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Pe parcursul semestrului vor fi 2 ore de curs si 2 ore de seminar saptaménal. Cursul si
seminarul vor urmari, preponderent, materialul corespunzator postat la adresa:

www.math.uaic.ro/”durea — sectiunea teaching

Evaluarea se desfagoara dupa procedura de mai jos.

e In timpul semestrului va avea loc evaluarea continug (EC) care va avea ponderea de 50%
din nota finala si va cuprinde trei componente:

— un examen partial (EP): in sdptdmana 7, 8 sau 9, la seminar, studentii vor sustine
un examen partial scris (cu durata de 100 de minute), iar nota obtinutd va avea
ponderea de 50% din EC; EP nu se poate reface si nu se poate sustine in sesiune;
exclusiv pe baza unor motive bine intemeiate, EP se poate sustine la o data ulterioara
in timpul semestrului;

— o verificare scrisa (VS): intr-una din sptamanile 11, 12 sau 13 va avea loc la seminar
o verificare scrisa cu durata de 50 de minute, iar nota obtinuta va avea ponderea de
25% din EC; exclusiv pe baza unor motive bine intemeiate, VS se poate sustine la o
data ulterioara in timpul semestrului;

— activitatea de seminar (AS): prezenta, activitatea si calitatea raspunsurilor din tim-

pul desfasurarii seminarelor vor genera o notd ce va avea o pondere de 25% din
EC.

e In sesiune va avea loc evaluarea finald (EF) care va avea o pondere de 50% din nota
finala si care consta dintr-o proba scrisa de 2 ore. Pentru fiecare student, nota evaluarii
finale va fi comunicata in cadrul unei intalniri (care va fi programata in prealabil) si va
fi determinata inclusiv de o eventuala discutie asupra modului in care au fost rezolvate
subiectele probei scrise (prezenta studentilor este, deci, obligatorie). O conditie necesara
pentru promovare este ca aceastda nota sa fie minim 4,5. Odata ce acesta conditie este
indeplinita se va calcula nota finala, care va fi rotunjirea la cel mai apropiat numar
natural din intervalul [1, 10] a valorii

1 1 1 1 1 1
—FF+_-FEC=_-EF+-EP+ - —AS.
5 + 5 C 5 + 1 + 8VS—|— 3 S



Prefata

Scopul lucrarii de fata este acela de a prezenta, pe spatii normate finit dimensionale (spatiile R?,
p € N\ {0}), o serie de rezultate de analiz neliniard, cu accent pe studiul aspectelor clasice ale
teoriei optimizirii pentru probleme cu date netede (de clasd C?). Evident, multe din rezultatele
cuprinse in aceastd prezentare au loc pe spatii mult mai generale (spatii metrice, spatii normate
infinit dimensionale), dar ideile fundamentale ce stau la baza teoriei sunt similare, indiferent de
context. Cadrul spatiilor finit dimensionale ofera posibilitatea scurtarii unor demonstratii si,
mai ales, un suport intuitiv necesar precizarii cu mai mare claritate a acestor idei de baza. De
asemenea, pentru o ilustrare cdt mai cuprinzatoare a prezentarii teoretice, aceasta este insotita
de exercitii gi probleme dintre care unele sunt rezolvate.

Marius Durea
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Capitolul 1

Introducere

1.1 Concepte de baza

Teoria optimizarii se ocupa cu studiul punctelor de extrem (de minim sau de maxim) ale
functiilor.

Definitia 1.1.1 Fie ACR gi f: A — R. Spunem ca a € A este punct de minim (respec-
tiv mazim) local pentru f daca exista o vecinatate V' a punctului a astfel incat f(a) < f(x)
(respectiv, f(a) > f(x)), pentru orice x € AN V. Punctele de mazim sau de minim local se
numesc puncte de extrem local.

Daci f(a) < f(z) (respectiv f(a) > f(z)) pentru orice x € A, spunem ci a este punct de
minim (respectiv, maxim) global (situatii corespunzatoare cazului V' = R).

Observatia 1.1.2 Remarcam faptul ca, in notatiile definitiei precedente, a € A nu este punct
de minim local pentru f dacd §i numai daca ezista un gir (a,) de elemente din A cu limita a
astfel incat f(a,) < f(a) pentru orice n. O observatie similara are loc pentru mazximalitate.

Doua rezultate fundamentale reprezinta baza Teoriei optimizarii. Acestea sunt Teorema lui
Weierstrass si Teorema lui Fermat.

Teorema 1.1.3 (Weierstrass) Daca f : K — R este o functie continua pe multimea com-
pacta K C R, atunci f este marginita si igi atinge marginile pe K (adica existi a,b € K, astfel
incat sup f(z) = f(a) si inf f(x) = f(D)).
zeK zeK
Teorema lui Weierstrass asigura conditii suficiente de existentd a punctelor de extrem (adica
de minim sau de maxim) globale. Conditia de compactitate este severa.

Teorema 1.1.4 (Fermat) Fie I C R un interval gi a € int I. Daca f: I — R este derivabila
in a, iar a este punct de extrem local pentru f, atunci f'(a) = 0.

Teorema lui Fermat precizeaza conditii necesare de optimalitate. Reciproca este falsa, asa
cum se poate vedea considerand functia f: R — R, f(z) = 23 i a = 0.



De-a lungul cursului vom dezvolta instrumente de studiu care sa permita generalizarea
acestor doua rezultate de baza.

Subliniem unele concepte-cheie.
1. Fie f : R — R, f(z) = 22. Consideram problema minimizarii lui f cand z € R, adica
min f(x), x € R.
Evident T = 0 este minim global. Aceasta este o problema de optimizare fara restrictii.

2. Fie f : R = R, f(z) = 2. Considerdm problema minimizarii lui f cand = € [—1, 0),
adica
min f(z), z € [—1, 00).
Din nou, T = 0 este minim global. Aceasta este o problema de optimizare cu restrictii,

dar pentru ca punctul de minim este in interiorul domeniului, restrictia este inactiva local
(nu influenteaza problema).

3. Fie f : R — R, f(z) = 2% Consideram problema minimizarii lui f cand z € [1, 00), adicd
min f(x), z € [1,00).

Acum T = 1 este minim global. Aceasta este o problema de optimizare cu restrictii, iar
punctul de minim este pe frontiera domeniului, deci restrictia joacd un rol important (spunem
cd restrictia este activa).

4. Fie f: R — R, f(z) = 23. Consideram problema minimizarii lui f cand z € R, adici
min f(z), z € R.
Functia nu admite punct de extrem.

5. Fie f : R = R, f(z) = 2. Considerdm problema minimizarii lui f cand z € [—1, 00),
adica
min f(z), z € [-1,00).

Functia admite punct de minim in 7 = —1 (restrictia este activa si determina o solutie).

6. Fie f : R — R, f(z) = (¢* + 2 — 5)%. Consideram problema minimizarii lui f cand = € R,
adica
min f(z), z € R.

Evident, f(x) > 0 pentru orice x € R. Daca ar exista solutii ale ecuatiei e* +x —5 =0
acestea ar fi puncte de minim global. Ecuatia nu poate fi rezolvata. Considerand g : R — R,
g(z) = e+ —>5 constatam ca ¢g(0)-¢g(5) < 0 si continuitatea lui g asigura existenta unei solutii
in intervalul (0,5). Putem cel mult s aproximam aceasta solutie. Deci vom fi interesati de
algoritmi de aproximare a ridicinilor ecuatiilor neliniare. In multe cazuri, rezolvarea



unei probleme de optimizare depinde de determinarea (fie si aproximativa) a solutiilor unei
ecuatii neliniare.

7. Fie f : R - R, f(x) = 2? — 2sinz. Consideram problema minimizarii lui f cand r € R,
adica
min f(z), z € R.

Aplicarea Teoremei lui Fermat conduce la rezolvarea ecuatiei x = cosx, adica la problema
determinarii punctelor fixe pentru functia cos. O reprezentare grafica sau un studiu analitic
aratd cii un astfel de punct T exist&. In plus, variatia functiei in jurul acestui punct dovedeste c&
T este punct de minim pentru f. Din nou, nu il vom putea determina ci vom preciza algoritmi
de aproximare a punctelor fixe, puncte ce vor interveni in mai multe situatii. De altfel,
legat de punctul precedent, rezolvarea unei ecuatii de forma f(z) = 0 revine la rezolvarea
ecuatiei f(z)+x = z, adica la determinarea punctelor fixe ale functiei f +id, aceastd abordare
fiind utila uneori.

8. Fie f: (0,00) — R,
T
1) = o

Din cauza ca f(z) > 0 pentru orice x € (0,00) si lim, . f(z) = 0, lim,_, f(x) = 0, functia
nu admite punct de minim global. Dar, tot din cauzele mentionale, pentru studiul existentei
punctelor de maxim global putem sa restrangem discutia la un interval compact pe care
se aplica Teorema lui Weierstrass. Teorema lui Fermat si studiul variatiei functiei dovedesc ca
7 = /10 este punct de maxim global.

9. In unele cazuri este mai utili informatia ce poate fi dedusid pe baza ecuatiei
f'(x) = 0 decat rezolvarea sa efectiva, rezolvare care in unele cazuri este imposibild. Tlustram
aceasta prin deducerea legii fizice a refractiei luminii ce se obtine din Teorema lui Fermat
aplicata in virtutea Principiului lui Fermat: intr-un mediu neomogen, lumina parcurge distanta
dintre doua puncte astfel incat timpul de parcurs este minim.

Astfel se obtine faptul ca atunci cand trece dintr-un mediu in altul, directia luminii satisface
relatia % = Si?}%, unde o, o sunt unghiurile dintre directiile luminii si normala la suprafata
care separa cele doua medii.

Sa demonstram aceasta lege. Mai intdi modelam problema. Presupunem ca raza de
lumina stridbate drumul dintre punctul (0,a), ¢ > 0, aflat in primul mediu si punctul (b, ¢),
b >0, c <0, din cel de-al doilea.

Pentru usurinta calculelor, presupunem ca suprafata care separa cele doua medii este axa
Oz. Fie vy, v vitezele luminii in cele doud medii. Notam cu (z,0) punctul in care raza trece
dintr-un mediu in altul, unde x trebuie determinat conform Principiului lui Fermat. Timpii de
parcurs in cele doua medii sunt, respectiv,




/ \/ (b—2x)24c2? . o
deci timpul total care trebuie minimizat este “isz + @ U: < Considersm f:R—R,

f) = \/a2+x2+ \/(b—x)Q—i-cQ’

U1 V2

pe care trebuie sa o minimizam pe R. Derivata lui f este
x—b

by T
fiw) = vva? + a2 " vo/(z — b)2 + 2

Cum f/<0)2ﬁ<0 f/<) W>0§1
1 2 1 2
f"(x):—-a—+—~ ‘ >0, Vz € R.

V1 <a2 —+ ZL’2>% V2 ((m _ b)2 + 62)%

existd un singur punct critic pentru f situat in intervalul [0, b]. Notam acest punct cu Z. Variatia
lui f arata ca T este punct de minim. Atunci

T b—=x

'Ul\/a2—|—f2_1)2 (f—b)2+02'

Dar,
T .
= S1ln g
2 + {2’52
si
b—T .
= = S1n (g,
(T —0)2+ 2
deci

sinay  sinas

(%1 V2

10. Consideram urméitoarea problema de optimizare cu restrictii de mai multe (doud)
variabile:

max(z + y)

cu restrictiile
r>0,y>0,2<6
47lx +9y <6
3r + 2y < 22.

Problema se poate rezolva grafic pentru ca toate functiile implicate sunt liniare. Atunci
cand se face desenul pentru multimea restrictiilor si se interpreteaza sensul liniilor de nivel
pentru expresia de maximizat, se observa cd acest maxim se atinge in punctul (4,5) care este
unul dintre varfurile poligonului ce reprezinta multimea restrictiilor.

= * + 2cosz. Conditiile de optimalitate de ordin
f = 0 este punct de minim pentru f. Intr-adevir, ne amintim

11. Fie f : R—R, f(x)
superior ne asigura faptul ca
rezultatul de mai jos.



Fie I C R un interval deschis, f : I — R o functie de n ori derivabilaina € I, (n € N,n > 2),
astfel incat

f(a)=0, f'(a)=0,.., f" V() =0, f"(a)#0.

(i) Daca n este par, atunci a este punct de extrem, gi anume: punct de maxim local daca
f™(a) < 0 si punct de minim local dac& f™(a) > 0.
(ii) Dacd n este impar, atunci a nu este punct de extrem.

In cazul concret al functiei de mai sus, f/(0) = f/(0) = f”(0) = 0, iar f)(0) = 4 > 0.



1.2 Exercitii

Exercitiul 1.1 Sa se studieze existenta punctelor de extrem local pentru functiile polinomiale
de gradul al Ill-lea. Admit acestea puncte de extrem global? Aplicatie: problema lui Tartaglia:
sa se scrie numarul 8 ca suma de doi termeni pozitivi astfel incdt produsul acestora inmultit cu
diferenta lor sa fie maxim.

Exercitiul 1.2 Un panou publicitar se afla la inaltimea hy fata de nivelul strazii s are inaltimea
l. La ce distanta fata de locul instalarii panoului trebuie sa se afle un privitor ce are inaltimea
he < hy astfel incdt unghiul sub care se vede panoul sa fie mazim?

Exercitiul 1.3 O persoana se afla in urmatoarea situatie: trebuie sa mearga la un rdau aflat in
apropiere, sa incarce o cantitate de apd §i apoi sa o transporte in alt loc aflat pe acelagi mal.
Sa se stabileasca traseul optim din punct de vedere al timpului de parcurs daca fara incarcatura
viteza de deplasare este vy, iar cu incarcatura viteza de deplasare este vy < vy.

Exercitiul 1.4 La constructia unei cladiri, constructorul are urmatoarele costuri: 10.000.000
w.m (unitati monetare) pentru terenul de amplasament, 250.000 u.m. costuri independente
pentru fiecare etaj i 10.000x costuri comune specifice pentru fiecare etaj (unde x este numarul
de etaje). Sa se determine numarul x de etaje ce trebuie construite astfel incdt costul mediu pe
etaj sa fie minim.

Exercitiul 1.5 Cum poate fi descompus numarul 100 intr-o suma de termeni pozitivi astfel
incdt produsul acestora sa fie maxim? Dar daca termenii sunt numere naturale?

Exercitiul 1.6 Un soldat are la dispozitie 74" pentru a dezamorsa o bomba aflata in largul
marii la o distanta de 50m fata de tarm. Soldatul se afia la 100m in lungul tarmului fata de
pozitia bombei in raport cu tarmul. Stiind ca soldatul alearga cu 5m/s inoata cu 2m/s si, odata
ajuns la bomba, are nevoie de 30" pentru a opri circuitul de detonare, determinati daca poate
opri explozia.

Exercitiul 1.7 (problema butoaielor — Kepler) Sa se determine dimensiunile cilindrului
de volum maxim pentru care distanta de la mijlocul generatoarei la cele doua puncte "opuse”
ale bazei este constantd (d > 0).

Exercitiul 1.8 Se gtie ca inaltimea la care se gaseste centrul de greutate a unui sistem format
din doua corpuri este data de relatia

m1h1 + m2h2

mi + Mo ’
unde my §t mo sunt masele celor doud corpuri, iar hy §t he sunt inaltimile la care se gasesc
centrele de greutate ale corpurilor respective. Consideram un pahar cilindric cu inaltimea de
20 cm, masa de 100 g si aria bazei de 10 cm?. Se pune intrebarea pana la ce inaltime trebuie
turnatd apa in pahar pentru ca sistemul sa fie cat mai stabil (i.e., sa aiba centrul de greutate
cdt mai jos).



Solutie Modelam problema. Notam cu A inaltimea pana la care turnam apa. Avem m; = 100,
hy = 10 (datele corespunzatoare paharului) si ms = 10h, hy = h/2 (datele corespunzatoare
apei). Conform formulei de mai sus, centrul de greutate al paharului cu api este la inéltimea

(h) 1000 + 5% 200 + h?
IV =00+ 10n ~ 2042k

Studiul variatiei lui g conduce la punctul de minim h =10(v/3 —1). Se constatd si ci g(h) = h,
adica h este punct fix pentru g, lucru care nu este inlamplator daca ne gandim la semnificatia
fizica a rezultatului. O

Exercitiul 1.9 Se doreste confectionarea unui container cilindric cu volumul de un litru folosind
cat mai pulin material. Aria laterala se poate taia dintr-o bucata dreptunghiulara de material,

fara pierderi. Bazele sunt taiate din niste patrate de latura 2r (deci materialul necesar are aria

2(2r)? = 8r?). Determinati dimensiunile containerului pentru care se utilizeazd cel mai putin

material.

Exercitiul 1.10 O cutie paralelipipedicd cu baza patrat, fara capac, are volumul 100 dm3.
Determinati dimensiunile cutiei care foloseste cel mai putin material.

Exercitiul 1.11 Dorim sa confectionam o cutie cilindrica (cu capac) de un volum dat. Pre-
supunem ca materialul din care se confectioneaza bazele este de N > 1 mai scump pe unitate
de arie decdt cel pentru aria laterald a cilindrului. Sa se determine, in functie de N, raportul
dintre raza bazei cilindrului gi generatoarea acestuia astfel incdat costul sa fie minim.

Exercitiul 1.12 Sa se modeleze problema maximizaric arier unui dreptunghi de perimetru
cunoscut (p > 0) si sa se rezolve.

Exercitiul 1.13 Sa se determine aria maxima pe care o poate avea un dreptunghi inscris intr-
un semicerc de raza 10 avdnd o latura pe diametrul semicerculus.

Exercitiul 1.14 Sa se determine punctele de extrem pentru functiile de mai jos.
(i) f R—R, f(z) = (2 +2)x — 1)%
(i) f: R — R, f(x) = sin® 2 + cos® x;
(iii) f R — R, f(z) = Va2 — 22 —1;
(iv) f R = R, f(z) = £52H0,

241

Solutie (i) Derivata functiei este
fi(@) = (z+2)(z — 1)*(5x + 4),

deci punctele critice sunt —2; 1; —‘—;. Din tabelul de variatie se poate imediat deduce ca —2 este
punct de maxim local, —‘—; este punct de minim local, iar 1 nu este punct de extrem.
(ii) Este suficient si studiem functia pe intervalul [0,27) (din periodicitate). Derivata
functiei este
f'(x) = 3sinx cosz(sinx — cos ),



avand radacinile
T om 3w

T
Din analiza semnului derivatei in jurul acestor puncte avem ca 0 + 2km, 5 + 2k, ‘%r + 2k
(k € Z) sunt maxime locale, iar T + 2km, 7 + 2km, 3T + 2k7 sunt minime locale.

O alta varianta este, ca dupa determinarea punctelor critice, sa determinam derivata a doua
a functiei si sd folosim urmatorul rezultat: pentru punctul critic Z, daca f”(z) > 0, atunci T
este punct de minim local, iar dacd f”(Z) < 0 atunci T este punct de maxim local.

(iii) Functia este derivabila pe R\ {—1,0, 1} si derivata este

0

, _2(:52—1)%—95%
fle) = 3 x%(mQ — 1)§

Punctele critice sunt _\/Li’ \%, iar candidatii pentru punctele de extrem sunt asadar

1 1
V2 V2
Din analiza semnului derivatei lui f in jurul acestor puncte deducem ca —\%, % sunt puncte
de maxim local, iar 0 este minim local.

(iv) Discutia este analoags metodelor descrise mai sus. Se obtine ci 1 — v/2 este punct de
maxim local, iar 1 + v/2 este punct de minim local. 0

_1a07 ]-7

Exercitiul 1.15 Sa se arate ca x = 0 este punct de maxim iar v = m este punct de minim
pentru f: R — R,

1
f(x)=2cosz — §COS2$.

Implementare Matlab 1.16 Sa se reprezinte grafic utilizand Matlab functiile de la Exercitiul
. Spre exemplu, pentru a reprezenta functia de la (iv), putem folosi codul:

functie=0(x) [(x"2-b*x+6)/(x"2+1)];

fplot (functie, [-10,10]);

set(gca, ’XAxisLocation’, ’origin’)

set(gca, ’YAxisLocation’, ’origin’)

Sa se studieze optiunile oferite de Matlab pentru reprezentarile grafice.

Exercitiul 1.17 Sa se reprezinte grafic functia f: R\ {1} — R,
f(2) = |a]e=
gt sa se determine punctele sale de extrem.
Exercitiul 1.18 Fie aq, ..., a, numere reale strict pozitive cu
ai + a3 +...+a, >n, Ve € R.

Sa se arate ca aias...a, = 1.



Solutie Fie f : R — R, f(z) = a{ 4+ a} + ...+ a%. Cum f(0) = n, din ipoteza deducem ca z = 0
este punct de minim pentru f, deci, din Teorema lui Fermat, f’(0) = 0, ceea ce conduce la
concluzie. O alta solutie se poate da folosind limita fundamentala

Coa®—1
lim
z—0 x

=Ina, a > 0.

Problema 1.19 Fie f,g : [a,b] — R doua functii continue. Definim h : R — R,

h(t) = sup{f(z) +tg(x) | = € [a, b]}.
Sa se arate ca h este corect definita si este o functie Lipschitz.
Solutie Fie s,t € R. Cum functiile z — f(z)+tg(z) si x — f(x)+sg(x) sunt continue, aplicand
Teorema lui Weierstrass pe intervalul compact [a, b], exista z;, x5 € |a, b] astfel incat
h(t) = flae) +tg(x)
h(s) = f(zs) + sg(x).

Atunci
h(t) — h(s) = f(z:) +tg(xe) — (f(xs) + 59(25))
< f(@e) +tg(we) — flae) — sg(a)
= g(@)(t — s)
Similar,

Notand cu M := max,cq) |g(x)| € R (folosind din nou Teorema lui Weierstrass) obtinem

(
|h(t) = h(s)] < M |t — s],
adica exact concluzia. OJ

Problema 1.20 Fie a,b,c,d € R cua <b, c <d gi f: [a,b] X [c,d] — R continua. Definim
¢ :[a,b] = R,
p(z) = inf{f(z,y) [ y € [c,d]}.

Sa se arate ca ¢ este bine definita i continuda.

Exercitiul 1.21 f : [a,b] — R derivabila in a. Sa se arate ca dacd a este punct de minim
atunci f'(a) > 0.

Exercitiul 1.22 Fie f : [a,b] — R continua, derivabila in a gib cu f'(a)f'(b) < 0. Sa se arate
ca [ admite un punct de extrem local in (a,b).



Capitolul 2

Elemente de analiza neliniara

2.1 Multimi convexe

Fie p € N\ {0}. Pe parcursul cursului lucram pe spatiul R? inzestrat cu structura uzuald de
spatiu vectorial real de dimensiune p si topologizat cu produsul scalar obignuit, deci cu norma
euclidiana. Un breviar al notatiilor pe care le utilizam si al cadrului teoretic pe care ne bazam
este prezentat in Appendix.

Definitia 2.1.1 O multime D C R? se numeste converd daca pentru orice x,y € D, [z,y] =
{az+ (1 —a)y |a €]0,1]} C D.

Cu alte cuvinte, o multime nevida D este convexa daca si numai daca odata cu doua puncte
a1, as contine intreg segmentul [a;,as]. Se mai observa cd in definitia aceasta este suficient s&
luam « € (0, 1). Convenim s consideram multimea vida ca fiind convexa.

Prin inductie (a se vedea Exercitiul [2.1)) se aratd imediat cad D # () este convexa daci si

numai dacd pentru orice n € N\ {0}, x1,29,...,x, € D, a1, g, ..., € [0,1] cu > oy = 1, are
i=1
loc

n
Z ;T € D.
i=1

O suma cum este cea de mai sus se numeste combinatie convexa a elementelor (7;);c1.

Observatia 2.1.2 (i) Este evident ca orice intersectie de multimi convexe este convexa, iar o
reuniune de multimi convexe nu este, in general, convexa.
(71) In R multimile convexe sunt intervalele.

Discutam acum conceptul de infiasuratoare convexa a unei multimi nevide. Fie A C R? o
multime nevida. Se numeste infaguratoarea convexa a multimii A, multimea

conv A = {Z ;7 | n € N\ {0}, ()it C [0, 00), ZO‘Z' =1, (73);e1n C A} :
i=1

i=1
Este ugor de aratat ca infaguratoarea convexa a lui A este multime convexa, contine multimea A
si este cea mai micd multime (in sensul incluziunii) cu aceste proprietéti (a se vedea Exercitiul

23).
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Prezentam o teorema care se refera la structura multimii conv A si poarta numele de Teo-
rema lui Carathéodory, dupa numele matematicianului grec Constantin Carathéodory care a
demonstrat acest rezultat in 1911 pentru multimi compacte.

Teorema 2.1.3 (Teorema lui Carathéodory) Fie A C RP o multime nevida. Atunci

p+1 p+1
conv A = {Z ;% | (i) ierpr C [0,00) Zal =1, (@)1 C A}

=1 =1

Demonstratie Trebuie aratat ca orice element din conv A se poate scrie ca o combinatie de cel

mult p + 1 elemente din A. Fie deci x € conv A. Conform definitiei lui conv A, x se poate scrie

ca o combinatie convexa de elemente din A. Presupunem, prin reducere la absurd, ca numarul

minim de elemente din A care pot da o combinatie convexa cu valoarea x este n > p + 1.
n n

Deci existd xi,za,....,x, € A, a1,qs,...,a, € (0,1) cu Y «a; = 1 astfel incat > a,x; = x.
1= =1

Atunci elementele (z; — xn)izm sunt liniar dependente (sunt mai multe decat dimensiunea p

a spatiului), deci exista (\;),_17—7, nu toate nule, cu

n—1

i=1

ceea ce inseamna
n—1 n—1

Notand — (Zz _1 )\i) An, avem ZZ 1A =0si Z?’:l Aix; = 0. Atunci pentru orice ¢t € R,

:C—Za:cl—irtZ)\xl—Z a; +tA\)x;
=1

si

n
D (it th) =
i=1
Cum ) 7 A\ = 0 si existd macar o valoare nenuld, va exista si cel putin o valoare negativi
printre valorile (A;);c17. Notdm ¢ := min{—a;A; " | A; < 0}. Atunci toate valorile (o +£);) vor
fi din intervalul [0, oo) iar valoarea corespunzatoare indicelui care da minimul de mai sus este
zero, deci x apare ca o combinatie convexa de mai putin de n elemente din A, contrazicandu-se
minimalitatea lui n. Asadar, presupunerea facuta este falsa, deci concluzia are loc. 0

2.2 Functii convexe

In aceasta sectiune prezentam o clasa speciala de functii, numite functii convexe. Aceste functii
sunt definite pe multimi convexe.
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Definitia 2.2.1 Fie D C R? o mullime convexa. O functie f : D — R se numesgte convexa
daca

FOz+ (1 =Ny <A(2)+ (1 =Nfly), Yo,y € D, YA e [0,1]. (2.1)

Este clar ca in definitia de mai sus este suficient sa luam A € (0, 1).

Observatia 2.2.2 (i) Este usor de vazut ca suma unui numar finit de functii conveze (definite
pe aceeasi multime) este o functie conveza, iar produsul unei functii convexe cu un scalar pozitiv
este o functie convera.

(i) De asemenea, orice functie afind de la RP la R este conveza.

Cum am mai spus, in R multimile convexe sunt intervalele. In acest cadru, convexitatea
are urmatoarea interpretare geometrica: pentru orice doud puncte z,y € D, z < y, graficul
restrictiei lui f la intervalul [z,y] se afld sub coarda ce unegte punctele (x, f(z)) si (v, f(y))-
Aceasta se mai scrie astfel: pentru orice u € [z,y],

(u—z), (2.2)

inegalitate care se obtine din (2.1]) inlocuind A cu valoarea obtinuta din relatia u = Ax+(1—M\)y.
Astfel, (2.1)) si (2.2)) sunt echivalente (pentru functii de variabil reald).

Exemplul 2.2.3 Este usor de verificat prin calcul direct ci functia f : R — R, f (z) = 22 este
convexa.

Definitia 2.2.4 Fie D C R? o multime convexa. O functie f : D — R se numeste concava
daca — f este convexa.

Toate proprietatile functiilor concave se deduc cu usurinta din proprietatile functiilor con-
vexe, astfel ca vom considera in continuare doar acest ultim caz.

Mai intéi deducem unele proprietiti generale ale functiilor convexe. Incepem cu un rezultat
ajutator.

Lema 2.2.5 Fie D C R? o multime convexa. Pentru orice x,y € D definim I, := {t € R |
tr 4+ (1 —t)y € D}. Atunci I, este un interval ce contine intervalul [0, 1].

Demonstratie. Practic trebuie sa aratam ca I, este multime convexa. Intr-adevar, daca
u,v € I, si A € [0, 1], este usor de verificat ca

A+ (1= Moz +[1 —Au— (1 = A)v]y = Muz + (1 —u)y) + (1 = N) (v + (1 —v)y) € D.
Faptul ca 0,1 € I, este evident. O

Propozitia 2.2.6 Fie D C R? o multime convexa si f : D — R. Urmatoarele afirmatii sunt
echivalente:

(i) [ este converxa;

(it) pentru orice x,y € D, functia @, : I, ,— R, @ ,(t) = f(tz + (1 —t)y) este convera.
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Demonstratie Aritam ci (i) implicd (44) . In lema anterioars am constatat ci I, este un interval
(deci o multime convexd) care include [0, 1].
Presupunem cd f este convexa gi ludm u,v € I, A € [0,1]. Avem

Cry(Au+ (1= X)v) = f(Pu+ (1 = Nv]z + [1 = du— (1 — Nv]y)
=f(Mux + (1 —u)y) + (1= N)(vz+ (1 —v)y))
< Af(uz+ (1 —uw)y) + (1= A) fvz + (1 —v)y)
= Apay(u) + (1 = N)pay(v).

Aratam acum ca (i¢) implica (7). Ludm 2,y € D si t € [0,1]. Atunci ¢, , este convexd si deci
pentru orice A € [0,1],u,v € I,

Py (A + (1 = A)v) < Apgy(u) + (1 = A)pay(v)
=AM(uzx+ (1 —u)y)+ (1 =N f(vz+ (1 —0)y).

Facand v = 1,v = 0, A = t deducem

Pay(t) <tf(z) +(1—1)f(y),

deci f este convexa. O

Observatia 2.2.7 Degi convexitatea este o proprietate algebrica, functiile convexe au propri-
etati topologice remarcabile: a se vedea, de exemplu, Problema|2.41].

Dorim sa punem acum in evidenta caracterizari ale functiilor convexe diferentiabile. Pentru
aceasta, avem nevoie de unele rezultate care se refera la functii convexe definite pe un interval
din R.

Propozitia 2.2.8 Fie I C R un interval si f : I — R o functie. Urmatoarele afirmatii sunt
echivalente:

(i) [ este convexa;

(i1) pentru orice x1,x2, w3 € I in relatia x1 < o < T3 avem

f(x2) — f(x1) < fx3) — f(x1) < f(x3) — f(352).

To —T1 T3 — I T3 — T2 ’

(iii) pentru orice a € int I, functia g : I\ {a} — R datd prin

este crescatoare.

Demonstratie Aratam implicatia (i) = (i7). Luam \ = ol (0,1). Atunci are loc egalitatea
o = A\x3 + (1 — A)z si inegalitatea de demonstrat devine

flxa) = fx1) _ flas) = fl@) _ flas) — f(za)
Mg — 1) = T3 — T1 = (1—X)(z3 —x1)
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Dupa efectuarea calculelor, obtinem

fl2) < Af(2s) + (1= A)f(21).

Implicatia (74) = (i) urmeaza traseul invers implicatiei (i) = (i), deci (i) si (¢7) sunt echiva-
lente.

Pentru a demonstra (i) = (i), fix8m x1, 29 € I \ {a} cu z; < 5. Distingem trei situatii.
Daca xr; < x < a atunci aplicam (i¢) pentru tripleta (z1,x2,a). Dacd 1 < a < x9 atunci
aplicim (i) pentru tripleta (21, a, z,). In sfarsit, daci a < 2; <  atunci aplicim (47) pentru
tripleta (a, z1, 2).

Pentru a demonstra (iii) = (i), ludm x,y €  cuz <y si A € (0,1). Atunci z < Az + (1 —
Ay < y si aplicand (7i7) pentru a = Az + (1 — A)y deducem

fl@) = fQe+ A =Ny) _ fly) = Qe+ (1= Ny)
r—Xx—(1-XNy ~— y— Adz—(1-Ny

Din nou efectuéand calculele ajungem la relatia din definitia convexitatii. Faptul ca aceasta
relatie are loc pentru orice z,y € I cu z < y si orice A € (0, 1) este suficient pentru a proba
afirmatia doritd. Demonstratia este completa. (l

Observatia 2.2.9 Proprietatea de la punctul (ii) din rezultatul precedent se numeste inegali-
tatea pantelor. O interpretare geometrica elementara justifica aceasta denumire.

Are loc urméatoarea teorema de caracterizare a functiilor convexe derivabile (de o variabild
reald).

Teorema 2.2.10 Fie I un interval deschis si f : I — R o functie.

(i) Presupundnd ca f este derivabila pe I, atunci f este convexda daca si numai daca f' este
crescatoare pe I.

(i1) Presupundnd ca f este de doua ori derivabila pe I atunci f este convexra daca §i numai
daca f"(x) > 0 pentru orice x € I.

Demonstratie In acest caz, al functiilor reale de o variabild reals, tinand cont de echivalenta
dintre monotonia lui f’ i semnul lui f” este suficient sa aratam ca f este convexa daca si numai
daca f’ este crescitoare pe 1.

Presupunem ca f este convexa gi demonstram monotonia derivatei. Fie z,y € I cu z < y.
Considerdm z € (z,y) . Conform inegalitatii pantelor putem scrie

@) =16 T -FE) _fW)=FC)
x—z y—x y—z

adica

[@-1G) < [@)-f@)

1@ < fei—fe > V2 € (@y).

y—x — y—z
Daca in prima inegalitate facem z — x, iar in a doua z — y, deducem
fly)—f(=
r < 20 g,
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deci f’ este crescitoare.
Invers, presupunem cad f’ este crescitoare gi aratdm cd f este convexa. Fie a,b € I, a < b.
Definim ¢ : [a,b] — R datd prin

g(z) = f(z) — f(a) — (v — a)f(bl)):i(a)
Evident, g(a) = g(b) = 0, iar
() = s - L,

Functia f satisface conditiile Teoremei lui Lagrange pe [a, b, deci exista ¢ € (a, b) astfel incat
f (b) — f (a) _q
Prin urmare, ¢'(z) = f'(x) — f’(¢). Din monotonia lui f’ deducem ca g este descrescitoare pe
intervalul (a,c) si crescitoare pe intervalul (c,b), iar din g(a) = ¢g(b) = 0 obtinem c& g este
negativa pe tot intervalul [a, b].
Fie A € (0,1). Atunci
r=MAa+ (1—=XN)b € (a,b).

Inlocuim in expresia lui g si tindnd cont ci g(z) < 0 deducem

FOha+ (1= W)~ f(a) — (1 = N - )OI

relatie care se reduce la definitia convexitatii. O

0,

Observatia 2.2.11 De fapt, se poate ardta (a se vedea Problema ca daca I C R este
un interval st f : I — R o functie convexa, atunci f admite derivate laterale in fiecare punct
nterior intervalului I si pentru orice x,y € int I, cu x <y avem

fL(x) < filz) < fL(y) < fiy).
Exemplul 2.2.12 Pe baza rezultatului de mai sus, deducem convexitatea urmatoarelor functii:
f:R=R, f(x) = ax+0b cuab e R; f:(0,00) =R, f(x) = —Inz; f : (0,00) = R,
flz) = xlnz; f:(0,00) =R, f(z) =2%a>1; f: R=>R, fz) =¢€% f:(—1,1) =R,
fx)=—=V1—2a% f:(0,7) = R, f(z) =sin"'x.
Un alt exemplu este dat de rezultatul urmator.
Caracterizam acum functiile convexe diferentiabile generale.

Teorema 2.2.13 Fie D C R? o multime convexa si deschisa si fie f : D — R o functie.
(i) Daca f este diferentiabila pe D atunci f este convexd dacd si numai daca pentru orice
x,y €D,
fly) = f(@) + Vf(x)(y — =)
(i1) Daca | este diferentiabila de ordinul al doilea pe D, atunci f este convexda daca gi numai
daca pentru orice v € D g1y € RP are loc

V2f(x)(y,y) > 0.
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Demonstratie (i) Consideram pentru inceput cazul p = 1. Fixdm z,y € D cu y # x si luam
A € (0,1]. Cum f este convexa, obtinem

fle+ Xy —2)=f((1=A)z+Xy)
< A=A f@)+ M (y) = fle) + X ([ (y) = [ (2)).

Prin urmare,

flz+ Ay —1) - f(x)
ANy — ) (y—2) < fy) - f(2).

Trecand la limitd cu A — 0, obtinem f'(x) (y —z) < f (y) — f (x).
Trecem acum la cazul general. Pentru z,y € D consideram functia ¢, , din Propozitia
despre care stim ca este convexa. Mai mult, ¢, , este derivabild pe intervalul deschis I, , si

Oya(t) = VI(ty+ (1 —t)x)(y — ).

Conform pasului anterior,
Pye(1) > 9y2(0) + ¢, ,(0)
ceea ce inseamns ca

fy) = f(@) + Vf(z)(y — ).
Reciproc, fixdm z,y € D si A € [0, 1]. Astfel, din ipoteza,

fe) = fAe+ 1 =Ny)+ (1 =)V (Ar+ (1= Ny) (- y)

fW=>fAr+1=Ny) + AV Az +(1-Ny)(y —z).

Inmultind prima inegalitate cu \ si a doua inegalitate cu (1—)) si adunand noile inegalitati,
obtinem

M A(x)+ A =X)f(y) = [z + (1= A)y),

ceea ce demonstreaza ca f este convexa.

(ii) Cazul p = 1 este demonstrat in Teorema Acum, pentru a demonstra cazul
general, fie x € D, y € RP. Presupunem ca f este convexa. Cum D este deschisa, exista a > 0
astfel incat u := x + ay € D. Conform ipotezei ¢, , este convexa si din cazul discutat mai sus,
@y »(t) > 0 pentru orice t € I, ,. Pentru t = 0, deducem

0< SOZ,I(O) = VZf(x)(u —Z,Uu— .I'),

de unde se obtine concluzia. Invers, pentru z,y € D it € Iy, ¢} ,(t) > 0. Din cazul p = 1,
obtinem ca ¢, , este convexa, deci f este convexa. Demonstratia este completa. 0

Din aceste rezultate se observa ca anumite proprietati ale functiilor convexe au un caracter
global, lucru ce se va constata si in continuare.
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Observatia 2.2.14 Sa mai constatam ca o functie difereniiabila este convera simultan cu
opusa sa daca g1 numai daca este afina. Intr-adevar, este clar ca o functie afina este simultan
convexa §i concava. Invers, ambele proprietats implica egalitatea

fly) = f(z) + Vf(2)(y —x), Yo,y € D,

adica, fixand x,
fy) =V f@)(y)+ (f(x) = Vf(z)(2)), Yy € D,
ceea ce inseamna ca f se scrie ca suma dintre o functie liniara i o constanta.
De fapt, aceastd proprietate are loc gi in absenta diferentiabilitatii (a se vedea Problema

:

In final, definim o proprietate mai puternici decat convexitatea.

Definitia 2.2.15 Fie D C R? o multime convexa. O functie f : D — R se numeste strict
convexa daca

fOzx+ 1 =Ny) <Af(x)+ (1 =N f(y), Yo,y € D, x #y, YA€ (0,1).

Definitia 2.2.16 Fie D C RP o multime convexa. O functie f : D — R se numeste strict
concava daca — f este strict convexa.

Evident, orice functie strict convexa este convexa in timp ce reciproca este falsa: este sufi-
cient sa consideram o functie convexa care sa fie constanta pe un interval. Din nou, proprietatile
functiilor strict concave se deduc din proprietatile functiilor strict convexe.

Folosind argumente cu totul similare celor din rezultatele precedente deducem urmatoarele
caracterizari.

Teorema 2.2.17 Fie [ un interval deschis st f : I — R o functie derivabila. Urmatoarele
afirmatit sunt echivalente:

(i) f este strict convera;

(it) f(xz) > f(a)+ [ (a)(x —a), pentru orice x,a € I,z # a;

(111) f' este strict crescatoare.

