y) = (x� 1)2 + 2(y + 2)2:
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S¼a se scrie un program care s¼a implementeze SGD cu rata de înv¼atare este constant¼a 0:05, ruleaz¼a
100 de itera̧tii şi alege câte unul din cei trei gradieņti cu egal¼a probabilitate (minibatch de cardinal
1). Pentru seleçtia gradieņtilor se poate utiliza codul:
r = randi(3); % selecteaz¼a random 1, 2 sau 3
if r == 1

grad = grad_f1(x, y);
elseif r == 2

grad = grad_f2(x, y);
else

grad = grad_f3(x, y);
end
S¼a se compare cu algoritmul direçtiei de descreştere corespunz¼ator.

Implementare 4.43 S¼a se implementeze SGD cu minibatch de cardinal 2 pentru minimizarea
funçtiei de mai sus. S¼a se compare cu metoda GD original¼a.

Deşi rata teoretic¼a de convergeņt¼a a SGD este mai lent¼a decât cea a GD pe întregul set de
date de antrenament f1; 2; :::; ng, în practic¼a SGD este adesea mai rapid, deoarece timpul pentru
�ecare pas este mult mai sc¼azut (într-un program Matlab/Octave timpul de execu̧tie este a�̧sat
prin includerea intruçtiunilor tic:::toc la începutul, respectiv sfâŗsitul secveņtei avute în vedere).
Pe de alt¼a parte, se pot considera rate de înv¼a̧tare dinamice. Pentru a îņtelege de ce SGD poate
progresa mai rapid decât GD pe întregul set de date, s¼a presupunem c¼a avem un set de date format
dintr-un singur exemplu duplicat de K ori. Antrenarea pe întregul set de date va � (cel pu̧tin)
de K ori mai lent¼a decât SGD, deoarece va pierde timp calculând gradientul pentru exemplele
repetate. Chiar şi în abseņta duplicatelor, antrenarea pe întregul set de date poate � ine�cient¼a,
deoarece, la începutul antren¼arii, parametrii nu sunt bine estima̧ti, ceea ce face ca evaluarea în
detaliu a gradientului poate s¼a nu merite efortul.

SGD precondi̧tionat

Se poare considera de asemenea un SGD precondi̧tionat, care presupune urm¼atoarea actualizare:

xk+1 = xk � �kM
�1
k rf (xk) ;

undeMk este o matrice de precondi̧tionare, de obicei aleas¼a pozitiv de�nit¼a. Din p¼acate, zgomotul
din estim¼arile gradientului face di�cil¼a estimarea �abil¼a a matricei hessiene, ceea ce complic¼a uti-
lizarea metodelor discutate anterior. De asemenea, este costisitor s¼a a�¼am direçtia de descreştere
folosind o matrice de precondi̧tionare complet¼a. Prin urmare, în practic¼a vom folosi de obicei o
matrice diagonal¼a Mk. Aceste precondi̧tion¼ari nu folosesc neap¼arat informa̧tii de ordinul doi, dar
adesea duc la acceler¼ari în compara̧tie cu SGD simplu.

AdaGrad

Metoda AdaGrad (de la "gradient adaptiv") a fost conceput¼a ini̧tial pentru optimizarea funçtiilor
obiectiv convexe unde multe componente ale gradientului sunt zero; aceasta corespunde situa̧tiei
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când anumite caracteristici sunt foarte rar întâlnite în input, cum ar �cuvintele rare. Actualizarea
are forma pe componente, pentru �ecare d = 1; p:

xk+1;d = xk;d �
�kp
sk;d + "

gk;d;

unde gk;d reprezint¼a componenta d a vectorului gradient gk = rf (xk) ;

sk;d =
kX
i=1

g2i;d

reprezint¼a suma componentelor gradieņtilor la p¼atrat, iar " > 0 este un termen pozitiv mic introdus
pentru a evita împ¼aŗtirea la zero.
V¼azut¼a ca SGD precondi̧tionat, aceasta este echivalent¼a cu

Mk = diag
�
s(k) + "

� 1
2

şi este un exemplu de rat¼a de înv¼aţare adaptativ¼a.

RMSProp şi AdaDelta

O caracteristic¼a de�nitorie a algoritmului AdaGrad este c¼a termenul de la numitor devine mare
în timp, deci rata efectiv¼a de înv¼a̧tare scade. Deşi necesar¼a pentru a asigura convergeņta, poate
in�ueņta în mod negativ performaņta dac¼a numitorul devine mare prea repede.
O metod¼a alternativ¼a este de a utiliza o medie ponderat¼a exponeņtial a p¼atratelor gradieņtilor

precedeņti, în locul sumei acestora:

sk+1;d = �sk;d + (1� �)g2k;d:

În practic¼a, se foloseşte de obicei � � 0:9; care d¼a mai mult¼a importaņt¼a itera̧tiilor recente. În
acest caz,

p
sk;d � RMS (g1:k;d) =

vuut1

k

kX
i=1

g2i;d;

unde RMS provine de la "root mean squared". Actualizarea general¼a a metodei RMSProp este:

xk+1;d � xk;d = �
�kp
sk;d + "

gk;d:

Metoda AdaDelta extinde aceast¼a idee ad¼augând o medie ponderat¼a exponeņtial a actual-
iz¼arilor anterioare astfel:

xk+1;d � xk;d = ��k
p
�k�1;d + "
p
sk;d + "

gk;d;

unde
�k;d = ��k�1;d + (1� �)(xk+1;d � xk;d)

2;
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iar sk;d are aceeaşi expresie ca la metoda RMSProp de mai sus. Metoda are avantajul c¼a num¼ar¼a-
torul şi numitorul se pot simpli�ca printr-un ordin de m¼arime, deci r¼amânem doar cu multiplicarea
pe componente a gradientului cu un scalar. Aceasta elimin¼a nevoia de a adapta rata de înv¼a̧tare
�k; pe care o putem alege 1; îns¼a deoarece aceste rate adaptative nu descresc, aceste metode nu
converg în mod sigur la o solu̧tie.

Adam

Este posibil s¼a combin¼am RMSProp cu metoda impulsului (momentum method). În particular,
calcul¼am EWMA, o medie ponderat¼a exponeņtial¼a a gradieņtilor (ca în metoda impulsului) şi a
gradienţtilor la p¼atrat (ca în RMSProp):

mk = �1mk�1 + (1� �1)gk;

sk = �2sk�1 + (1� �2) g
2
k;

unde în a doua ecua̧tie egalitatea se realizeaz¼a pe componente. Facem apoi urm¼atoarea actualizare
(unde egalitatea este îņteleas¼a pe componente):

xk+1 � xk = ��k
1p
sk + "

mk:

Metoda rezultat¼a este cunoscut¼a sub numele de Adam, nume care provine de la "adaptive moment
estimation".
Valorile standard pentru constante sunt �1 = 0:9, �2 = 0:999 şi " = 10�6. (Dac¼a set¼am �1 = 0

şi nu folosim coreçtia de bias, recuper¼am RMSProp, care nu utilizeaz¼a momentum). Pentru rata
de înv¼a̧tare general¼a, se obi̧snuieşte s¼a folosim o valoare �x¼a, cum ar � �k = 0:001. Din nou,
deoarece rata de înv¼a̧tare adaptiv¼a poate s¼a nu scad¼a în timp, convergeņta nu este garantat¼a.
Dac¼a ini̧tializ¼am m0 = s0 = 0, atunci estim¼arile ini̧tiale vor � conduse c¼atre valori mici.

Se recomand¼a, prin urmare, utilizarea momentelor corectate pentru bias, care cresc valorile mai
devreme în procesul de optimizare. Aceste estim¼ari sunt date de:

m̂k =
mk

1� �k1
; ŝk =

sk
1� �k2

:

Yogi

Când se utilizeaz¼a metode de scalare diagonal¼a, rata general¼a de înv¼a̧tare este determinat¼a de
�0M

�1
k ; care se schimb¼a în timp. Prin urmare, aceste metode sunt adesea numite metode cu rat¼a

de înv¼aţare adaptiv¼a. Totuşi, ele necesit¼a în continuare setarea unei rate de înv¼a̧tare ini̧tiale �0.
Deoarece metodele EWMA sunt utilizate de obicei în cadru stochastic, unde estim¼arile gradi-

entului au zgomot, adaptarea ratei de înv¼a̧tare poate duce la pierderea convergeņtei chiar şi pentru
probleme convexe. Au fost propuse diverse solu̧tii la aceast¼a problem¼a. De exemplu, actualizarea
Yogi modi�c¼a Adam prin înlocuirea:

sk = �2sk�1 + (1� �2) g
2
k = sk�1 + (1� �2)(g

2
k � sk�1)

cu
sk = sk�1 + (1� �2)(g

2
k � sk�1)� sgn(g2k � sk�1);
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unde sgn reprezint¼a funçtia signum, având valoarea 1 pentru numere strict pozitive, �1 pentru
numere strict negative şi 0 pentru 0:
Aşadar, am ob̧tinut urm¼atorul algoritm.
ADAM (Adaptive Moment Estimation)
Pasul 1: Introducere pas �, introducere �1; �2 2 [0; 1), introducere constant¼a " > 0, introducere

parametru ini̧tial x(0)

Introducere m0 = 0, s0 = 0, k = 0
Pasul 2: Calculeaz¼a gradient gk = rf (xk)

Calculeaz¼a biased �rst moment estimate: mk = �1mk�1 + (1� �1)gk
Calculeaz¼a biased second moment estimate: sk = sk�1+(1��2)(g2k�sk�1)�sgn(g2k�sk�1)
Calculeaz¼a bias-corrected �rst moment: m̂k =

mk

1��k1
Calculeaz¼a bias-corrected second moment: ŝk = s(k)

1��k2
Calculeaz¼a noul xk+1: xk+1 = xk � �k

1p
sk+"

mk

Pasul 3: metoda converge; se a�̧seaz¼a xk+1 şi f (xk+1) :
Comparativ cu celelalte metode prezentate, algoritmiul Adam se comport¼a mai bine, în special

aplicat pentru rȩtele neuronale de tip multilayer.

