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� activitatea de seminar (AS): prezeņta, activitatea şi calitatea r¼aspunsurilor din tim-
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natural din intervalul [1; 10] a valorii

1

2
EF +

1

2
EC =

1

2
EF +

1

4
EP +

1

8
V S +

1

8
AS:



Prefa̧t¼a

Scopul lucr¼arii de fa̧t¼a este acela de a prezenta, pe spa̧tii normate �nit dimensionale (spa̧tiile Rp;
p 2 Nnf0g), o serie de rezultate de analiz¼a neliniar¼a, cu accent pe studiul aspectelor clasice ale
teoriei optimiz¼arii pentru probleme cu date netede (de clas¼a C2). Evident, multe din rezultatele
cuprinse în aceast¼a prezentare au loc pe spa̧tii mult mai generale (spa̧tii metrice, spa̧tii normate
in�nit dimensionale), dar ideile fundamentale ce stau la baza teoriei sunt similare, indiferent de
context. Cadrul spa̧tiilor �nit dimensionale ofer¼a posibilitatea scurt¼arii unor demonstra̧tii şi,
mai ales, un suport intuitiv necesar preciz¼arii cu mai mare claritate a acestor idei de baz¼a. De
asemenea, pentru o ilustrare cât mai cuprinz¼atoare a prezent¼arii teoretice, aceasta este înso̧tit¼a
de exerci̧tii şi probleme dintre care unele sunt rezolvate.

Marius Durea
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Capitolul 1

Introducere

1.1 Concepte de baz¼a

Teoria optimiz¼arii se ocup¼a cu studiul punctelor de extrem (de minim sau de maxim) ale
funçtiilor.

De�ni̧tia 1.1.1 Fie A � R şi f : A ! R. Spunem c¼a a 2 A este punct de minim (respec-
tiv maxim) local pentru f dac¼a exist¼a o vecin¼atate V a punctului a astfel încât f(a) � f(x)
(respectiv, f(a) � f(x)); pentru orice x 2 A \ V: Punctele de maxim sau de minim local se
numesc puncte de extrem local.

Dac¼a f(a) � f(x) (respectiv f(a) � f(x)) pentru orice x 2 A, spunem c¼a a este punct de
minim (respectiv, maxim) global (situa̧tii corespunz¼atoare cazului V = R).

Observa̧tia 1.1.2 Remarc¼am faptul c¼a, în notaţiile de�niţiei precedente, a 2 A nu este punct
de minim local pentru f dac¼a şi numai dac¼a exist¼a un şir (an) de elemente din A cu limita a
astfel încât f(an) < f(a) pentru orice n: O observaţie similar¼a are loc pentru maximalitate.

Dou¼a rezultate fundamentale reprezint¼a baza Teoriei optimiz¼arii. Acestea sunt Teorema lui
Weierstrass şi Teorema lui Fermat.

Teorema 1.1.3 (Weierstrass) Dac¼a f : K ! R este o funcţie continu¼a pe mulţimea com-
pact¼a K � R; atunci f este m¼arginit¼a şi îşi atinge marginile pe K (adic¼a exist¼a a; b 2 K; astfel
încât sup

x2K
f(x) = f(a) şi inf

x2K
f(x) = f(b)).

Teorema lui Weierstrass asigur¼a condi̧tii su�ciente de existeņt¼a a punctelor de extrem (adic¼a
de minim sau de maxim) globale. Condi̧tia de compactitate este sever¼a.

Teorema 1.1.4 (Fermat) Fie I � R un interval şi a 2 int I. Dac¼a f : I ! R este derivabil¼a
în a; iar a este punct de extrem local pentru f; atunci f 0(a) = 0:

Teorema lui Fermat precizeaz¼a condi̧tii necesare de optimalitate. Reciproca este fals¼a, aşa
cum se poate vedea considerând funçtia f : R! R; f(x) = x3 şi a = 0:
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De-a lungul cursului vom dezvolta instrumente de studiu care s¼a permit¼a generalizarea
acestor dou¼a rezultate de baz¼a.

Subliniem unele concepte-cheie.

1. Fie f : R! R; f(x) = x2: Consider¼am problema minimiz¼arii lui f când x 2 R; adic¼a

min f(x), x 2 R:

Evident x = 0 este minim global. Aceasta este o problem¼a de optimizare f¼ar¼a restriçtii.

2. Fie f : R! R; f(x) = x2: Consider¼am problema minimiz¼arii lui f când x 2 [�1;1);
adic¼a

min f(x), x 2 [�1;1):
Din nou, x = 0 este minim global. Aceasta este o problem¼a de optimizare cu restriçtii,
dar pentru c¼a punctul de minim este în interiorul domeniului, restriçtia este inactiv¼a local
(nu in�ueņteaz¼a problema).

3. Fie f : R! R; f(x) = x2: Consider¼am problema minimiz¼arii lui f când x 2 [1;1); adic¼a

min f(x), x 2 [1;1):

Acum x = 1 este minim global. Aceasta este o problem¼a de optimizare cu restriçtii, iar
punctul de minim este pe frontiera domeniului, deci restriçtia joac¼a un rol important (spunem
c¼a restriçtia este activ¼a).

4. Fie f : R! R; f(x) = x3: Consider¼am problema minimiz¼arii lui f când x 2 R; adic¼a

min f(x), x 2 R:

Funçtia nu admite punct de extrem.

5. Fie f : R! R; f(x) = x3: Consider¼am problema minimiz¼arii lui f când x 2 [�1;1);
adic¼a

min f(x), x 2 [�1;1):
Funçtia admite punct de minim în x = �1 (restriçtia este activ¼a şi determin¼a o solu̧tie).

6. Fie f : R! R; f(x) = (ex+x�5)2: Consider¼am problema minimiz¼arii lui f când x 2 R;
adic¼a

min f(x), x 2 R:
Evident, f(x) � 0 pentru orice x 2 R: Dac¼a ar exista solu̧tii ale ecua̧tiei ex + x � 5 = 0

acestea ar � puncte de minim global. Ecua̧tia nu poate � rezolvat¼a. Considerând g : R! R;
g(x) = ex+x�5 constat¼am c¼a g(0) �g(5) < 0 şi continuitatea lui g asigur¼a existeņta unei solu̧tii
în intervalul (0; 5): Putem cel mult s¼a aproxim¼am aceast¼a solu̧tie. Deci vom � interesa̧ti de
algoritmi de aproximare a r¼ad¼acinilor ecua̧tiilor neliniare. În multe cazuri, rezolvarea
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unei probleme de optimizare depinde de determinarea (�e şi aproximativ¼a) a solu̧tiilor unei
ecua̧tii neliniare.

7. Fie f : R! R; f(x) = x2 � 2 sin x: Consider¼am problema minimiz¼arii lui f când x 2 R;
adic¼a

min f(x), x 2 R:
Aplicarea Teoremei lui Fermat conduce la rezolvarea ecua̧tiei x = cos x; adic¼a la problema
determin¼arii punctelor �xe pentru funçtia cos : O reprezentare gra�c¼a sau un studiu analitic
arat¼a c¼a un astfel de punct x exist¼a. În plus, varia̧tia funçtiei în jurul acestui punct dovedeşte c¼a
x este punct de minim pentru f . Din nou, nu îl vom putea determina ci vom preciza algoritmi
de aproximare a punctelor �xe, puncte ce vor interveni în mai multe situa̧tii. De altfel,
legat de punctul precedent, rezolvarea unei ecua̧tii de forma f(x) = 0 revine la rezolvarea
ecua̧tiei f(x)+x = x, adic¼a la determinarea punctelor �xe ale funçtiei f +id, aceast¼a abordare
�ind util¼a uneori.

8. Fie f : (0;1)! R;
f(x) =

x

x2 + 10
:

Din cauz¼a c¼a f(x) > 0 pentru orice x 2 (0;1) şi limx!1 f(x) = 0; limx!0 f(x) = 0; funçtia
nu admite punct de minim global. Dar, tot din cauzele meņtionale, pentru studiul existeņtei
punctelor de maxim global putem s¼a restrângem discu̧tia la un interval compact pe care
se aplic¼a Teorema lui Weierstrass. Teorema lui Fermat şi studiul varia̧tiei funçtiei dovedesc c¼a
x =

p
10 este punct de maxim global.

9. În unele cazuri este mai util¼a informa̧tia ce poate � dedus¼a pe baza ecua̧tiei
f 0(x) = 0 decât rezolvarea sa efectiv¼a, rezolvare care în unele cazuri este imposibil¼a. Ilustr¼am
aceasta prin deducerea legii �zice a refraçtiei luminii ce se ob̧tine din Teorema lui Fermat
aplicat¼a în virtutea Principiului lui Fermat: într-un mediu neomogen, lumina parcurge distaņta
dintre dou¼a puncte astfel încât timpul de parcurs este minim.
Astfel se ob̧tine faptul c¼a atunci când trece dintr-un mediu în altul, direçtia luminii satisface

rela̧tia sin�1
v1

= sin�2
v2
; unde �1; �2 sunt unghiurile dintre direçtiile luminii şi normala la suprafa̧ta

care separ¼a cele dou¼a medii.
S¼a demonstr¼am aceast¼a lege. Mai întâi model¼am problema. Presupunem c¼a raza de

lumina str¼abate drumul dintre punctul (0; a); a > 0; a�at în primul mediu şi punctul (b; c);
b > 0; c < 0; din cel de-al doilea.
Pentru uşuriņta calculelor, presupunem c¼a suprafa̧ta care separ¼a cele dou¼a medii este axa

Ox. Fie v1; v2 vitezele luminii în cele dou¼a medii. Not¼am cu (x; 0) punctul în care raza trece
dintr-un mediu în altul, unde x trebuie determinat conform Principiului lui Fermat. Timpii de
parcurs în cele dou¼a medii sunt, respectiv,

t1 =

p
a2 + x2

v1

t2 =

p
(b� x)2 + c2

v2
;

3



deci timpul total care trebuie minimizat este
p
a2+x2

v1
+

p
(b�x)2+c2
v2

: Consider¼am f : R! R;

f(x) =

p
a2 + x2

v1
+

p
(b� x)2 + c2

v2
;

pe care trebuie s¼a o minimiz¼am pe R: Derivata lui f este

f 0(x) =
x

v1
p
a2 + x2

+
x� b

v2
p
(x� b)2 + c2

:

Cum f 0(0) = �b
v2
p
b2+c2

< 0, f 0(b) = b
v1
p
a2+b2

> 0 şi

f 00(x) =
1

v1
� a2

(a2 + x2)
3
2

+
1

v2
� c2

((x� b)2 + c2)
3
2

> 0; 8x 2 R:

exist¼a un singur punct critic pentru f situat în intervalul [0; b]: Not¼am acest punct cu x. Varia̧tia
lui f arat¼a c¼a x este punct de minim. Atunci

x

v1
p
a2 + x2

=
b� x

v2
p
(x� b)2 + c2

:

Dar,
xp

a2 + x2
= sin�1

şi
b� xp

(x� b)2 + c2
= sin�2;

deci
sin�1
v1

=
sin�2
v2

:

10. Consider¼am urm¼atoarea problem¼a de optimizare cu restriçtii de mai multe (dou¼a)
variabile:

max(x+ y)

cu restriçtiile
x � 0; y � 0; x � 6
4�1x+ y � 6
3x+ 2y � 22:

Problema se poate rezolva gra�c pentru c¼a toate funçtiile implicate sunt liniare. Atunci
când se face desenul pentru muļtimea restriçtiilor şi se interpreteaz¼a sensul liniilor de nivel
pentru expresia de maximizat, se observ¼a c¼a acest maxim se atinge în punctul (4,5) care este
unul dintre vârfurile poligonului ce reprezint¼a muļtimea restriçtiilor.

11. Fie f : R! R; f(x) = ex + e�x + 2 cosx: Condi̧tiile de optimalitate de ordin
superior ne asigur¼a faptul c¼a x = 0 este punct de minim pentru f: Într-adev¼ar, ne amintim
rezultatul de mai jos.
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Fie I � R un interval deschis, f : I ! R o funçtie de n ori derivabil¼a în a 2 I; (n 2 N; n � 2);
astfel încât

f 0(a) = 0; f 00(a) = 0; :::; f (n�1)(a) = 0; f (n)(a) 6= 0:
(i) Dac¼a n este par, atunci a este punct de extrem, şi anume: punct de maxim local dac¼a
f (n)(a) < 0 şi punct de minim local dac¼a f (n)(a) > 0.
(ii) Dac¼a n este impar, atunci a nu este punct de extrem.

În cazul concret al funçtiei de mai sus, f 0(0) = f 00(0) = f 000(0) = 0; iar f (iv)(0) = 4 > 0:
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1.2 Exerci̧tii

Exerci̧tiul 1.1 S¼a se studieze existenţa punctelor de extrem local pentru funcţiile polinomiale
de gradul al III-lea. Admit acestea puncte de extrem global? Aplicaţie: problema lui Tartaglia:
s¼a se scrie num¼arul 8 ca sum¼a de doi termeni pozitivi astfel încât produsul acestora înmulţit cu
diferenţa lor s¼a �e maxim.

Exerci̧tiul 1.2 Un panou publicitar se a�¼a la în¼alţimea h1 faţ¼a de nivelul str¼azii şi are în¼alţimea
l: La ce distanţ¼a faţ¼a de locul instal¼arii panoului trebuie s¼a se a�e un privitor ce are în¼alţimea
h2 < h1 astfel încât unghiul sub care se vede panoul s¼a �e maxim?

Exerci̧tiul 1.3 O persoan¼a se a�¼a în urm¼atoarea situaţie: trebuie s¼a mearg¼a la un râu a�at în
apropiere, s¼a încarce o cantitate de ap¼a şi apoi s¼a o transporte în alt loc a�at pe acelaşi mal.
S¼a se stabileasc¼a traseul optim din punct de vedere al timpului de parcurs dac¼a f¼ar¼a înc¼arc¼atur¼a
viteza de deplasare este v1; iar cu înc¼arc¼atur¼a viteza de deplasare este v2 < v1:

Exerci̧tiul 1.4 La construcţia unei cl¼adiri, constructorul are urm¼atoarele costuri: 10:000:000
u.m (unit¼aţi monetare) pentru terenul de amplasament, 250:000 u.m. costuri independente
pentru �ecare etaj şi 10:000x costuri comune speci�ce pentru �ecare etaj (unde x este num¼arul
de etaje). S¼a se determine num¼arul x de etaje ce trebuie construite astfel încât costul mediu pe
etaj s¼a �e minim.

Exerci̧tiul 1.5 Cum poate � descompus num¼arul 100 într-o sum¼a de termeni pozitivi astfel
încât produsul acestora s¼a �e maxim? Dar dac¼a termenii sunt numere naturale?

Exerci̧tiul 1.6 Un soldat are la dispoziţie 7400 pentru a dezamorsa o bomb¼a a�at¼a în largul
m¼arii la o distanţ¼a de 50m faţ¼a de ţ¼arm. Soldatul se a�¼a la 100m în lungul ţ¼armului faţ¼a de
poziţia bombei în raport cu ţ¼armul. Ştiind c¼a soldatul alearg¼a cu 5m=s înoat¼a cu 2m=s şi, odat¼a
ajuns la bomb¼a, are nevoie de 3000 pentru a opri circuitul de detonare, determinaţi dac¼a poate
opri explozia.

Exerci̧tiul 1.7 (problema butoaielor �Kepler) S¼a se determine dimensiunile cilindrului
de volum maxim pentru care distanţa de la mijlocul generatoarei la cele dou¼a puncte "opuse"
ale bazei este constant¼a (d > 0).

Exerci̧tiul 1.8 Se ştie c¼a în¼alţimea la care se g¼aseşte centrul de greutate a unui sistem format
din dou¼a corpuri este dat¼a de relaţia

m1h1 +m2h2
m1 +m2

;

unde m1 şi m2 sunt masele celor dou¼a corpuri, iar h1 şi h2 sunt în¼alţimile la care se g¼asesc
centrele de greutate ale corpurilor respective. Consider¼am un pahar cilindric cu în¼alţimea de
20 cm, masa de 100 g şi aria bazei de 10 cm2. Se pune întrebarea pân¼a la ce în¼alţime trebuie
turnat¼a ap¼a în pahar pentru ca sistemul s¼a �e cât mai stabil (i.e., s¼a aib¼a centrul de greutate
cât mai jos).
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Soluţie Model¼am problema. Not¼am cu h în¼aļtimea pân¼a la care turn¼am ap¼a. Avem m1 = 100;
h1 = 10 (datele corespunz¼atoare paharului) şi m2 = 10h; h2 = h=2 (datele corespunz¼atoare
apei). Conform formulei de mai sus, centrul de greutate al paharului cu ap¼a este la în¼aļtimea

g(h) =
1000 + 5h2

100 + 10h
=
200 + h2

20 + 2h
:

Studiul varia̧tiei lui g conduce la punctul de minim �h = 10(
p
3� 1): Se constat¼a şi c¼a g(�h) = �h;

adic¼a �h este punct �x pentru g; lucru care nu este înlâmpl¼ator dac¼a ne gândim la semni�ca̧tia
�zic¼a a rezultatului. �

Exerci̧tiul 1.9 Se doreşte confecţionarea unui container cilindric cu volumul de un litru folosind
cat mai puţin material. Aria lateral¼a se poate t¼aia dintr-o bucat¼a dreptunghiular¼a de material,
f¼ar¼a pierderi. Bazele sunt t¼aiate din nişte p¼atrate de latur¼a 2r (deci materialul necesar are aria
2(2r)2 = 8r2). Determinaţi dimensiunile containerului pentru care se utilizeaz¼a cel mai puţin
material.

Exerci̧tiul 1.10 O cutie paralelipipedic¼a cu baza p¼atrat, f¼ar¼a capac, are volumul 100 dm3:
Determinaţi dimensiunile cutiei care foloseşte cel mai puţin material.

Exerci̧tiul 1.11 Dorim s¼a confecţion¼am o cutie cilindric¼a (cu capac) de un volum dat. Pre-
supunem c¼a materialul din care se confecţioneaz¼a bazele este de N � 1 mai scump pe unitate
de arie decât cel pentru aria lateral¼a a cilindrului. S¼a se determine, în funcţie de N , raportul
dintre raza bazei cilindrului şi generatoarea acestuia astfel încât costul s¼a �e minim.

Exerci̧tiul 1.12 S¼a se modeleze problema maximiz¼arii ariei unui dreptunghi de perimetru
cunoscut (p > 0) şi s¼a se rezolve.

Exerci̧tiul 1.13 S¼a se determine aria maxim¼a pe care o poate avea un dreptunghi înscris într-
un semicerc de raz¼a 10 având o latur¼a pe diametrul semicercului.

Exerci̧tiul 1.14 S¼a se determine punctele de extrem pentru funcţiile de mai jos.
(i) f : R! R; f(x) = (x+ 2)2(x� 1)3;
(ii) f : R! R; f(x) = sin3 x+ cos3 x;
(iii) f : R! R; f(x) = 3

p
x2 � 3

p
x2 � 1;

(iv) f : R! R; f(x) = x2�5x+6
x2+1

:

Soluţie (i) Derivata funçtiei este

f 0(x) = (x+ 2)(x� 1)2(5x+ 4);

deci punctele critice sunt �2; 1;�4
5
: Din tabelul de varia̧tie se poate imediat deduce c¼a �2 este

punct de maxim local, �4
5
este punct de minim local, iar 1 nu este punct de extrem.

(ii) Este su�cient s¼a studiem funçtia pe intervalul [0; 2�) (din periodicitate). Derivata
funçtiei este

f 0(x) = 3 sin x cosx(sinx� cosx);
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având r¼ad¼acinile
0;
�

4
;
�

2
; �;

5�

4
;
3�

2
:

Din analiza semnului derivatei in jurul acestor puncte avem c¼a 0 + 2k�; �2 + 2k�;
5�
4
+ 2k�

(k 2 Z) sunt maxime locale, iar �
4
+ 2k�; � + 2k�; 3�

2
+ 2k� sunt minime locale.

O alt¼a variant¼a este, ca dup¼a determinarea punctelor critice, s¼a determin¼am derivata a doua
a funçtiei şi s¼a folosim urm¼atorul rezultat: pentru punctul critic x; dac¼a f 00(x) > 0; atunci x
este punct de minim local, iar dac¼a f 00(x) < 0 atunci x este punct de maxim local.
(iii) Funçtia este derivabil¼a pe R n f�1; 0; 1g şi derivata este

f 0(x) =
2

3

(x2 � 1) 23 � x 4
3

x
1
3 (x2 � 1) 23

:

Punctele critice sunt � 1p
2
; 1p

2
; iar candida̧tii pentru punctele de extrem sunt aşadar

�1; 0; 1;� 1p
2
;
1p
2
:

Din analiza semnului derivatei lui f în jurul acestor puncte deducem c¼a � 1p
2
; 1p

2
sunt puncte

de maxim local, iar 0 este minim local.
(iv) Discu̧tia este analoag¼a metodelor descrise mai sus. Se ob̧tine c¼a 1 �

p
2 este punct de

maxim local, iar 1 +
p
2 este punct de minim local. �

Exerci̧tiul 1.15 S¼a se arate c¼a x = 0 este punct de maxim iar x = � este punct de minim
pentru f : R! R;

f (x) = 2 cosx� 1
2
cos 2x:

Implementare Matlab 1.16 S¼a se reprezinte gra�c utilizând Matlab funçtiile de la Exerci̧tiul
1.14. Spre exemplu, pentru a reprezenta funçtia de la (iv); putem folosi codul:
functie=@(x) [(x^2-5*x+6)/(x^2+1)];
fplot(functie,[-10,10]);
set(gca, �XAxisLocation�, �origin�)
set(gca, �YAxisLocation�, �origin�)
S¼a se studieze op̧tiunile oferite de Matlab pentru reprezent¼arile gra�ce.

Exerci̧tiul 1.17 S¼a se reprezinte gra�c funcţia f : R n f1g ! R;

f(x) = jxj e
1

x�1

şi s¼a se determine punctele sale de extrem.

Exerci̧tiul 1.18 Fie a1; :::; an numere reale strict pozitive cu

ax1 + a
x
2 + :::+ a

x
n � n; 8x 2 R:

S¼a se arate c¼a a1a2:::an = 1:
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Soluţie Fie f : R! R; f(x) = ax1 + ax2 + :::+ axn: Cum f(0) = n; din ipotez¼a deducem c¼a x = 0
este punct de minim pentru f , deci, din Teorema lui Fermat, f 0(0) = 0; ceea ce conduce la
concluzie. O alt¼a solu̧tie se poate da folosind limita fundamental¼a

lim
x!0

ax � 1
x

= ln a; a > 0:

�

Problema 1.19 Fie f; g : [a; b]! R dou¼a funcţii continue. De�nim h : R! R;

h(t) = supff(x) + tg(x) j x 2 [a; b]g:

S¼a se arate c¼a h este corect de�nit¼a şi este o funcţie Lipschitz.

Soluţie Fie s; t 2 R: Cum funçtiile x 7! f(x)+tg(x) şi x 7! f(x)+sg(x) sunt continue, aplicând
Teorema lui Weierstrass pe intervalul compact [a; b]; exist¼a xt; xs 2 [a; b] astfel încât

h(t) = f(xt) + tg(xt)

h(s) = f(xs) + sg(xs):

Atunci

h(t)� h(s) = f(xt) + tg(xt)� (f(xs) + sg(xs))
� f(xt) + tg(xt)� f(xt)� sg(xt)
= g(xt)(t� s):

Similar,

h(t)� h(s) = f(xt) + tg(xt)� (f(xs) + sg(xs))
� f(xs) + tg(xs)� f(xs)� sg(xs)
= g(xs)(t� s):

Notând cu M := maxx2[a;b] jg(x)j 2 R (folosind din nou Teorema lui Weierstrass) ob̧tinem

jh(t)� h(s)j �M jt� sj ;

adic¼a exact concluzia. �

Problema 1.20 Fie a; b; c; d 2 R cu a < b; c < d şi f : [a; b] � [c; d] ! R continu¼a. De�nim
' : [a; b]! R;

'(x) = infff(x; y) j y 2 [c; d]g:
S¼a se arate c¼a ' este bine de�nit¼a şi continu¼a.

Exerci̧tiul 1.21 f : [a; b] ! R derivabil¼a în a: S¼a se arate c¼a dac¼a a este punct de minim
atunci f 0(a) � 0:

Exerci̧tiul 1.22 Fie f : [a; b]! R continu¼a, derivabil¼a în a şi b cu f 0(a)f 0(b) < 0: S¼a se arate
c¼a f admite un punct de extrem local în (a; b):
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Capitolul 2

Elemente de analiz¼a neliniar¼a

2.1 Muļtimi convexe

Fie p 2 N n f0g. Pe parcursul cursului lucr¼am pe spa̧tiul Rp înzestrat cu structura uzual¼a de
spa̧tiu vectorial real de dimensiune p şi topologizat cu produsul scalar obi̧snuit, deci cu norma
euclidian¼a. Un breviar al nota̧tiilor pe care le utiliz¼am şi al cadrului teoretic pe care ne baz¼am
este prezentat în Appendix.

De�ni̧tia 2.1.1 O mulţime D � Rp se numeşte convex¼a dac¼a pentru orice x; y 2 D; [x; y] =
f�x+ (1� �)y j � 2 [0; 1]g � D:

Cu alte cuvinte, o muļtime nevid¼a D este convex¼a dac¼a şi numai dac¼a odat¼a cu dou¼a puncte
a1; a2 coņtine întreg segmentul [a1; a2]: Se mai observ¼a c¼a în de�ni̧tia aceasta este su�cient s¼a
lu¼am � 2 (0; 1): Convenim s¼a consider¼am muļtimea vid¼a ca �ind convex¼a.
Prin induçtie (a se vedea Exerci̧tiul 2.1) se arat¼a imediat c¼a D 6= ; este convex¼a dac¼a şi

numai dac¼a pentru orice n 2 N n f0g ; x1; x2; :::; xn 2 D; �1; �2; :::; �n 2 [0; 1] cu
nP
i=1

�i = 1; are

loc
nX
i=1

�ixi 2 D:

O sum¼a cum este cea de mai sus se numeşte combina̧tie convex¼a a elementelor (xi)i21;n:

Observa̧tia 2.1.2 (i) Este evident c¼a orice intersecţie de mulţimi convexe este convex¼a, iar o
reuniune de mulţimi convexe nu este, în general, convex¼a.
(ii) În R mulţimile convexe sunt intervalele.

Discut¼am acum conceptul de înf¼aşur¼atoare convex¼a a unei muļtimi nevide. Fie A � Rp o
muļtime nevid¼a. Se numeşte înf¼aşur¼atoarea convex¼a a muļtimii A; muļtimea

convA =

(
nX
i=1

�ixi j n 2 N n f0g ; (�i)i21;n � [0;1);
nX
i=1

�i = 1; (xi)i21;n � A
)
:

Este uşor de ar¼atat c¼a înf¼aşur¼atoarea convex¼a a lui A este muļtime convex¼a, coņtine muļtimea A
şi este cea mai mic¼a muļtime (în sensul incluziunii) cu aceste propriet¼a̧ti (a se vedea Exerci̧tiul
2.2).
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Prezent¼am o teorem¼a care se refer¼a la structura muļtimii convA şi poart¼a numele de Teo-
rema lui Carathéodory, dup¼a numele matematicianului grec Constantin Carathéodory care a
demonstrat acest rezultat în 1911 pentru muļtimi compacte.

Teorema 2.1.3 (Teorema lui Carathéodory) Fie A � Rp o mulţime nevid¼a. Atunci

convA =

(
p+1X
i=1

�ixi j (�i)i21;p+1 � [0;1);
p+1X
i=1

�i = 1; (xi)i21;p+1 � A
)
:

Demonstraţie Trebuie ar¼atat c¼a orice element din convA se poate scrie ca o combina̧tie de cel
mult p+ 1 elemente din A: Fie deci x 2 convA: Conform de�ni̧tiei lui convA; x se poate scrie
ca o combina̧tie convex¼a de elemente din A: Presupunem, prin reducere la absurd, c¼a num¼arul
minim de elemente din A care pot da o combina̧tie convex¼a cu valoarea x este n > p + 1:

Deci exist¼a x1; x2; :::; xn 2 A; �1; �2; :::; �n 2 (0; 1) cu
nP
i=1

�i = 1 astfel încât
nP
i=1

�ixi = x:

Atunci elementele (xi� xn)i=1;n�1 sunt liniar dependente (sunt mai multe decât dimensiunea p
a spa̧tiului), deci exist¼a (�i)i=1;n�1; nu toate nule, cu

n�1X
i=1

�i(xi � xn) = 0;

ceea ce înseamn¼a
n�1X
i=1

�ixi �
 
n�1X
i=1

�i

!
xn = 0

Notând �
�Pn�1

i=1 �i
�
= �n; avem

Pn
i=1 �i = 0 şi

Pn
i=1 �ixi = 0: Atunci pentru orice t 2 R;

x =
nX
i=1

�ixi + t
nX
i=1

�ixi =
nX
i=1

(�i + t�i)xi

şi
nX
i=1

(�i + t�i) = 1:

Cum
Pn

i=1 �i = 0 şi exist¼a m¼acar o valoare nenul¼a, va exista şi cel pu̧tin o valoare negativ¼a
printre valorile (�i)i21;n: Not¼am t := minf��i��1i j �i < 0g: Atunci toate valorile (�i+ t�i) vor
� din intervalul [0;1); iar valoarea corespunz¼atoare indicelui care d¼a minimul de mai sus este
zero, deci x apare ca o combina̧tie convex¼a de mai pu̧tin de n elemente din A; contrazicându-se
minimalitatea lui n: Aşadar, presupunerea f¼acut¼a este fals¼a, deci concluzia are loc. �

2.2 Funçtii convexe

În aceast¼a seçtiune prezent¼am o clas¼a special¼a de funçtii, numite funçtii convexe. Aceste funçtii
sunt de�nite pe muļtimi convexe.
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De�ni̧tia 2.2.1 Fie D � Rp o mulţime convex¼a. O funcţie f : D ! R se numeşte convex¼a
dac¼a

f(�x+ (1� �)y) � �f(x) + (1� �)f(y); 8x; y 2 D; 8� 2 [0; 1]: (2.1)

Este clar c¼a în de�ni̧tia de mai sus este su�cient s¼a lu¼am � 2 (0; 1):

Observa̧tia 2.2.2 (i) Este uşor de v¼azut c¼a suma unui num¼ar �nit de funcţii convexe (de�nite
pe aceeaşi mulţime) este o funcţie convex¼a, iar produsul unei funcţii convexe cu un scalar pozitiv
este o funcţie convex¼a.
(ii) De asemenea, orice funcţie a�n¼a de la Rp la R este convex¼a.

Cum am mai spus, în R muļtimile convexe sunt intervalele. În acest cadru, convexitatea
are urm¼atoarea interpretare geometric¼a: pentru orice dou¼a puncte x; y 2 D; x < y; gra�cul
restriçtiei lui f la intervalul [x; y] se a�¼a sub coarda ce uneşte punctele (x; f(x)) şi (y; f(y)):
Aceasta se mai scrie astfel: pentru orice u 2 [x; y];

f(u) � f(x) + f(y)� f(x)
y � x (u� x); (2.2)

inegalitate care se ob̧tine din (2.1) înlocuind � cu valoarea ob̧tinut¼a din rela̧tia u = �x+(1��)y:
Astfel, (2.1) şi (2.2) sunt echivalente (pentru funçtii de variabil¼a real¼a).

Exemplul 2.2.3 Este uşor de veri�cat prin calcul direct c¼a funçtia f : R! R, f (x) = x2 este
convex¼a.

De�ni̧tia 2.2.4 Fie D � Rp o mulţime convex¼a. O funcţie f : D ! R se numeşte concav¼a
dac¼a �f este convex¼a.

Toate propriet¼a̧tile funçtiilor concave se deduc cu uşuriņt¼a din propriet¼a̧tile funçtiilor con-
vexe, astfel c¼a vom considera în continuare doar acest ultim caz.
Mai întâi deducem unele propriet¼a̧ti generale ale funçtiilor convexe. Începem cu un rezultat

ajut¼ator.

Lema 2.2.5 Fie D � Rp o mulţime convex¼a. Pentru orice x; y 2 D de�nim Ix;y := ft 2 R j
tx+ (1� t)y 2 Dg: Atunci Ix;y este un interval ce conţine intervalul [0; 1]:

Demonstraţie. Practic trebuie s¼a ar¼at¼am c¼a Ix;y este muļtime convex¼a. Într-adev¼ar, dac¼a
u; v 2 Ix;y şi � 2 [0; 1]; este uşor de veri�cat c¼a

[�u+ (1� �)v]x+ [1� �u� (1� �)v]y = �(ux+ (1� u)y) + (1� �) (vx+ (1� v)y) 2 D:

Faptul c¼a 0; 1 2 Ix;y este evident. �

Propozi̧tia 2.2.6 Fie D � Rp o mulţime convex¼a şi f : D ! R. Urm¼atoarele a�rmaţii sunt
echivalente:
(i) f este convex¼a;
(ii) pentru orice x; y 2 D, funcţia 'x;y : Ix;y! R; 'x;y(t) = f(tx+ (1� t)y) este convex¼a.
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Demonstraţie Ar¼at¼am c¼a (i) implic¼a (ii) : În lema anterioar¼a am constatat c¼a Ix;y este un interval
(deci o muļtime convex¼a) care include [0; 1]:
Presupunem c¼a f este convex¼a şi lu¼am u; v 2 Ix;y, � 2 [0; 1]: Avem

'x;y(�u+ (1� �)v) = f([�u+ (1� �)v]x+ [1� �u� (1� �)v]y)
= f(�(ux+ (1� u)y) + (1� �)(vx+ (1� v)y))
� �f(ux+ (1� u)y) + (1� �)f(vx+ (1� v)y)
= �'x;y(u) + (1� �)'x;y(v):

Ar¼at¼am acum c¼a (ii) implic¼a (i) : Lu¼am x; y 2 D şi t 2 [0; 1]: Atunci 'x;y este convex¼a şi deci
pentru orice � 2 [0; 1]; u; v 2 Ix;y

'x;y(�u+ (1� �)v) � �'x;y(u) + (1� �)'x;y(v)
= �f(ux+ (1� u)y) + (1� �)f(vx+ (1� v)y):

F¼acând u = 1; v = 0; � = t deducem

'x;y(t) � tf(x) + (1� t)f(y);

deci f este convex¼a. �

Observa̧tia 2.2.7 Deşi convexitatea este o proprietate algebric¼a, funcţiile convexe au propri-
et¼aţi topologice remarcabile: a se vedea, de exemplu, Problema 2.41.

Dorim s¼a punem acum în evideņt¼a caracteriz¼ari ale funçtiilor convexe difereņtiabile. Pentru
aceasta, avem nevoie de unele rezultate care se refer¼a la funçtii convexe de�nite pe un interval
din R:

Propozi̧tia 2.2.8 Fie I � R un interval şi f : I ! R o funcţie. Urm¼atoarele a�rmaţii sunt
echivalente:
(i) f este convex¼a;
(ii) pentru orice x1; x2; x3 2 I în relaţia x1 < x2 < x3 avem

f(x2)� f(x1)
x2 � x1

� f(x3)� f(x1)
x3 � x1

� f(x3)� f(x2)
x3 � x2

;

(iii) pentru orice a 2 int I; funcţia g : I n fag ! R dat¼a prin

g(x) =
f(x)� f(a)
x� a

este cresc¼atoare.

Demonstraţie Ar¼at¼am implica̧tia (i)) (ii): Lu¼am � = x2�x1
x3�x1 2 (0; 1): Atunci are loc egalitatea

x2 = �x3 + (1� �)x1 şi inegalitatea de demonstrat devine

f(x2)� f(x1)
�(x3 � x1)

� f(x3)� f(x1)
x3 � x1

� f(x3)� f(x2)
(1� �)(x3 � x1)

:
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Dup¼a efectuarea calculelor, ob̧tinem

f(x2) � �f(x3) + (1� �)f(x1):

Implica̧tia (ii) ) (i) urmeaz¼a traseul invers implica̧tiei (i) ) (ii); deci (i) şi (ii) sunt echiva-
lente.
Pentru a demonstra (ii)) (iii); �x¼am x1; x2 2 I n fag cu x1 < x2: Distingem trei situa̧tii.

Dac¼a x1 < x2 < a atunci aplic¼am (ii) pentru tripleta (x1; x2; a): Dac¼a x1 < a < x2 atunci
aplic¼am (ii) pentru tripleta (x1; a; x2): În sfâŗsit, dac¼a a < x1 < x2 atunci aplic¼am (ii) pentru
tripleta (a; x1; x2):
Pentru a demonstra (iii)) (i); lu¼am x; y 2 I cu x < y şi � 2 (0; 1): Atunci x < �x+ (1�

�)y < y şi aplicând (iii) pentru a = �x+ (1� �)y deducem

f(x)� f(�x+ (1� �)y)
x� �x� (1� �)y � f(y)� f(�x+ (1� �)y)

y � �x� (1� �)y :

Din nou efectuând calculele ajungem la rela̧tia din de�ni̧tia convexit¼a̧tii. Faptul c¼a aceast¼a
rela̧tie are loc pentru orice x; y 2 I cu x < y şi orice � 2 (0; 1) este su�cient pentru a proba
a�rma̧tia dorit¼a. Demonstra̧tia este complet¼a. �

Observa̧tia 2.2.9 Proprietatea de la punctul (ii) din rezultatul precedent se numeşte inegali-
tatea pantelor. O interpretare geometric¼a elementar¼a justi�c¼a aceast¼a denumire.

Are loc urm¼atoarea teorem¼a de caracterizare a funçtiilor convexe derivabile (de o variabil¼a
real¼a).

Teorema 2.2.10 Fie I un interval deschis şi f : I ! R o funcţie.
(i) Presupunând c¼a f este derivabil¼a pe I; atunci f este convex¼a dac¼a şi numai dac¼a f 0 este

cresc¼atoare pe I:
(ii) Presupunând c¼a f este de dou¼a ori derivabil¼a pe I atunci f este convex¼a dac¼a şi numai

dac¼a f 00(x) � 0 pentru orice x 2 I:

Demonstraţie În acest caz, al funçtiilor reale de o variabil¼a real¼a, ţinând cont de echivaleņta
dintre monotonia lui f 0 şi semnul lui f 00 este su�cient s¼a ar¼at¼am c¼a f este convex¼a dac¼a şi numai
dac¼a f 0 este cresc¼atoare pe I:
Presupunem c¼a f este convex¼a şi demonstr¼am monotonia derivatei. Fie x; y 2 I cu x < y.

Consider¼am z 2 (x; y) : Conform inegalit¼a̧tii pantelor putem scrie

f (x)� f (z)
x� z � f (y)� f (x)

y � x � f (y)� f (z)
y � z ; 8z 2 (x; y) ;

adic¼a (
f(x)�f(z)
x�z � f(y)�f(x)

y�x
f(y)�f(x)
y�x � f(y)�f(z)

y�z
; 8z 2 (x; y) :

Dac¼a în prima inegalitate facem z ! x, iar în a doua z ! y; deducem

f 0 (x) � f (y)� f (x)
y � x � f 0 (y) ;
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deci f 0 este cresc¼atoare.
Invers, presupunem c¼a f 0 este cresc¼atoare şi ar¼at¼am c¼a f este convex¼a. Fie a; b 2 I; a < b:

De�nim g : [a; b]! R dat¼a prin

g(x) = f(x)� f(a)� (x� a)f(b)� f(a)
b� a :

Evident, g(a) = g(b) = 0; iar

g0(x) = f 0(x)� f(b)� f(a)
b� a :

Funçtia f satisface condi̧tiile Teoremei lui Lagrange pe [a; b], deci exist¼a c 2 (a; b) astfel încât
f(b)� f(a)
b� a = f 0(c):

Prin urmare, g0(x) = f 0(x)� f 0(c): Din monotonia lui f 0 deducem c¼a g este descresc¼atoare pe
intervalul (a; c) şi cresc¼atoare pe intervalul (c; b); iar din g(a) = g(b) = 0 ob̧tinem c¼a g este
negativ¼a pe tot intervalul [a; b]:
Fie � 2 (0; 1): Atunci

x = �a+ (1� �)b 2 (a; b):
Înlocuim în expresia lui g şi ţinând cont c¼a g(x) � 0 deducem

f(�a+ (1� �)b)� f(a)� (1� �)(b� a)f(b)� f(a)
b� a � 0;

rela̧tie care se reduce la de�ni̧tia convexit¼a̧tii. �

Observa̧tia 2.2.11 De fapt, se poate ar¼ata (a se vedea Problema 2.42) c¼a dac¼a I � R este
un interval şi f : I ! R o funcţie convex¼a, atunci f admite derivate laterale în �ecare punct
interior intervalului I şi pentru orice x; y 2 int I; cu x < y avem

f 0�(x) � f 0+(x) � f 0�(y) � f 0+(y):

Exemplul 2.2.12 Pe baza rezultatului de mai sus, deducem convexitatea urm¼atoarelor funçtii:
f : R! R; f(x) = ax + b; cu a; b 2 R; f : (0;1)! R; f(x) = � lnx; f : (0;1)! R;
f(x) = x lnx; f : (0;1)! R; f(x) = xa; a � 1; f : R! R; f(x) = ex; f : ( � 1; 1)! R;
f(x) = �

p
1� x2; f : (0; �)! R; f(x) = sin�1 x:

Un alt exemplu este dat de rezultatul urm¼ator.
Caracteriz¼am acum funçtiile convexe difereņtiabile generale.

Teorema 2.2.13 Fie D � Rp o mulţime convex¼a şi deschis¼a şi �e f : D ! R o funcţie.
(i) Dac¼a f este diferenţiabil¼a pe D atunci f este convex¼a dac¼a şi numai dac¼a pentru orice

x; y 2 D;
f(y) � f(x) +rf(x)(y � x):

(ii) Dac¼a f este diferenţiabil¼a de ordinul al doilea pe D; atunci f este convex¼a dac¼a şi numai
dac¼a pentru orice x 2 D şi y 2 Rp are loc

r2f(x)(y; y) � 0:
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Demonstraţie (i) Consider¼am pentru început cazul p = 1: Fix¼am x; y 2 D cu y 6= x şi lu¼am
� 2 (0; 1]. Cum f este convex¼a, ob̧tinem

f (x+ � (y � x)) = f ((1� �)x+ �y)
� (1� �) f(x) + �f(y) = f(x) + � (f (y)� f (x)) :

Prin urmare,

f (x+ � (y � x))� f (x)
� (y � x) � (y � x) � f (y)� f (x) :

Trecând la limit¼a cu �! 0, ob̧tinem f 0 (x) (y � x) � f (y)� f (x).
Trecem acum la cazul general. Pentru x; y 2 D consider¼am funçtia 'y;x din Propozi̧tia 2.2.6

despre care ştim c¼a este convex¼a. Mai mult, 'y;x este derivabil¼a pe intervalul deschis Iy;x şi

'0y;x(t) = rf(ty + (1� t)x)(y � x):

Conform pasului anterior,
'y;x(1) � 'y;x(0) + '0y;x(0)

ceea ce înseamn¼a c¼a
f(y) � f(x) +rf(x)(y � x):

Reciproc, �x¼am x; y 2 D şi � 2 [0; 1]. Astfel, din ipotez¼a,

f (x) � f (�x+ (1� �)y) + (1� �)rf (�x+ (1� �)y) (x� y)
şi

f (y) � f (�x+ (1� �)y) + �rf (�x+ (1� �)y) (y � x) :
Înmuļtind prima inegalitate cu � şi a doua inegalitate cu (1��) şi adunând noile inegalit¼a̧ti,

ob̧tinem

�f (x) + (1� �)f (y) � f (�x+ (1� �)y) ;
ceea ce demonstreaz¼a c¼a f este convex¼a.
(ii) Cazul p = 1 este demonstrat în Teorema 2.2.10. Acum, pentru a demonstra cazul

general, �e x 2 D; y 2 Rp: Presupunem c¼a f este convex¼a. Cum D este deschis¼a, exist¼a � > 0
astfel încât u := x+ �y 2 D: Conform ipotezei 'u;x este convex¼a şi din cazul discutat mai sus,
'00u;x(t) � 0 pentru orice t 2 Iu;x: Pentru t = 0; deducem

0 � '00u;x(0) = r2f(x)(u� x; u� x);

de unde se ob̧tine concluzia. Invers, pentru x; y 2 D şi t 2 Ix;y; '00x;y(t) � 0: Din cazul p = 1;
ob̧tinem c¼a 'x;y este convex¼a, deci f este convex¼a. Demonstra̧tia este complet¼a. �

Din aceste rezultate se observ¼a c¼a anumite propriet¼a̧ti ale funçtiilor convexe au un caracter
global, lucru ce se va constata şi în continuare.
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Observa̧tia 2.2.14 S¼a mai constat¼am c¼a o funcţie diferenţiabil¼a este convex¼a simultan cu
opusa sa dac¼a şi numai dac¼a este a�n¼a. Într-adev¼ar, este clar c¼a o funcţie a�n¼a este simultan
convex¼a şi concav¼a. Invers, ambele propriet¼aţi implic¼a egalitatea

f(y) = f(x) +rf(x)(y � x); 8x; y 2 D;

adic¼a, �xând x;
f(y) = rf(x)(y) + (f(x)�rf(x)(x)) ; 8y 2 D;

ceea ce înseamn¼a c¼a f se scrie ca suma dintre o funcţie liniar¼a şi o constant¼a.
De fapt, aceast¼a proprietate are loc şi în absenţa diferenţiabilit¼aţii (a se vedea Problema

2.33).

În �nal, de�nim o proprietate mai puternic¼a decât convexitatea.

De�ni̧tia 2.2.15 Fie D � Rp o mulţime convex¼a. O funcţie f : D ! R se numeşte strict
convex¼a dac¼a

f(�x+ (1� �)y) < �f(x) + (1� �)f(y); 8x; y 2 D; x 6= y; 8� 2 (0; 1):

De�ni̧tia 2.2.16 Fie D � Rp o mulţime convex¼a. O funcţie f : D ! R se numeşte strict
concav¼a dac¼a �f este strict convex¼a.

Evident, orice funçtie strict convex¼a este convex¼a în timp ce reciproca este fals¼a: este su�-
cient s¼a consider¼am o funçtie convex¼a care s¼a �e constant¼a pe un interval. Din nou, propriet¼a̧tile
funçtiilor strict concave se deduc din propriet¼a̧tile funçtiilor strict convexe.
Folosind argumente cu totul similare celor din rezultatele precedente deducem urm¼atoarele

caracteriz¼ari.

Teorema 2.2.17 Fie I un interval deschis şi f : I ! R o funcţie derivabil¼a. Urm¼atoarele
a�rmaţii sunt echivalente:
(i) f este strict convex¼a;
(ii) f (x) > f (a) + f 0 (a) (x� a) ; pentru orice x; a 2 I; x 6= a;
(iii) f 0 este strict cresc¼atoare.
Dac¼a, în plus, f este de dou¼a ori derivabil¼a (pe I), atunci avem şi echivalenţa cu
(iv) f 00(x) � 0 pentru orice t 2 I şi fx 2 I j f 00(x) = 0g nu conţine niciun interval propriu.

Exemplul 2.2.18 Folosind acest rezultat ob̧tinem c¼a urm¼atoarele funçtii sunt strict convexe:
f : (0;1)! R; f(x) = � lnx; f : (0;1)! R; f(x) = x lnx; f : (0;1)! R; f(x) = xa;

a > 1; f : R! R; f(x) = ex; f : (0;1)! R; f(x) = (1 + xp)
1
p ; p > 1:

Teorema 2.2.19 Fie D � Rp o mulţime convex¼a şi deschis¼a şi f : D ! R o funcţie diferenţi-
abil¼a. Urm¼atoarele a�rmaţii sunt echivalente:
(i) f este strict convex¼a;
(ii) f (x) > f (a) +rf(a) (x� a) ; pentru orice x; a 2 D; x 6= a:
Dac¼a, în plus, f este de dou¼a ori diferenţiabil¼a (pe D), atunci cele dou¼a a�rmaţii de mai

sus sunt implicate de relaţia:
(iii) r2f(x)(y; y) > 0 pentru orice x 2 D şi y 2 Rp n f0g:
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2.3 Funçtia distaņt¼a

De�ni̧tia 2.3.1 Fie A � Rp o mulţime nevid¼a şi �e x 2 Rp: De�nim distanţa de la x la A
prin relaţia:

d(x;A) = inffkx� ak j a 2 Ag:

Punem în evideņt¼a câteva propriet¼a̧ti fundamentale ale distaņtei de la un punct la o muļtime
(nevid¼a).