Daca, in plus, f este de doua ori derivabild (pe I), atunci avem gi echivalenta cu

(iv) f"(x) > 0 pentru oricet € I i {x € I | f"(x) =0} nu contine niciun interval propriu.

Exemplul 2.2.18 Folosind acest rezultat obtinem ca urmatoarele functii sunt strict convexe:

f:(0,00) =R, f(z) = —=Inz; f: (0,00) = R, f(z) = xzlnz; f: (0,00) = R, f(x) = z%,

a>1; f:R=R, f(x)=¢€" f:(0,00) = R, f(z)=(1+2F)», p> 1.

Teorema 2.2.19 Fie D C R? o multime convexa si deschisa si f : D — R o functie diferenti-
abila. Urmatoarele afirmatii sunt echivalente:

(i) [ este strict convera;

(i1) f (x) > f(a)+ Vf(a)(x—a), pentru orice x,a € D, x # a.

Daca, in plus, f este de doua ori diferentiabila (pe D), atunci cele doud afirmatii de mai
sus sunt tmplicate de relatia:

(iii) V2 f(z)(y,y) > 0 pentru orice z € D giy € RP \ {0}.
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2.3 Functia distanta

Definitia 2.3.1 Fie A C R? o multime nevida s fie v € RP. Definim distanta de la x la A
prin relatia:
d(z,A) = inf{||z —a|| | a € A}.

Punem in evidenta cateva proprietati fundamentale ale distantei de la un punct la o multime

(nevida).

Teorema 2.3.2 Fie A C RP, A # (). Atunci:

(i) d (z,A) = 0 dacd si numai daci x € A.

(ii) Functia ds : RP — R data prin ds(x) = d(x, A) este 1— Lipschitz.

(111) Dacd A este inchisd, atunci pentru orice x € RP, existd a, € A astfel incit d(x, A) =
|x — as|| . Daca, in plus, A este convexa, atunci a, cu proprietatea precedenta este unic i este
caracterizat de proprietatile a, € A §i (x — a,,u — a,) < 0 pentru orice u € A.

Demonstratie (i) Au loc echivalentele
d(z,A) =0« inf ||z —a| =0
acA

& 3(a,) CAcu lim ||z —a,|]| =0 2 € A

(ii) Pentru orice z,y € RP si orice a € A au loc relatiile:
d(z,A) < |z —al <|flz =yl + |y —all.
Cum a este arbitrar in A deducem
d(x, A) < ||z —yl| +d(y, A)
adica

Inversand rolurile lui z si y avem:

adica concluzia.

(iii) Daca x € A, atunci a, := = este unicul element cu proprietatea anuntata. Fie = ¢ A.
Cum d(z, A) este un numar real, exista r > 0 astfel incat A; := AN D (x,r) # 0. Observam
cad A; este mulfime compactd, deci functia g : A; — R, g(y) = ||z — y|| este continud pe o
multime compacta. Conform teoremei lui Weierstrass, ¢ isi atinge minimul pe A;, adica exista
ay € Ay cu g(ay) = infyeca, g(y) = d(x, A1). Dar se observa cd d (v, A;) = d(x, A) si prima
concluzie urmeaza. Presupunem acum ca, in plus, A este convexd. Din nou, daca z € A, nu
avem nimic de aratat. Ludm x ¢ A. Consideram ay,ay € A cud(z, A) = ||z — ay|| = ||z — as]| .
Folosind egalitatea paralelogramului avem

[z —a) + (@ —a)|* + [(z —a1) = (x — a)|* =2 ||z — au || + 2 ||z — aa?,
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adica
122 — a1 — as||* + [las — a1||* = 4d*(z, A)

si impartind prin 4 obtinem

2
+ 47 ay — ay|® = B (x, A).

a1 + as
l’_

Cum A este convexa, 2! (a;+az) € A, deci ||z — 252 H2 > d?(x, A). Aceastd relatie si egalitatea
precedentd aratd ca ||jaz — a1]| = 0, deci a; = ay. Demonstratia unicitatii este completd. S&
demonstram acum ca a, verifica relatia (r — a,,u — a,) < 0 pentru orice u € A. Pentru aceasta
ludm u € A. Atunci pentru orice o € (0, 1]

v=ou+ (1l —a)a, € A.

Deci
|2 —a.]| <l —au—(1—-a)a;| = |lz —a; — alu—a,)],

de unde, prin ridicare la patrat,
|z — az||* < ||# — au||* — 20 (T — ap,u — ag) + % ||u — ag|*.
Dupa reducere si simplificarea cu a > 0 obtinem
0< —2(x —ag,u—ay) +alu—a.

Facand o — 0 obtinem inegalitatea anuntata. Invers, dacd un element a € A satisface
(x —a,u — a) < 0 pentru orice u € A, atunci pentru orice v € A

lz = al|* = ||z = o||* = 2(z — a,v — a) — la —v|* <0,
deci a coincide cu a,. Demonstratia este incheiata. 0

In cazul in care A este inchisa si convexa, atunci pentru x € RP notam elementul a, € A cu
pr, x si-l numim proiectia lui x pe A.

Observatia 2.3.3 Daca A este convezd si nevida, atunci dy este convera (a se vedea Problema

2.74).

2.4 Conuri

Unul dintre obiectele fundamentale pentru studiul nostru este definit mai jos.
Definitia 2.4.1 O submultime nevida C C R? se numeste con daca are loc proprietatea
Vye C, VA e R, :=10,00), \y € C.

Conform acestei definitii, orice con contine elementul 0.
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Propozitia 2.4.2 Un con C' este multime convexa daca gt numai daca C + C = C.

Demonstratie Presupunem mai intai ca C' este in acelasgi timp con si multime convexa. Cum
0 € C, esteclar ca C C C+ C. Fieu € C + C. Atunci exista ¢, co € C incat ¢; + ¢o = u. Dar,
tinand cont de proprietatile lui C' si de scrierea echivalenta

u=2 (2_101 + 2_102)

deducem faptul ca u € C. Pentru implicatia inversa, presupunem ca C este con gi C' + C =
C. Fie a € (0,1) si ¢;,co € C. Atunci, din proprietatea de con, acy, (1 — a)ca € C si deci
acy + (1 —a)ey € C+ C = C, observatie care incheie demonstratia. O

Infisuritoarea conici a unei multimi nevide A C R? este multimea
conA =[0,00)A:={ax|a>0, x € A}.

Din nou, con A este cel mai mic con ce contine A (a se vedea Exercitiul [2.49)).
Fie S C R? o multime nevida. Numim polara lui S multimea

ST i={uelRl|(u,x) <0, Vx € S}.

Este usor de constatat cd S~ este un con convex inchis si cd, in general, S C (S7)~. De

asemenea, S~ = (conS) (a se vedea Exercitiul 2.49).

Exemplul 2.4.3 1. Fie S = {(z,0) € R? | > 0}. Este usor de observat cd S~ = {(z,y) €
R? | x < 0}. Evident, (S7)” = S~.

2. Polara lui R? := {(z,y) € R? | z,y > 0} este R? := {(z,y) € R? | z,y < 0}. Multimea
S = {(z,0) € R? | 2 > 0} U {(0,y) € R* | y > 0} are ca polard tot multimea R?. Deci, in
general, S; =S, nu implica faptul ca S; = .5,.

De-a lungul acestui curs vom avea nevoie de multe ori de conceptul de vector tangent intr-un
punct la o multime. Introducem acum acest concept.

Definitia 2.4.4 Fie M C RP o multime nevida si * € M. Un vector u € RP se numeste
tangent la multimea M in T daca exista (t,) C (0,00),t, — 0 si (u,) — u astfel incdt pentru
orice n € N,

T+ tyu, € M.

Evident, este suficient ca relatia de mai sus sa aiba loc pentru orice n € N de la un loc
incolo (pentru n suficient de mare).

Teorema 2.4.5 Multimea, notata T'(M,T), a tuturor vectorilor tangenti la M inT este un con
inchis, numit conul tangent (in sens Bouligand) la M in 7.

Demonstratie Mai intai observam ca 0 € T'(M,T) pentru ca este suficient sa ludm (u,) sirul
constant 0.
Fie acum u € T(M,T) si A > 0. Conform definitiei, exista (¢,) C (0,00), t, — 0si (u,) — u
astfel incat pentru orice n € N,
T+ tyu, € M.
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Evident, ultima relatie este echivalenta cu

T+ Xn()\un) € M.

Cum (%") — 081 (A\uy,) — Au, deducem cd \u € T'(M, T), deci T'(M,T) este con. Ardtdm acum
cd inchiderea lui T'(M, T) este inclusd in T'(M,T). Fie (u,) C T(M,Z) si (u,) — u. Trebuie s&
aritdm ci u € T(M,T). Pentru fiecare n € N, existd (%), C (0,00), t& kg

astfel incat pentru orice k € N,

— 0 (u )klooun

T+ thuf € M.

Urméand un procedeu de diagonalizare, pentru orice n € N\ {0}, exista k,, € N astfel incat (k)
este strict crescator si au loc relatiile:

ke
tn

A

:IHSIH

Evident, sirul de numere pozitive (t*»),, are limita 0 si din relatia
lun = wll < flur = wal| + flwn = ]
deducem c& (uf») — u. In plus, pentru orice n € N,
T+ thrufr € M,
deci, u € T(M,T) si demonstratia este incheiata. O
Un prim exemplu este urmatorul.

Exemplul 2.4.6 1. Fie discul M C R* M := {(x,y) € R? | (z — 1)? + y* < 1}. Atundci
T(M,(0,0)) = {(z,y) € R* |z > 0}.
2. Se poate cu usurintd observa cd dacd C' C R? este un con inchis, atunci 7(C,0) = C.

Propozitia 2.4.7 Daca ) # M C RP i T € M. Daca T € int M, atunci T(M,T) = RP.

Demonstratie Daca T € int M, atunci pentru orice u € R? si orice (t,) C (0,00),t, — 0 avem
T + t,u, € M pentru orice n suficient de mare. Aceasta aratd, in particular, ca u € T'(M,T),
de unde obtinem concluzia. O

Observatia 2.4.8 FEste clar ca are loc relatia T(M,z) = T(M —7,0), deci a determina conul
tangent la M in T revine la a determina conul tangent la M — = in 0.

Sa remarcam ca, in general, conul tangent nu este convex si relatia T'(M,T) = RP poate
avea loc, chiar dacd T ¢ int M.
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Exemplul 2.4.9 1. Fie M C R*, M = {(z,y) |z >0,y =0} U{(z,y) | z =0,y > 0}. Atunci
T(M,(0,0)) = M nu este o multime convexa.
2. Fie multimea M data de curba (numita cardioida) avand urmatoarele ecuatii parametrice

{ x = —2cost+cos2t+1 te [O,27r],

Yy = 2sint — sin 2¢
impreund cu interiorul siu geometric. Atunci T'(M, (0,0)) = R?, dar (0,0) ¢ int M.

Vom nota cu N(M,Z) polara lui T'(M,z) (i.e. N(M,z) := T(M,Z)") si vom numi acest
con conul normal la M in 7.
Daca multimea M este convexa, atunci conul tangent capata o forma speciala.

Propozitia 2.4.10 Fie ) # M C R? converd i T € M. Atunci
T(M,z) =clR (M —7),
ar
NM,z) ={ueR?| (u,c —T) <0,Yc e M}.
Demonstratie Fie c € M i d :== ¢ — T. Fie (tx)r — 0. Atunci
T+trd=(1—t)T+tce M

sideci M —7 C T(M,T). Cum T(M,T) este con inchis, obtinem clR, (M — %) C T(M,T). Fie
u € T(M,Z). Conform definitiei vectorului tangent, existd (tx) C (0,00),t, — 0 si (ug) — u
astfel incat pentru orice k € N,

Ty = T + tyu, € M.

Deci u = limy, *~*. Dar <M> C R, (M — 7). Deducem ci T(M,z) C clR, (M — 7). Ne
k

2
reamintim ca, prin definitie,

N(M,z) =T(M,z)” ={u e RP | (u,v) <0, Yo € T(M,T)}.

Acum, tinand cont de forma particulara a conului 7'(M,Z), deducem concluzia. [l

2.5 Teorema lui Lyusternik

Urmatorul rezultat, care ne va fi util intr-un moment cheie al discutiei principale legate de
probleme de optimizare, a fost demonstrat in anul 1934 de Lazar Lyusternik.

Teorema 2.5.1 (Lyusternik) Fie D C R? este o multime deschisa, f: D — R? o functie de
clasa C' six® € D. Fie

M= (f(@)={zeD| f(z) = f@)}.

Daca diferentiala V f(T) : RP — R? este surjectiva, atunci conul tangent M inT este nucleul
aplicatiei liniare V f(T), adica

T(M,7) =KerVf(Z) ={veR|Vf(T)(v)=0}.

22



Demonstratie. Si observam pentru inceput cid surjectivitatea lui V f(T) atrage faptul ci
p > q. Apoi, observam ca, fard a restrange generalitatea, putem lua T = 0 si f(Z) = 0,
considerand altfel functia = +— f(x + ) — f(T). Notdm A := V f(0).

Fie acum u € T(M,0). Dacd u = 0 atunci este clar cad u € Ker Vf(0). Presupunem c&
u # 0. Conform definitiei vectorului tangent, existd (¢,) C (0,00),t, — 0 si (u,) — u astfel
incat pentru orice n € N, t,u,, € M. Asadar, f(t,u,) = f(0) = 0, pentru orice n € N. Pe de
altd parte, deoarece f este de clasa C!, obtinem c&

F O+ tyu,) — f(0) — A(tyuy)

lim

=0,

de unde deducem ca Au = 0, adica u € Ker A.

Incluziunea inversa se bazeaza pe scrierea ecuatiei f(x) = 0 intr-o forma de tipul f(y,z) =0
si pe aplicarea Teoremei Functiilor Implicite.

Definim K := Ker A si

L=K'={zcRP|(z,u) =0, Yuec K},
complementul sau ortogonal. Folosind Teorema rangului pentru aplicatii liniare, vom avea ca
dim Ker A + dimIm A = p.

De asemenea, cum A este surjectiv, vom avea ca dim Im A = ¢. Asadar, vom putea identifica,
printr-o eventuald schimbare de baze, K si L cu R~ gi RY, respectiv (de fapt, K = RP79x{0}7,
L = {0}’ x R?). Scriem un punct oarecare = € R? sub forma = = (y,z) € K x L. Vom avea,
pentru orice (u,v) € K x L, ca

A(”? U) = Vyf(0> (u) + sz(O)(v),
de unde, pentru orice (d,0) € RP~7 x {0}? (identificat cu K = Ker A),
0= A(d,0) =V, f(0)(d),

deci V, f(0) = 0. Folosind aceastd relatie si tinand cont de faptul ca rang A = ¢, urmeaza
cd rang V., f(0) = ¢, adicd, privitd ca matrice (jacobianul), V. f(0) este nesingulara si deci ca
aplicatie este bijectiva.

Folosind Teorema functiilor implicite, vor exista doua vecinatati U; C RP7? g1 Vi C RY ale
originilor si o functie o : U; — V; de clasd C! astfel incat a(0) = 0 si cu proprietatea ci orice
punct = = (y, z) € Uy x V; satisface f(z) = 0 dacd si numai dacd z = a(y). Ecuatia f(z) =0
se va putea atunci scrie sub forma f(y, a(y)) = 0. Diferentiind aceasta relatie si tinand cont de
regula lantului, vom obtine

0=V,f(y,ay)) + V.f(y,a(y)) Va(y).

Tinand cont ca o(0) =0, V, £(0,0) = 0, iar V,f(0,0) este nesingulard, obtinem Va(0) = 0.
Fie acum v = (v1,0) € RP77 x {0}? (ca mai sus, identificat Ker A). Atunci, cum « este de
clasi C!, vom avea, ca mai sus, pentru un sir arbitrar (¢,) C (0,00),t, — 0, c&

a(t,vy)

— Va(0)(vy) = 0.

n
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Va exista asadar

astfel incat
f(tnun) - f (tn’Uh Oé(tn’l}1>> = 07

sau, echivalent, t,,u,, € M, pentru orice n suficient de mare. Rezulta v € T'(M,0), deci implicatia
inversa este demonstrata si are loc concluzia teoremei. U

Exemplul 2.5.2 Fie a,b > 0 si multimea inchisa (elipsa)

1:2 y2
M:{(a:,y)eRz\?—i—ﬁ:l}

Ne intereseaza expresia conului tangent la M intr-un punct oarecare (Z,y) € M. Pentru aceasta,
consideram functia f : R? — R data prin
x

Astfel,
M= f7(1) = fH(f(Z,9)).

Observam de asemenea ci diferentiala V f(7,7) : R? — R este

2z 2y
V(@ 7) (wv) = Sut v,

aplicatie care este surjectiva in virtutea faptului ca
(7,7) #0 € R?.

Astfel, conform Teoremei lui Lyusternik, conul tangent la M in (Z,7) este dreapta

zu
{(U,U)ERzyg—i-ﬁO}

2.6 Lema lui Farkas

Rezultat algebric pe care il prezentam in finalul acestui capitol va fi foarte important in con-
tinuare. El a fost obtinut de catre Julius Farkas in 1902.

Teorema 2.6.1 (Lema lui Farkas) Fie n € N\ {0}, (¢i)icr C L(R?,R) si o € L(R?,R).
Atunci
Ve € RP: [p1(z) <0,...,00(x) <0l = ¢(x) <0 (2.3)

daca si numai daca exista (o;);c17 C [0,00) astfel incat ¢ =1 | o,
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Demonstratie Implicatia de la dreapta la stdnga este evidenta. Demonstram cealalta implicatie
prin inductie dupa n > 1. Definim propozitia P(n) ce afirma ca pentru orice ¢, 1, ..., @, €
L(RP,R) satisfacand existd ()1 C [0,00) astfel incat p = "1 a;p;.

Ariitim ci P(1) este adevirata. Intr-adevir, fie o, p; € L(RP,R) astfel incat

v1(x) <0 = p(z) <0.
Daca ¢ = 0 atunci, evident, ¢ = 0p;. Fie ¢ # 0. Atunci, folosind ipoteza,
p1(z) = 0 < [p1(2) < 0,901(=x) < 0] = [p(2) < 0,0(—2) < 0] & @(z) =0,

deci Kerp; C Kerg. Cum ¢ # 0, avem ¢ # 0, deci existd T € R? cu ¢1(7) = —1. Tot din
ipotezd, p(T) < 0. Fie x € R? arbitrar. Atunci, este simplu de verificat ca

z + ¢1(x)T € Ker ¢y,

deci
x+ ¢1(x)T € Ker g,

adica
¢ (z+pi(z)T) =0,
ceea ce conduce la
o(x) = —p(T)p1(2).
Cum z este arbitrar, relatia din enunt este aratatd pentru oy := —p(T) > 0.
Presupunem acum ci P(n) este adevirata pentru un numar fixat n > 1 si ardtdm cd P(n+1)
este adevarata.
Fie ¢, 01, ..., ¢n, oni1 € L(RP,R) astfel incat

Ve € RP : [p1(x) <0,...,00(x) <0,0,11(x) <0] = p(z) <0. (2.4)

Daca
Ve e RP : [p1(z) <0,...,00(x) <0] = ¢(z) <0, (2.5)

atunci, din P(n), existd (a;);c
concluzia are loc.

Presupunem ca nu are loc relatia . Atunci exista T € RP astfel incat p(T) > 0 si
©:(Z) < 0 pentru orice i € 1,n. Cum are loc , Yn+1(T) > 0; putem presupune (dupa o
eventuald multiplicare cu un scalar strict pozitiv) ca ¢,1(Z) = 1. Dar

i C [0,00) astfel incat ¢ = Y77 o5 ludm apyy = 0 si

(anrl(x - (PnJrl(x)f) = 07 Vo € Rp’
iar din (2.4) deducem

Vo € R”: [p1(z — 0n1(2)T) <0,..., o2 — o1 (2)T) < O]
= ¢(x = ppp1(2)T) < 0. (2.6)

Luim acum ¢} := @; — ©;(T)pn1 pentrui € 1,n si @' = ¢ — (T)p, 11, iar relatia (2.6) devine

Ve e R : [pi(z) <0,...,0,(z) <0] = ¢'(z) <O0.
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Cum P(n) este adevirata, existd (o;);cr,; C [0,00) astfel incat ¢’ = Y77 | ;0. Deducem
Y — §0n+1 Z a’L @i @n#»l]

deci o = S augps, unde gy = 9(T) — 31, @ipi(T) > 0 din alegerea lui 7 i din faptul ci
a; > 0 pentru i € 1,n). Demonstratia este completa. U

Avand in vedere identificarea dintre L(RP,R) si R? se obtine urmatorul corolar.
Corolarul 2.6.2 Fien € N\ {0}, (a;);ci; C R? gi a € RP. Atunci
Ve e RP: [{(a1,2) <0,...,{ay,z) <0] = (a,z) <0
dacd si numai dact existd (o)1, C [0,00) astfel incat a =) | osa;.
Exemplul 2.6.3 Fie A C R? dati prin
A= {xER?’ | 3x1 — 29+ 223 = 0,21 + 25 > 0,23 SO}.

Dorim sa scriem polara multimii A.
Prin definitie, u € A~ daca si numai daca pentru orice x € A, (u,z) < 0.
Consideram vectorii a = (3,-1,2),b=(-3,1 —-2), ¢c=(—1,-1,0), d = (0,0, 1) si atunci

(a,z) <0

3 <b,33>§0

r€e€A <= reR’ le.z) <0
(d,xz) <0

Prin urmare

(a
ueA < |zeR’ éix = (u,z) <0
(d,z) <

Conform Lemei lui Farkas, ultima implicatie este echivalenta cu faptul ca exista o, 3,7,0 > 0
astfel incat
u=aa+ Bb+ yc+dd.

Deci
A" ={Ba—-38—-v,—a+ B —7,2a—26+96) | o, 3,7,0 > 0}.

Exemplul 2.6.4 Sa calculam conurile tangente si conurile normale in diferite puncte la multimea
M C RP,

p
M = {Q?_ (1'1,1’2,...,1'17) € R? ’ ZT; 20, \4) Em, Z.I'Z: 1},

=1
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numita simplexul unitate. Aceastd multime este, evident, convexa si inchisa. Conform rezul-
tatului precedent, pentru fiecare T € M,

T(M,7) = IR, (M — )
=cl{ueRl|Ja>0, e M, u=alx—7)}.

Fie u din multimea din membrul drept. Este clar c&, pe de o parte, > 7_ u; = 0 iar, pe de alti
parte, dacd ; = 0, atunci u; > 0. Notém cu I(z) := {i € I,p | ; = 0} . Deducem ci

p
T(M,T) C {u ER?|D ui=0siu; >0, Vie [(f)} .
i=1
Sa demonstram incluziunea inversa. Este simplu de verificat ca multimea din dreapta este
inchisd. Fie u din aceastd multime. Daca u = 0, atunci, evident, u € T(M,T). Dacd u # 0
atunci trebuie s§ ardtam cd existd o > 0 cu T+au € M. Pe de o parte, faptul c& > > (T;+ou;) =
1 este clar pentru orice a. Daca nu exista indici ¢ cu u; < 0, atunci si faptul ca z; + au; > 0,
pentru orice i € 1,p este evident si deci u € T(M,T). Presupunem acum ci muliimea J a
indicilor pentru care u; < 0 este nevidd. Atunci J C 1,p\ I(%), deci T; > 0 pentru orice j € J.
Alegem atunci « strict pozitiv cu

a < min{—u;'z; | j € J}

si avem din nou ca T; + au; > 0, pentru orice ¢ € 1, p. Prin urmare si in acest caz u € T (M, T),
deci are loc egalitatea.
In continuare, aratam ca

N(M,7) ={(a,a,...,a) € R” | a € R}
+{velR|v; <0, Viel(T), v,=0,1¢1(T)}.

Pentru aceasta consideram elementele
a = (1,1,...,1), a; = —(1,0,...,0), ..., a, = —(0,0,...,1)
si observam urmétoarea scriere echivalenta a lui T'(M, T) :
T(M,7) ={u € R” | (ag,u) <0, (—agp,u) <0, (a;,u) <0, VieI(T)}.

Polara acestei multimi este

N(M,z) = aag — Pag + Z aa; | a, B, >0, Vi€ I(T)

i€l ()

Intr-adevar, faptul ca multimea din dreapta este inclusa in conul normal este evident, iar
incluziunea inversa rezultd din Lema lui Farkas (Teorema [2.6.1]) intrucat:

veNMT) < (u,v) <0,YueT(M7T)
< Yu e R”: [(ap,u) <0, (—ap,u) <0, (a;,u) <0, Vi € [(T)] = (u,v) <O0.

Astfel, se ajunge la forma anuntata a conului normal.
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2.7 Exercitii

Exercitiul 2.1 Sa se arate ca o multime nevida D C RP este convexa daca si numai daca D
contine orice combinatie convexa a elementelor sale.

Exercitiul 2.2 Fie D C RP o multime nevida. Sa se arate ca multimea conv D este cea mai
mica multime convexd (in sensul incluziunii) care contine multimea D.

Problema 2.3 Sa se arate ca infasuratoarea convexa a unei multimi inchise nu este neaparat
inchisa. Sa se arate ca infasuratoarea convera a unei mullimi compacte este compacta.

Problema 2.4 Sa se arate ca infasuratoarea convexa a unei multimi deschise este deschisa.
Exercitiul 2.5 Fie A, B C R? multimi nevide convexe. Sa se arate ca

conv(AUB) ={aa+ (1—a)blac Abe B,a €0,1]}.
Exercitiul 2.6 Fie A, B C R? multimi nevide. Sa se arate ca conv (A + B) = conv A+conv B.

Problema 2.7 Fie A C RP nevida. Definim

A:=[0,1][A={aa | a€0,1],a € A}.

Sa se arate ca: B
(i) daca A este compacta, atunci A este compacti;
(ii) daci A este convexa, atunci A este convexd;
(i11) reciproca afirmatiei de la (i) nu este adevarata;
(iv) reciproca afirmatiei de la (ii) nu este adevaratd.

Problema 2.8 Fie A C RP o multime nevida. Definim infasuratoarea echilibrata a multimii
A prin
echid:=[-1,1]A={aa|ae[-1,1],a € A}.

(i) Sa se scrie infasuratoarea echilibratd a multimii C = {(z,y) € R? | (z — 1)° 492 = 1}.

(i) Sa se arate ca, in general, daca A este compacta, atunci echi A este compacta, dar
reciproca nu este adevarata.

(111) Este infaguratoarea echilibrati a unei multimi convexe multime convexa?

(iv) Sa se stabileasca valoarea de adevar a relatiei conv (echi A) = echi (conv (echi A)) .

Exercitiul 2.9 Sa se arate ca simplexul unitate este multime compacta §i conveza.

Exercitiul 2.10 Fie A C RP \ {0} o multime compacta. Sa se arate ca infasuratoarea conica
a lui A este multime inchisa. Se mentine concluzia daca 0 € A?

Problema 2.11 Fie A, B,C C R? multimi nevide astfel incat C este marginita. Sa se arate
ca daca A+ C C B+ C, atunci A C convB.
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Exercitiul 2.12 Fie f : R — R o functie convexa st v,y € R cu x < y. Consideram un scalar
A > 1. Sa se ordoneze crescator numerele (1 — \)x + Ay, x,y. Sa se arate ca

(=N f(@)+Af(y) < [((1 =Nz + Ay).
Ce se poate spune in cazul A < 07 Interpretati geometric rezultatele.

Problema 2.13 Fie f : R — R o functie convexa.

(i) Fie a,b € R, a < b. Sa se studieze pozitia graficului lui f in raport cu dreapta ce trece
prin (a, f(a)) gi (b, f(b)).

(i1) Sa se deduca faptul ca daca f este marginita, atunci este constanta. Sa se deducd faptul
ca daca f este in plus crescatoare, atunci lim, o, f(x) = co.

Solutie (i) Este clar (din interpretarea geometrica a convexitatii) ca pentru x € [a, b], graficul
lui f se afld sub dreapta ce uneste punctele (a, f(a)) si (b, f(b)) si care are ecuatia

y=TO T oy fla)

Pentru > b, din convexitate si din a < b < z deducem

1)~ f(a) _ J2) ~ f(a)
b—a - xr—a
adica )
fw) > =IOy 4 g,

adica graficul lui f este deasupra dreptei. Aceeasi concluzie se obtine in mod analog pentru
x < a.

(ii) Presupunem ca f nu ar fi constantd. Atunci ar exista a,b € R cua < bsi f(a) # f(b).
Putem considera, fara a restrange generalitatea, ca f(b) > f(a). Cum pentru z > b,

J(b) — f(a
fw) > =IOy g,
—a
obtinem ca lim, . f(z) = 400, adicd f nu este marginitd. Ultima concluzie rezultd din
consideratiile anterioare. O

Problema 2.14 Fiea,b € R, a <b gi f: (a,b) — R convera. Sa se arate ca [ este marginita
inferior. Este in general f marginita?

Solutie Fie xo < x1 < x5 trei puncte din intervalul (a,b). Pentru = < x1, avem

f(z1) — f(2) < f(x2) — f(21)

T — X - T9g — I1

ceea ce atrage
f(z2) — f(21)

T2 — X1

(21 — ) + f(21) < fl2),
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deci f este marginita inferior pe (a,z1]. Analog, pentru x > 1,

fz) — f(z1) > f(z1) — f(z0)

T — T B xr1 — I

e @) — o)
T1) — J(Zo
+ f(zo) < f(a).
1 — X
Obtinem ci f este marginita inferior pe [z1,b), deci, in final este marginita inferior pe (a, b).
In general, marginirea superioara nu este asigurata. Ca exemplu, consideram functia f :

(=3.3) = R, f(z) = |tga|. 0

(x — x1)

Problema 2.15 Fie f : R — R o functie conveza.
(1) Sa se arate ca dacd lim, ., f(z) =0, atunci f(x) > 0, pentru orice v € R.
(ii) Sa se arate ca f admite asimptota la +00, atunci graficul sau este deasupra asimptotei.

Solutie (i) Presupunem, prin reducere la absurd, ci existd un punct zo € R cu f(z¢) < 0. Din
ipotezd, existd z1 > x¢ cu f(z1) > f(x). Pentru x > z; are loc (pe baza convexitétii)

Fay) = F(o) _ J() = F()

xr1 — Xo - T — I

)

deci
Flan) + (@ — x1>f<x1) f (o)
T — To
Obtinem contradictia lim, ., f(z) = oc.
(i) Fie y = az + b ecuatia asimptotei. Functia g : R — R, g(z) = f(x) — ax — b este convexa
(sum4 dintre o functie convexa si o functie afind) si, in plus, lim, ., g(z) = 0. Aplicim punctul
precedent si rezulta concluzia. 0

< f(z).

Exercitiul 2.16 Fie D C RP o multime convezxa i f : D — R. Sa se arate ca urmatoarele
afirmatii sunt echivalente:

(i) [ este convexa;

(ii) epigraful lui f, epi f := {(x,t) € D x R | f(z) < t} este o submultime converd a lui
RP x R.

Exercitiul 2.17 Fie D C R? o multime convezra si f : D — R o functie convexa. Sa se arate
ca pentru orice a € R multimea

Nof ={z € D| f(z) < a}
este convexda. Are loc reciproca? Sa se arate ca proprietatea de mai sus este echivalentd cu
Va,y € D,VA € (0,1), f(Ax + (1 — N)y) < max{f(z), f(y)}.

Exercitiul 2.18 Fie a,b > 0. Sa se arate ca multimea

.CL’2 y2
{(:c,y)eR2|§+b—2§1}

este convezxa.
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Exercitiul 2.19 Fie D C R? o multime convexa gi f,g : D — R o functii convexe. Sa se arate
ca functia max{f, g} este convera. Este min{f, g} convera, in general?

Problema 2.20 (Inegalitatea lui Jensen) Fie D C R? o multime convexd si f : D — R.
Daca functia f este convexa atunci

pentru orice m € N\ {0}, z1,...,2m € D, A, .., Ay 2> 0, Ay + ... + Ny = 1. Inegalitatea este
stricta daca functia f este strict convexa, cel putin doud din punctele (xy) sunt distincte si
scalarii (\) corespunzatori sunt strict pozitivi.

Problema 2.21 (i) Folosind inegalitatea lui Jensen functia strict convexd f : R — R, f(x) =
e” deduceti: pentru orice n € N\ {0} gi x1,29,...,2, € R, Ay, Ao, s Ay >0 cud Ay =1 are
loc .
e2k=1ARTk < Z g
k=1
cu eqgalitate doar in cazul x1 = x9 = ... = T,,.
(ii) Aratati ci pentru orice ay, Qg ...,an >0 §i A1, Aoy s Ay >0 cu >y A =1 are loc

n

A1 A2 A

ajtay’...ap < E A Q-
k=1

(11i) Deduceti inegalitatea mediilor.
(iv) Deduceti ca pentru orice u,v >0 §i p,q > 1, ]l? + % =1 are loc
v

+ -

11 u
urve < —
p q

Cand are loc egalitatea?
(v) Deduceti inegalitatea lui Holder: pentru orice p,q > 1,

Y1, Y2, -, Yn > 0 are loc
n 7
d vk
k=1

Exercitiul 2.22 Fie f: (0,00) — R, f(z) = —Inz. Sa se arate ca [ este convexa si ca pentru
orice n € N\ {0}, (2;);er C (0,+00) cu Y} x; =1 are loc

1 n
In— < s n ;.
nn_zljx nx

Exercitiul 2.23 Sa se arate ca f : (1,00) — R, f(z) = —In(Inx) este convexa. Deduceti ca
pentru orice a,b > 1 are loc relatia

b
Vinalnb <In (a—; ) .

+=>=1, z1,29,...., 2, > 0 1

SR
Q=

D=

Z TrYp < (Z xi)
k=1 k=1

Cand are loc egalitatea?
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Solutie Derivata a doua a lui f pe intervalul de definitie este

1 1
22lnz  22In’z

fll(m) —

Cum z > 1 aceasta functie este pozitiva, deci f este convexa.
Pe baza acestei proprietati, deducem

—In <ln ¢ ;_ b) < —% (In(lna) +In(Ind)) = —In(VInalnb),

de unde se obtine inegalitatea cautata. 0

Exercitiul 2.24 Sa se arate ca daca o, 3,y sunt unghiurile unui triunghi, atunci

3V3

sina +sin 8+ siny < -

Problema 2.25 (Inegalitatea Hermite-Hadamard) Fiea,b € R, a <b gi f :[a,b] = R o
functie convexa si continua pe |a,b|. Atunci are loc inegalitatea

((352) 25t [ o 20320

Problema 2.26 Sa se arate ca urmatoarele functii sunt convexe si sa se scrie inegalitatea
Hermite-Hadamard in fiecare caz in parte pe diferite intervale compacte:

(i) f:[0,00) > R, f(z) = (z+1) %

(i) f: R — R, f(x) = %

(111) f:[0,7] = R, f(z) = —sinx.

Problema 2.27 Fiea,b € R, a <b si f: [a,b] — R o functie de clasa C? astfel incdt exista
m,M € R cum < f"(x) < M pentru orice x € [a,b]. Sa se arate ca

Ul bia/abf(as)dm—f(‘%b) <=9’

24 24
§t ,
(b—a)* _ f(a)+ f(b) 1 (b—a)?
My =T g _b—a/af(:”)d“TSM 12

Solutie Este usor de observat ca functiile

2 fla) = T
2
v T ()

sunt convexe si continue. Ambele inegalitati cerute se obtin aplicind inegalitatea Hermite-
Hadamard acestor doua functii. 0
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Exercitiul 2.28 Fiea, b€ R, a <b gi f:[a,b] — R o functie L-Lipschitz (L > 0). Sa se arate

- [ s < i+(ﬁf?j2L@_@.

Solutie Putem scrie succesiv

- [ o] <[ [ - s

si inegalitatea este demonstrata. U

Problema 2.29 Fie f : [a,b] — R de clasa C* astfel incat f(a) = f(b) = 0. Fie M :=
Sup:pe[a,b} |f,/ (I’)’ ‘57/ 9, h [G, b] - Ra

r—a)b—x r—a)b—x
o(@) = f@) - Ty ey - = O0ZT)
Sa se arate ca g, h sunt convexe si sa se deduca inegalitatea
_ b _
£ < 2D g e oy,

Problema 2.30 (i) Fie a,b € Rja < b, M > 0 gi (f) : [a,b] — R un sir de functii
M — Lipschitz pe [a,b]. Sa se arate ca daca (f,) este convergent punctual pe |a,b], atunci (f,)
este uniform convergent pe [a,b|.

(ii) Fie a,b € R, a < b, gi (f,) : (a,b) — R un gir de functii convexe convergent punctual pe
(a,b). Sa se arate ca sirul (f,) este uniform convergent pe orice subinterval inchis al lui (a,b).

Solutie (1) Este clar cd dacd f este limita punctuald a lui (f,,), atunci f este ea insdgi M —Lipschitz.
Fie € > 0. Fixdm o divizare a intervalului (a,b) de forma

a=ap<a;<..<op,=>b

de norma mai mica decat 3. Din convergenta punctuald exista un rang ng suficient de mare
incat pentru orice i € 0, p,

| fn(cs) — flaw)] <e.

Fie x € [a,b]. Exista i € 0,p — 1 cu x € [a;, i11]. Avem

[fu(@) = f(2)] < [fu(2) = fulas)| + | fulcu) = flea)| + [f(ai) — f(2)]
<Mz —ol+e+ M|z — oy < 3e.
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Deci (f,,) este uniform convergent citre f.
(ii) Vom reduce problema la cazul precedent. Fie [o, 3] C (a,b) si o € (a,a), 5" € (5,b).
Cum f,, este convexa, pentru orice z,y € |«, ] cu x # y,

ful@) = fule') _ fulz) = faly) _ falB) = fu(B')
a—o T x-y = B=p

Membrii extremi ai acestei inegalitati sunt marginiti (din convergenta punctuald), deci exista

M >0 cu
w < M, Yo,y o fl, 24y, WneN,
Asgadar, functiile (f,) sunt echi-Lipschitz pe [«, 5], deci se aplica punctul (i). O

Exercitiul 2.31 Fie f,g: R — R. Sa se arate ca daca [ este convexa iar g este afind atunci
f o g este conveza.

Exercitiul 2.32 Fie f : (0,00)— R conveza. Sa se arate ca ¢ : (0,00)— R data prin
1
ow) = ()

Problema 2.33 Fie f : R? — R. Sa se arate ca f este simultan convexa si concava daca §i
numai daca f este afina.

este convezxa.

Exercitiul 2.34 Sa se arate ca f : R — R data prin f(x) = Va?+ 1 este convexd. Fie
n € N\ {0} . Deduceti inegalitatile:
(i) pentru orice numere reale ay,as, ..., ay,

Via+as+..+a,)2+n2<yJai+14+/ad+1+ ..+ a2 +1;

(i)

g\/n2—|—2n—|—5<\/12+1+\/22+1+...+\/n2+1.

Exercitiul 2.35 Fie g:[-2+1/2,4+00) — R, g(x) = 2%e”. Sa se arate ci g este strict convexd
§i apoi sa se arate ca pentru orice n € N\ {0}, (2;);e1; C [-2+ V2, +00) cu YTz =2 are loc

n

n/ o n
43/e? < Zx?emi‘
1

Exercitiul 2.36 (i) Sa se arate ca functia f : R — R data prin f(x) = In(1+€") este conveza.
(i1) Sa se arate ca pentru orice 1, ...,x, >0 (n € N\ {0}) are loc inegalitatea

I+z1) .. (T + ) > (1+ Swyom,)".
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Problema 2.37 (i) Sa se arate ca f : (0,00) — R, f(x) = a* unde u > 1 este convera.

(i1) Aratati ca pentru orice > 1, numerele reale strict pozitive aq, as, ..., a, §i pentru orice
Ay A2y Ay € 0,1 cu o N =1 (n e N\ {0}) are loc inegalitatea

(A1a1 + oo + Apan)" < Maff + ...+ Nal

(i1i)Aratati ca pentru orice p,q > 0, p < q, pentru orice numere reale strict pozitive
a1, A, ooy A, §0 pentru orice A, Aoy .cx Ay € [0,1] cu D0 AN =1 (n € N\ {0}) are loc ine-
galitatea

(A + ..+ Aa?)P < (Ma? + ...+ Apal)e.