4.2.6 Convergeņta metodei direçtiei de descreştere. Cazul funçtiilor
p¼atratice

S¼a analiz¼am cazul funçtiei f : Rp ! R de�nit¼a prin f(x) = 1
2
hQx; xi+hb; xi unde Q este o matrice

p¼atratic¼a de dimensiune p, simetric¼a, pozitiv de�nit¼a, iar b 2 Rp:
Evident, funçtia este strict convex¼a şi are muļtimile de nivel m¼arginite, deci exist¼a un unic

punct de minim dat de ecua̧tia rf(x) = 0; adic¼a Qx+ b = 0: Deci minimul este x = �Q�1b:
Pentru probleme de mari dimensiuni calculul lui Q�1 poate � costisitor din punct de vedere

computa̧tional.
S¼a studiem acum comportarea algoritmului celei mai bune direçtii de descreştere cu pasul dat

de Regula minimiz¼arii exacte.
Astfel, x0 2 Rp şi pentru orice k � 0;

xk+1 = xk + �kpk;

unde

pk = �
rf(xk)
krf(xk)k

= � 1

kQxk + bk (Qxk + b) ;

iar �k este minimul funçtiei scalare � 7! f(xk + �pk):
Presupunem c¼a gradientul nu se anuleaz¼a în punctele itera̧tiei (adic¼a Qxk + b 6= 0), ceea ce,

ţinând cont de convexitatea problemei, este echivalent cu faptul c¼a f(xk) > f; unde f este valoarea
minim¼a a funçtiei.
Astfel,

f(xk + �pk) = f(xk) +
1

2
�2 hQpk; pki+ � hQxk + b; pki :
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iar aceast¼a funçtie are punctul de minim în

�k = �
hQxk + b; pki
hQpk; pki

=
kQxk + bk3

hQ (Qxk + b) ; Qxk + bi :

Deci itera̧tia este

xk+1 = xk +
kQxk + bk3

hQ (Qxk + b) ; Qxk + bipk

= xk +
kQxk + bk2

hQ (Qxk + b) ; Qxk + bi (�Qxk � b)

= xk �
kQxk + bk2

hQ (Qxk + b) ; Qxk + bi (Qxk + b)

Observa̧tia 4.2.12 Dac¼a f : R2 ! R are forma

f (x; y) = �x2 + �xy + 
y2 + �x+ "y;

atunci pentru a � scris¼a în forma standard de mai sus, avem

Q =

�
2� �
� 2


�
şi b = (�; ") :

Exerci̧tiul 4.44 S¼a se implementeze algoritmul descris mai sus.

Este clar c¼a rezultatele generale de convergeņt¼a pentru metoda celei mai bune descreşteri
se aplic¼a şi acestei itera̧tiei de mai sus. Particularit¼a̧tile problemei conduc la un rezultat de
convergeņt¼a speci�c acestui caz. Pentru o discu̧tie a acestor aspecte este nevoie s¼a utiliz¼am mai
multe rezultate de algebr¼a liniar¼a pe care le trecem în revist¼a aici. Mai întâi, reamintim c¼a dac¼a A
este o matrice real¼a p¼atratic¼a (de dimensiune p), atunci un vector nenul x 2 Rp se numeşte vector
propriu pentru A dac¼a exist¼a � 2 C astfel încât Ax = �x: Scalarul � se numeşte valoare proprie a
matricii A: În general, A are n valori proprii (dintre care unele pot coincide). Este bine-cunoscut
faptul c¼a în cazul unei matrici p¼atratice toate valorile proprii sunt numere reale. Dac¼a, în plus,
matricea este pozitiv de�nit¼a, acestea sunt toate strict pozitive. Are loc urm¼atoarea teorem¼a de
descompunere ortogonal¼a.

Teorema 4.2.13 Fie A o matrice p¼atratic¼a de dimensiune p: Atunci exist¼a o matrice U de di-
mensiune p cu proprietatea U tU = UU t = I şi o matrice diagonal¼a D = diag (d1; :::; dp) astfel
încât U tAU = D:
Mai mult, coloanele matricii U reprezint¼a o baz¼a ortonormal¼a a spaţiului Rp format¼a din vectori

proprii şi elementele lui D sunt valorile proprii corespunz¼atoare.

O conseciņt¼a a Teoremei 4.2.13 este c¼a urma matricii A este suma valorilor sale proprii, iar
determinamtul lui A este produsul valorilor sale proprii.

Pentru început este nevoie de o inegalitate (numit¼a Inegalitatea lui Kantorovici) privind valorile
proprii ale unei matrici de tipul celei de mai sus.
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Lema 4.2.14 Fie Q o matrice p¼atratic¼a, simetric¼a, pozitiv de�nit¼a de dimensiune p: Atunci pen-
tru orice x 2 Rp are loc

kxk4 � hQx; xi �


Q�1x; x

�
� 1

4

 r
�max
�min

+

r
�min
�max

!2
kxk4 ;

unde �max şi �min reprezint¼a cea mai mare şi respectiv cea mai mic¼a valoare proprie a lui Q:

Demonstraţie Este su�cient s¼a demonstr¼am inegalitatea pentru orice x de norm¼a 1: Aşa cum am
amintit în introducere, valorile proprii ale lui Q sunt reale strict pozitive şi, f¼ar¼a a restrânge gene-
ralitatea, le ordon¼am descresc¼ator: �max = �1 � �2 � ::: � �p = �min: Not¼am matricea diagonal¼a
având valorile proprii pe diagonala principal¼a, în ordinea precizat¼a, cu D := diag(�1; �2; :::; �p):
În plus, conform Teoremei 4.2.13, exist¼a o matrice ortogonal¼a B cu proprietatea c¼a Q = BtDB:
Atunci Q�1 = (BtDB)

�1
= BtD�1B; iar D�1 = diag(��11 ; ��12 ; :::; ��1p ): Deci

hQx; xi =


BtDBx; x

�
= hDBx;Bxi

şi 

Q�1x; x

�
=


BtD�1Bx; x

�
=


D�1Bx;Bx

�
:

Pe de alt¼a parte, aplica̧tia x 7! (Bx) este o bijeçtie de la sfera unitate a lui Rp în ea îns¼aşi deci,
pentru a ob̧tine rela̧tia din enuņt, este su�cient s¼a demonstr¼am c¼a pentru orice u 2 Rp de norm¼a
1 are loc

1 � hDu; ui �


D�1u; u

�
� 1

4

 s
�1
�p
+

r
�p
�1

!2
kuk4 :

Dac¼a �1 = �p atunci are loc egalitatea. Presupunem c¼a �p < �1: Avem

hDu; ui =
pX
i=1

u2i�i; hDu; ui =
pX
i=1

u2i
1

�i
:

Atunci prima inegalitate revine la

1 �
 

pX
i=1

u2i
1

�i

! 
pX
i=1

u2i�i

!
;

adic¼a
1

(
Pp

i=1 u
2
i�i)

�
pX
i=1

u2i
1

�i
:

Cum
Pp

i=1 u
2
i = 1; inegalitatea anterioar¼a rezult¼a din inegalitatea lui Jensen aplicat¼a funçtiei

convexe (0;1) 3 x 7! 1
x
:

Pentru a doua inegalitate, s¼a observ¼am c¼a pentru orice i 2 1; p;

1

�i
� 1

�1
+
1

�p
� �i
�1�p

;

116



întrucât �p � �i � �1: Deci

pX
i=1

u2i
1

�i
� 1

�1
+
1

�p
�
Pp

i=1 u
2
i�i

�1�p
:

Ob̧tinem  
pX
i=1

u2i
1

�i

! 
pX
i=1

u2i�i

!
�
 

pX
i=1

u2i�i

!�
1

�1
+
1

�p
�
Pp

i=1 u
2
i�i

�1�p

�
=
(
Pp

i=1 u
2
i�i) (�1 + �p �

Pp
i=1 u

2
i�i)

�1�p
:

Funçtia de gradul al doilea

� 7! �(�1 + �p � �)

�1�p

î̧si atinge maximul pentru � = �1+�p
2

; deci 
pX
i=1

u2i
1

�i

! 
pX
i=1

u2i�i

!
�
�
�1 + �p
2

�2
1

�1�p

=
1

4

 s
�1
�p
+

r
�p
�1

!2
:

Demonstra̧tia este complet¼a. �

Teorema 4.2.15 Cu notaţiile de mai sus are loc inegalitatea

f(xk)�min f � (f(x0)�min f)
�
c� 1
c+ 1

�2k
; 8k � 0;

unde c = �max=�min; unde �max şi �min reprezint¼a cea mai mare şi respectiv cea mai mic¼a valoare
proprie a lui Q:

Demonstraţie. Not¼am, pentru orice k;

ek = f(xk)�min f;
rk = Qxk + b:

Folosind calculele de mai sus, avem

pk = �
rk
krkk

;

�k =
krkk3

hQrk; rki
;
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ek+1 = ek +
1

2
�2k hQpk; pki+ �k hQxk + b; pki

= ek +
1

2

krkk6

hQrk; rki2
hQrk; rki
krkk2

+
krkk3

hQrk; rki

�
rk;�

rk
krkk

�
= ek �

1

2

krkk4

hQrk; rki
; 8k:

Similar,

ek = f (xk)� f (x) = hrf (x) ; xk � xi+ 1
2
hQ (xk � x) ; xk � xi

=
1

2
hQ (xk � x) ; xk � xi = 1

2



Qxk + b; xk +Q�1b

�
=
1

2



Q�1rk; rk

�
; 8k:

Astfel, prin aplicarea Inegalit¼a̧tii lui Kantorovici, ob̧tinem

ek+1
ek

= 1� 1
2

1

ek

krkk4

hQrk; rki
= 1� 1

2

2

hQ�1rk; rki
krkk4

hQrk; rki

= 1� krkk4

hQ�1rk; rki hQrk; rki
� 1� 4

 s
�1
�p
+

r
�p
�1

!�2

= 1� 4
�
�max + �minp
�max � �min

��2
= 1� 4 �max � �min

(�max + �min)
2 =

(�max � �min)
2

(�max + �min)
2 =

�
c� 1
c+ 1

�2
; 8k:

Aceasta asigur¼a validitatea concluziei. �

Observa̧tia 4.2.16 Dac¼a num¼arul c este foarte mare, atunci valoarea c�1
c+1

este aproape de 1; ceea
ce face ca viteza de convergenţ¼a a metodei s¼a �e lent¼a, în general.