Teorema 2.3.2 Fie A � Rp; A 6= ;: Atunci:
(i) d (x;A) = 0 dac¼a şi numai dac¼a x 2 A:
(ii) Funcţia dA : Rp ! R dat¼a prin dA(x) = d(x;A) este 1�Lipschitz.
(iii) Dac¼a A este închis¼a, atunci pentru orice x 2 Rp; exist¼a ax 2 A astfel încât d (x;A) =

kx� axk : Dac¼a, în plus, A este convex¼a, atunci ax cu proprietatea precedent¼a este unic şi este
caracterizat de propriet¼aţile ax 2 A şi hx� ax; u� axi � 0 pentru orice u 2 A:

Demonstraţie (i) Au loc echivaleņtele

d (x;A) = 0, inf
a2A

kx� ak = 0

, 9 (an) � A cu lim
n!1

kx� ank = 0, x 2 A:

(ii) Pentru orice x; y 2 Rp şi orice a 2 A au loc rela̧tiile:

d (x;A) � kx� ak � kx� yk+ ky � ak :

Cum a este arbitrar în A deducem

d (x;A) � kx� yk+ d (y; A)

adic¼a
d (x;A)� d (y; A) � kx� yk :

Inversând rolurile lui x şi y avem:

jd (x;A)� d (y; A)j � kx� yk ;

adic¼a concluzia.
(iii) Dac¼a x 2 A; atunci ax := x este unicul element cu proprietatea anuņtat¼a. Fie x =2 A:

Cum d(x;A) este un num¼ar real, exist¼a r > 0 astfel încât A1 := A \ D (x; r) 6= ;: Observ¼am
c¼a A1 este muļtime compact¼a, deci funçtia g : A1 ! R; g (y) = kx� yk este continu¼a pe o
muļtime compact¼a. Conform teoremei lui Weierstrass, g î̧si atinge minimul pe A1; adic¼a exist¼a
ax 2 A1 cu g (ax) = infy2A1 g (y) = d(x;A1). Dar se observ¼a c¼a d (x;A1) = d (x;A) şi prima
concluzie urmeaz¼a. Presupunem acum c¼a, în plus, A este convex¼a. Din nou, dac¼a x 2 A; nu
avem nimic de ar¼atat. Lu¼am x =2 A: Consider¼am a1; a2 2 A cu d (x;A) = kx� a1k = kx� a2k :
Folosind egalitatea paralelogramului avem

k(x� a1) + (x� a2)k2 + k(x� a1)� (x� a2)k2 = 2 kx� a1k2 + 2 kx� a2k2 ;
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adic¼a
k2x� a1 � a2k2 + ka2 � a1k2 = 4d2(x;A)

şi împ¼aŗtind prin 4 ob̧tinem



x� a1 + a22





2 + 4�1 ka2 � a1k2 = d2(x;A):
CumA este convex¼a, 2�1(a1+a2) 2 A, deci



x� a1+a2
2



2 � d2(x;A):Aceast¼a rela̧tie şi egalitatea
precedent¼a arat¼a c¼a ka2 � a1k = 0; deci a1 = a2: Demonstra̧tia unicit¼a̧tii este complet¼a. S¼a
demonstr¼am acum c¼a ax veri�c¼a rela̧tia hx� ax; u� axi � 0 pentru orice u 2 A: Pentru aceasta
lu¼am u 2 A: Atunci pentru orice � 2 (0; 1]

v = �u+ (1� �)ax 2 A:

Deci
kx� axk � kx� �u� (1� �)axk = kx� ax � �(u� ax)k ;

de unde, prin ridicare la p¼atrat,

kx� axk2 � kx� axk2 � 2� hx� ax; u� axi+ �2 ku� axk2 :

Dup¼a reducere şi simpli�carea cu � > 0 ob̧tinem

0 � �2 hx� ax; u� axi+ � ku� axk2 :

F¼acând � ! 0 ob̧tinem inegalitatea anuņtat¼a. Invers, dac¼a un element a 2 A satisface
hx� a; u� ai � 0 pentru orice u 2 A; atunci pentru orice v 2 A

kx� ak2 � kx� vk2 = 2 hx� a; v � ai � ka� vk2 � 0;

deci a coincide cu ax: Demonstra̧tia este încheiat¼a. �

În cazul în care A este închis¼a şi convex¼a, atunci pentru x 2 Rp not¼am elementul ax 2 A cu
prA x şi-l numim proieçtia lui x pe A.

Observa̧tia 2.3.3 Dac¼a A este convex¼a şi nevid¼a, atunci dA este convex¼a (a se vedea Problema
2.46).

2.4 Conuri

Unul dintre obiectele fundamentale pentru studiul nostru este de�nit mai jos.

De�ni̧tia 2.4.1 O submulţime nevid¼a C � Rp se numeşte con dac¼a are loc proprietatea

8y 2 C; 8� 2 R+ := [0;1); �y 2 C:

Conform acestei de�ni̧tii, orice con coņtine elementul 0:
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Propozi̧tia 2.4.2 Un con C este mulţime convex¼a dac¼a şi numai dac¼a C + C = C:

Demonstraţie Presupunem mai întâi c¼a C este în acelaşi timp con şi muļtime convex¼a. Cum
0 2 C; este clar c¼a C � C + C: Fie u 2 C + C: Atunci exist¼a c1; c2 2 C încât c1 + c2 = u: Dar,
ţinând cont de propriet¼a̧tile lui C şi de scrierea echivalent¼a

u = 2
�
2�1c1 + 2

�1c2
�

deducem faptul c¼a u 2 C: Pentru implica̧tia invers¼a, presupunem c¼a C este con şi C + C =
C: Fie � 2 (0; 1) şi c1; c2 2 C: Atunci, din proprietatea de con, �c1; (1 � �)c2 2 C şi deci
�c1 + (1� �)c2 2 C + C = C; observa̧tie care încheie demonstra̧tia. �

Înf¼aşur¼atoarea conic¼a a unei muļtimi nevide A � Rp este muļtimea

conA = [0;1)A := f�x j � � 0; x 2 Ag :

Din nou, conA este cel mai mic con ce coņtine A (a se vedea Exerci̧tiul 2.49).
Fie S � Rp o muļtime nevid¼a. Numim polara lui S muļtimea

S� := fu 2 Rp j hu; xi � 0; 8x 2 Sg:

Este uşor de constatat c¼a S� este un con convex închis şi c¼a, în general, S � (S�)�. De
asemenea, S� =

�
conS

��
(a se vedea Exerci̧tiul 2.49).

Exemplul 2.4.3 1. Fie S = f(x; 0) 2 R2 j x � 0g: Este uşor de observat c¼a S� = f(x; y) 2
R2 j x � 0g: Evident, (S�)� = S�:
2. Polara lui R2+ := f(x; y) 2 R2 j x; y � 0g este R2� := f(x; y) 2 R2 j x; y � 0g: Muļtimea

S = f(x; 0) 2 R2 j x � 0g [ f(0; y) 2 R2 j y � 0g are ca polar¼a tot muļtimea R2�: Deci, în
general, S�1 = S

�
2 nu implic¼a faptul c¼a S1 = S2:

De-a lungul acestui curs vom avea nevoie de multe ori de conceptul de vector tangent într-un
punct la o muļtime. Introducem acum acest concept.

De�ni̧tia 2.4.4 Fie M � Rp o mulţime nevid¼a şi x 2 M . Un vector u 2 Rp se numeşte
tangent la mulţimea M în x dac¼a exist¼a (tn) � (0;1); tn ! 0 şi (un) ! u astfel încât pentru
orice n 2 N;

x+ tnun 2M:

Evident, este su�cient ca rela̧tia de mai sus s¼a aib¼a loc pentru orice n 2 N de la un loc
încolo (pentru n su�cient de mare).

Teorema 2.4.5 Mulţimea, notat¼a T (M;x); a tuturor vectorilor tangenţi la M în x este un con
închis, numit conul tangent (în sens Bouligand) la M în x:

Demonstraţie Mai întâi observ¼am c¼a 0 2 T (M;x) pentru c¼a este su�cient s¼a lu¼am (un) şirul
constant 0:
Fie acum u 2 T (M;x) şi � > 0: Conform de�ni̧tiei, exist¼a (tn) � (0;1); tn ! 0 şi (un)! u

astfel încât pentru orice n 2 N;
x+ tnun 2M:
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Evident, ultima rela̧tie este echivalent¼a cu

x+
tn
�
(�un) 2M:

Cum
�
tn
�

�
! 0 şi (�un)! �u; deducem c¼a �u 2 T (M;x); deci T (M;x) este con. Ar¼at¼am acum

c¼a închiderea lui T (M;x) este inclus¼a în T (M;x): Fie (un) � T (M;x) şi (un)! u: Trebuie s¼a

ar¼at¼am c¼a u 2 T (M;x): Pentru �ecare n 2 N; exist¼a (tkn)k � (0;1); tkn
k!1! 0 şi (ukn)

k!1! un
astfel încât pentru orice k 2 N;

x+ tknu
k
n 2M:

Urmând un procedeu de diagonalizare, pentru orice n 2 Nnf0g ; exist¼a kn 2 N astfel încât (kn)
este strict cresc¼ator şi au loc rela̧tiile:

tknn <
1

n

uknn � un

 � 1

n
:

Evident, şirul de numere pozitive (tknn )n are limita 0 şi din rela̧tia

uknn � u

 � 

uknn � un

+ kun � uk
deducem c¼a (uknn )! u: În plus, pentru orice n 2 N;

x+ tknn u
kn
n 2M;

deci, u 2 T (M;x) şi demonstra̧tia este încheiat¼a. �

Un prim exemplu este urm¼atorul.

Exemplul 2.4.6 1. Fie discul M � R2; M := f(x; y) 2 R2 j (x � 1)2 + y2 � 1g: Atunci
T (M; (0; 0)) = f(x; y) 2 R2 j x � 0g:
2. Se poate cu uşuriņt¼a observa c¼a dac¼a C � Rp este un con închis, atunci T (C; 0) = C:

Propozi̧tia 2.4.7 Dac¼a ; 6=M � Rp şi x 2M: Dac¼a x 2 intM; atunci T (M;x) = Rp:

Demonstraţie Dac¼a x 2 intM; atunci pentru orice u 2 Rp şi orice (tn) � (0;1); tn ! 0 avem
x + tnun 2 M pentru orice n su�cient de mare. Aceasta arat¼a, în particular, c¼a u 2 T (M;x);
de unde ob̧tinem concluzia. �

Observa̧tia 2.4.8 Este clar c¼a are loc relaţia T (M;x) = T (M � x; 0); deci a determina conul
tangent la M în x revine la a determina conul tangent la M � x în 0:

S¼a remarc¼am c¼a, în general, conul tangent nu este convex şi rela̧tia T (M;x) = Rp poate
avea loc, chiar dac¼a x =2 intM:
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Exemplul 2.4.9 1. Fie M � R2; M = f(x; y) j x � 0; y = 0g [ f(x; y) j x = 0; y � 0g: Atunci
T (M; (0; 0)) =M nu este o muļtime convex¼a.
2. Fie muļtimeaM dat¼a de curba (numit¼a cardioida) având urm¼atoarele ecua̧tii parametrice�

x = �2 cos t+ cos 2t+ 1
y = 2 sin t� sin 2t ; t 2 [0; 2�];

împreun¼a cu interiorul s¼au geometric. Atunci T (M; (0; 0)) = R2; dar (0; 0) =2 intM:

Vom nota cu N(M;x) polara lui T (M;x) (i.e. N(M;x) := T (M;x)�) şi vom numi acest
con conul normal la M în x:
Dac¼a muļtimea M este convex¼a, atunci conul tangent cap¼at¼a o form¼a special¼a.

Propozi̧tia 2.4.10 Fie ; 6=M � Rp convex¼a şi x 2M: Atunci

T (M;x) = clR+(M � x);

iar
N(M;x) = fu 2 Rp j hu; c� xi � 0;8c 2Mg:

Demonstraţie Fie c 2M şi d := c� x: Fie (tk)k ! 0: Atunci

x+ tkd = (1� tk)x+ tkc 2M

şi deci M � x � T (M;x): Cum T (M;x) este con închis, ob̧tinem clR+(M � x) � T (M;x): Fie
u 2 T (M;x): Conform de�ni̧tiei vectorului tangent, exist¼a (tk) � (0;1); tk ! 0 şi (uk) ! u
astfel încât pentru orice k 2 N;

xk: = x+ tkuk 2M:

Deci u = limk
xk�x
tk
: Dar

�
xk�x
tk

�
k
� R+(M � x): Deducem c¼a T (M;x) � clR+(M � x): Ne

reamintim c¼a, prin de�ni̧tie,

N(M;x) = T (M;x)� = fu 2 Rp j hu; vi � 0; 8v 2 T (M;x)g:

Acum, ţinând cont de forma particular¼a a conului T (M;x); deducem concluzia. �

2.5 Teorema lui Lyusternik

Urm¼atorul rezultat, care ne va � util într-un moment cheie al discu̧tiei principale legate de
probleme de optimizare, a fost demonstrat în anul 1934 de Lazar Lyusternik.

Teorema 2.5.1 (Lyusternik) Fie D � Rp este o mulţime deschis¼a, f : D ! Rq o funcţie de
clas¼a C1 şi x 2 D. Fie

M := f�1(f(x)) = fx 2 D j f(x) = f(x)g :

Dac¼a diferenţiala rf(x) : Rp ! Rq este surjectiv¼a, atunci conul tangentM în x este nucleul
aplicaţiei liniare rf(x); adic¼a

T (M;x) = Kerrf(x) = fv 2 Rp j rf(x)(v) = 0g :
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Demonstra̧tie. S¼a observ¼am pentru început c¼a surjectivitatea lui rf(x) atrage faptul c¼a
p � q: Apoi, observ¼am c¼a, f¼ar¼a a restrânge generalitatea, putem lua x = 0 şi f(x) = 0;
considerând altfel funçtia x 7! f(x+ x)� f(x): Not¼am A := rf(0):
Fie acum u 2 T (M; 0): Dac¼a u = 0 atunci este clar c¼a u 2 Kerrf(0): Presupunem c¼a

u 6= 0: Conform de�ni̧tiei vectorului tangent, exist¼a (tn) � (0;1); tn ! 0 şi (un) ! u astfel
încât pentru orice n 2 N; tnun 2 M: Aşadar, f(tnun) = f(0) = 0; pentru orice n 2 N. Pe de
alt¼a parte, deoarece f este de clas¼a C1; ob̧tinem c¼a

lim
f (0 + tnun)� f (0)� A (tnun)

tn kunk
= 0;

de unde deducem c¼a Au = 0; adic¼a u 2 KerA:
Incluziunea invers¼a se bazeaz¼a pe scrierea ecua̧tiei f(x) = 0 într-o form¼a de tipul f(y; z) = 0

şi pe aplicarea Teoremei Funçtiilor Implicite.
De�nim K := KerA şi

L = K? = fx 2 Rp j hx; ui = 0; 8u 2 Kg ;

complementul s¼au ortogonal. Folosind Teorema rangului pentru aplica̧tii liniare, vom avea c¼a

dimKerA+ dim ImA = p:

De asemenea, cumA este surjectiv, vom avea c¼a dim ImA = q: Aşadar, vom putea identi�ca,
printr-o eventual¼a schimbare de baze, K şi L cu Rp�q şi Rq; respectiv (de fapt, K = Rp�q�f0gq ;
L = f0gp�q �Rq). Scriem un punct oarecare x 2 Rp sub forma x = (y; z) 2 K � L: Vom avea,
pentru orice (u; v) 2 K � L; c¼a

A(u; v) = ryf(0)(u) +rzf(0)(v);

de unde, pentru orice (d; 0) 2 Rp�q � f0gq (identi�cat cu K = KerA);

0 = A(d; 0) = ryf(0)(d);

deci ryf(0) = 0: Folosind aceast¼a rela̧tie şi ţinând cont de faptul c¼a rangA = q; urmeaz¼a
c¼a rangrzf(0) = q; adic¼a, privit¼a ca matrice (jacobianul), rzf(0) este nesingular¼a şi deci ca
aplica̧tie este bijectiv¼a.
Folosind Teorema funçtiilor implicite, vor exista dou¼a vecin¼at¼a̧ti U1 � Rp�q şi V1 � Rq ale

originilor şi o funçtie � : U1 ! V1 de clas¼a C1 astfel încât �(0) = 0 şi cu proprietatea c¼a orice
punct x = (y; z) 2 U1 � V1 satisface f(x) = 0 dac¼a şi numai dac¼a z = �(y): Ecua̧tia f(x) = 0
se va putea atunci scrie sub forma f(y; �(y)) = 0: Difereņtiind aceast¼a rela̧tie şi ţinând cont de
regula laņtului, vom ob̧tine

0 = ryf(y; �(y)) +rzf(y; �(y))r�(y):

Ţinând cont c¼a �(0) = 0; ryf(0; 0) = 0; iar rzf(0; 0) este nesingular¼a, ob̧tinem r�(0) = 0:
Fie acum v = (v1; 0) 2 Rp�q � f0gq (ca mai sus, identi�cat KerA): Atunci, cum � este de

clas¼a C1, vom avea, ca mai sus, pentru un şir arbitrar (tn) � (0;1); tn ! 0; c¼a

�(tnv1)

tn
! r�(0)(v1) = 0:
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Va exista aşadar

un :=

�
v1;
�(tnv1)

tn

�
! (v1; 0) = v

astfel încât
f(tnun) = f (tnv1; �(tnv1)) = 0;

sau, echivalent, tnun 2M; pentru orice n su�cient de mare. Rezult¼a v 2 T (M; 0); deci implica̧tia
invers¼a este demonstrat¼a şi are loc concluzia teoremei. �

Exemplul 2.5.2 Fie a; b > 0 şi muļtimea închis¼a (elipsa)

M :=

�
(x; y) 2 R2 j x

2

a2
+
y2

b2
= 1

�
:

Ne intereseaz¼a expresia conului tangent laM într-un punct oarecare (x; y) 2M: Pentru aceasta,
consider¼am funçtia f : R2 ! R dat¼a prin

f (x; y) =
x2

a2
+
y2

b2
:

Astfel,
M = f�1(1) = f�1(f(x; y)):

Observ¼am de asemenea c¼a difereņtiala rf(x; y) : R2 ! R este

rf(x; y) (u; v) = 2x

a2
u+

2y

b2
v;

aplica̧tie care este surjectiv¼a în virtutea faptului c¼a

(x; y) 6= 0 2 R2:

Astfel, conform Teoremei lui Lyusternik, conul tangent la M în (x; y) este dreapta�
(u; v) 2 R2 j xu

a2
+
yv

b2
= 0

�
:

2.6 Lema lui Farkas

Rezultat algebric pe care îl prezent¼am în �nalul acestui capitol va � foarte important în con-
tinuare. El a fost ob̧tinut de c¼atre Julius Farkas în 1902.

Teorema 2.6.1 (Lema lui Farkas) Fie n 2 N n f0g, ('i)i21;n � L(Rp;R) şi ' 2 L(Rp;R):
Atunci

8x 2 Rp : ['1(x) � 0; : : : ; 'n(x) � 0]) '(x) � 0 (2.3)

dac¼a şi numai dac¼a exist¼a (�i)i21;n � [0;1) astfel încât ' =
Pn

i=1 �i'i:
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Demonstraţie Implica̧tia de la dreapta la stânga este evident¼a. Demonstr¼am cealalt¼a implica̧tie
prin induçtie dup¼a n � 1. De�nim propozi̧tia P (n) ce a�rm¼a c¼a pentru orice '; '1; : : : ; 'n 2
L(Rp;R) satisf¼acând (2.3) exist¼a (�i)i21;n � [0;1) astfel încât ' =

Pn
i=1 �i'i:

Ar¼at¼am c¼a P (1) este adev¼arat¼a. Într-adev¼ar, �e '; '1 2 L(Rp;R) astfel încât

'1(x) � 0) '(x) � 0:

Dac¼a ' = 0 atunci, evident, ' = 0'1: Fie ' 6= 0: Atunci, folosind ipoteza,

'1(x) = 0, ['1(x) � 0; '1(�x) � 0]) ['(x) � 0; '(�x) � 0], '(x) = 0;

deci Ker'1 � Ker': Cum ' 6= 0; avem '1 6= 0; deci exist¼a x 2 Rp cu '1(x) = �1: Tot din
ipotez¼a, '(x) � 0: Fie x 2 Rp arbitrar. Atunci, este simplu de veri�cat c¼a

x+ '1(x)x 2 Ker'1;

deci
x+ '1(x)x 2 Ker';

adic¼a
' (x+ '1(x)x) = 0;

ceea ce conduce la
'(x) = �'(x)'1(x):

Cum x este arbitrar, rela̧tia din enuņt este ar¼atat¼a pentru �1 := �'(x) � 0.
Presupunem acum c¼a P (n) este adev¼arat¼a pentru un num¼ar �xat n � 1 şi ar¼at¼am c¼a P (n+1)

este adev¼arat¼a.
Fie '; '1; : : : ; 'n; 'n+1 2 L(Rp;R) astfel încât

8x 2 Rp : ['1(x) � 0; : : : ; 'n(x) � 0; 'n+1(x) � 0]) '(x) � 0: (2.4)

Dac¼a
8x 2 Rp : ['1(x) � 0; : : : ; 'n(x) � 0]) '(x) � 0; (2.5)

atunci, din P (n); exist¼a (�i)i21;n � [0;1) astfel încât ' =
Pn

i=1 �i'i; lu¼am �n+1 := 0 şi
concluzia are loc.
Presupunem c¼a nu are loc rela̧tia (2.5). Atunci exist¼a x 2 Rp astfel încât '(x) > 0 şi

'i(x) � 0 pentru orice i 2 1; n: Cum are loc (2.4), 'n+1(x) > 0; putem presupune (dup¼a o
eventual¼a multiplicare cu un scalar strict pozitiv) c¼a 'n+1(x) = 1: Dar

'n+1(x� 'n+1(x)x) = 0; 8x 2 Rp;

iar din (2.4) deducem

8x 2 Rp : ['1(x� 'n+1(x)x) � 0; : : : ; 'n(x� 'n+1(x)x) � 0]
) '(x� 'n+1(x)x) � 0: (2.6)

Lu¼am acum '0i := 'i�'i(x)'n+1 pentru i 2 1; n şi '0 := '�'(x)'n+1; iar rela̧tia (2.6) devine

8x 2 Rp : ['01(x) � 0; : : : ; '0n(x) � 0]) '0(x) � 0:
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Cum P (n) este adev¼arat¼a, exist¼a (�i)i21;n � [0;1) astfel încât '0 =
Pn

i=1 �i'
0
i: Deducem

'� '(x)'n+1 =
nX
i=1

�i ['i � 'i(x)'n+1] ;

deci ' =
Pn+1

i=1 �i'i; unde �n+1 = '(x) �
Pn

i=1 �i'i(x) � 0 din alegerea lui x şi din faptul c¼a
�i � 0 pentru i 2 1; n). Demonstra̧tia este complet¼a. �

Având în vedere identi�carea dintre L(Rp;R) şi Rp se ob̧tine urm¼atorul corolar.

Corolarul 2.6.2 Fie n 2 N n f0g, (ai)i21;n � Rp şi a 2 Rp: Atunci

8x 2 Rp : [ha1; xi � 0; : : : ; han; xi � 0]) ha; xi � 0

dac¼a şi numai dac¼a exist¼a (�i)i21;n � [0;1) astfel încât a =
Pn

i=1 �iai:

Exemplul 2.6.3 Fie A � R3 dat¼a prin

A =
�
x 2 R3 j 3x1 � x2 + 2x3 = 0; x1 + x2 � 0; x3 � 0

	
:

Dorim s¼a scriem polara muļtimii A:
Prin de�ni̧tie, u 2 A� dac¼a şi numai dac¼a pentru orice x 2 A; hu; xi � 0.
Consider¼am vectorii a = (3;�1; 2) ; b = (�3; 1� 2) ; c = (�1;�1; 0) ; d = (0; 0; 1) şi atunci

x 2 A () x 2 R3;

8>><>>:
ha; xi � 0
hb; xi � 0
hc; xi � 0
hd; xi � 0:

Prin urmare

u 2 A� ()

0BB@x 2 R3;
8>><>>:
ha; xi � 0
hb; xi � 0
hc; xi � 0
hd; xi � 0

=) hu; xi � 0

1CCA :
Conform Lemei lui Farkas, ultima implica̧tie este echivalent¼a cu faptul c¼a exist¼a �; �; 
; � � 0
astfel încât

u = �a+ �b+ 
c+ �d:

Deci
A� = f(3�� 3� � 
;��+ � � 
; 2�� 2� + �) j �; �; 
; � � 0g :

Exemplul 2.6.4 S¼a calcul¼am conurile tangente şi conurile normale în diferite puncte la muļtimea
M � Rp;

M =

(
x = (x1; x2; :::; xp) 2 Rp j xi � 0; 8i 2 1; p;

pX
i=1

xi = 1

)
;
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numit¼a simplexul unitate. Aceast¼a muļtime este, evident, convex¼a şi închis¼a. Conform rezul-
tatului precedent, pentru �ecare x 2M;

T (M;x) = clR+(M � x)
= cl fu 2 Rp j 9� � 0; x 2M; u = �(x� x)g :

Fie u din muļtimea din membrul drept. Este clar c¼a, pe de o parte,
Pp

i=1 ui = 0 iar, pe de alt¼a
parte, dac¼a xi = 0; atunci ui � 0: Not¼am cu I(x) :=

�
i 2 1; p j xi = 0

	
: Deducem c¼a

T (M;x) �
(
u 2 Rp j

pX
i=1

ui = 0 şi ui � 0; 8i 2 I(x)
)
:

S¼a demonstr¼am incluziunea invers¼a. Este simplu de veri�cat c¼a muļtimea din dreapta este
închis¼a. Fie u din aceast¼a muļtime. Dac¼a u = 0; atunci, evident, u 2 T (M;x): Dac¼a u 6= 0
atunci trebuie s¼a ar¼at¼am c¼a exist¼a � > 0 cu x+�u 2M: Pe de o parte, faptul c¼a

Pp
i=1(xi+�ui) =

1 este clar pentru orice �. Dac¼a nu exist¼a indici i cu ui < 0; atunci şi faptul c¼a xi + �ui � 0;
pentru orice i 2 1; p este evident şi deci u 2 T (M;x): Presupunem acum c¼a muļtimea J a
indicilor pentru care uj < 0 este nevid¼a. Atunci J � 1; p n I(x); deci xj > 0 pentru orice j 2 J:
Alegem atunci � strict pozitiv cu

� < minf�u�1j xj j j 2 Jg

şi avem din nou c¼a xi+�ui � 0; pentru orice i 2 1; p: Prin urmare şi în acest caz u 2 T (M;x),
deci are loc egalitatea.
În continuare, ar¼at¼am c¼a

N(M;x) = f(a; a; :::; a) 2 Rp j a 2 Rg
+ fv 2 Rp j vi � 0; 8i 2 I(x); vi = 0; i =2 I(x)g :

Pentru aceasta consider¼am elementele

a0 = (1; 1; :::; 1); a1 = �(1; 0; :::; 0); :::; an = �(0; 0; :::; 1)

şi observ¼am urm¼atoarea scriere echivalent¼a a lui T (M;x) :

T (M;x) = fu 2 Rp j ha0; ui � 0; h�a0; ui � 0; hai; ui � 0; 8i 2 I(x)g :

Polara acestei muļtimi este

N(M;x) =

8<:�a0 � �a0 + X
i2I(x)

�iai j �; �; �i � 0; 8i 2 I(x)

9=; :
Într-adev¼ar, faptul c¼a muļtimea din dreapta este inclus¼a în conul normal este evident, iar
incluziunea invers¼a rezult¼a din Lema lui Farkas (Teorema 2.6.1) întrucât:

v 2 N(M;x) () hu; vi � 0;8u 2 T (M;x)
() 8u 2 Rp : [ha0; ui � 0; h�a0; ui � 0; hai; ui � 0; 8i 2 I(x)]) hu; vi � 0:

Astfel, se ajunge la forma anuņtat¼a a conului normal.
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2.7 Exerci̧tii

Exerci̧tiul 2.1 S¼a se arate c¼a o mulţime nevid¼a D � Rp este convex¼a dac¼a şi numai dac¼a D
conţine orice combinaţie convex¼a a elementelor sale.

Exerci̧tiul 2.2 Fie D � Rp o mulţime nevid¼a. S¼a se arate c¼a mulţimea convD este cea mai
mic¼a mulţime convex¼a (în sensul incluziunii) care conţine mulţimea D:

Problema 2.3 S¼a se arate c¼a înf¼aşur¼atoarea convex¼a a unei mulţimi închise nu este neaparat
închis¼a. S¼a se arate c¼a înf¼aşur¼atoarea convex¼a a unei mulţimi compacte este compact¼a.

Problema 2.4 S¼a se arate c¼a înf¼aşur¼atoarea convex¼a a unei mulţimi deschise este deschis¼a.

Exerci̧tiul 2.5 Fie A;B � Rp mulţimi nevide convexe. S¼a se arate c¼a

conv (A [B) = f�a+ (1� �) b j a 2 A; b 2 B;� 2 [0; 1]g :

Exerci̧tiul 2.6 Fie A;B � Rp mulţimi nevide. S¼a se arate c¼a conv (A+B) = convA+convB:

Problema 2.7 Fie A � Rp nevid¼a. De�nim

eA := [0; 1]A = f�a j � 2 [0; 1]; a 2 Ag:
S¼a se arate c¼a:
(i) dac¼a A este compact¼a, atunci eA este compact¼a;
(ii) dac¼a A este convex¼a, atunci eA este convex¼a;
(iii) reciproca a�rmaţiei de la (i) nu este adev¼arat¼a;
(iv) reciproca a�rmaţiei de la (ii) nu este adev¼arat¼a.

Problema 2.8 Fie A � Rp o mulţime nevid¼a. De�nim înf¼aşur¼atoarea echilibrat¼a a mulţimii
A prin

echiA := [�1; 1]A = f�a j � 2 [�1; 1] ; a 2 Ag :
(i) S¼a se scrie înf¼aşur¼atoarea echilibrat¼a a mulţimii C :=

�
(x; y) 2 R2 j (x� 1)2 + y2 = 1

	
:

(ii) S¼a se arate c¼a, în general, dac¼a A este compact¼a, atunci echiA este compact¼a, dar
reciproca nu este adev¼arat¼a.
(iii) Este înf¼aşur¼atoarea echilibrat¼a a unei mulţimi convexe mulţime convex¼a?
(iv) S¼a se stabileasc¼a valoarea de adev¼ar a relaţiei conv (echiA) = echi (conv (echiA)) :

Exerci̧tiul 2.9 S¼a se arate c¼a simplexul unitate este mulţime compact¼a şi convex¼a.

Exerci̧tiul 2.10 Fie A � Rp n f0g o mulţime compact¼a. S¼a se arate c¼a înf¼aşur¼atoarea conic¼a
a lui A este mulţime închis¼a. Se menţine concluzia dac¼a 0 2 A?

Problema 2.11 Fie A;B;C � Rp mulţimi nevide astfel încât C este m¼arginit¼a. S¼a se arate
c¼a dac¼a A+ C � B + C; atunci A � convB:
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Exerci̧tiul 2.12 Fie f : R! R o funcţie convex¼a şi x; y 2 R cu x < y. Consider¼am un scalar
� > 1: S¼a se ordoneze cresc¼ator numerele (1� �)x+ �y; x; y: S¼a se arate c¼a

(1� �)f(x) + �f(y) � f((1� �)x+ �y):

Ce se poate spune în cazul � < 0? Interpretaţi geometric rezultatele.

Problema 2.13 Fie f : R! R o funcţie convex¼a.
(i) Fie a; b 2 R; a < b: S¼a se studieze poziţia gra�cului lui f în raport cu dreapta ce trece

prin (a; f(a)) şi (b; f(b)):
(ii) S¼a se deduc¼a faptul c¼a dac¼a f este m¼arginit¼a, atunci este constant¼a. S¼a se deduc¼a faptul

c¼a dac¼a f este în plus cresc¼atoare, atunci limx!1 f(x) =1:

Soluţie (i) Este clar (din interpretarea geometric¼a a convexit¼a̧tii) c¼a pentru x 2 [a; b]; gra�cul
lui f se a�¼a sub dreapta ce uneşte punctele (a; f(a)) şi (b; f(b)) şi care are ecua̧tia

y =
f(b)� f(a)
b� a (x� a) + f(a):

Pentru x > b; din convexitate şi din a < b < x deducem

f(b)� f(a)
b� a � f(x)� f(a)

x� a ;

adic¼a

f(x) � f(b)� f(a)
b� a (x� a) + f(a);

adic¼a gra�cul lui f este deasupra dreptei. Aceeaşi concluzie se ob̧tine în mod analog pentru
x < a:
(ii) Presupunem c¼a f nu ar � constant¼a. Atunci ar exista a; b 2 R cu a < b şi f(a) 6= f(b):

Putem considera, f¼ar¼a a restrânge generalitatea, c¼a f(b) > f(a): Cum pentru x > b;

f(x) � f(b)� f(a)
b� a (x� a) + f(a);

ob̧tinem c¼a limx!1 f(x) = +1; adic¼a f nu este m¼arginit¼a. Ultima concluzie rezult¼a din
considera̧tiile anterioare. �

Problema 2.14 Fie a; b 2 R; a < b şi f : (a; b)! R convex¼a. S¼a se arate c¼a f este m¼arginit¼a
inferior. Este în general f m¼arginit¼a?

Soluţie Fie x0 < x1 < x2 trei puncte din intervalul (a; b): Pentru x < x1; avem

f(x1)� f(x)
x1 � x

� f(x2)� f(x1)
x2 � x1

ceea ce atrage

(x1 � x)
f(x2)� f(x1)
x2 � x1

+ f(x1) � f(x);
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deci f este m¼arginit¼a inferior pe (a; x1]: Analog, pentru x � x1;

f(x)� f(x1)
x� x1

� f(x1)� f(x0)
x1 � x0

adic¼a

(x� x1)
f(x1)� f(x0)
x1 � x0

+ f(x0) � f(x):

Ob̧tinem c¼a f este m¼arginit¼a inferior pe [x1; b); deci, în �nal este m¼arginit¼a inferior pe (a; b):
În general, m¼arginirea superioar¼a nu este asigurat¼a. Ca exemplu, consider¼am funçtia f :

(��
2
; �
2
)! R; f(x) = jtg xj. �

Problema 2.15 Fie f : R! R o funcţie convex¼a.
(i) S¼a se arate c¼a dac¼a limx!1 f(x) = 0; atunci f(x) � 0; pentru orice x 2 R:
(ii) S¼a se arate c¼a f admite asimptot¼a la +1; atunci gra�cul s¼au este deasupra asimptotei.

Soluţie (i) Presupunem, prin reducere la absurd, c¼a exist¼a un punct x0 2 R cu f(x0) < 0: Din
ipotez¼a, exist¼a x1 > x0 cu f(x1) > f(x0): Pentru x > x1 are loc (pe baza convexit¼a̧tii)

f(x1)� f(x0)
x1 � x0

� f(x)� f(x1)
x� x1

;

deci

f(x1) + (x� x1)
f(x1)� f(x0)
x1 � x0

� f(x):

Ob̧tinem contradiçtia limx!1 f(x) =1:
(ii) Fie y = ax+ b ecua̧tia asimptotei. Funçtia g : R! R; g(x) = f(x)�ax� b este convex¼a

(sum¼a dintre o funçtie convex¼a şi o funçtie a�n¼a) şi, în plus, limx!1 g(x) = 0: Aplic¼am punctul
precedent şi rezult¼a concluzia. �

Exerci̧tiul 2.16 Fie D � Rp o mulţime convex¼a şi f : D ! R. S¼a se arate c¼a urm¼atoarele
a�rmaţii sunt echivalente:
(i) f este convex¼a;
(ii) epigraful lui f; epi f := f(x; t) 2 D � R j f(x) � tg este o submulţime convex¼a a lui

Rp � R.

Exerci̧tiul 2.17 Fie D � Rp o mulţime convex¼a şi f : D ! R o funcţie convex¼a. S¼a se arate
c¼a pentru orice a 2 R mulţimea

Naf = fx 2 D j f(x) � ag

este convex¼a. Are loc reciproca? S¼a se arate c¼a proprietatea de mai sus este echivalent¼a cu

8x; y 2 D;8� 2 (0; 1); f(�x+ (1� �)y) � maxff(x); f(y)g:

Exerci̧tiul 2.18 Fie a; b > 0: S¼a se arate c¼a mulţimea�
(x; y) 2 R2 j x

2

a2
+
y2

b2
� 1
�

este convex¼a.
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Exerci̧tiul 2.19 Fie D � Rp o mulţime convex¼a şi f; g : D ! R o funcţii convexe. S¼a se arate
c¼a funcţia maxff; gg este convex¼a. Este minff; gg convex¼a, în general?

Problema 2.20 (Inegalitatea lui Jensen) Fie D � Rp o mulţime convex¼a şi f : D ! R:
Dac¼a funcţia f este convex¼a atunci

f(�1x1 + :::+ �mxm) � �1f(x1) + :::+ �mf(xm)

pentru orice m 2 N n f0g ; x1; :::; xm 2 D; �1; :::; �m � 0; �1 + ::: + �m = 1: Inegalitatea este
strict¼a dac¼a funcţia f este strict convex¼a, cel puţin dou¼a din punctele (xk) sunt distincte şi
scalarii (�k) corespunz¼atori sunt strict pozitivi.

Problema 2.21 (i) Folosind inegalitatea lui Jensen funcţia strict convex¼a f : R! R; f(x) =
ex deduceţi: pentru orice n 2 N n f0g şi x1; x2; :::; xn 2 R; �1; �2; :::; �n > 0 cu

Pn
k=1 �k = 1 are

loc

e
Pn
k=1 �kxk �

nX
k=1

�ke
xk

cu egalitate doar în cazul x1 = x2 = ::: = xn:
(ii) Ar¼ataţi c¼a pentru orice a1; a2; :::; an > 0 şi �1; �2; :::; �n > 0 cu

Pn
k=1 �k = 1 are loc

a�11 a
�2
2 :::a

�n
n �

nX
k=1

�kak:

(iii) Deduceţi inegalitatea mediilor.
(iv) Deduceţi c¼a pentru orice u; v > 0 şi p; q > 1; 1p +

1
q
= 1 are loc

u
1
pv

1
q � u

p
+
v

q
:

Când are loc egalitatea?
(v) Deduceţi inegalitatea lui Hölder: pentru orice p; q > 1; 1

p
+ 1

q
= 1; x1; x2; :::; xn > 0 şi

y1; y2; :::; yn > 0 are loc
nX
k=1

xkyk �
 

nX
k=1

xpk

! 1
p
 

nX
k=1

yqk

! 1
q

:

Când are loc egalitatea?

Exerci̧tiul 2.22 Fie f : (0;1)! R, f(x) = � lnx: S¼a se arate c¼a f este convex¼a şi c¼a pentru
orice n 2 N n f0g ; (xi)i21;n � (0;+1) cu

Pn
1 xi = 1 are loc

ln
1

n
�

nX
1

xi lnxi:

Exerci̧tiul 2.23 S¼a se arate c¼a f : (1;1) ! R; f(x) = � ln(lnx) este convex¼a. Deduceţi c¼a
pentru orice a; b > 1 are loc relaţia

p
ln a ln b � ln

�
a+ b

2

�
:
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Soluţie Derivata a doua a lui f pe intervalul de de�ni̧tie este

f 00(x) =
1

x2 lnx
+

1

x2 ln2 x
:

Cum x > 1 aceast¼a funçtie este pozitiv¼a, deci f este convex¼a.
Pe baza acestei propriet¼a̧ti, deducem

� ln
�
ln
a+ b

2

�
� �1

2
(ln(ln a) + ln(ln b)) = � ln(

p
ln a ln b);

de unde se ob̧tine inegalitatea c¼autat¼a. �

Exerci̧tiul 2.24 S¼a se arate c¼a dac¼a �; �; 
 sunt unghiurile unui triunghi, atunci

sin�+ sin � + sin 
 � 3
p
3

2
:

Problema 2.25 (Inegalitatea Hermite-Hadamard) Fie a; b 2 R; a < b şi f : [a; b]! R o
funcţie convex¼a şi continu¼a pe [a; b]. Atunci are loc inegalitatea

f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx � f(a) + f(b)

2
:

Problema 2.26 S¼a se arate c¼a urm¼atoarele funcţii sunt convexe şi s¼a se scrie inegalitatea
Hermite-Hadamard în �ecare caz în parte pe diferite intervale compacte:
(i) f : [0;1)! R; f(x) = (x+ 1)�1;
(ii) f : R! R; f(x) = ex;
(iii) f : [0; �]! R; f(x) = � sinx:

Problema 2.27 Fie a; b 2 R; a < b şi f : [a; b] ! R o funcţie de clas¼a C2 astfel încât exist¼a
m;M 2 R cu m � f 00(x) �M pentru orice x 2 [a; b]: S¼a se arate c¼a

m
(b� a)2
24

� 1

b� a

Z b

a

f(x)dx� f
�
a+ b

2

�
�M (b� a)2

24

şi

m
(b� a)2
12

� f(a) + f(b)

2
� 1

b� a

Z b

a

f(x)dx �M (b� a)2
12

:

Soluţie Este uşor de observat c¼a funçtiile

x 7! f(x)� mx
2

2

x 7! Mx2

2
� f(x)

sunt convexe şi continue. Ambele inegalit¼a̧ti cerute se ob̧tin aplicând inegalitatea Hermite-
Hadamard acestor dou¼a funçtii. �
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Exerci̧tiul 2.28 Fie a; b 2 R; a < b şi f : [a; b]! R o funcţie L-Lipschitz (L > 0): S¼a se arate
c¼a ����f(x)� 1

b� a

Z b

a

f(t)dt

���� �
241
4
+

 
x� a+b

2

b� a

!235L(b� a):
Soluţie Putem scrie succesiv����f(x)� 1

b� a

Z b

a

f(t)dt

���� = ���� 1

b� a

Z b

a

(f(x)� f(t))dt
����

� L

b� a

Z b

a

jx� tj dt

=

241
4
+

 
x� a+b

2

b� a

!235L(b� a);
şi inegalitatea este demonstrat¼a. �

Problema 2.29 Fie f : [a; b] ! R de clas¼a C2 astfel încât f(a) = f(b) = 0: Fie M :=
supx2[a;b] jf 00 (x)j şi g; h : [a; b]! R;

g(x) = f(x)�M (x� a)(b� x)
2

; h(x) = �f(x)�M (x� a)(b� x)
2

:

S¼a se arate c¼a g; h sunt convexe şi s¼a se deduc¼a inegalitatea

jf(x)j �M (x� a)(b� x)
2

; 8x 2 [a; b] :

Problema 2.30 (i) Fie a; b 2 R; a < b; M > 0 şi (fn) : [a; b] ! R un şir de funcţii
M�Lipschitz pe [a; b]: S¼a se arate c¼a dac¼a (fn) este convergent punctual pe [a; b], atunci (fn)
este uniform convergent pe [a; b]:
(ii) Fie a; b 2 R; a < b; şi (fn) : (a; b)! R un şir de funcţii convexe convergent punctual pe

(a; b): S¼a se arate c¼a şirul (fn) este uniform convergent pe orice subinterval închis al lui (a; b):

Soluţie (i) Este clar c¼a dac¼a f este limita punctual¼a a lui (fn); atunci f este ea îns¼aşiM�Lipschitz.
Fie " > 0: Fix¼am o divizare a intervalului (a; b) de forma

a = �0 < �1 < ::: < �p = b

de norm¼a mai mic¼a decât "
M
: Din convergeņta punctual¼a exist¼a un rang n0 su�cient de mare

încât pentru orice i 2 0; p;
jfn(�i)� f(�i)j < ":

Fie x 2 [a; b]: Exist¼a i 2 0; p� 1 cu x 2 [�i; �i+1]: Avem

jfn(x)� f(x)j � jfn(x)� fn(�i)j+ jfn(�i)� f(�i)j+ jf(�i)� f(x)j
< M jx� �ij+ "+M jx� �ij � 3":
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Deci (fn) este uniform convergent c¼atre f:
(ii) Vom reduce problema la cazul precedent. Fie [�; �] � (a; b) şi �0 2 (a; �); �0 2 (�; b):

Cum fn este convex¼a, pentru orice x; y 2 [�; �] cu x 6= y;

fn(�)� fn(�0)
�� �0 � fn(x)� fn(y)

x� y � fn(�)� fn(�0)
� � �0 :

Membrii extremi ai acestei inegalit¼a̧ti sunt m¼argini̧ti (din convergeņta punctual¼a), deci exist¼a
M > 0 cu ����fn(x)� fn(y)x� y

���� �M; 8x; y 2 [�; �]; x 6= y; 8n 2 N:
Aşadar, funçtiile (fn) sunt echi-Lipschitz pe [�; �], deci se aplic¼a punctul (i). �

Exerci̧tiul 2.31 Fie f; g : R! R. S¼a se arate c¼a dac¼a f este convex¼a iar g este a�n¼a atunci
f � g este convex¼a.

Exerci̧tiul 2.32 Fie f : (0;1)! R convex¼a. S¼a se arate c¼a ' : (0;1)! R dat¼a prin

'(x) = xf

�
1

x

�
este convex¼a.

Problema 2.33 Fie f : Rp ! R: S¼a se arate c¼a f este simultan convex¼a şi concav¼a dac¼a şi
numai dac¼a f este a�n¼a.

Exerci̧tiul 2.34 S¼a se arate c¼a f : R! R dat¼a prin f(x) =
p
x2 + 1 este convex¼a. Fie

n 2 N n f0g : Deduceţi inegalit¼aţile:
(i) pentru orice numere reale a1; a2; :::; anp

(a1 + a2 + :::+ an)2 + n2 �
q
a21 + 1 +

q
a22 + 1 + :::+

p
a2n + 1;

(ii)
n

2

p
n2 + 2n+ 5 <

p
12 + 1 +

p
22 + 1 + :::+

p
n2 + 1:

Exerci̧tiul 2.35 Fie g : [�2+
p
2;+1)! R; g(x) = x2ex: S¼a se arate c¼a g este strict convex¼a

şi apoi s¼a se arate c¼a pentru orice n 2 N n f0g ; (xi)i21;n � [�2+
p
2;+1) cu

Pn
1 xi = 2 are loc

4
n
p
e2

n
�

nX
1

x2i e
xi :

Exerci̧tiul 2.36 (i) S¼a se arate c¼a funcţia f : R! R dat¼a prin f(x) = ln(1+ex) este convex¼a.
(ii) S¼a se arate c¼a pentru orice x1; :::; xn > 0 (n 2 N n f0g) are loc inegalitatea

(1 + x1) ::: (1 + xn) � (1 + n
p
x1:::xn)

n
:
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Problema 2.37 (i) S¼a se arate c¼a f : (0;1)! R, f(x) = x� unde � > 1 este convex¼a.
(ii) Ar¼ataţi c¼a pentru orice � > 1; numerele reale strict pozitive a1; a2; :::; an şi pentru orice

�1; �2; :::; �n 2 [0; 1] cu
Pn

i=1 �i = 1 (n 2 N n f0g) are loc inegalitatea

(�1a1 + :::+ �nan)
� � �1a�1 + :::+ �na�n:

(iii)Ar¼ataţi c¼a pentru orice p; q > 0, p < q, pentru orice numere reale strict pozitive
a1; a2; :::; an şi pentru orice �1; �2; :::; �n 2 [0; 1] cu

Pn
i=1 �i = 1 (n 2 N n f0g) are loc ine-

galitatea
(�1a

p
1 + :::+ �na

p
n)
1=p � (�1aq1 + :::+ �naqn)

1=q :

Exerci̧tiul 2.38 S¼a se arate c¼a funcţia f : (0;+1)! R dat¼a prin

f(x) =

�
x+

1

x

�10
este convex¼a. S¼a se deduc¼a faptul c¼a pentru orice a; b; c > 0 cu a+ b+ c = 1 are loc inegalitatea:

1010

39
�
�
a+

1

a

�10
+

�
b+

1

b

�10
+

�
c+

1

c

�10
:

Când are loc egalitatea?

Problema 2.39 (i) Fie f; g : R! R: S¼a se arate c¼a dac¼a f este o funcţie convex¼a cresc¼atoare
şi g este convex¼a atunci f � g este convex¼a.
(ii) Fie f : R!(0;1): S¼a se arate c¼a funcţia ln f este convex¼a dac¼a şi numai dac¼a pentru

orice � > 0; funcţia f� este convex¼a.