Exercitiul 2.38 Sa se arate ca functia f : (0,+00) — R data prin

fla) = (x + i)m

este convexa. Sa se deduca faptul ca pentru orice a,b,c >0 cua+b+c =1 are loc inegalitatea:

0% _ 41 10+ b 10+ 41 !
3 = \""4 b ‘)
Cand are loc egalitatea?

Problema 2.39 (i) Fie f,g: R — R. Sa se arate ca daca f este o functie convexd crescatoare
§i g este convexd atunci f o g este convera.

(i1) Fie f : R —(0,00). Sa se arate ca functia In f este converda daca §i numai daca pentru
orice a > 0, functia f este convexa.

Exercitiul 2.40 Sa se arate ca functia f : (0,00) — R, f(z) = xlnz este strict conveza.
Deduceti inegalitatea:

() S < e n €N\ {0) >0
T1X2... Ty STy Ty ... 2,7, VI sy L1y X2y ey Ty .

Sa se scrie inegalitatea Hermite-Hadamard pentru f pe un interval de forma [1,a] cua > 1.
Deduceti inegalitatea
2alna < a®> -1, Va > 1.

Problema 2.41 Fie D C RP o multime convexa i f : D — R o functie converda. Sa se arate
ca f este continua in orice punct interior multimii D.

Solutie Fie T € int D. Facand eventual o translatie, putem considera cazul T = 0. Aratam mai
intai cd f este marginita pe o vecinatate a punctului 0. Daca notam cu (e;);c1; baza canonica

a spatiului R?, atunci existd a > 0 astfel incat ae; si —ae; sunt in D pentru orice i € 1, p. In
aceste conditii, multimea

p
a R
Vi=<xeRl |z = xrie;, || < —, Yielp
{ | > | p }

i=1
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a

este o vecindtate a lui 0 inclusd in D. Pentru x € V, exista (z;);c15 cu |z <

Lp
P, z;e;. Presupunem mai intai cd x; # 0 pentru orice i € 1, p. Avem

o (Bore) = (S - 552)
<3l (ope) + (1= ) o

< max{f(aei),f(—aei) |ie1,p}+[f(0)].

Tr =

Acum se observa ca daca avem indici 7 pentru care z; = 0, atunci putem sd excludem din
calculele de mai sus respectivii indici, iar estimarea se pastreaza.

Cum membrul drept este o constantd (pe care o notdm cu M), afirmatia ficutd anterior este
demonstratd. Fie ¢ € (0,1) si U o vecindtate simetricd a lui 0 cu proprietatea cd e U C V.
Atunci, pentru orice z € U,

J(2) = f (e ) + (1= €)0) < ef(e ") + (1 - £)£(0)
< eM + (1 - )/(0),

adica
f(@) = f(0) < eM —£f(0).

Din faptul ca U este simetrica, deducem ca pentru orice z € U

f(=x) <eM + (1 -¢)f(0).

Mai mult,
10 =1 (o4 5-0)
< %f(:c) + %f(—x) < %f(:c) + % (M + (1 —¢2)f(0)),
deci

£(0) — f(x) < =M~ <f(0),
relatie care, in combinatie cu cea de mai sus, conduce la

|f(x) — f(0)| < eM —ef(0).
Aceasta inegalitate probeaza continuitatea lui f in 0. U

Problema 2.42 Daca I C R este un interval i f : I — R o functie conveza, atunci f admite
derivate laterale in fiecare punct interior intervalului I si pentru orice x,y € int I, cu x <y au
loc inegalitatile:

() < filz) < fly) < fily).
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Exercitiul 2.43 Fie g : R — R o functie continua. Sa se arate ca g este convera daca i
numai daca pentru orice functie f :[0,1] — R integrabila Riemann are loc inegalitatea

o [ swan) < [Catsna

Solutie Dacd g este convexd atunci pentru orice diviziune a intervalului [0, 1] gi pentru orice
sistem de puncte intermediare (cu notatiile din Definitia [4.6.73)) are loc

g (Z f(&) (i — xz‘—l)) < Zg(f(&))(l’z‘ — Ti-1).

Trecénd la limita cu norma diviziunii tinzdnd la 0 obtinem inegalitatea dorita.
Pentru reciproca, fixam x,y € R, a € (0, 1) si consideram functia f : [0,1] — R,

[ z, dacd u € [0,q]
flu) = { y, daca u € (a, 1].

Atunci f este integrabild Riemann pe [0,1] (a se vedea Teoremele [4.6.81} |4.6.82)). Aplicand
inegalitatea din ipoteza gasim

glox + (1 - a)y) < ag(z) + (1 —a)g(y),
ceea ce probeaza convexitatea lui g. O

Exercitiul 2.44 Sa se arate ca urmatoarele functii sunt convexe:
(i) f:R* = R, f(x1,79) = 32?3 + Tx3 + 23179 + 41 + 49 + 1;
(it) f:R? = R, f(xy, 1) = 223 — dx179 + 323 + 571;

(iii) f: (0,00) x (0,00) — R,

11 1
fay,x9) = —+ — —

al i) T +I’2

Exercitiul 2.45 Studiati stricta convewitate a functiilor f : R> — R date prin:
(i) f (21,22) = o] + 23 + 21293
(it) f (1, 70) = 22 + 23 + 271 75.

Problema 2.46 Fie A C R? o multime nevida.
(i) Sa se arate ci daca A este convexd atunci da este conveza.
(i1) Sa se arate ca daci A este inchisd §i da este convexd atunci A este convezd.
(111) Sa se dea un exemplu de multime neconvexd pentru care da este convera.

Exercitiul 2.47 Fie A C R? o multime nevida. Sa se arate ca arate ca pentru orice x € RP
d(x,A) =d(z,cl A).

Exercitiul 2.48 Fie A C RP o multime nevida. Sa se arate ci s : RP — R, pa(zr) =
|z||* — d?(x) este convexi.
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Exercitiul 2.49 Fie A C R? nevida. Definim con A := [0,00)A. Sa se arate ca
(i) con A este cel mai mic con ce contine A;
(ii) con(conv A) = conv(con A);
(iii) A~ este un con convex inchis i A C (A7);
(iv) Egalitatea A = (A~)~ are loc daca si numai daca A este con convex inchis;
(v) daca A C B, atunci B~ C A~
(vi) A~ = (con A)~.

Exercitiul 2.50 Fie multimea M := [1,2] x [1,2]. Sa se deseneze conurile tangente gi normale
la aceastd multime punctele sale. Aceeasi problema pentru M \ int M.

Exercitiul 2.51 Sa se scrie conul tangent la multimea
M = {(x,y) € R? | 4z :y2}
intr-un punct al sau.

Exercitiul 2.52 Si se arate ca daca ) # M C RP i T € M, atunci are loc relatia T'(M,T) =
T(M,T).

Exercitiul 2.53 Fie A C R2,
A={(z,y) |z -2y <0, 20—y >0}.
Sa se determine polara lui A g1 sa se reprezinte grafic ambele multima.

Exercitiul 2.54 Sa se determine polarele urmatoarelor multima:
(i) A={r € R® | 2y + 3 = 0,23 > 0} ;
(ii) A= {x € R*| 22y + w9 + 323 = 0,21 > 0,203 < 0,29 + x4 < 0}.

Exercitiul 2.55 Fie A, B C RP multimi inchise. Sa se arate ca au loc relatiile:
(1) daca T € AN B atunci T(AU B,T) = T(A,7) UT(B,T);
(ii) daci T € AN B atunci T(AN B,7) C T(A,7) NT(B,7);
(i1i) daca T € Fr A atunci T(Fr A,7) =T(cl A, 7)) NT(RP \ A, 7).
Sa se dea un exemplu in care incluziunea de la (it) sa fie stricta.

Problema 2.56 Sa se demonstreze urmatoarea varianta afina a Lemei lui Farkas. Fie n €
N\ {0}, (ai)ierm C R?, b € RP i (@)1, C R, B € R. Presupunem ca sistemul de inegalitati
{a;, ) < ay, © € 1,n are solutie. Atunci urmatoarele afirmatii sunt echivalente:

(i) Vr € RP : (a;,2) < a1 € I,n = (b,x) < f3;

(1) 3(Vi)ietm C [0,00) astfel incat b= 37" viai, Y i, vicw < B.

Solutie Pentru orice i € 1,n, inegalitatea (a;, 7) < a; este echivalentd cu

<(ai7 ai) > (.T, _1>> < 07

deci si cu
((a;, a;), (tez,—1)) <0, Vt >0,
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adica poate fi scrisa

{ ((a;, o), (tz, —t)

Asadar sistemul in (y,s) € R? x R,
<<a’i7 ai) ) (y, 5)> <0, 1€ 1,_71, <<07 1) ) (ya 5)> <0
implica ((b, 3), (y,s)) < 0. Conform Lemei lui Farkas, aceasta este echivalent cu faptul cd exista
(Vi)ietm C [0,00) si v > 0 astfel incat
<b7 5) = 271 (aia 051;) +7 (07 1) :
i=1

Se obtine concluzia. 0
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Capitolul 3

Studiul unor probleme de optimizare

3.1 Cadrul general

Fie f : R? — R o functie si M C RP o multime nevida. Suntem interesati sa studiem problema
minimizarii functiei f atunci cdnd argumentul acesteia parcurge multimea M. Multimea M se
va numi multimea punctelor fezabile ale problemei (P) sau multimea constrangerilor sau, inca,
multimea restrictiilor. Conceptul central este definit mai jos.

Definitia 3.1.1 Spunem ca ™ € M este punct de minim pentru functia f pe multimea M daca
exista o vecinatate V' a punctului T astfel incat f(T) < f(x) pentru orice x € M N'V. Daca
V =RP, spunem ca T este punct de minim global pentru f pe M.

Evident, definitia de mai sus are sens si daca f este definita doar pe multimea M. Notiunea
de punct de minim este intalnita si sub denumirea de punct de minim local, insa in aceasta
lucrare omitem cuvantul "local". Sa spunem de la inceput ca ne vom ocupa de minimizarea
functiei f, dar rezultate referitoare la maximizarea sa pot fi obtinute aplicAnd rezultatele de
minimizare functiei —f in baza relatiei max f = — min(—f). Sa remarcdm i cd T € M nu este
punct minim pentru functia f pe multimea M dacd si numai dacd existd un sir (x,) C M,
x, — T astfel incat f(x,) < f(T) pentru orice n. Similar, T € M nu este punct minim
global pentru functia f pe multimea M daca si numai daca exista un sir x € M astfel incat
flz) < f(T).

Formal, vom scrie problema de mai sus in forma urmatoare:
(P) min f(z), x € M,

iar prin solutie locald (sau, simplu, solutie) pentru problema (P) intelegem un punct de minim
pentru functia f pe multimea M in sensul definitiei de mai sus. Atunci cand avem de-a face cu
un punnct de minim global pentru f pe M, spunem ca acesta este solutie globala a problemei
(P).

Atunci cand ne vom referi la problema (P) vom subintelege mereu ca M este o
multime inchisa.

Observatia 3.1.2 In general, cu exceptia cazului M = RP, problema (P) este o problema cu
restrictit (constrangeri) intrucdt domeniul argumentului x este restrans la multimea M (a se
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vedea exemplele ilustrative ale conceptelor-cheie de la inceputul lucrarii). In absenta multimii
M, adica atunci cand ne referim la problema minimizarii lui f pe RP, spunem ca avem o
problema fara restrictii. Totusi, sa observam ca in Definitia daca T € int M, atunci T
este solutie locala neinfluentata de restrictia M (este suficient sa micsoram vecindtatea V' astfel
incit V. C M ). Deci in cazul problemelor cu restrictii cazul interesant (care nu se reduce la
cazul unei probleme fara restrictii) este cazul in care T € Fr M. Daca T € int M mai spunem gi
ca restrictia este inactiva, iar daca T € M \ int M spunem ca restrictia este activa.

Observatia 3.1.3 O restrictie de tip x € M se numeste restrictie geometrica.

Un rol important il vor juca multimile de nivel ale unei functii. Avand o functie f : R? — R,
daca v € R,
N,f={z €R| f(z) < v} = [~ ((—o00,v]).

S& observam cd dacad v > inf cpp f(z) atunci N, f # () iar dacd f este continud atunci N, f
este inchisa.

3.2 Rezultate de existenta a solutiilor

Teorema 3.2.1 (Teorema lui Weierstrass) Daca M C RP este o multime compacti i
f: M — R este o functie continud, atunci problema minimizarii lui f pe M si problema
maximizarii lui f pe M au solutii globale.

Demonstratie Demonstram concluzia doar pentru problema minimizarii lui f pe M. Fie (z,) C
M astfel incat f(z,) — inf{f(x) | x € M}. Din compactitatea lui M, sirul (z,) are un subsir
convergent la un element * € M. Din faptul ca multimile de tip M N N, f sunt inchise pentru
orice v € R, v > inf{f(x) | v € M}, deducem ca T se afld in toate aceste multimi (pentru ci
pentru fiecare v in parte, termenii z,, sunt, de la un loc incolo, in M N N, f). Atunci deducem
cd f(T) < v pentru orice v > inf{f(x) | # € M}. Prin wrmare, f(7) < inf{f(z) | v € M}. Pe
de o parte, aceasta inseamnd cd inf{f(z) | + € M} € R, deci f este marginita inferior pe M,
iar, pe de alta parte, ca T este punctul cautat care realizeaza minimul global al lui f pe M.
Demonstratia este incheiata. 0

Teorema 3.2.2 Fie f : RP — R o functie continua si M C RP o multime nevida si inchisa.
Daca exista v > inf e f(x) astfel incat multimea de nivel a lui f relativ la M, adica MNN, f =
{r e M| f(z) < v}, este marginita, atunci f igi atinge minimul global pe M.

Demonstratie Este clar ca eventualul minim global al lui f pe M este totuna cu minimul global
al lui f pe M NN, f. Cum aceasta multime este compacta iar f este continua, din Teorema lui
Weierstrass, deducem ca f isi atinge minimul global pe M N N, f, deci pe M. U

Rezultatele de mai sus asigura existenta punctelor de minim in conditii de compactitate
a multimilor de nivel. Evident, marginirea inferioara a functiei este conditie necesara pentru
existenta minimului, dar este clar ca marginirea multimilor de nivel nu este o astfel de conditie.
De exemplu functia f : R — R, f(z) = (z—1)%~® isi atinge minimul in T = 1, valoarea minima
este 0, dar N, f nu este marginitd pentru nicio valoare v > 0 = inf{ f(z) | z € R}.
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Evident, in teorema de mai sus, daca M este marginita, atunci ipoteza este automat ve-
rificata. Cazul interesant este acela in care M este nemarginita, situatie in care ipoteza este
verificata daca impunem functiei f o conditie de coercivitate.

Propozitia 3.2.3 Fie f : R? — R o functie st M C RP o multime nevida, inchisa si
nemarginita. Dacd limgen |o|—oo f(2) = 00 (i.e., pentru orice (x,) C M,||z,| — oo are
loc f(x,) — 00) atunci multimea N, f N M este marginita pentru orice v > inf,ep f(2).

Demonstratie Fie v > inf,cp f. Dacd multimea N, f N M ar fi nemarginita, ar exista (z,) C
N,fOM cu ||z,|| — oo. Atunci, pe de o parte, din ipoteza, lim f(z,) = oo iar, pe de altd parte,
f(z,) < v, pentru orice n € N, ceea ce este absurd. d

3.3 Conditii de optimalitate

Trecem acum la a doua parte a acestei sectiuni in care ne propunem sa prezentam conditii
necesare si conditii suficiente de optimalitate. Pentru inceput, deducem conditii necesare de
optimalitate pentru care utilizdm ideile dezvoltate in legaturd cu studiul conului tangent (in
sens Bouligand).

Teorema 3.3.1 (Conditia necesara de ordinul I - probleme cu restrictii) Daca T este
solutie locala pentru problema (P) si f este diferentiabila in T, atunci V f(T)(u) > 0 pentru
orice u € T(M,T).

Demonstratie Fie V' o vecindtate a lui T pentru care f(T) < f(x) pentru orice z € V N M. Fie
u € T(M,T). Atunci exista si (¢,) C (0,00) cu t,, — 0 si (u,,) — u astfel incat pentru orice n,

T+ thu, € M.

Evident girul (¢,u,) converge la 0 in R? si, de la un loc incolo, T + t,u,, este in V. Tinand cont
de diferentiabilitatea lui f in 7, exista (a,) C R, o, — 0 astfel incat pentru orice n € N,

f@ + taun) = f(T) + 1V f (@) (un) + Lo [|unl] o,

de unde,
V(@) (un) + |ltn|| ar > 0,

pentru orice n suficient de mare. Trecand la limita cu n — oo, obtinem concluzia. U
Observatia 3.3.2 Conditia se mai scrie, echivalent,
—-Vf(@) e N(M, 7).

Observatia 3.3.3 Tindnd cont de Propozitia daca in teorema de mai sus T € int M
(restrictie inactiva), obtinem V f(Z)(u) > 0 pentru orice u € RP. Din liniaritatea lui V f(T),
deducem V f(T) = 0, adica Teorema lui Fermat.
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O prima intrebare este daca reciprocele acestor rezultate sunt adevarate. Raspunsul este
negativ: este suficient si consideram exemplul functiei f: R — R, f(z) = 23 pentru T = 0. Se
pot insa impune conditii suplimentare asa incat sa avem unele echivalente si cel mai important
caz este cel al functiilor convexe pe care il vom studia separat ceva mai jos.

Revenind la Teorema |3.3.1, intarind conditiile din concluziile acestui rezultat, obtinem
conditii suficiente de optimalitate.

Teorema 3.3.4 (Conditia suficienta de ordinul I - probleme cu restrictii) Consideram
problema (P). Daca f este diferentiabila inT € M gi

V@) (u) >0, Yue T(M,z) \ {0},

atunci T este solutie locala pentru problema (P).

Demonstratie Presupunem, prin reducere la absurd, ca T nu este solutie. Atunci, negand
definitia, deducem ca existd un sir (z,,) — 7, (x,) C M astfel incat pentru orice n € N\ {0},

fwn) < f(T).

In virtutea acestei inegalitati,
z, # T, Vn € N\ {0}.

Cum [ este diferentiabild, existd un sir de numere reale (7,) — 0 astfel incat pentru orice
n € N,
flan) = f(T) + V(@) (@20 —T) + o llzn — 7 -

Combinand cele doua relatii, avem
0> Vf(f)(ﬂfn - f) + Tn Hxn - EH ’

de unde, prin impartire la numarul nenul ||z, — Z|| deducem

0> V(@) (x—_;') + 9, ¥ € N\ {0} (3.1)

Hajn -

Cum girul (”ﬁn:%) este marginit, exista un subsgir convergent al acestuia. Limita, notata wu,
n

a respectivului subsir este nenuld (chiar de norma 1) si, in plus, din faptul ca ||z, —Z|| — 0,
deducem cd u € T'(M, 7). Prin urmare u € T(M,T) \ {0} si trecand la limita in relatia ((3.1)
avem

0> Vf(@)(u),
ceea ce contrazice ipoteza. 0

Exemplul 3.3.5 Fie f: R? — R,

2 2
flx) = —x1 — 229 — 2m19 + % + %
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si multimea restrictiilor
M:={zeR|z1+x <1, 2, >0, x> 0}.

Sa consideram, ca in discutia teoreticd, problema (P) a minimizarii lui f pe M.
Daca ar exista un punct de minim 7 in interiorul lui M atunci acel punct ar fi un minim

fara restrictii (conform Observatiei [3.1.2)), deci, din Teorema lui Fermat V f(Z) = 0. Dar

V@) = (=147 — 2Ty, —2 — 2T, + T3)

si rezolvand sistemul gasim solutia 7 = (—g, —%) care nu apartine lui M. Deci problema nu are
solutii in int M. Totusi f este continud, iar M este compactd, deci problema (P) admite cel
putin o solutie globala.

Datorita faptului ca inegalitatile ce definesc multimea M sunt liniare, avem o imagine
geometricd clard a multimii (un triunghi dreptunghic cu varfurile in punctele (0,0), (0, 1),
(1,0)). Atunci putem calcula relativ simplu conurile tangent si normal la M in punctele de pe
frontiera si apoi sa verificim indeplinirea conditiei necesare de optimalitate: —V f(T) € N(M,T)
(Teorema [3.3.1)).

Astfel, daca punctul T este
— pe segmentul deschis de capete (0,1), (1,0) :

T(M, %) ={ueR?*|uy +us <0}; N(M,7) =R {(1,1)};

— pe segmentul deschis de capete (0,0), (0,1) :

T(M,7)={ucR?|u >0} N(M,Z) =R, {(—1,0)};
— pe segmentul deschis de capete (0,0), (1,0) :
T(M,Z) = {u € R?|uy >0}; N(M,z) =R, {(0,-1)};

— punctul (0,1) :

T(M,Z) = {u € R?|u; +uy <0, u; >0}
N(M,z) ={a(1,1) + b(—1,0) | a,b > 0} ;

— punctul (1,0) :

T(M,Z) = {u € R? | u; +uy <0, uy >0}
N(M,z) ={a(1,1) +b(0,—-1) | a,b > 0} ;

— punctul (0,0) :

T(M,Z)={ucR?|u; >0, uy > 0};
N(M,7) = {a(—1,0) + b(0,—1) | a,b > 0}.
Prin calcul direct, se verifica faptul ca un singur punct satisface conditia necesara de opti-

malitate: T = (%, %) . Prin urmare, conform discutiei precedente, acesta este singurul punct de
minim al problemei.
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Putem, de asemenea, si ne punem problema maximului global al lui f pe M (a cirui
existenta este asiguratd de Teorema lui Weierstrass), problema echivalenta cu gasirea minimului
lui —f pe M. Repetand discutia precedenta, gasim doua puncte ce verificd conditia necesara
de optimalitate (i.e. Vf(Z) € N(M,Z)): T = (0,0) si T = (1,0). Dar f(0,0) = 0, iar f(1,0) =
—271 deci (0,0) este punctul de maxim.

Prezentam acum o conditii de optimalitate de ordinul al doilea pentru problema fara re-
strictii. Incepem cu conditia necesara.

Teorema 3.3.6 (Conditia necesara de ordinul al II-lea - probleme fara restrictii) Daca
f :RP — R este de clasd C? pe o vecinatate a lui T € RP, iar T este punct de minim local
pentru f, atunci V f(Z) = 0 si V2f(T) este pozitiv semidefinita (adica V2 f(T)(u,u) > 0 pentru
orice u € RP).

Demonstratie Fie V' C RP o vecindtate a lui T pentru care f(7) < f(x) pentru orice x € V si
pe care f este de clasd C?. Faptul cd V f(Z) = 0 rezultd din teorema precedentd. Ca mai sus,
fie w € R? i (t,) C (0,00) cu t, — 0. Din Teorema lui Taylor (Teorema [4.6.62)), pentru orice
n € N exista ¢, € (7,7 + t,u) astfel incat

J(@ ) = @) = V@) + 52T ()0 )
= LAV (e, 0)
Cum pentru n suficient de mare, f(Z + t,u) — f(Z) > 0, deducem ca
V2 f(en)(u,u) 2 0,
de unde prin trecere la limita cu n — oo, obtinem ci ¢, — T si cum f este de clasa C?, obtinem
V2 (@) (u,u) = 0,
deci V2 f(T) este pozitiv semidefinita. O

Evident, cu o demonstratie similara, se constata ca daca 7 € RP este punct de maxim local
pentru f, atunci Vf(T) = 0 gi V2f(Z) este negativ semidefinita (adicd V2 f(Z)(u,u) < 0 pentru
orice u € RP). Se poate cu usurintd observa, din rezultatul de mai sus si din demonstratia sa,
cd dacd V2f(T) nu este nici pozitiv semidefinitd nici negativ semidefinitd (caz in care spunem
cd este nedefinitd) atunci T nu este punct de extrem.

In privinta conditiilor suficiente de ordinul al doilea, are loc urm#torul rezultat.

Teorema 3.3.7 (Conditia suficienta de ordinul al II-lea - probleme fara restrictii) Fie
f:R? = R o functie de clasa C*. Daca T € R? este punct critic pentru f si V2 f(T) este pozitiv
definita (i.e. V2 f(T)(u,u) > 0 pentru orice u € RP \ {0}), atunci T este minim local pentru f.

Demonstratie Ca mai sus, presupunem prin reducere la absurd ca nu are loc concluzia. Atunci,
exista (x,) — T, (z,) C M \ {T} astfel incat pentru orice n € N'\ {0},

f(an) < f(7).
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Din Teorema lui Taylor [4.6.62] pentru orice n € N exista ¢, pe segmentul ce uneste = cu z,
astfel incat

F(ea) = @) = VI@) 0 =T + 5V (00) (0 = T, 20~ 7)
1

= §V2f(cn)(xn —T,x, — ).

Obtinem .
0> §V2f(cn)(xn —T,%, — T),

. o o A v e —n2 - o . . .
de unde, pentru finalizarea demonstratiei, impartim la ||z, — Z||” si repetam, cu simplificirile
evidente, argumentele de mai sus. U

Y

Asa cum am spus, V2 f(7) se identificd cu matricea hessiand a lui f in T : <%(E))

1,j€L,p
iar o conditie suficienta ca aceasta matrice simetrica sa fie pozitiv definita este data de urmatorul
. . . . .o . . 2 — = . . . .
criteriu: toti determinantii matricilor # (7) k € 1,p sunt strict pozitivi. Analog,
> > a*Qad ijeTk ’

rationand eventual pentru — f avem conditia: daca determinantii matricilor (%(f)) i
RYASES

k € 1,p sunt nenuli si isi alterneazd semnul incepand cu semnul minus, atunci Z este punct de

maxim (conform Criteriului lui Sylvester). De asemenea, daca acesti determinanti sunt nenuli,

atunci orice alta configuratie a semnelor decat cele descrise mai sus conduce la concluzia ca

punctul nu este de extrem local.

Asadar metoda generala de rezolvare a problemelor de optimizare fara restrictii este ur-
matoarea gi se bazeaza pe conditiile de optimalitate de ordinul I si al IlI-lea si pe Criteriul
lui Sylvester. Se determind punctele critice rezolvand ecuatia V f(x) = 0. In fiecare din aceste
puncte, calculdim V?f(T) ce se identificd cu matricea hessiana.

e Dacd V2f(T) este pozitiv definitd, atunci Z este punct de minim local;
o dacd V2f(T) este negativ definitd, atunci 7 este punct de maxim local;

o dacid V?f(T) este nedefinitd atunci T nu este punct de extrem local.

Pentru a verifica aceste aspecte, in unele cazuri, se poate utiliza metoda descrisa mai jos:

e daci toti determinantii matricilor (%(E)) _, k €1,p sunt strict pozitivi atunci T
RISW

este punct de minim local;
e dacd determinantii matricilor (%(f)) .k € 1,p sunt nenuli si isi alterneaza
RIS

semnul incepdnd cu semnul minus, atunci T este punct de maxim;

e daca acesti determinanti sunt nenuli, atunci orice alta configuratie a semnelor decét cele
descrise mai sus conduce la concluzia ca punctul nu este de extrem local.
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Daca nu se poate aplica nici una dintre concluziile precedente, atunci se procedeaza de la
caz la caz pentru a stabili natura punctului critic.
[lustram teoria de mai sus prin doua exemple.

Exemplul 3.3.8 Dorim si gisim punctele de minim pentru f : R? — R, f(xy,22) = (1 —

x1)% + 100(z2 — 22)%. Avem agsadar o problemd fara restrictii.
Pentru a gasi punctele critice rezolvam sistemul

(?(;)7;(351,952) =0
5o, (21, 02) =0

—2(1 — x1) — 40021 (23 — 22) =0
200(x9 — 2%) =0

care este echivalent cu

si are solutia unica (x1,z2) = (1,1). Calculam matricea hessiand in punctul respectiv,

802  —400
Hy (1,1) = ( —400 200 )

care este pozitiv definitd, de unde putem deduce ca (1, 1) este minim local pentru f. De altfel,
se poate observa ci f(1,1) = 0, iar f(xy,22) > 0 pentru orice (z1,72) € R?, deci (1,1) este
minim global pentru f.

Exemplul 3.3.9 Fie f: R? - R, f(x1,29) = 32} — 42325 + 23, S gilsim punctele de minim
ale lui f.
Calculam punctele critice: sistemul

d
%(Il, .%'2) =0
=L (z1,29) =0
are ca unicd solutie punctul T = (0,0). Totusi, conditia necesard de ordinul al doilea nu este

e o o : e . 00 : .
satisfacuta pentru ca hessiana lui f in T este matricea ( 0 2 ) . Asadar, nu putem decide din

Corolarul ?? dacs punctul 7 este punct de minim. In astfel de cazuri, ne folosim de structura

problemei pentru a concluziona. Se observa cd f(zy,x2) = (2?2 — x4)(32% — 1), iar pentru sirul

vy =Wk, -k 7
8 _
flan) = 5 > 1(7)
in timp ce pentru girul z;, = (1/(2k)"1, k™) — 7,

1

flay) = 2

< f(@).

Deci, T nu este punct de extrem local pentru f.

Studiem acum, cum am spus mai sus, cazul functiilor convexe.
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Teorema 3.3.10 Fie f : R? — R o functie convexa gi diferentiabila. Urmatoarele afirmatii
sunt echivalente:

(i) T este un minim global al lui f;

(i1) T este un minim local al lui f;

(111) T este punct critic ol lui f (i.e. Vf(T)=0).

Demonstratie Implicatia (i) = (i) este evidentd si nu are nevoie de conditii suplimentare,
iar (i4) = (2ii) rezultd din Teorema lui Fermat. In sfarsit, implicatia (iii) = (i) rezultd din

Teorema 2.2.13 O

Asga cum se observi, in cazul functiilor convexe, conditia de ordinul I (in cazul fara constran-
geri) este necesara i suficientd pentru optimalitate. In aceasta situatie, conditia necesard de
ordinul al II-lea nu aduce nimic nou, ea fiind automat safisfacuta de functiile convexe (conform

Teoremei [2.2.13)).

Privitor la natura punctelor de extrem pentru o functie convexa, dam rezultatele de mai
jos.

Propozitia 3.3.11 Fie f : RP — R o functie convexa i M C RP o multime convexda. Daca
T € M este punct de minim local pentru f pe M, atunci T este punct de minim global pentru
f pe M.

Demonstratie Fie T un punct de minim local pentru f pe M. Atunci exista V o vecinatate
convexa a lui T astfel incat pentru orice x € VN M, f(z) < f(z). Fie x € M. Exista A € (0,1)
astfel incat y := (1 — \)T + Az € M N V. Deci,

f@) < fly) = F(A =T+ Ax) < (1= N f(@) + Af(2),
adica,
(@) < A (=),

de unde se obtine concluzia. O

Propozitia 3.3.12 Fie f : R? — R o functie convexa si M C RP o multime convexa. Atunci
multimea punctelor de minim ale lui f pe M este convexa. Daca, in plus, f este strict convexa,
atunct aceasta multime are cel mult un element.

Demonstratie Din rezultatul precedent, dacd 1, xs € M sunt puncte de minim (global) pentru
f pe M, atunci f(z;) = f(x2). Convexitatea implica f(z) = f(x1) pentru orice = € [z1,z5].
Astfel, prima parte este demonstrata. Daca f este strict convexa si presupunem céa avem doud
minime globale distincte, atunci obtinem ca f(z) < f(x1) pentru orice x € (x1, z3), ceea ce este
imposibil. 0

In cazul cu restrictii, pentru functiile convexe conditia necesara de optimalitate de ordinul
I este si conditie suficienta.

Propozitia 3.3.13 Fie f : RP — R o functie convexa gi diferentiabila si M C RP o multime
convexd §i inchisa. Elementul T € M este punct de minim pentru f pe M daca si numai daca

_V§(@) € N(M,7).
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Demonstratie Fie T € M, punct de minim local pentru f pe M. Atunci, conform Teoremei
3.3.1, Vf(Z)(u) > 0 pentru orice u € T'(M,T), adica

—Vf(@) eT(M,z)” = N(M,7).
Invers, stim, din convexitatea lui f (Teorema [2.2.13)), ci
[() > [@) + V@)@ -7), Ve U,
Dar, folosind ipoteza si convexitatea lui M (Propozitia [2.4.10)),
Vi@ e N(M,Z) ={u € R? | (u,x —T) <0, Vo € M},

deci Vf(Z)(x —Z) > 0 pentru orice x € M. Din aceste relatii, avem f(x) > f(Z) pentru orice
x € M. U

3.4 Restrictii functionale

Considerdm problema (P) din sectiunea precedentd care are restrictia geometrica x € M.
De cele mai multe ori in practica aceastd multime M a punctelor fezabile este definita prin
intermediul unor functii. Fie asadar ¢ : R? — R" si h : R? — R™ functii de clasd C'. Evident,
g si h pot fi gandite ca fiind de forma g = (g1, g2, .-, gn), respectiv h = (hy, ha, ..., hy,) unde
unde ¢g; : R? =R (i € 1,n) si hj : RF — R (j € 1,m) sunt de clasi C.

Consideram ca multimea punctelor fezabile este

M :={zx eRP|g(z) <0, h(z) =0} C R,

Se observa ca avem doua tipuri de restrictii: restrictii cu inegalitati si restrictii cu egalitati.
Acestea se numesc restrictii functionale. Fie € M. Daca pentru un indice i € 1,n, g;(x) <0,
atunci, din continuitatea lui g, exista o intreaga vecinatate V' a lui x astfel incat g;(y) < 0
pentru orice y € V. Aceasta face ca, in cazul in care cercetam daca = este solutie locala a
problemei (P), restrictia ¢g; < 0 sa nu influenteze efectiv multimea punctelor u pentru care
trebuie s& comparam f(z) cu f(u). De aceea, in acest caz, spunem ci restrictia g; < 0 este
inactiva in z. Din acest motiv, ne intereseaza ca astfel de restrictii sa fie eliminate din discutie.
Pentru 7 € M, notam multimea indicilor restrictiilor inegalitati active prin

A@) = {i € T | gi(z) = 0},

3.4.1 Conditiile Karush-Kuhn-Tucker

Fie multimile
oy Xieam AiVa(®) + 20 1V hy(T) | p
G(x)_{ N> O0VieA®), p eRYjeTm | X

(unde s-a identificat L(R?,R) cu RP) si

D@) = {u e R | Vg,(@)(u) <0, Vi € A@) si
Vhy(@)(w) = 0, Vj € T,m}.

Inainte de a da rezultatul principal avem nevoie de o propozitie ajutitoare.
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Propozitia 3.4.1 Pentru orice T € M avem:
(1) G(z) = D(T)~;
(i) T(M,=) C D(T).

Demonstratie (i) Incluziunea G(T) C D(T)~ este evidentd, iar incluziuea reciproca este o con-
secinta directa a Lemei lui Farkas.

(ii) Evident, 0 € D(Z). Fie v € T(M,Z) \ {0}. Din definitia conului tangent, exista (t;) C
(0,00) cu t, — 0 si (ug) — u astfel incat pentru orice k,

T+ tpu, € M.

Evident, girul (¢,ux) converge la 0 in R?. Tinand cont de diferentiabilitatea lui h in T, exista
(o) C R™ a — 0 astfel incat pentru orice k € N,

MT + trug) = h(T) + e VA(T) (ur) + i ||ue | o

Cum h(T + tgur) = h(T) = 0, impartind prin ¢ si trecand la limitd pentru k& — oo obtinem
Vh(Z)(u) = 0. Acum pentru fiecare i € A(T) existd (af) C R, ai — 0 astfel incat pentru orice
keN,

9:(T + teur) = gi(T) + 6V gi(T) (ur) + i [Jur| o

Ca mai sus, tinand cont cd ¢;(T + truy) < 0 si ¢;(T) = 0 avem Vg;(T)(u) < 0 si propozitia este
demonstrata. O

Urmatorul exemplu aratd ca incluziunea de la punctul (ii) de mai sus este, in general,
stricta.

Exemplul 3.4.2 Fie g : R? — R, g(x1,13) = —11 — 29 51 h : R? — R, h(zy,20) = 2179 §i
punctul fezabil Z = (0, 0). Atunci:

D(@) = {(u1,u2) | —us —upz <0},
T(Maf) = {(u17u2) | Uy Z 07“2 2 0,U1U2 = 0}

Stabilim acum o forma generalizata a unui rezultat clasic cunoscut sub denumirea de Teo-
rema Karush-Kuhn-Tucker intrucat a fost obtinut (sub o ipotez& ceva mai tare) de catre W.
Karush, H. W. Kuhn gi A. W. Tucker. De precizat ca W. Karush a obtinut teorema in 1939,
dar comunitatea matematica a devenit constienta de importanta acesteia dupa ce H. W. Kuhn
si A. W. Tucker au regasit rezultatul pe o cale independenta in 1950.

Teorema 3.4.3 (Teorema Karush-Kuhn-Tucker) FieZT € M solutie a problemei (P). Pre-
supunem ca T(M,T)” = D(T)~. Atunci exista X = (A1, Mg, ... A\n) € R = (pa, fh2y ooy fln) €
R™, astfel incat

V@) + D NVg@) + Y uVhi(E) =0 (3.2)
i=1 j=1
st
N >0, \gi(T) =0, pentru orice i € 1,n. (3.3)
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Demonstratie Din Teorema [3.3.1, V f(Z)(u) > 0 pentru orice u € T'(M,Z), deci —V f(T) €
T(M,7)~. Conform ipotezei, deducem —V f(Z) € D(Z)~. Aplicdm primul punct al propozitiei
precedente si obtinem —V f(Z) € G(Z). Prin urmare, existad \; > 0,7 € A(T),p; € R,j € 1I,m
incat

—Vf@ =) ANV +Zu]Vh

1€A(T)

Dacé pentru indicii i € 1,n \ A(T) considerdm \; = 0, obtinem concluzia. O

Functia L : R? x R"™™ — R,

( (/\ :u +Z/\zgz +Zﬂjh](‘r)

se numegte lagrangianul problemei (P). Astfel, concluzia din relatia (3.2) se poate scrie
me(T, ()‘7 M)) =0,

iar elementele (A, ) € R x R™ se numesc multiplicatori Lagrange. Denumirea se datoreaza
faptului ca pentru prima data o astfel de metoda de a converti o problema de optimizare
cu restrictii intr-o problema fara restrictii prin intermediul unor noi nedeterminate a aparut
in unele dintre lucrarile lui Lagrange legate de probleme de calculul variatiilor. Este clar ca
teorema precedentd nu asigurd unicitatea acestor multiplicatori. Pe de altd parte, L(x, (A, p))
este o functie afind in variabilele (A, p).

Teorema asigura conditii necesare de optimalitate pentru problema (P). Daca in loc
de minimizare dorim sd maximizam functia obiectiv sub aceleasi restrictii, atunci, din faptul

cd max f = —min(—f), conditia necesara (3.2) se scrie
-V +Z/\ Vi(T +Zujwb

S& mai observidm c& in lipsa constrangerilor inegalitati, tinand seama de faptul cd h(x) = 0
este totuna cu —h(x) = 0, conditia necesard se poate scrie, atat pentru minime cat si pentru

maxime, in forma
V@) + ) 1 Vhy(@) =
j=1

Revenind la rezultatul principal, sa observam doua lucruri. Mai intai, daca problema nu
are restrictii (de exemplu, M = RP), atunci relatia se reduce la conditia necesara de
optimalitate de ordinul I (Teorema lui Fermat): V f(Z) = 0. A doua observatie este ca relatia
(3.2) nu are loc in general fara ipoteze suplimentare, numite conditii de calificare.

Exemplul 3.4.4 Fie f : R? —» R gi g : R? — R? definite prin f(z1,22) = 21 §i g(71,22) =
(—z9 + (1 — 21)3, 22). Se verifica faptul cd T = (1,0) este punct de minim pentru problema
asociatd, dar conditia nu are loc. Se poate arita cd in acest caz conditia T'(M,Z)~ = D(T)~
nu este indeplinita (a se vedea Exercitiul .
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Aceasta observatie ne indeamna sa discutdam mai in amanunt diverse conditii de calificare
in sectiunea urmatoare.
Inainte, sa observam ca in anumite ipoteze, conditia Karush-Kuhn-Tucker este si suficienta.