Exerci̧tiul 4.45 Fie f : R2 ! R dat¼a prin

f (x) = x21 + x22 � 0:2x1x2 � 2:2x1 + 2:2x2:

(i) S¼a se determine punctul de minim al lui f:
(ii) Aplicând metoda celei mai bune descreşteri pentru x = (2; 3) s¼a se determine teoretic şi

practic câte iteraţii sunt necesare pentru ca f(xk)�min f � 10�10:

4.2.7 Metoda gradieņtilor conjuga̧ti

Metoda pe care o prezent¼am acum se refer¼a la rezolvarea unui sistem de ecua̧tii liniare de forma

Qx = b;
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unde Q este o matrice p¼atratic¼a de dimensiune p; simetric¼a şi pozitiv de�nit¼a. Este de observat c¼a
rezolvarea sistemului de mai sus este echivalent¼a cu minimizarea funçtiei p¼atratice strict convexe
q : Rp ! R;

q (x) =
1

2
hQx; xi � hb; xi

pentru c¼a
rq (x) = Qx� b:

Not¼am
r (x) := rq (x) = Qx� b:

De�ni̧tia 4.2.17 Fie Q o matrice p¼atratic¼a de dimensiune p; simetric¼a şi pozitiv de�nit¼a. De�nim
pe Rp � Rp aplicaţia cu valori reale

hx; yiQ = hQx; yi ;
numit Q�produs scalar.

Observa̧tia 4.2.18 Se veri�c¼a uşor c¼a aplicaţia de mai sus este într-adev¼ar un produs scalar, iar
norma corespunz¼atoare, numit¼a Q�norm¼a, este

kxkQ =
p
hQx; xi:

De�ni̧tia 4.2.19 O mulţime de direcţii (i.e., vectori nenuli) (di)i21;k (unde k 2 N n f0g) se
numeşte Q�ortogonal¼a, iar elementele sale Q�conjugate dac¼a

kdikQ 6= 0; 8i 2 1; k şi hdi; djiQ = 0; 8i; j 2 1; k; i 6= j:

Lema 4.2.20 O mulţime de direcţii Q�conjugate este liniar independent¼a.

Demonstraţie. Fie (di)i21;k (unde k 2 N n f0g) o muļtime de direçtii Q�conjugate şi �e (�i)i21;n
numere reale. Dac¼a

Pk
i=1 �idi = 0; atunci, pentru orice j 2 1; k;

0 =

*
kX
i=1

�idi; Qdj

+
=

kX
i=1

�i hdi; Qdji = �j kdjk2Q :

Ob̧tinem astfel c¼a to̧ti scalarii sunt nuli. �

Observa̧tia 4.2.21 Dac¼a (di)i21;k (k 2 Nnf0g) este o mulţime de direcţii Q�conjugate şi x0 2 Rp;
atunci a minimiza funcţia q pe subspaţiul a�n

A = x0 + span
�
(di)i21;k

�
revine la urm¼atorul argument: pentru A 3 x = x0 +

Pk
i=1 aidi (unde (ai)i21;k sunt numere reale)

avem, folosind Q�conjugarea,

q (x) = q (x0) +
kX
i=1

ai hr0; dii+
1

2

kX
i;j=1

aiaj hQdi; dji

= q (x0) +
kX
i=1

�
ai hr0; dii+

1

2
a2i hQdi; dii

�
;
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deci minimul lui q pe A se obţine minimizând separat pentru �ecare ai; avem minimul

x = x0 +

kX
i=1

aidi; unde ai = �
hr0; dii
hQdi; dii

:

Observa̧tia 4.2.22 Având o mulţime de vectori liniar independenţi (vi)i21;k putem genera, prin

procedeul Gram-Schmidt, o mulţime de direcţii Q�conjugate (di)i21;k astfel încât span
�
(vi)i21;k

�
=

span
�
(di)i21;k

�
: Procedeul este descris mai jos.

Alegem d1 = v1: Dac¼a am construit (dj)i21;i�1 ; de�nim

di = vi +
i�1X
j=1

�jdj;

unde coe�cienţii �j sunt determinaţi astfel: cum dorim ca hdi; dliQ = 0 pentru orice l < i; trebuie
ca

0 = hdi; dliQ =
*
vi +

i�1X
j=1

�jdj; dl

+
Q

= hvi; dliQ +
i�1X
j=1

�j hdj; dliQ = hvi; dliQ + �l hdl; dliQ ; 8l < i

deci

�l = �
hvi; dliQ
hdl; dliQ

; 8l < i

şi astfel

di = vi �
i�1X
j=1

hvi; djiQ
hdj; djiQ

dj = vi �
i�1X
j=1

hQvi; dji
hQdj; dji

dj:

Consider¼am metoda de mai jos, numit¼a metoda direçtiilor conjugate.
Fie x0 2 Rp şi (di)i20;n�1 (n 2 N�) este o muļtime de direçtii Q�conjugate. Pentru k 2 0; n� 1;

de�nim

xk+1 = xk �
hrk; dki
hQdk; dki

dk; unde rk = rq (xk) = Qxk � b: (4.10)

Astfel, conform Observa̧tiei 4.2.21, xk+1 este minimul lui q pe subspa̧tiul 1�dimensional

fxk + �dk j � 2 Rg :

Are loc rezultatul urm¼ator care deschide calea c¼atre metoda gradieņtilor conjuga̧ti.
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Teorema 4.2.23 Fie x0 2 Rp şi (di)i20;p�1 este o mulţime de direcţii Q�conjugate. Fie (xi)i21;p
punctele generate pe baza metodei direcţiilor conjugate de mai sus. Atunci pentru orice k 2 1; p;
xk este minimum global al funcţiei q pe subspaţiul a�n k�dimensional x0 + span

�
(di)i20;k�1

�
:

În particular, soluţia ecuaţiei Qx = b poate � g¼asit¼a în cel mult p paşi. Mai mult, pentru orice
k 2 1; p şi i 2 0; k � 1; hrk; diiQ = 0.

Demonstraţie. Fie k 2 1; p. Conform Observa̧tiei 4.2.21,

xk := x0 +

k�1X
i=0

� hr0; dii
hQdi; dii

di;

este minimul lui q pe x0 + span
�
(di)i20;k�1

�
: Ar¼at¼am c¼a aceste elemente coincid cu cele de�nite

prin rela̧tia (4.10). Dac¼a, pentru i 2 0; k � 1; x 2 x0 + span
�
(dj)j20;i�1

�
; atunci exist¼a (
j)i20;i�1

astfel încât

x = x0 +

i�1X
j=0


jdj

şi atunci

rq (x) = r0 +
i�1X
j=0


jQdj

şi

hrq (x) ; dii = hr0; dii+
i�1X
j=0


j hQdj; dii = hr0; dii :

Alegem x = xi 2 x0 + span
�
(dj)j20;i�1

�
şi deducem

hri; dii = hr0; dii :

Astfel deducem c¼a pentru orice i 2 0; p� 1

hr0; dii
hQdi; dii

=
hri; dii
hQdi; dii

;

de unde ob̧tinem prima concluzie.
Acum, a doua concluzie este evident¼a.
Pentru ultima concluzie, observ¼am c¼a pentru orice k 2 1; p; xk minimizeaz¼a (f¼ar¼a restriçtii)

funçtia h : Rk ! R

h (
0; 
1; :::; 
k�1) = q

 
x0 +

k�1X
i=0


idi

!
:

ceea ce înseamn¼a c¼a pentru orice i 2 0; k � 1

@h

@
i
(
0; 
1; :::; 
k�1) = hrq (xk) ; dii = 0:
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Demonstra̧tia este complet¼a. �

Metoda gradieņtilor conjuga̧ti este o metod¼a a direçtiilor conjugate în care se construiesc la
�ecare pas direçtiiQ�conjugate folosind procedeul Gram-Schmidt aplicat vectorilor (�rq (xi))i20;k :
Se observ¼a faptul c¼a modul de de�nire, la �ecare pas, al elementelor xi asigur¼a ipoteza de liniar¼a
independeņt¼a necesar¼a aplic¼arii procedeului meņtionat. În versiunea sa preliminar¼a, metoda este
urm¼atoarea.
Se alege x0 2 Rp şi se de�neşte d0 = �rq (x0) = �r0:
Atâta timp cât rk 6= 0 de�nim

dk = �rk +
k�1X
j=0

hQrk; dji
hQdj; dji

dj;

�k =
krkk2

hQdk; dki
;

xk+1 = xk + �kdk:

Alegerea lui �k provine din Metoda direçtiilor conjugate şi din faptul c¼a, pe baza Teoremei 4.2.23,

hrk; dki =
*
rk;�rk +

k�1X
j=0

hQrk; dji
hQdj; dji

dj

+
= �krkk2 ; 8k:

Aşa cum e descris¼a mai sus, metoda este costisitoare din punct de vedere computa̧tional din cauza
formulei direçtiilor dk: Urm¼atorul rezultat permite simpli�carea semni�cativ¼a a acestei formule.