Exerci̧tiul 2.40 S¼a se arate c¼a funcţia f : (0;1) ! R; f(x) = x lnx este strict convex¼a.
Deduceţi inegalitatea:

(x1x2:::xn)
x1+x2+:::+xn

n � xx11 xx22 :::xxnn ; 8n 2 N n f0g ; x1; x2; :::; xn > 0:

S¼a se scrie inegalitatea Hermite-Hadamard pentru f pe un interval de forma [1; a] cu a > 1:
Deduceţi inegalitatea

2a ln a < a2 � 1; 8a > 1:

Problema 2.41 Fie D � Rp o mulţime convex¼a şi f : D ! R o funcţie convex¼a. S¼a se arate
c¼a f este continu¼a în orice punct interior mulţimii D:

Soluţie Fie x 2 intD: F¼acând eventual o transla̧tie, putem considera cazul x = 0: Ar¼at¼am mai
întâi c¼a f este m¼arginit¼a pe o vecin¼atate a punctului 0: Dac¼a not¼am cu (ei)i21;p baza canonic¼a
a spa̧tiului Rp; atunci exist¼a a > 0 astfel încât aei şi �aei sunt în D pentru orice i 2 1; p: În
aceste condi̧tii, muļtimea

V :=

(
x 2 Rp j x =

pX
i=1

xiei; jxij <
a

p
; 8i 2 1; p

)
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este o vecin¼atate a lui 0 inclus¼a în D: Pentru x 2 V; exist¼a (xi)i21;p cu jxij < a
p
; i 2 1; p şi

x =
Pp

i=1 xiei: Presupunem mai întâi c¼a xi 6= 0 pentru orice i 2 1; p: Avem

f(x) = f

 
pX
i=1

xiei

!
= f

 
pX
i=1

jxij
a
a
xi
jxij
ei +

 
1�

pX
i=1

jxij
a

!
0

!

�
pX
i=1

jxij
a
f

�
a
xi
jxij
ei

�
+

 
1�

pX
i=1

jxij
a

!
f(0)

� maxff (aei) ; f(�aei) j i 2 1; pg+ jf(0)j :

Acum se observ¼a c¼a dac¼a avem indici i pentru care xi = 0; atunci putem s¼a excludem din
calculele de mai sus respectivii indici, iar estimarea se p¼astreaz¼a.
Cum membrul drept este o constant¼a (pe care o not¼am cuM), a�rma̧tia f¼acut¼a anterior este

demonstrat¼a. Fie " 2 (0; 1) şi U o vecin¼atate simetric¼a a lui 0 cu proprietatea c¼a "�1U � V:
Atunci, pentru orice x 2 U;

f(x) = f
�
"("�1x) + (1� ")0

�
� "f("�1x) + (1� ")f(0)

� "M + (1� ")f(0);

adic¼a
f(x)� f(0) � "M � "f(0):

Din faptul c¼a U este simetric¼a, deducem c¼a pentru orice x 2 U

f(�x) � "M + (1� ")f(0):

Mai mult,

f(0) = f

�
1

2
x+

1

2
(�x)

�
� 1

2
f(x) +

1

2
f(�x) � 1

2
f(x) +

1

2
("M + (1� ")f(0)) ;

deci
f(0)� f(x) � "M � "f(0);

rela̧tie care, în combina̧tie cu cea de mai sus, conduce la

jf(x)� f(0)j � "M � "f(0):

Aceast¼a inegalitate probeaz¼a continuitatea lui f în 0: �

Problema 2.42 Dac¼a I � R este un interval şi f : I ! R o funcţie convex¼a, atunci f admite
derivate laterale în �ecare punct interior intervalului I şi pentru orice x; y 2 int I; cu x < y au
loc inegalit¼aţile:

f 0�(x) � f 0+(x) � f 0�(y) � f 0+(y):
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Exerci̧tiul 2.43 Fie g : R! R o funcţie continu¼a. S¼a se arate c¼a g este convex¼a dac¼a şi
numai dac¼a pentru orice funcţie f : [0; 1]! R integrabil¼a Riemann are loc inegalitatea

g

�Z 1

0

f(u)du

�
�
Z 1

0

g (f(u)) du:

Soluţie Dac¼a g este convex¼a atunci pentru orice diviziune a intervalului [0; 1] şi pentru orice
sistem de puncte intermediare (cu nota̧tiile din De�ni̧tia 4.6.73) are loc

g

 
nX
i=1

f(�i)(xi � xi�1)
!
�

nX
i=1

g(f(�i))(xi � xi�1):

Trecând la limit¼a cu norma diviziunii tinzând la 0 ob̧tinem inegalitatea dorit¼a.
Pentru reciproc¼a, �x¼am x; y 2 R; � 2 (0; 1) şi consider¼am funçtia f : [0; 1]! R;

f(u) =

�
x; dac¼a u 2 [0; �]
y; dac¼a u 2 (�; 1]:

Atunci f este integrabil¼a Riemann pe [0; 1] (a se vedea Teoremele 4.6.81, 4.6.82). Aplicând
inegalitatea din ipotez¼a g¼asim

g(�x+ (1� �)y) � �g(x) + (1� �)g(y);

ceea ce probeaz¼a convexitatea lui g: �

Exerci̧tiul 2.44 S¼a se arate c¼a urm¼atoarele funcţii sunt convexe:
(i) f : R2 ! R; f(x1; x2) = 3x21 + 7x22 + 2x1x2 + 4x1 + 4x2 + 1;
(ii) f : R2 ! R, f(x1; x2) = 2x21 � 4x1x2 + 3x22 + 5x1;
(iii) f : (0;1)� (0;1)! R;

f(x1; x2) =
1

x1
+
1

x2
� 1

x1 + x2
:

Exerci̧tiul 2.45 Studiaţi stricta convexitate a funcţiilor f : R2 ! R date prin:
(i) f (x1; x2) = x21 + x

2
2 + x1x2;

(ii) f (x1; x2) = x21 + x
2
2 + 2x1x2:

Problema 2.46 Fie A � Rp o mulţime nevid¼a.
(i) S¼a se arate c¼a dac¼a A este convex¼a atunci dA este convex¼a.
(ii) S¼a se arate c¼a dac¼a A este închis¼a şi dA este convex¼a atunci A este convex¼a.
(iii) S¼a se dea un exemplu de mulţime neconvex¼a pentru care dA este convex¼a.

Exerci̧tiul 2.47 Fie A � Rp o mulţime nevid¼a. S¼a se arate c¼a arate c¼a pentru orice x 2 Rp

d(x;A) = d(x; clA):

Exerci̧tiul 2.48 Fie A � Rp o mulţime nevid¼a. S¼a se arate c¼a 'A : Rp ! R; 'A(x) =
kxk2 � d2A(x) este convex¼a.
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Exerci̧tiul 2.49 Fie A � Rp nevid¼a. De�nim conA := [0;1)A: S¼a se arate c¼a
(i) conA este cel mai mic con ce conţine A;
(ii) con(convA) = conv(conA);
(iii) A� este un con convex închis şi A � (A�)�;
(iv) Egalitatea A = (A�)� are loc dac¼a şi numai dac¼a A este con convex închis;
(v) dac¼a A � B; atunci B� � A�;
(vi) A� = (conA)�:

Exerci̧tiul 2.50 Fie mulţimea M := [1; 2]� [1; 2]: S¼a se deseneze conurile tangente şi normale
la aceast¼a mulţime punctele sale. Aceeaşi problem¼a pentru M n intM:

Exerci̧tiul 2.51 S¼a se scrie conul tangent la mulţimea

M =
�
(x; y) 2 R2 j 4x = y2

	
într-un punct al s¼au.

Exerci̧tiul 2.52 S¼a se arate c¼a dac¼a ; 6= M � Rp şi x 2 M; atunci are loc relaţia T (M;x) =
T (M;x):

Exerci̧tiul 2.53 Fie A � R2;

A = f(x; y) j x� 2y � 0; 2x� y � 0g :

S¼a se determine polara lui A şi s¼a se reprezinte gra�c ambele mulţimi.

Exerci̧tiul 2.54 S¼a se determine polarele urm¼atoarelor mulţimi:
(i) A = fx 2 R3 j x1 + x2 = 0; x3 � 0g ;
(ii) A = fx 2 R4 j 2x1 + x2 + 3x3 = 0; x1 � 0; x3 � 0; x2 + x4 � 0g :

Exerci̧tiul 2.55 Fie A;B � Rp mulţimi închise: S¼a se arate c¼a au loc relaţiile:
(i) dac¼a x 2 A \B atunci T (A [B; x) = T (A; x) [ T (B; x);
(ii) dac¼a x 2 A \B atunci T (A \B; x) � T (A; x) \ T (B; x);
(iii) dac¼a x 2 FrA atunci T (FrA; x) = T (clA; x) \ T (Rp n A; x):
S¼a se dea un exemplu în care incluziunea de la (ii) s¼a �e strict¼a.

Problema 2.56 S¼a se demonstreze urm¼atoarea variant¼a a�n¼a a Lemei lui Farkas. Fie n 2
N n f0g, (ai)i21;n;� Rp; b 2 Rp şi (�i)i21;n;� R; � 2 R: Presupunem c¼a sistemul de inegalit¼aţi
hai; xi � �i; i 2 1; n are soluţie. Atunci urm¼atoarele a�rmaţii sunt echivalente:
(i) 8x 2 Rp : hai; xi � �i; i 2 1; n) hb; xi � �;
(ii) 9(
i)i21;n � [0;1) astfel încât b =

Pn
i=1 
iai;

Pn
i=1 
i�i � �:

Soluţie Pentru orice i 2 1; n; inegalitatea hai; xi � �i este echivalent¼a cu

h(ai; �i) ; (x;�1)i � 0;

deci şi cu
h(ai; �i) ; (tx;�t)i � 0; 8t � 0;
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adic¼a poate � scris¼a �
h(ai; �i) ; (tx;�t)i � 0
h(0; 1) ; (tx;�t)i � 0:

Aşadar sistemul în (y; s) 2 Rp � R,

h(ai; �i) ; (y; s)i � 0; i 2 1; n; h(0; 1) ; (y; s)i � 0

implic¼a h(b; �) ; (y; s)i � 0: Conform Lemei lui Farkas, aceasta este echivalent cu faptul c¼a exist¼a
(
i)i21;n � [0;1) şi 
 � 0 astfel încât

(b; �) =

nX
i=1


i (ai; �i) + 
 (0; 1) :

Se ob̧tine concluzia. �
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Capitolul 3

Studiul unor probleme de optimizare

3.1 Cadrul general

Fie f : Rp ! R o funçtie şi M � Rp o muļtime nevid¼a. Suntem interesa̧ti s¼a studiem problema
minimiz¼arii funçtiei f atunci când argumentul acesteia parcurge muļtimea M: Muļtimea M se
va numi muļtimea punctelor fezabile ale problemei (P ) sau muļtimea constrângerilor sau, înc¼a,
muļtimea restriçtiilor. Conceptul central este de�nit mai jos.

De�ni̧tia 3.1.1 Spunem c¼a x 2M este punct de minim pentru funcţia f pe mulţimea M dac¼a
exist¼a o vecin¼atate V a punctului x astfel încât f(x) � f(x) pentru orice x 2 M \ V: Dac¼a
V = Rp; spunem c¼a x este punct de minim global pentru f pe M .

Evident, de�ni̧tia de mai sus are sens şi dac¼a f este de�nit¼a doar pe muļtimeaM: No̧tiunea
de punct de minim este întâlnit¼a şi sub denumirea de punct de minim local, îns¼a în aceast¼a
lucrare omitem cuvântul "local". S¼a spunem de la început c¼a ne vom ocupa de minimizarea
funçtiei f; dar rezultate referitoare la maximizarea sa pot � ob̧tinute aplicând rezultatele de
minimizare funçtiei �f în baza rela̧tiei max f = �min(�f): S¼a remarc¼am şi c¼a x 2M nu este
punct minim pentru funçtia f pe muļtimea M dac¼a şi numai dac¼a exist¼a un şir (xn) � M;
xn ! x astfel încât f(xn) < f(x) pentru orice n: Similar, x 2 M nu este punct minim
global pentru funçtia f pe muļtimea M dac¼a şi numai dac¼a exist¼a un şir x 2 M astfel încât
f(x) < f(x).
Formal, vom scrie problema de mai sus în forma urm¼atoare:

(P ) min f(x); x 2M;

iar prin solu̧tie local¼a (sau, simplu, solu̧tie) pentru problema (P ) îņtelegem un punct de minim
pentru funçtia f pe muļtimeaM în sensul de�ni̧tiei de mai sus. Atunci când avem de-a face cu
un punnct de minim global pentru f pe M , spunem c¼a acesta este solu̧tie global¼a a problemei
(P ):
Atunci când ne vom referi la problema (P ) vom subîņtelege mereu c¼a M este o

muļtime închis¼a.

Observa̧tia 3.1.2 În general, cu excepţia cazului M = Rp; problema (P ) este o problem¼a cu
restricţii (constrângeri) întrucât domeniul argumentului x este restrâns la mulţimea M (a se
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vedea exemplele ilustrative ale conceptelor-cheie de la începutul lucr¼arii). În absenţa mulţimii
M; adic¼a atunci când ne referim la problema minimiz¼arii lui f pe Rp; spunem c¼a avem o
problem¼a f¼ar¼a restricţii. Totuşi, s¼a observ¼am c¼a în De�niţia 3.1.1, dac¼a x 2 intM; atunci x
este soluţie local¼a nein�uenţat¼a de restricţiaM (este su�cient s¼a micşor¼am vecin¼atatea V astfel
încât V � M). Deci în cazul problemelor cu restricţii cazul interesant (care nu se reduce la
cazul unei probleme f¼ar¼a restricţii) este cazul în care x 2 FrM: Dac¼a x 2 intM mai spunem şi
c¼a restricţia este inactiv¼a, iar dac¼a x 2M n intM spunem c¼a restricţia este activ¼a.

Observa̧tia 3.1.3 O restricţie de tip x 2M se numeşte restricţie geometric¼a.

Un rol important îl vor juca muļtimile de nivel ale unei funçtii. Având o funçtie f : Rp ! R;
dac¼a � 2 R;

N�f := fx 2 Rp j f(x) � �g = f�1((�1; �]):
S¼a observ¼am c¼a dac¼a � > infx2Rp f(x) atunci N�f 6= ; iar dac¼a f este continu¼a atunci N�f

este închis¼a.

3.2 Rezultate de existeņt¼a a solu̧tiilor

Teorema 3.2.1 (Teorema lui Weierstrass) Dac¼a M � Rp este o mulţime compact¼a şi
f : M ! R este o funcţie continu¼a, atunci problema minimiz¼arii lui f pe M şi problema
maximiz¼arii lui f pe M au soluţii globale.

Demonstraţie Demonstr¼am concluzia doar pentru problema minimiz¼arii lui f peM . Fie (xn) �
M astfel încât f(xn) ! infff(x) j x 2 Mg: Din compactitatea lui M; şirul (xn) are un subşir
convergent la un element x 2 M: Din faptul c¼a muļtimile de tip M \N�f sunt închise pentru
orice � 2 R; � > infff(x) j x 2 Mg; deducem c¼a x se a�¼a în toate aceste muļtimi (pentru c¼a
pentru �ecare � în parte, termenii xn sunt, de la un loc încolo, în M \N�f). Atunci deducem
c¼a f(x) � � pentru orice � > infff(x) j x 2 Mg: Prin urmare, f(x) � infff(x) j x 2 Mg: Pe
de o parte, aceasta înseamn¼a c¼a infff(x) j x 2 Mg 2 R; deci f este m¼arginit¼a inferior pe M;
iar, pe de alt¼a parte, c¼a x este punctul c¼autat care realizeaz¼a minimul global al lui f pe M:
Demonstra̧tia este încheiat¼a. �

Teorema 3.2.2 Fie f : Rp ! R o funcţie continu¼a şi M � Rp o mulţime nevid¼a şi închis¼a.
Dac¼a exist¼a � > infx2M f(x) astfel încât mulţimea de nivel a lui f relativ laM; adic¼aM\N�f =
fx 2M j f(x) � �g; este m¼arginit¼a, atunci f îşi atinge minimul global pe M:

Demonstraţie Este clar c¼a eventualul minim global al lui f peM este totuna cu minimul global
al lui f pe M \N�f: Cum aceast¼a muļtime este compact¼a iar f este continu¼a, din Teorema lui
Weierstrass, deducem c¼a f î̧si atinge minimul global pe M \N�f; deci pe M . �

Rezultatele de mai sus asigur¼a existeņta punctelor de minim în condi̧tii de compactitate
a muļtimilor de nivel. Evident, m¼arginirea inferioar¼a a funçtiei este condi̧tie necesar¼a pentru
existeņta minimului, dar este clar c¼a m¼arginirea muļtimilor de nivel nu este o astfel de condi̧tie.
De exemplu funçtia f : R! R; f(x) = (x�1)2e�x î̧si atinge minimul în x = 1; valoarea minim¼a
este 0; dar N�f nu este m¼arginit¼a pentru nicio valoare � > 0 = infff(x) j x 2 Rg:
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Evident, în teorema de mai sus, dac¼a M este m¼arginit¼a, atunci ipoteza este automat ve-
ri�cat¼a. Cazul interesant este acela în care M este nem¼arginit¼a, situa̧tie în care ipoteza este
veri�cat¼a dac¼a impunem funçtiei f o condi̧tie de coercivitate.

Propozi̧tia 3.2.3 Fie f : Rp ! R o funcţie şi M � Rp o mulţime nevid¼a, închis¼a şi
nem¼arginit¼a. Dac¼a limx2M;kxk!1 f(x) = 1 (i.e., pentru orice (xn) � M; kxnk ! 1 are
loc f(xn)!1) atunci mulţimea N�f \M este m¼arginit¼a pentru orice � > infx2M f(x):

Demonstraţie Fie � > infx2M f: Dac¼a muļtimea N�f \M ar � nem¼arginit¼a, ar exista (xn) �
N�f \M cu kxnk ! 1: Atunci, pe de o parte, din ipotez¼a, lim f(xn) =1 iar, pe de alt¼a parte,
f(xn) � �; pentru orice n 2 N; ceea ce este absurd. �

3.3 Condi̧tii de optimalitate

Trecem acum la a doua parte a acestei seçtiuni în care ne propunem s¼a prezent¼am condi̧tii
necesare şi condi̧tii su�ciente de optimalitate. Pentru început, deducem condi̧tii necesare de
optimalitate pentru care utiliz¼am ideile dezvoltate în leg¼atur¼a cu studiul conului tangent (în
sens Bouligand).

Teorema 3.3.1 (Condi̧tia necesar¼a de ordinul I - probleme cu restriçtii) Dac¼a x este
soluţie local¼a pentru problema (P ) şi f este diferenţiabil¼a în x; atunci rf(x)(u) � 0 pentru
orice u 2 T (M;x):

Demonstraţie Fie V o vecin¼atate a lui x pentru care f(x) � f(x) pentru orice x 2 V \M: Fie
u 2 T (M;x): Atunci exist¼a şi (tn) � (0;1) cu tn ! 0 şi (un)! u astfel încât pentru orice n;

x+ tnun 2M:

Evident şirul (tnun) converge la 0 în Rp şi, de la un loc încolo, x+ tnun este în V: Ţinând cont
de difereņtiabilitatea lui f în x; exist¼a (�n) � R; �n ! 0 astfel încât pentru orice n 2 N;

f(x+ tnun) = f(x) + tnrf(x)(un) + tn kunk�n;

de unde,
rf(x)(un) + kunk�n � 0;

pentru orice n su�cient de mare. Trecând la limit¼a cu n!1; ob̧tinem concluzia. �

Observa̧tia 3.3.2 Condiţia se mai scrie, echivalent,

�rf(x) 2 N(M;x):

Observa̧tia 3.3.3 Ţinând cont de Propoziţia 2.4.7, dac¼a în teorema de mai sus x 2 intM
(restricţie inactiv¼a), obţinem rf(x)(u) � 0 pentru orice u 2 Rp: Din liniaritatea lui rf(x);
deducem rf(x) = 0; adic¼a Teorema lui Fermat.
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O prim¼a întrebare este dac¼a reciprocele acestor rezultate sunt adev¼arate. R¼aspunsul este
negativ: este su�cient s¼a consider¼am exemplul funçtiei f : R! R; f(x) = x3 pentru x = 0: Se
pot îns¼a impune condi̧tii suplimentare aşa încât s¼a avem unele echivaleņte şi cel mai important
caz este cel al funçtiilor convexe pe care îl vom studia separat ceva mai jos.

Revenind la Teorema 3.3.1, înt¼arind condi̧tiile din concluziile acestui rezultat, ob̧tinem
condi̧tii su�ciente de optimalitate.

Teorema 3.3.4 (Condi̧tia su�cient¼a de ordinul I - probleme cu restriçtii) Consider¼am
problema (P ): Dac¼a f este diferenţiabil¼a în x 2M şi

rf(x)(u) > 0; 8u 2 T (M;x) n f0g;

atunci x este soluţie local¼a pentru problema (P ):

Demonstraţie Presupunem, prin reducere la absurd, c¼a x nu este solu̧tie: Atunci, negând
de�ni̧tia, deducem c¼a exist¼a un şir (xn)! x; (xn) �M astfel încât pentru orice n 2 N n f0g ;

f(xn) < f(x):

În virtutea acestei inegalit¼a̧ti,
xn 6= x; 8n 2 N n f0g :

Cum f este difereņtiabil¼a, exist¼a un şir de numere reale (
n) ! 0 astfel încât pentru orice
n 2 N;

f(xn) = f(x) +rf(x)(xn � x) + 
n kxn � xk :
Combinând cele dou¼a rela̧tii, avem

0 > rf(x)(xn � x) + 
n kxn � xk ;

de unde, prin împ¼aŗtire la num¼arul nenul kxn � xk deducem

0 > rf(x)
�
xn � x
kxn � xk

�
+ 
n; 8n 2 N n f0g : (3.1)

Cum şirul
�

xn�x
kxn�xk

�
este m¼arginit, exist¼a un subşir convergent al acestuia. Limita, notat¼a u;

a respectivului subşir este nenul¼a (chiar de norm¼a 1) şi, în plus, din faptul c¼a kxn � xk ! 0;
deducem c¼a u 2 T (M;x): Prin urmare u 2 T (M;x) n f0g şi trecând la limit¼a în rela̧tia (3:1)
avem

0 � rf(x)(u);
ceea ce contrazice ipoteza. �

Exemplul 3.3.5 Fie f : R2 ! R;

f(x) = �x1 � 2x2 � 2x1x2 +
x21
2
+
x22
2
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şi muļtimea restriçtiilor

M :=
�
x 2 R2 j x1 + x2 � 1; x1 � 0; x2 � 0

	
:

S¼a consider¼am, ca în discu̧tia teoretic¼a, problema (P ) a minimiz¼arii lui f pe M:
Dac¼a ar exista un punct de minim x în interiorul lui M atunci acel punct ar � un minim

f¼ar¼a restriçtii (conform Observa̧tiei 3.1.2), deci, din Teorema lui Fermat rf(x) = 0: Dar

rf(x) = (�1 + x1 � 2x2;�2� 2x1 + x2)

şi rezolvând sistemul g¼asim solu̧tia x = (�5
3
;�4

3
) care nu apaŗtine lui M: Deci problema nu are

solu̧tii în intM: Totuşi f este continu¼a, iar M este compact¼a, deci problema (P ) admite cel
pu̧tin o solu̧tie global¼a.
Datorit¼a faptului c¼a inegalit¼a̧tile ce de�nesc muļtimea M sunt liniare, avem o imagine

geometric¼a clar¼a a muļtimii (un triunghi dreptunghic cu vârfurile în punctele (0; 0); (0; 1);
(1; 0)). Atunci putem calcula relativ simplu conurile tangent şi normal la M în punctele de pe
frontier¼a şi apoi s¼a veri�c¼am îndeplinirea condi̧tiei necesare de optimalitate: �rf(x) 2 N(M;x)
(Teorema 3.3.1).
Astfel, dac¼a punctul x este

�pe segmentul deschis de capete (0; 1); (1; 0) :

T (M;x) = fu 2 R2 j u1 + u2 � 0g; N(M;x) = R+f(1; 1)g;

�pe segmentul deschis de capete (0; 0); (0; 1) :

T (M;x) = fu 2 R2 j u1 � 0g; N(M;x) = R+f(�1; 0)g;

�pe segmentul deschis de capete (0; 0); (1; 0) :

T (M;x) = fu 2 R2 j u2 � 0g; N(M;x) = R+f(0;�1)g;

�punctul (0; 1) :

T (M;x) = fu 2 R2 j u1 + u2 � 0; u1 � 0g
N(M;x) = fa(1; 1) + b(�1; 0) j a; b � 0g ;

�punctul (1; 0) :

T (M;x) = fu 2 R2 j u1 + u2 � 0; u2 � 0g
N(M;x) = fa(1; 1) + b(0;�1) j a; b � 0g ;

�punctul (0; 0) :

T (M;x) = fu 2 R2 j u1 � 0; u2 � 0g;
N(M;x) = fa(�1; 0) + b(0;�1) j a; b � 0g :

Prin calcul direct, se veri�c¼a faptul c¼a un singur punct satisface condi̧tia necesar¼a de opti-
malitate: x =

�
1
3
; 2
3

�
: Prin urmare, conform discu̧tiei precedente, acesta este singurul punct de

minim al problemei.
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Putem, de asemenea, s¼a ne punem problema maximului global al lui f pe M (a c¼arui
existeņt¼a este asigurat¼a de Teorema lui Weierstrass), problem¼a echivalent¼a cu g¼asirea minimului
lui �f pe M: Repetând discu̧tia precedent¼a, g¼asim dou¼a puncte ce veri�c¼a condi̧tia necesar¼a
de optimalitate (i.e. rf(x) 2 N(M;x)): x = (0; 0) şi x = (1; 0): Dar f(0; 0) = 0; iar f(1; 0) =
�2�1; deci (0; 0) este punctul de maxim.

Prezent¼am acum o condi̧tii de optimalitate de ordinul al doilea pentru problema f¼ar¼a re-
striçtii. Începem cu condi̧tia necesar¼a.

Teorema 3.3.6 (Condi̧tia necesar¼a de ordinul al II-lea - probleme f¼ar¼a restriçtii) Dac¼a
f : Rp ! R este de clas¼a C2 pe o vecin¼atate a lui x 2 Rp; iar x este punct de minim local
pentru f; atunci rf(x) = 0 şi r2f(x) este pozitiv semide�nit¼a (adic¼a r2f(x)(u; u) � 0 pentru
orice u 2 Rp).

Demonstraţie Fie V � Rp o vecin¼atate a lui x pentru care f(x) � f(x) pentru orice x 2 V şi
pe care f este de clas¼a C2: Faptul c¼a rf(x) = 0 rezult¼a din teorema precedent¼a. Ca mai sus,
�e u 2 Rp şi (tn) � (0;1) cu tn ! 0: Din Teorema lui Taylor (Teorema 4.6.62), pentru orice
n 2 N exist¼a cn 2 (x; x+ tnu) astfel încât

f(x+ tnu)� f(x) = tnrf(x)(u) +
1

2
t2nr2f(cn)(u; u)

=
1

2
t2nr2f(cn)(u; u):

Cum pentru n su�cient de mare, f(x+ tnu)� f(x) � 0; deducem c¼a

r2f(cn)(u; u) � 0;

de unde prin trecere la limit¼a cu n!1, ob̧tinem c¼a cn ! x şi cum f este de clas¼a C2; ob̧tinem

r2f(x)(u; u) � 0;

deci r2f(x) este pozitiv semide�nit¼a. �

Evident, cu o demonstra̧tie similar¼a, se constat¼a c¼a dac¼a x 2 Rp este punct de maxim local
pentru f; atunci rf(x) = 0 şi r2f(x) este negativ semide�nit¼a (adic¼a r2f(x)(u; u) � 0 pentru
orice u 2 Rp). Se poate cu uşuriņt¼a observa, din rezultatul de mai sus şi din demonstra̧tia sa,
c¼a dac¼a r2f(x) nu este nici pozitiv semide�nit¼a nici negativ semide�nit¼a (caz în care spunem
c¼a este nede�nit¼a) atunci x nu este punct de extrem.
În priviņta condi̧tiilor su�ciente de ordinul al doilea, are loc urm¼atorul rezultat.

Teorema 3.3.7 (Condi̧tia su�cient¼a de ordinul al II-lea - probleme f¼ar¼a restriçtii) Fie
f : Rp ! R o funcţie de clas¼a C2. Dac¼a x 2 Rp este punct critic pentru f şi r2f(x) este pozitiv
de�nit¼a (i.e. r2f(x)(u; u) > 0 pentru orice u 2 Rp n f0g), atunci x este minim local pentru f:

Demonstraţie Ca mai sus, presupunem prin reducere la absurd c¼a nu are loc concluzia. Atunci,
exist¼a (xn)! x; (xn) �M n fxg astfel încât pentru orice n 2 N n f0g ;

f(xn) < f(x):
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Din Teorema lui Taylor 4.6.62, pentru orice n 2 N exist¼a cn pe segmentul ce uneşte x cu xn
astfel încât

f(xn)� f(x) = rf(x)(xn � x) +
1

2
r2f(cn)(xn � x; xn � x)

=
1

2
r2f(cn)(xn � x; xn � x):

Ob̧tinem

0 >
1

2
r2f(cn)(xn � x; xn � x);

de unde, pentru �nalizarea demonstra̧tiei, împ¼aŗtim la kxn � xk2 şi repet¼am, cu simpli�c¼arile
evidente, argumentele de mai sus. �

Aşa cum am spus, r2f(x) se identi�c¼a cu matricea hessian¼a a lui f în x :
�

@2f
@xi@xj

(x)
�
i;j21;p

;

iar o condi̧tie su�cient¼a ca aceast¼a matrice simetric¼a s¼a �e pozitiv de�nit¼a este dat¼a de urm¼atorul
criteriu: to̧ti determinaņtii matricilor

�
@2f

@xi@xj
(x)
�
i;j21;k

; k 2 1; p sunt strict pozitivi. Analog,

ra̧tionând eventual pentru �f avem condi̧tia: dac¼a determinaņtii matricilor
�

@2f
@xi@xj

(x)
�
i;j21;k

;

k 2 1; p sunt nenuli şi î̧si alterneaz¼a semnul începând cu semnul minus, atunci x este punct de
maxim (conform Criteriului lui Sylvester). De asemenea, dac¼a aceşti determinaņti sunt nenuli,
atunci orice alt¼a con�gura̧tie a semnelor decât cele descrise mai sus conduce la concluzia c¼a
punctul nu este de extrem local.
Aşadar metoda general¼a de rezolvare a problemelor de optimizare f¼ar¼a restriçtii este ur-

m¼atoarea şi se bazeaz¼a pe condi̧tiile de optimalitate de ordinul I şi al II-lea şi pe Criteriul
lui Sylvester. Se determin¼a punctele critice rezolvând ecua̧tia rf(x) = 0: În �ecare din aceste
puncte, calcul¼am r2f(x) ce se identi�c¼a cu matricea hessian¼a.

� Dac¼a r2f(x) este pozitiv de�nit¼a, atunci x este punct de minim local;

� dac¼a r2f(x) este negativ de�nit¼a, atunci x este punct de maxim local;

� dac¼a r2f(x) este nede�nit¼a atunci x nu este punct de extrem local.

Pentru a veri�ca aceste aspecte, în unele cazuri, se poate utiliza metoda descris¼a mai jos:

� dac¼a to̧ti determinaņtii matricilor
�

@2f
@xi@xj

(x)
�
i;j21;k

; k 2 1; p sunt strict pozitivi atunci x
este punct de minim local;

� dac¼a determinaņtii matricilor
�

@2f
@xi@xj

(x)
�
i;j21;k

; k 2 1; p sunt nenuli şi î̧si alterneaz¼a

semnul începând cu semnul minus, atunci x este punct de maxim;

� dac¼a aceşti determinaņti sunt nenuli, atunci orice alt¼a con�gura̧tie a semnelor decât cele
descrise mai sus conduce la concluzia c¼a punctul nu este de extrem local.
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Dac¼a nu se poate aplica nici una dintre concluziile precedente, atunci se procedeaz¼a de la
caz la caz pentru a stabili natura punctului critic.
Ilustr¼am teoria de mai sus prin dou¼a exemple.

Exemplul 3.3.8 Dorim s¼a g¼asim punctele de minim pentru f : R2 ! R; f(x1; x2) = (1 �
x1)

2 + 100(x2 � x21)2. Avem aşadar o problem¼a f¼ar¼a restriçtii.
Pentru a g¼asi punctele critice rezolv¼am sistemul(

@f
@x1
(x1; x2) = 0

@f
@x2
(x1; x2) = 0

care este echivalent cu �
�2(1� x1)� 400x1(x2 � x21) = 0
200(x2 � x21) = 0

şi are solu̧tia unic¼a (x1; x2) = (1; 1): Calcul¼am matricea hessian¼a în punctul respectiv,

Hf (1; 1) =

�
802 �400
�400 200

�
care este pozitiv de�nit¼a, de unde putem deduce c¼a (1; 1) este minim local pentru f: De altfel,
se poate observa c¼a f(1; 1) = 0; iar f(x1; x2) � 0 pentru orice (x1; x2) 2 R2; deci (1; 1) este
minim global pentru f .

Exemplul 3.3.9 Fie f : R2 ! R; f(x1; x2) = 3x41 � 4x21x2 + x22: S¼a g¼asim punctele de minim
ale lui f .
Calcul¼am punctele critice: sistemul(

@f
@x1
(x1; x2) = 0

@f
@x2
(x1; x2) = 0

are ca unic¼a solu̧tie punctul x = (0; 0): Totuşi, condi̧tia necesar¼a de ordinul al doilea nu este

satisf¼acut¼a pentru c¼a hessiana lui f în x este matricea
�
0 0
0 2

�
: Aşadar, nu putem decide din

Corolarul ?? dac¼a punctul x este punct de minim. În astfel de cazuri, ne folosim de structura
problemei pentru a concluziona. Se observ¼a c¼a f(x1; x2) = (x21� x2)(3x21� x2); iar pentru şirul
xk = (

p
k�1;�k�1)! x

f(xk) =
8

k2
> f(x)

în timp ce pentru şirul xk = (
p
(2k)�1; k�1)! x;

f(xk) = �
1

4k2
< f(x):

Deci, x nu este punct de extrem local pentru f:

Studiem acum, cum am spus mai sus, cazul funçtiilor convexe.
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Teorema 3.3.10 Fie f : Rp ! R o funcţie convex¼a şi diferenţiabil¼a: Urm¼atoarele a�rmaţii
sunt echivalente:
(i) x este un minim global al lui f ;
(ii) x este un minim local al lui f ;
(iii) x este punct critic al lui f (i.e. rf(x) = 0).

Demonstraţie Implica̧tia (i) ) (ii) este evident¼a şi nu are nevoie de condi̧tii suplimentare,
iar (ii) ) (iii) rezult¼a din Teorema lui Fermat. În sfâŗsit, implica̧tia (iii) ) (i) rezult¼a din
Teorema 2.2.13. �

Aşa cum se observ¼a, în cazul funçtiilor convexe, condi̧tia de ordinul I (în cazul f¼ar¼a constrân-
geri) este necesar¼a şi su�cient¼a pentru optimalitate. În aceast¼a situa̧tie, condi̧tia necesar¼a de
ordinul al II-lea nu aduce nimic nou, ea �ind automat sa�sf¼acut¼a de funçtiile convexe (conform
Teoremei 2.2.13).

Privitor la natura punctelor de extrem pentru o funçtie convex¼a, d¼am rezultatele de mai
jos.

Propozi̧tia 3.3.11 Fie f : Rp ! R o funcţie convex¼a şi M � Rp o mulţime convex¼a. Dac¼a
x 2 M este punct de minim local pentru f pe M , atunci x este punct de minim global pentru
f pe M:

Demonstraţie Fie x un punct de minim local pentru f pe M: Atunci exist¼a V o vecin¼atate
convex¼a a lui x astfel încât pentru orice x 2 V \M; f(x) � f(x): Fie x 2M: Exist¼a � 2 (0; 1)
astfel încât y := (1� �)x+ �x 2M \ V: Deci,

f(x) � f(y) = f((1� �)x+ �x) � (1� �)f(x) + �f(x);

adic¼a,
�f(x) � �f(x);

de unde se ob̧tine concluzia. �

Propozi̧tia 3.3.12 Fie f : Rp ! R o funcţie convex¼a şi M � Rp o mulţime convex¼a. Atunci
mulţimea punctelor de minim ale lui f pe M este convex¼a. Dac¼a, în plus, f este strict convex¼a,
atunci aceast¼a mulţime are cel mult un element.

Demonstraţie Din rezultatul precedent, dac¼a x1; x2 2M sunt puncte de minim (global) pentru
f pe M; atunci f(x1) = f(x2): Convexitatea implic¼a f(x) = f(x1) pentru orice x 2 [x1; x2]:
Astfel, prima parte este demonstrat¼a. Dac¼a f este strict convex¼a şi presupunem c¼a avem dou¼a
minime globale distincte, atunci ob̧tinem c¼a f(x) < f(x1) pentru orice x 2 (x1; x2); ceea ce este
imposibil. �

În cazul cu restriçtii, pentru funçtiile convexe condi̧tia necesar¼a de optimalitate de ordinul
I este şi condi̧tie su�cient¼a.

Propozi̧tia 3.3.13 Fie f : Rp ! R o funcţie convex¼a şi diferenţiabil¼a şi M � Rp o mulţime
convex¼a şi închis¼a. Elementul x 2M este punct de minim pentru f pe M dac¼a şi numai dac¼a

�rf(x) 2 N(M;x):
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Demonstraţie Fie x 2 M , punct de minim local pentru f pe M: Atunci, conform Teoremei
3.3.1, rf(x)(u) � 0 pentru orice u 2 T (M;x); adic¼a

�rf(x) 2 T (M;x)� = N(M;x):

Invers, ştim, din convexitatea lui f (Teorema 2.2.13); c¼a

f(x) � f(x) +rf(x)(x� x); 8x 2 U:

Dar, folosind ipoteza şi convexitatea lui M (Propozi̧tia 2.4.10),

�rf(x) 2 N(M;x) = fu 2 Rp j hu; x� xi � 0; 8x 2Mg;

deci rf(x)(x � x) � 0 pentru orice x 2 M: Din aceste rela̧tii, avem f(x) � f(x) pentru orice
x 2M: �

3.4 Restriçtii funçtionale

Consider¼am problema (P ) din seçtiunea precedent¼a care are restriçtia geometric¼a x 2 M:
De cele mai multe ori în practic¼a aceast¼a muļtime M a punctelor fezabile este de�nit¼a prin
intermediul unor funçtii. Fie aşadar g : Rp ! Rn şi h : Rp ! Rm funçtii de clas¼a C1: Evident,
g şi h pot � gândite ca �ind de forma g = (g1; g2; :::; gn); respectiv h = (h1; h2; :::; hm) unde
unde gi : Rp ! R (i 2 1; n) şi hj : Rp ! R (j 2 1;m) sunt de clas¼a C1.
Consider¼am c¼a muļtimea punctelor fezabile este

M := fx 2 Rp j g(x) � 0; h(x) = 0g � Rp:

Se observ¼a c¼a avem dou¼a tipuri de restriçtii: restriçtii cu inegalit¼a̧ti şi restriçtii cu egalit¼a̧ti.
Acestea se numesc restriçtii funçtionale. Fie x 2M: Dac¼a pentru un indice i 2 1; n; gi(x) < 0;
atunci, din continuitatea lui g; exist¼a o întreag¼a vecin¼atate V a lui x astfel încât gi(y) < 0
pentru orice y 2 V: Aceasta face ca, în cazul în care cercet¼am dac¼a x este solu̧tie local¼a a
problemei (P ); restriçtia gi � 0 s¼a nu in�ueņteze efectiv muļtimea punctelor u pentru care
trebuie s¼a compar¼am f(x) cu f(u): De aceea, în acest caz, spunem c¼a restriçtia gi � 0 este
inactiv¼a în x: Din acest motiv, ne intereseaz¼a ca astfel de restriçtii s¼a �e eliminate din discu̧tie.
Pentru x 2M; not¼am muļtimea indicilor restriçtiilor inegalit¼a̧ti active prin

A(x) = fi 2 1; n j gi(x) = 0g:

3.4.1 Condi̧tiile Karush-Kuhn-Tucker

Fie muļtimile

G(x) =

� P
i2A(x) �irgi(x) +

Pm
j=1 �jrhj(x) j

�i � 0;8i 2 A(x); �j 2 R;8j 2 1;m

�
� Rp

(unde s-a identi�cat L(Rp;R) cu Rp) şi

D(x) = fu 2 Rp j rgi(x)(u) � 0; 8i 2 A(x) şi
rhj(x)(u) = 0; 8j 2 1;mg:

Înainte de a da rezultatul principal avem nevoie de o propozi̧tie ajut¼atoare.
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Propozi̧tia 3.4.1 Pentru orice x 2M avem:
(i) G(x) = D(x)�;
(ii) T (M;x) � D(x):

Demonstraţie (i) Incluziunea G(x) � D(x)� este evident¼a, iar incluziuea reciproc¼a este o con-
seciņt¼a direct¼a a Lemei lui Farkas.
(ii) Evident, 0 2 D(x): Fie u 2 T (M;x) n f0g: Din de�ni̧tia conului tangent, exist¼a (tk) �

(0;1) cu tk ! 0 şi (uk)! u astfel încât pentru orice k;

x+ tkuk 2M:

Evident, şirul (tkuk) converge la 0 în Rp: Ţinând cont de difereņtiabilitatea lui h în x; exist¼a
(�k) � Rm; �k ! 0 astfel încât pentru orice k 2 N;

h(x+ tkuk) = h(x) + tkrh(x)(uk) + tk kukk�k:

Cum h(x + tkuk) = h(x) = 0; împ¼aŗtind prin tk şi trecând la limit¼a pentru k ! 1 ob̧tinem
rh(x)(u) = 0: Acum pentru �ecare i 2 A(x) exist¼a (�ik) � R; �ik ! 0 astfel încât pentru orice
k 2 N;

gi(x+ tkuk) = gi(x) + tkrgi(x)(uk) + tk kukk�ik:
Ca mai sus, ţinând cont c¼a gi(x+ tkuk) � 0 şi gi(x) = 0 avem rgi(x)(u) � 0 şi propozi̧tia este
demonstrat¼a. �

Urm¼atorul exemplu arat¼a c¼a incluziunea de la punctul (ii) de mai sus este, în general,
strict¼a.

Exemplul 3.4.2 Fie g : R2 ! R; g(x1; x2) = �x1 � x2 şi h : R2 ! R; h(x1; x2) = x1x2 şi
punctul fezabil x = (0; 0): Atunci:

D(x) = f(u1; u2) j �u1 � u2 � 0g;
T (M;x) = f(u1; u2) j u1 � 0; u2 � 0; u1u2 = 0g:

Stabilim acum o form¼a generalizat¼a a unui rezultat clasic cunoscut sub denumirea de Teo-
rema Karush-Kuhn-Tucker întrucât a fost ob̧tinut (sub o ipotez¼a ceva mai tare) de c¼atre W.
Karush, H. W. Kuhn şi A. W. Tucker. De precizat c¼a W. Karush a ob̧tinut teorema în 1939,
dar comunitatea matematic¼a a devenit conştient¼a de importaņta acesteia dup¼a ce H. W. Kuhn
şi A. W. Tucker au reg¼asit rezultatul pe o cale independent¼a in 1950.

Teorema 3.4.3 (Teorema Karush-Kuhn-Tucker) Fie x 2M soluţie a problemei (P ): Pre-
supunem c¼a T (M;x)� = D(x)�: Atunci exist¼a � = (�1; �2; :::; �n) 2 Rn; � = (�1; �2; :::; �m) 2
Rm; astfel încât

rf(x) +
nX
i=1

�irgi(x) +
mX
j=1

�jrhj(x) = 0 (3.2)

şi
�i � 0; �igi(x) = 0; pentru orice i 2 1; n. (3.3)
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Demonstraţie Din Teorema 3.3.1, rf(x)(u) � 0 pentru orice u 2 T (M;x); deci �rf(x) 2
T (M;x)�: Conform ipotezei, deducem �rf(x) 2 D(x)�: Aplic¼am primul punct al propozi̧tiei
precedente şi ob̧tinem �rf(x) 2 G(x): Prin urmare, exist¼a �i � 0; i 2 A(x); �j 2 R; j 2 1;m
încât

�rf(x) =
X
i2A(x)

�irgi(x) +
mX
j=1

�jrhj(x):

Dac¼a pentru indicii i 2 1; n n A(x) consider¼am �i = 0; ob̧tinem concluzia. �

Funçtia L : Rp � Rn+m ! R;

L(x; (�; �)) := f(x) +
nX
i=1

�igi(x) +

mX
j=1

�jhj(x)

se numeşte lagrangianul problemei (P ): Astfel, concluzia din rela̧tia (3:2) se poate scrie

rxL(x; (�; �)) = 0;

iar elementele (�; �) 2 Rn+ � Rm se numesc multiplicatori Lagrange. Denumirea se datoreaz¼a
faptului c¼a pentru prima dat¼a o astfel de metod¼a de a converti o problem¼a de optimizare
cu restriçtii într-o problem¼a f¼ar¼a restriçtii prin intermediul unor noi nedeterminate a ap¼arut
în unele dintre lucr¼arile lui Lagrange legate de probleme de calculul varia̧tiilor. Este clar c¼a
teorema precedent¼a nu asigur¼a unicitatea acestor multiplicatori. Pe de alt¼a parte, L(x; (�; �))
este o funçtie a�n¼a în variabilele (�; �):
Teorema 3.4.3 asigur¼a condi̧tii necesare de optimalitate pentru problema (P ): Dac¼a în loc

de minimizare dorim s¼a maximiz¼am funçtia obiectiv sub aceleaşi restriçtii, atunci, din faptul
c¼a max f = �min(�f); condi̧tia necesar¼a (3.2) se scrie

�rf(x) +
nX
i=1

�irgi(x) +
mX
j=1

�jrhj(x) = 0:

S¼a mai observ¼am c¼a în lipsa constrângerilor inegalit¼a̧ti, ţinând seama de faptul c¼a h(x) = 0
este totuna cu �h(x) = 0; condi̧tia necesar¼a se poate scrie, atât pentru minime cât şi pentru
maxime, în forma

rf(x) +
mX
j=1

�jrhj(x) = 0:

Revenind la rezultatul principal, s¼a observ¼am dou¼a lucruri. Mai întâi, dac¼a problema nu
are restriçtii (de exemplu, M = Rp), atunci rela̧tia (3.2) se reduce la condi̧tia necesar¼a de
optimalitate de ordinul I (Teorema lui Fermat): rf(x) = 0: A doua observa̧tie este c¼a rela̧tia
(3.2) nu are loc în general f¼ar¼a ipoteze suplimentare, numite condi̧tii de cali�care.

Exemplul 3.4.4 Fie f : R2 ! R şi g : R2 ! R2 de�nite prin f(x1; x2) = x1 şi g(x1; x2) =
(�x2 + (1 � x1)3; x2): Se veri�c¼a faptul c¼a x = (1; 0) este punct de minim pentru problema
asociat¼a, dar condi̧tia (3.2) nu are loc. Se poate ar¼ata c¼a în acest caz condi̧tia T (M;x)� = D(x)�

nu este îndeplinit¼a (a se vedea Exerci̧tiul 3.16).
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Aceast¼a observa̧tie ne îndeamn¼a s¼a discut¼am mai în am¼anunt diverse condi̧tii de cali�care
în seçtiunea urm¼atoare.
Înainte, s¼a observ¼am c¼a în anumite ipoteze, condi̧tia Karush-Kuhn-Tucker este şi su�cient¼a.

De�ni̧tia 3.4.5 Spunem c¼a problema (P ) este convex¼a dac¼a f este convex¼a; funcţiile gi; i 2 1; n
sunt convexe, iar funcţia h este a�n¼a.

Teorema 3.4.6 Presupunem c¼a problema (P ) este convex¼a. Fie x 2 M: Dac¼a exist¼a (�; �) 2
Rn � Rm astfel încât au loc relaţiile (3:2) şi (3:3) atunci x este soluţie pentru (P ) (sau minim
al lui f pe M).