Definitia 3.4.5 Spunem ca problema (P) este convexd daca f este convexd, functiile g;,i € 1,n
sunt conveze, iar functia h este afina.

Teorema 3.4.6 Presupunem ca problema (P) este convexd. Fie T € M. Daca existd (A, p1) €
R”™ x R™ astfel incdt au loc relatiile (3.2) gi (3.3)) atunci T este solutie pentru (P) (sau minim
al lui f pe M ).

Demonstratie Conditia (3.2)) exprima faptul ca
V.L(Z, (A ) =0.

In ipotezele date, L este o functie convex in z, deci conform Teoremei [3.3.10, Z este un punct
de minim pentru x — L(z, (A, 1)). Deci pentru orice = € R?,

L@K%M)Zﬂ@+§:MM@+§:w%@)

> Lz, (A p) = f(@).
Dar, pentru x € M,

> Xigilw) + ) phy(x) <0,
i=1 j=1

deci f(z) > f(Z). Demonstratia este completa. O

3.4.2 Conditii de calificare pentru sisteme generale de restrictii

Orice conditie impusa sistemului de restrictii care asigura validitatea concluziilor Teoremei
Karush-Kuhn-Tucker se numeste conditie de calificare. Discutam in aceasta sectiune astfel de
conditii pentru sisteme generale de restrictii. Astfel, conditia de calificare T'(M,Z)” = D(T)~
impusa in Teorema se numeste conditia Guignard in punctul Z (dupa numele lui Monique
Guignard care a introdus-o in 1969) si este una dintre cele mai slabe conditii de acest tip pe care
le putem intalni in literatura. Dorim acum sa consideram si alte conditii de calificare si sa le
comparam intre ele. Evident, relatia T'(M,T) = D(T) este la randul sau o conditie de calificare,
numita conditia de cvasi-regularitate sau conditia Abadie in Z (dupd numele lui Jean Abadie
care a utilizat-o in 1967), intrucat implicd conditia utilizatd mai sus. Cele doud conditii nu
sunt insad echivalente, aga cum se poate observa din exemplul urmator (a se vedea si Exemplul
2.4.3)).

Exemplul 3.4.7 Fie g : R? — R2, g(xy,13) = (—21,79) si h : R?2 — R, h(xy,22) = 1179. S&
considerdm punctul fezabil T = (0, 0). Atunci:

D(T) = {(u1,u2) | u1 > 0,uy <0},
T(M,f) = {(ul,u2) | (751 Z O,UQ S 07U1U/2 = O}
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T(M,f)_ = D(f)_ = {(ul,uz) | Ui S 0,U2 Z O}

Evident, conditiile de calificare sunt legate de punctul de referintd (Z in cazul nostru).
De fiecare data cand nu vor fi dubii cu privire la punctul de referintd vom evita precizarea
acestuia, pentru usurarea expunerii. Doua dintre cele mai importante conditii de calificare sunt
prezentate mai jos.

Prima dintre acestea se numeste conditia de liniard independenta (in T) si se formuleaza
astfel: multimea {Vg;(7) | i € A(T)} U{Vh;(Z) | j € 1,m} este liniar independenta.

A doua se numeste conditia de calificare Mangasarian-Fromovitz (in 7): multimea {Vh;(Z) |
j € 1,m} este liniar independent4 si existd u € RP astfel incat

VA(T) (1) = 0 5i Vgi(T)(u) < 0, Vi € A(T).

(Matematicienii Olvi Mangasarian si Stanley Fromovitz au publicat aceastd conditie in 1967.)
Mai intai vom stabili relatiile dintre aceste conditii si apoi vom dovedi ca sunt conditii de
calificare.

Teorema 3.4.8 Daca are loc conditia de liniara independenta in® € M, atunci are loc conditia
Mangasarian-Fromovitz in .

Demonstratie Fara a restrange generalitatea, presupunem ci A(7) = {1, ..., q}. Fie T matricea

(¢ +m) x p avand drept linii Vg;(T),i € 1,q, Vh;(T),j € 1,m si fie b vectorul coloand cu
bi=-1,i€1,q,b; =0, j € ¢+ 1,¢+m. Cum liniile lui 7" sunt liniar independente, sistemul
T'd = b are solutie. Daca u este o astfel de solutie, atunci

Vg (T)(u') = —1, Vi € 1,q si Vh(T)(u') =0, Vj € 1,m,
deci conditia Mangasarian-Fromovitz in T este satisfacuta. U
Totusi, cele doua conditii nu sunt echivalente.

Exemplul 3.4.9 Fie g; : R? — R, i € 1,3 definite prin:

g(z) = (1 — 1)+ (2o — 1) =2
ga(x) = (21— 1)2 + (22 + 1) =2

g3(z) = —x1
si punctul fezabil Z = (0, 0). Este ugor de verificat cd multimea
{V1(T),Vga(T), Vgs(T), i € 1,3}

este liniar dependentd. Pe de altd parte, pentru u = (1,0), Vg;(Z)(u) < 0 pentru orice i € 1, 3.

Pentru a clasifica mai precis conditiile impuse pana acum, vom arata ca din conditia Man-
gasarian-Fromovitz se obtine conditia Abadie.
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Teorema 3.4.10 Daca are loc conditia Mangasarian-Fromovitz in T € M, atunci T(M,T) =
D(Z), adica are loc conditia Abadie in T.

Demonstratie Asa cum am vazut mai sus, o incluziune este adevarata intotdeauna. Invers,
fie u € D(T) si fie uw € RP vectorul dat de conditia Mangasarian-Fromovitz. Fie A € (0,1) si
dy = (1 — N)u+ A\u. Vom arata ca dy € T(M,T) pentru orice A € (0,1), apoi facand A — 0 si
tindnd cont de inchiderea lui T'(M,Z) va rezulta concluzia. Fixdm deci A € (0, 1).

Este evident cd pentru orice indice i € A (T), Vg; (T) (dy) < 0 (deci, in particular, d) # 0)
si pentru orice indice j € 1,m, Vh; () (d)) = 0.

Aplicatia h : R? — R™ are functiile coordonate (%), 17, . Evident, i (Z) = 0. Faptul ca
multimea {Vh; (T)}, 1, este liniar independenta inseamna ca Vh (T) este surjectivd. Putem
aplica Teorema lui Lyusternik (adicd Teorema [2.5.1):

T({zeR|h(z)=0},7) =Ker VR (Z).
Cum dy € Ker VA (Z), deducem ca
dy €T ({z eRP | h(x)=0},7),
adicd exista (tx) C (0,00), tx — 0 si (ux) — dy astfel incat pentru orice k
h(Z + trug) = 0.

Asadar,
hj (f+tkuk) =0, Vjelm, VkeN.

Pentru a obtine ca dy € T(M,T) este suficient sd mai ardtdm ca pentru k suficient de mare
9:(T + truy) < 0 pentru orice 1.

Daca i ¢ A(T), atunci g;(T) < 0 si din continuitatea lui g;, g;(T+txux) < 0 pentru k suficient
de mare, pentru ca T + tyu; — T.

Daci i € A(Z), cum g; este de clasd C?, existd un sir (a;) — 0 astfel incat pentru orice
k e N,

Gi(T + tpug) = 6i(T) + 1,V gi(T) (ur) + ty |Jue|| o
=tV g:(T)(ug) + tr || ur|| k-

Putem scrie

N t —00
ST LN _ ) un) + el an *=5° V() (dn) < 0.

(7%
Prin urmare, g;(T + tyux) < 0 pentru k suficient de mare. Cum existd un numar finit de indici
i, recompunand rationamentele facute, obtinem concluzia. 0

Pentru a arata ca toate cele patru conditii de calificare introduse pana acum sunt diferite,
mai trebuie sa verificam ca cvasi-regularitatea nu implica conditia Mangasarian-Fromovitz.

Exemplul 3.4.11 Fie g : R? — R? g(x1,79) = (—2% + 29, —2? — 23) §i punctul fezabil T =

(0,0). Atunci, D(Z) = {(u1,0) | uy € R}. Pe de alta parte, se verifica simplu ca T'(M,T) D D(T)
(deci are loc egalitatea), dar nu existd w € R? cu Vg(7)(u) < 0.
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Sistematizdnd, am aratat ca au loc urmatoarele implicatii:

Conditia de liniara independenta

4

Conditia Mangasarian-Fromovitz

2
Conditia Abadie

4
Conditia Guignard

si niciuna dintre reciproce nu este adevarata.

3.4.3 Conditii de calificare pentru sisteme speciale de restrictii

Conditiile de calificare de mai sus se refera la sisteme generale de restrictii. Sa discutam acum
conditii speciale referitoare la cazuri particulare ale datelor problemei.

Definitia 3.4.12 Spunem ca sistemul de restrictii asociat problemei (P) este de tip convex
daca restrictiile cu inegalitati sunt exprimate prin functii convexe, in timp ce restrictiile cu
egalitati sunt date cu functii afine, adica (g;);c1,; sunt conveve gi h este afina. In acest conteat,
spunem ca are loc conditia Slater daca exista u € RP astfel incat h(u) =0 si g(u) < 0.

Aceasta conditie a fost introdusa in 1950 de ciatre Morton Slater.

Teorema 3.4.13 Daca sistemul de restrictii asociat problemei (P) este de tip conver i este
indeplinita conditia Slater, atunci condiltia Abadie este satisfacuta in orice punct fezabil. In
particular, conditia Slater este o conditie de calificare.

Demonstratie Fie T € M. Incluziunea T'(M,T) C D(T) este deja ardtata in cazul general. Fie
v € D(T). Din conditia Slater gi convexitatea functiilor g; deducem (Teorema [2.2.13))

0> gi(u) 2 g:(T) + Vgi(T)(u — T),
deci pentru i € A(Z), Vg;(T)(u —7) < 0. Notdm w = u — T, iar pentru A € (0, 1), definim
wy = (1 = ANv+ \w.
Vom arata ca wy € T'(M,T) pentru orice A € (0,1). Pentru i € A(%),
Vgi(7)(v) <0, Vgi(z)(w) <0,

deci Vg;(Z)(wy) < 0. Din formula lui Taylor, pentru orice i € A(Z), existd 6; : (0,00) — R
astfel incat lim;_ot16; (t) = 0 si pentru orice ¢ pozitiv suficient de mic,

G (T + twy) = g;(T) + tVG(T)(wy) + 6; (t) =t <Vgi(f) (wr) + eit(t)) .

Deducem ca existd t > 0 astfel incat ¢;(T + tw,) < 0 pentru orice i € A(T).
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Fie (tx) C (0,00), t; — 0. Atunci

k—oo __

Pentru a finaliza, trebuie sd ardtdm ca de la un loc incolo, toti termenii sirului (zy) sunt in
M. Pentru i ¢ A(T), din continuitatea lui g, pentru k suficient de mare, g;(x)) < 0, iar pentru
i€ A7),

gi(zr) < (1 — 1) gi(T) + trg:(T + twy) < 0.

Din faptul cii h este afing, iar A(T) = 0, obtinem
h(zr) = (T + titwy) = tptVh(T)(w)).
Cum v € D(%), Vh(Z)(v) = 0, deci
Vh(Z)(wy) = AVA(T)(w) = AVRL(Z)(u — T) = Ah(u) = 0.

Obtinem ca h(zy) = 0 pentru orice k, deci, in final, (zg)k>k, C M, ceea ce inseamnd ca
wy € T(M,T). Facem acum A — 0 si din faptul c& T (M, T) este inchis deducem ca v € T(M,T),
ceea ce incheie demonstratia. 0

Definitia 3.4.14 Spunem ca sistemul de restrictii asociat problemei (P) este de tip afin daca
atdt restrictitle cu inegalitati, cdt i ce restrictiile cu egalitati sunt date prin functic afine.

S& consideram acum cazul unui sistem de restrictii de tip afin. Astfel, vom considera o
matrice A de tip n x p, o matrice B de tip m x psi b € R", ¢ € R™. Astfel multimea M devine
M ={x € R? | Az < b, Bz = ¢}, unde relatia "<" este inteleasd ca avand loc pe componente.
Deci g(z) = Az — b, h(x) = Bx — c.

Teorema 3.4.15 Daca sistemul de restrictii este de tip afin, atunci conditia Abadie este sa-
tisfacuta in orice punct fezabil.

Demonstratie Fie T € M. Ca si mai sus, este suficient si ardtdm cd D(z) C T(M,T). Fie
v € D(T). Fara a restrange generalitatea, putem presupune c4 toti indicii sunt activi. Atunci
Av <0, Bv =0. Daca v = 0 nu este nimic de aratat. In caz contrar, definim

1
T, ::E+Ev, Vk € N\ {0}.

Relatiile
Axrp, <b, Brp=c¢, 2, > T

dovedesc faptul ca v € T'(M,T). O
Asadar, in cazul restrictiilor afine nu trebuie verificata nicio conditie de calificare.

Dam acum un exemplu concret de rezolvare a unei probleme de optimizare prin folosirea
Teoremei Karush-Kuhn-Tucker, punctand etapele esentiale ale rationamentului.
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Exemplul 3.4.16 S& determindm pentru functia f : R* — R, f(z) = 2% + 23 + z3 punctele de
minim cu restrictiile x% + x% + 33 < —g sl xy + a9+ 23 = —2.

Evident, notdm, pentru a fi in cadrul deja discutat, g, h : R* — R, g(z) = 27+ 23 + 323+ 2,
h(x) = x1 + 2 + x3 + 2. Atunci avem problema minimizarii lui f cu restrictiile g(z) < 0,
h(xz) = 0.

1. Existenta solutiei

Mai intéi, verificam faptul ca problema are intr-adevar solutie. Pentru aceasta verificam
ca multimea punctelor fezabile M este compacta sau ca f este coerciva pe aceastd multime
(dac# este nemdarginitd). In cazul concret discutat, M este evident inchisd. De asemenea este
marginitd pentru cd g(z) < 0, h(z) = 0 inseamnd x5 = —2—x1 — 2 §i 2] +23— 321 —32,—6+2 <
0, adica (:c1 — %)2 + (1'2 — %)2 — 8 < 0. Deci coordonatele x1, zo sunt marginite si din relatia
anterioard acelagi lucru poate fi spus despre x3. Deducem ci M este compactd. (Pe de alt
parte chiar daca M ar fi fost nemarginita, putem observa ca f este coerciva pentru ca este
patratul normei.) Deci, problema admite solutie (Teorema lui Weierstrass).

1I. Convexitatea sistemului de restrictii, Convexitatea problemei

Este usor de verificat g este convexa, iar h este afina, deci sistemul de restrictii este convex.
In plus, f este convexd, deci problema este convexii. Prin urmare conditiile din Teorema
Karush-Kuhn-Tucker sunt necesare si suficiente.

I1I. Verificarea uner conditit de calificare

Pentru a determina solutiile vrem sa aplicam teorema Karush-Kuhn-Tucker, motiv pentru
care trebuie sa verificim o conditie de calificare.

Varianta 1. Verificdim conditia de liniard independenta. Fie x € M. Dacd g(z) < 0 este
inactivd in z, cum Vh(z) = (1,1,1) # 0, multimea {Vh(z)} este liniar independentd. Pre-
supunem ci g este activd in z. Presupunem cd {Vg(z), Vh(z)} nu este liniar independents.
Atunci exista (a, 8) # (0,0) astfel incat aVg(z) + SVh(xz) = 0. Aceasta conduce la

21+ =0
2ax9 + =0
3a+8=0
adica
b= -3«
Tl = T2 = %
r3 € R.
Observam insa ca un punct de forma (%, %, u) nu este fezabil cu restrictia g activa: %—F%—i—u = -2

implicd v = —5 iar (%, %, —5) nu verificd g(z) = 0. Deducem ci este indeplinitd conditia de

liniara independenta in toate punctele lui M.

Varianta 2. O alta varianta este sa observam, din faptul ca sistemul de restrictii este convex,
cd este suficient sa verificdm conditia Slater: aceasta este indeplinita pentru u = (0,0, —2).

1V. Aplicarea Teoremei Karush-Kuhn-Tucker

Cum am spus, datorita faptului ca problema este convexa, conditiile Karush-Kuhn-Tucker
sunt necesare si suficiente pentru minimalitate (globald). Deci x este solutie a problemei noastre
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daca si numai daca exista A > 0, pu € R astfel incat

(

2x1+2)\x1+u:0

2z9 + 2 x9 + 4 =10
2$3+3)\+M:O
A2+ 23 +3234+2) =0

Ty + X0+ 13 = —2

| A>0, 22+ a3+ 323+ 2 <0.

Plecam de la a patra ecuatie. Daca A = 0 atunci din primele trei ecuatii deducem

2
$1=I2=$3=—§;
punct pentru care ultima inegalitate este falsa.
Deci A > 0, ceea ce inseamnd x? + x3 + 33 + g = 0. Din primele doua ecuatii avem z; = x5
iar din a cincea 3 = —2 — 2x1, adica
5

2x§—6x1—6+§:0.

7T 1 1
—,—,—9 3 __7__7_1 .
(552) (52

Trebuie insg s& determindm \ pentru a verifica conditia A > 0. In cazul primului triplet primele
trei ecuatii conduc la 4\ = —25, ceea ce inseamna ca acest triplet nu este solutie. Pentru al
doilea, gasim \ = i, deci singura solutie a sistemului este elementul

1 1
— . —1 R3.
(331) e
V. Concluzia

Putem concluziona ca, intr-adevar, acest punct este solutie a problemei in doua feluri:
pe de o parte problema admite solutie si punctul gasit este singurul care satisface conditiile
necesare; pe de alta parte, problema fiind convexa, punctele ce satisfac conditia necesara sunt
solutii (conditiile necesare sunt si suficiente). Unicitatea solutiei se putea deduce si inainte de
rezolvarea efectiva pentru ca functia obiectiv este strict convexa.

Obtinem tripletele

3.5 Exemple si aplicatii

Ne propunem sa ilustram rezultatele teoretice discutate mai sus prin intermediul a diverse
exemple, fiecare dintre ele subliniind un aspect teoretic specific. De asemenea, prezentam unele
aplicatii ale metodelor studiate pana in acest punct.

Exemplul 3.5.1 (extrem local - extrem global) Primul exemplu marcheazia o diferenta
importanta intre extremele globale ale unei functii reale de o variabila reala si cele ale functiilor
de mai multe variabile.
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Daca o functie derivabila f : R — R are un singur punct critic T care este punct de extrem
local, atunci acesta este in mod necesar punct de extrem global. Intr-adevir, daci T nu ar fi
punct de minim global, atunci ar exista u € R cu f(u) < f(Z). Putem presupune ci u < 7.
Dar, din conditia de minim local pentru 7, exista v € R, u < v < T astfel incat f(T) < f(v)
(in caz contrar, f ar fi constantd pe un interval de forma (T — ¢,7) si T nu ar mai fi unicul
punct critic care este si extrem local). Prin urmare, f(u) < f(Z) < f(v), deci valoarea f(T)
se atinge in intervalul (u,v), intr-un punct notat w. Aplicind Teorema lui Rolle functiei f pe
[w, ], existd t € (w,T) cu f'(t) = 0, ceea ce reprezinta o contradictie. Exemplul de mai jos
demonstreaza ca in mai multe dimensiuni, aceasta observatie nu mai este adevarata.

Fie acum p > 2 si f : R? — R, definita prin

p—1

fl@) =142, af + a7,

k=1

Atunci 0 € RP este singurul punct critic al lui f, este punct de minim local strict (de ordinul
a = 2), dar nu este punct de minim global (o ilustrare grafici pentru cazul p = 2 poate fi ficuta
cu ugurinta in Matlab).

Avem o problema de optimizare fara restrictii. Sa calculam

0 .
a—;;g(x) =2z, (1 + xp)3, Vkel,p—1,
0 vl
87f(x) =3(1+z,)%) a7} + 2z,

p k=1

Singurul punct critic (ie. Vf(Z) = 0, deci 2L(Z) = 0 pentru k € T,p) este T = 0. Un calcul
k

simplu aratd cd matricea hessiand asociatda lui f in T este matricea patratica de tip p x p

care are numarul 2 pe diagonala principala si 0 in rest, deci este pozitiv definita. Conform

Corolarului 7?7, deducem ca T este solutie locala stricta de ordinul al doilea. Sa observam ca

fL1, . 2p) = (p— 1)(1 4 2,)° 4 22, expresie care fiind un polinom de gradul al treilea, ia,

atunci cand z, variaza in R, toate valorile dintre —oo §i +00. Deci f nu poate avea minim

global. 0

Exemplul 3.5.2 (metoda celor mai mici patrate) Discutdm acum un caz special de prob-
lema de optimizare fara restrictii, numita metoda celor mai mici patrate, care apare foarte des
in practica masuratorilor si experimentelor din stiintele naturii: fizica, chimie, astronomie, bi-
ologie. De altfel, din punct de vedere istoric, acest tip de problema a aparut in legatura cu
studiul miscarii planetelor si in chestiuni legate de tehnici de navigatie. Matematicianul care
a pus bazele acestei tehnici de studiu se considera a fi Gauss, dar metoda a fost publicata
pentru prima datd de citre Legendre. In putine cuvinte, este vorba de urmitoarea situatie:
avem la dispozitie un numar de date vy, vs, ..., vy provenite in urma unor masuratori facute la
momentele tq,1s, ..., ty. Obiectivul este acela de a determina cea mai buna functie model de
forma t — ¢(t,z) (unde x = (x1, 29, ...,7x) sunt parametri ajustabili) care se potrivesgte cu
datele masurate. Astfel, pentru fiecare i € 1, N se defineste abaterea (reziduul) dintre o data
masurata la momentul ¢; si data descrisa de model la acelagi moment ca fiind

Ty =V — Sp(tla l’),
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iar problema este de a minimiza functia f : R* — R,

N
:Z fzz o(ti, ).
i=1

Ca o parantezi, s spunem c& o altd posibild functie obiectiv (poate mai fireascd) ar fi

N

Z vi — (i, @)

=1

insa aceasta constructie nu conserva diferentiabilitatea. Acesta este motivul pentru care se
prefera suma patratelor reziduurilor, de unde gi numele metodei.

Consideram aici cazul unei dependente liniare. Presupunem ca s-au facut N masuratori la
momentele diferite ¢, ts,...,txy > 0 si, corespunzator, s-au obtinut valorile vy, vs, ..., vy. Stiind
ca dependenta dintre cele doua seturi de valori este liniara ne intereseaza sa determinam o
dreapta care "se potriveste" cel mai bine acestei colectii de date observate. Fie deci o dreapta
oarecare v = at+b. Ca mai sus, abaterea la momentul ¢; dintre valoarea masurata v; si valoarea
corespunzatoare a dependentei liniare este v; — (at; + b). Pentru a "masura" suma abaterilor,
consideram functia f : R? — R,

fla.b) = o — (at; +b)]*.

=1

Dreapta fata de care abaterea masuratorilor va fi cea mai mica va fi dreapta cautata. Astfel
ajungem la problema minimizarii (fard restrictii) a functiei f. S& observém si faptul functia f
este coerciva, adica lim(qp)|—oo f(a,b) = 00, deci, conform Teoremei , admite punct de
minim global.

Calculam derivatele partiale:

O (0.1 = > 2(—t) o = (ati +b)
gg( b) = ; —2[v; — (at; +b)]

si determinarea punctelor critice revine la rezolvarea sistemului:

S ) a+ (SEt) b= TN, tw
Zivl )a"‘Nb—Zlez

Determinantul matricei sistemului de mai sus este

s(£)- (£ - ()89 (1)
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Din inegalitatea lui Holder, acest numar este pozitiv (egalitatea s-ar obtine daca gi numai daci
toate valorile ¢; sunt egale, lucru exclus de la bun inceput). Asadar, sistemul de mai sus admite

solutie unica:
-1
a) _ Yt Yt St
b Zf/\il L N ZZZL vi )

Cum f admite punct de minim global aceasta care nu poate fi decat punctul critic determinat
mai sus. Asadar perechea (a,b) de mai sus reprezinta solutia problemei.

Pentru exemplul general de mai sus, o parte din calcule s-ar pastra daca am avea o depen-
dentd de tipul v = a - p(t) + b q(t), unde p,q : R — R, obtinandu-se sistemul

(v, Sy (3) - (e ).

Din nou folosind inegalitatea lui Holder, matricea este inversabild dac i numai daca (p*(t;)),_1 ¥
si (¢°(t:));—1v nu sunt proportionale.

In general, pentru dependente mai complicate (neliniare in parametrul ) metoda celor mai
mici patrate nu are o solutie care sa poata fi atat de usor dedusa, asa incat, in astfel de situatii
sunt folositi diversi algoritmi care si furnizeze aproximari ale solutiei (a se vedea sectiunea
urmatoare).

Exemplul 3.5.3 (restrictii geometrice - restrictii functionale) Problema din Exemplul
adicd problema minimizarii lui f : R? — R,

2 2
flx) = —x1 — 2x9 — 2m19 + % + %

pe multimea restrictiilor

M:={zeR|z1+22,<1, 11 >0, 2 >0}
poate fi abordata acum si prin considerarea functiei

g:R* = R3 g(x) = (v1 + 25 — 1, —21, —2).

Astfel, reinterpretdm problema ca avand constrangerea g(x) < 0. Cum g; sunt liniare nu e
nevoie sa verificdm conditii de calificare (conform Teoremei [3.4.15)). Atunci, dacd T ¢ int M
este solutie a problemei, existd (A1, A2, A3) € R? astfel incat

V@) + MV (T) + AV (T) + AsVgs(z) =0
)\191(5) = O, 1€ 1,3

Discutia se imparte acum din nou pe cele sase cazuri de mai sus. De exemplu daca punctul =
este pe segmentul deschis de capete (0,1), (1,0), atunci go(7) < 0, g3(T) < 0, deci Ay = A3 =0,
iar sistemul de mai sus se reduce la

—1—2f2+fl+)\120
—2-201+T2+XN =0
$1+I2—1:0
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care are solutia \y = 2, T = (%, %) . La fel, se arata ca in celelalte situatii sistemul provenit
din conditiile Karush-Kuhn-Tucker nu are solutie, astfel incat atat cazurile considerate cat si
conluzia sunt practic ca in Exemplul |3.3.5|

Exemplul 3.5.4 (optimizare pe simplexul unitate) Fie f : R — R convexa si diferenti-
abild. Daca dorim sd minimizdm aceasta functie pe simplexul unitate (a se vedea Exemplul
, atunci, conform Propozitiei T € M este punct de minim pentru f pe M daca
si numai dacd —V f(Z) € N(M,T). Din forma particulard a lui N(M,7), deducem ci aceasta
conditie se scrie

af
Gmi
of

aa:i

Fie ny,...,n, € N\ {0}, >F n; = N > 0sifie f: R — R, f(z) = —aay?..2p".
Sa minimizam aceasta functie pe simplexul unitate din RP. Evident ca problema are solutie,
f fiind continua, iar M compacta. Cum f este nulda dacd macar una dintre componentele
argumentului este zero, solutiile se vor gasi in multimea

p
{xER”\xZ—>O, Vi e 1,p, inzl}.

=1

() = ¢, (constantd), Vi ¢ I(T)

(@) > ¢, Vi€ I@).

Cu notatiile din Exemplul aceasta inseamnd [(Z) = ). Mai intai, conditia necesara de
optimalitate —V f(Z) € N(M,T), se scrie, tinand cont de expresia conului normal (Exemplul
2.6.4])

;i L
— f(Z) = ¢, constanta, Vi € 1,p,
i

adica

n; / ¢ o\ T
— = ¢, constanta, Vi € 1, p.
T;

Cum P 7, =181 > " n;=N, gisim

T; = %, Vi € 1,p.
Cum problema are solutie si un singur punct verifica conditia necesara, deducem ca acel punct
este solutia cautata.

O alta abordare consta in transformarea restrictiei geometrice intr-una functionala. Fie
h:RF — R, h(z) = "  x; — 1. Este clar c& M = {z € R? | h(z) = 0}. Fie T solutie a
problemei. Cum Vh(Z) # 0, putem aplica Teorema m pentru a deduce ca exista u € R
astfel incat

V(@) + pVh(z) =0,

adica .
——f(T) = u, constantd, Vi € 1, p.
T

Astfel, se obtine aceeasi concluzie ca mai sus.
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Exemplul 3.5.5 (obtinerea unor inegalitiati) Metodele de optimizare studiate permit obtinerea
unor inegalitati remarcabile. Ilustram astfel de posibilitati.
1. Fie functia f : R} — R definitd prin

0, dacd (z,y,2) =0 € R?,
fzy,2) =< .. daci (z,y,z) # 0.

@ty+2)2

Fie a > 0. Studiind problema maximizarii lui f pe multimea
M={(z,y,2) €ER*: 2 >0,y > 0,2 >0,2° +9* + 2* = a*}

vom deduce urmatoarea inegalitate: pentru orice x,y, z € R,
(el Iyl 2DV 2
9V3

Mai intai, observam c& functia f este evident continud pe R\ {0} ca raport de functii continue.
Mai mult, pentru (z,y, z) € R? :

lryz| <

ryz < (max(w,y, 2))°

si
(z+y+2)° > (max(z,y, 2))*,
deci f(z,y,2) < max(zx,y, z), ceea ce probeaza continuitatea lui f in 0.

Multimea M U{0} este compactd, agadar f isi atinge maximul global pe M U{0} . Cum acest
maxim nu poate fi in 0, rezulta ca punctul de maxim este in M. Din nou, este evident ca f este
de clasg C' pe R3.. Este aplicabild Teorema Karush-Kuhn-Tucker pentru problema maximizarii
lui f cu restrictia 2? + y* + 22 = a® si cu (z,y,2) € R3 \ {0}. Astfel, dacd (z,y,2) € R \ {0}
este punct de maxim pentru aceasta problema, exista p € R astfel incat

Yz TYz
-2 +2ux =0
(z+y+2)? (z4+y+2)3 s
Tz TYZ
—2 +2uy =0
@ryt2? (@tyteop Y
il -2 Tz 3 t2uz=0

(x+y+2)? (x+y+2)
x2+y2+22:a2.

Deducem

Tyz TYz 9
— 22—+ 2ux" =0
@tytz? wrytap

Tyz xyz 9
—_—  y—— 1D =0
(x+y+ 2)? y(a:+y—|—z)3 1y

Tz — 22L3 +2uz> =0

(x+y+ 2)? (x+y+2)

x2+y2+22:a2,
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de unde
TYz TYz

—9 =
(x +y+ 2)? (x +y+ 2)?

In particular, < 0 si sciizand primele doud ecuatii din sistemul Karush-Kuhn-Tucker, avem

2

0< f(z,y,2)=3 —2ua”.

%Jﬂu(ﬂ:—y):&

deci

(2 Gryrap) =0

Cum expresia din prima paranteza este strict mai mica decat 0, gasim x = y. Similar, z = z,
deci

Sl

si
a
su .Y, 2) = —=.
p f(2,y,2) Wi

(z,y,2)eM

Fie acum z,y, z € R. Notdam a = /22 + y? + 22 si din cele de mai sus,

Va2 y? + 22
w? 72 S )
Pl bl o) < Y2

iar concluzia se obtine imediat.
2. Fiex,y,z>0cux+y+2z=1. Aratam ca

0<zy+yz+rz—2ryz < 2—77
Pentru aceasta consideraim problemele minimizarii si maximizarii functiei f : R — R date
prin
fzy,2) =2y +yz+ vz — 20Y2
cu restrictiile z,y,z > 0 cu  + y + 2z = 1. Cum multimea punctelor fezabile este compacta,
ambele probleme au solutii globale. De asemenea, observam ca sistemul de restrictii este afin.
Pentu a simplifica calculele, sa observam ca daca cel putin una dintre variabile este 0, atunci
inegalitatea este adevarata. Deci putem presupune ca z,y,z > 0, adica restrictiile inegalitati
sunt inactive. Astfel, consideram doar restrictia egalitate si conditiile de optimalitate se scriu
similar pentru ambele probleme: exista p € R astfel incat

y+z2—2yz+pu=20
rTH+z—2xz+p=0
r+y—2zxy+pu=0
r+y+z=1
x,y,z > 0.

Scizand ecuatiile doud cate doust obtinem ca singura posibilitate este x = y = 2 = 37, Dar

111 7
f(?§§)_§?
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Cum, de exemplu, f (}1, i, %) < 2—77 deducem ca punctul obtinut este solutia globala a problemei

de maximizare. Obtinem astfel inegalitatea din dreapta. Cum nu am obtinut solutie pentru
problema de minimizare, atunci cdnd am indepartat restrictiile cu inegalitati, inseamna ca
solutiile acestei probleme au macar o componenta nula. Deci are loc si inegalitatea din stanga,
iar egalitatea este atinsd, de exemplu, in (1,0,0).

Exemplul 3.5.6 (o problema de geometrie pland) Fizam lungimile tuturor laturilor unui
patrulater. Care este pozitia acestor laturi incdt aria patrulaterului sa fie maxima?

Vom incerca sa abordam aceasta problema din prisma Teoriei Optimizarii, intrucat este
o problema de maximizare. Notam cu ABCD patrulaterul si cu 6;,6, unghiurile din A si
respectiv C. Aria patrulaterului este suma ariilor triunghiurilor ABD si CBD, deci

1
§(ad sin 0y + bcsin 6s).

Evident, avem o legatura intre unghiurile 6, si 05, legatura pe care o determinam expriméand
lungimea diagonalei BD in cele doua triunghiuri:

a’ + d*> — 2ad cos 0; = b + ¢* — 2bc cos b5,
Avem acum problema maximizarii functiei obiectiv f : R? — R,
f(61,02) = adsin 6y + bcsin O,
cu restrictiile 61,0y € [0, 7], h(01,02) = 0, unde h : R* — R,
h(01,05) = (a® + d* — 2ad cos 1) — (b* 4 ¢ — 2bccos by).

Este clar ca multimea punctelor fezabile este compacta, iar functia obiectiv este continua, deci
Teorema lui Weierstrass asigura faptul ca problema admite solutie. Este clar ca pentru atingerea
maximului nu putem avea 61,0, € {0, 7}, deci restrictiile date de 6,605 € [0, 7] sunt inactive.
Cum Vh(0;,0,) = 0 € R? inseamni ci sinf; = sinfy = 0 ceea ce corespunde cazului unui
patrulater degenerat (de arie 0), deducem c& in toate punctele de maxim (eventualele solutii)

are loc conditia de liniara independenta. Aplicim Teorema Karush-Kuhn-Tucker: daca (61, 6,)
este punct de maxim pentru problema data, exista p € R astfel incat

V£(61.02) + uVh(61,65) = (0,0),

ceea ce conduce la sistemul
ad cos 6y + 2uadsin 6, = 0

bccos By — 2pbesin 0 = 0.
Am hotarat ca intr-un punct de maxim sin 6y, sin 6y # 0, deci

cosf;  cosby

QU = — —
H sinf;  sin6,’

adica
sin(Ql + 02) =0.

Cum 0 < 0 + 65 < 27, deducem ca 0, + 0, = 7, adica patrulaterul este inscriptibil. Cum se
poate relativ usor constata ca exista o unica pozitie a laturilor astfel incat 6; + 60, = 7, deducem
ca solutia este unica. Demonstratia este completa.
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Exemplul 3.5.7 (proiectia pe un hiperplan, distanta la un hiperplan) Fie u € RP \
{Ogr} si @ € R. Consideram multimea (numita hiperplan)

M :={x e R”| (u,z) = a}.

Aceastd multime este convexa si inchisa, deci, pentru orice v € RP \ M, exista proiectia lui v pe
M, pe care o notam cu v,. Ne propunem sa determinam expresia explicita a acestui element si
valoarea distantei de la v la M, adica ||[v — v, .

Fixam agadar v € R\ M. Atunci v, este solutia unicd a problemei de minimizare a functiei
f:RP - R, .

2
L

/()

pentru

reM={xeRP|h(x)=0},

unde h : R? — R e data prin h (z) = (u,z) — a.

Alegerea functiei obiectiv ca mai sus are aceeagi motivatie ca si in cazul metodei celor mai
mici patrate. Evident, Vf () =z — v, Vh (z) = u pentru orice z € RP.

Cum constrangerea (privitd functional) este afind, iar f este convexd, elementul v, este
caracterizat de

dueR, Vf(vy) +puVh(v,) =0
<U, Ua> = a,

ceea ce este echivalent cu
Vg — U+ pu =0
(u,v,) = a.

Din prima relatie, facand produsul scalar cu u, deducem
2
(va —v,u) + pfful]” =0,

deci, folosind a doua relatie,

Revenind, obtinem

Exemplul 3.5.8 (proiectia pe un elipsoid generalizat) Fie acum a4, as, ..., a, € (0, 00) si
multimea (elipsoidul generalizat)

p 2
M;:{xeRp\Z(ﬁ> g1}.
Q;
=1
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Evident aceastd multime este convexa si compacta. Fie v ¢ M. Existda v € M, proiectia lui v
pe M. Din nou, dorim sa gasim o expresie a acestui element.
Ca mai sus, U este solutie a problemei de optimizare a functiei f : R — R, f(z) = ||z — v|]2
sub constrangerea
reM={xeR|g(z) <0},

unde g : R? — R e data prin
p 2
L
T) = — -1
o0 =3 (1)
Observam ca functia g este convexa si are loc conditia Slater.

In plus, functia f este de asemenea convexa, asa incit putem trage concluzia cd v este
solutie a problemei daca gi numai daca exista A > 0 astfel incat

{ Vf @) +AVg (@) =0
Ag (V) = 0.

Acest sistem este echivalent cu

_ U
UZ_U1+)\_2:0
a;

A(i(g)lgzo

Daca A\ = 0, prima ecuatie atrage v — v = 0, adica v € M, ceea ce este fals.

P, N\2
Prin urmare A # 0 si restrictia este activa in v, adicd | (Z—) = 1. Deducem c&
i=1 "

a2v; _—
7= Yy T
a?+ A b

P \2
Pe de alta parte, cum ) (%) =1, deci

=1
p

a?v?
L
Z(aiﬂf

=1

Altfel, a-1 gasi pe A presupune a rezolva ecuatia de mai sus in necunoscuta A\ > 0. In sfarsit, sa
remarcam ca ecuatia are solutie unica intrucat functia

A
0< )\ i
~ (a? + \)?

este strict descrescitoare iar valoarea sa in 0 este strict supraunitara (pentru ca v ¢ M) in
timp ce limita sa la +o0o este 0. Revenind, a-1 determina pe v revine la rezolvarea unei ecuatii
de grad 2p, lucru in general imposibil.

Atunci vom fi interesati de metode de aproximare a radacinilor ecuatiilor neliniare, lucru de
care ne vom ocupa in capitolul urmator.
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3.6 Exercitii

Exercitiul 3.1 Sa se deseneze multimea punctelor fezabile, multimile de nivel pentru functia
obiectiv g1 sa se determine grafic solutiile pentru problemele de mai jos:
(1)
max (r; — z3), cu
1+ Xo S 1, —$1—|—2ZL’2 §2
1> —1, —x14+ 32, > —3
(ii)
max (21 + 6x3) , cu
—T1 + T2 < 1, 2$1+$2 §2
Ty Z 0, i) 2 0.

Exercitiul 3.2 Sa se deseneze in plan regiunea determinata de inegalitatile
2220, 0< 21 <3, —x1+a22<1, 71 +132 < 4.

Sa se determine punctele din aceasta regiune in care urmatoarele expresii isi ating mazximul §i
respectiv minimul:
271 + 725 11 + T2 w1 + 279,

Exercitiul 3.3 Fie f : R — R o functie derivabila astfel incdt lim @ =00 § lim @ =

r—00 Tr——00

—o00. Sa se arate ca f' este surjectiva.

Solutie Fie r € R arbitrar si g : R — R, g(z) = f(z) — ra. E clar ca limp;o g(x) = 00
si deci g isi atinge minimul (global) intr-un punct T € R. Deci, din Teorema lui Fermat,
0=g(@) =f(@—r O
Exercitiul 3.4 Fie f,g: RP — R functii diferentiabile i a € RP. Presupunem ca f(a) = g(a)
§i ca pe o vecinatate a lui a, f(x) > g(x). Sa se arate ca V f(a) = Vg(a).

Problema 3.5 Fie U C RP deschisa, f : U — R continua si * € U. Presupunem ca existd o
vecinatate V' a lui T astfel incdat f este diferentiabila pe V \ {Z} i Vf(z)(x —T) > 0 pentru
orice v € V \ {T}. Atunci T este punct de minim local pentru f.