Teorema 4.2.24 Dac¼a elementele (ri)i20;k nu sunt zero, atunci ele sunt mutual Q�ortogonale şi

dk = �rk + �kdk�1; unde �k =
krkk2

krk�1k2
:

Demonstraţie. Cum (di)i20;k�1 sunt genera̧ti prin procedeul Gram-Schmidt din (�ri) avem

span
�
(di)i20;k�1

�
= span

�
(ri)i20;k�1

�
:

Cum (di)i20;k�1 sunt Q�conjuga̧ti, din Teorema 4.2.23, rk este Q�ortogonal pe to̧ti vectorii
(di)i20;k�1 ; deci şi pe vectorii (ri)i20;k�1 ; ceea ce implic¼a prima parte a concluziei.
În particular, �i 6= 0 pentru orice i 2 0; k � 1: Atunci

Qdi = Q

�
xi+1 � xi

�i

�
=
(Qxi+1 � b)� (Qxi � b)

�i
=
ri+1 � ri

�i
; 8i 2 0; k � 1:

Deci,

hQrk; dii = hrk; Qdii =
1

�i
hrk; ri+1 � rii ; 8i 2 0; k � 1:
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Astfel,

hQrk; dii = 0; 8i 2 0; k � 2

hQrk; dk�1i =
krkk2

�k�1
:

Substituim în expresia lui dk şi avem

dk = �rk +
krkk2

�k�1 hQdk�1; dk�1i
= �rk +

krkk2

krk�1k2
dk�1;

ceea ce încheie demonstra̧tia. �

Pe baza teoremei tocmai demonstrate, putem formula Metoda gradieņtilor conjuga̧ti astfel:
Se alege x0 2 Rp şi se de�neşte d0 = �rq (x0) = �r0:
Atâta timp cât rk 6= 0 de�nim

�k =
krkk2

hQdk; dki
;

xk+1 = xk + �kdk;

rk+1 = rk + �kQdk;

�k+1 =
krk+1k2

krkk2
;

dk+1 = �rk+1 + �k+1dk:

Teoretic, Metoda gradieņtilor conjuga̧ti determin¼a exact solu̧tia în cel mult p paşi. Totuşi, din
cauza rotunjirilor din cadrul calculelor, aceasta este o situa̧tie rar¼a în practic¼a. În schimb, este o
metod¼a e�cient¼a pentru sisteme cu dimensiune mare.

Implementare 4.46 S¼a se scrie o funçte function x=conj_grad(A,b,x,maxiter) care s¼a ilus-
treze aceast¼a metod¼a pe un sistem liniar generat aleatoriu dup¼a modelul de mai jos:
clear
dim=12;
b=10*rand(dim,1)
B=10*rand(dim,dim)
A=B*B�
x=zeros(dim,1);
maxiter=dim+3;
conj_grad(A,b,x,maxiter);

4.3 Algoritmi de ordinul al doilea

Metodele de ordinul al doilea (adic¼a având oracol de ordinul al doilea) sunt, în compara̧tie cu
metodele de ordin zero sau unu, mai costisitoare din punct de vedere computa̧tional, dar au, în
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general, o convergeņt¼a mai bun¼a. Cea mai reprezentativ¼a metod¼a de acest tip este metoda lui
Newton adaptat¼a problemelor de optimizare pe care o detaliem mai jos. Exist¼a apoi unele metode
care combin¼a aceast¼a metod¼a cu unele tehnici pe care le-am studiat anterior.

4.3.1 Metoda lui Newton în optimizare

Exerci̧tiul 4.47 Pentru a reaminti metoda lui Newton, s¼a se implementeze pentru rezolvarea
aproximativ¼a a sistemului �

3x2y + y2 = 1
x4 + xy3 = 1:

S¼a se testeze cu datele iniţiale (1; 1); (�1;�1); (�1; 1):

Aşa cum am ar¼atat pe scurt în Observa̧tia 3.3.5, metoda lui Newton poate � folosit¼a şi la
probleme de optimizare, �ind în acest context o metod¼a cu oracol de ordinul al doilea. Aplicat¼a
ecua̧tiei rf (x) = 0; metoda lui Newton returneaz¼a o aproximare a unui punct critic. Ca de obicei,
în condi̧tii de convexitate ob̧tinem convergeņta c¼atre un punct de minim global. Pentru o funçtie
f : Rp ! R itera̧tia devine

xk+1 = xk �H�1
f (xk)rf (xk) ;

unde Hf (x) noteaz¼a matricea Hessian¼a a lui f în x:
Metoda lui Newton poate � rezumat¼a astfel:
Pasul 1: se dau x0 (punctul de start), "1; "2 > 0 (toleraņte); �x > 0 (pentru calculul gradien-

tului);
Pasul al 2-lea: �ind calculat xk; se calculeaz¼a rf (xk) ; Hf (xk) ; gradientul şi Hessiana în xk;

pk = �H�1
f (xk)rf (xk) (direçtia de c¼autare);

se actualizeaz¼a xk+1 = xk + pk;
dac¼a kxk+1 � xkk > "1 sau krf (xk+1)k > "2

atunci se merge la Pasul 2
altfel se merge la Pasul 3

Pasul al 3-lea: metoda converge. Se a�̧seaz¼a xk+1 şi f (xk+1) :

Prezent¼am dou¼a modele de aplicare a acestei metode.

Exerci̧tiul 4.48 S¼a se implementeze aceast¼a metod¼a pentru funcţiile test deja utilizate.

Implementare 4.49 Putem folosi de asemenea un program care s¼a calculeze (cu aproxima̧tie)
hessiana, aşa încât s¼a nu �m nevoi̧ti s¼a calcul¼am prin derivare direct¼a aceast¼a matrice.
function sec_deriv = hessian(x,delx)
for i = 1:length(x)
for j = 1:length(x)
if i == j
temp = x;
temp(i) = x(i) + delx;
term1 = func_multivar(temp);
temp = x;
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temp(i) = x(i) - delx;
term2 = func_multivar(temp);
temp = x;
term3 = func_multivar(x);
sec_deriv(i,j) = (term1-2*term3+term2)/(delx^2);
else
temp = x;
temp(i) = x(i) + delx;
temp(j) = x(j) + delx;
term1 = func_multivar(temp);

temp = x;
temp(i) = x(i) + delx;
temp(j) = x(j) - delx;
term2 = func_multivar(temp);

temp = x;
temp(i) = x(i) - delx;
temp(j) = x(j) + delx;
term3 = func_multivar(temp);

temp = x;
temp(i) = x(i) - delx;
temp(j) = x(j) - delx;
term4 = func_multivar(temp);
sec_deriv(i,j) = (term1-term2-term3+term4)/(4*delx^2);
end
end
end

Exerci̧tiul 4.50 Folosind aceast¼a funcţie, s¼a se implementeze din nou metoda lui Newton (a se
vedea funct_multivar şi grad_vec de mai sus).

4.3.2 Metode derivate din metodele fundamentale

Metoda c¼aut¼arii direçtiei de descreştere, metoda gradieņtilor conjuga̧ti şi metoda lui Newton sunt
metode fundamentale în optimizarea f¼ar¼a restriçtii. Pe baza lor au fost derivate şi alte metode
care �e sunt hibride, în sensul c¼a prin construçtia lor combin¼a caracteristici ale celor trei metode
de baz¼a, �e sunt aproximative, în sensul c¼a ofer¼a posibilit¼a̧ti de evitare a calculului elementelor
celor mai costisitoare din punct de vedere computa̧tional ale acestora (ca de exemplu, calculul
Hessianei în cazul metodei lui Newton).
Prezent¼am mai jos, f¼ar¼a demonstra̧tii privind convergeņta, principalele metode derivate. În

orice caz, �ind vorba de varia̧tii ale metodelor de baz¼a, consider¼am c¼a, prin îns¼aşi natura lor, aceşti
algoritmi pot � îņteleşi, accepta̧ti şi folosi̧ti cu uşuriņt¼a.
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1. Metoda lui Newton modi�cat¼a
Pasul 1: se dau x0 (punctul de start), "1; "2 > 0 (toleraņte); �x > 0 (pentru calculul gradien-

tului);
Pasul al 2-lea: �ind calculat xk; se calculeaz¼a rf (xk) ; Hf (xk) ; gradientul şi Hessiana în xk;

pk = �H�1
f (xk)rf (xk) (direçtia de c¼autare);

se minimizeaz¼a � ! f (xk + �pk) (utilizând, de exemplu, metoda seçtiunii de aur) şi se
ob̧tine �;

se actualizeaz¼a xk+1 = xk + �pk;
dac¼a kxk+1 � xkk > "1 sau krf (xk+1)k > "2

atunci se merge la Pasul 2
altfel se merge la Pasul 3

Pasul al 3-lea: metoda converge. Se a�̧seaz¼a xk+1 şi f (xk+1) :

În unele situa̧tii aceast¼a metod¼a este mai rapid¼a decât metoda lui Newton. Spre compara̧tie,
aceast¼a metod¼a mai caut¼a un pas � suplimentar fa̧t¼a de metoda lui Newton, deci combin¼a metoda
clasic¼a cu metoda c¼aut¼arii direçtiei de descreştere.

Exerci̧tiul 4.51 S¼a se exempli�ce aceast¼a metod¼a folosindu-se funcţiile Matlab/Octave deja prezen-
tate.

2. Metoda Levenberg�Marquardt
Pasul 1: se dau x0 (punctul de start), "1; "2 > 0 (toleraņte); �x > 0 (pentru calculul gradien-

tului), � > 0 (o valoare mare);
Pasul al 2-lea: �ind calculat xk; se calculeaz¼a rf (xk) ; Hf (xk) ; gradientul şi Hessiana în xk;

pk = � [Hf (xk) + �I]�1rf (xk) (direçtia de c¼autare);
se actualizeaz¼a xk+1 = xk + pk;
dac¼a f (xk+1) < f (xk)

atunci � devine �=2
altfel � devine 2�

dac¼a kxk+1 � xkk > "1 sau krf (xk+1)k > "2
atunci se merge la Pasul 2
altfel se merge la Pasul 3

Pasul al 3-lea: metoda converge. Se a�̧seaz¼a xk+1 şi f (xk+1) :

Se poate observa c¼a şi aceast¼a metod¼a este una hibrid între metoda lui Newton şi metoda
c¼aut¼arii direçtiei de descreştere.

Exerci̧tiul 4.52 S¼a se exempli�ce aceast¼a metod¼a folosindu-se funcţiile Matlab/Octave deja prezen-
tate.