Demonstraţie Condi̧tia (3:2) exprim¼a faptul c¼a

rxL(x; (�; �)) = 0:

În ipotezele date, L este o funçtie convex¼a în x; deci conform Teoremei 3.3.10, x este un punct
de minim pentru x 7! L(x; (�; �)): Deci pentru orice x 2 Rp;

L(x; (�; �)) = f(x) +
nX
i=1

�igi(x) +
mX
j=1

�jhj(x)

� L(x; (�; �)) = f(x):

Dar, pentru x 2M;
nX
i=1

�igi(x) +
mX
j=1

�jhj(x) � 0;

deci f(x) � f(x): Demonstra̧tia este complet¼a. �

3.4.2 Condi̧tii de cali�care pentru sisteme generale de restriçtii

Orice condi̧tie impus¼a sistemului de restriçtii care asigur¼a validitatea concluziilor Teoremei
Karush-Kuhn-Tucker se numeşte condi̧tie de cali�care. Discut¼am în aceast¼a seçtiune astfel de
condi̧tii pentru sisteme generale de restriçtii. Astfel, condi̧tia de cali�care T (M;x)� = D(x)�

impus¼a în Teorema 3.4.3 se numeşte condi̧tia Guignard în punctul x (dup¼a numele lui Monique
Guignard care a introdus-o în 1969) şi este una dintre cele mai slabe condi̧tii de acest tip pe care
le putem întâlni în literatur¼a. Dorim acum s¼a consider¼am şi alte condi̧tii de cali�care şi s¼a le
compar¼am între ele. Evident, rela̧tia T (M;x) = D(x) este la rândul s¼au o condi̧tie de cali�care,
numit¼a condi̧tia de cvasi-regularitate sau condi̧tia Abadie în x (dup¼a numele lui Jean Abadie
care a utilizat-o în 1967), întrucât implic¼a condi̧tia utilizat¼a mai sus. Cele dou¼a condi̧tii nu
sunt îns¼a echivalente, aşa cum se poate observa din exemplul urm¼ator (a se vedea şi Exemplul
2.4.3).

Exemplul 3.4.7 Fie g : R2 ! R2; g(x1; x2) = (�x1; x2) şi h : R2 ! R; h(x1; x2) = x1x2: S¼a
consider¼am punctul fezabil x = (0; 0): Atunci:

D(x) = f(u1; u2) j u1 � 0; u2 � 0g;
T (M;x) = f(u1; u2) j u1 � 0; u2 � 0; u1u2 = 0g

52



şi
T (M;x)� = D(x)� = f(u1; u2) j u1 � 0; u2 � 0g:

Evident, condi̧tiile de cali�care sunt legate de punctul de referiņt¼a (x în cazul nostru):
De �ecare dat¼a când nu vor � dubii cu privire la punctul de referiņt¼a vom evita precizarea
acestuia, pentru uşurarea expunerii. Dou¼a dintre cele mai importante condi̧tii de cali�care sunt
prezentate mai jos.
Prima dintre acestea se numeşte condi̧tia de liniar¼a independeņt¼a (în x) şi se formuleaz¼a

astfel: muļtimea frgi(x) j i 2 A(x)g [ frhj(x) j j 2 1;mg este liniar independent¼a.
A doua se numeşte condi̧tia de cali�care Mangasarian-Fromovitz (în x): muļtimea frhj(x) j

j 2 1;mg este liniar independent¼a şi exist¼a u 2 Rp astfel încât

rh(x)(u) = 0 şi rgi(x)(u) < 0; 8i 2 A(x):

(Matematicienii Olvi Mangasarian şi Stanley Fromovitz au publicat aceast¼a condi̧tie în 1967.)
Mai întâi vom stabili rela̧tiile dintre aceste condi̧tii şi apoi vom dovedi c¼a sunt condi̧tii de

cali�care.

Teorema 3.4.8 Dac¼a are loc condiţia de liniar¼a independenţ¼a în x 2M; atunci are loc condiţia
Mangasarian-Fromovitz în x.

Demonstraţie F¼ar¼a a restrânge generalitatea, presupunem c¼a A(x) = f1; :::; qg: Fie T matricea
(q + m) � p având drept linii rgi(x); i 2 1; q; rhj(x); j 2 1;m şi �e b vectorul coloan¼a cu
bi = �1; i 2 1; q; bj = 0; j 2 q + 1; q +m: Cum liniile lui T sunt liniar independente, sistemul
Td = b are solu̧tie. Dac¼a u este o astfel de solu̧tie, atunci

rgi(x)(ut) = �1; 8i 2 1; q şi rhj(x)(ut) = 0; 8j 2 1;m;

deci condi̧tia Mangasarian-Fromovitz în x este satisf¼acut¼a. �

Totuşi, cele dou¼a condi̧tii nu sunt echivalente.

Exemplul 3.4.9 Fie gi : R2 ! R; i 2 1; 3 de�nite prin:

g1(x) = (x1 � 1)2 + (x2 � 1)2 � 2
g2(x) = (x1 � 1)2 + (x2 + 1)2 � 2
g3(x) = �x1

şi punctul fezabil x = (0; 0): Este uşor de veri�cat c¼a muļtimea

frg1(x);rg2(x);rg3(x); i 2 1; 3g

este liniar dependent¼a. Pe de alt¼a parte, pentru u = (1; 0); rgi(x)(u) < 0 pentru orice i 2 1; 3:

Pentru a clasi�ca mai precis condi̧tiile impuse pân¼a acum, vom ar¼ata c¼a din condi̧tia Man-
gasarian-Fromovitz se ob̧tine condi̧tia Abadie.
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Teorema 3.4.10 Dac¼a are loc condiţia Mangasarian-Fromovitz în x 2 M , atunci T (M;x) =
D(x); adic¼a are loc condiţia Abadie în x:

Demonstraţie Aşa cum am v¼azut mai sus, o incluziune este adev¼arat¼a întotdeauna. Invers,
�e u 2 D(x) şi �e u 2 Rp vectorul dat de condi̧tia Mangasarian-Fromovitz. Fie � 2 (0; 1) şi
d� := (1� �)u+ �u: Vom ar¼ata c¼a d� 2 T (M;x) pentru orice � 2 (0; 1); apoi f¼acând �! 0 şi
ţinând cont de închiderea lui T (M;x) va rezulta concluzia. Fix¼am deci � 2 (0; 1).
Este evident c¼a pentru orice indice i 2 A (x) ; rgi (x) (d�) < 0 (deci, în particular, d� 6= 0)

şi pentru orice indice j 2 1;m; rhj (x) (d�) = 0:
Aplica̧tia h : Rp ! Rm are funçtiile coordonate (hj)j21;m : Evident, h (x) = 0: Faptul c¼a

muļtimea frhj (x)gj21;m este liniar independent¼a înseamn¼a c¼a rh (x) este surjectiv¼a. Putem
aplica Teorema lui Lyusternik (adic¼a Teorema 2.5.1):

T (fx 2 Rp j h (x) = 0g ; x) = Kerrh (x) :

Cum d� 2 Kerrh (x) ; deducem c¼a

d� 2 T (fx 2 Rp j h (x) = 0g ; x) ;

adic¼a exist¼a (tk) � (0;1) ; tk ! 0 şi (uk)! d� astfel încât pentru orice k

h (x+ tkuk) = 0:

Aşadar,
hj (x+ tkuk) = 0; 8j 2 1;m; 8k 2 N:

Pentru a ob̧tine c¼a d� 2 T (M;x) este su�cient s¼a mai ar¼at¼am c¼a pentru k su�cient de mare
gi(x+ tkuk) � 0 pentru orice i:
Dac¼a i =2 A(x); atunci gi(x) < 0 şi din continuitatea lui gi; gi(x+tkuk) < 0 pentru k su�cient

de mare, pentru c¼a x+ tkuk ! x:
Dac¼a i 2 A(x); cum gi este de clas¼a C1; exist¼a un şir (�k) ! 0 astfel încât pentru orice

k 2 N;

gi(x+ tkuk) = gi(x) + tkrgi(x)(uk) + tk kukk�k
= tkrgi(x)(uk) + tk kukk�k:

Putem scrie
gi(x+ tkuk)

tk
= rgi(x)(uk) + kukk�k

k!1! rgi(x) (d�) < 0:

Prin urmare, gi(x+ tkuk) < 0 pentru k su�cient de mare. Cum exist¼a un num¼ar �nit de indici
i, recompunând ra̧tionamentele f¼acute, ob̧tinem concluzia. �

Pentru a ar¼ata c¼a toate cele patru condi̧tii de cali�care introduse pân¼a acum sunt diferite,
mai trebuie s¼a veri�c¼am c¼a cvasi-regularitatea nu implic¼a condi̧tia Mangasarian-Fromovitz.

Exemplul 3.4.11 Fie g : R2 ! R2; g(x1; x2) = (�x21 + x2;�x21 � x2) şi punctul fezabil x =
(0; 0): Atunci, D(x) = f(u1; 0) j u1 2 Rg: Pe de alt¼a parte, se veri�c¼a simplu c¼a T (M;x) � D(x)
(deci are loc egalitatea), dar nu exist¼a u 2 R2 cu rg(x)(u) < 0:
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Sistematizând, am ar¼atat c¼a au loc urm¼atoarele implica̧tii:

Condi̧tia de liniar¼a independeņt¼a
+

Condi̧tia Mangasarian-Fromovitz
+

Condi̧tia Abadie
+

Condi̧tia Guignard

şi niciuna dintre reciproce nu este adev¼arat¼a.

3.4.3 Condi̧tii de cali�care pentru sisteme speciale de restriçtii

Condi̧tiile de cali�care de mai sus se refer¼a la sisteme generale de restriçtii. S¼a discut¼am acum
condi̧tii speciale referitoare la cazuri particulare ale datelor problemei.

De�ni̧tia 3.4.12 Spunem c¼a sistemul de restricţii asociat problemei (P ) este de tip convex
dac¼a restricţiile cu inegalit¼aţi sunt exprimate prin funcţii convexe, în timp ce restricţiile cu
egalit¼aţi sunt date cu funcţii a�ne, adic¼a (gi)i21;n sunt convexe şi h este a�n¼a. În acest context,
spunem c¼a are loc condiţia Slater dac¼a exist¼a u 2 Rp astfel încât h(u) = 0 şi g(u) < 0:

Aceast¼a condi̧tie a fost introdus¼a în 1950 de c¼atre Morton Slater.

Teorema 3.4.13 Dac¼a sistemul de restricţii asociat problemei (P ) este de tip convex şi este
îndeplinit¼a condiţia Slater, atunci condiţia Abadie este satisf¼acut¼a în orice punct fezabil. În
particular, condiţia Slater este o condiţie de cali�care.

Demonstraţie Fie x 2 M: Incluziunea T (M;x) � D(x) este deja ar¼atat¼a în cazul general. Fie
v 2 D(x). Din condi̧tia Slater şi convexitatea funçtiilor gi deducem (Teorema 2.2.13)

0 > gi(u) � gi(x) +rgi(x)(u� x);

deci pentru i 2 A(x); rgi(x)(u� x) < 0: Not¼am w = u� x; iar pentru � 2 (0; 1); de�nim

w� = (1� �)v + �w:

Vom ar¼ata c¼a w� 2 T (M;x) pentru orice � 2 (0; 1): Pentru i 2 A(x);

rgi(x)(v) � 0; rgi(x)(w) < 0;

deci rgi(x)(w�) < 0: Din formula lui Taylor, pentru orice i 2 A(x); exist¼a �i : (0;1) ! R
astfel încât limt!0 t

�1�i (t) = 0 şi pentru orice t pozitiv su�cient de mic,

gi(x+ tw�) = gi(x) + trgi(x)(w�) + �i (t) = t
�
rgi(x)(w�) +

�i (t)

t

�
:

Deducem c¼a exist¼a t > 0 astfel încât gi(x+ tw�) < 0 pentru orice i 2 A(x):
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Fie (tk) � (0;1); tk ! 0: Atunci

xk := (1� tk)x+ tk(x+ tw�) = x+ tktw�
k!1! x:

Pentru a �naliza, trebuie s¼a ar¼at¼am c¼a de la un loc încolo, to̧ti termenii şirului (xk) sunt în
M . Pentru i =2 A(x), din continuitatea lui g; pentru k su�cient de mare, gi(xk) < 0; iar pentru
i 2 A(x);

gi(xk) � (1� tk)gi(x) + tkgi(x+ tw�) < 0:
Din faptul c¼a h este a�n¼a, iar h(x) = 0; ob̧tinem

h(xk) = h(x+ tktw�) = tktrh(x)(w�):

Cum v 2 D(x); rh(x)(v) = 0; deci

rh(x)(w�) = �rh(x)(w) = �rh(x)(u� x) = �h(u) = 0:

Ob̧tinem c¼a h(xk) = 0 pentru orice k; deci, în �nal, (xk)k�k0 � M; ceea ce înseamn¼a c¼a
w� 2 T (M;x): Facem acum �! 0 şi din faptul c¼a T (M;x) este închis deducem c¼a v 2 T (M;x);
ceea ce încheie demonstra̧tia. �

De�ni̧tia 3.4.14 Spunem c¼a sistemul de restricţii asociat problemei (P ) este de tip a�n dac¼a
atât restricţiile cu inegalit¼aţi, cât şi ce restricţiile cu egalit¼aţi sunt date prin funcţii a�ne.

S¼a consider¼am acum cazul unui sistem de restriçtii de tip a�n. Astfel, vom considera o
matrice A de tip n� p; o matrice B de tip m� p şi b 2 Rn; c 2 Rm: Astfel muļtimea M devine
M = fx 2 Rp j Ax � b; Bx = cg; unde rela̧tia "�" este îņteleas¼a ca având loc pe componente.
Deci g(x) = Ax� b; h(x) = Bx� c:

Teorema 3.4.15 Dac¼a sistemul de restricţii este de tip a�n, atunci condiţia Abadie este sa-
tisf¼acut¼a în orice punct fezabil.

Demonstraţie Fie x 2 M: Ca şi mai sus, este su�cient s¼a ar¼at¼am c¼a D(x) � T (M;x): Fie
v 2 D(x). F¼ar¼a a restrânge generalitatea, putem presupune c¼a to̧ti indicii sunt activi. Atunci
Av � 0; Bv = 0: Dac¼a v = 0 nu este nimic de ar¼atat. În caz contrar, de�nim

xk := x+
1

k
v; 8k 2 N n f0g :

Rela̧tiile
Axk � b; Bxk = c; xk ! x

dovedesc faptul c¼a v 2 T (M;x): �

Aşadar, în cazul restriçtiilor a�ne nu trebuie veri�cat¼a nicio condi̧tie de cali�care.
D¼am acum un exemplu concret de rezolvare a unei probleme de optimizare prin folosirea

Teoremei Karush-Kuhn-Tucker, punctând etapele eseņtiale ale ra̧tionamentului.
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Exemplul 3.4.16 S¼a determin¼am pentru funçtia f : R3 ! R, f(x) = x21+x22+x23 punctele de
minim cu restriçtiile x21 + x

2
2 + 3x3 � �5

2
şi x1 + x2 + x3 = �2:

Evident, not¼am, pentru a � în cadrul deja discutat, g; h : R3 ! R, g(x) = x21+x22+3x3+ 5
2
;

h(x) = x1 + x2 + x3 + 2: Atunci avem problema minimiz¼arii lui f cu restriçtiile g(x) � 0;
h(x) = 0:
I. Existenţa soluţiei
Mai întâi, veri�c¼am faptul c¼a problema are într-adev¼ar solu̧tie. Pentru aceasta veri�c¼am

c¼a muļtimea punctelor fezabile M este compact¼a sau c¼a f este coerciv¼a pe aceast¼a muļtime
(dac¼a este nem¼arginit¼a). În cazul concret discutat, M este evident închis¼a. De asemenea este
m¼arginit¼a pentru c¼a g(x) � 0; h(x) = 0 înseamn¼a x3 = �2�x1�x2 şi x21+x22�3x1�3x2�6+ 5

2
�

0; adic¼a
�
x1 � 3

2

�2
+
�
x2 � 3

2

�2 � 8 � 0. Deci coordonatele x1; x2 sunt m¼arginite şi din rela̧tia
anterioar¼a acelaşi lucru poate � spus despre x3: Deducem c¼a M este compact¼a. (Pe de alt¼a
parte chiar dac¼a M ar � fost nem¼arginit¼a, putem observa c¼a f este coerciv¼a pentru c¼a este
p¼atratul normei.) Deci, problema admite solu̧tie (Teorema lui Weierstrass).
II. Convexitatea sistemului de restricţii, Convexitatea problemei
Este uşor de veri�cat g este convex¼a, iar h este a�n¼a, deci sistemul de restriçtii este convex.

În plus, f este convex¼a, deci problema este convex¼a. Prin urmare condi̧tiile din Teorema
Karush-Kuhn-Tucker sunt necesare şi su�ciente.
III. Veri�carea unei condiţii de cali�care
Pentru a determina solu̧tiile vrem s¼a aplic¼am teorema Karush-Kuhn-Tucker, motiv pentru

care trebuie s¼a veri�c¼am o condi̧tie de cali�care.
Varianta 1. Veri�c¼am condi̧tia de liniar¼a independeņt¼a. Fie x 2 M: Dac¼a g(x) � 0 este

inactiv¼a în x; cum rh(x) = (1; 1; 1) 6= 0; muļtimea frh(x)g este liniar independent¼a. Pre-
supunem c¼a g este activ¼a în x: Presupunem c¼a frg(x);rh(x)g nu este liniar independent¼a.
Atunci exist¼a (�; �) 6= (0; 0) astfel încât �rg(x) + �rh(x) = 0: Aceasta conduce la8<:

2�x1 + � = 0
2�x2 + � = 0
3�+ � = 0

adic¼a 8<:
� = �3�
x1 = x2 =

3
2

x3 2 R:

Observ¼am îns¼a c¼a un punct de forma
�
3
2
; 3
2
; u
�
nu este fezabil cu restriçtia g activ¼a: 32+

3
2
+u = �2

implic¼a u = �5 iar
�
3
2
; 3
2
;�5

�
nu veri�c¼a g(x) = 0: Deducem c¼a este îndeplinit¼a condi̧tia de

liniar¼a independeņt¼a în toate punctele lui M:
Varianta 2. O alt¼a variant¼a este s¼a observ¼am, din faptul c¼a sistemul de restriçtii este convex,

c¼a este su�cient s¼a veri�c¼am condi̧tia Slater: aceasta este îndeplinit¼a pentru u = (0; 0;�2):
IV. Aplicarea Teoremei Karush-Kuhn-Tucker
Cum am spus, datorit¼a faptului c¼a problema este convex¼a, condi̧tiile Karush-Kuhn-Tucker

sunt necesare şi su�ciente pentru minimalitate (global¼a). Deci x este solu̧tie a problemei noastre
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dac¼a şi numai dac¼a exist¼a � � 0; � 2 R astfel încât8>>>>>><>>>>>>:

2x1 + 2�x1 + � = 0
2x2 + 2�x2 + � = 0
2x3 + 3�+ � = 0
�
�
x21 + x

2
2 + 3x3 +

5
2

�
= 0

x1 + x2 + x3 = �2
� � 0; x21 + x22 + 3x3 + 5

2
� 0:

Plec¼am de la a patra ecua̧tie. Dac¼a � = 0 atunci din primele trei ecua̧tii deducem

x1 = x2 = x3 = �
2

3
;

punct pentru care ultima inegalitate este fals¼a.
Deci � > 0; ceea ce înseamn¼a x21+ x

2
2+3x3+

5
2
= 0: Din primele dou¼a ecua̧tii avem x1 = x2

iar din a cincea x3 = �2� 2x1; adic¼a

2x21 � 6x1 � 6 +
5

2
= 0:

Ob̧tinem tripletele �
7

2
;
7

2
;�9

�
;

�
�1
2
;�1
2
;�1

�
:

Trebuie îns¼a s¼a determin¼am � pentru a veri�ca condi̧tia � � 0: În cazul primului triplet primele
trei ecua̧tii conduc la 4� = �25; ceea ce înseamn¼a c¼a acest triplet nu este solu̧tie. Pentru al
doilea, g¼asim � = 1

4
, deci singura solu̧tie a sistemului este elementul�

�1
2
;�1
2
;�1

�
2 R3:

V. Concluzia
Putem concluziona c¼a, într-adev¼ar, acest punct este solu̧tie a problemei în dou¼a feluri:

pe de o parte problema admite solu̧tie şi punctul g¼asit este singurul care satisface condi̧tiile
necesare; pe de alt¼a parte, problema �ind convex¼a, punctele ce satisfac condi̧tia necesar¼a sunt
solu̧tii (condi̧tiile necesare sunt şi su�ciente). Unicitatea solu̧tiei se putea deduce şi înainte de
rezolvarea efectiv¼a pentru c¼a funçtia obiectiv este strict convex¼a.

3.5 Exemple şi aplica̧tii

Ne propunem s¼a ilustr¼am rezultatele teoretice discutate mai sus prin intermediul a diverse
exemple, �ecare dintre ele subliniind un aspect teoretic speci�c. De asemenea, prezent¼am unele
aplica̧tii ale metodelor studiate pân¼a în acest punct.

Exemplul 3.5.1 (extrem local - extrem global) Primul exemplu marcheaz¼a o difereņt¼a
important¼a între extremele globale ale unei funçtii reale de o variabil¼a real¼a şi cele ale funçtiilor
de mai multe variabile.
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Dac¼a o funçtie derivabil¼a f : R! R are un singur punct critic x care este punct de extrem
local, atunci acesta este în mod necesar punct de extrem global. Într-adev¼ar, dac¼a x nu ar �
punct de minim global, atunci ar exista u 2 R cu f(u) < f(x): Putem presupune c¼a u < x:
Dar, din condi̧tia de minim local pentru x; exist¼a v 2 R; u < v < x astfel încât f(x) < f(v)
(în caz contrar, f ar � constant¼a pe un interval de forma (x � "; x) şi x nu ar mai � unicul
punct critic care este şi extrem local). Prin urmare, f(u) < f(x) < f(v); deci valoarea f(x)
se atinge în intervalul (u; v); într-un punct notat w: Aplicând Teorema lui Rolle funçtiei f pe
[w; x]; exist¼a t 2 (w; x) cu f 0(t) = 0; ceea ce reprezint¼a o contradiçtie. Exemplul de mai jos
demonstreaz¼a c¼a în mai multe dimensiuni, aceast¼a observa̧tie nu mai este adev¼arat¼a.
Fie acum p � 2 şi f : Rp ! R; de�nit¼a prin

f(x) = (1 + xp)
3

p�1X
k=1

x2k + x
2
p:

Atunci 0 2 Rp este singurul punct critic al lui f; este punct de minim local strict (de ordinul
� = 2); dar nu este punct de minim global (o ilustrare gra�c¼a pentru cazul p = 2 poate � f¼acut¼a
cu uşuriņt¼a în Matlab).
Avem o problem¼a de optimizare f¼ar¼a restriçtii. S¼a calcul¼am

@f

@xk
(x) = 2xk(1 + xp)

3; 8k 2 1; p� 1;

@f

@xp
(x) = 3(1 + xp)

2

p�1X
k=1

x2k + 2xp:

Singurul punct critic (i.e. rf(x) = 0; deci @f
@xk
(x) = 0 pentru k 2 1; p) este x = 0: Un calcul

simplu arat¼a c¼a matricea hessian¼a asociat¼a lui f în x este matricea p¼atratic¼a de tip p � p
care are num¼arul 2 pe diagonala principal¼a şi 0 în rest, deci este pozitiv de�nit¼a. Conform
Corolarului ??, deducem c¼a x este solu̧tie local¼a strict¼a de ordinul al doilea. S¼a observ¼am c¼a
f(1; 1; :::; xp) = (p � 1)(1 + xp)3 + x2p; expresie care �ind un polinom de gradul al treilea, ia,
atunci când xp variaz¼a în R; toate valorile dintre �1 şi +1: Deci f nu poate avea minim
global. �

Exemplul 3.5.2 (metoda celor mai mici p¼atrate) Discut¼am acum un caz special de prob-
lem¼a de optimizare f¼ar¼a restriçtii, numit¼a metoda celor mai mici p¼atrate, care apare foarte des
în practica m¼asur¼atorilor şi experimentelor din ştiiņtele naturii: �zic¼a, chimie, astronomie, bi-
ologie. De altfel, din punct de vedere istoric, acest tip de problem¼a a ap¼arut în leg¼atur¼a cu
studiul mi̧sc¼arii planetelor şi în chestiuni legate de tehnici de naviga̧tie. Matematicianul care
a pus bazele acestei tehnici de studiu se consider¼a a � Gauss, dar metoda a fost publicat¼a
pentru prima dat¼a de c¼atre Legendre. În pu̧tine cuvinte, este vorba de urm¼atoarea situa̧tie:
avem la dispozi̧tie un num¼ar de date v1; v2; :::; vN provenite în urma unor m¼asur¼atori f¼acute la
momentele t1; t2; :::; tN : Obiectivul este acela de a determina cea mai bun¼a funçtie model de
forma t 7! '(t; x) (unde x = (x1; x2; :::; xk) sunt parametri ajustabili) care se potriveşte cu
datele m¼asurate. Astfel, pentru �ecare i 2 1; N se de�neşte abaterea (reziduul) dintre o dat¼a
m¼asurat¼a la momentul ti şi data descris¼a de model la acelaşi moment ca �ind

ri := vi � '(ti; x);
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iar problema este de a minimiza funçtia f : Rk ! R;

f(x) =
NX
i=1

r2i =
NX
i=1

[vi � '(ti; x)]2 :

Ca o parantez¼a, s¼a spunem c¼a o alt¼a posibil¼a funçtie obiectiv (poate mai �reasc¼a) ar �

NX
i=1

jvi � '(ti; x)j

îns¼a aceast¼a construçtie nu conserv¼a difereņtiabilitatea. Acesta este motivul pentru care se
prefer¼a suma p¼atratelor reziduurilor, de unde şi numele metodei.
Consider¼am aici cazul unei dependeņte liniare. Presupunem c¼a s-au f¼acut N m¼asur¼atori la

momentele diferite t1; t2; :::; tN > 0 şi, corespunz¼ator, s-au ob̧tinut valorile v1; v2; :::; vN : Ştiind
c¼a dependeņta dintre cele dou¼a seturi de valori este liniar¼a ne intereseaz¼a s¼a determin¼am o
dreapt¼a care "se potriveşte" cel mai bine acestei coleçtii de date observate. Fie deci o dreapt¼a
oarecare v = at+b: Ca mai sus, abaterea la momentul ti dintre valoarea m¼asurat¼a vi şi valoarea
corespunz¼atoare a dependeņtei liniare este vi � (ati + b): Pentru a "m¼asura" suma abaterilor,
consider¼am funçtia f : R2 ! R;

f(a; b) =
NX
i=1

[vi � (ati + b)]2 :

Dreapta fa̧t¼a de care abaterea m¼asur¼atorilor va � cea mai mic¼a va � dreapta c¼autat¼a. Astfel
ajungem la problema minimiz¼arii (f¼ar¼a restriçtii) a funçtiei f: S¼a observ¼am şi faptul funçtia f
este coerciv¼a, adic¼a limk(a;b)k!1 f(a; b) = 1; deci, conform Teoremei 3.2.2, admite punct de
minim global.
Calcul¼am derivatele paŗtiale:

@f

@a
(a; b) =

NX
i=1

2(�ti) [vi � (ati + b)]

@f

@b
(a; b) =

NX
i=1

�2 [vi � (ati + b)]

şi determinarea punctelor critice revine la rezolvarea sistemului:8<:
�PN

i=1 t
2
i

�
a+

�PN
i=1 ti

�
b =

PN
i=1 tivi�PN

i=1 ti

�
a+Nb =

PN
i=1 vi:

Determinantul matricei sistemului de mai sus este

� := N

 
NX
i=1

t2i

!
�
 

NX
i=1

ti

!2
=

 
NX
i=1

12

! 
NX
i=1

t2i

!
�
 

NX
i=1

1 � ti

!2
:
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Din inegalitatea lui Hölder, acest num¼ar este pozitiv (egalitatea s-ar ob̧tine dac¼a şi numai dac¼a
toate valorile ti sunt egale, lucru exclus de la bun început). Aşadar, sistemul de mai sus admite
solu̧tie unic¼a: �

a
b

�
=

� PN
i=1 t

2
i

PN
i=1 tiPN

i=1 ti N

��1� PN
i=1 tiviPN
i=1 vi

�
:

Cum f admite punct de minim global aceasta care nu poate � decât punctul critic determinat
mai sus. Aşadar perechea (a; b) de mai sus reprezint¼a solu̧tia problemei.
Pentru exemplul general de mai sus, o parte din calcule s-ar p¼astra dac¼a am avea o depen-

deņt¼a de tipul v = a � p(t) + b � q(t); unde p; q : R! R; ob̧tinându-se sistemul� PN
i=1 p

2(ti)
PN

i=1 p(ti)q(ti)PN
i=1 p(ti)q(ti)

PN
i=1 q

2(ti)

��
a
b

�
=

� PN
i=1 p(ti)viPN
i=1 q(ti)vi

�
:

Din nou folosind inegalitatea lui Hölder, matricea este inversabil¼a dac¼a şi numai dac¼a (p2(ti))i=1;N
şi (q2(ti))i=1;N nu sunt propoŗtionale.
În general, pentru dependeņte mai complicate (neliniare în parametrul x) metoda celor mai

mici p¼atrate nu are o solu̧tie care s¼a poat¼a �atât de uşor dedus¼a, aşa încât, în astfel de situa̧tii
sunt folosi̧ti diveŗsi algoritmi care s¼a furnizeze aproxim¼ari ale solu̧tiei (a se vedea seçtiunea
urm¼atoare).

Exemplul 3.5.3 (restriçtii geometrice - restriçtii funçtionale) Problema din Exemplul
3.3.5 adic¼a problema minimiz¼arii lui f : R2 ! R;

f(x) = �x1 � 2x2 � 2x1x2 +
x21
2
+
x22
2

pe muļtimea restriçtiilor

M :=
�
x 2 R2 j x1 + x2 � 1; x1 � 0; x2 � 0

	
poate � abordat¼a acum şi prin considerarea funçtiei

g : R2 ! R3; g(x) = (x1 + x2 � 1;�x1;�x2):

Astfel, reinterpret¼am problema ca având constrângerea g(x) � 0: Cum gi sunt liniare nu e
nevoie s¼a veri�c¼am condi̧tii de cali�care (conform Teoremei 3.4.15). Atunci, dac¼a x =2 intM
este solu̧tie a problemei, exist¼a (�1; �2; �3) 2 R3+ astfel încât�

rf(x) + �1rg1(x) + �2rg2(x) + �3rg3(x) = 0
�igi(x) = 0; i 2 1; 3:

Discu̧tia se împarte acum din nou pe cele şase cazuri de mai sus. De exemplu dac¼a punctul x
este pe segmentul deschis de capete (0; 1); (1; 0); atunci g2(x) < 0; g3(x) < 0; deci �2 = �3 = 0;
iar sistemul de mai sus se reduce la8<:

�1� 2x2 + x1 + �1 = 0
�2� 2x1 + x2 + �1 = 0
x1 + x2 � 1 = 0
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care are solu̧tia �1 = 2; x =
�
1
3
; 2
3

�
: La fel, se arat¼a c¼a în celelalte situa̧tii sistemul provenit

din condi̧tiile Karush-Kuhn-Tucker nu are solu̧tie, astfel încât atât cazurile considerate cât şi
conluzia sunt practic ca în Exemplul 3.3.5.

Exemplul 3.5.4 (optimizare pe simplexul unitate) Fie f : Rp ! R convex¼a şi difereņti-
abil¼a. Dac¼a dorim s¼a minimiz¼am aceast¼a funçtie pe simplexul unitate (a se vedea Exemplul
2.6.4), atunci, conform Propozi̧tiei 3.3.13, x 2 M este punct de minim pentru f pe M dac¼a
şi numai dac¼a �rf(x) 2 N(M;x): Din forma particular¼a a lui N(M;x); deducem c¼a aceast¼a
condi̧tie se scrie

@f

@xi
(x) = c; (constant¼a), 8i =2 I(x)

@f

@xi
(x) � c; 8i 2 I(x):

Fie n1; :::; np 2 N n f0g ;
Pp

i=1 ni = N > 0 şi �e f : Rp ! R; f(x) = �xn11 xn22 :::x
np
p :

S¼a minimiz¼am aceast¼a funçtie pe simplexul unitate din Rp: Evident c¼a problema are solu̧tie,
f �ind continu¼a, iar M compact¼a. Cum f este nul¼a dac¼a m¼acar una dintre componentele
argumentului este zero, solu̧tiile se vor g¼asi în muļtimea(

x 2 Rp j xi > 0; 8i 2 1; p;
pX
i=1

xi = 1

)
:

Cu nota̧tiile din Exemplul 2.6.4, aceasta înseamn¼a I(x) = ;: Mai întâi, condi̧tia necesar¼a de
optimalitate �rf(x) 2 N(M;x); se scrie, ţinând cont de expresia conului normal (Exemplul
2.6.4)

ni
xi
f(x) = c; constant¼a, 8i 2 1; p;

adic¼a
ni
xi
= c0; constant¼a, 8i 2 1; p:

Cum
Pp

i=1 xi = 1 şi
Pp

i=1 ni = N; g¼asim

xi =
ni
N
; 8i 2 1; p:

Cum problema are solu̧tie şi un singur punct veri�c¼a condi̧tia necesar¼a, deducem c¼a acel punct
este solu̧tia c¼autat¼a.
O alt¼a abordare const¼a în transformarea restriçtiei geometrice într-una funçtional¼a. Fie

h : Rp ! R; h(x) =
Pp

i=1 xi � 1: Este clar c¼a M = fx 2 Rp j h(x) = 0g: Fie x solu̧tie a
problemei. Cum rh(x) 6= 0; putem aplica Teorema 3.4.3 pentru a deduce c¼a exist¼a � 2 R
astfel încât

rf(x) + �rh(x) = 0;
adic¼a

�ni
xi
f(x) = �; constant¼a, 8i 2 1; p:

Astfel, se ob̧tine aceeaşi concluzie ca mai sus.
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Exemplul 3.5.5 (ob̧tinerea unor inegalit¼a̧ti) Metodele de optimizare studiate permit ob̧tinerea
unor inegalit¼a̧ti remarcabile. Ilustr¼am astfel de posibilit¼a̧ti.
1. Fie funçtia f : R3+ ! R de�nit¼a prin

f(x; y; z) =

(
0; dac¼a (x; y; z) = 0 2 R3;

xyz
(x+y+z)2

; dac¼a (x; y; z) 6= 0:

Fie a > 0: Studiind problema maximiz¼arii lui f pe muļtimea

M = f(x; y; z) 2 R3 : x > 0; y > 0; z > 0; x2 + y2 + z2 = a2g

vom deduce urm¼atoarea inegalitate: pentru orice x; y; z 2 R,

jxyzj � 1

9
p
3
(jxj+ jyj+ jzj)2

p
x2 + y2 + z2:

Mai întâi, observ¼am c¼a funçtia f este evident continu¼a pe R3nf0g ca raport de funçtii continue.
Mai mult, pentru (x; y; z) 2 R3+ :

xyz � (max(x; y; z))3

şi
(x+ y + z)2 � (max(x; y; z))2;

deci f(x; y; z) � max(x; y; z), ceea ce probeaz¼a continuitatea lui f în 0.
MuļtimeaM[f0g este compact¼a, aşadar f î̧si atinge maximul global peM[f0g : Cum acest

maxim nu poate � în 0; rezult¼a c¼a punctul de maxim este înM: Din nou, este evident c¼a f este
de clas¼a C1 pe R3+: Este aplicabil¼a Teorema Karush-Kuhn-Tucker pentru problema maximiz¼arii
lui f cu restriçtia x2 + y2 + z2 = a2 şi cu (x; y; z) 2 R3+ n f0g : Astfel, dac¼a (x; y; z) 2 R3+ n f0g
este punct de maxim pentru aceast¼a problem¼a, exist¼a � 2 R astfel încât

yz

(x+ y + z)2
� 2 xyz

(x+ y + z)3
+ 2�x = 0

xz

(x+ y + z)2
� 2 xyz

(x+ y + z)3
+ 2�y = 0

xy

(x+ y + z)2
� 2 xyz

(x+ y + z)3
+ 2�z = 0

x2 + y2 + z2 = a2:

Deducem

xyz

(x+ y + z)2
� 2x xyz

(x+ y + z)3
+ 2�x2 = 0

xyz

(x+ y + z)2
� 2y xyz

(x+ y + z)3
+ 2�y2 = 0

xyz

(x+ y + z)2
� 2z xyz

(x+ y + z)3
+ 2�z2 = 0

x2 + y2 + z2 = a2;
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de unde
0 < f (x; y; z) = 3

xyz

(x+ y + z)2
� 2 xyz

(x+ y + z)2
= �2�a2:

În particular, � < 0 şi sc¼azând primele dou¼a ecua̧tii din sistemul Karush-Kuhn-Tucker, avem

z (y � x)
(x+ y + z)2

+ 2� (x� y) = 0;

deci �
2�� z

(x+ y + z)2

�
(x� y) = 0:

Cum expresia din prima parantez¼a este strict mai mic¼a decât 0; g¼asim x = y: Similar, x = z;
deci

x = y = z =
ap
3

şi
sup

(x;y;z)2M
f (x; y; z) =

a

9
p
3
:

Fie acum x; y; z 2 R: Not¼am a =
p
x2 + y2 + z2 şi din cele de mai sus,

f (jxj; jyj; jzj) �
p
x2 + y2 + z2

9
p
3

;

iar concluzia se ob̧tine imediat.
2. Fie x; y; z � 0 cu x+ y + z = 1: Ar¼at¼am c¼a

0 � xy + yz + xz � 2xyz � 7

27
:

Pentru aceasta consider¼am problemele minimiz¼arii şi maximiz¼arii funçtiei f : R3 ! R date
prin

f (x; y; z) = xy + yz + xz � 2xyz
cu restriçtiile x; y; z � 0 cu x + y + z = 1: Cum muļtimea punctelor fezabile este compact¼a,
ambele probleme au solu̧tii globale. De asemenea, observ¼am c¼a sistemul de restriçtii este a�n.
Pentu a simpli�ca calculele, s¼a observ¼am c¼a dac¼a cel pu̧tin una dintre variabile este 0; atunci

inegalitatea este adev¼arat¼a. Deci putem presupune c¼a x; y; z > 0; adic¼a restriçtiile inegalit¼a̧ti
sunt inactive. Astfel, consider¼am doar restriçtia egalitate şi condi̧tiile de optimalitate se scriu
similar pentru ambele probleme: exist¼a � 2 R astfel încât8>>>><>>>>:

y + z � 2yz + � = 0
x+ z � 2xz + � = 0
x+ y � 2xy + � = 0
x+ y + z = 1:
x; y; z > 0:

Sc¼azând ecua̧tiile dou¼a câte dou¼a ob̧tinem c¼a singura posibilitate este x = y = z = 3�1: Dar

f

�
1

3
;
1

3
;
1

3

�
=
7

27
:
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Cum, de exemplu, f
�
1
4
; 1
4
; 1
2

�
< 7

27
deducem c¼a punctul ob̧tinut este solu̧tia global¼a a problemei

de maximizare. Ob̧tinem astfel inegalitatea din dreapta. Cum nu am ob̧tinut solu̧tie pentru
problema de minimizare, atunci când am îndep¼artat restriçtiile cu inegalit¼a̧ti, înseamn¼a c¼a
solu̧tiile acestei probleme au m¼acar o component¼a nul¼a. Deci are loc şi inegalitatea din stânga,
iar egalitatea este atins¼a, de exemplu, în (1; 0; 0) :

Exemplul 3.5.6 (o problem¼a de geometrie plan¼a) Fix¼am lungimile tuturor laturilor unui
patrulater. Care este poziţia acestor laturi încât aria patrulaterului s¼a �e maxim¼a?
Vom încerca s¼a abord¼am aceast¼a problem¼a din prisma Teoriei Optimiz¼arii, întrucât este

o problem¼a de maximizare. Not¼am cu ABCD patrulaterul şi cu �1; �2 unghiurile din A şi
respectiv C: Aria patrulaterului este suma ariilor triunghiurilor ABD şi CBD; deci

1

2
(ad sin �1 + bc sin �2):

Evident, avem o leg¼atur¼a între unghiurile �1 şi �2; leg¼atur¼a pe care o determin¼am exprimând
lungimea diagonalei BD în cele dou¼a triunghiuri:

a2 + d2 � 2ad cos �1 = b2 + c2 � 2bc cos �2:

Avem acum problema maximiz¼arii funçtiei obiectiv f : R2 ! R;

f(�1; �2) = ad sin �1 + bc sin �2

cu restriçtiile �1; �2 2 [0; �]; h(�1; �2) = 0; unde h : R2 ! R;

h(�1; �2) = (a
2 + d2 � 2ad cos �1)� (b2 + c2 � 2bc cos �2):

Este clar c¼a muļtimea punctelor fezabile este compact¼a, iar funçtia obiectiv este continu¼a, deci
Teorema lui Weierstrass asigur¼a faptul c¼a problema admite solu̧tie. Este clar c¼a pentru atingerea
maximului nu putem avea �1; �2 2 f0; �g ; deci restriçtiile date de �1; �2 2 [0; �] sunt inactive.
Cum rh(�1; �2) = 0 2 R2; înseamn¼a c¼a sin �1 = sin �2 = 0 ceea ce corespunde cazului unui
patrulater degenerat (de arie 0), deducem c¼a în toate punctele de maxim (eventualele solu̧tii)
are loc condi̧tia de liniar¼a independeņt¼a. Aplic¼am Teorema Karush-Kuhn-Tucker: dac¼a (�1; �2)
este punct de maxim pentru problema dat¼a, exist¼a � 2 R astfel încât

rf(�1; �2) + �rh(�1; �2) = (0; 0);

ceea ce conduce la sistemul �
ad cos �1 + 2�ad sin �1 = 0
bc cos �2 � 2�bc sin �2 = 0:

Am hot¼arât c¼a într-un punct de maxim sin �1; sin �2 6= 0; deci

2� = �cos �1
sin �1

=
cos �2
sin �2

;

adic¼a
sin(�1 + �2) = 0:

Cum 0 < �1 + �2 < 2�; deducem c¼a �1 + �2 = �; adic¼a patrulaterul este inscriptibil. Cum se
poate relativ uşor constata c¼a exist¼a o unic¼a pozi̧tie a laturilor astfel încât �1+�2 = �; deducem
c¼a solu̧tia este unic¼a. Demonstra̧tia este complet¼a.
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Exemplul 3.5.7 (proieçtia pe un hiperplan, distaņta la un hiperplan) Fie u 2 Rp n
f0Rpg şi a 2 R: Consider¼am muļtimea (numit¼a hiperplan)

M := fx 2 Rp j hu; xi = ag:

Aceast¼a muļtime este convex¼a şi închis¼a, deci, pentru orice v 2 Rp nM; exist¼a proieçtia lui v pe
M; pe care o not¼am cu va: Ne propunem s¼a determin¼am expresia explicit¼a a acestui element şi
valoarea distaņtei de la v la M; adic¼a kv � vak :
Fix¼am aşadar v 2 Rp nM: Atunci va este solu̧tia unic¼a a problemei de minimizare a funçtiei

f : Rp ! R;
f(x) =

1

2
kx� vk2 ;

pentru
x 2M = fx 2 Rp j h (x) = 0g ;

unde h : Rp ! R e dat¼a prin h (x) = hu; xi � a:
Alegerea funçtiei obiectiv ca mai sus are aceeaşi motiva̧tie ca şi în cazul metodei celor mai

mici p¼atrate. Evident, rf (x) = x� v; rh (x) = u pentru orice x 2 Rp:
Cum constrângerea (privit¼a funçtional) este a�n¼a, iar f este convex¼a, elementul va este

caracterizat de �
9� 2 R; rf (va) + �rh (va) = 0
hu; vai = a;

ceea ce este echivalent cu �
va � v + �u = 0
hu; vai = a:

Din prima rela̧tie, f¼acând produsul scalar cu u; deducem

hva � v; ui+ � kuk2 = 0;

deci, folosind a doua rela̧tie,

� =
hu; vi � a
kuk2

:

Revenind, ob̧tinem

va = v �
hu; vi � a
kuk2

u:

În �nal, distaņta de la v la M are valoarea

kv � vak =
jhu; vi � aj

kuk :

Exemplul 3.5.8 (proieçtia pe un elipsoid generalizat) Fie acum a1; a2; :::; ap 2 (0;1) şi
muļtimea (elipsoidul generalizat)

M :=

(
x 2 Rp j

pX
i=1

�
xi
ai

�2
� 1
)
:
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Evident aceast¼a muļtime este convex¼a şi compact¼a. Fie v =2 M: Exist¼a v 2 M; proieçtia lui v
pe M: Din nou, dorim s¼a g¼asim o expresie a acestui element.
Ca mai sus, v este solu̧tie a problemei de optimizare a funçtiei f : Rp ! R; f(x) = kx� vk2

sub constrângerea
x 2M = fx 2 Rp j g (x) � 0g ;

unde g : Rp ! R e dat¼a prin

g (x) =

pX
i=1

�
xi
ai

�2
� 1

Observ¼am c¼a funçtia g este convex¼a şi are loc condi̧tia Slater.
În plus, funçtia f este de asemenea convex¼a, aşa încât putem trage concluzia c¼a v este

solu̧tie a problemei dac¼a şi numai dac¼a exist¼a � � 0 astfel încât�
rf (v) + �rg (v) = 0
�g (v) = 0:

Acest sistem este echivalent cu

vi � vi + �
vi
a2i
= 0

�

 
pX
i=1

�
vi
ai

�2
� 1
!
= 0:

Dac¼a � = 0; prima ecua̧tie atrage v � v = 0; adic¼a v 2M; ceea ce este fals.
Prin urmare � 6= 0 şi restriçtia este activ¼a în v; adic¼a

pP
i=1

�
vi
ai

�2
= 1: Deducem c¼a

vi =
a2i vi
a2i + �

; 8i = 1; p:

Pe de alt¼a parte, cum
pP
i=1

�
vi
ai

�2
= 1; deci

pX
i=1

a2i v
2
i

(a2i + �)
2 = 1:

Altfel, a-l g¼asi pe � presupune a rezolva ecua̧tia de mai sus în necunoscuta � > 0: În sfâŗsit, s¼a
remarc¼am c¼a ecua̧tia are solu̧tie unic¼a întrucât funçtia

0 � � 7!
pX
i=1

a2i v
2
i

(a2i + �)
2

este strict descresc¼atoare iar valoarea sa în 0 este strict supraunitar¼a (pentru c¼a v =2 M) în
timp ce limita sa la +1 este 0: Revenind, a-l determina pe v revine la rezolvarea unei ecua̧tii
de grad 2p; lucru în general imposibil.
Atunci vom � interesa̧ti de metode de aproximare a r¼ad¼acinilor ecua̧tiilor neliniare, lucru de

care ne vom ocupa în capitolul urm¼ator.
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3.6 Exerci̧tii

Exerci̧tiul 3.1 S¼a se deseneze mulţimea punctelor fezabile, mulţimile de nivel pentru funcţia
obiectiv şi s¼a se determine gra�c soluţiile pentru problemele de mai jos:
(i)

max (x1 � x2) ; cu
x1 + x2 � 1; � x1 + 2x2 � 2
x1 � �1; � x1 + 3x2 � �3

(ii)
max (2x1 + 6x2) ; cu
�x1 + x2 � 1; 2x1 + x2 � 2
x1 � 0; x2 � 0:

Exerci̧tiul 3.2 S¼a se deseneze în plan regiunea determinat¼a de inegalit¼aţile

x2 � 0; 0 � x1 � 3; � x1 + x2 � 1; x1 + x2 � 4:

S¼a se determine punctele din aceast¼a regiune în care urm¼atoarele expresii îşi ating maximul şi
respectiv minimul:

2x1 + x2; x1 + x2; x1 + 2x2:

Exerci̧tiul 3.3 Fie f : R! R o funcţie derivabil¼a astfel încât lim
x!1

f(x)
x
= 1 şi lim

x!�1
f(x)
x
=

�1: S¼a se arate c¼a f 0 este surjectiv¼a.