Solutie Este suficient sa consideram cd V' este o bild deschisa centratd in Z. Fie x € V' \ {Z}.
Consideram functia ¢ : [0,1] — R, ¢(t) = f(T + t(x — T)) care, din proprietatile lui f, este
continud pe [0, 1] si derivabild pe (0, 1), iar

O (t)=Vf@T+tlx—-17)(x—T).
Aplicand Teorema lui Lagrange lui ¢ pe [0, 1], existd u € (0,1) cu ¢(1) — ¢(0) = ¢'(u), adica
f(@) = (@) = V(@ +ulx-7))(r-7)

Evident, notand z, =7 +u(z — ) € V \ {Z} avem x — T = u~!(z, — 7). Deci, folosind relatia
de mai sus gi ultima ipoteza,

f(z) = f@) =u'Vf(r,) (v, —T) > 0.

Concluzia este acum evidenta. O
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Problema 3.6 Fie U C RP deschisa, f : U — R diferentiabila 1 T € U. Urmatoarele afirmati
sunt echivalente:

(i) T este un punct critic al lui f.

(ii) pentru orice ¢ > 0, T este un punct de minim local pentru functia

v fo(r) = f) +elle =7

Solutie Presupunem c& are loc (i) si ludm & > 0. Presupunem, prin reducere la absurd, c& T nu
este punct de minim pentru f.. Atunci exista un sir (zx)reny — T de elemente din U astfel incét

fe(zp) < fo(T), Vk € N

Evident, =), # T pentru orice k,
Cum f este diferentiabila in 7, exista (ay) — 0 astfel incat pentru orice k

f (xk?) = f (f) + Vf (f) (xk; — f) + o ||1‘k —f” .
Deci, pentru orice k,
—¢ |lzx = 7| — ey [l — ]| 2 0,

adicd —e > ay. Cum (ay) — 0, aceasta este o contradictie.
Presupunem acum ca (ii) are loc. Fie ¢ > 0. Existd 6. > 0 astfel incat pentru orice
x € D(T,0.),
f@) < flz)+elz ==

Fie u € R? de norm& 1. Atunci, luand x = T + t6.u cu t € (0,1), in inegalitatea de mai sus

aveln
f (E + t(ssu) B f (f) B tésvf (E) (u)
t0e [|ul

to: [Jul| + t0-V f (Z) (u) + eto. ||ul]| > 0,

deci
to. [[ul

Trecand la limitd cu ¢ — 0, avem Vf(Z)(u) + & > 0. Cum € > 0 este arbitrar, deducem
Vf(Z) (u) > 0 pentru orice u de norma 1. Aceasta inseamna ca V f () = 0. O

+ V£ (T)(u)+¢e>0.

Problema 3.7 Fiea,b,c,d € R cua <b,c<dgif:][ab]x]c,d — R. Definimp : |a,b] — R,

o(x) = inf{f(z,y) |y € [c,d]}.

Sa se arate ca ¢ este bine definita gi continua.

Solutie Aplicatia
[e,d] 5y — f(z,y)

este continud, deci isi atinge minimul pe [¢,d]. Prin urmare, existd y, € [c,d] astfel incat

o) = f(@,y0).

Din Teorema lui Cantor (Teorema |4.6.51)), f este uniform continui pe multimea compacta
[a,b] x [¢,d] : pentru orice € > 0, exista J. > 0, incat pentru orice (2',y'), (2", y") € [a,b] X [¢, d]
cu [[(@',y) — (&, ") < 0. avem | f(a',y/) — f(",y")] < e.

69



Fie 2/, 2" € [a,b] cu |2’ — 2"| < d.. Atunci

p(a') = (@) = f(a, yw) = f(2", yar)
< f(xl7y96”) - f(x”7y96”) <é

Schimband rolurile lui z’ si 2", obtinem

p(z") — () <e,
de unde deducem concluzia. OJ

Exercitiul 3.8 Sa se determine punctele de extrem local ale functiilor de mai jos (probleme
fara restrictii):
(i) f:R* > R, f(x1,79) = 62379 + 223 — 4571 — Hlag + T;
(’&Z) f :R? — Ra f(:)jl?'IQ) = ’I% + IE%,
(iii) £ - R S R, f(zy,25) = 2 + 2
(iv) f:R? > R, f(21,2) = 27 + 23;
() f:R2 =R, f(oy,xs) = (1+ )" 22 + 22;
(vi) f:R? = R, f(a1,29) = w1 + 1) — xf29;
(vit) [ R2= R, f(x1,22) = —23 + 3122 — 1521 — 3629 + 9;
(viii) f:R2—= R, f(z1,22) = 7] + 25 — 2T — 20179 — 23;
(iz) f:R? - R, f(xy,35) = 8% — 2:611:2 + 22 — 229;
(x) f R = R, f(z1,22) = 23 + 23 + 22,29
(wi) f:R?2 = R, f(xy,12) = 1102172
(wii) f:R?2 = R, f(x,20) = —2F — 273 + 202 — dx 19 + 273 + 2;
(ciii) [ R — R, f(21,22) = m2a(a? + 3 — )
(xiv) f:R? - R, f(x1,79) = 3] — 4a2xqy + 23;
(xv) f:R? = R, f(x1,29) = (1 — 21)% + 100(z2 — 22)%;
(zvi) [ R? = R, f(z1,12) = 21237 7%2;
(zvii) f:R? = R, f(x1,72) = 223 + 6$1x2 — 3x3 — 150zy;
(wviii) f:R? = R, f(x1,22) = (822 — 62119 + 373)e21 322,
(ziz) f:R3 = R, f(x1, 79, 73) = 2] + 25 + 22 + dw1203 — 379 + 2;
(zx) f:R® = R, f(ry, 79, 73) = 227 + 22 + 22 — 4wy + 813 — 5;
(zzi) f:R® = R, f(x1,29,73) = 2o In(1 + 22 4 23);
(xzii) f: R — R, f(x1, 22, 73) = 11796

Solutie (i) Rezolvam sistemul ce rezultd din relatia V f(x) = 0 pentru a determina punctele
critice. Avem sistemul

123]13/1 =45
622 + 623 = 51

272 272 2
Astfel, in cazul nostru, obtinem concluzule

sunt extreme locale, ( ;, —g) este maxim local.

care are solutiile (2,3),(3,3),(-2,-2), (-2,-2).
2 3) este minim local, (2,2),(-2,-2) nu
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(iii) Singurul punct critic este (0,0), dar determinantii formati din matricea hessiana sunt
nuli, deci nu putem decide pe acesta baza. Totusi este simplu de observat ca

f(z1,25) > 0= f(0,0), ¥(x1,25) € R?,

deci (0,0) este minim global.

(iv) Din nou, singurul punct critic este (0, 0), dar nu putem decide daca este punct de extrem
pe baza teoriei de mai sus. Observam ci f(0,0) = 0, iar pentru sirul z,, = (£,0) — (0,0),
f(x,) > 0 in timp ce pentru y, = (0,—%) — (0,0), f(y,) < 0. Deci in orice vecindtate a lui
(0,0) existd atat puncte pentru care functia cost ia valori mai mari cat si valori mai mici. Deci
punctul nu este de extrem local.

La celelalte subpuncte se procedeaza analog: exista atat puncte critice pentru care putem
aplica teoria, cat si puncte pentru care trebuie folosita structura problemei. Exista de asemenea
situatii in care se poate decide dacid V2f(Z) este pozitiv (negativ) definitd sau nu folosind
calculul direct al acesteia, criteriul lui Sylvester nefiind aplicabil. [l

Implementare Matlab 3.9 Sa se reprezinte grafic functiile de mai sus precum si curbele lor
de nivel (i.e., multimile de tip {z | f(z) = ¢}, unde ¢ este o constantd) si sd se compare cu
concluziile teoretice. Ilustram reprezentarile grafice pentru punctul (¢v). Folosim codul:

[x,y]=meshgrid(-0.5:.001:0.5);

z=X. 2+y."3;

mesh(x,y,z)

iar pentru a desena curbele de nivel:

[c,h]l=contour(x,y,z,70);

clabel(c,h);

Pentru punctul (v), se deseneaza ca mai sus pe [x,y]l=meshgrid(-7:.01:7).

Exercitiul 3.10 Fie a € R. Sa se arate ca functia f : R? — R, f(x,y) = 52 + 6zy + 5y* —
162 — 16y + o are un punct de minim global. Determinati o astfel incdt inf, yyere f(2,y) = 0.

Exercitiul 3.11 Pentru urmatoarele functii studiati punctele de extrem gi stabiliti daca exista
extreme globale.

(1) [:R*> = R, f(z,y) = 22° + 2y — 3zy — Ty>.

(i) [ R? = R, f(v,y) = 4a® + 22y + y* — 3z — y;

(iii) f:R® = R, f(r,y,2) =222 — 22y + y? — 2 — yz + 2%

Exercitiul 3.12 Fie f : R? —» R, f(x,y) = 2? — siny. Sa se arate ca f are o infinitate de
minime globale, dar nu are niciun mazim local. Sa se reprezinte grafic functia folosind Matlab.

Exercitiul 3.13 Fie f : R? —» R, f(x,y) = ¥ + v — 3ye®. Sa se arate ca f are un singur
punct critic care este punct de minim local dar nu este punct de minim global.

Exercitiul 3.14 Sa se arate ca f: R? — R, f(x,y) = (1 +¢Y)cosx — ye¥ are o infinitate de
mazime globale, dar nu are niciun minim local.
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Exercitiul 3.15 Fie f : R? — R,

2 2
flz) = —x1 — 209 — 2m129 + % + %

st multimea restrictiilor
M::{xER2’x1+x2§1, x>0, @20}.

Sa consideram problema (P) a minimizarii lui f pe M. Sa se verifice daca este indeplinita
conditia necesara, respectiv conditia suficienta de optimalitate de ordinul I in punctele: (1 1) ,

202
(0.3), (3,0). (5:3), (1,0), (0,1), (0,0).
Similar pentru problema mazimizarii lui f pe M.

Exercitiul 3.16 Sa se demonstreze ultima afirmatie de la Exemplul [3.4.4].

Exercitiul 3.17 Fie h : R* — R data prin h(zy, e, x3) = 23 + 23 + 23 — 4. Sa se arate ca
sistemul de restrictii h(x) = 0 satisface conditia Abadie in toate punctele sale. Apoi, sa se
determine mazimele gi minimele globale ale functiei f : R® — R, f(xy, 22, 23) = 23 + 23 + 23
cu aceasta restrictie.

Solutie Multimea punctelor fezabile este
M ={z eR®|al+a}+a5=4}.
Este clar ca pentru orice x € M,
D (z) = {u € R® | zyus + zaus + 23u3 = 0} .

Folosind Teorema lui Lyusternik, deducem c& T' (M, x) este exact D (x). Deci conditia Abadie
are loc.

Cum sfera descrisa de ecuatia h(x) = 0 este multime compacta si f este continud, din
Teorema lui Weierstrass exista extremele globale ale problemei date. Se observa ca in cazul
de fata, avand doar restrictii egalitati atat pentru minime cat si pentru maxime, trebuie sa
determinam mai intai punctele critice ale functiei lagrangian. Obtinem sistemul

To(3x2 +21) =0
x3(3xg +2u) =0

o]+ 15+ 25 = 4.
Avem de distins intre mai multe situatii.

e Daca 1 = 29 = x3 = 0 atunci punctul nu este fezabil.
e Dacd z1 = x5 =0 i w3 # 0, avem 3 = £2 (u nu este important acum).

e Daci 21 = 0, 24,23 # 0, obtinem z, = 23 = +v/2.
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e Daca x1, 9,3 # 0, atunci xy =z = 23 = i\%.

Luénd in calcul ca celelalte cazuri sunt simetrice acestora, avem punctele
(£2,0,0); (0,42, 0); (0,0, +2);
(0,v2,v2); (0, V2, —V2); (V2,0, V2);
(—v2,0, —V2); (vV2,v2,0); (vV2,V2,0);

( 2 2 2 ) ' ( 2 2 2 )
Prin calculul direct al valorilor functiei in aceste puncte, deducem ca maximul este 8 si este atins
in (2,0,0), (0,2,0), (0,0,2), iar minimum este —8, fiind atins in (-2, 0, 0), (0, —2,0), (0,0, —2).
O

Exercitiul 3.18 Sa se determine minimul si mazimul global al functiei f : R? — R, f(xy,15) =
—22% + 4179 + 75 pe cercul unitate cu centrul in origine.

Exercitiul 3.19 Fie f,g : R*> —» R, f(z) = 23 + 23 51 g(v) = 2? + 22 — 9. Sd se studieze
minimele lui f sub restrictia g(z) < 0.

Exercitiul 3.20 Sa se determine punctul (punctele) cel (cele) mai apropiat (apropiate) de
origine al (ale) suprafetelor:

(1) x1T2 + T1T3 + ToT3 = 1]

(ii) ¥ + 23 — 22 = 1.
Exercitiul 3.21 Fie problema minimizarii lui f : R? — R,

f(z) = 22 4 223 + 2175 + 29

cu restrictia g(x) < 0 unde g : R? — R, g(x) = x1 + 25 — 1. Sa se arate ci problema este
conveza (i.e. f,g sunt convere) gi sa se determine solutiile acesteia.

Exercitiul 3.22 Fiea> 4" f,g:R* > R, f(z) = 2} +ar3+z102+ 71 §i g(x) = 11+ 29— 1.
Sa se studieze problema (P) (cu notatiile standard).

Exercitiul 3.23 Fie functia obiectiv f : R* — R, f(x1,72) = 71 + 73 1 functia h : R*? — R,
h(zxy,29) = 23 — 23 ce defineste o restrictie de tip egalitate (adica M = {x € R? | h(z) = 0}).
Studiati problema (P).

Exercitiul 3.24 Fie f,g1,92 : R> = R,
f(x) = (1 —2)* + (2o — 1)2
g1(x) = —x3 + 23
go(x) = 29 — 17.

Fie problema minimizarii lui f cu restrictiile g;(x) < 0, go(x) < 0. Sa se deseneze multimea
punctelor fezabile. Sa se arate ca g1, go sunt functii convexe si ca are loc conditia Slater. Apoi,
sa se justifice existenta si unicitatea si sa se determine solulia problemei atdt grafic cat si
analitic pe baza conditiilor Karush-Kuhn-Tucker.
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Exercitiul 3.25 Fie f:R* = R, f(z1,29,73) =27 + 25+ 23 1 g, h : R* > R, g(x1, 19, 23) =
—x3, h(T1, T2, 73) = 22 + 13 — 22 — 1. Consideram problema minimizarii lui f cu restrictiile
g(x) < 0,h(x) = 0. Sa se arate ca problema are solutie, ci se poate aplica teorema Karush-
Kuhn-Tucker (verificind conditia de liniard independentd) i apoi sa se determine solutiile.

Exercitiul 3.26 Fie f,g,h:R* = R, f(x1,22,23) = 21 + ;21 + (23 +23), g(z) = 5 (27 + 23+
23) =2, h(z) = 21+ 22+ 23— 2. Consideram problema minimizarii lui f cu restrictiile g(x) < 0,
h(z) = 0. Sa se arate ca problema are solutie locala, sistemul de constrangeri este convex §i
este indeplinita cel putin o conditie de calificare. Se se aplice Teorema Karush-Kuhn-Tucker si
sa se determine solutiile.

Exercitiul 3.27 Fie f,g : R? — R, f(x) = 23 + 4x9 + 4, g(x) = 223 + 22 — 4. Sa se arate
ci f,g sunt convexe. Fie problema minimizarii globale a lui f cu restrictia g(x) < 0. Sa se
arate ca multimea restrictiilor este compacta, este indeplinita o conditie de calificare si sa se
determine solutitle problemes.

Exercitiul 3.28 Fie f,g : R* = R, f(x) = 2% + 23 + 23, g(x) = —22% + 23 + 23 + 1. Sa se
arate ca f este convera dar g nu este convera. Sa se arate ca are loc o condilie de calificare
pentru restrictia g(x) < 0. Sa se arate ca multimea restrictiilor este inchisa si nemarginita. Sa
se justifice faptul ca problema minimizarii lui f cu restrictia g(z) < 0 are solutie globala si sa
se gaseasca solutiile.

Exercitiul 3.29 Fie M = {(z1, 79, 23) € R3 | 22 + 22 < 1, 221 + 225 + 23 = 1}. Se considera
problema determinarii proiectiei originii pe multimea M. Justificati faptul ca aceasta problema
este echivalentd cu rezolvarea problemei minimizarii functiei f : R® — R, f(xy1, 9, 13) = 23 +
x3 + 23 cu restrictia * € M. Sa se studieze aceastd problemd sub urmitoarele aspecte: (i)
existenta §i unicitatea solutiei; (ii) posibilitatea aplicarii Teoremei Karush-Kuhn-Tucker pentru
determinarea solutiei (solutiilor); (iii) determinarea efectiva a solutiei (solutiilor).

Exercitiul 3.30 Si se determine maximele si minimele globale ale functiei f : R® — R,
[y, 29, 23) = 23+ 25+ 23 pe multimea punctelor ce satisfac x2 +x3+22 =4 siz)+mo+23 =1,
stabilind mai intdr existenta solutiilor si studiind posibilitatea aplicarit Teoremei Karush-Kuhn-
Tucker.

Solutie Punctele cautate exista pe baza Teoremei lui Weierstrass. Avem o restrictie de forma
h(xz) = 0, unde

h:R® — R? h(xy,m9,13) = (25 + 25 + 25 — 4,21 + 29 + 75 — 1).

Conditia de liniard independentd este satisficutd pentru toate tripletele (x1,x2, z3) pentru
care macar doua coordonate sunt diferite. Cum nu exista puncte fezabile cu 1 = 29 = z3
deducem ca are loc conditia de calificare dorita, deci punctele de extrem sunt puncte critice ale
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lagrangianului. Obtinem sistemul

327 + 2@y + pi2 = 0
313 + 2p11 22 + fi2 = 0
373 + 2473 + piz = 0
v+ a3+ ai=4
T1+ 2o+ x3=1.

Pentru ca sistemul format din primele trei ecuatii sa fie compatibil in necunoscutele pi, 1o
trebuie ca

3£U% 2.%'1 1

3z2 21y, 1]=0,

372 2x3 1

deci
(IL‘l — l‘g)(l’l — ZL‘3)(I2 — l’g) = O
x} 425+ a5 =4
T1+ 29+ 23 = 1.

Obtinem solutiile

1
5776 '3 6 '3 3

(1+@1 V22 _@)

1 V221 221 n V22
3 6 '3 6 '3 3

si permutarile lor. Este acum usor de verificat ca primul set de solutii corespunde maximului,

iar celalalt corespunde minimului. O

2
Determinati solutiile globale ale problemei (cu parcurgerea tuturor pagilor: existenta solutiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexitatii problemei, determinarea
solutiilor).

Exercitiul 3.31 Fie problema min (% + 23 + %> cu restrictiile x2 + x3 < 1 g1 23 + 22 = 4.

Exercitiul 3.32 Fie problema min (x% + x9 + xé) cu restrictiile v3 — vy < 0 si 23 + 22 = 1.
Determinati solutiile globale ale problemei (cu parcurgerea tuturor pagilor: existenta solutiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexitatii problemei, determinarea
solutiilor).
Exercitiul 3.33 Studiati problema maximizarii functiei f : R® — R datd prin
f(z) = =227 — @5 — 323

cu restrictiile

$1+2[E2+CE3 = 1,

4ZL'1 —f- SZEQ —|— 2!E3 = 2
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Exercitiul 3.34 Determinati minimele si mazimele globale pentru (z3 + z3 + x3) cu restrictiile

2 2 2
%—i—%—%;—g:l §1 x3 = T1 + Ta.
Exercitiul 3.35 Determinati min(—3.6x1 +0.42% —1.625+0.223) cu restrictiile 2z, + x4 < 10,

x1 >0, 29 2 0.
Exercitiul 3.36 Fie problema min (23 + 23 + 23 + x122 + 1) cu restrictiile v} + 23 = 23 g
xg < 4. Determinati solutiile globale ale problemei (cu parcurgerea tuturor pagilor: existenta

solutiilor, aplicabilitatea Teoremei Karush-Kuhn-Tucker chestiunea convexitatii problemei, de-
terminarea solutiilor).

Exercitiul 3.37 Fie problema min (z; — 23 + 2x3) cu restrictiile 22 + 22 <5 gi 23 — 22 < 1.
Determinati solutiile globale ale problemei (cu parcurgerea tuturor pagilor: existenta solutiilor,

aplicabilitatea Teoremer Karush-Kuhn-Tucker, chestiunea convexitatii problemei, determinarea
solutiilor).

Exercitiul 3.38 Determinati solutiile globale ale problemei max (cos 6y + cos 6y + cos 63) cu re-
strictiile 01 4+ 03 + 03 = 7,0, > 0,1 € 1, 3.

Exercitiul 3.39 Fien € N\ {0} si a; > 0, pentru orice i € 1,n. Sa se determine minimul
exrpresiet

>t

i=1

supusa la constringerea
n
E T; = C,
i=1

unde c este o constanta data. Care este mazximul expresiei sub aceeasi restrictie?

Solutie S& observadm cd dacd notdm cu M = {z € R" | Y " | ; = ¢} multimea punctelor
fezabile i cu f : R — R, f(z) = > | a;z? functia obiectiv, atunci pentru v > >0 | “;'LEQ

multimea M N N, f este nevidd (contine, spre exemplu, elementul (cn™!,...,cn!) € R") si
marginita. Deci, conform Teoremei [3.2.2] existd minimul problemei propuse. Cum functia ce
da restrictia este afind, nu este nevoie sa verificim conditii de calificare. Astfel, conditiile de
optimalitate prin intermediul lagrangianului conduc la

2a;x; + 11 =0, Vi € 1,n,

deci
b

_2CL1'.

xTr; =

Inlocuind in forma restrictiei deducem

N
C__;Zai’
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deci
2c

H=—""n 1
Zi:l a;
Prin urmare

T, = l,Viel,n.

c
n
a; Zi:l a;
Evident, expresia nu admite un maxim: observam ci pentru girul de puncte fezabile (p, —p, ¢)pen
valoarea expresiei tinde la +o0. O]

Exercitiul 3.40 Sa se minimizeze functia f : R® — R,
1 2
f($1,$2,$3> = T3 + 5 (ZE% + l’% + :1[—(3))
sub restrictiile v1 + o +x3 =1 (r > 0), x1 > 0, x5 > 0, 3 > 0.

Solutie Existenta minimului este asigurata de Teorema lui Weierstrass. Constrangerile sunt
liniare, deci nu avem de verificat conditii de calificare. Oricum, pentru a aduce problema
la forma standard, restrictiile cu inegalitati se scriu —x; < 0,—xy < 0, —z3 < 0. Folosind
lagrangianul obtinem sistemul

.Tl—)\l—F/L:O
ZL’Q—)\Q—F/,L:O
1+ﬁ—)\3+,u:0

10
Mz =0
Ao =10
A3x3 =0

T1+Tog+2x3=T
)\17 )\27 )\3,.1’1,33'2,1'3 2 0.

Dupa considerarea tuturor posibilitatilor gasim solutia

e pentru r < 2,

T T . T r
(.’L’l,xg,.ng) = (57 570) S1 ()\17)\27)\37M) = <0707 1- 57 5) )

e pentru r > 2,

_ (r+10 r+10 5(r—2) :
($17x2ax3)_( 12 °» 12 > 6 St

(/\1, A2, /\Saﬂ) = (07070’ _12?) :

Problema este rezolvata. O

Exercitiul 3.41 Sd sedetermine punctele de minim si de mazim global ale functiei f : R3 — R,
f(z) = z129m3 supusa la restrictia h(z) = 0 unde h : R? — R?, h(z) = (172 + 1173 + T973 —
8,1‘1 +$2+ZL‘3 —5)
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Solutie Vom arata mai intai ca, in acest caz, multimea punctelor fezabile este marginita (deci
compacta).
Folosind egalitatea x5 = 5 — x1 — z9, putem elimina x3 din prima restrictie, adica

T} + 25 + 2129 + 52y + By + 8 =0,

de unde gasim

T Ty 2 Ty 5\2 To 5\°
=)+ (== +|—=-—F%) =13
o) ) + ()
Deducem ca x; si zo parcurg multimi de numere reale marginite, situatie care se intdmpla
atunci si in cazul lui x3. Deci multimea punctelor fezabile este compacta si atdt problema de
minim cat gi cea de maxim admit solutie.

Verificam conditia de liniara independenta: ne intrebam daca exista doud numere reale
aq, e cu (aq, ) # (0,0) astfel incat

041(372 —|-5133) + Qg — 0
&1(331 + £U3> + g = 0
041(9[:1 + SL’Q) + oo = 0.

Cum suntem interesati doar de multimea punctelor fezabile, deducem

a1(5 —5(11) + g = 0
041(5 —LL'Q) + g = 0
ay (5 —x3) + ag = 0.

Astfel, gasim conditia x; = x9 = w3 care nu este indeplinitd de nici un punct fezabil. Prin
urmare, este indeplinitd conditia de liniara independenta pe multimea punctelor fezabile. Apli-
carea Teoremei (si a observatiilor ce o insotesc) conduce la concluzia: dacd T este punct
de minim sau de maxim pentru problema considerata, atunci exista pq, us € R astfel incat

Tolg + M1(Tz +fg) + e =0
T1T3 + 1 (T1 +Z3) + 2o =0
T1To + 1 (T1 + Ta) + 2 =0
Tlfg + flfg + 5253 - 8

T + Ty + T3 = 5.

Evident, 1, 1o nu pot fi simultan 0. Inmultind corespunzstor ecuatiile si scizandu-le obtinem

(11T3 + p2)(T1 — T2) = 0
(11T + p12)(T1 — T3) = 0
(1T1 + p2)(T2 — T3) = 0
T1To + T1T3 + ToT3 = 8
x1+ To + T3 = 5.

Daca p; = 0, atunci, din observatia anterioara, deducem =; = Ty = T3 ceea ce nu se poate
intdmpla pe multimea punctelor fezabile. Deci py # 0 si cum Ty, %5, T3 nu pot fi egale, gasim
= - - P 447\ = 74 4\ — 47 4 5

T=(221),7=(1,22),7=(212)siT= (35,3352 = (53 3) T = (3,5, 35). Comparand
valorile functiei in aceste puncte deducem ca primele sunt puncte de maxim, iar ultimele de
minim. [
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Exercitiul 3.42 Sa se determine minimele globale ale functiei f : R® — R, f(x1, 29, 23) =
23 + 13 + 23 pe multimea punctelor ce satisfac x3 + x5+ 22 < 4 si 1 + 19 + 13 < 1.

Solutie Din nou, existenta minimului este asigurata de Teorema lui Weierstrass. Mai obervam
ca este aceeasi functie obiectiv ca la Exercitiul [3.30] dar constrangerile sunt sub forma de
inegalitati. Se observa ca sistemul de restrictii este convex gi, in plus, are loc conditia Slater.
Deci punctele de minim se afla printre punctele critice ale lagrangianului problemei. Avem
3%% -+ 2)\1%1 -+ )\2 =0
3333 + 2)\11’2 + )\2 =0
3I§ + 2)\1I3 + )\2 =0
M3+ a3 +23—4)=0
)\2<5L‘1—|—$2—|—IL‘3— ]_) =0
x] 425+ 75 <4
T1+To+23 <1
A1, A2 > 0.
Din nou, distingem mai multe cazuri.
e Daca \{ = Ay =0, atunci z; = x5 = 23 = 0.
e Daca A\; =0 si Ay # 0, atunci x1 + 25 + x3 = 1 ¢i deducem
Ao = =327 = —3x5 = —3x3 < 0,
ceea ce nu este convenabil.
e Daci Ay =0 gi \; # 0, atunci 2 + x5 + 72 = 4 i avem

12 + 2(.731 + o + .133))\1 = 0,

adica
6

M=——— .
X1+ T2+ T3

Inlocuind in primele trei ecuatii, obtinem solutiile

(—=2,0,0), (0,—2,0), (0,0, —2)
(—v2,—v/2,0), (—v/2,0,—V2), (0,—V2,—V/2)

)

e Daci Ay # 0 gi Ay # 0, atunci z; + x5 + 73 = 1, 22 + 22 + 23 = 4 ne regdsim in situatia

de la Exercitiul

Dupa calculul valorilor functiei de cost in punctele gasite se obtine faptul ca minimul este
atins in punctele (—2,0,0), (0, —2,0), (0,0, —2), deci in puncte diferite fata de cele de la Exer-
citiul [3.30} O
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Exercitiul 3.43 Sa se cerceteze daca exista minim global pentru f : R*>— R,
2 2
f(.l’l, Ig) = I + 21’1[E2 — Ty
pe discul unitate inchis cu centrul in origine si in caz afirmativ sa se determine.

Exercitiul 3.44 Fie f : R? — R, f(z1,79) = bzt + dwyxe + 23 i h : R?2 — R, h(wy,29) =
3x1 + 229 + 5. Consideram problema minimizarii lui f cu restrictia h(x) = 0. Sa se arate ca
problema are solutie unica §i apoi sa se determine solutia precum si multiplicatorul Lagrange
[t asociat. Sa se arate ca apoi ca solutia determinata este minim global fara restrictic pentru
functia v — L(z, i). Se pastreaza aceste concluzii pentru problema minimizarii lui f : R? — R,
f(z1,29) = 22 — 23 — 324 cu restrictia egalitate h(x) = 0, unde h : R? — R, h(z1,79) = 227

Exercitiul 3.45 Sa se justifice existenta punctelor de minim ale functiei f : R® — R,
flz) =21 — 29+ 215

cu restrictia g(z) < 0 unde g : R® — R, g(x) = 23 + 23 + 222 — 2. Sa se arate cd functia g
este convexa. Sa se verifice explicit indeplinirea conditiei Slater si a conditiei de Mangasarian-
Fromovitz pe multimea punctelor fezabile. Apoi sa se rezolve problema.

Exercitiul 3.46 Fie problema minimizarii lui f : R? — R,
f(z) = x129

cu restrictia g(x) < 0 unde g : R*> - R, g(z) = 23 + 25 —a (a > 0). Sa se justifice existenta
solutier pentru aceasta problema. Sa se deseneze multimea curbelor de nivel pentru f si multimea
punctelor fezabile. Sa se identifice grafic solutiile. Sa se arate ca functia g este convexd.
Sa se verifice explicit indeplinirea conditiei Slater gi a conditiei de Mangasarian-Fromovitz pe
multimea punctelor fezabile. Apoi sa se rezolve analitic problema.

Exercitiul 3.47 Fie problema minimizarii functiei f : R3 — R, f(x,y,2) = 22 + 9> — yz + 22
cu restrictiile z —y > 1, x = z, z > 0. Sa se arate ca problema admite solutie §i cd este
aplicabila Teorema Karush-Kuhn-Tucker. Sa se determine solutia sau solutiile problemes.

Exercitiul 3.48 Fie problema minimizarii functiei f : R® — R, f(z,y,2) = 67 1a? + +2x +
y? + 22 cu restrictiile v +y + 2z = 2, x,y,z > 0. S& se arate cd problema admite solutie si cd
este aplicabila Teorema Karush-Kuhn-Tucker. Sa se determine solutia sau solutiile problemei.

Exercitiul 3.49 Fie f,h: R3> - R, f(z) = 22 + 223 + 322 si h(x) = 71 + 2o + 23 — 4. Sa se
arate ca problema minimizarii lui f cu restrictia h(xz) = 0 admite solutie §i sa se determine
solutiile. Are solutie problema maximizarii lui f cu aceeasi restrictie?

Exercitiul 3.50 Fie f,g,h: R® - R, f(z) = 222 + 223 + 22 + 43, g(z) = 2 + 23 + 22 — 4,
h(z) = x1+x9+1x3—2. Sa se arate ca problema minimizarii lui f cu restrictiile g(x) < 0, h(x) =
0 este convexa, multimea restrictiilor este compacta si este indeplinita o conditie de calificare.
Apoi sa se determine solutiile.
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Exercitiul 3.51 Fie f,g,h : R* —» R, f(x) = 3712} + 23 + 213, g(z) = 2% + 23 + 23 — 2,
h(z) = 1 + 3. Fie problema minimizarii lui f cu restrictiile g(x) < 0,h(z) = 0. Sa se arate
ca mulltimea restrictiilor este compacta si este indeplinita o conditie de calificare. Apoi sa se
determine solutiile globale.

Exercitiul 3.52 Fie f,g,h: R — R, f(x) = 23 — 22 + 23, g(v) = 27 (2?2 + 22 + 22) — 1,
h(x) = x1 — xy. Fie problema minimizarii globale a lui f cu restrictiile g(x) < 0, h(z) = 0. Sa
se arate ca multimea restrictiilor este compacta gi este indeplinita o conditie de calificare. Apoi
sa se determine solutiile globale.

Exercitiul 3.53 Fie f,g,h:R* = R, f(z) =23+ 22+ 231, g9(x) = 21 — T2, N(T) = 13 — T3.
Fie problema minimizarii globale a lui f cu restrictiile g(x) < 0,h(x) = 0. Sa se arate ca f
este convexda. Este multimea restrictiilor compacta? Sa se arate ca problema are solutie. Sa se
precizeze daca se poate aplica Teorema Karush-Kuhn-Tucker. Sa se determine solutiile.

Exercitiul 3.54 Fie f,g: R?* = R, f(z) = 2% + 223 + 2122 + 22, g(z) = 21 + 29 — 1. Sa se
arate ca problema minimizarii lui f cu restrictia g(x) < 0 este convexa, are solutie, se poate
aplica Teorema Karush-Kuhn-Tucker si sa se determine solutiile probleme.

Exercitiul 3.55 Fie problema min (3 + 3 + 22 + x1 — x3) cu restrictiile 3 + 23 + 13 < 1 s
2x1 + 319 — 3x3 = 3. Determinati solutiile globale ale problemei (cu parcurgerea tuturor pagilor:
existenta solutiilor, aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexitatii prob-
lemei, determinarea solutiilor).

Exercitiul 3.56 Fie problema min (23 + x3) cu restrictiille 23 + 223 — 1 = 0. Determinati
solutiile globale ale problemei (cu parcurgerea tuturor pagilor: existenta solutiilor, aplicabilitatea
Teoremei Karush-Kuhn-Tucker, chestiunea convexitatii problemei, determinarea solutiilor).

Exercitiul 3.57 Sa se determine punctul cel mai apropiat si punctul cel mai departat de orig-
ine de pe (hiperbola)
x3 4 871wy + T = 225.

Exercitiul 3.58 Fie problema min (2x1 + 3z2 — x3) cu restrictiile v3+x3+23 = 1 g1 2342235+
222 = 2. Determinati solutiile globale ale problemei (cu parcurgerea tuturor pagilor: existenta
solutiilor, aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexitatii problemesi, de-
terminarea solutiilor).

Exercitiul 3.59 Fie problema min (422 + 3 — 1 — 223) cu restrictiile 2z, +xo < 1 gi 22 < 1.
Determinati solutiile globale ale problemei (cu parcurgerea tuturor pagilor: existenta solutiilor,
aplicabilitatea Teoremer Karush-Kuhn-Tucker, chestiunea convexitatii problemei, determinarea
solutiilor).

Exercitiul 3.60 Fie problema min (z; + zo + x3) cu restrictiile x3 + 3 + 23 < 4 §i 11 — 15 +
xrg3 = 2. Determinali solutiile problemei (cu parcurgerea tuturor pagilor: existenta solutiilor,
aplicabilitatea Teoremer Karush-Kuhn-Tucker, chestiunea convexitatii problemei, determinarea
solutiilor).
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Exercitiul 3.61 Fie problema min (z12973) cu restrictiile 23 +x3 + 12 < 4 gi x) + 23+ 23 = 2.
Determinati solutiile globale ale problemei (cu parcurgerea tuturor pagilor: existenta solutiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexitatii problemei, determinarea
solutiilor).

Exercitiul 3.62 Fie problema min (x1 + x5 + x3) cu restrictiile x% + x% < w3 g1 x3 < 1. De-
terminati solutia sau solutiile problemei (cu parcurgerea tuturor pagilor: existenta solutiilor,
aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexitatii problemei, determinarea
efectiva a solutiilor).

Exercitiul 3.63 Fie problema min (22 + 23 — xox3 + x%) cu restrictitle v1 — x9 > 1,21 = 3
gt x3 > 0. Determinati solutia sau solutiile problemei (cu parcurgerea tuturor pagilor: existenta
solutiilor, aplicabilitatea Teoremei Karush-Kuhn-Tucker, chestiunea convexitatii problemes, de-
terminarea efectiva a solutiilor).

Exercitiul 3.64 Fie a,b,c > 0. Studiati problema mazimizarii expresiei (x + a) (y +b) cu
restrictiile v,y > 0, x +y = c.

Exercitiul 3.65 Fie f,h:RP — R,

flx) = Hx?, h(z) = Zx? -1

i=1
Studiati problema maximizarii functiei f cu restrictia h(x) = 0. Deduceti inegalitatea mediilor.

Solutie Cum multimea punctelor fezabile este o sfera problema are solutie globala. De asemenea,
are loc conditia de liniara independenta in toate punctele fezabile. Cum avem o restrictie cu
egalitate, conditiile Karush-Kuhn-Tucker se scriu astfel: daca punctul fezabil x este solutie,
atunci exista p € R astfel incat

Vf(z)+ pVh(z) =0,
relatie ce revine la
p
2, H 2?4 2ux; =0, Vie 1p.
J=1,j#i

Inmultim cu z; fiecare relatie si avem

p
—Hx?—l—u:c? =0, Vi€ 1,p,
j=1

deci
2 2

pa; = pxy, Vi, j € 1,p.
Dacd p = 0, atunci din cele de mai sus deducem f (z) = 0, ceea ce nu se poate intampla intr-un
punct de maxim. Deci
xi =3, Vi,j € Lp,

2
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si cum h (z) = 0, gdsim
1 .
xf =—, Vel p.
p
Asadar, valoarea maxima a functiei cu restrictia data este p=?.
Dacd z € R?\ {0}, atunci y = ||z|| " z satisface restrictia si

ﬁ(Zi)ZZ i L
Sl
pielN ]l [

Concluzionam ca
p

2
HZE < 1Bl P _ < le Zz'2>p
P p

i=1
. §< f:; |*Ti|>p7

ceea ce reprezinta inegalitatea mediilor. U

Deci pentru orice x € RP,

Exercitiul 3.66 Sa se studieze problema minimizarii expresiei r1+ o+ ...+x, (n > 2) pentru
X1, L9, ..., Ty > 0 cu restrictia r1 - To - ... - x, = 1 i apoi sa se deduca inegalitatea mediilor.

Exercitiul 3.67 Cu o panglica de lungime a legam o cutie de cadou de forma paralelipipedica.
Care este volumul mazxim al unei astfel de cutii?

Solutie Modelul matematic al problemei este
max I1T2x3

cu restrictiile xq, x2, 23 > 0, 221 + 229 + 423 < a. Este clar cd maximul este atins (Teorema lui
Weierstrass) si este strict pozitiv. Pentru standardizare, ne vom ocupa de problema

min — r173T3
cu restrictii (afine) scrise ca inegalitati de forma <. Din nou aplicadm teoria gi avem sistemul

—1‘21‘3—)\1+2)\4:0
—ZL’1$3—)\2+2)\4:0
—$1ZE2—)\3+4)\4:0

)\11’1 =0
)\2(132 =0
)\31‘3 =0

(2z1 + 229 + 4x3 —a)X\y =0
A, A2, A3, A >0

T1,%9,x3 > 0,

201 4+ 229 + 423 < @
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Deducem

T1(—Tax3 + 2X\y) =

To(—m123 + 2)N) =
)
4

.Tg(—.l?ll'g + 4)\4
(221 + 229 + 43 — @)\

Adundm primele trei ecuatii gi avem —3xjxews + Ay(221 + 229 + 423) = 0, de unde

—3x122x3 + ary = 0,

deci \y = WT?“ Inlocuind in ecuatia r1(—xaxs + 2My) = 0 cum 12273 # 0 gisim x; = %.
Analog, 73 = §, v3 = 5. Multiplicatorii sunt (0,0, 0, &24). Deci solutia problemei este (§, &, %)

O
Exercitiul 3.68 Sa se modeleze problema determinarii celui mai apropiat, respectiv al celui
mai indepartat punct fata de (3, —3) de pe elipsa
2
x 2
— +y =1
4 y

Sa se scrie ecuatia de determinare a multiplicatorulut asociat problemer.