3. Metoda Fletcher�Reeves a gradieņtilor conjuga̧ti
Pasul 1: se dau x0 (punctul de start), "1; "2 > 0 (toleraņte); �x > 0 (pentru calculul gradien-

tului);
se minimizeaz¼a � ! f (x0 � �rf (x0)) (utilizând, de exemplu, metoda seçtiunii de aur)

şi se ob̧tine �;
se calculeaz¼a x1 = x0 � �rf (x0)
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Pasul al 2-lea: �ind calculate valorile lui xi pân¼a la rangul k; se procedeaz¼a astfel:
se calculeaz¼a pk = �rf (xk) + krf(xk)k2

krf(xk�1)k2
(�rf (xk�1))

se minimizeaz¼a � ! f (xk + �pk) (utilizând, de exemplu, metoda seçtiunii de aur) şi se
ob̧tine �;

se actualizeaz¼a xk+1 = xk + �pk;
dac¼a kxk+1 � xkk > "1 sau krf (xk+1)k > "2
atunci se merge la Pasul 2
altfel se merge la Pasul 3

Pasul al 3-lea: metoda converge. Se a�̧seaz¼a xk+1 şi f (xk+1) :

Aceast¼a metod¼a este o extindere la funçtii nu neaparat p¼atratice a metodei gradieņtilor con-
juga̧ti. În particular, este o metod¼a de ordinul întâi.

Exerci̧tiul 4.53 S¼a se exempli�ce aceast¼a metod¼a folosindu-se funcţiile Matlab/Octave deja prezen-
tate.

4. Metoda Davidon�Fletcher�Powell (Metoda DFP)
Ideea acestei metode este de a evita calculul Hessianei în metoda lui Newton, folosind în schimb

o aproximare a inversei acesteia. Este o metod¼a de ordinul întâi cu convergeņt¼a p¼atratic¼a, mai
�ind numit¼a şi metoda quasi-Newton.
Aproximarea inversei Hessianei în punctul curent se face printr-un şir de matrici (Ak) ; cu

primul termen identitatea care respect¼a recureņta

Ak+1 = Ak +
(xk+1 � xk)

t (xk+1 � xk)

(xk+1 � xk) (rf (xk+1)�rf (xk))t

� Ak (rf (xk+1)�rf (xk))t (rf (xk+1)�rf (xk))Ak
(rf (xk+1)�rf (xk))Ak (rf (xk+1)�rf (xk))t

:

Metoda poate � descris¼a astfel:
Pasul 1: se dau x0 (punctul de start), "1; "2 > 0 (toleraņte); �x > 0 (pentru calculul gradien-

tului), matricea A ini̧tializat¼a cu identitatea;
se minimizeaz¼a � ! f (x0 � �rf (x0)) (utilizând, de exemplu, metoda seçtiunii de aur)

şi se ob̧tine �;
se calculeaz¼a x1 = x0 � �rf (x0)

Pasul al 2-lea: Fiind calculate valorile lui xi pân¼a la rangul k şi ale lui Aj pân¼a la rangul k�1;
se procedeaz¼a astfel:

se calculeaz¼a Ak dup¼a formula de mai sus; se calculeaz¼a pk = �Akrf (xk) ;
se minimizeaz¼a � ! f (xk + �pk) (utilizând, de exemplu, metoda seçtiunii de aur) şi se

ob̧tine �;
se actualizeaz¼a xk+1 = xk + �pk;

dac¼a kxk+1 � xkk > "1 sau krf (xk+1)k > "2
atunci se merge la Pasul 2
altfel se merge la Pasul 3

Pasul al 3-lea: metoda converge. Se a�̧seaz¼a xk+1 şi f (xk+1) :
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Exerci̧tiul 4.54 S¼a se exempli�ce aceast¼a metod¼a folosindu-se funcţiile Matlab/Octave deja prezen-
tate.

5. Metoda Broyden�Fletcher�Goldfarb�Shanno (Metoda BFGS)
Din nou, ideea este de a evita calculul Hessianei în metoda lui Newton, folosind în schimb o

aproximare a acesteia. Deci de data aceasta se aproximeaz¼a Hessiana (nu inversa sa) în punctul
curent prin şirul de matrici (Ak) cu primul termen identitatea care respect¼a recureņta

Ak+1 = Ak +
(rf (xk+1)�rf (xk))t (rf (xk+1)�rf (xk))

(rf (xk+1)�rf (xk)) (xk+1 � xk)
t � rf (xk)

trf (xk)
rf (xk) ptk

;

unde pk este de�nit în descrierea de mai jos a metodei:
Pasul 1: se dau x0 (punctul de start), "1; "2 > 0 (toleraņte); �x > 0 (pentru calculul gradien-

tului), matricea A ini̧tializat¼a cu identitatea;
se minimizeaz¼a � ! f (x0 � �rf (x0)) (utilizând, de exemplu, metoda seçtiunii de aur)

şi se ob̧tine �;
se calculeaz¼a x1 = x0 � �rf (x0)

Pasul al 2-lea: Fiind calculate valorile lui xi pân¼a la rangul k şi ale lui Aj pân¼a la rangul k�1;
se procedeaz¼a astfel:

se calculeaz¼a Ak dup¼a formula de mai sus; se calculeaz¼a pk = �A�1k rf (xk) ;
se minimizeaz¼a � ! f (xk + �pk) (utilizând, de exemplu, metoda seçtiunii de aur) şi se

ob̧tine �;
se actualizeaz¼a xk+1 = xk + �pk;

dac¼a kxk+1 � xkk > "1 sau krf (xk+1)k > "2
atunci se merge la Pasul 2
altfel se merge la Pasul 3

Pasul al 3-lea: metoda converge. Se a�̧seaz¼a xk+1 şi f (xk+1) :

Exerci̧tiul 4.55 S¼a se exempli�ce aceast¼a metod¼a folosindu-se funcţiile Matlab/Octave deja prezen-
tate.

Exerci̧tiul 4.56 S¼a se testeze şi s¼a se compare metodele pe funcţia Rosenbrock.

Exerci̧tiul 4.57 Fie f : R2 ! R dat¼a prin

f (x; y) = ex
2+y2 + x+ y � 3� sin (3 (x+ y)) :

S¼a se arate deseneze gra�cul şi liniile de contur pe [�1; 1]2 şi s¼a se deduc¼a faptul c¼a f are dou¼a
puncte de minim local. S¼a se veri�ce c¼a (0; 0) nu este un astfel de punct. S¼a se foloseasc¼a metodele
anterioare pentru a aproxima minimele.

Exerci̧tiul 4.58 Fie sistemul 8<:
3x� cos yz � 3

2
= 0

3x2 � 625y2 + 2y � 1 = 0
e�xy + 20z + 9:1 = 0:
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S¼a se aproximeze o soluţie a acestui sistem folosind metodele anterioare pentru funcţia f : R3 ! R;

f (x; y; z) =

�
3x� cos yz � 3

2

�2
+
�
3x2 � 625y2 + 2y � 1

�2
+
�
e�xy + 20z + 9:1

�2
:

Exerci̧tiul 4.59 Fie sistemul (supradeterminat)8<:
x2 � y2 + x� 3y = 2
x3 � y4 = �2
x2 + y3 + 2x� y = �1:1:

S¼a se aproximeze soluţii a acestui sistem folosind metodele anterioare pentru funcţia construit¼a ca
la exerciţiul anterior pentru datele iniţiale (1:5;�1:75) ; (1:5; 1:5) :

Exerci̧tiul 4.60 S¼a se compare metodele studiate pe cazul minimiz¼arii funcţiei lui Himmelblau,
f : R2 ! R date prin

f (x) =
�
x21 + x2 � 11

�2
+
�
x22 + x1 � 7

�2
luând diverse date iniţiale (se va reprezenta gra�c şi se va constata c¼a funcţia are patru puncte de
minim local):

Exerci̧tiul 4.61 S¼a se veri�ce pe cazul funcţiei f : R2 ! R date prin

f (x) = x21 + 3x1x2 + 5x
2
2

luând data iniţial¼a x = (1; 1) c¼a
(i) iteraţia pentru generarea matricilor (Ak)k din metoda DFP conduce la o aproximare a

inversei hessianei funcţiei;
(ii) iteraţia pentru generarea matricilor (Ak)k din metoda BFGS conduce la o aproximare a

hessianei funcţiei.

Exerci̧tiul 4.62 Fie f : R4 ! R;

f (x) = (x1 + 10x2)
2 + 5 (x3 � x4)

2 + (x2 � 2x3)2 + 100 (x1 � x4)
4 :

Veri�caţi c¼a 0 2 R4 este singurul punct de minim global şi c¼a nu exist¼a alte puncte de minim local.
Testaţi pe funcţia f
(i) metoda celei mai bune descreşteri cu datele iniţiale (�2;�1; 1; 2) ; (200;�200; 100;�100) ;
(ii) metodele derivate din metoda lui Newton.

Exerci̧tiul 4.63 S¼a presupunem c¼a din observarea unui fenomen �zic la momentele ti rezult¼a
datele mi; conform tabelului urm¼ator:

i 1 2 3 4 5 6
ti 0:2 0:4 0:6 0:8 0:9 0:95
mi 0:7123 1:754 4:852 22:27 94:91 388:2

:
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În plus, presupunem c¼a se observ¼a un comportament de tip tx1 în jurul lui 0 şi un comportament
de tip 1

(1�t)x2 în jurul lui 1: Legea sugerat¼a de comportare la �ecare moment t depinde de trei
parametri x1; x2; x3 şi este modelat¼a de funcţia f : R3 ! R;

f(x) = x3t
x1

1

(1� t)x2
:

Funcţia de minimizat pentru a g¼asi modelul cel mai apropiat de aceste date este, conform metodei
celor mai mici p¼atrate (a se vedea şi Problema 2.22),

x 7!
6X
i=1

�
mi � x3t

x1
i

1

(1� ti)x2

�2
:

Determinaţi parametrii modelului şi valoarea total¼a a p¼atratelor abaterilor minimizând funcţia de
mai sus prin diverse metode.