Soluţie Fie r 2 R arbitrar şi g : R ! R; g(x) = f(x) � rx: E clar c¼a limjxj!1 g(x) = 1
şi deci g î̧si atinge minimul (global) într-un punct x 2 R: Deci, din Teorema lui Fermat,
0 = g0(x) = f 0(x)� r: �

Exerci̧tiul 3.4 Fie f; g : Rp ! R funcţii diferenţiabile şi a 2 Rp: Presupunem c¼a f(a) = g(a)
şi c¼a pe o vecin¼atate a lui a; f(x) � g(x). S¼a se arate c¼a rf(a) = rg(a):

Problema 3.5 Fie U � Rp deschis¼a, f : U ! R continu¼a şi x 2 U: Presupunem c¼a exist¼a o
vecin¼atate V a lui x astfel încât f este diferenţiabil¼a pe V n fxg şi rf(x)(x � x) � 0 pentru
orice x 2 V n fxg: Atunci x este punct de minim local pentru f:

Soluţie Este su�cient s¼a consider¼am c¼a V este o bil¼a deschis¼a centrat¼a în x: Fie x 2 V n fxg:
Consider¼am funçtia ' : [0; 1] ! R; '(t) = f(x + t(x � x)) care, din propriet¼a̧tile lui f; este
continu¼a pe [0; 1] şi derivabil¼a pe (0; 1); iar

'0(t) = rf(x+ t(x� x))(x� x):

Aplicând Teorema lui Lagrange lui ' pe [0; 1]; exist¼a u 2 (0; 1) cu '(1)� '(0) = '0(u); adic¼a

f(x)� f(x) = rf(x+ u(x� x))(x� x):

Evident, notând xu = x+ u(x� x) 2 V n fxg avem x� x = u�1(xu � x): Deci, folosind rela̧tia
de mai sus şi ultima ipotez¼a,

f(x)� f(x) = u�1rf(xu)(xu � x) � 0:

Concluzia este acum evident¼a. �
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Problema 3.6 Fie U � Rp deschis¼a, f : U ! R diferenţiabil¼a şi x 2 U: Urm¼atoarele a�rmaţii
sunt echivalente:
(i) x este un punct critic al lui f:
(ii) pentru orice " > 0; x este un punct de minim local pentru funcţia

x 7! f"(x) = f(x) + " kx� xk :

Soluţie Presupunem c¼a are loc (i) şi lu¼am " > 0: Presupunem, prin reducere la absurd, c¼a x nu
este punct de minim pentru f": Atunci exist¼a un şir (xk)k2N ! x de elemente din U astfel încât

f"(xk) < f"(x); 8k 2 N:

Evident, xk 6= x pentru orice k;
Cum f este difereņtiabil¼a în x; exist¼a (�k)! 0 astfel încât pentru orice k

f (xk) = f (x) +rf (x) (xk � x) + �k kxk � xk :

Deci, pentru orice k;
�" kxk � xk � �k kxk � xk � 0;

adic¼a �" � �k: Cum (�k)! 0; aceasta este o contradiçtie.
Presupunem acum c¼a (ii) are loc. Fie " > 0: Exist¼a �" > 0 astfel încât pentru orice

x 2 D (x; �") ;
f (x) � f(x) + " kx� xk :

Fie u 2 Rp de norm¼a 1: Atunci, luând x = x + t�"u cu t 2 (0; 1) ; în inegalitatea de mai sus
avem

f (x+ t�"u)� f (x)� t�"rf (x) (u)
t�" kuk

t�" kuk+ t�"rf (x) (u) + "t�" kuk � 0;

deci
f (x+ t�"u)� f (x)� t�"rf (x) (u)

t�" kuk
+rf (x) (u) + " � 0:

Trecând la limit¼a cu t ! 0; avem rf (x) (u) + " � 0: Cum " > 0 este arbitrar, deducem
rf (x) (u) � 0 pentru orice u de norm¼a 1: Aceasta înseamn¼a c¼a rf (x) = 0: �

Problema 3.7 Fie a; b; c; d 2 R cu a < b; c < d şi f : [a; b]�[c; d]! R: De�nim ' : [a; b]! R;

'(x) = infff(x; y) j y 2 [c; d]g:

S¼a se arate c¼a ' este bine de�nit¼a şi continu¼a.

Soluţie Aplica̧tia
[c; d] 3 y 7�! f(x; y)

este continu¼a, deci î̧si atinge minimul pe [c; d]: Prin urmare, exist¼a yx 2 [c; d] astfel încât
'(x) = f(x; yx):
Din Teorema lui Cantor (Teorema 4.6.51), f este uniform continu¼a pe muļtimea compact¼a

[a; b]� [c; d] : pentru orice " > 0; exist¼a �" > 0, încât pentru orice (x0; y0); (x00; y00) 2 [a; b]� [c; d]
cu k(x0; y0)� (x00; y00)k < �" avem jf(x0; y0)� f(x00; y00)j < ":
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Fie x0; x00 2 [a; b] cu jx0 � x00j � �": Atunci

'(x0)� '(x00) = f(x0; yx0)� f(x00; yx00)
� f(x0; yx00)� f(x00; yx00) < ":

Schimbând rolurile lui x0 şi x00, ob̧tinem

'(x00)� '(x0) < ";

de unde deducem concluzia. �

Exerci̧tiul 3.8 S¼a se determine punctele de extrem local ale funcţiilor de mai jos (probleme
f¼ar¼a restricţii):
(i) f : R2 ! R; f(x1; x2) = 6x21x2 + 2x32 � 45x1 � 51x2 + 7;
(ii) f : R2 ! R; f(x1; x2) = x21 + x22;
(iii) f : R2 ! R; f(x1; x2) = x41 + x42;
(iv) f : R2 ! R; f(x1; x2) = x21 + x32;
(v) f : R2 ! R; f(x1; x2) = (1 + x2)3 x21 + x22;
(vi) f : R2 ! R; f(x1; x2) = x1(x2 + 1)� x21x2;
(vii) f : R2! R; f(x1; x2) = �x31 + 3x1x22 � 15x1 � 36x2 + 9;
(viii) f : R2! R; f(x1; x2) = x41 + x42 � x21 � 2x1x2 � x22;
(ix) f : R2 ! R; f(x1; x2) = 8x21 � 2x1x2 + x22 � 2x2;
(x) f : R2 ! R; f(x1; x2) = x31 + x32 + 2x1x2;
(xi) f : R2 ! R; f(x1; x2) = x1x22ex1�x2 ;
(xii) f : R2 ! R; f(x1; x2) = �x41 � x42 + 2x21 � 4x1x2 + 2x22 + 2;
(xiii) f : R2 ! R; f(x1; x2) = x1x2(x21 + x22 � 4);
(xiv) f : R2 ! R; f(x1; x2) = 3x41 � 4x21x2 + x22;
(xv) f : R2 ! R; f(x1; x2) = (1� x1)2 + 100(x2 � x21)2;
(xvi) f : R2 ! R; f(x1; x2) = x1x22ex1�x2 ;
(xvii) f : R2 ! R; f(x1; x2) = 2x31 + 6x1x22 � 3x32 � 150x1;
(xviii) f : R2 ! R; f(x1; x2) = (8x21 � 6x1x2 + 3x22)e2x1+3x2 ;
(xix) f : R3 ! R; f(x1; x2; x3) = x41 + x32 + x23 + 4x1x3 � 3x2 + 2;
(xx) f : R3 ! R; f(x1; x2; x3) = 2x21 + x22 + x23 � 4x2 + 8x3 � 5;
(xxi) f : R3 ! R; f(x1; x2; x3) = x2 ln(1 + x21 + x23);
(xxii) f : R3 ! R; f(x1; x2; x3) = x1x2ex3 :

Soluţie (i) Rezolv¼am sistemul ce rezult¼a din rela̧tia rf(x) = 0 pentru a determina punctele
critice. Avem sistemul

12x1y1 = 45

6x21 + 6x
2
2 = 51

care are solu̧tiile
�
3
2
; 5
2

�
;
�
5
2
; 3
2

�
;
�
�3
2
;�5

2

�
;
�
�5
2
;�3

2

�
:

Astfel, în cazul nostru, ob̧tinem concluziile:
�
3
2
; 5
2

�
este minim local,

�
5
2
; 3
2

�
;
�
�5
2
;�3

2

�
nu

sunt extreme locale,
�
�3
2
;�5

2

�
este maxim local.
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(iii) Singurul punct critic este (0; 0); dar determinaņtii forma̧ti din matricea hessian¼a sunt
nuli, deci nu putem decide pe acest¼a baz¼a. Totuşi este simplu de observat c¼a

f(x1; x2) � 0 = f(0; 0); 8(x1; x2) 2 R2;

deci (0; 0) este minim global.
(iv) Din nou, singurul punct critic este (0; 0); dar nu putem decide dac¼a este punct de extrem

pe baza teoriei de mai sus. Observ¼am c¼a f(0; 0) = 0; iar pentru şirul xn = ( 1
n
; 0) ! (0; 0);

f(xn) > 0 în timp ce pentru yn = (0;� 1
n
) ! (0; 0); f(yn) < 0: Deci în orice vecin¼atate a lui

(0; 0) exist¼a atât puncte pentru care funçtia cost ia valori mai mari cât şi valori mai mici. Deci
punctul nu este de extrem local.

La celelalte subpuncte se procedeaz¼a analog: exist¼a atât puncte critice pentru care putem
aplica teoria, cât şi puncte pentru care trebuie folosit¼a structura problemei. Exist¼a de asemenea
situa̧tii în care se poate decide dac¼a r2f(x) este pozitiv (negativ) de�nit¼a sau nu folosind
calculul direct al acesteia, criteriul lui Sylvester ne�ind aplicabil. �

Implementare Matlab 3.9 S¼a se reprezinte gra�c funçtiile de mai sus precum şi curbele lor
de nivel (i.e., muļtimile de tip fx j f(x) = cg ; unde c este o constant¼a) şi s¼a se compare cu
concluziile teoretice. Ilustr¼am reprezent¼arile gra�ce pentru punctul (iv): Folosim codul:
[x,y]=meshgrid(-0.5:.001:0.5);
z=x.^2+y.^3;
mesh(x,y,z)
iar pentru a desena curbele de nivel:
[c,h]=contour(x,y,z,70);
clabel(c,h);
Pentru punctul (v); se deseneaz¼a ca mai sus pe [x,y]=meshgrid(-7:.01:7).

Exerci̧tiul 3.10 Fie � 2 R: S¼a se arate c¼a funcţia f : R2 ! R; f(x; y) = 5x2 + 6xy + 5y2 �
16x� 16y + � are un punct de minim global. Determinaţi � astfel încât inf(x;y)2R2 f(x; y) = 0:

Exerci̧tiul 3.11 Pentru urm¼atoarele funcţii studiaţi punctele de extrem şi stabiliţi dac¼a exist¼a
extreme globale.
(i) f : R2 ! R; f(x; y) = 2x2 + 2y � 3xy � 7

2
y2:

(ii) f : R2 ! R; f(x; y) = 4x2 + 2xy + y2 � 3x� y;
(iii) f : R3 ! R; f(x; y; z) = 2x2 � 2xy + y2 � z � yz + z2:

Exerci̧tiul 3.12 Fie f : R2 ! R; f(x; y) = x2 � sin y: S¼a se arate c¼a f are o in�nitate de
minime globale, dar nu are niciun maxim local. S¼a se reprezinte gra�c funcţia folosind Matlab.

Exerci̧tiul 3.13 Fie f : R2 ! R; f(x; y) = e3x + y3 � 3yex: S¼a se arate c¼a f are un singur
punct critic care este punct de minim local dar nu este punct de minim global.

Exerci̧tiul 3.14 S¼a se arate c¼a f : R2 ! R; f(x; y) = (1 + ey) cos x � yey are o in�nitate de
maxime globale, dar nu are niciun minim local.
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Exerci̧tiul 3.15 Fie f : R2 ! R;

f(x) = �x1 � 2x2 � 2x1x2 +
x21
2
+
x22
2

şi mulţimea restricţiilor

M :=
�
x 2 R2 j x1 + x2 � 1; x1 � 0; x2 � 0

	
:

S¼a consider¼am problema (P ) a minimiz¼arii lui f pe M: S¼a se veri�ce dac¼a este îndeplinit¼a
condiţia necesar¼a, respectiv condiţia su�cient¼a de optimalitate de ordinul I în punctele:

�
1
2
; 1
2

�
;�

0; 1
3

�
;
�
1
4
; 0
�
;
�
1
3
; 2
3

�
; (1; 0) ; (0; 1) ; (0; 0) :

Similar pentru problema maximiz¼arii lui f pe M:

Exerci̧tiul 3.16 S¼a se demonstreze ultima a�rmaţie de la Exemplul 3.4.4.

Exerci̧tiul 3.17 Fie h : R3 ! R dat¼a prin h(x1; x2; x3) = x21 + x
2
2 + x

2
3 � 4: S¼a se arate c¼a

sistemul de restricţii h (x) = 0 satisface condiţia Abadie în toate punctele sale. Apoi, s¼a se
determine maximele şi minimele globale ale funcţiei f : R3 ! R; f(x1; x2; x3) = x31 + x32 + x33
cu aceast¼a restricţie:

Soluţie Muļtimea punctelor fezabile este

M =
�
x 2 R3 j x21 + x22 + x23 = 4

	
:

Este clar c¼a pentru orice x 2M;

D (x) =
�
u 2 R3 j x1u1 + x2u2 + x3u3 = 0

	
:

Folosind Teorema lui Lyusternik, deducem c¼a T (M;x) este exact D (x) : Deci condi̧tia Abadie
are loc.
Cum sfera descris¼a de ecua̧tia h (x) = 0 este muļtime compact¼a şi f este continu¼a, din

Teorema lui Weierstrass exist¼a extremele globale ale problemei date. Se observ¼a c¼a în cazul
de fa̧t¼a, având doar restriçtii egalit¼a̧ti atât pentru minime cât şi pentru maxime, trebuie s¼a
determin¼am mai întâi punctele critice ale funçtiei lagrangian. Ob̧tinem sistemul

x1(3x1 + 2�) = 0

x2(3x2 + 2�) = 0

x3(3x3 + 2�) = 0

x21 + x
2
2 + x

2
3 = 4:

Avem de distins între mai multe situa̧tii.

� Dac¼a x1 = x2 = x3 = 0 atunci punctul nu este fezabil.

� Dac¼a x1 = x2 = 0 şi x3 6= 0; avem x3 = �2 (� nu este important acum).

� Dac¼a x1 = 0; x2; x3 6= 0; ob̧tinem x2 = x3 = �
p
2:
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� Dac¼a x1; x2; x3 6= 0; atunci x1 = x2 = x3 = � 2p
3
:

Luând în calcul c¼a celelalte cazuri sunt simetrice acestora, avem punctele

(�2; 0; 0); (0;�2; 0); (0; 0;�2);
(0;
p
2;
p
2); (0;�

p
2;�

p
2); (

p
2; 0;

p
2);

(�
p
2; 0;�

p
2); (

p
2;
p
2; 0); (

p
2;
p
2; 0);�

2p
3
;
2p
3
;
2p
3

�
;

�
� 2p

3
;� 2p

3
;� 2p

3

�
:

Prin calculul direct al valorilor funçtiei în aceste puncte, deducem c¼a maximul este 8 şi este atins
în (2; 0; 0); (0; 2; 0); (0; 0; 2); iar minimum este �8; �ind atins în (�2; 0; 0); (0;�2; 0); (0; 0;�2):
�

Exerci̧tiul 3.18 S¼a se determine minimul şi maximul global al funcţiei f : R2 ! R; f(x1; x2) =
�2x21 + 4x1x2 + x22 pe cercul unitate cu centrul în origine.

Exerci̧tiul 3.19 Fie f; g : R2 ! R; f(x) = x31 + x
2
2 şi g(x) = x21 + x

2
2 � 9: S¼a se studieze

minimele lui f sub restricţia g(x) � 0:

Exerci̧tiul 3.20 S¼a se determine punctul (punctele) cel (cele) mai apropiat (apropiate) de
origine al (ale) suprafeţelor:
(i) x1x2 + x1x3 + x2x3 = 1;
(ii) x21 + x

2
2 � x23 = 1:

Exerci̧tiul 3.21 Fie problema minimiz¼arii lui f : R2 ! R;

f(x) = x21 + 2x
2
2 + x1x2 + x2

cu restricţia g(x) � 0 unde g : R2 ! R; g(x) = x1 + x2 � 1: S¼a se arate c¼a problema este
convex¼a (i.e. f; g sunt convexe) şi s¼a se determine soluţiile acesteia.

Exerci̧tiul 3.22 Fie a > 4�1; f; g : R2 ! R; f(x) = x21+ax22+x1x2+x1 şi g(x) = x1+x2�1:
S¼a se studieze problema (P ) (cu notaţiile standard).

Exerci̧tiul 3.23 Fie funcţia obiectiv f : R2 ! R; f(x1; x2) = x1 + x22 şi funcţia h : R2 ! R;
h(x1; x2) = x

3
1 � x22 ce de�neşte o restricţie de tip egalitate (adic¼a M = fx 2 R2 j h(x) = 0g).

Studiaţi problema (P ):

Exerci̧tiul 3.24 Fie f; g1; g2 : R2 ! R;

f(x) = (x1 � 2)2 + (x2 � 1)2:
g1(x) = �x2 + x21
g2(x) = x2 � x1:

Fie problema minimiz¼arii lui f cu restricţiile g1(x) � 0; g2(x) � 0: S¼a se deseneze mulţimea
punctelor fezabile. S¼a se arate c¼a g1; g2 sunt funcţii convexe şi c¼a are loc condiţia Slater. Apoi,
s¼a se justi�ce existenţa şi unicitatea şi s¼a se determine soluţia problemei atât gra�c cât şi
analitic pe baza condiţiilor Karush-Kuhn-Tucker.
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Exerci̧tiul 3.25 Fie f : R3 ! R; f(x1; x2; x3) = x21 + x22 + x23 şi g; h : R3 ! R; g(x1; x2; x3) =
�x3; h(x1; x2; x3) = x21 + x

2
2 � x23 � 1: Consider¼am problema minimiz¼arii lui f cu restricţiile

g(x) � 0; h(x) = 0: S¼a se arate c¼a problema are soluţie, c¼a se poate aplica teorema Karush-
Kuhn-Tucker (veri�când condiţia de liniar¼a independenţ¼a) şi apoi s¼a se determine soluţiile.

Exerci̧tiul 3.26 Fie f; g; h : R3 ! R; f(x1; x2; x3) = x1+ 1
4
x21+

1
2
(x22+x

2
3); g(x) =

1
2
(x21+x

2
2+

x23)�2; h(x) = x1+x2+x3�2: Consider¼am problema minimiz¼arii lui f cu restricţiile g(x) � 0;
h(x) = 0: S¼a se arate c¼a problema are soluţie local¼a, sistemul de constrângeri este convex şi
este îndeplinit¼a cel puţin o condiţie de cali�care. Se se aplice Teorema Karush-Kuhn-Tucker şi
s¼a se determine soluţiile.

Exerci̧tiul 3.27 Fie f; g : R2 ! R; f(x) = x21 + 4x2 + 4; g(x) = 2x21 + x
2
2 � 4: S¼a se arate

c¼a f; g sunt convexe. Fie problema minimiz¼arii globale a lui f cu restricţia g(x) � 0: S¼a se
arate c¼a mulţimea restricţiilor este compact¼a, este îndeplinit¼a o condiţie de cali�care şi s¼a se
determine soluţiile problemei.

Exerci̧tiul 3.28 Fie f; g : R3 ! R; f(x) = x21 + x22 + x23; g(x) = �2x21 + x22 + x23 + 1: S¼a se
arate c¼a f este convex¼a dar g nu este convex¼a. S¼a se arate c¼a are loc o condiţie de cali�care
pentru restricţia g(x) � 0: S¼a se arate c¼a mulţimea restricţiilor este închis¼a şi nem¼arginit¼a. S¼a
se justi�ce faptul c¼a problema minimiz¼arii lui f cu restricţia g(x) � 0 are soluţie global¼a şi s¼a
se g¼aseasc¼a soluţiile.

Exerci̧tiul 3.29 Fie M = f(x1; x2; x3) 2 R3 j x21 + x22 � 1; 2x1 + 2x2 + x3 = 1g: Se consider¼a
problema determin¼arii proiecţiei originii pe mulţimea M: Justi�caţi faptul c¼a aceast¼a problem¼a
este echivalent¼a cu rezolvarea problemei minimiz¼arii funcţiei f : R3 ! R; f(x1; x2; x3) = x21 +
x22 + x

2
3 cu restricţia x 2 M: S¼a se studieze aceast¼a problem¼a sub urm¼atoarele aspecte: (i)

existenţa şi unicitatea soluţiei; (ii) posibilitatea aplic¼arii Teoremei Karush-Kuhn-Tucker pentru
determinarea soluţiei (soluţiilor); (iii) determinarea efectiv¼a a soluţiei (soluţiilor).

Exerci̧tiul 3.30 S¼a se determine maximele şi minimele globale ale funcţiei f : R3 ! R;
f(x1; x2; x3) = x

3
1+x

3
2+x

3
3 pe mulţimea punctelor ce satisfac x

2
1+x

2
2+x

2
3 = 4 şi x1+x2+x3 = 1;

stabilind mai întâi existenţa soluţiilor şi studiind posibilitatea aplic¼arii Teoremei Karush-Kuhn-
Tucker.

Soluţie Punctele c¼autate exist¼a pe baza Teoremei lui Weierstrass. Avem o restriçtie de forma
h(x) = 0; unde

h : R3 ! R2; h(x1; x2; x3) = (x21 + x22 + x23 � 4; x1 + x2 + x3 � 1):

Condi̧tia de liniar¼a independeņt¼a este satisf¼acut¼a pentru toate tripletele (x1; x2; x3) pentru
care m¼acar dou¼a coordonate sunt diferite. Cum nu exist¼a puncte fezabile cu x1 = x2 = x3
deducem c¼a are loc condi̧tia de cali�care dorit¼a, deci punctele de extrem sunt puncte critice ale
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lagrangianului. Ob̧tinem sistemul

3x21 + 2�1x1 + �2 = 0

3x22 + 2�1x2 + �2 = 0

3x23 + 2�1x3 + �2 = 0

x21 + x
2
2 + x

2
3 = 4

x1 + x2 + x3 = 1:

Pentru ca sistemul format din primele trei ecua̧tii s¼a �e compatibil în necunoscutele �1; �2
trebuie ca ������

3x21 2x1 1
3x22 2x2 1
3x23 2x3 1

������ = 0;
deci

(x1 � x2)(x1 � x3)(x2 � x3) = 0
x21 + x

2
2 + x

2
3 = 4

x1 + x2 + x3 = 1:

Ob̧tinem solu̧tiile  
1

3
+

p
22

6
;
1

3
+

p
22

6
;
1

3
�
p
22

3

!
 
1

3
�
p
22

6
;
1

3
�
p
22

6
;
1

3
+

p
22

3

!
şi permut¼arile lor. Este acum uşor de veri�cat c¼a primul set de solu̧tii corespunde maximului,
iar cel¼alalt corespunde minimului. �

Exerci̧tiul 3.31 Fie problema min
�
x21
2
+ x22 +

3x23
2

�
cu restricţiile x21 + x3 � 1 şi x22 + x23 = 4:

Determinaţi soluţiile globale ale problemei (cu parcurgerea tuturor paşilor: existenţa soluţiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, determinarea
soluţiilor).

Exerci̧tiul 3.32 Fie problema min
�
x21 + x2 +

x23
2

�
cu restricţiile x23 � x1 � 0 şi x22 + x23 = 1:

Determinaţi soluţiile globale ale problemei (cu parcurgerea tuturor paşilor: existenţa soluţiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, determinarea
soluţiilor).

Exerci̧tiul 3.33 Studiaţi problema maximiz¼arii funcţiei f : R3 ! R dat¼a prin

f (x) = �2x21 � x22 � 3x23
cu restricţiile

x1 + 2x2 + x3 = 1;

4x1 + 3x2 + 2x3 = 2:
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Exerci̧tiul 3.34 Determinaţi minimele şi maximele globale pentru (x21 + x
2
2 + x

2
3) cu restricţiile

x21
4
+
x22
5
+
x23
25
= 1 şi x3 = x1 + x2:

Exerci̧tiul 3.35 Determinaţi min(�3:6x1+0:4x21�1:6x2+0:2x22) cu restricţiile 2x1+x2 � 10;
x1 � 0; x2 � 0:

Exerci̧tiul 3.36 Fie problema min (x21 + x
2
2 + x

2
3 + x1x2 + x1) cu restricţiile x

2
1 + x

2
2 = x23 şi

x3 � 4: Determinaţi soluţiile globale ale problemei (cu parcurgerea tuturor paşilor: existenţa
soluţiilor, aplicabilitatea Teoremei Karush-Kuhn-Tucker chestiunea convexit¼aţii problemei, de-
terminarea soluţiilor).

Exerci̧tiul 3.37 Fie problema min (x1 � x22 + 2x3) cu restricţiile x21 + x23 � 5 şi x22 � x21 � 1:
Determinaţi soluţiile globale ale problemei (cu parcurgerea tuturor paşilor: existenţa soluţiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, determinarea
soluţiilor).

Exerci̧tiul 3.38 Determinaţi soluţiile globale ale problemei max (cos �1 + cos �2 + cos �3) cu re-
stricţiile �1 + �2 + �3 = �; �i � 0; i 2 1; 3:

Exerci̧tiul 3.39 Fie n 2 N n f0g şi ai > 0; pentru orice i 2 1; n: S¼a se determine minimul
expresiei

nX
i=1

aix
2
i

supus¼a la constrângerea
nX
i=1

xi = c;

unde c este o constant¼a dat¼a. Care este maximul expresiei sub aceeaşi restricţie?

Soluţie S¼a observ¼am c¼a dac¼a not¼am cu M := fx 2 Rn j
Pn

i=1 xi = cg muļtimea punctelor
fezabile şi cu f : Rn ! R; f(x) =

Pn
i=1 aix

2
i funçtia obiectiv, atunci pentru � �

Pn
i=1

aic
2

n2

muļtimea M \ N�f este nevid¼a (coņtine, spre exemplu, elementul (cn�1; :::; cn1) 2 Rn) şi
m¼arginit¼a. Deci, conform Teoremei 3.2.2, exist¼a minimul problemei propuse. Cum funçtia ce
d¼a restriçtia este a�n¼a, nu este nevoie s¼a veri�c¼am condi̧tii de cali�care. Astfel, condi̧tiile de
optimalitate prin intermediul lagrangianului conduc la

2aixi + � = 0; 8i 2 1; n;

deci
xi = �

�

2ai
:

Înlocuind în forma restriçtiei deducem

c = �
nX
i=1

�

2ai
;
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deci
� = � 2cPn

i=1
1
ai

:

Prin urmare
xi =

c

ai
Pn

i=1
1
ai

; 8i 2 1; n:

Evident, expresia nu admite un maxim: observ¼am c¼a pentru şirul de puncte fezabile (p;�p; c)p2N
valoarea expresiei tinde la +1: �

Exerci̧tiul 3.40 S¼a se minimizeze funcţia f : R3 ! R;

f(x1; x2; x3) = x3 +
1

2

�
x21 + x

2
2 +

x23
10

�
sub restricţiile x1 + x2 + x3 = r (r > 0); x1 � 0; x2 � 0; x3 � 0:

Soluţie Existeņta minimului este asigurat¼a de Teorema lui Weierstrass. Constrângerile sunt
liniare, deci nu avem de veri�cat condi̧tii de cali�care. Oricum, pentru a aduce problema
la forma standard, restriçtiile cu inegalit¼a̧ti se scriu �x1 � 0;�x2 � 0;�x3 � 0: Folosind
lagrangianul ob̧tinem sistemul

x1 � �1 + � = 0
x2 � �2 + � = 0

1 +
x3
10
� �3 + � = 0

�1x1 = 0

�2x2 = 0

�3x3 = 0

x1 + x2 + x3 = r

�1; �2; �3; x1; x2; x3 � 0:

Dup¼a considerarea tuturor posibilit¼a̧tilor g¼asim solu̧tia

� pentru r � 2;

(x1; x2; x3) =
�r
2
;
r

2
; 0
�
şi (�1; �2; �3; �) =

�
0; 0; 1� r

2
;
r

2

�
;

� pentru r > 2;
(x1; x2; x3) =

�
r+10
12
; r+10
12
; 5(r�2)

6

�
şi

(�1; �2; �3; �) =
�
0; 0; 0;�10+r

12

�
:

Problema este rezolvat¼a. �

Exerci̧tiul 3.41 S¼a sedetermine punctele de minim şi de maxim global ale funcţiei f : R3 ! R;
f(x) = x1x2x3 supus¼a la restricţia h(x) = 0 unde h : R3 ! R2; h(x) = (x1x2 + x1x3 + x2x3 �
8; x1 + x2 + x3 � 5):
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Soluţie Vom ar¼ata mai întâi c¼a, în acest caz, muļtimea punctelor fezabile este m¼arginit¼a (deci
compact¼a).
Folosind egalitatea x3 = 5� x1 � x2, putem elimina x3 din prima restriçtie, adic¼a

x21 + x
2
2 + x1x2 + 5x1 + 5x2 + 8 = 0;

de unde g¼asim �
x1p
2
+
x2p
2

�2
+

�
x1p
2
� 5p

2

�2
+

�
x2p
2
� 5p

2

�2
= 13:

Deducem c¼a x1 şi x2 parcurg muļtimi de numere reale m¼arginite, situa̧tie care se întâmpl¼a
atunci şi în cazul lui x3: Deci muļtimea punctelor fezabile este compact¼a şi atât problema de
minim cât şi cea de maxim admit solu̧tie.
Veri�c¼am condi̧tia de liniar¼a independeņt¼a: ne întreb¼am dac¼a exist¼a dou¼a numere reale

�1; �2 cu (�1; �2) 6= (0; 0) astfel încât

�1(x2 + x3) + �2 = 0
�1(x1 + x3) + �2 = 0
�1(x1 + x2) + �2 = 0:

Cum suntem interesa̧ti doar de muļtimea punctelor fezabile, deducem

�1(5� x1) + �2 = 0
�1(5� x2) + �2 = 0
�1(5� x3) + �2 = 0:

Astfel, g¼asim condi̧tia x1 = x2 = x3 care nu este indeplinit¼a de nici un punct fezabil. Prin
urmare, este îndeplinit¼a condi̧tia de liniar¼a independeņt¼a pe muļtimea punctelor fezabile. Apli-
carea Teoremei 3.4.3 (̧si a observa̧tiilor ce o înso̧tesc) conduce la concluzia: dac¼a x este punct
de minim sau de maxim pentru problema considerat¼a, atunci exist¼a �1; �2 2 R astfel încât

x2x3 + �1(x2 + x3) + �2 = 0
x1x3 + �1(x1 + x3) + �2 = 0
x1x2 + �1(x1 + x2) + �2 = 0
x1x2 + x1x3 + x2x3 = 8
x1 + x2 + x3 = 5:

Evident, �1; �2 nu pot � simultan 0: Înmuļtind corespunz¼ator ecua̧tiile şi sc¼azându-le ob̧tinem

(�1x3 + �2)(x1 � x2) = 0
(�1x2 + �2)(x1 � x3) = 0
(�1x1 + �2)(x2 � x3) = 0
x1x2 + x1x3 + x2x3 = 8
x1 + x2 + x3 = 5:

Dac¼a �1 = 0; atunci, din observa̧tia anterioar¼a, deducem x1 = x2 = x3 ceea ce nu se poate
întâmpla pe muļtimea punctelor fezabile. Deci �1 6= 0 şi cum x1; x2; x3 nu pot � egale, g¼asim
x = (2; 2; 1); x = (1; 2; 2); x = (2; 1; 2) şi x = (4

3
; 4
3
; 7
3
); x = (7

3
; 4
3
; 4
3
); x = (4

3
; 7
3
; 4
3
): Comparând

valorile funçtiei în aceste puncte deducem c¼a primele sunt puncte de maxim, iar ultimele de
minim. �
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Exerci̧tiul 3.42 S¼a se determine minimele globale ale funcţiei f : R3 ! R; f(x1; x2; x3) =
x31 + x

3
2 + x

3
3 pe mulţimea punctelor ce satisfac x

2
1 + x

2
2 + x

2
3 � 4 şi x1 + x2 + x3 � 1:

Soluţie Din nou, existeņta minimului este asigurat¼a de Teorema lui Weierstrass. Mai oberv¼am
c¼a este aceeaşi funçtie obiectiv ca la Exerci̧tiul 3.30, dar constrângerile sunt sub form¼a de
inegalit¼a̧ti. Se observ¼a c¼a sistemul de restriçtii este convex şi, în plus, are loc condi̧tia Slater.
Deci punctele de minim se a�¼a printre punctele critice ale lagrangianului problemei. Avem

3x21 + 2�1x1 + �2 = 0

3x22 + 2�1x2 + �2 = 0

3x23 + 2�1x3 + �2 = 0

�1(x
2
1 + x

2
2 + x

2
3 � 4) = 0

�2(x1 + x2 + x3 � 1) = 0
x21 + x

2
2 + x

2
3 � 4

x1 + x2 + x3 � 1
�1; �2 � 0:

Din nou, distingem mai multe cazuri.

� Dac¼a �1 = �2 = 0; atunci x1 = x2 = x3 = 0:

� Dac¼a �1 = 0 şi �2 6= 0; atunci x1 + x2 + x3 = 1 şi deducem

�2 = �3x21 = �3x22 = �3x23 < 0;

ceea ce nu este convenabil.

� Dac¼a �2 = 0 şi �1 6= 0; atunci x21 + x22 + x23 = 4 şi avem

12 + 2(x1 + x2 + x3)�1 = 0;

adic¼a
�1 = �

6

x1 + x2 + x3
:

Înlocuind în primele trei ecua̧tii, ob̧tinem solu̧tiile

(�2; 0; 0); (0;�2; 0); (0; 0;�2)
(�
p
2;�

p
2; 0); (�

p
2; 0;�

p
2); (0;�

p
2;�

p
2)�

� 2p
3
;� 2p

3
;� 2p

3

�
:

� Dac¼a �2 6= 0 şi �1 6= 0; atunci x1 + x2 + x3 = 1; x21 + x22 + x23 = 4 ne reg¼asim în situa̧tia
de la Exerci̧tiul 3.30.

Dup¼a calculul valorilor funçtiei de cost în punctele g¼asite se ob̧tine faptul c¼a minimul este
atins în punctele (�2; 0; 0); (0;�2; 0); (0; 0;�2); deci în puncte diferite fa̧t¼a de cele de la Exer-
ci̧tiul 3.30. �
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Exerci̧tiul 3.43 S¼a se cerceteze dac¼a exist¼a minim global pentru f : R2! R;

f(x1; x2) = x
2
1 + 2x1x2 � x22

pe discul unitate închis cu centrul în origine şi în caz a�rmativ s¼a se determine.

Exerci̧tiul 3.44 Fie f : R2 ! R; f(x1; x2) = 5x21 + 4x1x2 + x
2
2 şi h : R2 ! R; h(x1; x2) =

3x1 + 2x2 + 5: Consider¼am problema minimiz¼arii lui f cu restricţia h(x) = 0: S¼a se arate c¼a
problema are soluţie unic¼a şi apoi s¼a se determine soluţia precum şi multiplicatorul Lagrange
�� asociat. S¼a se arate c¼a apoi c¼a soluţia determinat¼a este minim global f¼ar¼a restricţii pentru
funcţia x! L(x; ��): Se p¼astreaz¼a aceste concluzii pentru problema minimiz¼arii lui f : R2 ! R;
f(x1; x2) = x

2
1 � x22 � 3x2 cu restricţia egalitate h(x) = 0; unde h : R2 ! R; h(x1; x2) = x2?

Exerci̧tiul 3.45 S¼a se justi�ce existenţa punctelor de minim ale funcţiei f : R3 ! R;

f(x) = x1 � x2 + 2x3

cu restricţia g(x) � 0 unde g : R3 ! R; g(x) = x21 + x
2
2 + 2x

2
3 � 2: S¼a se arate c¼a funcţia g

este convex¼a. S¼a se veri�ce explicit îndeplinirea condiţiei Slater şi a condiţiei de Mangasarian-
Fromovitz pe mulţimea punctelor fezabile. Apoi s¼a se rezolve problema.

Exerci̧tiul 3.46 Fie problema minimiz¼arii lui f : R2 ! R;

f(x) = x1x2

cu restricţia g(x) � 0 unde g : R2 ! R; g(x) = x21 + x22 � a (a > 0): S¼a se justi�ce existenţa
soluţiei pentru aceast¼a problem¼a. S¼a se deseneze mulţimea curbelor de nivel pentru f şi mulţimea
punctelor fezabile. S¼a se identi�ce gra�c soluţiile. S¼a se arate c¼a funcţia g este convex¼a.
S¼a se veri�ce explicit îndeplinirea condiţiei Slater şi a condiţiei de Mangasarian-Fromovitz pe
mulţimea punctelor fezabile. Apoi s¼a se rezolve analitic problema.

Exerci̧tiul 3.47 Fie problema minimiz¼arii funcţiei f : R3 ! R; f(x; y; z) = x2 + y2 � yz + z2
cu restricţiile z � y � 1; x = z; z � 0: S¼a se arate c¼a problema admite soluţie şi c¼a este
aplicabil¼a Teorema Karush-Kuhn-Tucker. S¼a se determine soluţia sau soluţiile problemei.

Exerci̧tiul 3.48 Fie problema minimiz¼arii funcţiei f : R3 ! R; f(x; y; z) = 6�1x2 + +2x +
y2 + z2 cu restricţiile x + y + z = 2; x; y; z � 0: S¼a se arate c¼a problema admite soluţie şi c¼a
este aplicabil¼a Teorema Karush-Kuhn-Tucker. S¼a se determine soluţia sau soluţiile problemei.

Exerci̧tiul 3.49 Fie f; h : R3 ! R; f(x) = x21 + 2x22 + 3x23 şi h(x) = x1 + x2 + x3 � 4: S¼a se
arate c¼a problema minimiz¼arii lui f cu restricţia h(x) = 0 admite soluţie şi s¼a se determine
soluţiile. Are soluţie problema maximiz¼arii lui f cu aceeaşi restricţie?

Exerci̧tiul 3.50 Fie f; g; h : R3 ! R; f(x) = 2x21 + 2x22 + x23 + 4x3; g(x) = x21 + x22 + x23 � 4;
h(x) = x1+x2+x3�2: S¼a se arate c¼a problema minimiz¼arii lui f cu restricţiile g(x) � 0; h(x) =
0 este convex¼a, mulţimea restricţiilor este compact¼a şi este îndeplinit¼a o condiţie de cali�care.
Apoi s¼a se determine soluţiile.
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Exerci̧tiul 3.51 Fie f; g; h : R3 ! R; f(x) = 3�1x31 + x
2
2 + 2x3; g(x) = x21 + x

2
2 + x

2
3 � 2;

h(x) = x1 + x3: Fie problema minimiz¼arii lui f cu restricţiile g(x) � 0; h(x) = 0: S¼a se arate
c¼a mulţimea restricţiilor este compact¼a şi este îndeplinit¼a o condiţie de cali�care. Apoi s¼a se
determine soluţiile globale.

Exerci̧tiul 3.52 Fie f; g; h : R3 ! R; f(x) = x21 � x22 + 2x3; g(x) = 2�1(x21 + x
2
2 + x

2
3) � 1;

h(x) = x1 � x2: Fie problema minimiz¼arii globale a lui f cu restricţiile g(x) � 0; h(x) = 0: S¼a
se arate c¼a mulţimea restricţiilor este compact¼a şi este îndeplinit¼a o condiţie de cali�care. Apoi
s¼a se determine soluţiile globale.

Exerci̧tiul 3.53 Fie f; g; h : R3 ! R; f(x) = x21+x22+x3� 1; g(x) = x1�x2; h(x) = x2�x3:
Fie problema minimiz¼arii globale a lui f cu restricţiile g(x) � 0; h(x) = 0: S¼a se arate c¼a f
este convex¼a. Este mulţimea restricţiilor compact¼a? S¼a se arate c¼a problema are soluţie. S¼a se
precizeze dac¼a se poate aplica Teorema Karush-Kuhn-Tucker. S¼a se determine soluţiile.

Exerci̧tiul 3.54 Fie f; g : R2 ! R; f(x) = x21 + 2x22 + x1x2 + x2; g(x) = x1 + x2 � 1: S¼a se
arate c¼a problema minimiz¼arii lui f cu restricţia g(x) � 0 este convex¼a, are soluţie, se poate
aplica Teorema Karush-Kuhn-Tucker şi s¼a se determine soluţiile problemei.

Exerci̧tiul 3.55 Fie problema min (x21 + x
2
2 + x

2
3 + x1 � x3) cu restricţiile x21 + x22 + x23 � 1 şi

2x1+3x2� 3x3 = 3: Determinaţi soluţiile globale ale problemei (cu parcurgerea tuturor paşilor:
existenţa soluţiilor, aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii prob-
lemei, determinarea soluţiilor).

Exerci̧tiul 3.56 Fie problema min (x21 + x
2
2) cu restricţiile x

2
1 + 2x

2
2 � 1 = 0: Determinaţi

soluţiile globale ale problemei (cu parcurgerea tuturor paşilor: existenţa soluţiilor, aplicabilitatea
Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, determinarea soluţiilor).

Exerci̧tiul 3.57 S¼a se determine punctul cel mai apropiat şi punctul cel mai dep¼artat de orig-
ine de pe (hiperbola)

x21 + 8x1x2 + 7x
2
2 = 225:

Exerci̧tiul 3.58 Fie problema min (2x1 + 3x2 � x3) cu restricţiile x21+x22+x23 = 1 şi x21+2x22+
2x23 = 2: Determinaţi soluţiile globale ale problemei (cu parcurgerea tuturor paşilor: existenţa
soluţiilor, aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, de-
terminarea soluţiilor).

Exerci̧tiul 3.59 Fie problema min (4x21 + x
2
2 � x1 � 2x2) cu restricţiile 2x1+x2 � 1 şi x21 � 1:

Determinaţi soluţiile globale ale problemei (cu parcurgerea tuturor paşilor: existenţa soluţiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, determinarea
soluţiilor).

Exerci̧tiul 3.60 Fie problema min (x1 + x2 + x3) cu restricţiile x21 + x
2
2 + x

2
3 � 4 şi x1 � x2 +

x3 = 2: Determinaţi soluţiile problemei (cu parcurgerea tuturor paşilor: existenţa soluţiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, determinarea
soluţiilor).
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Exerci̧tiul 3.61 Fie problema min (x1x2x3) cu restricţiile x21+x
2
2+x

2
3 � 4 şi x1+x2+x3 = 2:

Determinaţi soluţiile globale ale problemei (cu parcurgerea tuturor paşilor: existenţa soluţiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, determinarea
soluţiilor).

Exerci̧tiul 3.62 Fie problema min (x1 + x2 + x3) cu restricţiile x21 + x
2
2 � x3 şi x3 � 1: De-

terminaţi soluţia sau soluţiile problemei (cu parcurgerea tuturor paşilor: existenţa soluţiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, determinarea
efectiv¼a a soluţiilor).

Exerci̧tiul 3.63 Fie problema min (x21 + x
2
2 � x2x3 + x23) cu restricţiile x1 � x2 � 1; x1 = x3

şi x3 � 0: Determinaţi soluţia sau soluţiile problemei (cu parcurgerea tuturor paşilor: existenţa
soluţiilor, aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexit¼aţii problemei, de-
terminarea efectiv¼a a soluţiilor).

Exerci̧tiul 3.64 Fie a; b; c > 0: Studiaţi problema maximiz¼arii expresiei (x+ a) (y + b) cu
restricţiile x; y � 0; x+ y = c:

Exerci̧tiul 3.65 Fie f; h : Rp ! R;

f(x) =

pY
i=1

x2i ; h(x) =

pX
i=1

x2i � 1:

Studiaţi problema maximiz¼arii funcţiei f cu restricţia h(x) = 0: Deduceţi inegalitatea mediilor.

Soluţie Cummuļtimea punctelor fezabile este o sfer¼a problema are solu̧tie global¼a. De asemenea,
are loc condi̧tia de liniar¼a independeņt¼a în toate punctele fezabile. Cum avem o restriçtie cu
egalitate, condi̧tiile Karush-Kuhn-Tucker se scriu astfel: dac¼a punctul fezabil x este solu̧tie,
atunci exist¼a � 2 R astfel încât

rf(x) + �rh(x) = 0;
rela̧tie ce revine la

2xi

pY
j=1;j 6=i

x2j + 2�xi = 0; 8i 2 1; p:

Înmuļtim cu xi �ecare rela̧tie şi avem

�
pY
j=1

x2j + �x
2
i = 0; 8i 2 1; p;

deci
�x2i = �x

2
j ; 8i; j 2 1; p:

Dac¼a � = 0; atunci din cele de mai sus deducem f (x) = 0; ceea ce nu se poate întâmpla într-un
punct de maxim. Deci

x2i = x
2
j ; 8i; j 2 1; p;
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şi cum h (x) = 0; g¼asim

x2i =
1

p
; 8i 2 1; p:

Aşadar, valoarea maxim¼a a funçtiei cu restriçtia dat¼a este p�p:
Dac¼a z 2 Rp n f0g ; atunci y = kzk�1 z satisface restriçtia şi

pY
i=1

�
zi
kzk

�2
=

Qp
i=1 z

2
i

kzk2p
� 1

pp
:

Concluzion¼am c¼a
pY
i=1

z2i �
kzk2p

pp
=

�Pp
i=1 z

2
i

p

�p
Deci pentru orice x 2 Rp; �����

pY
i=1

xi

����� �
�Pp

i=1 jxij
p

�p
;

ceea ce reprezint¼a inegalitatea mediilor. �

Exerci̧tiul 3.66 S¼a se studieze problema minimiz¼arii expresiei x1+x2+ :::+xn (n � 2) pentru
x1; x2; :::; xn > 0 cu restricţia x1 � x2 � ::: � xn = 1 şi apoi s¼a se deduc¼a inegalitatea mediilor.

Exerci̧tiul 3.67 Cu o panglic¼a de lungime a leg¼am o cutie de cadou de form¼a paralelipipedic¼a.
Care este volumul maxim al unei astfel de cutii?

Soluţie Modelul matematic al problemei este

max x1x2x3

cu restriçtiile x1; x2; x3 � 0; 2x1 + 2x2 + 4x3 � a: Este clar c¼a maximul este atins (Teorema lui
Weierstrass) şi este strict pozitiv. Pentru standardizare, ne vom ocupa de problema

min � x1x2x3

cu restriçtii (a�ne) scrise ca inegalit¼a̧ti de forma �. Din nou aplic¼am teoria şi avem sistemul

� x2x3 � �1 + 2�4 = 0
� x1x3 � �2 + 2�4 = 0
� x1x2 � �3 + 4�4 = 0
�1x1 = 0

�2x2 = 0

�3x3 = 0

(2x1 + 2x2 + 4x3 � a)�4 = 0
�1; �2; �3; �4 � 0
x1; x2; x3 � 0;
2x1 + 2x2 + 4x3 � a
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Deducem

x1(�x2x3 + 2�4) = 0
x2(�x1x3 + 2�4) = 0
x3(�x1x2 + 4�4) = 0

(2x1 + 2x2 + 4x3 � a)�4 = 0

Adun¼am primele trei ecua̧tii şi avem �3x1x2x3 + �4(2x1 + 2x2 + 4x3) = 0; de unde

�3x1x2x3 + a�4 = 0;

deci �4 = 3x1x2x3
a

: Înlocuind în ecua̧tia x1(�x2x3 + 2�4) = 0 cum x1x2x3 6= 0 g¼asim x1 =
a
6
:

Analog, x2 = a
6
; x3 =

a
12
: Multiplicatorii sunt (0; 0; 0; a

2

144
): Deci solu̧tia problemei este (a

6
; a
6
; a
12
):

�

Exerci̧tiul 3.68 S¼a se modeleze problema determin¼arii celui mai apropiat, respectiv al celui
mai îndep¼artat punct faţ¼a de (3;�3) de pe elipsa

x2

4
+ y2 = 1:

S¼a se scrie ecuaţia de determinare a multiplicatorului asociat problemei.

Exerci̧tiul 3.69 Determinaţi dimensiunile unei cutii paralelipipedice de arie total¼a minim¼a
având volumul v > 0.