Exercitiul 3.69 Determinati dimensiunile unei cutii paralelipipedice de arie totala minima
avand volumul v > 0.

Exercitiul 3.70 Determinati dimensiunile unui pahar cilindric care are volumul v > 0 i
pentru care aria este minima.
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Capitolul 4

Algoritmi pentru aproximarea
solutiilor ecuatiilor neliniare

4.1 Descriere generala

Majoritatea problemelor studiate padna acum au fost situatii fericite, in sensul ca am putut
rezolva ecuatiile ale caror solutii diddeau punctele candidate la a fi solutii. Apoi, folosind
mijloacele teoretice pe care le-am dezvoltat anterior am fost capabili sa rezolviam complet
problemele date. Totusi, de foarte multe ori, pot aparea probleme pentru care nu putem rezolva
sistemele ce dau punctele critice ale functiei obiectiv (in cazul problemelor fara restrictii) sau
punctele critice ale lagrangianului (la problemele cu restrictii). Am vizut un astfel de exemplu
chiar in finalul sectiunii precedente sau cu ocazia discutiei privind metoda celor mai mici patrate.
Pentru astfel de probleme, sunt necesari algoritmi pentru aproximarea solutiilor.

In ceea ce ne priveste, vom studia algoritmi iterativi. Toti acesti algoritmii cer precizarea
unui punct de start pe care il notam cu xy. Este bine ca acest punct sa fie el insusi o cat mai
buna aproximare a solutiei ciutate (mai ales dacd aceasta nu este unicd). De exemplu, functia

f:R—>R,

6 3
oz 9

f($)=g—§—$

are doua puncte de minim si doua radacini reale nenule. Daca se pleaca cu o valoare zy apropiata
de unul dintre aceste puncte, atunci este probabil ca algoritmul (pentru rezolvarea ecuatiei sau
pentru gasirea punctelor de extrem) si giseascd o aproximare a acelui punct.

Revenind la discutia generala, dupa alegerea lui z(, algoritmul genereaza un sir de iteratii
(k)ken care au scopul de a se apropia de solutia, notatd T (solutie a unei ecuatii sau punct
de optim). Evident, in practicd, x; # T pentru orice k pentru cd, in caz contrar, solutia este
determinata intr-un numar finit de pasi, ceea ce este, in general, imposibil. Generarea sirului
() se va opri atunci cand nu se mai pot face progrese in incercarea de apropiere de solutie
(conform regulii interne a algoritmului de generare a iteratiilor) sau cand a fost atinsa o anumita
acuratete dinainte stabilita. Orice algoritm trebuie sa implementeze o regula interna de generare
a unei noi iteratii utilizand iteratiile deja existente. In general, fiecare noui iteratie trebuie s
realizeze o apropiere de solutie, dar exista si algoritmi nemonotoni, pentru care descresterea nu
trebuie sa se produca neaparat la fiecare pas.
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Doua sunt problemele atunci cdnd se studiaza un algoritm intrucit ne intereseaza atat
dacd algoritmul este global (i.e., este convergent pentru orice data initiald ), cat si viteza de
convergenta.

Agadar, o problema foarte importanta din punct de vedere practic atunci cand este studiat
un algoritm este viteza sa de convergenta.

Definitia 4.1.1 (viteza de convergentd) Fie (vj)ren oy C RP un sir convergent la T € RP
cu xy # T pentru orice k € N\ {0} . Spunem ca:
(i) (xy) converge liniar daca exista r € (0,1) (numit ratd de convergenta) astfel incdat pentru
orice k suficient de mare,
|ze1 — T

— <7
|21, — |

(i1) (zx) converge patratic daca exista M > 0 astfel incdt pentru orice k suficient de mare,

i =7l _
]

Observatia 4.1.2 In particular, dacd existd limita

lim |zr1 — T
|z — 7

§i este un numar subunitar, atunci (xy) converge liniar.
Stmilar, daca exista limita

Ll 7

lze —7)*

atunci (xy) converge patratic.

Observatia 4.1.3 FEuvident, convergenta patratica implica convergenta liniara. Pentru con-
vergenta lintara, viteza este influentata semnificativ de rata r, in timp ce pentru convergenta
patratica dependenta de M este mai putin importanta. Folosind modelul oferit de definitia con-
vergentei patratice, putem defini convergente de orice ordin; spunem ca avem o convergentda de
ordin 0 > 1 daca exista M > 0 astfel incat pentru orice k suficient de mare

2541 — 7]

lze ="~

1

Exemplul 4.1.4 (i) Sirul (1 + (§)k> este liniar convergent la 1 cu rata r = 1

g.
.. . 1 2k .
(ii) Qirul (1 + (3) ) converge patratic la 1.
Vom vedea insa ca sarcina proiectarii unor algoritmi globali care sa aiba viteza buna de

convergenta (cel putin patraticd) este una dificila.

Incepem in continuare studiul unor metode de a determina cu aproximatie radacinile unor
ecuatii neliniare. Mentiondm c& o ecuatie neliniard nerezolvabild a aparut la Exemplul [3.5.8
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In plus, s mai remarcdm cii Teorema transforma o problema de optimizare in problema
rezolvarii ecuatiei L(x, (A, 1)) = 0 (de cele mai multe ori neliniare si chiar imposibil de rezolvat
exact). Un alt argument ar fi gi acela cd, in fond, problema rezolvarii unei ecuatii de forma
f(z) = 0 este echivalenta cu problema determindrii solutiilor globale ale problemei de optimizare
fara restrictii min f2.

Un prim procedeu este cel descris in exemplul de mai jos.

Exemplul 4.1.5 (Metoda injumatatirii intervalului) S& presupunem ci avem o functie
continud f gi doud numere reale a < b pentru care f(a)f(b) < 0. Atunci, f are o radécing in
(a,b). Pentru usurinta expunerii, presupunem cé aceastd solutie este unicd. Generdm un sir
(xy) astfel:

— alegem ag = a, by = b;

— fie 7o = 27 (ag + by); dacd f(zo) = 0 atunci zq este solutia ciutatd si iterarea se opreste;
astfel, daca f(ap)f(zo) < 0 alegem ay = ag si by = xg, iar dacd f(xg)f(bo) < 0 alegem a; = xq
si by = by.

— continuam procedeul ludnd x, = 2_1(a1 + by).

Procedand recurent, ne apropiem cu () de solutie, injumétitind la fiecare pas intervalul in
care se gaseste solutia. Evident, dacd pentru un numar k, f (z;) = 0, atunci z; e chiar solutia
cautata.

De exemplu, dacd avem functia f : R — R datd prin f(z) = 2% — 2 — 2, este ugor de
constatat (folosind sirul lui Rolle) cd ecuatia f(z) = 0 are o solutie reald unicd situatd in
intervalul (\/3T1 , oo) . Apoi, cum f (1) - f(2) < 0, deducem ca solutia este in intervalul (1,2).
Din acest moment, putem folosi metoda descrisa mai sus pentru a aproxima solutia.

Alegem x = 1.5. Observam ca f(1.5) - f(2) < 0, deci punctul se afld in (1.5,2). Alegem
apoi x = 1.75 gi continuam procedeul.

In aceastd metods,

1

comparativ cu a altor metode pe care le vom studia in continuare.

4.2 Principiul lui Banach de punct fix

Aceasta sectiune este dedicata Principiului lui Banach de punct fix care este unul dintre rezul-
tatele fundamentale ale analizei neliniare.Vom vedea cum acest principiu si demonstratia sa
conduc la un algoritm care ulterior va putea fi folosit pentru obtinerea unei metode de aproxi-
mare a radacinilor unei ecuatii cu viteza patratica.

Fie f : R? — RP. Un punct x € R? pentru care f(x) = = se numegte punct fix al lui f.
Prin rezultat de punct fix vom intelege un rezultat care asigura existenta punctelor fixe pentru
o functie data.

Un prim rezultat simplu, dar foarte important, este urmatorul.

Teorema 4.2.1 Fie a,b € R, a < b gi f : [a,b] — [a,b] o funclie continua. Atunci exista
T € [a,b] astfel incat f(T) =T, adica [ are cel putin un punct fix.
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Demonstratie Definim functia g : [a,b] — R datd prin g(x) = f(x) — z. Este evident ca g
este continua ca diferenta de functii continue si, in particular, are proprietatea lui Darboux.
Evident, din cauza ca f(a), f(b) € [a, b], avem inegalitatile

9(a) = fla) —a>0
g(b) = f(b) ~b <0,

deci g(a) - g(b) < 0 si din proprietatea lui Darboux, deducem existenta unui punct = € |[a, b|
avand proprietatea ca ¢(Z) = 0. Prin urmare, f(Z) = T si teorema este demonstrata. O

Observatia 4.2.2 FEste esential ca intervalul sa fie inchis. De exemplu, functia f : [0,1) —

0,1) data prin f(z) = “* nu are puncte fize. De asemenea este esential ca intervalul si fie

marginit: functia f : [1,+00) — [1,400) datd prin f(x) = = + 2" nu are puncte fire. In
sfarsit, rezultatul nu mai este valabil daca functia nu este definita pe un interval. De exemplu,
f[-2,-1U[L,2] = [-2,-1]U[L,2], f(x) = —x nu are puncte fize.

Rezultatul de mai sus este unul de existenta si nu ne da informatii suplimentare despre
modalitatea de determinare a punctelor fixe. Pentru a obtine rezultate mai precise din acest
punct de vedere dam urmatoarea definitie.

Definitia 4.2.3 Fie A C RP. O aplicatie f : A — R? se numeste contractie pe A daca exista
o constanta reala A € (0,1) aga incat ||f(x) — f(y)|| < M|z — y||, pentru orice x,y € A.

Remarcam ca A, valoare numita constanta de contractie, nu depinde de x si y, iar prin apli-
carea functiei f unei perechi de puncte din A, distanta dintre ele se micgoreaza (se contracta).
Notiunea de contractie este un caz particular al conceptului de functie Lipschitz (Definitia
[1.6.52)), deci, in particular, orice contractie este functie continud (Propozitia [4.6.53). Evident,
dacd \ este constantd de contractie, atunci orice A’ € (A, 1) este de asemenea constanta de
contractie.

Observatia 4.2.4 Are loc urmatoarea afirmatie care este deseori utilizata pentru a arata ca
o functie este Lipschitz: daca I C R este un interval st f : I — R este derivabila pe I
atunci f este Lipschitz pe I daca st numai daca f este marginita pe I, caz in care constanta
Lipschitz este constanta de marginire a lui | f'| . Demonstratia afirmatiei directe rezulta din chiar
definitia derivatei. Demonstratia reciprocei se sprijing pe Teorema lui Lagrange: pentru orice
doud puncte x,y € I, v <y deducem ezistenta unui element c,, € (x,y) C A cu proprietatea
ca

[f(2) = f)| = |f (cay)(@ = y)| < sup|f' (z)] - [z —yl,

zel

deci f este Lipschitz pe I. Enuntam un caz particular imediat al acestei observatii.

Propozitia 4.2.5 Fie I C R un interval si f : I — R derivabila pe I. Functia f este contractie
pe I daca gi numai daca exista M € (0, 1) astfel incat |f'(z)| < M pentru orice x € I. In acest
caz, sup,c; | f' (x)] este constanta de contractie.
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Exemplul 4.2.6 Functia f : R? — RP definitd prin f(z) = 1z este o contractie a lui R in el

2
insusi intrucat:

1)~ f@)l =5 e~ ]

De asemenea, f : R? — R definitd prin f(z) = % ||z|| este o contractie.

Exemplul 4.2.7 Functia f : [0,1] — [0,1], f(z) = cosx este o contractie, de constanta
A = SUp,e(o,1) |/ (x)] = sin1.

Exemplul 4.2.8 Functia f : [0,1] — [0,1], f(z) = sinz nu este o contractie pentru ca
SUPge(0,1) |f' ()| = cos0=1).

Exemplul 4.2.9 Fie A = [0,00) si functia f : A — A, definitd prin f(z) = l+1x2' Functia f

este contractie pe A, lucru pe care il aratam folosind Propozitia[4.2.5] Pentru functia f definita

anterior derivata sa este .
1 2
/ o A
Jle) = (1+x2) (1+ 22)?

, B 2z

Definim functia auxiliard g : [0,00) — [0, 00) datd prin g(z) = (14?%)2 Derivata acestei functii
este

si deci

2(1 +22)? —22-2(1 +2?) - 22

g'(x) = 1529
201+ a2 (1+a? —42?) 1327
1+ 22 BRCET D

Observam ca = = \/Lg este punctul de maxim global al functiei g si ¢ <\/L§> = % < 1. Deci

|f(x)] < % < 1 oricare ar fi € [0,00). Rezultd din Propozitia cd f este contractie.

Observatia 4.2.10 Mentionam ca ipoteza |f'(x)| < 1 pentru orice x € (a,b) nu implica faptul
ci [ este contractie pe (a,b). Exemplu: functia f : [0,1] — [0,1], f(z) = sinz discutata mai
sus. Un alt exemplu de acelagi tip este f : R — R, f(r) = x — arctg z.

Teorema lui Banach de punct fix (sau Principiul lui Banach de punct fix) este un rezultat
care asigura, in anumite conditii, atat existenta, cit si unicitatea punctului fix. Aceasta teorema
sta la baza obtinerii a numeroase rezultate matematice remarcabile cum ar fi, printre altele,
teorema functiilor implicite sau teoreme privind existenta si unicitatea solutiei unor ecuatii si
sisteme diferentiale. Formulam acum rezultatul anuntat, rezultat demonstrat de catre Stefan
Banach in 1922 in cadrul spatiilor normate complete.

Teorema 4.2.11 (Principiul lui Banach de punct fix) Fie A C RP o mullime inchisa
nevida si f : A — A o contractie. Atunci f admite un unic punct fiz. In plus, acest punct este
limita oricarui gir (xy) construit astfel:

{ r9 € A
Th+1 =f<.1}k), Vk € N.
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Demonstratie Ca de obicei in cazul rezultatelor de existenta si unicitate, impartim demonstratia
in doud etape. Aratam mai intai existenta si apoi unicitatea punctului fix. Conform definitiei,
existd un numar real A € (0, 1) astfel incat

1 () = F < Az =yl

pentru orice x,y € A. S& considerdm zy € A un punct arbitrar gi sd notam cu z; = f(zo),
xo = f(x1), ..., Tx = f(xk_1), Operatie care se poate face pentru orice numar natural k£ > 1. Se
observi c& zo = f(f(x0)) = f?(x0) si, in general, z;, = f*(z¢) (am notat f2 in loc de f o f si,
in general, f* inloc de fo fo..o f de k ori). Aratim ci (zj)ren este un gir Cauchy. Au loc
relatiile
|22 — 21| = [|f(21) = f(zo)|| < A1 — 2o,
23 — @l = || f(22) = f(x1)[| < Alzz — 21| < A2 — o] -

Folosind metoda inductiei matematice se obtine inegalitatea
ks = 2pll < A flay — ol
pentru orice k € N\ {0}. Pentru ¢,k € N\ {0}, numere naturale arbitrare, putem scrie succesiv:

|zerr — k|l < | opgr — el + |0002 — Dol + - 4 (| Zrre — Drge |
S )\k H.%'l — 330” + )\’H—l ”1131 — I()H + -+ )\’H—Z—l ”l‘l — .%'0”

1— X
= ||$1 - ZE()H ()\k + )\k+1 + -+ )\k—M_l) = ||ZE1 - IL’()H /\k 1 b\
)\k
< — .
< [|z1 — o] 1
Deci
k
ke = 2all < 77— lles = o (4.1)
pentru orice k, ¢ € N\ {0}. Daca ||z1 — || = 0 rezultd c& f(x¢) = zo, adicd x, este punct fix

si deci existenta punctului fix este asiguratd. Daci ||z; — xo|| # 0, atunci, folosind faptul ca
A € (0,1), deducem ca

)\k
li =0
k:gglo 11—\ ’
deci
k
Jim 75 ol =0

Scriind caracterizarea cu € a acestei convergente, rezulta ca pentru orice ¢ > 0, exista k. €
N\ {0}, astfel incat pentru orice k > k. avem
)\k
1—A

Combinand aceastd relatie cu relatia (4.1) rezultd ca pentru orice e > 0, existd k. € N\ {0},
astfel incat pentru orice k > k. si orice £ € N, are loc

||l’1 — ZL‘OH < €.

[Trre — z3]| < e
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Am obtinut astfel faptul c& (z) este un gir Cauchy si cum R? este un spatiu complet, girul
(k) ren este convergent, deci existd T € RP cu limy oo xx = T. Cum (x;) C A si A este inchisa,
deducem ca T € A. Reamintim c& sirul este dat prin relatia

xo € RP, f(l‘k) = Tf+1, Vk € N. (42)

Functia f este continua deoarece orice contractie este continui (a se vedea Propozitia 4.6.53)).
Deci, din proprietatile functiilor continue, exista limita girului (f(zx))x si este egald cu f(T).
In relatia 1D trecem la limita pentru k — oo si obtinem

lim f(zg) = lim xpq,
k—o0 k—oo
adica
f@) =7,
deci T este punct fix. Existenta este demonstrata.
Pentru a demonstra unicitatea, sa presupunem ca ar exista doua puncte fixe diferite = si y.
Atunci

[z =yl = 1[f(x) = F)ll < Mz = yll.

Cum ||z — y|| > 0 rezultd 1 < X ceea ce este absurd. Prin urmare exista un singur punct
fix. 0J

Observatia 4.2.12 Asadar, Teorema lui Banach de punct fix arata nu numai exvistenta i
unicitatea punctului fix ci, in acelasi timp, ne oferd o metoda pentru obtinerea cu aproximatie
a punctului T gi de asemenea ne permite punerea in evidenta a unei formule pentru aprecierea
erorii ce se produce considerand respectiva aprorimatie. Aceasta metoda de aproximare a solutiei
prin termenii sirului x, = f k(:vo) se numeste metoda aproximatiilor succesive sau metoda aprox-
imatiilor Picard dupd numele lui C. E. Picard care a initiat aceastd metodd in 1890.

In afara de aceste observatii ce tin de modul de convergenta a iteratiilor ciatre punctul fix,
facem si cateva observatii privitoare la ipotezele teoremei.

Observatia 4.2.13 Ipoteza \ < 1 este esentiala atdt pentru existenta cdat si pentru unicitatea
punctului fix. Astfel se vede, spre exemplu, ca pentru aplicatia identica f(x) = x, pentru orice
x € R, orice punct al lui R este punct fiz, in timp ce aplicatia f(x) = z+1, pentru orice x € R,
nu posedd niciun punct fir. In ambele cazuri, A = 1.

Observatia 4.2.14 Daca A nu este inchisa, se pierde argumentul de completitudine si rezul-

tatul Teoremei lui Banach nu se mai pastreaza. Spre exemplu, aplicatia f : (0,1] — (0,1]

definita prin f(x) = § nu are niciun punct fir desi este contractie.

4.3 Consecinte ale Principiului lui Banach in proiectarea
unor algoritmi

Analiza enuntului, dar si a demonstratiei Principiului lui Banach ne ofera mai multe concluzii
utile in ceea ce priveste proiectarea unor algoritmi. Mai intéi, sd vedem cum a fost obtinut (in
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partea de existentd) punctul fix: pentru fiecare punct initial o € A girul dat de relatia (4.2))
converge catre unicul punct fix T al aplicatiei f. Revenind la inegalitatile de mai sus, au loc
relatiile:

|2k — w0l < |lo — w0l + |22 — 21| 4+ - + [|J2k — 2pa |

< [l = oll + Al — wol + - + AT floy — o

1— )P
= (L+A+ N+ N oy — 2ol = T |21 — @oll
de unde prin trecere la limita cu k& — oo deducem
oo =7 < == lleo = F(ao)l
Astfel, de fapt, pentru orice x € A are loc relatia
2~ 7] <l — ()] (4.3)
rT—T x— f(z)|| ——. .
- 1—A
In plus avem si estimarea
k
ik =7 < == oy — 2o, ¥k €N\ {0}, (14)

care rezulta din relatia prin trecere la limita pentru m — oo.

Estimarea "a priori" astfel obtinuta ajuta la determinarea numarului maxim de pasi ai iter-
atiei din relatia pentru obtinerea preciziei dorite in estimarea punctului fix, cunoscdndu-se
valoarea initiald xg si valoarea x; = f(zy), lucru de care ne vom folosi atunci cand vom discuta
unii algoritmi. Mai exact, pentru o obtine o eroare mai mica decat € > 0 este nevoie ca

)\k
1—A

||J]1 — ZL‘OH < €.

Astfel, cu cat A\ este mai aproape de 0 aceasta valoare este mai mica si va trebui sa iteram de
mai putine ori pentru a avea precizia doritd. De asemenea, se observa din relatia (?7) ca o
valoare mica a lui ||x; — z¢|| duce de asemenea la sciderea numéarului de iteratii necesare unei
precizii prestabilite. Deci, aga cum este de agteptat, este de preferat sa se plece cu puncte cat
mai apropiate de punctul fix cautat.

De asemenea, se obtine si urmatoarea estimare:

[z =7 < [z = 2p| (4.5)

1—A

care se deduce tot prin trecere la limita pentru ¢ — oo in inegalitatea

[Zhre — wl| < opsn — el + |12 — 2ol + -+ | Trre — Tapea|
< Mg =zl + A [log — zpa ]| 4+ -+ A g — 2|
= ()\ + )\2 + ...+ )\é) ||CL’]C - Jfk_1|| .
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Viteza de convergentd a sirului (xy) este datd de aproximarea
261 = T < A — 7|
care se deduce din sirul de relatii

2k = Z = [1f (z) = F@) < Aww — 7]

Asupra vitezei de convergenta vom reveni pe larg un pic mai tarziu in cadrul acestei expuneri.
O alta inegalitate ce se obtine imediat din definitia contractiei este

|z — T < A |leo — 2|, VE € N.

A rezolva o ecuatie de tipul g(x) = 0 este echivalent cu a gasi punctele fixe ale functiei
f(z) = g(x) + x, aga incat aceastd dicutie referitoare la convergenta iteratiilor Picard este
aplicabila, prin aceasta echivalenta, unor algoritmi de determinare a solutiilor unor ecuatii.

Fie I este un interval inchis (in sens topologic) si f : I — I este o functie derivabild astfel
incat derivata sa este marginitd (in modul) pe I de o constanta strict subunitard. Atunci pentru
orice datd initiald zq € I iteratia Picard definitd de z4.1 = f(zx), k > 0 este convergenta citre
unicul punct fix 7 al lui f din /. Presupunem ci f este de clasa C*.

Se poate observa fara dificultate cid daca punctul fix nu este atins (girul este nestationar),
atunci

Th+1 - i f(xk) — T kooo 1/

— = — = (@)
T — T T — T

Astfel, observam ca, in general avem de-a face cu o convergenta liniara. Pentru k suficient

de mare, eroarea la pasul (k + 1) se comporta ca eroarea la pasul k£ inmulitd cu o constanta

subunitara. Acest tip de convergenta este relativ lent.

Observatia 4.3.1 Asadar, viteza convergentei iteratiilor Picard este data de valoarea lui f'(T).
In general, dacd f' (T) # 0, viteza de convergenta a iteratiilor Picard este relativ lenta. In cazul
cel mai favorabil in care f'(x) = 0 putem avea convergente mai bune decdt convergenta liniara.
In general, in contextul de mai sus, daci f'(T) = 0 si f este de clasi C? atunci, aplicind de
doua ori requla lut L’Hopital avem:

o f@ -7 _ @

T—T (37 — f)z 2 ’

deci pentru orice iteratie Picard nestationara

1; Tp+1 — T f”(f)

im 5 = ,

adica o convergenta patratica.

Exemplul 4.3.2 S3 consideram functia f : [0,00) — [0, 00) datd prin f(x) = ﬁ Am vazut
ca [ este o contractie gi are un singur punct fix care este unica solutie pozitivda a ecuatiei

93



23+ 12 —1 =0 (care are valoarea aproximativa T =~ 0.6823; a se vedea Implementare Matlab
[.5), iar sirul iteratiilor Picard satisface:

L1 — T n—oo ) — -2 _3
—_ = = 27 ~ —0.6353.
h—T f@) (1+7%)2 ¢

Cum valoarea | f'(T)| este relativ mica ne agteptam la o viteza de convergenta liniara acceptabila.

Deci, practic pentru k suficient de mare, la fiecare pas al iteratiei, eroarea se multiplica (in
valoare absolutd) cu aproximativ 0.6353.

Exemplul 4.3.3 Si luiim cazul functiei f : [v/2,00) — [v/2,00) dat# prin
z 1

Este usor de verificat c& f este bine definit# (inegalitatea mediilor). In plus,

deci f este contractie si are ca unic punct fix 7 = /2. Se observi ci f'(T) = 0 si, deci, pentru
orice iteratie Picard nestationara avem

Ty —T 1 1 (@)

— = — =
(SEk —f)Q 2517]9 2\/§ 2

Agadar are loc o convergenta patratica, aga incat ne agteptam la o viteza de convergenta foarte
bund (a se vedea Implementare Matlab [4.5]).

4.4 Teorema lui Picard

Prezentam acum un rezultat de punct fix pentru functii reale de o variabila realid. Geometric,
in acest context, punctele fixe ale unei functii f sunt acele elelemnte x pentru care punctul
(x, f(x)) este pe prima bisectoare, adica abcisele punctelor in care graficul lui f intersecteaza
prima bisectoare.

Exemplul 4.4.1 Am vazut cd functia f : [0,1] — [0,1], f(x) = cosx este o contractie (de
constantd \ = sin 1), deci are un singur punct fix ce se poate aproxima folosind iteratii Picard.
In schimb, pentru f : [0,1] — [0,1], f(z) = sinz nu putem aplica Principiul lui Banach
(f'(z) < 1 pentru orice z € (0,1) si f nu este contractie). Pentru a trata astfel de situatii avem
rezultatul de mai jos.

Teorema 4.4.2 (Teorema lui Picard) Fie a,b € R, a < b si f : [a,b] — [a,b] o functie
continud pe [a,b] si derivabild pe (a,b) cu proprietatea ca |f'(x)| < 1 pentru orice © € (a,b).
Atunci f are un singur punct fix, iar sirurile iteratiilor Picard sunt convergente la unicul punct
fix al lui f.
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Demonstratie Existenta gi unicitatea punctului fix rezulta din rezultatele anterioare. Notam
cu T acest punct. Fie zq € [a,b] si fie (x}) sirul Picard generat pornind cu termenul initial
xg. Daca pentru un k£ € N am avea xp = xyy1, atunci xp ar fi punctul fix, iar girul ar deveni
stationar, in acest caz convergenta fiind evidenta. Presupunem deci ci (z) este nestationar.
Din Teorema lui Lagrange aplicata functiei f pe un interval determinat de capetele T si x
deducem existenta unui element ¢, € (a,b) pentru care putem scrie relatia:

Trp1 — T = f(xr) — f(T) = () (2r — 7).
Aceasta inegalitate si ipoteza asupra derivatei lui f conduc la
‘xk+1 — f’ < \xk — f’ . (46)

Ardtdm acum ci (zy) converge la Z. Cum () este un gir marginit (fiind inclus in [a, b]) este
suficient sa aratam ca orice subsgir convergent are limita Z. Fie asadar un subsir convergent
(xk,)e al lui (x)) si numdrul real = € [a, b limita sa. Cum (k) este strict crescitor, aplicand

inductiv inegalitatea (4.6 obtinem:
|xk£+1 - f| < ‘xkeJrl - f’ < ‘xk?e - f| .

f—00 {—00

Dar |z, —Z| — |z —7|, iar |.CL‘]W+1 —f| — |z — 7| in timp ce

(whess — T = | f(an,) — F@)] =2 | f(2) - f(@)].

Din Teorema clestelui obtinem

[f(x) = (@) = |& ==

Daca am fi in situatia x # 7, aplicand din nou Teorema lui Lagrange am avea

[f(x) = f(@)] < |o =7,
ceea ce ar reprezenta o contradictie. Prin urmare T = x si teorema este demonstrata. U

Exemplul 4.4.3 Revenim, in lumina Teoremei lui Picard, la restrictia functiei sin la intervalul
[0, 1]. Pentru aceasta functie care este satisface conditiile Teoremei lui Picard cu T = 0 punct
fix, situatia vitezei de convergenta se schimba pentru ca orice iteratie Picard (xy) satisface

Th+1 —_ZL‘ k—_>>oo f/(f) —1
T — X

sl nu ne agteptdm si avem o vitezd de convergenta rezonabild (a se vedea Implementare Matlab

)

Evident, sferele de aplicabilitate ale Principiului lui Banach si Teoremei lui Picard sunt
diferite. Observatiile de mai jos prezinta o comparatie a ipotezelor celor doua rezultate pentru
functii reale de o variabila reala.
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Observatia 4.4.4 Dorim sa evidentiem faptul ca daca, in Teorema lui Picard, nu are loc
conditia | f'(z)| < 1 pentru orice x € (a,b) atunci, chiar daca f are punct fix unic, sirul Picard
poate sa nu fie convergent la acel punct fiv. Fie functia f : [-1,1] — [—1,1] definitd prin
f(z) = —x. PEwvident, f este derivabila pe domeniul de definitie, dar modulul derivatei este
constant 1. Singurul punct fix al lui f este T = 0. Construind iteratia Picard de la un termen
wmitial xg # 0, sirul Picard are forma xy, —xg, o, —To, ... §i deci nu este convergent.

Observatia 4.4.5 Sa mai remarcam ca o functie care satisface conditiile Teoremei lui Picard
nu este neaparat contractie, deci Teorema lui Picard nu poate fi obtinuta din Principiul lui
Banach. Pentru a ilustra acest aspect avem urmatorul exemplu. Fie f :[0,1] — [0, 1],

1

flo) = 1+

Evident |f'(x)] € (0,1) pentru orice x € (0,1), dar f nu este o contractie pentru ca

|f(z) = fy)] . 1

hm _— = hm —_— = 1
(@)= 0022y |T — Y (@y)—(0,0),22y (x + 1)(y + 1)

Totugi, pentru functia f am putea aplica Principiul lur Banach daca restrangem functia la
un interval pe care este contractie. Se observa ca pentru x € [%, 1] , flx) € [%, %] , dect
putem defini f : [%, 1} — [%, 1] §t sa observam ca aceasta restrictie este contractie pentru ca
SUD,c[1 1) If'(x)] = g < 1. Astfel, exista un punct fix unic al lui f in [1, 1} gt cum functia initiala

2
are un singur punct fix, punctul fix al restrictiei coincide cu acesta.

Observatia 4.4.6 In unele cazuri, se poate intampla sa nu putem nici sa restrangem functia
la o contractie, nici sa gasim o iteratie care sa fie contractie, deci nu se poate aplica niciuna
din cele doua metode de la exemplul precedent (a se vedea Ezercitiul . Ca exemplu, luam
functia f :[0,1] — [0, 1],

flo) = 1—7—5

Din nou, |f'(z)| € (0,1) pentru orice x € (0,1), iar pentru orice n € N\ {0} si orice x € [0, 1],

N
fix) = 1+ nz
Ca mai sus:
n _fn 1
lim /(@) = ")l _ lim _q
(z,9)—(0,0),z7y |z — vy (@,9)—(0,0),22y (nz + 1)(ny + 1)

i deci ™ nu este contractie. In plus, nu putem gasi nicio restrictie o functiei f care si fie
contractie de la o multime la ea insasi, deoarece punctul fix al lui f este T = 0, deci o eventuala
astfel de restrictie ar trebui definita pe un interval care sa contindg pe 0, lucru imposibil din

cauza relatiet
L @)~ f)

= 1.
(@y)— 0022y |z — Yyl
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4.5 Metoda lui Newton

Metoda a lui Newton este unul dintre cele mai cunoscute procedee iterative de a aproxima
radacinile unei functii care are proprietati suficiente de derivabilitate. Din nou vom vedea
cd aceastd metodad este una locald (algoritmul nu este global, in sensul c& pentru a avea o
convergenta a sirului de iteratii catre o anume radacina trebuie ca punctul de plecare sa fie
suficient de apropiat de radacina respectiva), dar are o ratd de convergenta patratica. Sa
consideram o functie f : R — R de clasd C? si fie T o radicing simpld a lui f (i.e. f(T) =0,
f'(Z) #0). Considerdm o valoare z, suficient de apropiatd de Z. Sirul iteratiilor Newton pleaca
de la ecuatia tangentei la graficul lui f. Cerinta este de a considera de fiecare data ca punct
urmator al iteratiei valoarea in care tangenta la punctul curent al iteratei intersecteaza axa Ox.
Astfel, pentru x; dat, avem ecuatia:

0= flax) + f'(@n)(@pr1 — z3).

Aceasta ecuatie, din care trebuie sa obtinem expresia lui x, 1, arata de ce se solicita ca solutia
sa fie simpla si sa se plece dintr-un punct apropiat lui 7 : trebuie sa ne plasam intr-o vecinatate
a lui T in care f’ nu se anuleaza, ori o astfel de vecindtate exista tocmai datoritd faptului ca f’
este continua i nenuld in 7. Astfel, se definegte iteratia Newton prin formula:

Tyt = Th — J{g’j} vk > 0. (4.7)

Ardtam in continuare cd pentru o alegere potrivitd a datei initiale iteratia (4.7) este bine
definit, iar sirul (zy) converge patratic la T.
Fie L € (0,1). S& notdm cu V un interval inchis centrat in T pentru care f’(x) # 0 pentru

orice x € V i
f(@)f"(z)
f'(@)?
Relatia de mai sus este posibild tocmai pentru ca f(z) = 0 si f/(Z) # 0. Fie acum functia
g:V—-R
f(z)

glr) =z — :
f'(z)
Evident, aceasta functie este bine definita pe V' gi cum

PP f@)f" @) @) (@)
filwy flay

din alegerea lui V, deducem ca g este o contractie. Pe de alta parte ¢(Z) = T, deci, in particular,

<L, VxeV. (4.8)

g'(z)=1

lg(x) —Z| < L|lx—Z|, Ve eV

ceea ce inseamna ca ¢ aplicd V' in V. Acum, daca plecam cu xq € V, sa observam ca iteratia
Newton este de fapt o iteratie Picard asociata functiei g. Aplicand teoria dezvoltata anterior,
iteratia Newton (pentru orice data initiald o € V') converge la punctul fix al lui g care este
tocmai radécina lui f din V' (adicd 7). Asa cum am spus anterior,

9'(@) =0
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si deducem ca are loc o convergenta patratica pentru ca

lim — 9(x) — 7

k (J}k — f)2 T—T (l‘ — 5)2
_ iy L @)~ fl@) —3f'(2) _ (@)
w7 f'(x) (z — )2 2f'(z)

Lh+1 - .

e R.

Discutia de mai sus indica faptul ca pentru a fi siguri ca iteratia Newton converge catre
solutia dorita cu viteza patratica, trebuie ca xy sa fie dintr-o vecinatate V' a solutiei in care sa
nu se anuleze derivata gi in care sa aiba loc conditia . Astfel, pentru functii care au mai
multe zerouri, in functie de data initiala aleasa putem gasi diferite solutii.

Se poate intdmpla ca metoda lui Newton sa functioneze si pentru cazul unei radacini mul-
tiple, dar convergenta in acest caz poate sa nu mai fie patratica. Astfel, s presupunem ca f
este de forma f(z) = (z — T)%(z), unde ¢ > 1, u este de clasd C? si u(T) # 0. Atunci functia
g se scrie
(z — T)u(x)

qu(z) + (z = T)u'(2)

g(z) =2 —

iar, dupa calcule,

—\ 2u/(z —\2 u'(z
(1-1) + @D + @ -2

gl(x) = 2

[1 +(z - 7))

Pentru valori suficient de apropiate de T, |¢'(z)| < 1, deci iteratiile Picard generate de g converg
la punctul fix al lui g care este T (in vecinatatea consideratd). Pe de alta parte, ¢'(T) = 1 —% # 0,
deci convergenta este doar liniara. Asadar, procedura Newton converge patratic doar pentru
radacini simple. Daca pentru o radacina = se cunoaste ordinul de multiplicitate ¢, atunci se
poate considera functia

W e-Duw
gq(x) - qf'(l') qu(x) + (33' - E)ul@j)’

iar un calcul rapid arata ca g;(T) = 0, deci, folosind considerentele anterioare, se reobtine
convergenta patratica.

Incheiem cu discutarea unor posibilititi de a alege punctul z, suficient de aproape de solutie
astfel incat metoda lui Newton sa convearga la punctul cautat. O prima posibilitate (empirica)
este aceea de a studia graficul functiei si de a alege o valoare x care pare a fi destul de apropiata
solutiei. O alta varianta ar fi de a aplica o alta metoda de aproximare a radacinilor unei functii
a carei convergenta este mai lenta dar care totusi dupa cateva iteratii ne duce in apropierea
solutiei, moment din care putem alege z( si aplica metoda lui Newton pentru accelerarea con-
discutat, in general, aceasta convergenta nu este foarte rapida, deci e de preferat sa o folosim
doar pret, de cateva iteratii pentru a gasi un punct relativ apropiat de solutie care sa foloseasca
drept data initiala pentru mult mai rapida convergenta Newton.
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Observatia 4.5.1 Implementarea metodei lui Newton ne permite sa rezolvam (cu aproximatie)
ecuatia nelintara de la Exemplul gt deci sa aflam solutia problemer de optimizare respective:

a se vedea Exercitiul [{.50.

Observatia 4.5.2 Metoda lui Newton se poate aplica pentru a aprorima puncte fixe cu viteza
patratica, pierzandu-se insa caracterul global al algoritmului. Pentru ecuatia f(x) = x, functia
g ale carei iteratit Picard sunt iteratii Newton este

flz) —=

g(w) = o — G

fx)—1
Pentru ilustrarea acestei observatii, a se vedea Exercitiul [{.531.

Observatia 4.5.3 Fie f : R — R o functie ce clasa C3, strict convexd si coercivd. Atunci
f are un unic punct de minim global T care este solutia ecuatiei f'(T) = 0. Astfel, pentru
aproximarea sa, putem folosi metoda lui Newton si iteratia devine

f' ()

T )

Pentru ilustrarea acestei observatii, a se vedea Implementare Matlab[4.36
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4.6 Exercitii

Implementare Matlab 4.1 Sistemul dat de metoda celor mai mici patrate pentru modelul
v = at + b admite solutie unica:

~1
a ) _ Zfil t Zﬁ\il t Zf\il 1ivi _
b E:ZJti N E:Zivi

iar perechea (a,b) de mai sus reprezintd solutia problemei. S& ludm exemplul concret: N =5,

t, = 0, ty = ]., i3 = 2, ty = 3, ts = 4 §1 V1 = ].]., Uy = 28, V3 = 52, Vg = 69, Vs = 8.9.
Pentru calculul parametrilor a, b implementam codul:

t=[0,1,2,3,4];
v=[1.1,2.8,5.2,6.9,8.9];
A=[sum(t."2) sum(t)
sum(t) 5]

B=[sum(t.*v)

sum(v) ]

U=A"(-1)*B
x=linspace(0,4.5,90);
y=U(1)*x+U(2) ;
plot(t,v,’o’,’Linewidth’,2);
hold on;

plot(x,y);

Experimentand acest cod obtinem valorile 1.9700 si 1.0400 precum si graficul corespunzator.

Exemplul

clc
functie=0(x) [x~3-x-2];
a=1;b=2;
eps=0.00001;1i=0;
while (abs(b-a)>eps)

if functie((at+b)/2)==0
break

end

if functie(a)*functie((a+b)/2)<0
b=(a+b)/2;

else

a=(a+b)/2;
endif

i=i+1;
endwhile
x=(a+b) /2

i
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functie(x)

cu rezultatele

x = 1.521381378173828

i= 17

ans = 9.934278368817218e-06

Exercitiul 4.3 Sa se deseneze in Matlab graficul functiei f : R — R date prin
f(z)=32" — 22" +2° — 4o + 1

i sa se deducd faptul ca ecuatia f(x) = 0 are trei radacini reale. Sa se aproximeze aceste
radacini folosind metoda injumatatirii intervalului.