Exerci̧tiul 4.64 S¼a se testeze metodele studiate pe urm¼atoarele funcţii test:
(i) funcţia Beale, f : R2 ! R dat¼a prin

f (x) = (1:5� x1 + x1x2)
2 +

�
2:25� x1 + x1x

2
2

�2
+
�
2:625� x1 + x1x

3
2

�2
;

pentru care punctul de minim global este (3; 0:5) ; iar valoarea minim¼a global¼a este 0;
(ii) funcţia �c¼amil¼a cu trei cocoaşe�, f : R2 ! R dat¼a prin

f (x) = 2x21 � 1:05x41 +
x61
6
+ x1x2 + x22;

pentru care punctul de minim global este (0; 0) ; iar valoarea minim¼a global¼a este 0;
(iii) funcţia Branin, f : R2 ! R dat¼a prin

f (x) =

�
x2 �

5:1

4�2
x21 +

5

�
x1 � 6

�2
+ 10

�
1� 1

8�

�
cos (x1) + 10;

pentru care, printre minimele globale se reg¼asesc punctele (��; 12:275); (�; 2:275); (9:42478; 2:475),
iar valoarea minim¼a global¼a este 0:397887:

4.4 Cazul funçtiilor cu valori vectoriale: optimizare Pareto

Optimizarea Pareto (dup¼a numele economistului italian W. F. Pareto) se ocup¼a de situa̧tia în care
minimizarea (sau maximizarea) se face dup¼a mai multe criterii, unele �ind în concureņt¼a cu altele.
Formalizarea matematic¼a a acestei idei este prezentat¼a succint mai jos.
Ca de obicei, consider¼am p 2 N n f0g :

De�ni̧tia 4.4.1 O submulţime nevid¼a C � Rp se numeşte con dac¼a are loc proprietatea

8x 2 C;8� 2 R+ := [0;1) : �x 2 C:
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Conform acestei de�ni̧tii, orice con coņtine elementul 0: Dac¼a A � Rp este o muļtime nevid¼a,
atunci muļtimea

R+A := f�a j � 2 R+; a 2 Cg
este con, numit conul generat de A:

Propozi̧tia 4.4.2 Un con C este mulţime convex¼a dac¼a şi numai dac¼a C + C � C:

Prin urmare, un con convex este o muļtime nevid¼a închis¼a la adunare şi la înmuļtirea cu scalari
pozitivi.

De�ni̧tia 4.4.3 (i) Un con C se numeşte propriu dac¼a C 6= f0g şi C 6= Rp:
(ii) Un con C se numeşte punctat dac¼a C \ (�C) = f0g:

Urm¼atorul rezultat arat¼a c¼a un con introduce pe Rp o rela̧tie de ordine (paŗtial¼a) compatibil¼a
cu structura de spa̧tiu liniar.

Teorema 4.4.4 Fie Rp un spaţiu liniar şi C � Rp un con. Atunci relaţia

RC := f(x1; x2) 2 Rp � Rp j x2 � x1 2 Cg

este re�exiv¼a şi

8x1; x2 2 Rp;8� 2 R+; x1RCx2 ) �x1RC�x2 (4.11)

8x1; x2; x 2 Rp; x1RCx2 ) (x1 + x)RC(x2 + x): (4.12)

Mai mult, C este convex dac¼a şi numai dac¼a RC este tranzitiv¼a şi, respectiv, C este punctat
dac¼a şi numai dac¼a RC este antisimetric¼a.
Invers, dac¼a R este o relaţie re�exiv¼a pe Rp care satisface (4.11) şi (4.12), atunci C := fx 2

Rp j 0Rxg este con şi R = RC :

Demonstraţie. Toate a�rma̧tiile se veri�c¼a direct, pe baza de�ni̧tiilor. �

Observa̧tia 4.4.5 Pentru p = 1 şi C = R+; RC coincide cu ordinea natural¼a pe R:

Având în vedere aceasta teorem¼a, dac¼a C este con convex punctat vom scrie x1 �C x2 în loc
de x1RCx2.

Exerci̧tiul 4.65 Fie C � Rp un con convex închis punctat cu interior nevid. S¼a se arate c¼a:
(i) C + intC = intC;
(ii) Rp n � intC + C = Rp n � intC şi (Rp n �C) [ f0g+ C = (Rp n �C) [ f0g ;
(iii) dac¼a x 2 intC şi x� 2 C+ n f0g; atunci x�(x) > 0:

Exerci̧tiul 4.66 Fie C � Rp un con închis convex cu interior nevid şi ; 6= A � Rp: S¼a se arate
c¼a urm¼atoarele a�rmaţii sunt echivalente:
(i) A \ � intC = ;;
(ii) clA \ � intC = ;;
(iii) (A+ C) \ � intC = ;;
(iv) cl(con(A+ C)) \ � intC = ;:
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Exerci̧tiul 4.67 Fie C � Rp un con închis convex cu interior nevid care nu coincide cu Rp şi
e 2 intK: S¼a se arate c¼a:
(i) C + [0;1)e � C;
(ii) C + (0;1)e = intC;
(iii) Re� C = Rp;
(iv) pentru orice x 2 Rp; x+ Re 6� C:

De�ni̧tia 4.4.6 Consider¼am Rp ca �ind ordonat cu ordinea parţial¼a indus¼a de un con convex,
punctat, propriu C şi A � Rp o mulţime nevid¼a.
(i) Un punct x 2 A se numeşte minim tare al mulţimii A (în raport cu conul C) dac¼a x �C x

pentru orice x 2 A, sau, echivalent, A � x+ C:
(ii) Un punct x 2 A se numeşte minim Pareto al mulţimii A (în raport cu conul C) dac¼a

x 2 A; x �C x implic¼a x = x, sau, echivalent, A \ (x� C) = fxg :
(iii) Presupunem c¼a C are interior nevid. Un punct x 2 A se numeşte minim slab al mulţimii

A (în raport cu conul C) dac¼a A \ (x� intC) = ;:

Observa̧tia 4.4.7 Este evident c¼a de�niţia minimului Pareto este echivalent¼a cu oricare dintre
relaţiile

(A� x) \ (�C) = f0g;
A \ (x� C) = fxg

şi
(A+ C) \ (x� C) = fxg:

Având în vedere incluziunea C + intC � intC; de�niţia minimului slab este echivalent¼a cu

(A� x) \ (� intC) = ;;

A \ (x� intC) = ;;
(A+ C) \ (x� intC) = ;

şi cu
x =2 A+ intC:

Muļtimea punctelor de minim tare (minim Pareto, minim slab) ale muļtimii A va � notat¼a
cu IMin(A;C) (respectiv, Min(A;C); WMin(A;C)). Evident, dac¼a intC 6= ;; IMin(A;C) �
Min(A;C) � WMin(A;C):

Observa̧tia 4.4.8 Pentru p = 1 şi C = R+; toate noţiunile de mai sus coincid cu minimalitatea
scalar¼a standard.

Exerci̧tiul 4.68 S¼a se ilustreze minimalitatea Pareto, c¼autând mulţimea punctelor optimale Pareto
în raport cu R2+ pentru un grup de puncte generate aleator în primul cadran.

Exerci̧tiul 4.69 S¼a se genereze 50 puncte echidistante pe un cerc şi s¼a se identi�ce dintre aceste
punctele optimale în sens Pareto (din nou, în raport cu R2+).
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De�ni̧tia 4.4.9 Fie f : Rn ! Rp unde n; p 2 N n f0g ; C � Rp un con convex închis punctat
popriu şi A � Rn o mulţime închis¼a. Spunem c¼a x 2 A este minim (slab) Pareto pentru f pe A
dac¼a f (x) este minim (slab) Pareto al mulţimii f (A) :

Urm¼atorul rezultat prezint¼a o situa̧tie în care g¼asirea unui minim Pareto pentru o funçtie
vectorial¼a se reduce la g¼asirea unui minim pentru o funçtie scalar¼a.

Propozi̧tia 4.4.10 Cu notaţiile din De�niţia 4.4.9, consider¼am C = Rp+; w 2 intRp+ cu
Pp

i=1wi =
1: Fie g : Rn ! R;

g (x) =

pX
i=1

wifi (x) :

Dac¼a x 2 A este punct de minim (global) pe A pentru g, atunci x este minim Pareto pentru f pe
A:

Demonstraţie. Presupunem, prin reducere la absurd, c¼a x nu este minim Pareto pentru f pe A:
Atunci exist¼a x 2 A astfel încât pentru orice i 2 1; n; fi (x) � fi (x) şi exist¼a j 2 1; n astfel încât
fj (x) < fj (x) : Înmuļtind aceste inegalit¼a̧tii cu scalarii wi > 0 corespunz¼atori şi adunându-le,
ob̧tinem g (x) < g (x) ; ceea ce reprezint¼a o contradiçtie. �

Exerci̧tiul 4.70 Fie f : R2 ! R2;

f (x) =
�
x21 + x22; (x1 � 1)

2 + (x2 � 3)2
�
:

S¼a se scrie un program care s¼a determine puncte de minim Pareto penru f (pe R2) prin metoda
descris¼a în Propoziţia 4.4.10 (de exemplu, prin modi�carea corespunz¼atoare a metodei DFP).

4.5 Ob̧tinerea unor algoritmi pentru probleme cu restriçtii
- o metod¼a de penalizare

În cazul problemelor cu restriçtii, cei mai importaņti algoritmi deriv¼a din metodele studiate pentru
probleme f¼ar¼a restriçtii pe baza unor rezultate teoretice care transform¼a problemele din prima
categorie în probleme din a doua categorie.
Vom considera dou¼a probleme concrete pentru ilustrarea teoriei.
Mai întâi, �e f; g1; g2 : R2 ! R date respectiv prin

f (x) = (x1 � 1)2 + (x2 � 5)2

g1 (x) = �x21 + x2 � 4
g2 (x) = � (x1 � 2)2 + x2 � 3:

Studiem problema
(P1) min f (x) cu g1 (x) � 0; g2 (x) � 0:

Este evident c¼a problema admite solu̧tie. O analiz¼a geometric¼a, combinat¼a cu una analitic¼a, arat¼a
c¼a solu̧tia este

x = (x1; x2) =

 
3

4
; 4 +

�
3

4

�2!
= (0:75; 4:5625) :
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Apoi, consider¼am problema (P2) a minimiz¼arii lui f : R! R; f (x) = x2� 8x+3 cu restriçtia
g (x) � 0; unde g : R! R; g (x) = x� 1: Evident, solu̧tia este x = 1:

Evident, exist¼a şi algoritmi direçti cum ar � algoritmul grilei uniforme care pot � adapta̧ti
foarte uşor.

Exerci̧tiul 4.71 S¼a se implementeze un algoritm de tipul grilei uniforme adaptat pentru problema
(P1).