Exerci̧tiul 3.70 Determinaţi dimensiunile unui pahar cilindric care are volumul v > 0 şi
pentru care aria este minim¼a.
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Capitolul 4

Algoritmi pentru aproximarea
solu̧tiilor ecua̧tiilor neliniare

4.1 Descriere general¼a

Majoritatea problemelor studiate pân¼a acum au fost situa̧tii fericite, în sensul c¼a am putut
rezolva ecua̧tiile ale c¼aror solu̧tii d¼adeau punctele candidate la a � solu̧tii. Apoi, folosind
mijloacele teoretice pe care le-am dezvoltat anterior am fost capabili s¼a rezolv¼am complet
problemele date. Totuşi, de foarte multe ori, pot ap¼area probleme pentru care nu putem rezolva
sistemele ce dau punctele critice ale funçtiei obiectiv (în cazul problemelor f¼ar¼a restriçtii) sau
punctele critice ale lagrangianului (la problemele cu restriçtii). Am v¼azut un astfel de exemplu
chiar în �nalul seçtiunii precedente sau cu ocazia discu̧tiei privind metoda celor mai mici p¼atrate.
Pentru astfel de probleme, sunt necesari algoritmi pentru aproximarea solu̧tiilor.
În ceea ce ne priveşte, vom studia algoritmi iterativi. To̧ti aceşti algoritmii cer precizarea

unui punct de start pe care îl not¼am cu x0: Este bine ca acest punct s¼a �e el însuşi o cât mai
bun¼a aproximare a solu̧tiei c¼autate (mai ales dac¼a aceasta nu este unic¼a). De exemplu, funçtia
f : R! R;

f(x) =
x6

6
� x

3

3
� x2

are dou¼a puncte de minim şi dou¼a r¼ad¼acini reale nenule. Dac¼a se pleac¼a cu o valoare x0 apropiat¼a
de unul dintre aceste puncte, atunci este probabil ca algoritmul (pentru rezolvarea ecua̧tiei sau
pentru g¼asirea punctelor de extrem) s¼a g¼aseasc¼a o aproximare a acelui punct.
Revenind la discu̧tia general¼a, dup¼a alegerea lui x0, algoritmul genereaz¼a un şir de itera̧tii

(xk)k2N care au scopul de a se apropia de solu̧tia, notat¼a x (solu̧tie a unei ecua̧tii sau punct
de optim). Evident, în practic¼a, xk 6= x pentru orice k pentru c¼a, în caz contrar, solu̧tia este
determinat¼a într-un num¼ar �nit de paşi, ceea ce este, în general, imposibil. Generarea şirului
(xk) se va opri atunci când nu se mai pot face progrese în încercarea de apropiere de solu̧tie
(conform regulii interne a algoritmului de generare a itera̧tiilor) sau când a fost atins¼a o anumit¼a
acuratȩte dinainte stabilit¼a. Orice algoritm trebuie s¼a implementeze o regul¼a intern¼a de generare
a unei noi itera̧tii utilizând itera̧tiile deja existente. În general, �ecare nou¼a itera̧tie trebuie s¼a
realizeze o apropiere de solu̧tie, dar exist¼a şi algoritmi nemonotoni, pentru care descreşterea nu
trebuie s¼a se produc¼a neap¼arat la �ecare pas.
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Dou¼a sunt problemele atunci când se studiaz¼a un algoritm întrucât ne intereseaz¼a atât
dac¼a algoritmul este global (i.e., este convergent pentru orice dat¼a ini̧tial¼a x0), cât şi viteza de
convergeņt¼a.
Aşadar, o problem¼a foarte important¼a din punct de vedere practic atunci când este studiat

un algoritm este viteza sa de convergeņt¼a.

De�ni̧tia 4.1.1 (vitez¼a de convergeņt¼a) Fie (xk)k2Nnf0g � Rp un şir convergent la x 2 Rp
cu xk 6= x pentru orice k 2 N n f0g : Spunem c¼a:
(i) (xk) converge liniar dac¼a exist¼a r 2 (0; 1) (numit rat¼a de convergenţ¼a) astfel încât pentru

orice k su�cient de mare,
kxk+1 � xk
kxk � xk

� r;

(ii) (xk) converge p¼atratic dac¼a exist¼a M > 0 astfel încât pentru orice k su�cient de mare,

kxk+1 � xk
kxk � xk2

�M:

Observa̧tia 4.1.2 În particular, dac¼a exist¼a limita

lim
kxk+1 � xk
kxk � xk

şi este un num¼ar subunitar, atunci (xk) converge liniar.
Similar, dac¼a exist¼a limita

lim
kxk+1 � xk
kxk � xk2

;

atunci (xk) converge p¼atratic.

Observa̧tia 4.1.3 Evident, convergenţa p¼atratic¼a implic¼a convergenţa liniar¼a. Pentru con-
vergenţa liniar¼a, viteza este in�uenţat¼a semni�cativ de rata r; în timp ce pentru convergenţa
p¼atratic¼a dependenţa de M este mai puţin important¼a. Folosind modelul oferit de de�niţia con-
vergenţei p¼atratice, putem de�ni convergenţe de orice ordin; spunem c¼a avem o convergenţ¼a de
ordin � > 1 dac¼a exist¼a M > 0 astfel încât pentru orice k su�cient de mare

kxk+1 � xk
kxk � xk�

�M:

Exemplul 4.1.4 (i) Şirul
�
1 +

�
1
3

�k�
este liniar convergent la 1 cu rata r = 1

3
:

(ii) Şirul
�
1 +

�
1
2

�2k�
converge p¼atratic la 1:

Vom vedea îns¼a c¼a sarcina proiect¼arii unor algoritmi globali care s¼a aib¼a vitez¼a bun¼a de
convergeņt¼a (cel pu̧tin p¼atratic¼a) este una di�cil¼a.

Începem în continuare studiul unor metode de a determina cu aproxima̧tie r¼ad¼acinile unor
ecua̧tii neliniare. Meņtion¼am c¼a o ecua̧tie neliniar¼a nerezolvabil¼a a ap¼arut la Exemplul 3.5.8.
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În plus, s¼a mai remarc¼am c¼a Teorema 3.4.3 transform¼a o problem¼a de optimizare în problema
rezolv¼arii ecua̧tiei L(x; (�; �)) = 0 (de cele mai multe ori neliniare şi chiar imposibil de rezolvat
exact). Un alt argument ar � şi acela c¼a, în fond, problema rezolv¼arii unei ecua̧tii de forma
f(x) = 0 este echivalent¼a cu problema determin¼arii solu̧tiilor globale ale problemei de optimizare
f¼ar¼a restriçtii min f 2:

Un prim procedeu este cel descris în exemplul de mai jos.

Exemplul 4.1.5 (Metoda înjum¼at¼a̧tirii intervalului) S¼a presupunem c¼a avem o funçtie
continu¼a f şi dou¼a numere reale a < b pentru care f(a)f(b) < 0: Atunci, f are o r¼ad¼acin¼a în
(a; b): Pentru uşuriņta expunerii, presupunem c¼a aceast¼a solu̧tie este unic¼a. Gener¼am un şir
(xk) astfel:
�alegem a0 = a; b0 = b;
��e x0 = 2�1(a0 + b0); dac¼a f(x0) = 0 atunci x0 este solu̧tia c¼autat¼a şi iterarea se opreşte;

astfel, dac¼a f(a0)f(x0) < 0 alegem a1 = a0 şi b1 = x0; iar dac¼a f(x0)f(b0) < 0 alegem a1 = x0
şi b1 = b0:
�continu¼am procedeul luând x1 = 2�1(a1 + b1):
Procedând recurent, ne apropiem cu (xk) de solu̧tie, înjum¼at¼a̧tind la �ecare pas intervalul în

care se g¼aseşte solu̧tia. Evident, dac¼a pentru un num¼ar k, f (xk) = 0; atunci xk e chiar solu̧tia
c¼autat¼a.
De exemplu, dac¼a avem funçtia f : R! R dat¼a prin f (x) = x3 � x � 2; este uşor de

constatat (folosind şirul lui Rolle) c¼a ecua̧tia f (x) = 0 are o solu̧tie real¼a unic¼a situat¼a în

intervalul
�p
3�1;1

�
: Apoi, cum f (1) � f (2) < 0; deducem c¼a solu̧tia este în intervalul (1; 2) :

Din acest moment, putem folosi metoda descris¼a mai sus pentru a aproxima solu̧tia.
Alegem x = 1:5: Observ¼am c¼a f (1:5) � f (2) < 0; deci punctul se a�¼a în (1:5; 2) : Alegem

apoi x = 1:75 şi continu¼am procedeul.
În aceast¼a metod¼a,

jxk � xj �
1

2k+1
(b� a) ; 8k � 1:

Metoda înjum¼at¼a̧tirii intervalului este foarte robust¼a, dar convergeņta sa este relativ lent¼a
comparativ cu a altor metode pe care le vom studia în continuare.

4.2 Principiul lui Banach de punct �x

Aceast¼a seçtiune este dedicat¼a Principiului lui Banach de punct �x care este unul dintre rezul-
tatele fundamentale ale analizei neliniare.Vom vedea cum acest principiu şi demonstra̧tia sa
conduc la un algoritm care ulterior va putea � folosit pentru ob̧tinerea unei metode de aproxi-
mare a r¼ad¼acinilor unei ecua̧tii cu vitez¼a p¼atratic¼a.
Fie f : Rp ! Rp. Un punct x 2 Rp pentru care f(x) = x se numeşte punct �x al lui f .

Prin rezultat de punct �x vom îņtelege un rezultat care asigur¼a existeņta punctelor �xe pentru
o funçtie dat¼a.
Un prim rezultat simplu, dar foarte important, este urm¼atorul.

Teorema 4.2.1 Fie a; b 2 R; a < b şi f : [a; b] ! [a; b] o funcţie continu¼a. Atunci exist¼a
x 2 [a; b] astfel încât f(x) = x; adic¼a f are cel puţin un punct �x.
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Demonstraţie De�nim funçtia g : [a; b] ! R dat¼a prin g(x) = f(x) � x: Este evident c¼a g
este continu¼a ca difereņt¼a de funçtii continue şi, în particular, are proprietatea lui Darboux.
Evident, din cauz¼a c¼a f(a); f(b) 2 [a; b]; avem inegalit¼a̧tile

g (a) = f(a)� a � 0
g(b) = f(b)� b � 0;

deci g(a) � g(b) � 0 şi din proprietatea lui Darboux, deducem existeņta unui punct x 2 [a; b]
având proprietatea c¼a g(x) = 0: Prin urmare, f(x) = x şi teorema este demonstrat¼a. �

Observa̧tia 4.2.2 Este esenţial ca intervalul s¼a �e închis. De exemplu, funcţia f : [0; 1) !
[0; 1) dat¼a prin f(x) = x+1

2
nu are puncte �xe. De asemenea este esenţial ca intervalul s¼a �e

m¼arginit: funcţia f : [1;+1) ! [1;+1) dat¼a prin f(x) = x + x�1 nu are puncte �xe. În
sfârşit, rezultatul nu mai este valabil dac¼a funcţia nu este de�nit¼a pe un interval. De exemplu,
f : [�2;�1] [ [1; 2]! [�2;�1] [ [1; 2]; f(x) = �x nu are puncte �xe.

Rezultatul de mai sus este unul de existeņt¼a şi nu ne d¼a informa̧tii suplimentare despre
modalitatea de determinare a punctelor �xe. Pentru a ob̧tine rezultate mai precise din acest
punct de vedere d¼am urm¼atoarea de�ni̧tie.

De�ni̧tia 4.2.3 Fie A � Rp. O aplicaţie f : A ! Rq se numeşte contracţie pe A dac¼a exist¼a
o constant¼a real¼a � 2 (0; 1) aşa încât kf(x)� f(y)k � � kx� yk, pentru orice x; y 2 A:

Remarc¼am c¼a �, valoare numit¼a constant¼a de contraçtie, nu depinde de x şi y; iar prin apli-
carea funçtiei f unei perechi de puncte din A, distaņta dintre ele se micşoreaz¼a (se contract¼a).
No̧tiunea de contraçtie este un caz particular al conceptului de funçtie Lipschitz (De�ni̧tia
4.6.52), deci, în particular, orice contraçtie este funçtie continu¼a (Propozi̧tia 4.6.53). Evident,
dac¼a � este constant¼a de contraçtie, atunci orice �0 2 (�; 1) este de asemenea constant¼a de
contraçtie.

Observa̧tia 4.2.4 Are loc urm¼atoarea a�rmaţie care este deseori utilizat¼a pentru a ar¼ata c¼a
o funcţie este Lipschitz: dac¼a I � R este un interval şi f : I ! R este derivabil¼a pe I
atunci f este Lipschitz pe I dac¼a şi numai dac¼a f este m¼arginit¼a pe I; caz în care constanta
Lipschitz este constanta de m¼arginire a lui jf 0j : Demonstraţia a�rmaţiei directe rezult¼a din chiar
de�niţia derivatei. Demonstraţia reciprocei se sprijin¼a pe Teorema lui Lagrange: pentru orice
dou¼a puncte x; y 2 I, x < y deducem existenţa unui element cx;y 2 (x; y) � A cu proprietatea
c¼a

jf(x)� f(y)j = jf 0(cx;y)(x� y)j � sup
x2I

jf 0 (x)j � jx� yj ;

deci f este Lipschitz pe I: Enunţ¼am un caz particular imediat al acestei observaţii.

Propozi̧tia 4.2.5 Fie I � R un interval şi f : I ! R derivabil¼a pe I: Funcţia f este contracţie
pe I dac¼a şi numai dac¼a exist¼a M 2 (0; 1) astfel încât jf 0(x)j �M pentru orice x 2 I: În acest
caz, supx2I jf 0 (x)j este constant¼a de contracţie.
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Exemplul 4.2.6 Funçtia f : Rp ! Rp de�nit¼a prin f(x) = 1
2
x este o contraçtie a lui Rp în el

însuşi întrucât:

kf(x)� f(y)k = 1

2
kx� yk :

De asemenea, f : Rp ! R de�nit¼a prin f(x) = 1
2
kxk este o contraçtie.

Exemplul 4.2.7 Funçtia f : [0; 1] ! [0; 1], f(x) = cos x este o contraçtie, de constant¼a
� = supx2[0;1] jf 0 (x)j = sin 1.

Exemplul 4.2.8 Funçtia f : [0; 1] ! [0; 1], f(x) = sinx nu este o contraçtie pentru c¼a
supx2[0;1] jf 0 (x)j = cos 0 = 1).

Exemplul 4.2.9 Fie A = [0;1) şi funçtia f : A ! A, de�nit¼a prin f(x) = 1
1+x2

. Funçtia f
este contraçtie pe A, lucru pe care îl ar¼at¼am folosind Propozi̧tia 4.2.5. Pentru funçtia f de�nit¼a
anterior derivata sa este

f 0(x) =

�
1

1 + x2

�0
= � 2x

(1 + x2)2

şi deci

jf 0(x)j = 2x

(1 + x2)2
:

De�nim funçtia auxiliar¼a g : [0;1)! [0;1) dat¼a prin g(x) = 2x
(1+x2)2

. Derivata acestei funçtii
este

g0(x) =
2(1 + x2)2 � 2x � 2(1 + x2) � 2x

(1 + x2)4

=
2(1 + x2)(1 + x2 � 4x2)

(1 + x2)4
= 2

1� 3x2
(1 + x2)3

:

Observ¼am c¼a x = 1p
3
este punctul de maxim global al funçtiei g şi g

�
1p
3

�
= 9

8
p
3
< 1. Deci

jf 0(x)j � 9
8
p
3
< 1 oricare ar � x 2 [0;1). Rezult¼a din Propozi̧tia 4.2.5 c¼a f este contraçtie.

Observa̧tia 4.2.10 Menţion¼am c¼a ipoteza jf 0(x)j < 1 pentru orice x 2 (a; b) nu implic¼a faptul
c¼a f este contracţie pe (a; b). Exemplu: funcţia f : [0; 1] ! [0; 1]; f(x) = sinx discutat¼a mai
sus. Un alt exemplu de acelaşi tip este f : R! R; f(x) = x� arctg x:
Teorema lui Banach de punct �x (sau Principiul lui Banach de punct �x) este un rezultat

care asigur¼a, în anumite condi̧tii, atât existeņta, cât şi unicitatea punctului �x. Aceast¼a teorem¼a
st¼a la baza ob̧tinerii a numeroase rezultate matematice remarcabile cum ar �, printre altele,
teorema funçtiilor implicite sau teoreme privind existeņta şi unicitatea solu̧tiei unor ecua̧tii şi
sisteme difereņtiale. Formul¼am acum rezultatul anuņtat, rezultat demonstrat de c¼atre Stefan
Banach în 1922 în cadrul spa̧tiilor normate complete.

Teorema 4.2.11 (Principiul lui Banach de punct �x) Fie A � Rp o mulţime închis¼a
nevid¼a şi f : A! A o contracţie. Atunci f admite un unic punct �x. În plus, acest punct este
limita oric¼arui şir (xk) construit astfel:�

x0 2 A
xk+1 = f (xk) ; 8k 2 N:
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Demonstraţie Ca de obicei în cazul rezultatelor de existeņt¼a şi unicitate, împ¼aŗtim demonstra̧tia
în dou¼a etape. Ar¼at¼am mai întâi existeņta şi apoi unicitatea punctului �x. Conform de�ni̧tiei,
exist¼a un num¼ar real � 2 (0; 1) astfel încât

kf(x)� f(y)k � � kx� yk ;

pentru orice x; y 2 A: S¼a consider¼am x0 2 A un punct arbitrar şi s¼a not¼am cu x1 = f(x0),
x2 = f(x1); :::; xk = f(xk�1); opera̧tie care se poate face pentru orice num¼ar natural k � 1: Se
observ¼a c¼a x2 = f(f(x0)) = f 2(x0) şi, în general, xk = fk(x0) (am notat f 2 în loc de f � f şi,
în general, fk în loc de f � f � ::: � f de k ori). Ar¼at¼am c¼a (xk)k2N este un şir Cauchy. Au loc
rela̧tiile

kx2 � x1k = kf(x1)� f(x0)k � � kx1 � x0k ;
kx3 � x2k = kf(x2)� f(x1)k � � kx2 � x1k � �2 kx1 � x0k :

Folosind metoda induçtiei matematice se ob̧tine inegalitatea

kxk+1 � xkk � �k kx1 � x0k

pentru orice k 2 Nnf0g. Pentru `; k 2 Nnf0g ; numere naturale arbitrare, putem scrie succesiv:

kx`+k � xkk � kxk+1 � xkk+ kxk+2 � xk+1k+ � � �+ kxk+` � xk+`�1k
� �k kx1 � x0k+ �k+1 kx1 � x0k+ � � �+ �k+`�1 kx1 � x0k

= kx1 � x0k (�k + �k+1 + � � �+ �k+`�1) = kx1 � x0k�k
1� �`
1� �

� kx1 � x0k
�k

1� �:

Deci

kxk+` � xkk �
�k

1� � kx1 � x0k (4.1)

pentru orice k; ` 2 N n f0g. Dac¼a kx1 � x0k = 0 rezult¼a c¼a f(x0) = x0; adic¼a x0 este punct �x
şi deci existeņta punctului �x este asigurat¼a. Dac¼a kx1 � x0k 6= 0, atunci, folosind faptul c¼a
� 2 (0; 1); deducem c¼a

lim
k!1

�k

1� � = 0;

deci

lim
k!1

�k

1� � kx1 � x0k = 0:

Scriind caracterizarea cu " a acestei convergeņte, rezult¼a c¼a pentru orice " > 0, exist¼a k" 2
N n f0g, astfel încât pentru orice k � k" avem

�k

1� � kx1 � x0k < ":

Combinând aceast¼a rela̧tie cu rela̧tia (4.1) rezult¼a c¼a pentru orice " > 0, exist¼a k" 2 N n f0g,
astfel încât pentru orice k � k" şi orice ` 2 N, are loc

kxk+` � xkk < ":
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Am ob̧tinut astfel faptul c¼a (xk) este un şir Cauchy şi cum Rp este un spa̧tiu complet, şirul
(xk)k2N este convergent, deci exist¼a x 2 Rp cu limk!1 xk = x. Cum (xk) � A şi A este închis¼a,
deducem c¼a x 2 A: Reamintim c¼a şirul este dat prin rela̧tia

x0 2 Rp; f(xk) = xk+1; 8k 2 N: (4.2)

Funçtia f este continu¼a deoarece orice contraçtie este continu¼a (a se vedea Propozi̧tia 4.6.53).
Deci, din propriet¼a̧tile funçtiilor continue, exist¼a limita şirului (f(xk))k şi este egal¼a cu f(x).
În rela̧tia (4.2) trecem la limit¼a pentru k !1 şi ob̧tinem

lim
k!1

f(xk) = lim
k!1

xk+1;

adic¼a
f(x) = x;

deci x este punct �x. Existeņta este demonstrat¼a.
Pentru a demonstra unicitatea, s¼a presupunem c¼a ar exista dou¼a puncte �xe diferite x şi y.

Atunci
kx� yk = kf(x)� f(y)k � � kx� yk :

Cum kx� yk > 0 rezult¼a 1 � � ceea ce este absurd. Prin urmare exist¼a un singur punct
�x. �

Observa̧tia 4.2.12 Aşadar, Teorema lui Banach de punct �x arat¼a nu numai existenţa şi
unicitatea punctului �x ci, în acelaşi timp, ne ofer¼a o metod¼a pentru obţinerea cu aproximaţie
a punctului x şi de asemenea ne permite punerea în evidenţ¼a a unei formule pentru aprecierea
erorii ce se produce considerând respectiva aproximaţie. Aceast¼a metod¼a de aproximare a soluţiei
prin termenii şirului xk = fk(x0) se numeşte metoda aproximaţiilor succesive sau metoda aprox-
imaţiilor Picard dup¼a numele lui C. É. Picard care a iniţiat aceast¼a metod¼a în 1890.

În afar¼a de aceste observa̧tii ce ţin de modul de convergeņt¼a a itera̧tiilor c¼atre punctul �x,
facem şi câteva observa̧tii privitoare la ipotezele teoremei.

Observa̧tia 4.2.13 Ipoteza � < 1 este esenţial¼a atât pentru existenţa cât şi pentru unicitatea
punctului �x. Astfel se vede, spre exemplu, c¼a pentru aplicaţia identic¼a f(x) = x, pentru orice
x 2 R; orice punct al lui R este punct �x, în timp ce aplicaţia f(x) = x+1, pentru orice x 2 R;
nu posed¼a niciun punct �x. În ambele cazuri, � = 1.

Observa̧tia 4.2.14 Dac¼a A nu este închis¼a, se pierde argumentul de completitudine şi rezul-
tatul Teoremei lui Banach nu se mai p¼astreaz¼a. Spre exemplu, aplicaţia f : (0; 1] ! (0; 1]
de�nit¼a prin f(x) = x

2
nu are niciun punct �x deşi este contracţie.

4.3 Conseciņte ale Principiului lui Banach în proiectarea
unor algoritmi

Analiza enuņtului, dar şi a demonstra̧tiei Principiului lui Banach ne ofer¼a mai multe concluzii
utile în ceea ce priveşte proiectarea unor algoritmi. Mai întâi, s¼a vedem cum a fost ob̧tinut (în
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partea de existeņt¼a) punctul �x: pentru �ecare punct ini̧tial x0 2 A şirul dat de rela̧tia (4.2)
converge c¼atre unicul punct �x x al aplica̧tiei f: Revenind la inegalit¼a̧tile de mai sus, au loc
rela̧tiile:

kxk � x0k � kx1 � x0k+ kx2 � x1k+ � � �+ kxk � xk�1k
� kx1 � x0k+ � kx1 � x0k+ � � �+ �k�1 kx1 � x0k

= (1 + �+ �2 + � � �+ �k�1) kx1 � x0k =
1� �k
1� � kx1 � x0k ;

de unde prin trecere la limit¼a cu k !1 deducem

kx0 � xk �
1

1� � kx0 � f(x0)k :

Astfel, de fapt, pentru orice x 2 A are loc rela̧tia

kx� xk � kx� f(x)k 1

1� �: (4.3)

În plus avem şi estimarea

kxk � xk �
�k

1� � kx1 � x0k ; 8k 2 N n f0g ; (4.4)

care rezult¼a din rela̧tia (4.1) prin trecere la limit¼a pentru m!1:
Estimarea "a priori" astfel ob̧tinut¼a ajut¼a la determinarea num¼arului maxim de paşi ai iter-

a̧tiei din rela̧tia (4.2) pentru ob̧tinerea preciziei dorite în estimarea punctului �x, cunoscându-se
valoarea ini̧tial¼a x0 şi valoarea x1 = f(x0); lucru de care ne vom folosi atunci când vom discuta
unii algoritmi. Mai exact, pentru o ob̧tine o eroare mai mic¼a decât " > 0 este nevoie ca

�k

1� � kx1 � x0k < ":

Astfel, cu cât � este mai aproape de 0 aceast¼a valoare este mai mic¼a şi va trebui s¼a iter¼am de
mai pu̧tine ori pentru a avea precizia dorit¼a. De asemenea, se observ¼a din rela̧tia (??) c¼a o
valoare mic¼a a lui kx1 � x0k duce de asemenea la sc¼aderea num¼arului de itera̧tii necesare unei
precizii prestabilite. Deci, aşa cum este de aşteptat, este de preferat s¼a se plece cu puncte cât
mai apropiate de punctul �x c¼autat.
De asemenea, se ob̧tine şi urm¼atoarea estimare:

kxk � xk �
�

1� � kxk � xk�1k (4.5)

care se deduce tot prin trecere la limit¼a pentru `!1 în inegalitatea

kxk+` � xkk � kxk+1 � xkk+ kxk+2 � xk+1k+ � � �+ kxk+` � xk+`�1k
� � kxk � xk�1k+ �2 kxk � xk�1k+ � � �+ �` kxk � xk�1k
= (�+ �2 + :::+ �`) kxk � xk�1k :
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Viteza de convergeņt¼a a şirului (xk) este dat¼a de aproximarea

kxk+1 � xk � � kxk � xk

care se deduce din şirul de rela̧tii

kxk+1 � xk = kf(xk)� f(x)k � � kxk � xk :

Asupra vitezei de convergeņt¼a vom reveni pe larg un pic mai târziu în cadrul acestei expuneri.
O alt¼a inegalitate ce se ob̧tine imediat din de�ni̧tia contraçtiei este

kxk � xk � �k kx0 � xk ; 8k 2 N:

A rezolva o ecua̧tie de tipul g(x) = 0 este echivalent cu a g¼asi punctele �xe ale funçtiei
f(x) = g(x) + x; aşa încât aceast¼a dicu̧tie referitoare la convergeņta itera̧tiilor Picard este
aplicabil¼a, prin aceast¼a echivaleņt¼a, unor algoritmi de determinare a solu̧tiilor unor ecua̧tii.

Fie I este un interval închis (în sens topologic) şi f : I ! I este o funçtie derivabil¼a astfel
încât derivata sa este m¼arginit¼a (în modul) pe I de o constant¼a strict subunitar¼a. Atunci pentru
orice dat¼a ini̧tial¼a x0 2 I itera̧tia Picard de�nit¼a de xk+1 = f(xk); k � 0 este convergent¼a c¼atre
unicul punct �x x al lui f din I: Presupunem c¼a f este de clas¼a C1:
Se poate observa f¼ar¼a di�cultate c¼a dac¼a punctul �x nu este atins (̧sirul este nesta̧tionar),

atunci
xk+1 � x
xk � x

=
f(xk)� x
xk � x

k!1! f 0(x):

Astfel, observ¼am c¼a, în general avem de-a face cu o convergeņt¼a liniar¼a. Pentru k su�cient
de mare, eroarea la pasul (k + 1) se comport¼a ca eroarea la pasul k înmuļtit¼a cu o constant¼a
subunitar¼a. Acest tip de convergeņt¼a este relativ lent.

Observa̧tia 4.3.1 Aşadar, viteza convergenţei iteraţiilor Picard este dat¼a de valoarea lui f 0(x):
În general, dac¼a f 0(x) 6= 0; viteza de convergenţ¼a a iteraţiilor Picard este relativ lent¼a. În cazul
cel mai favorabil în care f 0(x) = 0 putem avea convergenţe mai bune decât convergenţa liniar¼a.
În general, în contextul de mai sus, dac¼a f 0(x) = 0 şi f este de clas¼a C2 atunci, aplicând de
dou¼a ori regula lui L�Hôpital avem:

lim
x!x

f(x)� x
(x� x)2 =

f 00(x)

2
;

deci pentru orice iteraţie Picard nestaţionar¼a

lim
k!1

xk+1 � x
(xk � x)2

=
f 00(x)

2
;

adic¼a o convergenţ¼a p¼atratic¼a.

Exemplul 4.3.2 S¼a consider¼am funçtia f : [0;1)! [0;1) dat¼a prin f(x) = 1
1+x2

: Am v¼azut
c¼a f este o contraçtie şi are un singur punct �x care este unica solu̧tie pozitiv¼a a ecua̧tiei
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x3 + x � 1 = 0 (care are valoarea aproximativ¼a x � 0:6823; a se vedea Implementare Matlab
4.5), iar şirul itera̧tiilor Picard satisface:

xk+1 � x
xk � x

n!1! f 0(x) =
�2x

(1 + x2)2
= �2x3 � �0:6353:

Cum valoarea jf 0(x)j este relativ mic¼a ne aştept¼am la o vitez¼a de convergeņt¼a liniar¼a acceptabil¼a.
Deci, practic pentru k su�cient de mare, la �ecare pas al itera̧tiei, eroarea se multiplic¼a (în
valoare absolut¼a) cu aproximativ 0:6353:

Exemplul 4.3.3 S¼a lu¼am cazul funçtiei f : [
p
2;1)! [

p
2;1) dat¼a prin

f(x) =
x

2
+
1

x
:

Este uşor de veri�cat c¼a f este bine de�nit¼a (inegalitatea mediilor). În plus,

jf 0(x)j =
����12 � 1

x2

���� � 1

2
;

deci f este contraçtie şi are ca unic punct �x x =
p
2: Se observ¼a c¼a f 0(x) = 0 şi, deci, pentru

orice itera̧tie Picard nesta̧tionar¼a avem

xk+1 � x
(xk � x)2

=
1

2xk
! 1

2
p
2
=
f 00(x)

2
:

Aşadar are loc o convergeņt¼a p¼atratic¼a, aşa încât ne aştept¼am la o vitez¼a de convergeņt¼a foarte
bun¼a (a se vedea Implementare Matlab 4.5).

4.4 Teorema lui Picard

Prezent¼am acum un rezultat de punct �x pentru funçtii reale de o variabil¼a real¼a. Geometric,
în acest context, punctele �xe ale unei funçtii f sunt acele elelemnte x pentru care punctul
(x; f(x)) este pe prima bisectoare, adic¼a abcisele punctelor în care gra�cul lui f intersecteaz¼a
prima bisectoare.

Exemplul 4.4.1 Am v¼azut c¼a funçtia f : [0; 1] ! [0; 1], f(x) = cosx este o contraçtie (de
constant¼a � = sin 1), deci are un singur punct �x ce se poate aproxima folosind itera̧tii Picard.
În schimb, pentru f : [0; 1] ! [0; 1]; f(x) = sinx nu putem aplica Principiul lui Banach
(f 0(x) < 1 pentru orice x 2 (0; 1) şi f nu este contraçtie). Pentru a trata astfel de situa̧tii avem
rezultatul de mai jos.

Teorema 4.4.2 (Teorema lui Picard) Fie a; b 2 R; a < b şi f : [a; b] ! [a; b] o funcţie
continu¼a pe [a; b] şi derivabil¼a pe (a; b) cu proprietatea c¼a jf 0(x)j < 1 pentru orice x 2 (a; b):
Atunci f are un singur punct �x, iar şirurile iteraţiilor Picard sunt convergente la unicul punct
�x al lui f:
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Demonstraţie Existeņta şi unicitatea punctului �x rezult¼a din rezultatele anterioare. Not¼am
cu x acest punct. Fie x0 2 [a; b] şi �e (xk) şirul Picard generat pornind cu termenul ini̧tial
x0: Dac¼a pentru un k 2 N am avea xk = xk+1; atunci xk ar � punctul �x, iar şirul ar deveni
sta̧tionar, în acest caz convergeņta �ind evident¼a. Presupunem deci c¼a (xk) este nesta̧tionar.
Din Teorema lui Lagrange aplicat¼a funçtiei f pe un interval determinat de capetele x şi xk
deducem existeņta unui element ck 2 (a; b) pentru care putem scrie rela̧tia:

xk+1 � x = f(xk)� f(x) = f 0(ck)(xk � x):

Aceast¼a inegalitate şi ipoteza asupra derivatei lui f conduc la

jxk+1 � xj < jxk � xj : (4.6)

Ar¼at¼am acum c¼a (xk) converge la x: Cum (xk) este un şir m¼arginit (�ind inclus în [a; b]) este
su�cient s¼a ar¼at¼am c¼a orice subşir convergent are limita x: Fie aşadar un subşir convergent
(xk`)` al lui (xk) şi num¼arul real x 2 [a; b] limita sa. Cum (k`) este strict cresc¼ator, aplicând
inductiv inegalitatea (4.6) ob̧tinem:��xk`+1 � x�� � jxk`+1 � xj < jxk` � xj :
Dar jxk` � xj

`!1! jx� xj ; iar
��xk`+1 � x�� `!1! jx� xj în timp ce

jxk`+1 � xj = jf(xk`)� f(x)j
`!1! jf(x)� f(x)j :

Din Teorema cleştelui ob̧tinem

jf(x)� f(x)j = jx� xj :

Dac¼a am � în situa̧tia x 6= x; aplicând din nou Teorema lui Lagrange am avea

jf(x)� f(x)j < jx� xj ;

ceea ce ar reprezenta o contradiçtie. Prin urmare x = x şi teorema este demonstrat¼a. �

Exemplul 4.4.3 Revenim, în lumina Teoremei lui Picard, la restriçtia funçtiei sin la intervalul
[0; 1]: Pentru aceast¼a funçtie care este satisface condi̧tiile Teoremei lui Picard cu x = 0 punct
�x, situa̧tia vitezei de convergeņt¼a se schimb¼a pentru c¼a orice itera̧tie Picard (xk) satisface

xk+1 � x
xk � x

k!1! f 0(x) = 1

şi nu ne aştept¼am s¼a avem o vitez¼a de convergeņt¼a rezonabil¼a (a se vedea Implementare Matlab
4.5).

Evident, sferele de aplicabilitate ale Principiului lui Banach şi Teoremei lui Picard sunt
diferite. Observa̧tiile de mai jos prezint¼a o compara̧tie a ipotezelor celor dou¼a rezultate pentru
funçtii reale de o variabil¼a real¼a.
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Observa̧tia 4.4.4 Dorim s¼a evidenţiem faptul c¼a dac¼a, în Teorema lui Picard, nu are loc
condiţia jf 0(x)j < 1 pentru orice x 2 (a; b) atunci, chiar dac¼a f are punct �x unic, şirul Picard
poate s¼a nu �e convergent la acel punct �x. Fie funcţia f : [�1; 1] ! [�1; 1] de�nit¼a prin
f(x) = �x. Evident, f este derivabil¼a pe domeniul de de�niţie, dar modulul derivatei este
constant 1: Singurul punct �x al lui f este x = 0: Construind iteraţia Picard de la un termen
iniţial x0 6= 0; şirul Picard are forma x0;�x0; x0;�x0; ::: şi deci nu este convergent.

Observa̧tia 4.4.5 S¼a mai remarc¼am c¼a o funcţie care satisface condiţiile Teoremei lui Picard
nu este neap¼arat contracţie, deci Teorema lui Picard nu poate � obţinut¼a din Principiul lui
Banach. Pentru a ilustra acest aspect avem urm¼atorul exemplu. Fie f : [0; 1]! [0; 1];

f(x) =
1

1 + x
:

Evident jf 0(x)j 2 (0; 1) pentru orice x 2 (0; 1); dar f nu este o contracţie pentru c¼a

lim
(x;y)!(0;0);x 6=y

jf(x)� f(y)j
jx� yj = lim

(x;y)!(0;0);x 6=y

1

(x+ 1)(y + 1)
= 1:

Totuşi, pentru funcţia f am putea aplica Principiul lui Banach dac¼a restrângem funcţia la
un interval pe care este contracţie. Se observ¼a c¼a pentru x 2

�
1
2
; 1
�
; f(x) 2

�
1
2
; 2
3

�
; deci

putem de�ni f :
�
1
2
; 1
�
!
�
1
2
; 1
�
şi s¼a observ¼am c¼a aceast¼a restricţie este contracţie pentru c¼a

supx2[ 1
2
;1] jf 0(x)j = 4

9
< 1: Astfel, exist¼a un punct �x unic al lui f în

�
1
2
; 1
�
şi cum funcţia iniţial¼a

are un singur punct �x, punctul �x al restricţiei coincide cu acesta.

Observa̧tia 4.4.6 În unele cazuri, se poate întâmpla s¼a nu putem nici s¼a restrângem funcţia
la o contracţie, nici s¼a g¼asim o iteraţie care s¼a �e contracţie, deci nu se poate aplica niciuna
din cele dou¼a metode de la exemplul precedent (a se vedea Exerciţiul 4.7). Ca exemplu, lu¼am
funcţia f : [0; 1]! [0; 1];

f(x) =
x

1 + x
:

Din nou, jf 0(x)j 2 (0; 1) pentru orice x 2 (0; 1); iar pentru orice n 2 N n f0g şi orice x 2 [0; 1];

fn(x) =
x

1 + nx
:

Ca mai sus:

lim
(x;y)!(0;0);x 6=y

jfn(x)� fn(y)j
jx� yj = lim

(x;y)!(0;0);x 6=y

1

(nx+ 1)(ny + 1)
= 1

şi deci fn nu este contracţie. În plus, nu putem g¼asi nicio restricţie a funcţiei f care s¼a �e
contracţie de la o mulţime la ea îns¼aşi, deoarece punctul �x al lui f este x = 0; deci o eventual¼a
astfel de restricţie ar trebui de�nit¼a pe un interval care s¼a conţin¼a pe 0; lucru imposibil din
cauza relaţiei

lim
(x;y)!(0;0);x 6=y

jf(x)� f(y)j
jx� yj = 1:
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4.5 Metoda lui Newton

Metoda a lui Newton este unul dintre cele mai cunoscute procedee iterative de a aproxima
r¼ad¼acinile unei funçtii care are propriet¼a̧ti su�ciente de derivabilitate. Din nou vom vedea
c¼a aceast¼a metod¼a este una local¼a (algoritmul nu este global, în sensul c¼a pentru a avea o
convergeņt¼a a şirului de itera̧tii c¼atre o anume r¼ad¼acin¼a trebuie ca punctul de plecare s¼a �e
su�cient de apropiat de r¼ad¼acina respectiv¼a), dar are o rat¼a de convergeņt¼a p¼atratic¼a. S¼a
consider¼am o funçtie f : R! R de clas¼a C2 şi �e x o r¼ad¼acin¼a simpl¼a a lui f (i.e. f(�x) = 0;
f 0(x) 6= 0). Consider¼am o valoare x0 su�cient de apropiat¼a de x: Şirul itera̧tiilor Newton pleac¼a
de la ecua̧tia tangentei la gra�cul lui f: Ceriņta este de a considera de �ecare dat¼a ca punct
urm¼ator al itera̧tiei valoarea în care tangenta la punctul curent al iteratei intersecteaz¼a axa Ox:
Astfel, pentru xk dat, avem ecua̧tia:

0 = f(xk) + f
0(xk)(xk+1 � xk):

Aceast¼a ecua̧tie, din care trebuie s¼a ob̧tinem expresia lui xk+1; arat¼a de ce se solicit¼a ca solu̧tia
s¼a �e simpl¼a şi s¼a se plece dintr-un punct apropiat lui x : trebuie s¼a ne plas¼am într-o vecin¼atate
a lui x în care f 0 nu se anuleaz¼a, ori o astfel de vecin¼atate exist¼a tocmai datorit¼a faptului c¼a f 0

este continu¼a şi nenul¼a în x: Astfel, se de�neşte itera̧tia Newton prin formula:

xk+1 = xk �
f(xk)

f 0(xk)
; 8k � 0: (4.7)

Ar¼at¼am în continuare c¼a pentru o alegere potrivit¼a a datei ini̧tiale itera̧tia (4.7) este bine
de�nit¼a, iar şirul (xk) converge p¼atratic la x:
Fie L 2 (0; 1): S¼a not¼am cu V un interval închis centrat în x pentru care f 0(x) 6= 0 pentru

orice x 2 V şi ����f(x)f 00(x)f 0(x)2

���� < L; 8x 2 V: (4.8)

Rela̧tia de mai sus este posibil¼a tocmai pentru c¼a f(x) = 0 şi f 0(x) 6= 0. Fie acum funçtia
g : V ! R

g(x) = x� f(x)

f 0(x)
:

Evident, aceast¼a funçtie este bine de�nit¼a pe V şi cum

g0(x) = 1� f
0(x)2 � f(x)f 00(x)

f 0(x)2
=
f(x)f 00(x)

f 0(x)2
;

din alegerea lui V; deducem c¼a g este o contraçtie. Pe de alt¼a parte g(x) = x, deci, în particular,

jg(x)� xj � L jx� xj ; 8x 2 V

ceea ce înseamn¼a c¼a g aplic¼a V în V: Acum, dac¼a plec¼am cu x0 2 V; s¼a observ¼am c¼a itera̧tia
Newton este de fapt o itera̧tie Picard asociat¼a funçtiei g: Aplicând teoria dezvoltat¼a anterior,
itera̧tia Newton (pentru orice dat¼a ini̧tial¼a x0 2 V ) converge la punctul �x al lui g care este
tocmai r¼ad¼acina lui f din V (adic¼a x). Aşa cum am spus anterior,

g0(x) = 0
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şi deducem c¼a are loc o convergeņt¼a p¼atratic¼a pentru c¼a

lim
k

xk+1 � x
(xk � x)2

= lim
x!x

g(x)� x
(x� x)2

= lim
x!x

1

f 0(x)

xf 0(x)� f(x)� xf 0(x)
(x� x)2 =

f 00(x)

2f 0(x)
2 R:

Discu̧tia de mai sus indic¼a faptul c¼a pentru a � siguri c¼a itera̧tia Newton converge c¼atre
solu̧tia dorit¼a cu vitez¼a p¼atratic¼a, trebuie ca x0 s¼a �e dintr-o vecin¼atate V a solu̧tiei în care s¼a
nu se anuleze derivata şi în care s¼a aib¼a loc condi̧tia (4.8). Astfel, pentru funçtii care au mai
multe zerouri, în funçtie de data ini̧tial¼a aleas¼a putem g¼asi diferite solu̧tii.
Se poate întâmpla ca metoda lui Newton s¼a funçtioneze şi pentru cazul unei r¼ad¼acini mul-

tiple, dar convergeņta în acest caz poate s¼a nu mai �e p¼atratic¼a. Astfel, s¼a presupunem c¼a f
este de forma f(x) = (x� x)qu(x); unde q > 1; u este de clas¼a C2 şi u(x) 6= 0: Atunci funçtia
g se scrie

g(x) = x� (x� x)u(x)
qu(x) + (x� x)u0(x)

iar, dup¼a calcule,

g0(x) =

�
1� 1

q

�
+ (x� x)2u

0(x)
qu(x)

+ (x� x)2 u
00(x)

q2u(x)h
1 + (x� x) u0(x)

qu(x)

i2 :

Pentru valori su�cient de apropiate de x; jg0(x)j < 1; deci itera̧tiile Picard generate de g converg
la punctul �x al lui g care este x (în vecin¼atatea considerat¼a). Pe de alt¼a parte, g0(x) = 1� 1

q
6= 0;

deci convergeņta este doar liniar¼a. Aşadar, procedura Newton converge p¼atratic doar pentru
r¼ad¼acini simple. Dac¼a pentru o r¼ad¼acin¼a x se cunoaşte ordinul de multiplicitate q, atunci se
poate considera funçtia

gq(x) = x� q
f(x)

f 0(x)
= x� q (x� x)u(x)

qu(x) + (x� x)u0(x) ;

iar un calcul rapid arat¼a c¼a g0q(x) = 0; deci, folosind considerentele anterioare, se reob̧tine
convergeņta p¼atratic¼a.

Încheiem cu discutarea unor posibilit¼a̧ti de a alege punctul x0 su�cient de aproape de solu̧tie
astfel încât metoda lui Newton s¼a convearg¼a la punctul c¼autat. O prim¼a posibilitate (empiric¼a)
este aceea de a studia gra�cul funçtiei şi de a alege o valoare x0 care pare a �destul de apropiat¼a
solu̧tiei. O alt¼a variant¼a ar �de a aplica o alt¼a metod¼a de aproximare a r¼ad¼acinilor unei funçtii
a c¼arei convergeņt¼a este mai lent¼a dar care totuşi dup¼a câteva itera̧tii ne duce în apropierea
solu̧tiei, moment din care putem alege x0 şi aplica metoda lui Newton pentru accelerarea con-
vergeņtei. O astfel de metod¼a este, de exemplu, metoda înjum¼at¼a̧tirii intervalului. Cum am
discutat, în general, aceast¼a convergeņt¼a nu este foarte rapid¼a, deci e de preferat s¼a o folosim
doar prȩt de câteva itera̧tii pentru a g¼asi un punct relativ apropiat de solu̧tie care s¼a foloseasc¼a
drept dat¼a ini̧tial¼a pentru mult mai rapida convergeņt¼a Newton.
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Observa̧tia 4.5.1 Implementarea metodei lui Newton ne permite s¼a rezolv¼am (cu aproximaţie)
ecuaţia neliniar¼a de la Exemplul 3.5.8 şi deci s¼a a�¼am soluţia problemei de optimizare respective:
a se vedea Exerciţiul 4.30.

Observa̧tia 4.5.2 Metoda lui Newton se poate aplica pentru a aproxima puncte �xe cu vitez¼a
p¼atratic¼a, pierzându-se îns¼a caracterul global al algoritmului. Pentru ecuaţia f(x) = x; funcţia
g ale c¼arei iteraţii Picard sunt iteraţii Newton este

g(x) = x� f(x)� x
f 0(x)� 1 :

Pentru ilustrarea acestei observaţii, a se vedea Exerciţiul 4.31.

Observa̧tia 4.5.3 Fie f : R! R o funcţie ce clas¼a C3; strict convex¼a şi coerciv¼a. Atunci
f are un unic punct de minim global x care este soluţia ecuaţiei f 0 (x) = 0: Astfel, pentru
aproximarea sa, putem folosi metoda lui Newton şi iteraţia devine

xk+1 = xk �
f 0 (xk)

f 00 (xk)
:

Pentru ilustrarea acestei observaţii, a se vedea Implementare Matlab 4.36.
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4.6 Exerci̧tii

Implementare Matlab 4.1 Sistemul dat de metoda celor mai mici p¼atrate pentru modelul
v = at+ b admite solu̧tie unic¼a:�

a
b

�
=

� PN
i=1 t

2
i

PN
i=1 tiPN

i=1 ti N

��1� PN
i=1 tiviPN
i=1 vi

�
:

iar perechea (a; b) de mai sus reprezint¼a solu̧tia problemei. S¼a lu¼am exemplul concret: N = 5;
t1 = 0; t2 = 1; t3 = 2; t4 = 3; t5 = 4 şi v1 = 1:1; v2 = 2:8; v3 = 5:2; v4 = 6:9; v5 = 8:9:
Pentru calculul parametrilor a; b implement¼am codul:

t=[0,1,2,3,4];
v=[1.1,2.8,5.2,6.9,8.9];
A=[sum(t.^2) sum(t)
sum(t) 5]
B=[sum(t.*v)
sum(v) ]
U=A^(-1)*B
x=linspace(0,4.5,90);
y=U(1)*x+U(2);
plot(t,v,�o�,�Linewidth�,2);
hold on;
plot(x,y);

Experimentând acest cod ob̧tinem valorile 1:9700 şi 1:0400 precum şi gra�cul corespunz¼ator.

Implementare Matlab 4.2 Implement¼am metoda înjum¼at¼a̧tirii intervalului pe funçtia de la
Exemplul 4.1.5.
clc
functie=@(x) [x^3-x-2];
a=1;b=2;
eps=0.00001;i=0;
while (abs(b-a)>eps)
if functie((a+b)/2)==0
break
end
if functie(a)*functie((a+b)/2)<0
b=(a+b)/2;
else
a=(a+b)/2;
endif
i=i+1;
endwhile
x=(a+b)/2
i
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functie(x)
cu rezultatele
x = 1.521381378173828
i = 17
ans = 9.934278368817218e-06

Exerci̧tiul 4.3 S¼a se deseneze în Matlab gra�cul funcţiei f : R! R date prin

f (x) = 3x5 � 2x4 + x3 � 4x+ 1

şi s¼a se deduc¼a faptul c¼a ecuaţia f (x) = 0 are trei r¼ad¼acini reale. S¼a se aproximeze aceste
r¼ad¼acini folosind metoda înjum¼at¼aţirii intervalului.