Implementare Matlab 4.4 Dorim si aproximam solutia ecuatiei cosz = x, z € [0, 1], folosind
algoritmul dat de Principiul lui Banach. Evident, o solutie a acestei ecuatii este punct fix pentru
restrictia functiei cos la intervalul [0, 1]. Functia cos este o contractie intrucat sup,¢(o ;) [cos’ x| =
sin1 < 1. Mai mult, orice calculator ne da valoarea aproximativa a acestei constante de con-
tractie: sin1 ~ 0.84147, deci

|cosz — cosy| < 0.8415 |z — y|.

Atunci, conform Principiului lui Banach de punct fix, exista o singura solutie a ecuatiei mention-
ate care aproximeaza folosind sirul iteratiilor Picard generat de dat4 initiald zo € [0, 1] arbitrar
aleasa. Totusi, am vrea sa stim cit de bine aproximam solutia dupa un numar prestabilit de
iteratii. Sau, spre exemplu, de céte iteratii este nevoie pentru o obtine valoarea lui Z cu o eroare
mai mica decat 1073, Acest lucru este posibil datoritd estimarilor privind viteza de convergenta
a aproximatiilor Picard in Principiul lui Banach.

Avem urmatoarele estimari:

)\k
1—A

(4.9)

|z — | < |21 — 20|

|$k — f| S |'Tk - ZL’k_1| (410)

1—-A

Aceasta discutie ne va ajuta sa experimentam consecintele acestor formule. Tinand cont de

relatiile (4.9) si (4.10)), pentru o = 0 avem

| 7l < 0.8415% | 7l < 0.8415
Tr — X 1 (T — X —_—
FTAISTT SUIE TS 108415

0.8415 ok = i

Se poate verifica direct (a se si vedea calculele de mai jos) cd a doua estimare este mai buna
decat prima. Astfel, valoarea 10_'%%21; ajunge sa fie mai mica decét 0.001 pentru k£ = 50, in timp
ce a doua este sub 0.001 mult mai repede, pentru k£ = 21. Luand k£ = 21 obtinem o incadrare a
lui ¥ intre doua valori foarte apropiate.
Programele Matlab care verifica afirmatiile de mai sus sunt:

functie=0@(x) [cos(x)];

lambda=0.8415;
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u=0; c=abs(functie(u)-u)/(1-lambda); i=0;
while c*lambda>0.001 % abs(u-functie(u))>0.001
i=i+1; c=c*lambda; u =functie(u);
end
disp(i); disp(c); disp(u);
care returneaza
50
0.0011290
0.73909
si respectiv
u=0; i=0;
while (0.8415/(1-0.8415))*abs((u-cos(u)))>0.001
i=i+1; u=cos(u);
end
disp(i); disp((0.8415/(1-0.8415))*abs((u-cos(u)))); disp(u);
care returneaza
21
0.0008820
0.73909
Din nou, procesul de aproximare este mai rapid daca se pleaca cu o valoare initiala mai
apropiata de =. De exemplu, pentru xy = 0.7, estimarile

0.8415F 0.8415
cos(0.7) — 0.7] si |xp — 7| <
1

T—osa15 "4~ 7

T < 2T
o= S T 5
dau o eroare inferioara lui 0.001 pentru valori mai mici ale lui k, valori ce se pot determina
facaAnd modificarile evidente in programele de mai sus.

Implementare Matlab 4.5 Si consideram functia f : [0,00) — [0, 00) datd prin f(x) = H%
Am vazut ca f este o contractie si are un singur punct fix care este unica solutie pozitiva a
ecuatiei 3 + x — 1 = 0, iar sirul iteratiilor Picard satisface:
Tpt1 — T k—oo i -2 -3 .
p—— — fl(z) = e 27 ~ —0.63534438165.
Sa studiem viteza de convergenta prin intermediul unui program Matlab. Criteriul de oprire
este atingerea unui numar maxim de iteratii (1000) sau cazul in care distanta dintre dou&
iteratii consecutive este sub o tolerantd admisa (1077).
functia=0(x) [1/(1+x"2)];
tol=1e-7; maxiter=1000;
k=0; x=1; x_vechi=0;
%Picard
while abs(x-x_vechi)>tol && k<maxiter
x_vechi=x; x=functia(x); k=k+1;
end
%endPicard
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disp(x); disp(k);
Rezultatele afisate sunt:

—->disp(u); 0.6823278 -->disp(k); 35.
deci algoritmul s-a oprit dupa 35 de iteratii si a gasit valoarea aproximativa a solutiei 0.6823278,
pornind de la valoarea initiala xo = 1. Aceasta viteza acceptabila de calcul se datoreaza faptului
cd valoarea |f'(T)| este relativ mica.

S& ludm cazul functiei f : [v/2,00) — [V/2,00) dat prin

fle) =5+

Este usor de verificat cii f este bine definitd (inegalitatea mediilor). In plus,

F@l= |55

29:2S

§a

deci f este contractie si are ca unic punct fix T = v/2. Se observi ci f/(Z) = 0 si, deci, pentru
orice iteratie Picard nestationara

:Ek+1—f . 1 1

(2 —7) —z—xkﬁﬁ:f (7),

deci avem o convergenta patratica, asa incat ne asteptam la o viteza de convergenta foarte
rapida. Repetam programul anterior pentru noua functie si obtinem:

-->disp(u); 1.4142136 -->disp(k); 5.
deci algoritmul se opreste dupa doar 5 iteratii si obtine o aproximare foarte buna a punctului
fix T = /2.

Pentru restrictia functiei sin x la intervalul [0, 1] care satisface conditiile Teoremei lui Picard
cu T = 0 punct fix, situatia se schimb& pentru ca orice iteratie Picard (xy) satisface

Th+1 __f k—_}»oo f/(f) -1
T — T

si nu ne agteptam sa avem o viteza de convergenta rezonabila. Daca in programul anterior
schimbam legea functiei f cu noua situatie, atunci vom obtine rezultatele:

-->disp(u);

0.0545930

-->disp(k);

1000.
deci dupa 1000 de iteratii s-a obtinut o aproximare nu tocmai convenabila a solutiei. Situatia se
schimbd foarte putin daca plecim cu o valoare (de exemplu xy = 0.1) mai apropiata de solutie:

-->disp(u); 0.0480222 -->disp(k); 1000.

Exercitiul 4.6 Fie ) # ACRF gi f: A — A.

(i) Sa se arate ca daca f este contractie de constanta A € (0,1), atunci pentru orice n > 1,
f™ este contractie de constanta \".

(i1) Sa se arate ca daci T este punct fix pentru f atunci T este punct fix pentru orice iterata

a lui f.
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(111) Studiind exemplele: f :[0,1] — [0,1] data prin

0 daca z € [0, 1]
s ={ ) e s
(z) 3 daci v € (3,1]
gi [+ R—R data prin f(x) = e *, sa se arate ca este posibil ca o iteratd a lui [ sa fie

contractie, fara ca f sa fie contractie.

Exercitiul 4.7 Fie f : R? — RP. Daca exista g € N\ {0} astfel incat f? este o contractie,
atunci f are un unic punct fix. In plus, iteratiile Picard ale lui f converg la punctul fix. Folosind
aceasta concluzie i punctul (ii) al exercitiului precedent, si se scrie un program Matlab care sa
aprozimeze punctul fix al functiei f : R — R, f(x) =e 7.

Solutie Fie ¢ € N\ {0} astfel incat f? este o contractie. Din Principiul lui Banach, f? are un
punct fix unic pe care il notam Z. Sa observam, pe baza comentariului de mai sus, ca T este
singurul candidat pentru a fi punct fix pentru f (orice punct fix al lui f este punct fix pentru
orice iteratie). Au loc relatiile:

f@) = f(11(@) = 11(f (7)),

adica f(T) este punct fix pentru f¢. Cum f? are un unic punct fix, deducem ca f(z) = 7. S&
demonstram acum afirmatia privitoare la convergenta iteratiilor Picard. Pornim cu un element
fixat g € R? i construim girul Picard asociat (f"(xg)),. Trebuie si artdm ca acest gir converge
la Z. Fie r € 0,¢q — 1. Atunci, multimea termenilor sirului (f"(x¢)), este reuniunea multimilor
termenilor subsirurilor de forma (f%**"(x¢)). Pe de alta parte, (f%**"(z¢))x poate fi privit ca
sirul iteratiilor Picard asociat lui f? cu punctul initial f"(z¢) pentru ca:

FHH (o) = (1) (S (20)).

Cum f9 este o contractie, stim din Principiul lui Banach ca toate iteratiile Picard ale lui f9
converg catre punctul fix T. Deci toate cele ¢ subsiruri care partitioneaza sirul initial au aceeasi
limita (i.e., T), ceea ce arata ca lim, f"(ro) = T si demonstratia este acum completa. O

Problema 4.8 Fie a,b € R, a <b gi f :[a,b] — [a,b] o functie crescatoare. Atunci f are cel
putin un punct fix. Daca f este descrescatoare rezultatul nu se mai pastreaza.

Solutie Definim multimea

A:={z€lab]| f(x) > x}.

Este clar, pe de o parte, cd A este nevidd (intrucat a € A) iar, pe de altd parte, cd A este
marginitd (fiind submultime a lui [a, b]). Deci, conform axiomei de completitudine, A admite
margine superioara in R. S& notdm acest numar cu 7. Asadar, T = sup A si este clar ca
T € [a,b]. Cum T > x pentru orice x € A, monotonia lui f ne permite s scriem inegalitatea
f(@) > f(x) > z pentru orice x € A. Asadar, f(T) este majorant pentru A, deci f(Z) > . Tot
din monotonie, rezultd ca f(f(Z)) > f(T), deci f(Z) € A, adicd f(T) < Z. Prin urmare, avem
egalitatea f(T) =T si deci T este punct fix.
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Pentru a arata ca in cazul functiilor descrescatoare concluzia nu se mai pastreaza in general,
avem contraexemplul urmator: f : [0,1] — [0, 1] datd prin

1—zdacizel0,l

f (:B) _ { 1 [ 2)

2

— 2 dacd z € [3,1].
Este clar cd f este descrescitoare pe [0, 1], dar totusi nu admite puncte fixe. 0]

Problema 4.9 Fie f : R — R o functie continua i xo € R. Daca sirul iteratitlor Picard de

termen initial xo este convergent la un numarl € R, fara a fi stationar i f este derivabila in
I, atunci |f'(1)] < 1.

Solutie Presupunem prin reducere la absurd ca |f’(1)| > 1. Este clar, din continuitatea lui f gi
dintr-un comentariu anterior, ca [ trebuie sa fie punct fix pentru functia f. Cum

i @) = 1)

obtinem
| f(x) = f() ,
1 —
i | =IO
o 701-1
g = T > 0.
Atunci, pentru acest ¢, exista 6 > 0 astfel incat pentru orice z € (I — §,1 +0) \ {l},
! r)— l !
ror-e<| M= <+
sau /
O+ | fl)
2 r—1 |
In particular, cum | /(1) > 1,
"] +1
ot < o ) POEL ) - pa

pentru orice x € (I — 4,0+ 9) \ {{}. Cum sirul (x;) al iteratiilor Picard cu termen initial z, este
convergent la [, fara a fi stationar, exista ks € N astfel incat pentru orice k > ks,

xp € (I—46,1+0)\{l}.
Obtinem din relatiile de mai sus
o — 1] < [f(zx) = D] = [2r42 = 1],
pentru orice k > k;. In particular, deducem

|xk5 _ll < |xk5+1 _l| < |$k _Z|a
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pentru orice k > ks + 1. Trecand la limita in ultima relatie pentru & — oo ajungem la con-
tradictia:
|2 — U] < [@pg1 — 1] <0

Prin urmare, presupunerea facuta este falsa, deci |f/(1)| < 1. S& precizdm si faptul cd in general
nu se poate obtine inegalitatea asupra derivatei daca sirul este stationar. Daca luam functia
f:R =R, f(x) = 23+ 2z sirul iteratiilor Picard pornind din 0 este convergent (chiar stationar)
la 0, dar f'(0) = 2. O

Problema 4.10 Fie f : R — R o functie cu proprietatea ca pentru orice doua numere reale
distincte x g1y are loc relatia

|f(x) = fW)] < |z —yl|.

Atunci exista T € R astfel incdt pentru orice x € R sirul Picard generat de
w, = f*(x), Yk € N\ {0}
are limita .

Solutie Presupunem mai intai ca f are un punct fix, * € R. Evident ca acesta va fi singurul
punct fix al lui f. Fara a restrange generalitatea putem considera T = 0, deci

|f(2)] < ||

pentru orice x # 0. Fixdm = € R. Atunci girul (| f’“(m)|)k este descrescator, deci convergent
cdtre un numar p(z) > 0. Vom ardta cd p(z) = 0 pentru orice data initiald z. Presupunem prin
reducere la absurd c& p(z) > 0. Atunci f(u(z)) =: y1, iar f(—u(x)) =: yo, unde |y1],|ya| <
|p(x)] . Din continuitatea lui f, existd doud vecindtati ale lui pu(x) gi respectiv —p(z) care sunt
duse prin f in intervalul I := (—pu(z), u(z)) care contine y; si yo. Atunci, pentru k suficient de
mare, f*(z) se afld de asemenea in I ceea ce este in contradictie cu inegalitatea | f*(z)| > |u(z)] .
Asadar, pentru orice z € R are loc convergenta f*(x) — 0.

Presupunem acum c& f nu are puncte fixe. Atunci f(z) > z sau f(x) < x pentru orice
x real. Demonstram numai situatia f(z) > x, cealaltd demonstrandu-se analog. Este clar c&
pentru orice numdir real x, sirul (f*(x)) este strict crescitor, deci are limita in (—oo, +00]. Dac#
limita ar fi un numar real [, atunci f*(x) # [ pentru orice numér natural si nenul k si obtinem

| (@) — f)] < | R () — 1

de unde prin trecere la limita obtinem f(I) = [, adicd [ este punct fix, ceea ce reprezinta
o contradictie. Deci f*(z) — +oo. Evident, in cazul f(z) < z obtinem f*(z) — —oo. Cu
aceasta, demonstratia este incheiata. O

Problema 4.11 Fie g : R? x R? — R? continua. Presupunem ca exista o € (0,1) astfel incat

lg(z,t) —g(y, t)|| < allz -y

pentru orice t € R? gi x,y € RP. Pentru t fizat in R, notam cu u(t) punctul fix unic al
contractiei g(-,t). Atunci aplicatia pn: R? — RP este continua.
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Solutie Fie ty € R? gi ¢ > 0. Continuitatea lui g in (pu(to),%o) implicd existenta unui numar
0 > 0 astfel incat pentru orice ¢ fixat, cu ||t — t|| < 4, are loc

l9(u(to), t) — g(u(to), to) | < (1 — )
ceea ce este echivalent cu
l9(uto), 1) — u(to)|| < e(1 — ).
Din relatia (4.3)) si relatiile de mai sus deducem c& pentru orice ¢ cu ||t — to|| < 0 are loc

[14(to) — g(p(to), 1)l

11(t) = p(to)[| < T <e,

ceea ce incheie demonstratia. O

Problema 4.12 Fie f : RP — RP o contractie. Atunci functia v : RP — RP data prin
v(xz) =z + f(x) este o bijectie bicontinua.

Solutie Este clar c& v este continud. In plus, f este injectivd pentru ci relatia v(z) = v(y) si
proprietatea de contractie a lui f implica z = y. Fie g : R? x RP — RP definita prin

g(z,y) =y — f(x).

Este clar ca g satisface proprietatea din ipoteza problemei precedente, deci aplicatia x — g(z, y)
are un punct fix u(y) pentru orice y € RP. Agadar,

w(y) =y — f(uy)),

adica
y =v(u(y)), (4.11)

deci v este surjectivdl. Rdmane si ardtdm cd v~! este continud. Dar relatia (4.11)) arata ca
functiile v si p sunt inverse una alteia, iar continuitatea lui p (deci a lui 1) este asigurata de
teorema precedenta. Deci v este homeomorfism. 0

Problema 4.13 Fie f : [0,1] — [0,1] o functie continua cu proprietatea ca f(0) = 0 gi
f(1) = 1. Sa se arate ca daca exista m € N\ {0} astfel incit f™(x) = x pentru orice x € [0, 1],
atunci f(x) = x pentru orice x € [0, 1].

Solutie In ipotezele de mai sus, f este bijectie in baza unui bine cunoscut rezultat referitor la
proprietatile de injectivitate si surjectivitate a compunerii functiilor, intrucat f™ este bijectie.
Conform unui rezultat de la functii continue (Teorema [4.6.54)), f trebuie si fie strict monotond
si ipotezele f(0) =0, f(1) = 1 asigurd c& f este strict crescitoare. Presupunem prin reducere
la absurd cd existd « € (0,1) astfel incat f(z) > x (cazul f(z) < x este similar). Atunci, din
monotonie, pentru orice n € N

(@) > P He) > o> fz) > .

In particular, pentru n = m, obtinem o contradictie, deci presupunerea facuta este falsa. [
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Problema 4.14 Fie functia f : R — R continua astfel incdt f o f admite puncte fixe. Sa se
arate ca 1 f admite puncte fize.

Solutie Daca presupunem ca f nu admite puncte fixe. Atunci, din ipoteza de continuitate
rezultd ci fie f (z) > x, pentru orice z € R, fie f (z) < x, pentru orice 2 € R. In prima situatie,
trecand z in f (z) obtinem: f(f(x)) > f(x) > z, pentru orice x € R, deci (fo f)(z) > =z,
pentru orice x € R. Prin urmare, f o f nu admite puncte fixe, ceea ce este fals. A doua situatie
este similara. 0

Exercitiul 4.15 Fie f:[0,1] — [0,1] o functie 1— Lipschitz pe [0,1]. Sa se arate ca multimea
punctelor fixve este un interval (posibil degenerat).

Exercitiul 4.16 Fie functia f : R\ {0} — R,

1 1
— 14 > sin-.
f(z) + 7S
Pentru o data initiala zo € R\ {0} consideram iteratia Picard asociatd (xy). Sa se studieze

convergenta acestui gir. Sa se scrie un program Matlab care sa aproximeze valoarea limiter.

Solutie Imaginea lui f este intervalul I = [%, %] Consideram restrictia lui f la acest interval si

aratdm cd aceasta este o contractie de la I la I. Pentru aceasta, calculdm (pentru z € I)

1 1
f/<1'> = _4.732 COs 57
de unde

4
f@)<g<lveel

Cum z; = f(xo) € I, putem aplica demonstratia Principiului lui Banach pentru a deduce ca
(z) este convergent la singurul punct fix al lui f din I. O

Exercitiul 4.17 Fie f : R — R data prin

Sa se arate ca f este contractie. Se da sirul (zy) prin xg = 1,

Tk
Tht1 = 1+ 5 5

, Vk € N.
s

Sa se arate ca (ry) este convergent iar limita sa T este solutie a ecuatiei x> — 22 +x —2 =10
st pentru orice k € N, k > 1, avem

o, —z| <27 |7 —1].

Exercitiul 4.18 Fie functia f : [1,2] — [1,2],

f(x) =1/2+ V.
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Sa se arate ca [ este bine definita i ca este o contractie pe domeniul sau de definitie. Sa se
deduca faptul ca ecuatia
ot — 42t —x+4=0

are solutie unica in intervalul (1,2), iar aceastd solutie coincide cu limita sirului (xy) dat prin
Tpa1 = /2 + \/Tk pentru orice k € N cu xo = 1. Apoi, precizati viteza de convergenla a acestui
ST

Exercitiul 4.19 Fie f,g: R, :=[0,00) — R definite prin

f(z) = { STL—;’:%;% 0 , g(x) = (v —2)e* + (z + 2)e”.

(1) Sa se arate ca g(x) > 0, pentru orice x € R.
(ii) Sa se arate ca f este de clasa C' pe R,.

(i1i) Sa se arate ca
f”(a:) = %, Vo € (O, OO)

st |f'(z)] <271 pentru orice x € R;.
(i) Definim sirul (xy) prin xo =0 gi xp41 = f(xx) pentru orice k € N. Sa se arate ca

|z, —In2| < 27%1In2, Vk € N.

Solutie (1) Functia g este o (strict) crescatoare pe [0, 00), lucru care se verifica in mod obisgnuit.
Mai mult, ¢g(0) = 0, deci g(z) > 0, pentru orice z € R, .
(ii) Evident, f este derivabild pe (0, 00) si, pe acest interval,

et —1—zxe”

f/(I) = (Gx . 1)2

Calculdm limita acestei derivate in 0 si obtinem (combinand o limitd fundamentald gi regula
lui ’'Hospital)

) , .oet—1—uxe” . e —1—ze® 22
lim f'(z) = lim ———————— = lim
a—0+ -0+  (e® —1)2 z—0+ 22 (e? —1)2
. et —1—uwe* . —e 1
= lim ———— = lim = ——.
z—0+ 2 z—0+ 2 2

Aplicand una dintre consecintele Teoremei lui Lagrange, deducem ca f este derivabila in 0, iar
derivata sa este continud in 0. In plus, f/(0) = -2~
(iii) Functia f este derivabild de doud ori pe (0, 00) iar relatia anuntatd se aratd prin calcul
direct. Conform punctului (i), f" este crescatoare pe (0,00), iar din continuitatea lui f’, din
relatia f'(0) = —27! si din observatia
lim f'(z) =0

Tr—00

deducem ca f'(x) € [-271,0) pentru orice z € R, de unde rezultd concluzia.
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(iv) Punctul precedent aratd cd f este o 27! —contractie pe R care ia valori tot in R, . Cum
sirul (xy) este o iteratie Picard cu data initiala 0, deducem, pe baza Principiului lui Banach,
cd (xy) converge la singurul punct fix al lui f din R, care, prin calcul direct, se dovedeste a fi
Z = In2. Acum estimarea ciutatd rezultd (prin inductie) din

2k — 7| = |f(er1) = F@)| <27 oy — 7] < oo < 27F g — 7.
Agadar, inegalitatea are loc. U

Exercitiul 4.20 Fie f : R — R data prin f(z) = V22 + 1.
(1) Sa se arate ca f este contractie.
(i1) Se considerd iteratia Picard

{ o — 0
T = f(wr), Vk €N

Sa se arate ca sirul (x3,) converge la unica solutie reald a ecuatiei 22 — x*> — 1 = 0. Sa se
implementeze in Matlab.

Exercitiul 4.21 Fie a,b € R cu |a| < 1. Consideram sirul (zy) definit de relatia de recurenta
Tre1 = axk + b, zo € R.

Sa se precizeze functia pentru care acest sir reprezintda o iteratie Picard. Folosind un rezultat
studiat, sa se arate ca (xy) este convergent si sa se stabileasca limita sa.

Exercitiul 4.22 Fie f : R — R data prin

X

1.
x2—|—2+

fz) =

Sa se arate ca f este contractie. Se da sirul (zy) prin xg = 1,

Tk
=14 ——— VkeN.
Th41 +xi+27

Sa se arate ca (xy) este convergent iar limita sa T este solutie a ecuatiei x> — x> +x —2 =10
st pentru orice k € N, k> 1, avem

o, — 7| <27 |7 —1].
Exercitiul 4.23 Se da functia f : R — R, f(x) =In+/1+ 22. Sa se arate ca f este contractie.
Se da sirul (zy) definit prin xg = 1, x4, = f(a). Sa se arate ca 0 < x < 27% pentru orice

k> 1.

Exercitiul 4.24 Se da functia f : R — R, f(r) = arctg 5. Sa se arate ca f este contractie.
Se da sirul (xy) definit prin xo = 2, 131 = f(xx). Sa se arate ca 0 < zp < 275 pentru orice
k>1.
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Exercitiul 4.25 Fie f : [0,1/2] — [0,1/2], f(z) = £(«° + 1). Sa se arate ci [ este corect
definita, este contractie si sa se determine constanta de contractie. Sa se deduca faptul ca
ecuatia T° — 5x + 1 = 0 are solutie unicd in intervalul [0,1/2]. Sa se indice un mod de a
aproxima aceasta solutie i sa se estimeze un numar rational care aproximeaza solutia cu o
eroare mai micd de 1072,

Exercitiul 4.26 Fie f : R — R,

i1 (2 1)

Sa se arate ca f are un punct fiz in intervalul (1,2). Sa se studieze daca iteratiile Picard ale
lui f aprozimeaza acest punct fix i in caz afirmativ sa se precizeze (cu justificare) ordinul de
convergenta.

Exercitiul 4.27 Fie f : [1,00)— [1,00),
1
f(z) = arctg il + 1.
T

Sa se arate ca f are un punct fiz in intervalul (1,3). Sa se studieze daca iteratiile Picard ale
lui f aproximeaza acest punct fix i in caz afirmativ sa se precizeze (cu justificare) ordinul de
convergenta.

Implementare Matlab 4.28 Prezentam acum o situatie particulara in care o iteratie Picard
poate fi acceleratd printr-o functie auxiliara. Fie f : R — R, f(x) = 23 + 422 + x — 10. Folosind
sirul lui Rolle este usor de ardtat cd ecuatia f(x) = x are o singurd radécing reald care este
pozitiva, deci f are un singur punct fix, notat T si localizat in intervalul [1,2] (a se vedea si
graficul de mai jos). Despre f nu putem folosi teoria precedentd pentru ca nu este contractie.
In schimb, luim functia g : [1,2] — R,

() 223 + 422 + 10
.CE o
g 312 + 8z

Y

iar egalitatea g(x) = x este echivalentd cu f(x) = z. Dar

(622 + 8z)(32% + 8z) — (6x + 8)(22* + 42% + 10)
(322 + 8z)2
(62 + 8)(2® + 42* — 10)
(322 + 8x)?

g'(x) =

Cum T este solutia ecuatiei 2® + 422 — 10 = 0, obtinem ci ¢'(Z) = 0. Aceasta inseamni ci
pe o vecinatate a lui T, g este contractie si, in plus, convergenta girului Picard asociat este
patratica. Programul urmator arata ca daca se aplica iteratia Picard functiei f pornind de
la 1, atunci dupa doar 9 iteratii sirul are o valoare ce, in valoare absoluta, depaseste valoarea
mixima acceptatd de Matlab (deci este divergent), lucru ce era de asteptat din cauza cd f nu
este contractie. In schimb, utilizand functia ¢ avem o aproximare buni a solutiei dup# doar 5
iteratii. Sa se studieze codul de mai jos.
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tol=1e-7;maxiter=1000;

u=1; u_vechi=0; k=0; t=1; t_vechi=0; p=0;

%Picard g

while abs(u-u_vechi)>tol & n<maxiter
u_vechi=u; u=(2*xu~3+4*xu~2+10)/(3*xu"2+8*u); k=k+1;

end

%Picard f

while abs(t-t_vechi)>tol & p<maxiter
t_vechi=t; t=t"3+4*t~2+t-10; p=p+1;

end

disp(u); disp(n); disp(t); disp(p);

Rezultatul este:

--> disp(w); disp(k); disp(t); disp(p);

1.36523

5.

Nan

9.

Implementare Matlab 4.29 Testam metoda lui Newton pentru functia f : R — R data de
relatia
-5

flz)=xz+e +1+x2

care are o raddcina simpla in intervalul (—2,0) dupa cum se poate constata din studiul graficului
sau. Plecand cu data initiala o = 1.5 aproximam aceasta solutie folosind metoda lui Newton:

functie=0(x) [x+exp(x)+10/(1+x"2)-5];

Y%desen

fplot(functie, [-3,3]);

functie_der=0@(x) [1+exp(x)-20*x/(1+x72)"2];

%Newton

x=1.5;x_precedent=-1;k=0;eps=10"(-6) ;maxiter=50;

while abs(x-x_precedent) >eps && k<maxiter

x_precedent=x;

x=x-functie(x)/functie_der(x);

k=k+1;
end
X
k
functie(x)
care returneaza:
x = -0.9046
k = 35
ans = 8.8818e-016
Daca se pleaca cu data initiala © = —1.5, atunci se obtine valoarea de mai sus dupa doar 5

iteratii. Sa se observe ca metoda este foarte sensibila la data initiala testand pentru 1.5, 1.4, 0.
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Exercitiul 4.30 Sa se aprorimeze in cazul
p="T,a;=1v;=10,i € 1,7,

prin metoda lui Newton, solutia ecuatier neliniare de a carei rezolvare depindea calculul proiectier
unui punct pe un elipsoid generalizat (a se vedea Ememplul.

Exercitiul 4.31 Sa se revolve ecuatia cosx = x prin metoda lui Newton. Sa se compare cu
metoda Picard.

Problema 4.32 Fie ecuatia 23 —x — 1 = 0 pentru x € [1,2].

(i) Sa se transforme aceasta ecuatie intr-o problema de determinare a punctului fiz pentru
o contractie.

(i1) Sa se deduca existenta $i unicitatea solutiei ecuatiei, si se construiasca un gir convergent
lintar si un altul convergent patratic la aceasta solutie. Sa se implementeze in Matlab.

Solutie (1) Ecuatia este echivalenta cu
r=2z3—1,

dar in aceastd formulare ar trebui sa ludm g(z) = 23 — 1, dar ¢([1,2]) ¢ [1,2], iar g nu este
contractie. Astfel vom scrie ecuatia in formele echivalente

P?=r+ler=vr+l
Fie atunci f : I — R, f(z) = v/z + 1. Este usor de observat ca f(I) C I si

1 1
= <
3Y(x+1)2 ~ 3V4

f'(x)

<1,

deci f este o contractie de la [ la I.

(ii) Avand in vedere Principiul lui Banach si formularea de mai sus, deducem existenta si
unicitatea solutiei ecuatiei (notata 7). Orice iteratie Picard asociatd functiei de mai sus este
convergents la solutie. Astfel, luim xq = 1 si 7441 = f(x3) pentru orice k € N. In plus, pentru

orice k,
1 \" 1 \"
T — x| < rog— 7| < .
. '-(m)“ '—(m)

Este deci suficient sa estimam k pentru care

1 k
<1075,
(533) <

1 -5
Eglo )

adica k > 5log, 10. Astfel, k = 9 satisface cerinta. O

Mai mult, este suficient ca

Exercitiul 4.33 Sa se determine solutiile aprozimative ale problemelor de la Ezercitiul [3.68.
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Exercitiul 4.34 Fie sirul de numere reale dat prin xo =1 gi

223 + 3

T yiso
3a?

Tk+1 =

Sa se arate ca (xy) este o iteratie Newton pentru o functie care se va determina. Ce se poate
spune despre convergenta lui (z)y?
Exercitiul 4.35 Fie sirul de numere reale dat prin xo =1 i

T2+ 2

Ty

Tpt1 = , Vk > 0.

Sa se arate cd (xy)r este o iteratie Newton pentru o functie care se va determina gi totodatd
o iteratie Picard pentru o contractie g, al carei domeniu de definitie convenabil il veti preciza.
Studiati convergenta sirului (xy) si, in caz de convergenta, determinati-i limita.

Implementare Matlab 4.36 Fie f : R — R,

22

f(l’):z—f—?—gl"’—l.
Aceastd functie este strict convexd intrucat f”(r) = 322 + 1 > 0 pentru orice z € R. Evident
ca f este gi coerciva, deci existd un singur punct de minim global. Aplicim metoda lui Newton
ecuatiei f’'(x) = 0 pentru a aproxima acest punct.
functie=0(x) [x"4/4+x"2/2-3*x+1];
Y%desen
fplot(functie, [-5,5]);
Y%optimizare Newton
functie_der=0(x) [x~3+x-3];
functie_der_sec=0(x) [3*x~2+1];
x=1.5;x_precedent=-1;n=0;eps=10"(-6) ;maxiter=50;
while abs(x-x_precedent)>eps && k<maxiter
X_precedent=x;
x=x-functie_der(x)/functie_der_sec(x);
k=k+1;
end
X
k
functie(x)
care returneaza
x = 1.213411662762230

=
I
n o,

ans = -1.362084275383167

Exercitiul 4.37 Fie f : R — R, f(z) = 22? + 3¢ 2*. Sa se arate ca [ este strict convexd
gt admite punct de minim. Sa se determine acest punct cu aproximatie folosind metoda lui
Newton (aplicata pentru ecuatia f'(x) =0).
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Appendix

Spatiul R?
Fie p € N\ {0}. Notdm cu R multimea numerelor reale gi introducem multimea
R? := {(x17$27 "'axp) ’ T € Ra Vi € m}

Aceasta multime se organizeaza ca spatiu vectorial real de dimensiune p cu operatiile standard
definite astfel: pentru orice = = (x1,xa, ..., ), ¥y = (Y1, Y2, ..., yp) € RP si orice a € R

r4y = (v +y1, T2 + Y2, ..., Tp +yp) €RP,
ar = (axy,azxs, ...,ax,) € RP.

De multe ori, nefiind pericol de confuzie, vom folosi i notatia in care indicii componentelor sunt
jos. Vom extinde aceste operatii si la multimi: daca A, B C R? sunt nevide, « € Rgi C C R
este nevidd, definim A+ B={a+b|la€ A, b€ B}, aA={aa|ac A}, CA={aa|a € C,
a€ A}, A—-B=A+(-1)B.

De foarte multe ori, dar mai ales atunci cand vom folosi operatii matriciale, vom privi un
element x din R? ca fiind o matrice de tip p x 1 (adicd un vector coloand). Matricea transpusa
corespunzatoare va fi notatd cu z‘, conform notatiei ce va fi adoptatd pentru matrici de orice
dimensiune. De asemenea, se defineste produsul scalar uzual a doi vectori z,y € RP prin

p
(z,y) = inyi = a'y.
i=1

De exemplu, in relatia anterioard, notatia (x,y) este una in care z,y sunt vectori din R? ce pot
fi priviti atat ca vectori linie cat si ca vectori coloand, iar notatia z'y se referd la o inmultire
de matrici, deci pentru ca operatia sa fie posibila z,y sunt matrici de tip p x 1. Vom face de
multe ori trecerea tacita de la o interpretare la alta, contextul neconducand la confuzii.

Spatiul R? se organizeaza ca spatiu normat (si deci in particular spatiu metric) inzestrat cu
norma euclidiand ||-|| : R? — R, definitd prin

[2]l = v/, ) =

Este usor de aratat ca pentru orice z,y € RP are loc urmatoarea relatie, numita egalitatea
paralelogramului
2 2 2 2
[z +ylI” + [l =yl = 2|[=[]” + 2 [y [I”-
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Se defineste unghiul dintre doi vectori z,y € R? \ {0} ca fiind valoarea 6 € [0, 7] definitd prin

(z,y)

cosf = .
[zl lyll

Bila deschisa (respectiv inchisd) centratd intr-un punct T € R? de raza ¢ > 0 se defineste prin:

B(@,e)={z eRP | ||z —Z| < &}

(respectiv D(T,e) = {z € R? | ||z —Z|| < e}). O submultime A C R? se numeste marginita
daca este continuta intr-o bila deschisa centrata in origine, adica, exista M > 0 astfel incat
A C B(0,M).

Se numeste vecinatate a elementului * € R? o submultime a lui R? care contine o bila
deschisa centratd in Z. Notam cu V(Z) multimea tuturor vecinatatilor lui 7.

O submultime a lui R? se numeste deschisa daca este multimea vida sau daca este vecina-
tate pentru orice punct al sau.

O submultime a lui R? se numeste inchisa daca multimea sa complementara in raport cu
RP este deschisa.

Un punct a € R? se numeste punct interior multimii A C R?P daca A este vecinatate a lui
a. Notam cu int A interiorul lui A (i.e. multimea tuturor punctelor interioare lui A).

Un punct a € RP se numeste punct de acumulare pentru multimea A C R? daca orice
vecindtate a lui a are in comun cu multimea A cel putin un punct diferit de a. Notam cu
A" multimea derivatd a lui A (i.e. multimea tuturor punctelor de acumulare ale lui A).
Un punct a € A\ A’ se numeste punct izolat al lui A.

Un punct a € R? se numeste punct aderent pentru multimea A C R? daca orice vecinatate
a lui a are in comun cu multimea A cel putin un punct. Vom folosi notatiile cl A gi A
pentru a desemna multimea aderentd a lui A (i.e. multimea tuturor punctelor aderente
lui A).

Notdm cu Fr A multimea cl A\ int A = cl AN cl(RP \ A) si o numim frontiera lui A.

O submultime a lui R se numeste compacta daca este marginita si inchisa.

Au loc urmétoarele rezultate.

Propozitia 4.6.1 (i) O submultime a lui R? este deschisa daca si numai daca este egald cu
interiorul sau.
(i1) O submultime a lui RP este inchisa daca si numai daca este egala cu aderenta sa.

Definitia 4.6.2 Se numeste sir de elemente din RP o functie f : N — RP.

Valoarea functiei f in n € N, f(n), se noteaza cu x,, (sau y,, zn, ...), iar sirul definit de f se
noteaza (z,) (sau, respectiv, (y), (zn), ...).
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Definitia 4.6.3 Un sir se numegte marginit daca multimea termenilor sai este marginita.

Definitia 4.6.4 Se numeste subsir al sirului (x,) un gir (yx) cu proprietatea ca pentru orice
ke N, y, = x,,, unde (ny) este un sir strict crescator de numere naturale.

Definitia 4.6.5 Un gir (x,) C RP este convergent daci exista x € RP astfel incadt
VYV € V(x), Iny € N astfel incit Vn > ny, x, € V.

Numarul x se numeste limita lui (x,,).

Daca exista, limita unui sir este unica.
Vom folosi notatiile x,, — =z, lim x,, = x sau, mai simplu, limz, = x pentru a descrie

n—~oo

situatia din definitia precedenta. Are loc urmatorul rezultat de caracterizare.
Propozitia 4.6.6 Un gir (x,) este convergent la limita x € RP daca i numai daca
Ve >0, dn. € N astfel incit Vn > n., ||z, —z| <e.

Propozitia 4.6.7 Sirul (x,) C RP converge la x € RP daca gi numai daca girurile coordonate

(2¢) converg (in R) la x* pentru orice i € 1,p.

Teorema 4.6.8 Un gir este convergent la limita v € RP daca st numai daca orice subgir al sau
este convergent la limita x.

Propozitia 4.6.9 Orice gir convergent este marginit.

Propozitia 4.6.10 (Caracterizarea punctelor aderente cu ajutorul sirurilor) Fie A C RP. Un
punct © € RP este aderent multimii A daca i numai daca exista un gir (x,) de puncte din A
astfel incdit x,, — x.

Propozitia 4.6.11 Multimea A C RP este inchisa daca si numai daca limita oricarui sir
convergent de puncte din A apartine lui A.

Propozitia 4.6.12 Multimea A C RP este compacta daca i numai daca din orice gir de
elemente din A se poate extrage un subsgir convergent la un punct din A.

Teorema 4.6.13 (Lema lui Cesaro) Orice gir marginit are un subgir convergent.
Definitia 4.6.14 Un gir (z,) C RP se numeste gir Cauchy sau fundamental daca
Ve > 0, In. € N astfel incit Vn,m > n., ||z, — zn| <e.
Definitia de mai sus poate fi reformulata astfel: (z,,) este sir Cauchy daca:
Ve > 0, dn. € N astfel incat Yn > n., Vp € N, ||z,4p, — 20| <e.

Teorema 4.6.15 (Teorema lui Cauchy) Spatiul RP este complet, adica un gir de puncte din
acest spatiu este convergent daca si numai dacd este fundamental.
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Dam acum unele rezultate specifice cazului sirurilor de numere reale.

Definitia 4.6.16 Un sir de numere reale (x,,) se numeste crescator (strict crescator, descresci-
tor, strict descrescator) daca pentru oricen € N, k11 > T (Tpi1 > Tpy Tppl < Ty Tt < T ).
Un sir crescator sau descrescator se numeste monoton.

Fie R := R U {—00, +00} multimea extinsd a numerelor reale. Se numeste vecinitate a lui
+00 0 submulfime a lui R care contine un interval de forma (x, +00], unde = € R. Vecinatatile
pentru —oo se definesc analog.

Definitia 4.6.17 (i) Spunem ca sirul (z,,) C R are limita +00 daca
VYV € V(+o0), Iny € N astfel incit Vn > ny, x, € V.
(it) Spunem ca sirul (x,) C R are limita —oo daca
VV € V(—o0), Iny € N astfelincat Yn > ny, x, € V.
Rezultatele corespunzatoare de caracterizare sunt urmatoarele.
Propozitia 4.6.18 (i) Un sir (z,) C R are limita +o00 daca si numai daca
VA >0, dny € N astfel incdt Vn > ny, x, > A.
(i1) Un sir (z,,) C R are limita —oo daca i numai daca
VA >0, dny € N astfel incit Vn > ny, x, < —A.