Vom constata c¼a metodele de aproximare a solu̧tiilor problemelor cu restriçtii se reduc, prin
diverse procedee, la minimizarea unor familii de funçtii f¼ar¼a restriçtii pentru care se pot aplica
algoritmii studia̧ti anterior.

O metod¼a mai elaborat¼a pe care o descriem este bazat¼a pe o tehnic¼a numit¼a penalizare. Ideea
este de a îngloba restriçtiile problemei într-o funçtie, numit¼a termen de penalizare, astfel încât
rezolvarea problemei f¼ar¼a restriçtii care const¼a din minimizarea funçtiei obiectiv adunat¼a cu acest
termen s¼a conduc¼a la aproximarea solu̧tiei problemei ini̧tiale. De regul¼a, trebuie considerat¼a o
familie parametric¼a de termeni de penalizare pentru a ob̧tine o aproximare bun¼a a solu̧tiei pe care
o c¼aut¼am. Prezent¼am în continuare aspectele matematice cele mai relevante ale acestei abord¼ari.
Consider¼am problema general¼a cu restriçtii

min f (x) cu x 2M;

unde f : Rp ! R este o funçtie neted¼a şi M � Rp este o muļtime închis¼a. Dorim s¼a aproxim¼am
solu̧tiile acestei probleme aceasta prin intermediul solu̧tiilor problemelor f¼ar¼a restriçtii de forma

min (f (x) + 
P (x)) ;

unde 
 > 0 şi P : Rp ! R este o funçtie. Constanta 
 se numeşte parametru de penalizare, iar
funçtia P se numeşte funçtie de penalizare, adic¼a o funçtie care satisface de�ni̧tia de mai jos.

De�ni̧tia 4.5.1 O funcţie P : Rp ! R se numeşte funcţie de penalizare pentru problema general¼a
cu restricţii dac¼a este continu¼a, cu valori nenegative şi

P (x) = 0 () x 2M:

Ideea este c¼a o astfel de funçtie "penalizeaz¼a" punctele din afara muļtimiiM astfel încât acestea
nu pot � solu̧tii pentru problema f¼ar¼a restriçtii asociat¼a mai sus.

Exemplul 4.5.2 Fie
M = fx 2 Rp j g (x) � 0g

unde g : Rp ! Rn este o funçtie difereņtiabil¼a, iar inegalitatea este îņteleas¼a pe coordonate.
Atunci funçtia P : Rp ! R dat¼a prin

P (x) =
nX
i=1

max f0; gi (x)g
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este o funçtie de penalizare. Evident, aceast¼a funçtie este una nedifereņtiabil¼a, în general.
O alt¼a posibilitate este s¼a alegem P : Rp ! R dat¼a prin

P (x) =

nX
i=1

(max f0; gi (x)g)2 ;

iar aceasta este o funçtie de penalizare difereņtiabil¼a.

Exemplul 4.5.3 Fie
M = fx 2 Rp j h (x) = 0g

unde h : Rp ! Rm este o funçtie difereņtiabil¼a. Atunci funçtia P : Rp ! R dat¼a prin

P (x) =

nX
i=1

h2i (x)

este o funçtie de penalizare.

Exerci̧tiul 4.72 S¼a se scrie prima variant¼a a funcţiei de penalizare din exemplul anterior pentru
g : R! R2;

g (x) =
�
x� 2;� (x+ 1)3

�
:

Studiaţi diferenţiabilitatea şi gra�cul funcţiei de penalizare.

Exemplul 4.5.4 Fie Q o matrice p¼atratic¼a simetric¼a de dimensiune p: Consider¼am aplica̧tia
f : Rp ! R;

f(x) = hQx; xi
şi problema minimiz¼arii şi maximiz¼arii acesteia pe sfera unitate din Rp; adic¼a pe muļtimea

fx 2 Rp j kxk = 1g :

Evident, în ambele cazuri exist¼a solu̧tie, sfera �ind compact¼a.
S¼a remarc¼am c¼a într-un punct x de pe sfer¼a conul tangent Bouligand la acesta este muļtimea

fu 2 Rp j hx; ui = 0g

(Teorema lui Lyusternik), deci conul normal corespunz¼ator este

f�x j x 2 Rg:

Atunci, conform teoremei care d¼a condi̧tii necesare de optimalitate de ordinul I, un punct x de pe
sfer¼a este solu̧tie a problemei de minimizare sau de maximizare dac¼a exist¼a � 2 R cu

Qx = �x;

adic¼a
� = hQx; xi :
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(Aceeaşi concluzie rezult¼a prin aplicarea Teoremei Karush-Kuhn-Tucker.) Deducem de aici c¼a
punctele ce satisfac condi̧tiile de optimalitate pentru problemele noastre corespund vectorilor
proprii de norm¼a 1 ai lui Q; iar valorile funçtiei f în acele puncte sunt valorile proprii ale lui
Q: Concluzion¼am c¼a cea mai mare valoare proprie a lui f este �max = maxkxk=1 hQx; xi ; în timp
ce cea mai mic¼a este �min = minkxk=1 hQx; xi : Prin normalizare se ob̧tine

�max = max
x2Rpnf0g

hQx; xi
kxk2

şi �min = min
x2Rpnf0g

hQx; xi
kxk2

:

S¼a consider¼am acum pentru problema de mai sus funçtia de penalizare P (x) =
�
kxk2 � 1

�2
şi

un parametru 
 > 0: Conform ideii generale, problema f¼ar¼a restriçtii asociat¼a este

min
�
hQx; xi+ 


�
kxk2 � 1

�2�
:

O solu̧tie x
 a acestei probleme trebuie s¼a satisfac¼a, conform Teoremei lui Fermat, ecua̧tia

2Qx
 + 4

�
kx
k2 � 1

�
x
 = 0;

adic¼a
Qx
 = 2


�
1� kx
k2

�
x
;

ceea ce înseamn¼a în particular c¼a x
 este vector propriu al lui Q:
În plus, valoarea proprie asociat¼a este 2


�
1� kx
k2

�
, deci

�min � 2

�
1� kx
k2

�
� �max:

Astfel,
�min
2


� 1� kx
k2 �
�max
2


şi pentru 
 !1; norma lui x
 tinde la 1; deci x
 tinde (m¼acar pe un subşir) la un punct fezabil
al problemei ini̧tiale.

Lema 4.5.5 Fie P o funcţie de penalizare pentru problema minimiz¼arii lui f (x) cu x 2M: Fie x
o soluţie global¼a a acestei probleme şi (
k) un şir strict cresc¼ator de numere reale pozitive. Pentru
�ecare k 2 N consider¼am funcţia qk : Rp ! R dat¼a prin

qk (x) = f (x) + 
kP (x) :

Presupunem c¼a �ecare dintre aceste funcţii admite un punct de minim global xk: Atunci, pentru
orice k au loc urm¼atoarele:
(i) qk+1 (xk+1) � qk (xk) ;
(ii) P (xk+1) � P (xk) ;
(iii) f (xk+1) � f (xk) ;
(iv) f (x) � qk (xk) � f (xk) :
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Demonstraţie. (i) Pe baza monotoniei lui (
k) avem

qk+1 (xk+1) = f (xk+1) + 
k+1P (xk+1) � f (xk+1) + 
kP (xk+1) :

Pe de alt¼a parte, cum xk e punct de minim global pentru qk; avem

qk (xk) = f (xk) + 
kP (xk) � f (xk+1) + 
kP (xk+1) :

Astfel ob̧tinem prima concluzie.
(ii) Avem, ca mai sus,

qk (xk) = f (xk) + 
kP (xk) � f (xk+1) + 
kP (xk+1)

şi
qk+1 (xk+1) = f (xk+1) + 
k+1P (xk+1) � f (xk) + 
k+1P (xk) ;

inegalit¼a̧ti care adunate conduc la


kP (xk) + 
k+1P (xk+1) � 
kP (xk+1) + 
k+1P (xk) :

Deducem c¼a
(
k+1 � 
k)P (xk+1) � (
k+1 � 
k)P (xk) :

Cum 
k+1 > 
k ob̧tinem c¼a P (xk+1) � P (xk) :
(iii) Putem scrie din nou

qk (xk) = f (xk) + 
kP (xk) � f (xk+1) + 
kP (xk+1) ;

deci, folosind (ii),
f (xk+1) � f (xk) + 
k (P (xk)� P (xk+1)) � f (xk) :

(iv) Avem
f (x) + 
kP (x) � qk (xk) = f (xk) + 
kP (xk) :

Dar x este punct fezabil pentru problema ini̧tial¼a, deci P (x) = 0: Astfel,

f (x) � qk (xk) = f (xk) + 
kP (xk) � f (xk) :

Demonstra̧tia este complet¼a. �

Rezultatul urm¼ator este eseņtial pentru fundamentarea metodei de penalizare.

Teorema 4.5.6 Cu notaţiile de mai sus, în ipotezele Lemei 4.5.5, dac¼a 
k ! 1; atunci orice
punct limit¼a al şirului (xk) este soluţie a problemei cu restricţii.

Demonstraţie. Fie (xkl) un subşir al lui (xk) convergent la un punct x
�: Conform Lemei 4.5.5,

şirul (qk (xk)) este cresc¼ator şi m¼arginit superior de f (x) : Deci exist¼a limita real¼a q al lui (qk (xk))
şi q � f (x) : Cum f este continu¼a, avem

lim
l
f (xkl) = f (x�) � f (x) :
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Dar şirul cu termenii

klP (xkl) = qkl (xkl)� f (xkl)

este convergent la q� f (x�) : Tot din lema precedent¼a, şirul (P (xk)) este descresc¼ator şi m¼arginit
inferior de 0; deci este convergent. Cum 
kl !1; deducem c¼a P (xkl)! 0; iar pe baza continuit¼a̧tii
lui P;

0 = limP (xkl) = P (limxkl) = P (x�) :

Deci x� e punct fezabil pentru problema cu restriçtii şi cum f (x�) � f (x) ; deducem c¼a x� este la
rândul s¼au o solu̧tie global¼a a acestei probleme. �

Observa̧tia 4.5.7 Conform rezultatului precedent, pentru convergenţ¼a trebuie s¼a consider¼am un
şir de parametri 
k !1:
Ideal ar � s¼a g¼asim o soluţie a problemei iniţiale minimizând doar o funcţie de tip

f (�) + 
P (�)

cu 
 > 0, caz în care funcţia de penalizare se numeşte exact¼a. Cum vom vedea în exemplul
urm¼ator, o astfel de funcţie nu poate � diferenţiabil¼a, în general.