Implementare Matlab 4.4 Dorim s¼a aproxim¼am solu̧tia ecua̧tiei cosx = x; x 2 [0; 1]; folosind
algoritmul dat de Principiul lui Banach. Evident, o solu̧tie a acestei ecua̧tii este punct �x pentru
restriçtia funçtiei cos la intervalul [0; 1]: Funçtia cos este o contraçtie întrucât supx2[0;1] jcos0 xj =
sin 1 < 1: Mai mult, orice calculator ne d¼a valoarea aproximativ¼a a acestei constante de con-
traçtie: sin 1 ' 0:84147; deci

jcosx� cos yj � 0:8415 jx� yj :

Atunci, conform Principiului lui Banach de punct �x, exist¼a o singur¼a solu̧tie a ecua̧tiei meņtion-
ate care aproximeaz¼a folosind şirul itera̧tiilor Picard generat de dat¼a ini̧tial¼a x0 2 [0; 1] arbitrar
aleas¼a. Totuşi, am vrea s¼a ştim cât de bine aproxim¼am solu̧tia dup¼a un num¼ar prestabilit de
itera̧tii. Sau, spre exemplu, de câte itera̧tii este nevoie pentru o ob̧tine valoarea lui x cu o eroare
mai mic¼a decât 10�3. Acest lucru este posibil datorit¼a estim¼arilor privind viteza de convergeņt¼a
a aproxima̧tiilor Picard în Principiul lui Banach.
Avem urm¼atoarele estim¼ari:

jxk � xj � jx1 � x0j
�k

1� � (4.9)

jxk � xj �
�

1� � jxk � xk�1j (4.10)

Aceast¼a discu̧tie ne va ajuta s¼a experiment¼am conseciņtele acestor formule. Ţinând cont de
rela̧tiile (4.9) şi (4.10), pentru x0 = 0 avem

jxk � xj �
0:8415k

1� 0:8415 şi jxk � xj �
0:8415

1� 0:8415 jxk � xk�1j :

Se poate veri�ca direct (a se şi vedea calculele de mai jos) c¼a a doua estimare este mai bun¼a
decât prima. Astfel, valoarea 0:8415k

1�0:8415 ajunge sa �e mai mic¼a decât 0:001 pentru k = 50; în timp
ce a doua este sub 0:001 mult mai repede, pentru k = 21: Luând k = 21 ob̧tinem o încadrare a
lui x între dou¼a valori foarte apropiate.
Programele Matlab care veri�c¼a a�rma̧tiile de mai sus sunt:
functie=@(x) [cos(x)];
lambda=0.8415;
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u=0; c=abs(functie(u)-u)/(1-lambda); i=0;
while c*lambda>0.001 % abs(u-functie(u))>0.001
i=i+1; c=c*lambda; u =functie(u);
end
disp(i); disp(c); disp(u);

care returneaz¼a
50
0.0011290
0.73909

şi respectiv
u=0; i=0;
while (0.8415/(1-0.8415))*abs((u-cos(u)))>0.001

i=i+1; u=cos(u);
end
disp(i); disp((0.8415/(1-0.8415))*abs((u-cos(u)))); disp(u);

care returneaz¼a
21
0.0008820
0.73909
Din nou, procesul de aproximare este mai rapid dac¼a se pleac¼a cu o valoare ini̧tial¼a mai

apropiat¼a de x: De exemplu, pentru x0 = 0:7; estim¼arile

jxk � xj �
0:8415k

1� 0:8415 jcos(0:7)� 0:7j şi jxk � xj �
0:8415

1� 0:8415 jxk � xk�1j

dau o eroare inferioar¼a lui 0:001 pentru valori mai mici ale lui k; valori ce se pot determina
f¼acând modi�c¼arile evidente în programele de mai sus.

Implementare Matlab 4.5 S¼a consider¼am funçtia f : [0;1)! [0;1) dat¼a prin f(x) = 1
1+x2

:
Am v¼azut c¼a f este o contraçtie şi are un singur punct �x care este unica solu̧tie pozitiv¼a a
ecua̧tiei x3 + x� 1 = 0; iar şirul itera̧tiilor Picard satisface:

xk+1 � x
xk � x

k!1! f 0(x) =
�2x

(1 + x2)2
= �2x3 � �0:63534438165:

S¼a studiem viteza de convergeņt¼a prin intermediul unui program Matlab. Criteriul de oprire
este atingerea unui num¼ar maxim de itera̧tii (1000) sau cazul în care distaņta dintre dou¼a
itera̧tii consecutive este sub o toleraņt¼a admis¼a (10�7):
functia=@(x) [1/(1+x^2)];
tol=1e-7; maxiter=1000;
k=0; x=1; x_vechi=0;
%Picard
while abs(x-x_vechi)>tol && k<maxiter

x_vechi=x; x=functia(x); k=k+1;
end
%endPicard
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disp(x); disp(k);
Rezultatele a�̧sate sunt:
-->disp(u); 0.6823278 -->disp(k); 35.

deci algoritmul s-a oprit dup¼a 35 de itera̧tii şi a g¼asit valoarea aproximativ¼a a solu̧tiei 0:6823278,
pornind de la valoarea ini̧tial¼a x0 = 1: Aceast¼a vitez¼a acceptabil¼a de calcul se datoreaz¼a faptului
c¼a valoarea jf 0(x)j este relativ mic¼a.
S¼a lu¼am cazul funçtiei f : [

p
2;1)! [

p
2;1) dat¼a prin

f(x) =
x

2
+
1

x
:

Este uşor de veri�cat c¼a f este bine de�nit¼a (inegalitatea mediilor). În plus,

jf 0(x)j =
����12 � 1

x2

���� � 1

2
;

deci f este contraçtie şi are ca unic punct �x x =
p
2: Se observ¼a c¼a f 0(x) = 0 şi, deci, pentru

orice itera̧tie Picard nesta̧tionar¼a

xk+1 � x
(xk � x)2

=
1

2xk
! 1

2
p
2
= f 00(x);

deci avem o convergeņt¼a p¼atratic¼a, aşa încât ne aştept¼am la o vitez¼a de convergeņt¼a foarte
rapid¼a. Repet¼am programul anterior pentru noua funçtie şi ob̧tinem:
-->disp(u); 1.4142136 -->disp(k); 5.

deci algoritmul se opreşte dup¼a doar 5 itera̧tii şi ob̧tine o aproximare foarte bun¼a a punctului
�x x =

p
2.

Pentru restriçtia funçtiei sin x la intervalul [0; 1] care satisface condi̧tiile Teoremei lui Picard
cu x = 0 punct �x, situa̧tia se schimb¼a pentru c¼a orice itera̧tie Picard (xk) satisface

xk+1 � x
xk � x

k!1! f 0(x) = 1

şi nu ne aştept¼am s¼a avem o vitez¼a de convergeņt¼a rezonabil¼a. Dac¼a în programul anterior
schimb¼am legea funçtiei f cu noua situa̧tie, atunci vom ob̧tine rezultatele:
-->disp(u);
0.0545930
-->disp(k);
1000.

deci dup¼a 1000 de itera̧tii s-a ob̧tinut o aproximare nu tocmai convenabil¼a a solu̧tiei. Situa̧tia se
schimb¼a foarte pu̧tin dac¼a plec¼am cu o valoare (de exemplu x0 = 0:1) mai apropiat¼a de solu̧tie:
-->disp(u); 0.0480222 -->disp(k); 1000.

Exerci̧tiul 4.6 Fie ; 6= A � Rp şi f : A! A:
(i) S¼a se arate c¼a dac¼a f este contracţie de constant¼a � 2 (0; 1) ; atunci pentru orice n � 1;

fn este contracţie de constant¼a �n:
(ii) S¼a se arate c¼a dac¼a x este punct �x pentru f atunci x este punct �x pentru orice iterat¼a

a lui f:
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(iii) Studiind exemplele: f : [0; 1]! [0; 1] dat¼a prin

f(x) =

�
0 dac¼a x 2 [0; 12 ]
1
2
dac¼a x 2 (12 ; 1]

şi f : R! R dat¼a prin f(x) = e�x; s¼a se arate c¼a este posibil ca o iterat¼a a lui f s¼a �e
contracţie, f¼ar¼a ca f s¼a �e contracţie.

Exerci̧tiul 4.7 Fie f : Rp ! Rp. Dac¼a exist¼a q 2 N n f0g astfel încât f q este o contracţie,
atunci f are un unic punct �x. In plus, iteraţiile Picard ale lui f converg la punctul �x. Folosind
aceast¼a concluzie şi punctul (ii) al exerciţiului precedent, s¼a se scrie un program Matlab care s¼a
aproximeze punctul �x al funcţiei f : R! R, f(x) = e�x:

Soluţie Fie q 2 N n f0g astfel încât f q este o contraçtie. Din Principiul lui Banach, f q are un
punct �x unic pe care îl not¼am x: S¼a observ¼am, pe baza comentariului de mai sus, c¼a x este
singurul candidat pentru a � punct �x pentru f (orice punct �x al lui f este punct �x pentru
orice itera̧tie). Au loc rela̧tiile:

f(x) = f(f q(x)) = f q(f(x));

adic¼a f(x) este punct �x pentru f q: Cum f q are un unic punct �x, deducem c¼a f(x) = x: S¼a
demonstr¼am acum a�rma̧tia privitoare la convergeņta itera̧tiilor Picard. Pornim cu un element
�xat x0 2 Rp şi construim şirul Picard asociat (fn(x0))n: Trebuie s¼a ar¼at¼am c¼a acest şir converge
la x: Fie r 2 0; q � 1: Atunci, muļtimea termenilor şirului (fn(x0))n este reuniunea muļtimilor
termenilor subşirurilor de forma (f qk+r(x0))k: Pe de alt¼a parte, (f qk+r(x0))k poate � privit ca
şirul itera̧tiilor Picard asociat lui f q cu punctul ini̧tial f r(x0) pentru c¼a:

f qk+r(x0) = (f
q)k(f r(x0)):

Cum f q este o contraçtie, ştim din Principiul lui Banach c¼a toate itera̧tiile Picard ale lui f q

converg c¼atre punctul �x x: Deci toate cele q subşiruri care parti̧tioneaz¼a şirul ini̧tial au aceeaşi
limit¼a (i.e., x), ceea ce arat¼a c¼a limn f

n(x0) = x şi demonstra̧tia este acum complet¼a. �

Problema 4.8 Fie a; b 2 R; a < b şi f : [a; b] ! [a; b] o funcţie cresc¼atoare. Atunci f are cel
puţin un punct �x. Dac¼a f este descresc¼atoare rezultatul nu se mai p¼astreaz¼a.

Soluţie De�nim muļtimea
A := fx 2 [a; b] j f(x) � xg:

Este clar, pe de o parte, c¼a A este nevid¼a (întrucât a 2 A) iar, pe de alt¼a parte, c¼a A este
m¼arginit¼a (�ind submuļtime a lui [a; b]). Deci, conform axiomei de completitudine, A admite
margine superioar¼a în R. S¼a not¼am acest num¼ar cu x: Aşadar, x = supA şi este clar c¼a
x 2 [a; b]: Cum x � x pentru orice x 2 A; monotonia lui f ne permite s¼a scriem inegalitatea
f(x) � f(x) � x pentru orice x 2 A: Aşadar, f(x) este majorant pentru A; deci f(x) � x: Tot
din monotonie, rezult¼a c¼a f(f(x)) � f(x); deci f(x) 2 A; adic¼a f(x) � x: Prin urmare, avem
egalitatea f(x) = x şi deci x este punct �x.
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Pentru a ar¼ata c¼a în cazul funçtiilor descresc¼atoare concluzia nu se mai p¼astreaz¼a în general,
avem contraexemplul urm¼ator: f : [0; 1]! [0; 1] dat¼a prin

f(x) =

�
1� x dac¼a x 2 [0; 12)
1
2
� x

2
dac¼a x 2 [12 ; 1]:

Este clar c¼a f este descresc¼atoare pe [0; 1]; dar totuşi nu admite puncte �xe. �

Problema 4.9 Fie f : R ! R o funcţie continu¼a şi x0 2 R: Dac¼a şirul iteraţiilor Picard de
termen iniţial x0 este convergent la un num¼ar l 2 R; f¼ar¼a a � staţionar şi f este derivabil¼a în
l; atunci jf 0(l)j � 1:

Soluţie Presupunem prin reducere la absurd c¼a jf 0(l)j > 1: Este clar, din continuitatea lui f şi
dintr-un comentariu anterior, c¼a l trebuie s¼a �e punct �x pentru funçtia f: Cum

lim
x!l

f(x)� f(l)
x� l = f 0(l)

ob̧tinem

lim
x!l

����f(x)� f(l)x� l

���� = jf 0(l)j :
Fie

" :=
jf 0(l)j � 1

2
> 0:

Atunci, pentru acest "; exist¼a � > 0 astfel încât pentru orice x 2 (l � �; l + �) n flg;

jf 0(l)j � " <
����f(x)� f(l)x� l

���� < jf 0(l)j+ "
sau

jf 0(l)j+ 1
2

<

����f(x)� lx� l

���� :
În particular, cum jf 0(l)j > 1;

jx� lj < jx� lj jf
0(l)j+ 1
2

< jf(x)� f(l)j

pentru orice x 2 (l� �; l+ �) n flg: Cum şirul (xk) al itera̧tiilor Picard cu termen ini̧tial x0 este
convergent la l; f¼ar¼a a � sta̧tionar, exist¼a k� 2 N astfel încât pentru orice k � k�;

xk 2 (l � �; l + �) n flg:

Ob̧tinem din rela̧tiile de mai sus

jxk � lj < jf(xk)� f(l)j = jxk+1 � lj ;

pentru orice k � k�: În particular, deducem

jxk� � lj < jxk�+1 � lj < jxk � lj ;
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pentru orice k > k� + 1: Trecând la limit¼a în ultima rela̧tie pentru k ! 1 ajungem la con-
tradiçtia:

jxk� � lj < jxk�+1 � lj � 0:
Prin urmare, presupunerea f¼acut¼a este fals¼a, deci jf 0(l)j � 1: S¼a preciz¼am şi faptul c¼a în general
nu se poate ob̧tine inegalitatea asupra derivatei dac¼a şirul este sta̧tionar. Dac¼a lu¼am funçtia
f : R! R; f(x) = x3+2x şirul itera̧tiilor Picard pornind din 0 este convergent (chiar sta̧tionar)
la 0, dar f 0(0) = 2: �

Problema 4.10 Fie f : R! R o funcţie cu proprietatea c¼a pentru orice dou¼a numere reale
distincte x şi y are loc relaţia

jf(x)� f(y)j < jx� yj :
Atunci exist¼a x 2 R astfel încât pentru orice x 2 R şirul Picard generat de

xk = f
k(x); 8k 2 N n f0g

are limita x:

Soluţie Presupunem mai întâi c¼a f are un punct �x, x 2 R: Evident c¼a acesta va � singurul
punct �x al lui f: F¼ar¼a a restrânge generalitatea putem considera x = 0; deci

jf(x)j < jxj

pentru orice x 6= 0: Fix¼am x 2 R. Atunci şirul (
��fk(x)��)k este descresc¼ator, deci convergent

c¼atre un num¼ar �(x) � 0: Vom ar¼ata c¼a �(x) = 0 pentru orice dat¼a ini̧tial¼a x: Presupunem prin
reducere la absurd c¼a �(x) > 0: Atunci f(�(x)) =: y1; iar f(��(x)) =: y2; unde jy1j ; jy2j <
j�(x)j : Din continuitatea lui f; exist¼a dou¼a vecin¼at¼a̧ti ale lui �(x) şi respectiv ��(x) care sunt
duse prin f în intervalul I := (��(x); �(x)) care coņtine y1 şi y2: Atunci, pentru k su�cient de
mare, fk(x) se a�¼a de asemenea în I ceea ce este în contradiçtie cu inegalitatea

��fk(x)�� � j�(x)j :
Aşadar, pentru orice x 2 R are loc convergeņta fk(x)! 0:
Presupunem acum c¼a f nu are puncte �xe. Atunci f(x) > x sau f(x) < x pentru orice

x real. Demonstr¼am numai situa̧tia f(x) > x; cealalt¼a demonstrându-se analog. Este clar c¼a
pentru orice num¼ar real x; şirul (fk(x)) este strict cresc¼ator, deci are limita în (�1;+1]: Dac¼a
limita ar � un num¼ar real l, atunci fk(x) 6= l pentru orice num¼ar natural şi nenul k şi ob̧tinem��fk+1(x)� f(l)�� < ��fk(x)� l��
de unde prin trecere la limit¼a ob̧tinem f(l) = l; adic¼a l este punct �x, ceea ce reprezint¼a
o contradiçtie. Deci fk(x) ! +1: Evident, în cazul f(x) < x ob̧tinem fk(x) ! �1: Cu
aceasta, demonstra̧tia este încheiat¼a. �

Problema 4.11 Fie g : Rp � Rq ! Rp continu¼a. Presupunem c¼a exist¼a � 2 (0; 1) astfel încât

kg(x; t)� g(y; t)k � � kx� yk

pentru orice t 2 Rq şi x; y 2 Rp: Pentru t �xat în Rq; not¼am cu �(t) punctul �x unic al
contracţiei g(�; t): Atunci aplicaţia � : Rq ! Rp este continu¼a.
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Soluţie Fie t0 2 Rq şi " > 0. Continuitatea lui g în (�(t0); t0) implic¼a existeņta unui num¼ar
� > 0 astfel încât pentru orice t �xat, cu kt� t0k < �; are loc

kg(�(t0); t)� g(�(t0); t0)k < "(1� �)

ceea ce este echivalent cu
kg(�(t0); t)� �(t0)k < "(1� �):

Din rela̧tia (4.3) şi rela̧tiile de mai sus deducem c¼a pentru orice t cu kt� t0k < � are loc

k�(t)� �(t0)k �
k�(t0)� g(�(t0); t)k

1� � < ";

ceea ce încheie demonstra̧tia. �

Problema 4.12 Fie f : Rp ! Rp o contracţie. Atunci funcţia � : Rp ! Rp dat¼a prin
�(x) = x+ f(x) este o bijecţie bicontinu¼a.

Soluţie Este clar c¼a � este continu¼a. În plus, f este injectiv¼a pentru c¼a rela̧tia �(x) = �(y) şi
proprietatea de contraçtie a lui f implic¼a x = y: Fie g : Rp � Rp ! Rp de�nit¼a prin

g(x; y) = y � f(x):

Este clar c¼a g satisface proprietatea din ipoteza problemei precedente, deci aplica̧tia x 7! g(x; y)
are un punct �x �(y) pentru orice y 2 Rp. Aşadar,

�(y) = y � f(�(y));

adic¼a
y = �(�(y)); (4.11)

deci � este surjectiv¼a. R¼amâne s¼a ar¼at¼am c¼a ��1 este continu¼a. Dar rela̧tia (4.11) arat¼a c¼a
funçtiile � şi � sunt inverse una alteia, iar continuitatea lui � (deci a lui ��1) este asigurat¼a de
teorema precedent¼a. Deci � este homeomor�sm. �

Problema 4.13 Fie f : [0; 1] ! [0; 1] o funcţie continu¼a cu proprietatea c¼a f(0) = 0 şi
f(1) = 1: S¼a se arate c¼a dac¼a exist¼a m 2 N n f0g astfel încât fm(x) = x pentru orice x 2 [0; 1];
atunci f(x) = x pentru orice x 2 [0; 1]:

Soluţie În ipotezele de mai sus, f este bijeçtie în baza unui bine cunoscut rezultat referitor la
proprietatile de injectivitate şi surjectivitate a compunerii funçtiilor, întrucât fm este bijeçtie.
Conform unui rezultat de la funçtii continue (Teorema 4.6.54), f trebuie s¼a �e strict monoton¼a
şi ipotezele f(0) = 0, f(1) = 1 asigur¼a c¼a f este strict cresc¼atoare. Presupunem prin reducere
la absurd c¼a exist¼a x 2 (0; 1) astfel încât f(x) > x (cazul f(x) < x este similar). Atunci, din
monotonie, pentru orice n 2 N

fn(x) > fn�1(x) > ::: > f(x) > x:

În particular, pentru n = m; ob̧tinem o contradiçtie, deci presupunerea f¼acut¼a este fals¼a. �
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Problema 4.14 Fie funcţia f : R ! R continu¼a astfel încât f � f admite puncte �xe. S¼a se
arate c¼a şi f admite puncte �xe.

Soluţie Dac¼a presupunem c¼a f nu admite puncte �xe. Atunci, din ipoteza de continuitate
rezult¼a c¼a �e f (x) > x; pentru orice x 2 R; �e f (x) < x; pentru orice x 2 R: În prima situa̧tie,
trecând x în f (x) ob̧tinem: f (f (x)) > f (x) > x, pentru orice x 2 R; deci (f � f) (x) > x;
pentru orice x 2 R: Prin urmare, f � f nu admite puncte �xe, ceea ce este fals. A doua situa̧tie
este similar¼a. �

Exerci̧tiul 4.15 Fie f : [0; 1]! [0; 1] o funcţie 1�Lipschitz pe [0; 1]: S¼a se arate c¼a mulţimea
punctelor �xe este un interval (posibil degenerat).

Exerci̧tiul 4.16 Fie funcţia f : Rn f0g! R;

f(x) = 1 +
1

4
sin

1

x
:

Pentru o dat¼a iniţial¼a x0 2 R n f0g consider¼am iteraţia Picard asociat¼a (xk). S¼a se studieze
convergenţa acestui şir. S¼a se scrie un program Matlab care s¼a aproximeze valoarea limitei.

Soluţie Imaginea lui f este intervalul I =
�
3
4
; 5
4

�
. Consider¼am restriçtia lui f la acest interval şi

ar¼at¼am c¼a aceasta este o contraçtie de la I la I: Pentru aceasta, calcul¼am (pentru x 2 I)

f 0(x) = � 1

4x2
cos

1

x
;

de unde
jf 0(x)j � 4

9
< 1; 8x 2 I:

Cum x1 = f(x0) 2 I; putem aplica demonstra̧tia Principiului lui Banach pentru a deduce c¼a
(xk) este convergent la singurul punct �x al lui f din I: �

Exerci̧tiul 4.17 Fie f : R! R dat¼a prin

f(x) =
x

x2 + 2
+ 1:

S¼a se arate c¼a f este contracţie. Se d¼a şirul (xk) prin x0 = 1;

xk+1 = 1 +
xk

x2k + 2
; 8k 2 N:

S¼a se arate c¼a (xk) este convergent iar limita sa x este soluţie a ecuaţiei x3 � x2 + x � 2 = 0
şi pentru orice k 2 N, k � 1; avem

jxk � xj � 2�k jx� 1j :

Exerci̧tiul 4.18 Fie funcţia f : [1; 2]! [1; 2] ;

f(x) =

q
2 +

p
x:
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S¼a se arate c¼a f este bine de�nit¼a şi c¼a este o contracţie pe domeniul s¼au de de�niţie. S¼a se
deduc¼a faptul c¼a ecuaţia

x4 � 4x2 � x+ 4 = 0
are soluţie unic¼a în intervalul (1; 2), iar aceast¼a soluţie coincide cu limita şirului (xk) dat prin
xk+1 =

p
2 +

p
xk pentru orice k 2 N cu x0 = 1: Apoi, precizaţi viteza de convergenţ¼a a acestui

şir.

Exerci̧tiul 4.19 Fie f; g : R+ := [0;1)! R de�nite prin

f(x) =

�
x

ex�1 ; x 6= 0
0; x = 1:

; g(x) = (x� 2)e2x + (x+ 2)ex:

(i) S¼a se arate c¼a g(x) � 0; pentru orice x 2 R+:
(ii) S¼a se arate c¼a f este de clas¼a C1 pe R+:
(iii) S¼a se arate c¼a

f 00(x) =
g(x)

(ex � 1)3 ; 8x 2 (0;1)

şi jf 0(x)j � 2�1 pentru orice x 2 R+:
(iv) De�nim şirul (xk) prin x0 = 0 şi xk+1 = f(xk) pentru orice k 2 N: S¼a se arate c¼a

jxk � ln 2j � 2�k ln 2; 8k 2 N:

Soluţie (i) Funçtia g este o (strict) cresc¼atoare pe [0;1), lucru care se veri�c¼a în mod obi̧snuit.
Mai mult, g(0) = 0; deci g(x) � 0; pentru orice x 2 R+:
(ii) Evident, f este derivabil¼a pe (0;1) şi, pe acest interval,

f 0(x) =
ex � 1� xex
(ex � 1)2 :

Calcul¼am limita acestei derivate în 0 şi ob̧tinem (combinând o limit¼a fundamental¼a şi regula
lui l�Hôspital)

lim
x!0+

f 0(x) = lim
x!0+

ex � 1� xex
(ex � 1)2 = lim

x!0+

ex � 1� xex
x2

x2

(ex � 1)2

= lim
x!0+

ex � 1� xex
x2

= lim
x!0+

�ex
2
= �1

2
:

Aplicând una dintre conseciņtele Teoremei lui Lagrange, deducem c¼a f este derivabil¼a în 0; iar
derivata sa este continu¼a în 0: În plus, f 0(0) = �2�1:
(iii) Funçtia f este derivabil¼a de dou¼a ori pe (0;1) iar rela̧tia anuņtat¼a se arat¼a prin calcul

direct. Conform punctului (i), f 0 este cresc¼atoare pe (0;1); iar din continuitatea lui f 0; din
rela̧tia f 0(0) = �2�1 şi din observa̧tia

lim
x!1

f 0(x) = 0

deducem c¼a f 0(x) 2 [�2�1; 0) pentru orice x 2 R+; de unde rezult¼a concluzia.
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(iv) Punctul precedent arat¼a c¼a f este o 2�1�contraçtie pe R+ care ia valori tot în R+: Cum
şirul (xk) este o itera̧tie Picard cu data ini̧tial¼a 0; deducem, pe baza Principiului lui Banach,
c¼a (xk) converge la singurul punct �x al lui f din R+ care, prin calcul direct, se dovedeşte a �
x = ln 2: Acum estimarea c¼autat¼a rezult¼a (prin induçtie) din

jxk � xj = jf(xk�1)� f(x)j � 2�1 jxk�1 � xj � ::: � 2�k jx0 � xj :

Aşadar, inegalitatea are loc. �

Exerci̧tiul 4.20 Fie f : R! R dat¼a prin f(x) = 3
p
x2 + 1:

(i) S¼a se arate c¼a f este contracţie.
(ii) Se consider¼a iteraţia Picard�

x0 = 0
xk+1 = f(xk); 8k 2 N:

S¼a se arate c¼a şirul (xk) converge la unica soluţie real¼a a ecuaţiei x3 � x2 � 1 = 0: S¼a se
implementeze în Matlab.

Exerci̧tiul 4.21 Fie a; b 2 R cu jaj < 1: Consider¼am şirul (xk) de�nit de relaţia de recurenţ¼a

xk+1 = axk + b; x0 2 R:

S¼a se precizeze funcţia pentru care acest şir reprezint¼a o iteraţie Picard. Folosind un rezultat
studiat, s¼a se arate c¼a (xk) este convergent şi s¼a se stabileasc¼a limita sa.

Exerci̧tiul 4.22 Fie f : R! R dat¼a prin

f(x) =
x

x2 + 2
+ 1:

S¼a se arate c¼a f este contracţie. Se d¼a şirul (xk) prin x0 = 1;

xk+1 = 1 +
xk

x2k + 2
; 8k 2 N:

S¼a se arate c¼a (xk) este convergent iar limita sa x este soluţie a ecuaţiei x3 � x2 + x � 2 = 0
şi pentru orice k 2 N, k � 1; avem

jxk � xj � 2�k jx� 1j :

Exerci̧tiul 4.23 Se d¼a funcţia f : R! R, f(x) = ln
p
1 + x2: S¼a se arate c¼a f este contracţie.

Se d¼a şirul (xk) de�nit prin x0 = 1; xk+1 = f(xk): S¼a se arate c¼a 0 < xk < 2�k pentru orice
k � 1:

Exerci̧tiul 4.24 Se d¼a funcţia f : R! R, f(x) = arctg x
2
: S¼a se arate c¼a f este contracţie.

Se d¼a şirul (xk) de�nit prin x0 = 2; xk+1 = f(xk): S¼a se arate c¼a 0 < xk < 2�k+1 pentru orice
k � 1:
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Exerci̧tiul 4.25 Fie f : [0; 1=2] ! [0; 1=2], f(x) = 1
5
(x5 + 1): S¼a se arate c¼a f este corect

de�nit¼a, este contracţie şi s¼a se determine constanta de contracţie. S¼a se deduc¼a faptul c¼a
ecuaţia x5 � 5x + 1 = 0 are soluţie unic¼a în intervalul [0; 1=2] : S¼a se indice un mod de a
aproxima aceast¼a soluţie şi s¼a se estimeze un num¼ar raţional care aproximeaz¼a soluţia cu o
eroare mai mic¼a de 10�2:

Exerci̧tiul 4.26 Fie f : R! R;

f(x) = ln

�
x2

2
+ 3

�
:

S¼a se arate c¼a f are un punct �x în intervalul (1; 2): S¼a se studieze dac¼a iteraţiile Picard ale
lui f aproximeaz¼a acest punct �x şi în caz a�rmativ s¼a se precizeze (cu justi�care) ordinul de
convergenţ¼a.

Exerci̧tiul 4.27 Fie f : [1;1)! [1;1);

f(x) = arctg
x+ 1

x
+ 1:

S¼a se arate c¼a f are un punct �x în intervalul (1; 3): S¼a se studieze dac¼a iteraţiile Picard ale
lui f aproximeaz¼a acest punct �x şi în caz a�rmativ s¼a se precizeze (cu justi�care) ordinul de
convergenţ¼a.

Implementare Matlab 4.28 Prezent¼am acum o situa̧tie particular¼a în care o itera̧tie Picard
poate � accelerat¼a printr-o funçtie auxiliar¼a. Fie f : R! R; f(x) = x3+4x2+x� 10: Folosind
şirul lui Rolle este uşor de ar¼atat c¼a ecua̧tia f(x) = x are o singur¼a r¼ad¼acin¼a real¼a care este
pozitiv¼a, deci f are un singur punct �x, notat x şi localizat în intervalul [1; 2] (a se vedea şi
gra�cul de mai jos). Despre f nu putem folosi teoria precedent¼a pentru c¼a nu este contraçtie.
În schimb, lu¼am funçtia g : [1; 2]! R;

g(x) =
2x3 + 4x2 + 10

3x2 + 8x
;

iar egalitatea g(x) = x este echivalent¼a cu f(x) = x: Dar

g0(x) =
(6x2 + 8x)(3x2 + 8x)� (6x+ 8)(2x3 + 4x2 + 10)

(3x2 + 8x)2

=
(6x+ 8)(x3 + 4x2 � 10)

(3x2 + 8x)2
:

Cum x este solu̧tia ecua̧tiei x3 + 4x2 � 10 = 0; ob̧tinem c¼a g0(x) = 0: Aceasta înseamn¼a c¼a
pe o vecin¼atate a lui x; g este contraçtie şi, în plus, convergeņta şirului Picard asociat este
p¼atratic¼a. Programul urm¼ator arat¼a c¼a dac¼a se aplic¼a itera̧tia Picard funçtiei f pornind de
la 1; atunci dup¼a doar 9 itera̧tii şirul are o valoare ce, în valoare absolut¼a, dep¼aşeşte valoarea
mixim¼a acceptat¼a de Matlab (deci este divergent), lucru ce era de aşteptat din cauz¼a c¼a f nu
este contraçtie. În schimb, utilizând funçtia g avem o aproximare bun¼a a solu̧tiei dup¼a doar 5
itera̧tii. S¼a se studieze codul de mai jos.
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tol=1e-7;maxiter=1000;
u=1; u_vechi=0; k=0; t=1; t_vechi=0; p=0;
%Picard g
while abs(u-u_vechi)>tol & n<maxiter

u_vechi=u; u=(2*u^3+4*u^2+10)/(3*u^2+8*u); k=k+1;
end
%Picard f
while abs(t-t_vechi)>tol & p<maxiter

t_vechi=t; t=t^3+4*t^2+t-10; p=p+1;
end
disp(u); disp(n); disp(t); disp(p);

Rezultatul este:
--> disp(u); disp(k); disp(t); disp(p);
1.36523
5.
Nan
9.

Implementare Matlab 4.29 Test¼am metoda lui Newton pentru funçtia f : R! R dat¼a de
rela̧tia

f(x) = x+ ex +
10

1 + x2
� 5

care are o r¼ad¼acin¼a simpl¼a în intervalul (�2; 0) dup¼a cum se poate constata din studiul gra�cului
s¼au. Plecând cu data ini̧tial¼a x0 = 1:5 aproxim¼am aceast¼a solu̧tie folosind metoda lui Newton:
functie=@(x) [x+exp(x)+10/(1+x^2)-5];
%desen
fplot(functie,[-3,3]);
functie_der=@(x) [1+exp(x)-20*x/(1+x^2)^2];
%Newton
x=1.5;x_precedent=-1;k=0;eps=10^(-6);maxiter=50;
while abs(x-x_precedent)>eps && k<maxiter
x_precedent=x;
x=x-functie(x)/functie_der(x);
k=k+1;
end
x
k
functie(x)

care returneaz¼a:
x = -0.9046
k = 35
ans = 8.8818e-016

Dac¼a se pleac¼a cu data ini̧tial¼a u = �1:5; atunci se ob̧tine valoarea de mai sus dup¼a doar 5
itera̧tii. S¼a se observe c¼a metoda este foarte sensibil¼a la data ini̧tial¼a testând pentru 1:5; 1:4; 0:
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Exerci̧tiul 4.30 S¼a se aproximeze în cazul

p = 7; ai = i; vi = 10; i 2 1; 7;

prin metoda lui Newton, soluţia ecuaţiei neliniare de a c¼arei rezolvare depindea calculul proiecţiei
unui punct pe un elipsoid generalizat (a se vedea Exemplul 3.5.8).

Exerci̧tiul 4.31 S¼a se revolve ecuaţia cosx = x prin metoda lui Newton. S¼a se compare cu
metoda Picard.

Problema 4.32 Fie ecuaţia x3 � x� 1 = 0 pentru x 2 [1; 2]:
(i) S¼a se transforme aceast¼a ecuaţie într-o problem¼a de determinare a punctului �x pentru

o contracţie.
(ii) S¼a se deduc¼a existenţa şi unicitatea soluţiei ecuaţiei, s¼a se construiasc¼a un şir convergent

liniar şi un altul convergent p¼atratic la aceast¼a soluţie. S¼a se implementeze în Matlab.

Soluţie (i) Ecua̧tia este echivalent¼a cu

x = x3 � 1;

dar în aceast¼a formulare ar trebui s¼a lu¼am g(x) = x3 � 1; dar g([1; 2]) 6� [1; 2]; iar g nu este
contraçtie. Astfel vom scrie ecua̧tia în formele echivalente

x3 = x+ 1, x = 3
p
x+ 1:

Fie atunci f : I ! R; f(x) = 3
p
x+ 1: Este uşor de observat c¼a f(I) � I şi

f 0(x) =
1

3 3
p
(x+ 1)2

� 1

3 3
p
4
< 1;

deci f este o contraçtie de la I la I:
(ii) Având în vedere Principiul lui Banach şi formularea de mai sus, deducem existeņta şi

unicitatea solu̧tiei ecua̧tiei (notat¼a x). Orice itera̧tie Picard asociat¼a funçtiei de mai sus este
convergent¼a la solu̧tie. Astfel, lu¼am x0 = 1 şi xk+1 = f(xk) pentru orice k 2 N: În plus, pentru
orice k;

jxk � xj �
�

1

3 3
p
4

�k
jx0 � xj �

�
1

3 3
p
4

�k
:

Este deci su�cient s¼a estim¼am k pentru care�
1

3 3
p
4

�k
� 10�5:

Mai mult, este su�cient ca
1

4k
� 10�5;

adic¼a k � 5 log4 10: Astfel, k = 9 satisface ceriņta. �

Exerci̧tiul 4.33 S¼a se determine soluţiile aproximative ale problemelor de la Exerciţiul 3.68.
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Exerci̧tiul 4.34 Fie şirul de numere reale dat prin x0 = 1 şi

xk+1 =
2x3k + 3

3x2k
; 8k � 0:

S¼a se arate c¼a (xk)k este o iteraţie Newton pentru o funcţie care se va determina. Ce se poate
spune despre convergenţa lui (xk)k?

Exerci̧tiul 4.35 Fie şirul de numere reale dat prin x0 = 1 şi

xk+1 =
x2k + 2

2xk
; 8k � 0:

S¼a se arate c¼a (xk)k este o iteraţie Newton pentru o funcţie care se va determina şi totodat¼a
o iteraţie Picard pentru o contracţie g; al c¼arei domeniu de de�niţie convenabil îl veţi preciza.
Studiaţi convergenţa şirului (xk) şi, în caz de convergenţ¼a, determinaţi-i limita.

Implementare Matlab 4.36 Fie f : R! R;

f(x) =
x4

4
+
x2

2
� 3x+ 1:

Aceast¼a funçtie este strict convex¼a întrucât f 00(x) = 3x2 + 1 > 0 pentru orice x 2 R: Evident
c¼a f este şi coerciv¼a, deci exist¼a un singur punct de minim global. Aplic¼am metoda lui Newton
ecua̧tiei f 0 (x) = 0 pentru a aproxima acest punct.
functie=@(x) [x^4/4+x^2/2-3*x+1];
%desen
fplot(functie,[-5,5]);
%optimizare Newton
functie_der=@(x) [x^3+x-3];
functie_der_sec=@(x) [3*x^2+1];
x=1.5;x_precedent=-1;n=0;eps=10^(-6);maxiter=50;
while abs(x-x_precedent)>eps && k<maxiter
x_precedent=x;
x=x-functie_der(x)/functie_der_sec(x);
k=k+1;
end
x
k
functie(x)
care returneaz¼a
x = 1.213411662762230
k = 5
ans = -1.362084275383167

Exerci̧tiul 4.37 Fie f : R ! R; f(x) = 2x2 + 3e�2x: S¼a se arate c¼a f este strict convex¼a
şi admite punct de minim. S¼a se determine acest punct cu aproximaţie folosind metoda lui
Newton (aplicat¼a pentru ecuaţia f 0(x) = 0).
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Appendix

Spa̧tiul Rp

Fie p 2 N n f0g. Not¼am cu R muļtimea numerelor reale şi introducem muļtimea

Rp := f(x1; x2; :::; xp) j xi 2 R; 8i 2 1; pg:

Aceast¼a muļtime se organizeaz¼a ca spa̧tiu vectorial real de dimensiune p cu opera̧tiile standard
de�nite astfel: pentru orice x = (x1; x2; :::; xp); y = (y1; y2; :::; yp) 2 Rp şi orice a 2 R

x+ y = (x1 + y1; x2 + y2; :::; xp + yp) 2 Rp;
ax = (ax1; ax2; :::; axp) 2 Rp:

De multe ori, ne�ind pericol de confuzie, vom folosi şi nota̧tia în care indicii componentelor sunt
jos. Vom extinde aceste opera̧tii şi la muļtimi: dac¼a A;B � Rp sunt nevide, � 2 R şi C � R
este nevid¼a, de�nim A + B = fa + b j a 2 A; b 2 Bg; �A = f�a j a 2 Ag; CA = f�a j � 2 C;
a 2 Ag; A�B = A+ (�1)B:
De foarte multe ori, dar mai ales atunci când vom folosi opera̧tii matriciale, vom privi un

element x din Rp ca �ind o matrice de tip p� 1 (adic¼a un vector coloan¼a). Matricea transpus¼a
corespunz¼atoare va � notat¼a cu xt; conform nota̧tiei ce va � adoptat¼a pentru matrici de orice
dimensiune. De asemenea, se de�neşte produsul scalar uzual a doi vectori x; y 2 Rp prin

hx; yi =
pX
i=1

xiyi = x
ty:

De exemplu, în rela̧tia anterioar¼a, nota̧tia hx; yi este una în care x; y sunt vectori din Rp ce pot
� privi̧ti atât ca vectori linie cât şi ca vectori coloan¼a, iar nota̧tia xty se refer¼a la o înmuļtire
de matrici, deci pentru ca opera̧tia s¼a �e posibil¼a x; y sunt matrici de tip p � 1: Vom face de
multe ori trecerea tacit¼a de la o interpretare la alta, contextul neconducând la confuzii.
Spa̧tiul Rp se organizeaz¼a ca spa̧tiu normat (̧si deci în particular spa̧tiu metric) înzestrat cu

norma euclidian¼a k�k : Rp ! R+ de�nit¼a prin

kxk =
p
hx; xi =

vuut pX
i=1

x2i :

Este uşor de ar¼atat c¼a pentru orice x; y 2 Rp are loc urm¼atoarea rela̧tie, numit¼a egalitatea
paralelogramului

kx+ yk2 + kx� yk2 = 2 kxk2 + 2 kyk2 :
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Se de�neşte unghiul dintre doi vectori x; y 2 Rp n f0g ca �ind valoarea � 2 [0; �] de�nit¼a prin

cos � =
hx; yi
kxk kyk :

Bila deschis¼a (respectiv închis¼a) centrat¼a într-un punct x 2 Rp de raz¼a " > 0 se de�neşte prin:

B(x; ") = fx 2 Rp j kx� xk < "g

(respectiv D(x; ") = fx 2 Rp j kx� xk � "g). O submuļtime A � Rp se numeşte m¼arginit¼a
dac¼a este coņtinut¼a într-o bil¼a deschis¼a centrat¼a în origine, adic¼a, exist¼a M > 0 astfel încât
A � B(0;M):
Se numeşte vecin¼atate a elementului x 2 Rp o submuļtime a lui Rp care coņtine o bil¼a

deschis¼a centrat¼a în x: Not¼am cu V(x) muļtimea tuturor vecin¼at¼a̧tilor lui x:

� O submuļtime a lui Rp se numeşte deschis¼a dac¼a este muļtimea vid¼a sau dac¼a este vecin¼a-
tate pentru orice punct al s¼au.

� O submuļtime a lui Rp se numeşte închis¼a dac¼a muļtimea sa complementar¼a în raport cu
Rp este deschis¼a.

� Un punct a 2 Rp se numeşte punct interior muļtimii A � Rp dac¼a A este vecin¼atate a lui
a: Not¼am cu intA interiorul lui A (i.e. muļtimea tuturor punctelor interioare lui A).

� Un punct a 2 Rp se numeşte punct de acumulare pentru muļtimea A � Rp dac¼a orice
vecin¼atate a lui a are în comun cu muļtimea A cel pu̧tin un punct diferit de a: Not¼am cu
A0 muļtimea derivat¼a a lui A (i.e. muļtimea tuturor punctelor de acumulare ale lui A).
Un punct a 2 A n A0 se numeşte punct izolat al lui A:

� Un punct a 2 Rp se numeşte punct aderent pentru muļtimea A � Rp dac¼a orice vecin¼atate
a lui a are în comun cu muļtimea A cel pu̧tin un punct. Vom folosi nota̧tiile clA şi A
pentru a desemna muļtimea aderent¼a a lui A (i.e. muļtimea tuturor punctelor aderente
lui A).

� Not¼am cu FrA muļtimea clA n intA = clA \ cl(Rp n A) şi o numim frontiera lui A:

� O submuļtime a lui R se numeşte compact¼a dac¼a este m¼arginit¼a şi închis¼a.

Au loc urm¼atoarele rezultate.

Propozi̧tia 4.6.1 (i) O submulţime a lui Rp este deschis¼a dac¼a şi numai dac¼a este egal¼a cu
interiorul s¼au.
(ii) O submulţime a lui Rp este închis¼a dac¼a şi numai dac¼a este egal¼a cu aderenţa sa.

De�ni̧tia 4.6.2 Se numeşte şir de elemente din Rp o funcţie f : N! Rp:

Valoarea funçtiei f în n 2 N; f(n); se noteaz¼a cu xn (sau yn; zn; :::), iar şirul de�nit de f se
noteaz¼a (xn) (sau, respectiv, (yn); (zn); :::).
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De�ni̧tia 4.6.3 Un şir se numeşte m¼arginit dac¼a mulţimea termenilor s¼ai este m¼arginit¼a.

De�ni̧tia 4.6.4 Se numeşte subşir al şirului (xn) un şir (yk) cu proprietatea c¼a pentru orice
k 2 N; yk = xnk ; unde (nk) este un şir strict cresc¼ator de numere naturale.

De�ni̧tia 4.6.5 Un şir (xn) � Rp este convergent dac¼a exist¼a x 2 Rp astfel încât

8V 2 V(x); 9nV 2 N astfel încât 8n � nV ; xn 2 V:

Num¼arul x se numeşte limita lui (xn):

Dac¼a exist¼a, limita unui şir este unic¼a.
Vom folosi nota̧tiile xn ! x; lim

n!1
xn = x sau, mai simplu, limxn = x pentru a descrie

situa̧tia din de�ni̧tia precedent¼a. Are loc urm¼atorul rezultat de caracterizare.

Propozi̧tia 4.6.6 Un şir (xn) este convergent la limita x 2 Rp dac¼a şi numai dac¼a

8" > 0; 9n" 2 N astfel încât 8n � n"; kxn � xk < ":

Propozi̧tia 4.6.7 Şirul (xn) � Rp converge la x 2 Rp dac¼a şi numai dac¼a şirurile coordonate
(xin) converg (în R) la xi pentru orice i 2 1; p:

Teorema 4.6.8 Un şir este convergent la limita x 2 Rp dac¼a şi numai dac¼a orice subşir al s¼au
este convergent la limita x:

Propozi̧tia 4.6.9 Orice şir convergent este m¼arginit.

Propozi̧tia 4.6.10 (Caracterizarea punctelor aderente cu ajutorul şirurilor) Fie A � Rp. Un
punct x 2 Rp este aderent mulţimii A dac¼a şi numai dac¼a exist¼a un şir (xn) de puncte din A
astfel încât xn ! x:

Propozi̧tia 4.6.11 Mulţimea A � Rp este închis¼a dac¼a şi numai dac¼a limita oric¼arui şir
convergent de puncte din A aparţine lui A:

Propozi̧tia 4.6.12 Mulţimea A � Rp este compact¼a dac¼a şi numai dac¼a din orice şir de
elemente din A se poate extrage un subşir convergent la un punct din A:

Teorema 4.6.13 (Lema lui Cesàro) Orice şir m¼arginit are un subşir convergent.

De�ni̧tia 4.6.14 Un şir (xn) � Rp se numeşte şir Cauchy sau fundamental dac¼a

8" > 0; 9n" 2 N astfel încât 8n;m � n"; kxn � xmk < ":

De�ni̧tia de mai sus poate � reformulat¼a astfel: (xn) este şir Cauchy dac¼a:

8" > 0; 9n" 2 N astfel încât 8n � n"; 8p 2 N; kxn+p � xnk < ":

Teorema 4.6.15 (Teorema lui Cauchy) Spaţiul Rp este complet, adic¼a un şir de puncte din
acest spaţiu este convergent dac¼a şi numai dac¼a este fundamental.
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D¼am acum unele rezultate speci�ce cazului şirurilor de numere reale.

De�ni̧tia 4.6.16 Un şir de numere reale (xn) se numeşte cresc¼ator (strict cresc¼ator, descresc¼a-
tor, strict descresc¼ator) dac¼a pentru orice n 2 N; xn+1 � xn (xn+1 > xn; xn+1 � xn; xn+1 < xn).
Un şir cresc¼ator sau descresc¼ator se numeşte monoton.

Fie R := R [ f�1;+1g muļtimea extins¼a a numerelor reale. Se numeşte vecin¼atate a lui
+1 o submuļtime a lui R care coņtine un interval de forma (x;+1]; unde x 2 R. Vecin¼at¼a̧tile
pentru �1 se de�nesc analog.

De�ni̧tia 4.6.17 (i) Spunem c¼a şirul (xn) � R are limita +1 dac¼a

8V 2 V(+1); 9nV 2 N astfel încât 8n � nV ; xn 2 V:

(ii) Spunem c¼a şirul (xn) � R are limita �1 dac¼a

8V 2 V(�1); 9nV 2 N astfel{̂ncât 8n � nV ; xn 2 V:

Rezultatele corespunz¼atoare de caracterizare sunt urm¼atoarele.

Propozi̧tia 4.6.18 (i) Un şir (xn) � R are limita +1 dac¼a şi numai dac¼a

8A > 0; 9nA 2 N astfel încât 8n � nA; xn > A:

(ii) Un şir (xn) � R are limita �1 dac¼a şi numai dac¼a

8A > 0; 9nA 2 N astfel încât 8n � nA; xn < �A:

Propozi̧tia 4.6.19 Fie (xn); (yn); (zn) şiruri de numere reale, x; y 2 R şi n0 2 N.
(i) (Trecerea la limit¼a în inegalit¼a̧ti) Dac¼a xn ! x; yn ! y şi xn � yn; pentru orice n � n0;

atunci x � y;
(ii) (Criteriul major¼arii) dac¼a jxn � xj � yn; pentru orice n � n0 şi yn ! 0; atunci xn ! x;
(iii) dac¼a xn � yn; pentru orice n � n0 şi yn ! +1; atunci xn ! +1;
(iv) dac¼a xn � yn; pentru orice n � n0 şi xn ! �1; atunci yn ! �1;
(v) dac¼a (xn) este m¼arginit şi yn ! 0; atunci xnyn ! 0;
(vi) (Teorema cleştelui) dac¼a xn � yn � zn; pentru orice n � n0 şi xn ! x; zn ! x atunci

yn ! x;
(vii) xn ! 0, jxnj ! 0, x2n ! 0:

Continu¼am cu rezultate fundamentale în teoria şirurilor de numere reale.