Propozitia 4.6.19 Fie (x,,), (yn), (2,) siruri de numere reale, x,y € R gi ng € N.

(i) (Trecerea la limita in inegalitdti) Daca x, — x, y, — y §i T, < Yp, pentru orice n > no,
atunci x < y;

(i1) (Criteriul majorarii) daca |z, — x| < y,, pentru orice n > ng iy, — 0, atunci x, — z;

(111) daca x, > y,, pentru orice n > ng §i Y, — +00, atunci xr, — +0o0;

(iv) daca x,, > y,, pentru orice n > ng §i x, — —00, atunci y, — —oo;

(v) daca (z,) este marginit §i y, — 0, atunci z,y, — 0;

(vi) (Teorema clestelui) dacd z, <y, < z,, pentru orice n > ng §i T, — T, z, — T atunci
Yn — T;

(vit) T, — 0 & |x,| — 0 & 22 — 0.

Continuam cu rezultate fundamentale in teoria sirurilor de numere reale.

Teorema 4.6.20 Orice sir monoton de numere reale are limitd in R. Dacd, in plus, sirul este
marginit, atunci el este convergent dupa cum urmeaza: daca este crescator, atunci limita sa este
marginea superioard a multimii termenilor sirului, iar daca este descrescator, atunci limita sa
este marginea inferioara a multimii termenilor sirului. Daca este nemarginit, atunci are limita
+00 sau —oo dupa cum este crescator sau descrescator.

Teorema 4.6.21 (Teorema lui Weierstrass pentru siruri) Orice gir de numere reale marginit
§t monoton este convergent.
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Definitia 4.6.22 Fie (z,),>0 un gir de numere reale. Un element © € R se numeste punct
limita pentru (z,) daca existda un subgir (x,,) al lui cu v =limx,, .

Finalizam aceasta sectiune cu doua criterii utile de convergenta.

Propozitia 4.6.23 Flie (z,,) un sir de numere reale strict pozitive astfel incat existd lim "”;—:1 =

x. Daca x < 1, atunci x, — 0, iar daca x > 1, atunci x,, — +00.

Propozitia 4.6.24 (Criteriul Stolz-Cesaro)) Fie (x,,) gi (y,) giruri de numere reale astfel incat
(yn) este strict crescator gi cu limita +00. Dacd existd lim z"i—:;" =z € R, atunci exista lim 3>
i este egala cu x.

Limite de functii si continuitate

Reamintim acum unele chestiuni legate de conceptul de limita a unei functii si de continuitatea
functiilor. Fie p,q € N\ {0}.

Definitia 4.6.25 Fie A C R?, f : A — R? gi a punct de acumulare pentru A. Spunem
ci elementul | € R? este limita functiei f in punctul a, daca pentru orice V- € V (1), exista
U € V(a) astfel incat daca x € UNA, © # a, are loc f(x) € V. In acest caz vom scrie

aljl_I)I(llf (x) = 1.

Teorema 4.6.26 Fie A C RP, f : A — R? gi a punct de acumulare pentru A. Urmatoarele
afirmatit sunt echivalente:

(i) i (z) — &

(it) pentru orice B (l,e) C RY, exista B (a,0) C RP astfel incit daca x € B (a,d)NA, x # a,
atunci are loc f (x) € B (l,¢);

(i1i) pentru orice € > 0, exista 6 > 0, astfel incdt daca ||z —al| < 6, x € A, x # a, atunci
are loc ||f (z) = || < ¢

(iv) pentru orice ¢ > 0, ewista § > 0, astfel incat daca |rv; — a;| < J, pentru orice i € 1,p,
unde x = (1, %2,..,xp) € A, a = (a1, a9, ..,a,), T # a, atunci are loc || f (x) —1|| < &;

(v) pentru orice gir (x,) C A\ {a}, x, — a rezulta f (z,) — L.

Teorema 4.6.27 Fie ACRP, f: A — R?% [ € RY gi a punct de acumulare pentru A. Daca
functia f are limita | in punctul a, atunci aceasta limita este unica.

Observatia 4.6.28 Daca A C RP, f: A — RY, a punct de acumulare pentru A si exista doud
giruri (z), (22) C A\ {a}, z}, — a, 2! — a astfel incat f(z!) — U, f(z!) = 1" sil' #1",
atunci functia f nu are limita in a € A’.

Teorema 4.6.29 Fie ACR?, f: A— R f=(f, fo,..., fy) (adicd f;, i € 1,q sunt functiile
coordonate) si a punct de acumulare pentru A. Atunci f are limita | = (I3, 1, ...,1,) € R? in
punctul a daca si numai dacd exista lim f; (x) = I;, pentru orice i € 1,q.
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Definitia 4.6.30 Fica € R gi A C R. Notam Ay = AN (—o0,a], Ag = AN [a,00). Punctul
a se numegte punct de acumulare la stdnga (respectiv dreapta) pentru A, daca este punct de
acumulare pentru multimea As (respectiv Ag). Vom nota multimea punctelor de acumulare la
stanga (respectiv dreapta) cu A’ (respectiv Al ).

Definitia 4.6.31 Fie ACR, f: A — RY gia punct de acumulare la stinga (respectiv dreapta)
pentru A. Spunem ca elementul | € R? este limita la stdnga (respectiv dreapta) a functiei f in
punctul a daca pentru orice vecinatate V€ V (1) exista U € V(a), astfel incit daca x € U N As

(respectiv x € U N Ag),x # a, atunci are loc f (x) € V. In acest caz vom scrie lim f () =1
r—a,r<a

sau lim f (z) =1 (respectiv lim> f(z) =1 sau lim+f (x) =1).

Teorema 4.6.32 Fie I C R un interval deschis, f : I — R%, 1 C R gi a € I. Atunci ezista
limf (x) = [ dacd $i numai daca exista limitele laterale (la stdnga gi la dreapta) in a i sunt

egale. In acest caz toate cele trei limite sunt egale: lim f (2) = lim+f (x) = limf (z) = I.

Un binecunoscut rezultat spune ca functiile reale de o variabila reala care sunt monotone
admit limite laterale in punctele de acumulare ale domeniului.

Teorema 4.6.33 (Criteriul majorarii) Fie A C R, a € A si f: A —-R% g: A — R.
Daca exista | € RY gi U € V (a) astfel incat || f () — || < |g(z)|, pentru orice x € U \ {a} si
limg (z) = 0, atunci exista lim f (x) = [.

r—a r—a

Teorema 4.6.34 Fie ACRP, a€ A’ gi f,g: A— R Daca limf (z) =0 gi exista U € V (a)

r—a

astfel incat g este marginita pe U, atunci exista limita lim f (x) g (x) = 0.

Teorema 4.6.35 Fie A C R?, a € A" si f : A — R. Daca exista limf(x) = 1,1 > 0

r—a

(respectiv | < 0) atunci exista U € V (a) astfel incat pentru orice x € U N A, © # a, are loc
f(x) >0 (respectiv f (x) <0).

Teorema 4.6.36 Fie ACRP,ac€ A gi f: A— R% Daca exista lim f (x) = I, atunci exista
U €V (a) astfel incdt f este marginita pe U.

Definitia 4.6.37 Fie f: ACRP - R gia € A". Spunem ca functia f are limita oo (respectiv

—00) in punctul a, daca pentru orice V€V (c0) (respectivV € V (—00) ), exista U € V (a) astfel
incdt pentru orice v € U N A, x # a, are loc f(x) € V. In acest caz vom scrie lim f (z) = oo
r—a

(respectiv lim f (x) = —o0).

Teorema 4.6.38 Fie A C R, a € A gi f: A — R. Atunci exista limf () = oo (respectiv
Tr—a

limf (z) = —o0) dacd §i numai daci oricare ar fi ¢ > 0, exista 6 > 0, astfel incdt daca

|lx —al|| <0, x € A, x # a are loc f (x) > € (respectiv f (x) < —¢).

Definitia 4.6.39 Fie A C R. Spunem ca oo (respectiv — oo) este punct de acumulare pentru

A daca exista un gir de elemente din A cu limita co (respectiv — o0), ceea ce este echivalent
cu a spune ci A este nemdarginita superior (respectiv inferior).
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Definitia 4.6.40 Fie A C R gi f : A — RY astfel incdt oo (respectiv — oo) este punct de
acumulare pentru A. Spunem ca elementul | € R? este limita functiei f in punctul oo (respectiv
—00), daca pentru orice V.€ V(l), exista U € V(0c0) (respectiv U € V(—o0)) astfel incat
pentru orice v € U N A, are loc f(x) € V. In acest caz vom scrie Ih_{lolof (x) = 1 (respectiv

Jim f(2) =1

Teorema 4.6.41 Fie A C R gi f : A — RY astfel incit oo (respectiv —oo) este punct de
acumulare pentru A. Atunci exista lim f (x) =1 € RY (respectiv lim f(z) =1 € R?) daca i

r—00

numai dacd oricare ar fi e > 0, exista § > 0, astfel incdt daca x > 0 (respectivx < —§), x € A
are loc ||f (z) = || <e.

Definitia 4.6.42 Fie A C R gi f : A — R astfel incit oo (respectiv — 00) este punct de
acumulare pentru A. Spunem ca elementul oo este limita functier f in punctul co, daca pentru
orice V€V (c0), exista U € V (c0) (respectivU € V (—o0)) astfel incat pentru orice x € UNA,
are loc f () € V. In acest caz vom scrie xh_}r&f () = 0.

Analog se definesc situatiile lim f (v) = —oco, lim f(x) = oo, lim f(z) = —oc. Carac-

terizarile cu € si 0 ale tuturor acestor cazuri sunt similare celor deja descrise.

Definitia 4.6.43 Fie ACRP, a € A gi f: A — R Spunem ca functia f este continud in
punctul a daca oricare ar fi V€ V(f(a)), exista U € V(a) astfel incat pentru orice x € U N A,
are loc f(x) € V.

Daca f nu este continua in a, vom spune ca f este discontinua in a sau ca a este punct de
discontinuitate al functiei f.

Teorema 4.6.44 Fie ACRP,aec ANAgif:A— RL Functia f este continud in a daca §i
numai daca are loc lim f(x) = f(a). Daca a este un punct izolat al lui A, atunci f este continud

in a.

Teorema 4.6.45 Fie ACRP,a€ A gi f: A— RY,. Urmatoarele afirmatii sunt echivalente:
(i) f este continua in a;
(i1) pentru orice ¢ > 0, exista § > 0, astfel incit daca ||z —al| < 6, v € A, atunci
| f(z) = f(a)|| < e (caracterizarea ¢ — 0 );
(iii) pentru orice (x,) C A, x, — a are loc f(x,) — f(a) (caracterizarea cu siruri).

Teorema 4.6.46 Fie f : R? — R9. Urmatoarele afirmatic sunt echivalente:
(i) f este continua;
(ii) pentru orice multime deschisa D C RY, f~1(D) este deschisi;
(iii) pentru orice multime inchisa F C R?, f~1 (F) este inchisa.

Teorema 4.6.47 Imaginea printr-o functie continua a unei multimi compacte este o multime
compacta.
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Teorema 4.6.48 (Teorema lui Weierstrass) Fie K din RP o mullime compacta. Daca f :
K — R este o functie continua atunci f este marginita §i igi atinge marginile pe K (adica
exista a,b € K, astfel incdt sugf(w) = f(a) i 12}f(f(w) = f(b)).

z€ z
Definitia 4.6.49 Fie D C R? gi f : D — RY. Functia f se numeste uniform continud pe
multimea D, daca pentru orice numar pozitiv e > 0, exista 6. > 0, incdt pentru orice x', 2" € D
cu ||z" — 2"|| < 0. are loc relatia || f(2') — f(2")]| < e.

Observatia 4.6.50 O functie uniform continua pe D este continua pe D.

Teorema 4.6.51 (Teorema lui Cantor) O functie continua pe o multime compacta K din RP
cu valori in R? este i uniform continua pe K.

Definitia 4.6.52 Fie L > 0 o constantd reala. O functie f : A C RP — R? se numegte
Lipschitz pe A de constanta L sau L— Lipschitz pe A daca || f(z) — f(y)|| < L ||z — y||, pentru
orice x,y € A.

Propozitia 4.6.53 Orice functie Lipschitz pe A C RP este uniform continua pe A.

Teorema 4.6.54 Fie I C R un interval. Daca f: 1 — R este injectiva i continua, atunci f
este strict monotona pe I.

Definitia 4.6.55 Fie I C R un interval. Spunem ca functia f : I — R are proprietatea lui
Darboux daca pentru orice a,b € I, a < b gi orice A € (f(a), f(b)) sau X\ € (f(b), f(a)) exista
cx € (a,b) astfel incat f(cy) = .

Teorema 4.6.56 Fie [ C R un interval. Daca functia f : I — R are proprietatea lui Darbouz
gi exista a,b € I, a < b, astfel incdt f(a)f(b) < 0, atunci ecuatia f(x) = 0 are cel putin o
solutie in intervalul (a,b).

Teorema 4.6.57 Fie I C R, [ interval. Functia f : I — R are proprietatea lui Darboux daca
gt numai daca pentru orice interval J C I, f(J) este interval.

Teorema 4.6.58 Fie I C R un interval. Daca f: 1 — R este continua, atunci f are propri-
etatea lut Darboux.

Reamintim ca orice aplicatie liniara 7" : R? — R este continua. Pentru o astfel de aplicatie
se defineste numarul real

T :=1inf{M > 0| |Tz|| < M ||z|, Yz € RP}
= sup { |7z |+ € BO,1) |
care se numeste norma operatorului 7. Astfel, multimea aplicatiilor liniare de la R? la RY se
organizeaza ca spatiu liniar normat peste R cu operatiile algebrice uzuale si cu norma de mai

sus. Acest spatiu se noteazd cu L(RP;R?) gi se identificd izomorf cu spatiul RP?. Mai mult,
fiecarei aplicatii T € L(RP,RY) i se asociaza in mod natural o matrice reald de dimensiune g X p
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o N ) SN e : . »
notatd Ar = (aji);c14ie1p astfel: daca (e;);c1; si (€]);e15 sunt bazele canonice ale spatiilor R
. . e O o . A

si respectiv R? atunci (a;) ;14 i1, Sunt coordonatele exprimarii imaginilor elementelor (e;)
prin 7" in raport cu baza (€}),.1,, adica

i€lp

q
T(@z) = Z CL]‘ZB;-, Vi € rp

=1

Prin urmare, 7' +— Ar este un izomorfism de spatii liniare intre L(RP, R?) si spatiul matricilor
reale de dimensiune ¢ X p si, pentru orice xz € RP,

T(x) = Apx.
In plus, pentru orice z € R? si y € RY are loc

(Apzx,y) = <x,AtTy>.

Daca A este o matrice de dimensiune g X p atunci aplicatia liniara asociata lui A este surjectiva
dacd si numai daci aplicatia asociatd lui A este injectiva.
Reamintim de asemenea ca daca T : RP — R? este o aplicatie liniara atunci

Ker(T) :={z € R? | T'(z) =0}
este subspatiu liniar in R?, iar
Im(7T) :={T(z) | x € R’}
este subspatiu liniar in R? gi
p = dim(Ker(7)) + dim(Im(7")),

unde dim noteaza dimensiunea algebrica.

O matrice A patratica simetrica de dimensiune p se numeste pozitiv semidefinita daca
(Az,x) > 0 pentru orice x € R? gi pozitiv definitd dacd (Ax,z) > 0 pentru orice = € R? \ {0}.
De fapt, A este pozitiv definita daca si numai daca este pozitiv semidefinita si inversabila.
Daca au loc inegalitatile opuse, matricea se numeste negativ semidefinita, respectiv negativ
definitd. Daca A = (ay); jerp atunci, conform Criteriului lui Sylvester, A este pozitiv definita
daca si numai daca det(a;;); jer; > 0 pentru orice q € 1,p si negativ definita dacad si numai

dacd (—1)?det(aq;); jer; > 0 pentru orice ¢ € 1,p.

Diferentiabilitate

Definitia 4.6.59 Fie f : D C RP — RY gi a € int D. Spunem ca f este Fréchet diferentiabila
(sau, pe scurt, diferentiabila) in a dacd exista o aplicatie liniard notata V f(a) : RP — R? astfel

incdt
o @) = fl@) = V@) _ . f(2) = fla) = Vi(@)(x —a)

h—0 I17] e |l — ol

=0.
Aplicatia V f(a) se numeste diferentiala Fréchet a functiei f in a.
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Sa observam ca relatia de mai sus este echivalenta cu urmatoarele conditii:

Ve > 0,36 > 0,V € B(a,0),[[f(x) — f(a) = V[(a)(z —a)|| < el —all;

da: D — {a} — R, }lll_)I% a(h) = a(0) =0,
fla+h) = f(a) + Vf(a)(h) +[[h]|a(h), Vh € D —{a}.

Spunem ca f : D C R? — RY este de clasd C! pe multimea deschisa D daca f este Fréchet difer-
entiabild pe D si V f este continud pe D. Evident, f se poate scrie sub forma f = (f1, f2, ..., fy)
unde f; : R? — R, i € 1,q si, in general, aplicatia V f(a) € L(RP,R?) se identifici cu matricea
de dimensiune g X p

9 9 9
Ufw) L) - S
9 9 9
L@ @ - S
i
L@ F@ -

2]

numitd matricea jacobiand a lui f in punctul a, unde 8716?(@) reprezintd derivata partiald a
J

functiei f; in raport cu variabila z; in a.

De multe ori ne vom referi la matricea jacobiana in locul diferentialei. Pe baza unui rezultat
general, daca f: D C RP — RP gi a € D, Vf(a) este izomorfism al lui R? daca si numai daca
matricea jacobiana a lui f in punctul a este nesingulara.

Au loc urmatoarele reguli de calcul.

e Fie f : R? — R afind, adica avand forma f(x) := g(x) + u pentru orice x € RP, unde
g : R? — RY este liniard, iar u € RY. Atunci pentru orice x € R, Vf(x) = g.

e Fie f : R? — R de forma f(z) = 3 (Az,z) + (b,z) unde A este o matrice p#traticd
simetrica de ordin p, iar b € RP. Atunci pentru orice z € RP, V f(x) = Az + b.

eFieDCR, ECR, ZcintD,yc€intEsif,g:D—RI, ¢:D—=R, h:E— R

— Daca f, g sunt diferentiabile in 7, iar o, f € R, atunci functia of + S¢g este diferenti-
abila in ¥ si are loc

Viaf+pg)(x) = aVf(T) + fVy(T).
— Daca f, ¢ sunt diferentiabile in 7, atunci ¢ f este diferentiabila in T si
V(pf)(T) = e(@)Vf(T) + f(T)Ve(T),

unde (f(7)Ve(T)) (v) = V() (2) - (7).
— Daca f(D) C E,y = f(T), f este diferentiabild in T si h este diferentiabild in 7,
atunci h o f este diferentiabila in ¥ si

V(ho f)(T) = Vh(y) o Vf(T).
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Un caz ce merita o atentie speciala este p = 1. In acest caz spunem ca f este derivabila in

a daca exista y
Sl h) ~ f(a)
h—0 h

€ R%. (4.12)
Notam aceastd limita cu f’(a) si o numim derivata lui f in a.

Propozitia 4.6.60 Fie f: D C R — R? gi a € int D. Urmatoarele afirmatii sunt echivalente:

(i) f este derivabila in a;

(ii) f este Fréchet diferentiabila in a.

In plus, in fiecare din aceste cazuri, V f(a)(z) = zf'(a) pentru orice x € R.

Dacd f: D C R? x R? — R" si (a,b) € int D este fixat, definim D, := {z € R? | (z,b) € D}
si fi: D1 — R, fi(z) := f(x,b). Spunem ci f este Fréchet diferentiabila partial in raport cu
x dacd f; este Fréchet diferentiabild in a, iar diferentiala se noteaza cu V, f(a,b). Dacd f este
diferentiabila in (a,b), atunci f este diferentiabild partial in raport cu z i y in a, respectiv b si

fo(a, b) = Vf(CL, b)(, 0)7 vyf(a7 b) = Vf(a, b)(07 )

Revenind acum la cazul general, spunem ca f : D C RP? — RY este Fréchet diferentiabila
de ordinul al doilea in a € int D daca f este Fréchet diferentiabila pe o vecinatate V' C D
aluiagi Vf:V — L(RP R?) este Fréchet diferentiabild in a, adicd existd o functionala,
notatd V2f(a), din spatiul L*(RP,RY) := L(R?, L(R?,R?)) si a : D —{a} — L(R? ,RY) astfel c&
limy, o a(h) = a(0) = 0 si pentru orice h € D — {a} are loc

Via+h) =Vf(a)+V:f(a)(h,) + ||kl alh).

S& reamintim c& spatiul L?(R?, R?) definit mai sus se identifici cu spatiul aplicatiilor biliniare
de la R? x RP la RY.

Spunem ci f este de clasi C? daci este Fréchet diferentiabild de ordinul al doilea pe D si
V2f: D — L*(RP,RY) este continud.

Teorema 4.6.61 Fie f : D C R? — R? gi a € int D. Daca f este Fréchet diferentiabila de
ordinul al doilea in a atunci V2f(a) este aplicatie biliniara simetrica.

In cazul in care ¢ = 1, aplicatia V2 f(a) este definitd de matricea patratics simetricd H(a) =

(8228];]. (a))ijap, numitd matricea hessiand a lui f in a. In plus, (H(a)u,u) = V2f(a)(u,u)
pentru orice u € RP.
Daca a,b € R?P, definim segmentul inchis de capete a, b multimea

[a,b] :={aa+ (1 —a)b| a € [0,1]}
si segmentul deschis de aceleasi capete

(a,b) :={aa+ (1—a)b|ae (0,1)}.
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Teorema 4.6.62 (Teoremele lui Lagrange si Taylor) Fie U C R? deschisa, f : U — R gi
a,b e U cula,b] CU. Daca f este de clasa C* pe U, atunci existd c € (a,b) astfel incat

f() = fa) + Vf(c)(b—a).

Daci f este de clasa C? pe U, atunci existd c € (a,b) astfel incdt

F(8) = () + VF(@)(b— ) + 5V2F(b— a,b— a).

Teorema 4.6.63 (Teorema functiilor implicite) Fie D C R? x R? o multime deschisa, h : D —
R? o functie si T € RP, iy € RY astfel incdt

(1) h(z,7) = 0;

(i) functia h este de clasid C' pe D;

(iii) V,h(T,7) este nesingulara.

Atunci exista doua vecinatati U si V' ale lui T gi respectiv iy si o functie continud unica
w: U — V astfel incdt

(a) h(z,p(x)) = 0 pentru orice x € U;

(b) daca (z,y) € U XV gi h(z,y) =0, atunci y = p(z);

(c) ¢ este diferentiabila pe U i

Vo(r) = = [Vyh(z,(2))] " Vah(z, ¢(2)), Yo € U.

Céateva rezultate fundamentale din teoria derivabilitatii functiilor reale de o variabila reala
sunt date pe scurt in finalul acestui capitol.

In acest context (p = ¢ = 1) se aplicd Propozitia , dar are sens sa vorbim de existenta
derivatei in puncte ale domeniului care sunt puncte de acumulare ale acestuia: este suficient sa
consideram limita din relatia din aceasta perspectiva. Mai mult, ca gi in cazul limitelor
laterale, putem vorbi de derivate laterale, din nou considerand, atunci cand este posibil, limitele
laterale pentru expresia din relatia . Atunci cand exista, vom numi aceste limite derivatele
la stanga si respectiv la dreapta ale functiei f in @ si le vom nota cu f’ (a) si respectiv f} (a).

Definitia 4.6.64 Fie A CR gi f: A — R. Spunem ci a € A este punct de minim (respec-
tiv maxim) local pentru f daca exista o vecinatate V' a punctului a astfel incat f(a) < f(x)
(respectiv f(a) > f(x)), pentru orice x € ANV. Punctele de mazim sau de minim local se
numesc puncte de extrem local.

Teorema 4.6.65 (Teorema lui Fermat) Fie I C R, I interval si a € intI. Daca f: I — R
este derivabild in a, iar a este punct de extrem local pentru f, atunci f'(a) = 0.

Teorema 4.6.66 (Teorema lui Rolle) Fiea,b € R, a <b gi f: [a,b] — R o functie continud pe
la,b], derivabila pe (a,b) astfel incat f(a) = f(b). Atunci ezisti ¢ € (a,b) astfel incat f'(c) = 0.

Teorema 4.6.67 (Teorema lui Lagrange) Fie a,b € R, a < b gi f : [a,0] — R o functie
continud pe [a, b], derivabila pe (a,b). Atunci exista ¢ € (a,b) astfel incat f(b)— f(a ) fe)(b—

a).
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Propozitia 4.6.68 Fie I C R un interval st f : I — R derivabila pe I.

(i) Daca f'(x) = 0 pentru orice x € I, atunci f este constanta pe I.

(ii) Daca f'(x) > 0 (respectiv f'(x) > 0) pentru orice x € I, atunci f este strict crescatoare
(respectiv crescatoare) pe I.

(111) Daca f'(x) < 0 (respectiv f'(x) < 0), pentru orice v € I, atunci f este strict descresca-
toare (respectiv descrescatoare) pe 1.

Teorema 4.6.69 (Sirul lui Rolle) Fie I C R un interval gi f : I — R, o functie derivabila.
Daca xq, x5 € 1, x1 < x9 sunt radacini consecutive ale derivatei f' (adica f'(x1) =0, f'(z2) =0
gi f'(z) # 0 pentru orice x € (x1,23)) atunci:

(1) daca f(x1)f(z2) <0, ecuatia f(x) =0 are exact o radacina in intervalul (zy, x2);

(i1) daca f(z1)f(z2) > 0, ecuatia f(x) =0 nu are nicio radacing in intervalul (z1, x2);

(111) daca f(x1) = 0 sau f(x2) = 0, atunci x1 sau x2 este o radacing multipla o ecuatiei
f(z) =0 si ecuatia nu are nicio radacing in intervalul (1, ).

Teorema 4.6.70 (Teorema lui Cauchy de eliminare a unor nedetermindri) Fie I C R un
interval g1 f,g: I — R, a € I, care verifica conditiile:

(i) f(a) = g(a) = 0

(i1) f, g sunt derivabile in a;

(iii) g'(a) # 0.
Atunci exista V € V(a) astfel incat g(z) # 0, pentru orice x € V '\ {a} i

f(x) _ fa)

lim——= .
im o)

x
a—ag(r)  g'(
Teorema 4.6.71 (Regula lui L’Hospital) Fie f,g: (a,b) — R, unde —0o < a < b < 0o0. Daca:
(i) f,q sunt derivabile pe (a,b) cu g" # 0 pe (a,b)
(ii) existd im T8 = T € R;
T>a

(111) lim f (x) = limg(x) = 0 sau

Y

x>a r>a
(#3)” limg(x) = oo,

T—a

Tr>a

atunci existd lim <& = L.

r—a 9@

Teorema 4.6.72 Fie I C R un interval deschis f : I — R, o functie de n ori derivabila in
a€l, (ne N,n>2), astfel incat

f(@)=0, f'(a)=0,.., f" V() =0, f™(a)#0.

(i) Daca n este par, atunci a este punct de extrem, dupd cum urmeazda: punct de maxim
local daca f(a) < 0 si punct de minim local dacd f™(a) > 0.
(i1) Daca n este impar, atunci a nu este punct de extrem.
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Integrala Riemann

In finalul acestui breviar teoretic discutim principalele aspecte legate de integrala Riemann.
Fie a,b € R, a < b.

Definitia 4.6.73 (i) Se numeste diviziune a intervalului [a,b] o multime finita de numere reale
Lo, L1, ...y Ty, (n € N\ {0}), notata A, cu proprietatea ca

a=20 <21 <..<xp_1<x,=0>0

(ii) Se numeste norma diviziunii A valoarea ||A|| := max{z; — z;_1 | i € 1,n}.

(11i) Se numeste sistem de puncte intermediare asociat diviziunii A o multime de puncte
E:={&|i€1,n} cuproprietatea & € [x;_1,x;] pentru orice i € 1,n.

(iv) Fie o functie f : a,b] — R. Se numeste suma Riemann corespunzatoare unei diviziuni
A a intervalului [a,b] gi unui sistem asociat de puncte intermediare = valoarea

S(f,AZ) = Z F&) (@i — zia).

Definitia 4.6.74 Fie o funclie f : [a,b] — R. Spunem ca f este integrabila Riemann pe
intervalul [a,b] daca exista I € R astfel incdt pentru orice € > 0, exista 6 > 0 cu proprietatea
c pentru orice diviziune A a intervalului [a,b] cu ||A|| < & gi pentru orice sistem de puncte
intermediare = asociat diviziunii A are loc inegalitatea

|S(f7A7E)_I| <Eé.

Numarul real I din definitia precedenta este unic, se numeste integrala lui f pe [a,b] si se

noteaza cu )
/ f(z)dx.

/aa f(x)dz =0 si /b f(a)de = — /ab f(x)dz.

Teorema 4.6.75 Orice functie integrabila Riemann pe [a,b] este marginita pe |a, b].

Convenim ca

Definitia 4.6.76 Flie o functie [ : [a,b] — R. Spunem ca o functie F : [a,b] — R este primitiva
a functiei f pe [a,b] daca F este derivabila pe [a,b] i F'(x) = f(x) pentru orice x € |a,b].

Evident, daca o functie admite o primitiva, atunci admite o infinitate de primitive, iar
diferenta dintre orice doua primitive este o functie constanta.
Are loc teorema fundamentald a calculului integral.

Teorema 4.6.77 (Leibniz-Newton) Dacd f : [a,b] — R este integrabila Riemann pe intervalul
[a,b] si admite o primitiva F pe |a,b] atunci

b
/ f(x)dx = F(b) — F(a).
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Functiile continue satisfac ambele ipoteze ale teoremei precedente.

Teorema 4.6.78 Daca f : [a,b] — R este continud pe [a,b] atunci f este integrabila Riemann
pe [a,b] si admite primitiva pe [a,b].

Teorema 4.6.79 Daca [ : [a,b] — R este marginita i multimea punctelor sale de disconti-
nuitate este finita, atunci f este integrabila Riemann pe |a,b]. Orice functie monotona pe [a, b
este integrabild Riemann pe |a,b].

Prezentam in final principalele proprietati ale integralei Riemann.

Teorema 4.6.80 (i) Dacd f, g : [a,b] — R sunt integrabile Riemann pe [a,b] si a, f € R atunci
af + fg este integrabila Riemann pe [a,b] gi

/ab(ozf(x) + Bg(x))dx = a/abf(a:)dg: + 5/;9(93)6195.

(11) Daca f : [a,b] — R este integrabila Riemann pe [a,b] si m < f(x) < M pentru orice
x € [a,b] (m, M € R) atunci

m(b—a) < / f(z)dz < M(b—a).

In particular, daca f(x) > 0 pentru orice x € [a,b] atunci

L[}@MxZQ

iar daca f, g : [a,b] — R sunt integrabile gi f(x) < g(x) pentru orice x € [a,b] atunci

/ab f(x)dx < /abg(x)da:.

(i1i) Daca f : [a,b] — R este integrabila Riemann pe |a,b] atunci|f| este integrabila Riemann
pe [a,b].
(iv) Daca f, g : [a,b] — R sunt integrabile pe |a,b] atunci f - g este integrabila pe [a,b].

Teorema 4.6.81 (i) Daca f : [a,b] — R este integrabila Riemann pe |a,b] atunci f este
integrabila Riemann pe orice subinterval al lui [a, b].
(11) Daca ¢ € (a,b) si [ este integrabila pe [a,c]| si [c,b] atunci f este integrabild pe [a,b] si

évmmzlvwm+lwmm.

Teorema 4.6.82 Fie f : [a,b] — R gi f* : [a,b] — R o functie care coincide cu f pe [a,b] cu
exceptia unui numar finit de puncte. Daca f* este integrabila Riemann pe [a,b] atunci f este

integrabila Riemann pe |a,b] §i
b b
/ f(z)dx :/ f(z)dx.
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Modele de evaluari scrise

Model examen partial — varianta 1

Subiectul 1. Sa se defineasca notiunea de vector tangent la o multime inchisa din R? intr-un
punct al sau. Sa se arate ca multimea acestor vectori este un con inchis. Este acest con convex,
in general?

Subiectul 2. Fie f: (0,00) — R, f(z) = —Ilnx. S& se arate ca f este convexa si ca pentru
orice n € N\ {0}, (2;);e1 C (0,400) cu > ) z; = 1 are loc

1 n
lnﬁ < 21::172 In z;.
Subiectul 3. Fie A C R? o multime nevida. Definim
B=[-21A={aa|ac[-2,1],a € A}.
Sa se arate ca daca A este compacta atunci B este compacta, dar reciproca nu este adevarata.
Subiectul 4. Sa se scrie conul tangent la multimea
M = {(z,y) € R* | 6z = 5y*}

intr-un punct al sau. Justificati. Sa se deseneze multimea gi conul tangent determinat.

Barem de notare: (pentru fiecare subiect se acorda un punct din start)
1. definitia 2p; con 1p; inchis 3p; convexitatea 3p.
2. convexitatea 2p; folosirea inegalitatii lui Jensen 3p; stabilirea rezultatului 4p.
3. directa 5p, reciproca 4p.
4. forma conului tangent 3p; justificarea 2p; desen 4p.

Timp de lucru: 100 minute
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Model examen partial — varianta 2

Subiectul 1. Fie A C R? o multime nevida, convexa si inchisa. Sa se arate ca pentru orice
r € RP existd un unic element a, € A astfel incat da (z) = ||z — a,|| .

Subiectul 2. Un dreptunghi este inscris in elipsa

2

T 2
L=
1 Y

Care trebuie sa fie dimensiunile dreptunghiului pentru ca aria sa fie maxima. Determinati aria
maxima.

Subiectul 3. Fie A C R? nevida. Definim con A := [0,00)A. S& se arate ca:
(a) daca A este convexa, atunci con A este convexa,
(b) daca A este compacta si 0 ¢ A, atunci con A este inchisa.
(c) S4 se dea, grafic, un exemplu de multime compacta pentru care con A nu este inchisa.

Subiectul 4. Fie multimea
C={a(1,1)+8(0,1) | a,8 > 0}.

Sa se arate ca C' este con convex inchis. Sa de deseneze mulfimea. Sa se scrie si sa se deseneze
conul tangent si conul normal la aceastd multime in punctul (1,1).

Barem de notare: (pentru fiecare subiect se acordd un punct din start)
1. directa 5p; reciproca 4p;
2. modelare 4 p; rezolvare 5p.
3. (a) 3p; (b) 4p; (c) 2p.
4. C' este con, inchis gi convex 4p; conul tangent, conul normal 3p; desene 2p.

Timp de lucru: 100 minute
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Model verificare scrisa

Subiectul 1. Sa se scrie cele doua rezultate studiate de existenta a solutiilor globale pentru o
problema de optimizare de tip
min f (x), € M,

unde f : R?P — R ¢i M C RP cu precizarea notatiilor folosite. Sa se demonstreze unul dintre
aceste rezultate.

Subiectul 2. Si se arate c& f : R? — R, f(z,y) = (1 +¢e¥)cosx — ye¥ are o infinitate de

maxime globale, dar nu are niciun minim local.

Barem de notare: (pentru fiecare subiect se acordd un punct din start)
1. precizarea cadrului 2p; enunturi 2x2=4; demonstratie 3p.
2. punctele critice 3 p; calculul matricei hessiene 2 p; determinarea punctelor de extrem 4p.

Timp de lucru: 50 minute
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Model evaluare finala — varianta 1

Subiectul 1. (a) Conul tangent (in sens Bouligand) la o multime nevida si inchisd intr-un
punct al multimii. Proprietati. Cazul special al multimilor convexe. (Enunturi)
(b) Calculul proiectiilor pe un hiperplan si pe un elipsoid generalizat

Subiectul 2. Fie f : R? — R, f(z) = 23 + 23 — x; — 429 — 2125 si multimea restrictiilor
M egald cu discul unitate inchis. Consideram problema (P) a minimizdrii lui f pe M. S& se
verifice daca este indeplinita conditia necesara, respectiv conditia suficienta de optimalitate de

ordinul / in punctul: (1/v/2,1/v/2).

Subiectul 3. Fie problema min (42% 4+ 23 — z; — 225) cu restrictiile 271 + 19 < 1 g1 22 < 1.
Determinati solutiile problemei, cu parcurgerea urmatorilor pagi: existenta solutiilor, chestiunea
convexitatii problemei, aplicabilitatea Teoremei Karush-Kuhn-Tucker, stabilirea solutiilor.

Subiectul 4. Se da codul Matlab

f =0(x) x°3 - 2%x + 2;

f_der = @(x) 3*x"2 - 2;

X=777;

x_precedent=-1;k=0;eps=10"(-6) ;maxiter=100;

while abs(x-x_precedent)>eps && k<maxiter

x_precedent=x;x=x-f (x)/f_der(x) ; k=k+1;

end

disp(x); disp(k); disp(£f(x));

Daci in acest cod se inlocuiegte "???" (de pe a treia linie) cu —1.5 se obtin rezultatele: x
= -1.7693; k = 5; ans = 0, iar daca se inlocuieste cu 1.5 se obtin rezultatele: x = 0; k =
100; ans = 2.

Precizati metoda numerica pe care codul o implementeaza, comentati liniile principale ale
codului si interpretati rezultatele.

Sa se explice semnificatia matematica a acestui cod, sa se numeroteze si sa se comenteze
liniile principale. Sa se interpreteze rezultatele.

Barem de notare:

1p — oficiu;

L. (CL) 1p; (b) L,5p. <:275p)

2. scrierea conditiilor 0,5p; verificarea conditiei necesare 0,75p; verificarea conditiei sufi-
ciente 0,25p. (=1,5p)

3. justificarea existentei solutiilor: 0,5p; aplicabilitatea Teoremei Karush-Kuhn-Tucker:
0,5p; convexitatea problemei: 0,5p; scrierea si rezolvarea sistemului Karush-Kuhn-Tucker, de-
terminarea solutiilor: 1,5p. (=3p)

4. explicarea semnificatiei matematice: 1p; comentarea liniilor de cod si interpretarea rezul-
tatelor 1p. (=2p).

Timp de lucru: 2 ore
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Model evaluare finala — varianta 2

Subiectul 1. (a) Functia distantd la o multime nevida. Proprietati (inclusiv cazul multimilor
convexe) — doar enunturi.

(b) S& se enunte si sd se demonstreze rezultatul referitor la conditia necesard de optimalitate
de ordinul I. Sa se prezinte cazul particular al Teoremei lui Fermat.

Subiectul 2.Fie i : R* — R data prin h(z1, 29, x3) = 27 + 25 + 25 — 4. S& se arate ci sistemul
de restrictii h (z) = 0 satisface conditia Abadie in toate punctele sale.

Subiectul 3. Fie problema min (2% + xy) cu restrictia z2+y* < 1. Si se determine solutia/solutiile
globald/globale a/ale problemei (cu parcurgerea tuturor pasilor: existenta solutiilor, chestiunea
convexitatii problemei, aplicabilitatea Teoremei Karush-Kuhn-Tucker, determinarea solutiei/solutiilor).

Subiectul 4. Fie f : [1,2] —[1,2] datd prin

X

= 1.
x3—|—1+

/()

Sa se arate ca f este bine definitd, apoi si se demonstreze ci f este contractie. Se da sirul (z,,)
prin xg = 1.5,

T
ne1 = 1 —_ ,V € N.
Tp41 + 1 n

3
Tn

S4 se arate ca (z,,) este convergent, limita sa T este din intervalul (1, 2) , iar viteza de convergenta
este liniara.

Barem de notare:

1p — oficiu;

1. (a) 1p; (b) 1,5p. (=2,5p)

2. precizarea conditiei 0,5; verificarea 1p. (=1,5p)

3. justificarea existentei solutiilor: 0,5; studiul convexitatii problemei si aplicabilitatea
Teoremei Karush-Kuhn-Tucker: 0,5p; aplicarea Teoremei Karush-Kuhn-Tucker si rezolvarea
sistemului Karush-Kuhn-Tucker: 1,5; determinarea solutiei/solutiilor: 0,5. (=3p)

4. f bine definita: 0,5; f contractie 0,75; convergenta lui (x,): 0,75. (=2p).

Timp de lucru: 2 ore
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