Exemplul 4.5.8 Fie problema minimiz¼arii funçtiei f : R! R; f (x) = 5� 3x pentru x 2 [0; 1] :
Evident, x = 1 este solu̧tia problemei. Presupunem c¼a utiliz¼am o funçtie de penalizare difereņtia-
bil¼a. Cum P este nul¼a pe [0; 1] ; P 0 (1) = 0: Atunci, pentru orice 
 > 0;

(f + 
P )0 (1) = �3 6= 0;

deci punctul x nu satisface condi̧tia necesar¼a de minimalitate f¼ar¼a restriçtii pentru (f + 
P ) : Deci
P nu este o funçtie de penalizare exact¼a.

Pe baza acestei teorii, putem prezenta o metod¼a de aproximare a solu̧tiilor unei probleme cu
restriçtii funçtionale de tipul

min f (x) cu g (x) � 0; h (x) = 0,

unde f : Rp ! R; g : Rp ! Rn; h : Rp ! Rm; cu nota̧tiile standard.
Astfel, în nota̧tiile de mai sus, consider¼am funçtia de penalizare

P (x) =
nX
i=1

(max f0; gi (x)g)2 +
mX
j=1

h2j (x)

şi şirul de parametri


k = max

�
1;

1

kmax f0; g (xk�1)g ; h (xk�1)k

�
;

unde max f0; g (xk�1)g e îņteles pe componente.
O alt¼a posibilitate de alegere a lui 
k este 10 log (k + 1) :
Concret, funçtia f + 
kP este la �ecare pas minimizat¼a folosind o metod¼a cât mai rapid¼a din

cazul problemelor f¼ar¼a restriçtii, iar un bun candidat este metoda DFP întrucât nu face apel la
difereņtiala a doua care ar putea s¼a nu existe în cazul lui P:
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Implementare 4.73 Mai întâi, evideņtiem pe baza unui desen comportamentul funçtiei de pe-
nalizare în cazul problemei (P2) la varierea (creşterea) parametrului 
:
f=@(x) [x^2-8*x+3];
a=-7;b=5;
g=@(x) [x-1];
fplot(f,[a,b]);
set(gca, �XAxisLocation�, �origin�)
set(gca, �YAxisLocation�, �origin�)
hold on;
f1=@(x) [f(x)+4*max(0,g(x))^2];
fplot(f1,[a,b]);
hold on;
f2=@(x) [f(x)+8*max(0,g(x))^2];
fplot(f2,[a,b]);
hold on;
f3=@(x) [f(x)+12*max(0,g(x))^2];
fplot(f3,[a,b]);

Exerci̧tiul 4.74 S¼a se scrie �̧sierele care determin¼a soluţia problemei (P2) folosind algoritmul
secţiunii de aur pentru funcţia penalizat¼a (prin creşterea progresiv¼a a parametrului 
).

Exerci̧tiul 4.75 S¼a se scrie �̧sierele care adapteaz¼a metoda DFP pentru determinarea soluţiei
problemei (P1).

Observa̧tia 4.5.9 O metod¼a foarte simpl¼a, dar e�cient¼a în unele situaţii, bazat¼a de asemenea
pe ideea penaliz¼arii, este prezentat¼a în continuare. Consider¼am problema general¼a cu restricţii
funcţionale şi date netede (în notaţia standard):

min f (x) cu g (x) � 0; h (x) = 0,

unde f : Rp ! R; g : Rp ! Rn; h : Rp ! Rm: Pentru metoda pe care o vom prezenta, o inegalitate
de tipul hj (x) = 0 se scrie echivalent în forma (hj (x) � 0 şi �hj (x) � 0), de aceea ne vom ocupa
de problema cu inegalit¼aţi:

min f (x) cu g (x) � 0;
unde g = (g1; :::; gn) : Algoritmul propus este urm¼atorul:
Pasul 1. Se alege y0 = (1; :::; 1) 2 Rn (un parametru) şi x�1 = 0 2 Rp (o dat¼a iniţial¼a), " > 0

(o toleranţ¼a)
Pasul 2. Date �ind yk = (yik)i21;n 2 Rn şi xk�1 2 Rp minimiz¼am funcţia (f¼ar¼a restricţii)

f (x) +
nX
i=1

ey
i
kgi(x)

cu data iniţial¼a xk�1: Fie xk punct de minim pentru aceast¼a funcţie.
Dac¼a toate produsele yikgi (x) (i 2 1; n) sunt mai mici în valoare absolut¼a decât " atunci xj e

aproximarea pe care o c¼aut¼am.
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Altfel, actualiz¼am pentru i 2 1; n

yik+1 = ey
i
kgi(xk)yik:

Rezultatul de convergenţ¼a a acestui algoritm este urm¼atorul: dac¼a şirurile obţinute pe baza paşilor
anteriori satisfac

yikgi (xk)! 0;8i 2 1; n şi xk ! x;

atunci x este soluţie a problemei cu restricţii.
Pentru a demonstra, este su�cient s¼a avem în vedere cazul n = 1: Astfel, consider¼am g : Rp !

R:
Mai întâi ar¼at¼am c¼a x este punct fezabil. Presupunând contrariul, g (x) > 0; deci g (xk) > 0

pentru k su�cient de mare. Obţinem:

yk+1 = eykg(xk)yk � yk:

Deci (yk) este un şir cresc¼ator şi cum y0 > 0; acesta nu poate avea limita 0: Aceast¼a observaţie
este în contradicţie cu ipoteza ykgi (xk)! 0: Deducem c¼a g (x) � 0; deci x este fezabil.
Presupunem, tot prin reducere la absurd, c¼a pentru orice � > 0 exist¼a x� 2 B (x; �) \M astfel

încât f (x�) < f (x) : Atunci pentru orice k:

f (x�) + eykg(x�) � f (x�) + 1 < f (x) + 1:

Cum ykg (xk)! 0 şi xk ! x; pentru k su�cient de mare avem

f (x�) + eykg(x�) � f (x�) + 1 < f (xk) + eykg(xk):

Ultima inegalitate contrazice minimalitatea lui xk:
Aşadar, convergenţa menţionat¼a are loc.
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Modele de examene scrise

Model examen paŗtial

Subiectul 1. Fie muļtimea M = fx 2 R2 j x+ y � 1g : S¼a se scrie expresia conului tangent la
M în (2;�1) : Fie f : R2 ! R o funçtie de clas¼a C1. S¼a se scrie condi̧tia necesar¼a de optimalitate
de ordinul I astfel încât (2;�1) s¼a �e solu̧tie local¼a a problemei de optimizare min f (x; y) cu
(x; y) 2M:

Subiectul 2. Se doreşte construirea unei cutii parelelipipedice cu baza p¼atrat şi f¼ar¼a capac cu
volumul de 100. Determina̧ti dimensiunile unei astfel de cutii astfel încât materialul folosit s¼a �e
minim.

Subiectul 3. Fie f; g : R2 ! R date prin f (x; y) = (x+ 1)2 + y2 şi g (x; y) = �x3 + y2:
Consider¼am problema minimiz¼arii lui f (x; y) cu restriçtia g (x; y) � 0:
(i) S¼a se veri�ce dac¼a are loc condi̧tia Mangasarian-Fromovitz în (0; 0) :
(ii) S¼a se determine punctele care satisfac condi̧tiile de optimalitate Fritz John.
(iii) S¼a se determine solu̧tiile problemei.

Subiectul 4. Fie f; g; h : R2 ! R date prin f (x; y) = (x� 1)2 + y � 2, g (x; y) = x + y � 2
şi h (x; y) = y � x � 1: Consider¼am problema minimiz¼arii lui f (x; y) cu restriçtiile g (x; y) � 0;
h (x; y) = 0:
(i) S¼a se g¼aseasc¼a punctele care satisfac condi̧tiile de optimalitate Karush-Kuhn-Tucker.
(ii) S¼a se veri�ce dac¼a condi̧tiile su�ciente de ordinul al doilea au loc în aceste puncte şi s¼a se

concluzioneze.

Barem de notare:
1. 1p �baza; conul tangent 4p; condi̧tia necesar¼a de optimalitate 5p.
2. 1p �baza; modelarea 2p; rezolvarea problemei 5p; concluzia 2p.
3. 1p �baza; condi̧tia MF: 2p; punctele Fritz John 5; solu̧tiile 2p.
4. 1p �baza; punctele Karush-Kuhn-Tucker 4p; condi̧tia su�cient¼a de ordinul al doilea 4p;

concluzia 1p.

Timp de lucru: 100 minute
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Model examen �nal

Partea I (30�) (scris) Metoda celei mai bune descreşteri cu regula minimiz¼arii exacte. Descriere,
convergeņt¼a

Partea a II-a (60�) (scris+calculator) Fie sistemul (supradeterminat)8<:
x2 � y2 + x� 3y = 2
x3 � y4 = �2
x2 + y3 + 2x� y = �1:1:

S¼a se aproximeze solu̧tii ale acestui sistem folosind pentru funçtia f : R2 ! R;

f (x; y) =
�
x2 � y2 + x� 3y � 2

�2
+
�
x3 � y4 + 2

�2
+
�
x2 + y3 + 2x� y + 1:1

�2
;

cu data ini̧tial¼a (1:5;�1:75) ; una dintre metodele de mai jos:
(1) metoda lui Newton;
(2) metoda celei mai bune direçtii de descreştere cu regula minimiz¼arii exacte;
(3) metoda Levenberg�Marquardt;
(4) metoda Davidon�Fletcher�Powell.

S¼a se descrie pe scurt, în scris, metoda folosit¼a.

Barem de notare:
1p �o�ciu;
Partea I: enuņt 1 p, demonstra̧tie 2 p.
Partea a II-a: implementare 4p, descrierea metodei 2p.
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