Teorema 4.6.20 Orice şir monoton de numere reale are limit¼a în R: Dac¼a, în plus, şirul este
m¼arginit, atunci el este convergent dup¼a cum urmeaz¼a: dac¼a este cresc¼ator, atunci limita sa este
marginea superioar¼a a mulţimii termenilor şirului, iar dac¼a este descresc¼ator, atunci limita sa
este marginea inferioar¼a a mulţimii termenilor şirului. Dac¼a este nem¼arginit, atunci are limita
+1 sau �1 dup¼a cum este cresc¼ator sau descresc¼ator.

Teorema 4.6.21 (Teorema lui Weierstrass pentru şiruri) Orice şir de numere reale m¼arginit
şi monoton este convergent.

118



De�ni̧tia 4.6.22 Fie (xn)n�0 un şir de numere reale. Un element x 2 R se numeşte punct
limit¼a pentru (xn) dac¼a exist¼a un subşir (xnk) al lui cu x = lim xnk :

Finaliz¼am aceast¼a seçtiune cu dou¼a criterii utile de convergeņt¼a.

Propozi̧tia 4.6.23 Fie (xn) un şir de numere reale strict pozitive astfel încât exist¼a lim
xn+1
xn

=
x: Dac¼a x < 1; atunci xn ! 0; iar dac¼a x > 1; atunci xn ! +1:

Propozi̧tia 4.6.24 (Criteriul Stolz-Cesàro)) Fie (xn) şi (yn) şiruri de numere reale astfel încât
(yn) este strict cresc¼ator şi cu limita +1: Dac¼a exist¼a lim xn+1�xn

yn+1�yn = x 2 R; atunci exist¼a lim
xn
yn

şi este egal¼a cu x.

Limite de funçtii şi continuitate

Reamintim acum unele chestiuni legate de conceptul de limit¼a a unei funçtii şi de continuitatea
funçtiilor. Fie p; q 2 N n f0g :

De�ni̧tia 4.6.25 Fie A � Rp; f : A ! Rq şi a punct de acumulare pentru A. Spunem
c¼a elementul l 2 Rq este limita funcţiei f în punctul a; dac¼a pentru orice V 2 V (l) ; exist¼a
U 2 V (a) astfel încât dac¼a x 2 U \ A; x 6= a; are loc f (x) 2 V: În acest caz vom scrie
lim
x!a
f (x) = l:

Teorema 4.6.26 Fie A � Rp; f : A ! Rq şi a punct de acumulare pentru A. Urm¼atoarele
a�rmaţii sunt echivalente:
(i) lim

x!a
f (x) = l;

(ii) pentru orice B (l; ") � Rq; exist¼a B (a; �) � Rp astfel încât dac¼a x 2 B (a; �)\A; x 6= a;
atunci are loc f (x) 2 B (l; ") ;
(iii) pentru orice " > 0; exist¼a � > 0, astfel încât dac¼a kx� ak < �; x 2 A; x 6= a; atunci

are loc kf (x)� lk < ";
(iv) pentru orice " > 0; exist¼a � > 0, astfel încât dac¼a jxi � aij < �; pentru orice i 2 1; p;

unde x = (x1; x2; ::; xp) 2 A; a = (a1; a2; ::; ap) ; x 6= a; atunci are loc kf (x)� lk < ";
(v) pentru orice şir (xn) � A n fag ; xn ! a rezult¼a f (xn)! l:

Teorema 4.6.27 Fie A � Rp; f : A ! Rq; l 2 Rq şi a punct de acumulare pentru A. Dac¼a
funcţia f are limita l în punctul a; atunci aceast¼a limit¼a este unic¼a.

Observa̧tia 4.6.28 Dac¼a A � Rp; f : A! Rq; a punct de acumulare pentru A şi exist¼a dou¼a
şiruri (x0n) ; (x

00
n) � A n fag ; x0n ! a; x00n ! a astfel încât f(x0n) ! l0; f(x00n) ! l00 şi l0 6= l00;

atunci funcţia f nu are limit¼a în a 2 A0:

Teorema 4.6.29 Fie A � Rp; f : A! Rq; f = (f1; f2; :::; fq) (adic¼a fi; i 2 1; q sunt funcţiile
coordonate) şi a punct de acumulare pentru A: Atunci f are limita l = (l1; l2; :::; lq) 2 Rq în
punctul a dac¼a şi numai dac¼a exist¼a lim

x!a
fi (x) = li; pentru orice i 2 1; q:
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De�ni̧tia 4.6.30 Fie a 2 R şi A � R. Not¼am As = A \ (�1; a]; Ad = A \ [a;1). Punctul
a se numeşte punct de acumulare la stânga (respectiv dreapta) pentru A; dac¼a este punct de
acumulare pentru mulţimea As (respectiv Ad). Vom nota mulţimea punctelor de acumulare la
stânga (respectiv dreapta) cu A0s (respectiv A

0
d).

De�ni̧tia 4.6.31 Fie A � R; f : A! Rq şi a punct de acumulare la stânga (respectiv dreapta)
pentru A. Spunem c¼a elementul l 2 Rq este limita la stânga (respectiv dreapta) a funcţiei f în
punctul a dac¼a pentru orice vecin¼atate V 2 V (l) exist¼a U 2 V(a), astfel încât dac¼a x 2 U \As
(respectiv x 2 U \ Ad); x 6= a; atunci are loc f (x) 2 V: În acest caz vom scrie lim

x!a;x<a
f (x) = l

sau lim
x!a�

f (x) = l (respectiv lim
x!a;x>a

f (x) = l sau lim
x!a+

f (x) = l):

Teorema 4.6.32 Fie I � R un interval deschis, f : I ! Rq; I � R şi a 2 I: Atunci exist¼a
lim
x!a
f (x) = l dac¼a şi numai dac¼a exist¼a limitele laterale (la stânga şi la dreapta) în a şi sunt

egale. În acest caz toate cele trei limite sunt egale: lim
x!a�

f (x) = lim
x!a+

f (x) = lim
x!a
f (x) = l:

Un binecunoscut rezultat spune c¼a funçtiile reale de o variabil¼a real¼a care sunt monotone
admit limite laterale în punctele de acumulare ale domeniului.

Teorema 4.6.33 (Criteriul major¼arii) Fie A � Rp, a 2 A0 şi f : A ! Rq; g : A ! R:
Dac¼a exist¼a l 2 Rq şi U 2 V (a) astfel încât kf (x)� lk � jg (x)j ; pentru orice x 2 U n fag şi
lim
x!a
g (x) = 0; atunci exist¼a lim

x!a
f (x) = l:

Teorema 4.6.34 Fie A � Rp, a 2 A0 şi f; g : A! Rq: Dac¼a lim
x!a
f (x) = 0 şi exist¼a U 2 V (a)

astfel încât g este m¼arginit¼a pe U , atunci exist¼a limita lim
x!a
f (x) g (x) = 0:

Teorema 4.6.35 Fie A � Rp, a 2 A0 şi f : A ! R: Dac¼a exist¼a lim
x!a
f (x) = l; l > 0

(respectiv l < 0) atunci exist¼a U 2 V (a) astfel încât pentru orice x 2 U \ A; x 6= a; are loc
f (x) > 0 (respectiv f (x) < 0):

Teorema 4.6.36 Fie A � Rp, a 2 A0 şi f : A ! Rq: Dac¼a exist¼a lim
x!a
f (x) = l; atunci exist¼a

U 2 V (a) astfel încât f este m¼arginit¼a pe U .

De�ni̧tia 4.6.37 Fie f : A � Rp ! R şi a 2 A0: Spunem c¼a funcţia f are limita 1 (respectiv
�1) în punctul a; dac¼a pentru orice V 2 V (1) (respectiv V 2 V (�1)); exist¼a U 2 V (a) astfel
încât pentru orice x 2 U \ A; x 6= a; are loc f (x) 2 V: În acest caz vom scrie lim

x!a
f (x) = 1

(respectiv lim
x!a
f (x) = �1):

Teorema 4.6.38 Fie A � Rp; a 2 A0 şi f : A ! R: Atunci exist¼a lim
x!a
f (x) = 1 (respectiv

lim
x!a
f (x) = �1) dac¼a şi numai dac¼a oricare ar � " > 0; exist¼a � > 0, astfel încât dac¼a

kx� ak < �; x 2 A; x 6= a are loc f (x) > " (respectiv f (x) < �"):

De�ni̧tia 4.6.39 Fie A � R: Spunem c¼a 1 (respectiv �1) este punct de acumulare pentru
A dac¼a exist¼a un şir de elemente din A cu limita 1 (respectiv �1), ceea ce este echivalent
cu a spune c¼a A este nem¼arginit¼a superior (respectiv inferior).
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De�ni̧tia 4.6.40 Fie A � R şi f : A ! Rq astfel încât 1 (respectiv �1) este punct de
acumulare pentru A: Spunem c¼a elementul l 2 Rq este limita funcţiei f în punctul 1 (respectiv
�1); dac¼a pentru orice V 2 V (l) ; exist¼a U 2 V (1) (respectiv U 2 V (�1)) astfel încât
pentru orice x 2 U \ A; are loc f (x) 2 V: În acest caz vom scrie lim

x!1
f (x) = l (respectiv

lim
x!�1

f (x) = l):

Teorema 4.6.41 Fie A � R şi f : A ! Rq astfel încât 1 (respectiv �1) este punct de
acumulare pentru A: Atunci exist¼a lim

x!1
f (x) = l 2 Rq (respectiv lim

x!�1
f (x) = l 2 Rq) dac¼a şi

numai dac¼a oricare ar � " > 0; exist¼a � > 0, astfel încât dac¼a x > � (respectiv x < ��); x 2 A
are loc kf (x)� lk < ":

De�ni̧tia 4.6.42 Fie A � R şi f : A ! R astfel încât 1 (respectiv �1) este punct de
acumulare pentru A: Spunem c¼a elementul 1 este limita funcţiei f în punctul 1; dac¼a pentru
orice V 2 V (1) ; exist¼a U 2 V (1) (respectiv U 2 V (�1)) astfel încât pentru orice x 2 U\A;
are loc f (x) 2 V: În acest caz vom scrie lim

x!1
f (x) =1:

Analog se de�nesc situa̧tiile lim
x!1

f (x) = �1; lim
x!�1

f (x) = 1; lim
x!�1

f (x) = �1: Carac-
teriz¼arile cu " şi � ale tuturor acestor cazuri sunt similare celor deja descrise.

De�ni̧tia 4.6.43 Fie A � Rp, a 2 A şi f : A ! Rq: Spunem c¼a funcţia f este continu¼a în
punctul a dac¼a oricare ar � V 2 V(f(a)); exist¼a U 2 V(a) astfel încât pentru orice x 2 U \ A;
are loc f(x) 2 V:

Dac¼a f nu este continu¼a în a, vom spune c¼a f este discontinu¼a în a sau c¼a a este punct de
discontinuitate al funçtiei f .

Teorema 4.6.44 Fie A � Rp, a 2 A0 \A şi f : A! Rq: Funcţia f este continu¼a în a dac¼a şi
numai dac¼a are loc lim

x!a
f(x) = f(a): Dac¼a a este un punct izolat al lui A; atunci f este continu¼a

în a:

Teorema 4.6.45 Fie A � Rp, a 2 A şi f : A! Rq;. Urm¼atoarele a�rmaţii sunt echivalente:
(i) f este continu¼a în a;
(ii) pentru orice " > 0; exist¼a � > 0, astfel încât dac¼a kx� ak < �; x 2 A; atunci

kf(x)� f(a)k < " (caracterizarea "� �);
(iii) pentru orice (xn) � A; xn ! a are loc f(xn)! f(a) (caracterizarea cu şiruri).

Teorema 4.6.46 Fie f : Rp ! Rq. Urm¼atoarele a�rmaţii sunt echivalente:
(i) f este continu¼a;
(ii) pentru orice mulţime deschis¼a D � Rq; f�1 (D) este deschis¼a;
(iii) pentru orice mulţime închis¼a F � Rq; f�1 (F ) este închis¼a.

Teorema 4.6.47 Imaginea printr-o funcţie continu¼a a unei mulţimi compacte este o mulţime
compact¼a.
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Teorema 4.6.48 (Teorema lui Weierstrass) Fie K din Rp o mulţime compact¼a. Dac¼a f :
K ! R este o funcţie continu¼a atunci f este m¼arginit¼a şi îşi atinge marginile pe K (adic¼a
exist¼a a; b 2 K; astfel încât sup

x2K
f(x) = f(a) şi inf

x2K
f(x) = f(b)).

De�ni̧tia 4.6.49 Fie D � Rp şi f : D ! Rq. Funcţia f se numeşte uniform continu¼a pe
mulţimea D; dac¼a pentru orice num¼ar pozitiv " > 0; exist¼a �" > 0, încât pentru orice x0; x00 2 D
cu kx0 � x00k < �" are loc relaţia kf(x0)� f(x00)k < ".

Observa̧tia 4.6.50 O funcţie uniform continu¼a pe D este continu¼a pe D:

Teorema 4.6.51 (Teorema lui Cantor) O funcţie continu¼a pe o mulţime compact¼a K din Rp
cu valori în Rq este şi uniform continu¼a pe K:

De�ni̧tia 4.6.52 Fie L � 0 o constant¼a real¼a. O funcţie f : A � Rp ! Rq se numeşte
Lipschitz pe A de constant¼a L sau L�Lipschitz pe A dac¼a kf(x)� f(y)k � L kx� yk, pentru
orice x; y 2 A:

Propozi̧tia 4.6.53 Orice funcţie Lipschitz pe A � Rp este uniform continu¼a pe A.

Teorema 4.6.54 Fie I � R un interval. Dac¼a f : I ! R este injectiv¼a şi continu¼a, atunci f
este strict monoton¼a pe I.

De�ni̧tia 4.6.55 Fie I � R un interval. Spunem c¼a funcţia f : I ! R are proprietatea lui
Darboux dac¼a pentru orice a; b 2 I; a < b şi orice � 2 (f(a); f(b)) sau � 2 (f(b); f(a)) exist¼a
c� 2 (a; b) astfel încât f(c�) = �:

Teorema 4.6.56 Fie I � R un interval. Dac¼a funcţia f : I ! R are proprietatea lui Darboux
şi exist¼a a; b 2 I; a < b, astfel încât f(a)f(b) < 0; atunci ecuaţia f(x) = 0 are cel puţin o
soluţie în intervalul (a; b):

Teorema 4.6.57 Fie I � R; I interval. Funcţia f : I ! R are proprietatea lui Darboux dac¼a
şi numai dac¼a pentru orice interval J � I, f (J) este interval.

Teorema 4.6.58 Fie I � R un interval. Dac¼a f : I ! R este continu¼a, atunci f are propri-
etatea lui Darboux.

Reamintim c¼a orice aplica̧tie liniar¼a T : Rp ! Rq este continu¼a. Pentru o astfel de aplica̧tie
se de�neşte num¼arul real

kTk := inffM > 0 j kTxk �M kxk ; 8x 2 Rpg

= sup
n
kTxk j x 2 B(0; 1)

o
care se numeşte norma operatorului T: Astfel, muļtimea aplica̧tiilor liniare de la Rp la Rq se
organizeaz¼a ca spa̧tiu liniar normat peste R cu opera̧tiile algebrice uzuale şi cu norma de mai
sus.Acest spa̧tiu se noteaz¼a cu L(Rp;Rq) şi se identi�c¼a izomorf cu spa̧tiul Rpq: Mai mult,
�ec¼arei aplica̧tii T 2 L(Rp;Rq) i se asociaz¼a în mod natural o matrice real¼a de dimensiune q�p
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notat¼a AT = (aji)j21;q;i21;p astfel: dac¼a (ei)i21;p şi (e
0
i)i21;q sunt bazele canonice ale spa̧tiilor Rp

şi respectiv Rq atunci (aji)j21;q;i21;p sunt coordonatele exprim¼arii imaginilor elementelor (ei)i21;p
prin T în raport cu baza (e0i)i21;q; adic¼a

T (ei) =

qX
j=1

ajie
0
j; 8i 2 1; p:

Prin urmare, T 7! AT este un izomor�sm de spa̧tii liniare între L(Rp;Rq) şi spa̧tiul matricilor
reale de dimensiune q � p şi, pentru orice x 2 Rp;

T (x) = ATx:

În plus, pentru orice x 2 Rp şi y 2 Rq are loc

hATx; yi =


x;AtTy

�
:

Dac¼a A este o matrice de dimensiune q�p atunci aplica̧tia liniar¼a asociat¼a lui A este surjectiv¼a
dac¼a şi numai dac¼a aplica̧tia asociat¼a lui At este injectiv¼a.
Reamintim de asemenea c¼a dac¼a T : Rp ! Rq este o aplica̧tie liniar¼a atunci

Ker(T ) := fx 2 Rp j T (x) = 0g

este subspa̧tiu liniar în Rp; iar

Im(T ) := fT (x) j x 2 Rpg

este subspa̧tiu liniar în Rq şi

p = dim(Ker(T )) + dim(Im(T ));

unde dim noteaz¼a dimensiunea algebric¼a.

O matrice A p¼atratic¼a simetric¼a de dimensiune p se numeşte pozitiv semide�nit¼a dac¼a
hAx; xi � 0 pentru orice x 2 Rp şi pozitiv de�nit¼a dac¼a hAx; xi > 0 pentru orice x 2 Rp n f0g:
De fapt, A este pozitiv de�nit¼a dac¼a şi numai dac¼a este pozitiv semide�nit¼a şi inversabil¼a.
Dac¼a au loc inegalit¼a̧tile opuse, matricea se numeşte negativ semide�nit¼a, respectiv negativ
de�nit¼a. Dac¼a A = (aij)i;j21;p atunci, conform Criteriului lui Sylvester, A este pozitiv de�nit¼a
dac¼a şi numai dac¼a det(aij)i;j21;q > 0 pentru orice q 2 1; p şi negativ de�nit¼a dac¼a şi numai
dac¼a (�1)q det(aij)i;j21;q > 0 pentru orice q 2 1; p:

Difereņtiabilitate

De�ni̧tia 4.6.59 Fie f : D � Rp ! Rq şi a 2 intD: Spunem c¼a f este Fréchet diferenţiabil¼a
(sau, pe scurt, diferenţiabil¼a) în a dac¼a exist¼a o aplicaţie liniar¼a notat¼a rf(a) : Rp ! Rq astfel
încât

lim
h!0

f(a+ h)� f(a)�rf(a)(h)
khk = lim

x!a

f(x)� f(a)�rf(a)(x� a)
kx� ak = 0:

Aplicaţia rf(a) se numeşte diferenţiala Fréchet a funcţiei f în a:
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S¼a observ¼am c¼a rela̧tia de mai sus este echivalent¼a cu urm¼atoarele condi̧tii:

8" > 0;9� > 0;8x 2 B(a; �); kf(x)� f(a)�rf(a)(x� a)k � " kx� ak ;

9� : D � fag ! Rq; lim
h!0

�(h) = �(0) = 0;

f(a+ h) = f(a) +rf(a)(h) + khk�(h); 8h 2 D � fag:

Spunem c¼a f : D � Rp ! Rq este de clas¼a C1 pe muļtimea deschis¼a D dac¼a f este Fréchet difer-
eņtiabil¼a pe D şi rf este continu¼a pe D: Evident, f se poate scrie sub forma f = (f1; f2; :::; fq)
unde fi : Rp ! R; i 2 1; q şi, în general, aplica̧tia rf(a) 2 L(Rp;Rq) se identi�c¼a cu matricea
de dimensiune q � p 0BBBB@

@f1
@x1
(a) @f1

@x2
(a) � � � @f1

@xp
(a)

@f2
@x1
(a) @f2

@x2
(a) � � � @f2

@xp
(a)

...
...

. . .
...

@fq
@x1
(a) @fq

@x2
(a) � � � @fq

@xp
(a)

1CCCCA
numit¼a matricea jacobian¼a a lui f în punctul a; unde @fi

@xj
(a) reprezint¼a derivata paŗtial¼a a

funçtiei fi în raport cu variabila xj în a:
De multe ori ne vom referi la matricea jacobian¼a în locul difereņtialei. Pe baza unui rezultat

general, dac¼a f : D � Rp ! Rp şi a 2 D; rf(a) este izomor�sm al lui Rp dac¼a şi numai dac¼a
matricea jacobian¼a a lui f în punctul a este nesingular¼a.
Au loc urm¼atoarele reguli de calcul.

� Fie f : Rp ! Rq a�n¼a, adic¼a având forma f(x) := g(x) + u pentru orice x 2 Rp; unde
g : Rp ! Rq este liniar¼a, iar u 2 Rq. Atunci pentru orice x 2 Rp; rf(x) = g:

� Fie f : Rp ! R de forma f(x) = 1
2
hAx; xi + hb; xi unde A este o matrice p¼atratic¼a

simetric¼a de ordin p, iar b 2 Rp: Atunci pentru orice x 2 Rp; rf(x) = Ax+ b:

� Fie D � Rp; E � Rq; x 2 intD; y 2 intE şi f; g : D ! Rq; ' : D ! R; h : E ! Rk.

�Dac¼a f; g sunt difereņtiabile în x; iar �; � 2 R; atunci funçtia �f +�g este difereņti-
abil¼a în x şi are loc

r(�f + �g)(x) = �rf(x) + �rg(x):

�Dac¼a f; ' sunt difereņtiabile în x; atunci 'f este difereņtiabil¼a în x şi

r('f)(x) = '(x)rf(x) + f(x)r'(x);

unde (f(x)r'(x)) (x) = r'(x)(x) � f(x):
�Dac¼a f(D) � E; y = f(x); f este difereņtiabil¼a în x şi h este difereņtiabil¼a în y;
atunci h � f este difereņtiabil¼a în x şi

r(h � f)(x) = rh(y) � rf(x):
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Un caz ce merit¼a o ateņtie special¼a este p = 1: În acest caz spunem c¼a f este derivabil¼a în
a dac¼a exist¼a

lim
h!0

f(a+ h)� f(a)
h

2 Rq: (4.12)

Not¼am aceast¼a limit¼a cu f 0(a) şi o numim derivata lui f în a:

Propozi̧tia 4.6.60 Fie f : D � R! Rq şi a 2 intD: Urm¼atoarele a�rmaţii sunt echivalente:
(i) f este derivabil¼a în a;
(ii) f este Fréchet diferenţiabil¼a în a:
În plus, în �ecare din aceste cazuri, rf(a)(x) = xf 0(a) pentru orice x 2 R:

Dac¼a f : D � Rp�Rq ! Rr şi (a; b) 2 intD este �xat, de�nim D1 := fx 2 Rp j (x; b) 2 Dg
şi f1 : D1 ! Rr; f1(x) := f(x; b): Spunem c¼a f este Fréchet difereņtiabil¼a paŗtial în raport cu
x dac¼a f1 este Fréchet difereņtiabil¼a în a; iar difereņtiala se noteaz¼a cu rxf(a; b): Dac¼a f este
difereņtiabil¼a în (a; b); atunci f este difereņtiabil¼a paŗtial în raport cu x şi y în a; respectiv b şi

rxf(a; b) = rf(a; b)(�; 0); ryf(a; b) = rf(a; b)(0; �):

Revenind acum la cazul general, spunem c¼a f : D � Rp ! Rq este Fréchet difereņtiabil¼a
de ordinul al doilea în a 2 intD dac¼a f este Fréchet difereņtiabil¼a pe o vecin¼atate V � D
a lui a şi rf : V ! L(Rp;Rq) este Fréchet difereņtiabil¼a în a; adic¼a exist¼a o funçtional¼a,
notat¼a r2f(a); din spa̧tiul L2(Rp;Rq) := L(Rp; L(Rp;Rq)) şi � : D�fag ! L(Rp;Rq) astfel c¼a
limh!0 �(h) = �(0) = 0 şi pentru orice h 2 D � fag are loc

rf(a+ h) = rf(a) +r2f(a)(h; �) + khk�(h):

S¼a reamintim c¼a spa̧tiul L2(Rp;Rq) de�nit mai sus se identi�c¼a cu spa̧tiul aplica̧tiilor biliniare
de la Rp � Rp la Rq:
Spunem c¼a f este de clas¼a C2 dac¼a este Fréchet difereņtiabil¼a de ordinul al doilea pe D şi

r2f : D ! L2(Rp;Rq) este continu¼a.

Teorema 4.6.61 Fie f : D � Rp ! Rq şi a 2 intD: Dac¼a f este Fréchet diferenţiabil¼a de
ordinul al doilea în a atunci r2f(a) este aplicaţie biliniar¼a simetric¼a.

În cazul în care q = 1; aplica̧tia r2f(a) este de�nit¼a de matricea p¼atratic¼a simetric¼a H(a) =�
@2f

@xi@xj
(a)
�
i;j21;p

, numit¼a matricea hessian¼a a lui f în a: În plus, hH(a)u; ui = r2f(a)(u; u)

pentru orice u 2 Rp:
Dac¼a a; b 2 Rp; de�nim segmentul închis de capete a; b muļtimea

[a; b] := f�a+ (1� �)b j � 2 [0; 1]g

şi segmentul deschis de aceleaşi capete

(a; b) := f�a+ (1� �)b j � 2 (0; 1)g:
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Teorema 4.6.62 (Teoremele lui Lagrange şi Taylor) Fie U � Rp deschis¼a, f : U ! R şi
a; b 2 U cu [a; b] � U: Dac¼a f este de clas¼a C1 pe U; atunci exist¼a c 2 (a; b) astfel încât

f(b) = f(a) +rf(c)(b� a):

Dac¼a f este de clas¼a C2 pe U; atunci exist¼a c 2 (a; b) astfel încât

f(b) = f(a) +rf(a)(b� a) + 1
2
r2f(c)(b� a; b� a):

Teorema 4.6.63 (Teorema funçtiilor implicite) Fie D � Rp�Rq o mulţime deschis¼a, h : D !
Rq o funcţie şi x 2 Rp; y 2 Rq astfel încât
(i) h(x; y) = 0;
(ii) funcţia h este de clas¼a C1 pe D;
(iii) ryh(x; y) este nesingular¼a.
Atunci exist¼a dou¼a vecin¼at¼aţi U şi V ale lui x şi respectiv y şi o funcţie continu¼a unic¼a

' : U ! V astfel încât
(a) h(x; '(x)) = 0 pentru orice x 2 U ;
(b) dac¼a (x; y) 2 U � V şi h(x; y) = 0; atunci y = '(x);
(c) ' este diferenţiabil¼a pe U şi

r'(x) = �[ryh(x; '(x))]
�1rxh(x; '(x)); 8x 2 U:

Câteva rezultate fundamentale din teoria derivabilit¼a̧tii funçtiilor reale de o variabil¼a real¼a
sunt date pe scurt în �nalul acestui capitol.
În acest context (p = q = 1) se aplic¼a Propozi̧tia 4.6.60, dar are sens s¼a vorbim de existeņta

derivatei în puncte ale domeniului care sunt puncte de acumulare ale acestuia: este su�cient s¼a
consider¼am limita din rela̧tia (4.12) din aceast¼a perspectiv¼a. Mai mult, ca şi în cazul limitelor
laterale, putem vorbi de derivate laterale, din nou considerând, atunci când este posibil, limitele
laterale pentru expresia din rela̧tia (4.12). Atunci când exist¼a, vom numi aceste limite derivatele
la stânga şi respectiv la dreapta ale funçtiei f în a şi le vom nota cu f 0�(a) şi respectiv f

0
+(a):

De�ni̧tia 4.6.64 Fie A � R şi f : A ! R. Spunem c¼a a 2 A este punct de minim (respec-
tiv maxim) local pentru f dac¼a exist¼a o vecin¼atate V a punctului a astfel încât f(a) � f(x)
(respectiv f(a) � f(x)); pentru orice x 2 A \ V: Punctele de maxim sau de minim local se
numesc puncte de extrem local.

Teorema 4.6.65 (Teorema lui Fermat) Fie I � R; I interval şi a 2 int I. Dac¼a f : I ! R
este derivabil¼a în a; iar a este punct de extrem local pentru f; atunci f 0(a) = 0:

Teorema 4.6.66 (Teorema lui Rolle) Fie a; b 2 R; a < b şi f : [a; b]! R o funcţie continu¼a pe
[a; b]; derivabil¼a pe (a; b) astfel încât f(a) = f(b). Atunci exist¼a c 2 (a; b) astfel încât f 0(c) = 0:

Teorema 4.6.67 (Teorema lui Lagrange) Fie a; b 2 R; a < b şi f : [a; b] ! R o funcţie
continu¼a pe [a; b]; derivabil¼a pe (a; b): Atunci exist¼a c 2 (a; b) astfel încât f(b)�f(a) = f 0(c)(b�
a):
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Propozi̧tia 4.6.68 Fie I � R un interval şi f : I ! R derivabil¼a pe I:
(i) Dac¼a f 0(x) = 0 pentru orice x 2 I; atunci f este constant¼a pe I:
(ii) Dac¼a f 0(x) > 0 (respectiv f 0(x) � 0) pentru orice x 2 I; atunci f este strict cresc¼atoare

(respectiv cresc¼atoare) pe I.
(iii) Dac¼a f 0(x) < 0 (respectiv f 0(x) � 0), pentru orice x 2 I; atunci f este strict descresc¼a-

toare (respectiv descresc¼atoare) pe I:

Teorema 4.6.69 (Şirul lui Rolle) Fie I � R un interval şi f : I ! R; o funcţie derivabil¼a.
Dac¼a x1; x2 2 I; x1 < x2 sunt r¼ad¼acini consecutive ale derivatei f 0 (adic¼a f 0(x1) = 0; f 0(x2) = 0
şi f 0(x) 6= 0 pentru orice x 2 (x1; x2)) atunci:
(i) dac¼a f(x1)f(x2) < 0; ecuaţia f(x) = 0 are exact o r¼ad¼acin¼a în intervalul (x1; x2);
(ii) dac¼a f(x1)f(x2) > 0; ecuaţia f(x) = 0 nu are nicio r¼ad¼acin¼a în intervalul (x1; x2);
(iii) dac¼a f(x1) = 0 sau f(x2) = 0; atunci x1 sau x2 este o r¼ad¼acin¼a multipl¼a a ecuaţiei

f(x) = 0 şi ecuaţia nu are nicio r¼ad¼acin¼a în intervalul (x1; x2):

Teorema 4.6.70 (Teorema lui Cauchy de eliminare a unor nedetermin¼ari) Fie I � R un
interval şi f; g : I ! R; a 2 I, care veri�c¼a condiţiile:
(i) f(a) = g(a) = 0;
(ii) f; g sunt derivabile în a;
(iii) g0(a) 6= 0.

Atunci exist¼a V 2 V(a) astfel încât g(x) 6= 0; pentru orice x 2 V n fag şi

lim
x!a

f(x)

g(x)
=
f 0(a)

g0(a)
:

Teorema 4.6.71 (Regula lui L�Hôspital) Fie f; g : (a; b)! R; unde �1 � a < b � 1: Dac¼a:
(i) f; g sunt derivabile pe (a; b) cu g0 6= 0 pe (a; b);
(ii) exist¼a lim

x!a
x>a

f 0(x)
g0(x) = L 2 R;

(iii) lim
x!a
x>a

f(x) = lim
x!a
x>a

g(x) = 0 sau

(iii)� lim
x!a
x>a

g(x) =1;

atunci exist¼a lim
x!a

f(x)
g(x)

= L:

Teorema 4.6.72 Fie I � R un interval deschis f : I ! R, o funcţie de n ori derivabil¼a în
a 2 I; (n 2 N; n � 2); astfel încât

f 0(a) = 0; f 00(a) = 0; :::; f (n�1)(a) = 0; f (n)(a) 6= 0:

(i) Dac¼a n este par, atunci a este punct de extrem, dup¼a cum urmeaz¼a: punct de maxim
local dac¼a f (n)(a) < 0 şi punct de minim local dac¼a f (n)(a) > 0.
(ii) Dac¼a n este impar, atunci a nu este punct de extrem.

127



Integrala Riemann

În �nalul acestui breviar teoretic discut¼am principalele aspecte legate de integrala Riemann.
Fie a; b 2 R; a < b:

De�ni̧tia 4.6.73 (i) Se numeşte diviziune a intervalului [a; b] o mulţime �nit¼a de numere reale
x0; x1; :::; xn (n 2 N n f0g); notat¼a �; cu proprietatea c¼a

a = x0 < x1 < ::: < xn�1 < xn = b:

(ii) Se numeşte norma diviziunii � valoarea k�k := maxfxi � xi�1 j i 2 1; ng:
(iii) Se numeşte sistem de puncte intermediare asociat diviziunii � o mulţime de puncte

� := f�i j i 2 1; ng cu proprietatea �i 2 [xi�1; xi] pentru orice i 2 1; n:
(iv) Fie o funcţie f : [a; b]! R: Se numeşte sum¼a Riemann corespunz¼atoare unei diviziuni

� a intervalului [a; b] şi unui sistem asociat de puncte intermediare � valoarea

S(f;�;�) :=
nX
i=1

f(�i)(xi � xi�1):

De�ni̧tia 4.6.74 Fie o funcţie f : [a; b] ! R: Spunem c¼a f este integrabil¼a Riemann pe
intervalul [a; b] dac¼a exist¼a I 2 R astfel încât pentru orice " > 0; exist¼a � > 0 cu proprietatea
c¼a pentru orice diviziune � a intervalului [a; b] cu k�k < � şi pentru orice sistem de puncte
intermediare � asociat diviziunii � are loc inegalitatea

jS(f;�;�)� Ij < ":

Num¼arul real I din de�ni̧tia precedent¼a este unic, se numeşte integrala lui f pe [a; b] şi se
noteaz¼a cu Z b

a

f(x)dx:

Convenim ca Z a

a

f(x)dx = 0 şi
Z a

b

f(x)dx = �
Z b

a

f(x)dx:

Teorema 4.6.75 Orice funcţie integrabil¼a Riemann pe [a; b] este m¼arginit¼a pe [a; b]:

De�ni̧tia 4.6.76 Fie o funcţie f : [a; b]! R: Spunem c¼a o funcţie F : [a; b]! R este primitiv¼a
a funcţiei f pe [a; b] dac¼a F este derivabil¼a pe [a; b] şi F 0(x) = f(x) pentru orice x 2 [a; b]:

Evident, dac¼a o funçtie admite o primitiv¼a, atunci admite o in�nitate de primitive, iar
difereņta dintre orice dou¼a primitive este o funçtie constant¼a.
Are loc teorema fundamental¼a a calculului integral.

Teorema 4.6.77 (Leibniz-Newton) Dac¼a f : [a; b]! R este integrabil¼a Riemann pe intervalul
[a; b] şi admite o primitiv¼a F pe [a; b] atunciZ b

a

f(x)dx = F (b)� F (a):
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Funçtiile continue satisfac ambele ipoteze ale teoremei precedente.

Teorema 4.6.78 Dac¼a f : [a; b]! R este continu¼a pe [a; b] atunci f este integrabil¼a Riemann
pe [a; b] şi admite primitiv¼a pe [a; b]:

Teorema 4.6.79 Dac¼a f : [a; b] ! R este m¼arginit¼a şi mulţimea punctelor sale de disconti-
nuitate este �nit¼a, atunci f este integrabil¼a Riemann pe [a; b]: Orice funcţie monoton¼a pe [a; b]
este integrabil¼a Riemann pe [a; b]:

Prezent¼am în �nal principalele propriet¼a̧ti ale integralei Riemann.

Teorema 4.6.80 (i) Dac¼a f; g : [a; b]! R sunt integrabile Riemann pe [a; b] şi �; � 2 R atunci
�f + �g este integrabil¼a Riemann pe [a; b] şiZ b

a

(�f(x) + �g(x))dx = �

Z b

a

f(x)dx+ �

Z b

a

g(x)dx:

(ii) Dac¼a f : [a; b] ! R este integrabil¼a Riemann pe [a; b] şi m � f(x) � M pentru orice
x 2 [a; b] (m;M 2 R) atunci

m(b� a) �
Z b

a

f(x)dx �M(b� a):

În particular, dac¼a f(x) � 0 pentru orice x 2 [a; b] atunciZ b

a

f(x)dx � 0;

iar dac¼a f; g : [a; b]! R sunt integrabile şi f(x) � g(x) pentru orice x 2 [a; b] atunciZ b

a

f(x)dx �
Z b

a

g(x)dx:

(iii) Dac¼a f : [a; b]! R este integrabil¼a Riemann pe [a; b] atunci jf j este integrabil¼a Riemann
pe [a; b]:
(iv) Dac¼a f; g : [a; b]! R sunt integrabile pe [a; b] atunci f � g este integrabil¼a pe [a; b]:

Teorema 4.6.81 (i) Dac¼a f : [a; b] ! R este integrabil¼a Riemann pe [a; b] atunci f este
integrabil¼a Riemann pe orice subinterval al lui [a; b]:
(ii) Dac¼a c 2 (a; b) şi f este integrabil¼a pe [a; c] şi [c; b] atunci f este integrabil¼a pe [a; b] şiZ b

a

f(x)dx =

Z c

a

f(x)dx+

Z b

c

f(x)dx:

Teorema 4.6.82 Fie f : [a; b] ! R şi f � : [a; b] ! R o funcţie care coincide cu f pe [a; b] cu
excepţia unui num¼ar �nit de puncte. Dac¼a f � este integrabil¼a Riemann pe [a; b] atunci f este
integrabil¼a Riemann pe [a; b] şi Z b

a

f(x)dx =

Z b

a

f �(x)dx:
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Modele de evalu¼ari scrise

Model examen paŗtial �varianta 1

Subiectul 1. S¼a se de�neasc¼a no̧tiunea de vector tangent la o muļtime închis¼a din Rp într-un
punct al s¼au. S¼a se arate c¼a muļtimea acestor vectori este un con închis. Este acest con convex,
în general?

Subiectul 2. Fie f : (0;1) ! R, f(x) = � lnx: S¼a se arate c¼a f este convex¼a şi c¼a pentru
orice n 2 N n f0g ; (xi)i21;n � (0;+1) cu

Pn
1 xi = 1 are loc

ln
1

n
�

nX
1

xi lnxi:

Subiectul 3. Fie A � Rp o muļtime nevid¼a. De�nim

B = [�2; 1]A = f�a j � 2 [�2; 1] ; a 2 Ag :

S¼a se arate c¼a dac¼a A este compact¼a atunci B este compact¼a, dar reciproca nu este adev¼arat¼a.

Subiectul 4. S¼a se scrie conul tangent la muļtimea

M =
�
(x; y) 2 R2 j 6x = 5y2

	
într-un punct al s¼au. Justi�ca̧ti. S¼a se deseneze muļtimea şi conul tangent determinat.

Barem de notare: (pentru �ecare subiect se acord¼a un punct din start)
1. de�ni̧tia 2p; con 1p; închis 3p; convexitatea 3p.
2. convexitatea 2p; folosirea inegalit¼a̧tii lui Jensen 3p; stabilirea rezultatului 4p.
3. directa 5p, reciproca 4p.
4. forma conului tangent 3p; justi�carea 2p; desen 4p.

Timp de lucru: 100 minute
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Model examen paŗtial �varianta 2

Subiectul 1. Fie A � Rp o muļtime nevid¼a, convex¼a şi închis¼a. S¼a se arate c¼a pentru orice
x 2 Rp exist¼a un unic element ax 2 A astfel încât dA (x) = kx� axk :

Subiectul 2. Un dreptunghi este înscris în elipsa

x2

4
+ y2 = 1:

Care trebuie s¼a �e dimensiunile dreptunghiului pentru ca aria s¼a �e maxim¼a. Determina̧ti aria
maxim¼a.

Subiectul 3. Fie A � Rp nevid¼a. De�nim conA := [0;1)A: S¼a se arate c¼a:
(a) dac¼a A este convex¼a, atunci conA este convex¼a;
(b) dac¼a A este compact¼a şi 0 =2 A, atunci conA este închis¼a.
(c) S¼a se dea, gra�c, un exemplu de muļtime compact¼a pentru care conA nu este închis¼a.

Subiectul 4. Fie muļtimea

C = f� (1; 1) + � (0; 1) j �; � � 0g :

S¼a se arate c¼a C este con convex închis. S¼a de deseneze muļtimea. S¼a se scrie şi s¼a se deseneze
conul tangent şi conul normal la aceast¼a muļtime în punctul (1; 1) :

Barem de notare: (pentru �ecare subiect se acord¼a un punct din start)
1. directa 5p; reciproca 4p;
2. modelare 4 p; rezolvare 5p.
3. (a) 3p; (b) 4p; (c) 2p.
4. C este con, închis şi convex 4p; conul tangent, conul normal 3p; desene 2p.

Timp de lucru: 100 minute
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Model veri�care scris¼a

Subiectul 1. S¼a se scrie cele dou¼a rezultate studiate de existeņt¼a a solu̧tiilor globale pentru o
problem¼a de optimizare de tip

min f (x) ; x 2M;
unde f : Rp ! R şi M � Rp cu precizarea nota̧tiilor folosite. S¼a se demonstreze unul dintre
aceste rezultate.

Subiectul 2. S¼a se arate c¼a f : R2 ! R; f(x; y) = (1 + ey) cos x � yey are o in�nitate de
maxime globale, dar nu are niciun minim local.

Barem de notare: (pentru �ecare subiect se acord¼a un punct din start)
1. precizarea cadrului 2p; enuņturi 2x2=4; demonstra̧tie 3p.
2. punctele critice 3 p; calculul matricei hessiene 2 p; determinarea punctelor de extrem 4p.

Timp de lucru: 50 minute
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Model evaluare �nal¼a �varianta 1

Subiectul 1. (a) Conul tangent (în sens Bouligand) la o muļtime nevid¼a şi închis¼a într-un
punct al muļtimii. Propriet¼a̧ti. Cazul special al muļtimilor convexe. (Enuņturi)
(b) Calculul proieçtiilor pe un hiperplan şi pe un elipsoid generalizat

Subiectul 2. Fie f : R2 ! R; f(x) = x31 + x
2
2 � x1 � 4x2 � x1x2 şi muļtimea restriçtiilor

M egal¼a cu discul unitate închis. Consider¼am problema (P ) a minimiz¼arii lui f pe M: S¼a se
veri�ce dac¼a este îndeplinit¼a condi̧tia necesar¼a, respectiv condi̧tia su�cient¼a de optimalitate de
ordinul I în punctul:

�
1=
p
2; 1=

p
2
�
.

Subiectul 3. Fie problema min (4x21 + x
2
2 � x1 � 2x2) cu restriçtiile 2x1 + x2 � 1 şi x21 � 1:

Determina̧ti solu̧tiile problemei, cu parcurgerea urm¼atorilor paşi: existeņta solu̧tiilor, chestiunea
convexit¼a̧tii problemei, aplicabilitatea Teoremei Karush-Kuhn-Tucker, stabilirea solu̧tiilor.

Subiectul 4. Se d¼a codul Matlab
f = @(x) x^3 - 2*x + 2;
f_der = @(x) 3*x^2 - 2;
x=???;
x_precedent=-1;k=0;eps=10^(-6);maxiter=100;
while abs(x-x_precedent)>eps && k<maxiter
x_precedent=x;x=x-f(x)/f_der(x);k=k+1;
end
disp(x); disp(k); disp(f(x));
Dac¼a în acest cod se înlocuieşte "???" (de pe a treia linie) cu �1:5 se ob̧tin rezultatele: x

= -1.7693; k = 5; ans = 0, iar dac¼a se înlocuieşte cu 1:5 se ob̧tin rezultatele: x = 0; k =
100; ans = 2.
Preciza̧ti metoda numeric¼a pe care codul o implementeaz¼a, comenta̧ti liniile principale ale

codului şi interpreta̧ti rezultatele.
S¼a se explice semni�ca̧tia matematic¼a a acestui cod, s¼a se numeroteze şi s¼a se comenteze

liniile principale. S¼a se interpreteze rezultatele.

Barem de notare:
1p �o�ciu;
1. (a) 1p; (b) 1,5p. (=2,5p)
2. scrierea condi̧tiilor 0,5p; veri�carea condi̧tiei necesare 0,75p; veri�carea condi̧tiei su�-

ciente 0,25p. (=1,5p)
3. justi�carea existeņtei solu̧tiilor: 0,5p; aplicabilitatea Teoremei Karush-Kuhn-Tucker:

0,5p; convexitatea problemei: 0,5p; scrierea şi rezolvarea sistemului Karush-Kuhn-Tucker, de-
terminarea solu̧tiilor: 1,5p. (=3p)
4. explicarea semni�ca̧tiei matematice: 1p; comentarea liniilor de cod şi interpretarea rezul-

tatelor 1p. (=2p).

Timp de lucru: 2 ore
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Model evaluare �nal¼a �varianta 2

Subiectul 1. (a) Funçtia distaņt¼a la o muļtime nevid¼a. Propriet¼a̧ti (inclusiv cazul muļtimilor
convexe) �doar enuņturi.
(b) S¼a se enuņte şi s¼a se demonstreze rezultatul referitor la condi̧tia necesar¼a de optimalitate

de ordinul I. S¼a se prezinte cazul particular al Teoremei lui Fermat.

Subiectul 2.Fie h : R3 ! R dat¼a prin h(x1; x2; x3) = x21 + x22 + x23 � 4: S¼a se arate c¼a sistemul
de restriçtii h (x) = 0 satisface condi̧tia Abadie în toate punctele sale.

Subiectul 3. Fie problemamin (x2 + xy) cu restriçtia x2+y2 � 1: S¼a se determine solu̧tia/solu̧tiile
global¼a/globale a/ale problemei (cu parcurgerea tuturor paşilor: existeņta solu̧tiilor, chestiunea
convexit¼a̧tii problemei, aplicabilitatea Teoremei Karush-Kuhn-Tucker, determinarea solu̧tiei/solu̧tiilor).

Subiectul 4. Fie f : [1; 2]! [1; 2] dat¼a prin

f(x) =
x

x3 + 1
+ 1:

S¼a se arate c¼a f este bine de�nit¼a, apoi s¼a se demonstreze c¼a f este contraçtie. Se d¼a şirul (xn)
prin x0 = 1:5;

xn+1 = 1 +
xn

x3n + 1
; 8n 2 N:

S¼a se arate c¼a (xn) este convergent, limita sa x este din intervalul (1; 2) ; iar viteza de convergent¼a
este liniar¼a.

Barem de notare:
1p �o�ciu;
1. (a) 1p; (b) 1,5p. (=2,5p)
2. precizarea conditiei 0,5; veri�carea 1p. (=1,5p)
3. justi�carea existeņtei solu̧tiilor: 0,5; studiul convexit¼a̧tii problemei şi aplicabilitatea

Teoremei Karush-Kuhn-Tucker: 0,5p; aplicarea Teoremei Karush-Kuhn-Tucker şi rezolvarea
sistemului Karush-Kuhn-Tucker: 1,5; determinarea solu̧tiei/solu̧tiilor: 0,5. (=3p)
4. f bine de�nit¼a: 0,5; f contraçtie 0,75; convergeņta lui (xn): 0,75. (=2p).

Timp de lucru: 2 ore
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Academiei, 1998.

135


	Prefata
	Introducere
	Concepte de baza
	Exercitii

	Elemente de analiza neliniara
	Multimi convexe
	Functii convexe
	Functia distanta
	Conuri
	Teorema lui Lyusternik
	Lema lui Farkas
	Exercitii

	Studiul unor probleme de optimizare
	Cadrul general
	Rezultate de existenta a solutiilor
	Conditii de optimalitate
	Restrictii functionale
	Conditiile Karush-Kuhn-Tucker
	Conditii de calificare pentru sisteme generale de restrictii
	Conditii de calificare pentru sisteme speciale de restrictii

	Exemple si aplicatii
	Exercitii

	Algoritmi pentru aproximarea solutiilor ecuatiilor neliniare
	Descriere generala
	Principiul lui Banach de punct fix
	Consecinte ale Principiului lui Banach în proiectarea unor algoritmi
	Teorema lui Picard
	Metoda lui Newton
	Exercitii

	Appendix
	1. Spatiul Rp
	2. Limite de functii si continuitate
	3. Diferentiabilitate
	4. Integrala Riemann

	Modele de evaluari scrise
	Model examen partial
	Model examen partial
	Model verificare scrisa
	Model evaluare finala
	Model evaluare finala

	Bibliografie

