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Detalii privind evaluarea

e Evaluare continua (EC) (N1) (30% din nota finala):

e teme din patru in patru saptamani (termen de depunere a
temei=patru saptamani, nota la teme se decide dupa ce rezolvarile
sunt explicate Tn ultima saptamana) (50% din evaluarea continud),

e activitatea la seminar (50% din evaluarea continud);

e Examen final mixt
e rezolvarea a doua exercitii/scriere de programe din care unul foarte
asemanator cu cele din fisele de lucru pentru laboratoare si teme si
explicarea rezolvarii lor (N2) (40% din nota finala);
e explicarea notiunilor teoretice prin extragerea a doua bilete (N3)
(30% din nota finala).



Scopul cursului



Scop general

Ne propunem s3 gasim algoritmi numerici pentru rezolvarea unui sistem
de n ecuatii cu n necunoscute, adica

n
E ajjixj = bj, i=1,2,....m
=1

unde aj e R,bjeR,i=1,2,...m,j=1,2..n.

Definind matricea A avand componentele a;, i =1,2,....m,j=1,2,...,n
(matricea sistemului), vectorul coloana x de componente x;
(necunoscuta) si vectorul coloana b de componente b; (termenul liber) ,
sistemul poate fi scris In forma matricealad

Ax =b.
A determina solutia inseamna a determina vectorul x € R" care verifica

sistemul de mai sus.

Prezentam diverse strategii de rezolvare impreund, pe cat posibil, cu
aplicatii ale lor in practica, insa scopul principal este de argumenta
metodele din punct de vedere matematic.



Scop initial

Ne propunem sa gasim algoritmi numerici pentru rezolvarea unui sistem
de n ecuatii cu n necunoscute, adica

n
E ajjixj = bj, i=1,2,....n,
Jj=1

unde aj e R, b e R, i,j=1,2,...,n.

Definind matricea A avand componentele aj;, i,j =1,2,...,n (matricea
sistemului), vectorul coloand x de componente x; (necunoscuta) si
vectorul coloand b de componente b; (termenul liber) , sistemul poate fi
scris in forma matriceald

Ax = b.

Vom presupune pentru inceput ca sistemul este unic determinar, adica
det A # 0.



Ne reamintim ca sistemul admite solutie unica daca una dintre

urmatoarele conditii este verificata:

e A este inversabila (atunci x = A71b);

e rank A = n.

Daca sistemul este omogen (b = 0), atunci admite solutia nula
0

x=10] eR".



gula lui Cra

Daca A este inversabila atunci regula lui Cramer ne conduce la solutie

Aj
Xj =
I det A’

j=1,2,...n,

unde A; este determinantul matricei obtinute din A prin inlocuirea
coloanei j cu coloane termenilor liberi b.

Totusi, aceasta formula nu este prea indicata ™n practicd pentru ca daca
folosim regula lui Laplace pentru calculul determinantilor atunci regula lui

Cramer necesitd (n+ 1)! operatii.

Avand in vedere ca in practicad sistemele sunt mari, aceasta inseamna

timp mare de lucru.



Metode numerice

e DIRECTE (numar finit de pasi): se construieste solutia intr-un
numar finit de pasi (calcule cu ajutorul liniilor), folosind factorizari
A=LU A=LDMT, ...

e INDIRECTE: se construieste un sir (xx) C R” care sa convearga la
solutia sistemului. Teoretic am un numar infinit de pasi, dar de fapt
ne oprim cand x, este “suficient de aproape" de x.
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Sisteme mari!!! Ne mai ajuta metodele in

Dar ce facem cand avem sisteme foarte mari si vrem sa gasim o solutie?

Aplicam teorema Kronecker-Capelli si facem calcule pe héartie calculand,
de exemplu determinanti de matrice 1000x 10007

11



Matrice-Recapitulare



Matrice pozitiv definite

Pozitiva definire a unei matrice

e Spunem ci matricea A € R"%" este simetrica daca A= AT,

e Spunem ca matricea simetrica A € R"*" este pozitiv semidefinita,
notdm A > 0, daca (Ax,x) > 0 pentru orice x € R", unde (-, -)
reprezinta produsul scalar standard din R”.

e Spunem ca matricea simetrica A € R"*" este pozitiv definita,
notam A > 0, daca (Ax,x) > 0 pentru orice x € R", x # 0.
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Valori proprii si vectori proprii

Fie A € R"". Un vector nenul v € Cz" se numeste vector propriu
pentru A daca exista A € C astfel incat

Av =JAv.

Scalarul X\ se numeste valoarea proprie corespunzatoare vectorului propriu
v. In general, matricele reale pot avea valori proprii complexe, dar
matricele simetrice reale admit doar valori proprii reale. Demonstrati!

Valorile proprii ale unei matrice simetrice A € R"*" vor fi notate cu

AL(A) > Aa(A) > ... > Ao(A).

Cea mai mare valoare proprie va fi notata cu Apax(A) = A1(A) si cea mai
mica valoare proprie va fi notata cu Apin(A) = An(A).
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Pozitiva definire si valori proprii

Fie A o matrice simetrica din R"*". Atunci

e A este pozitiv semidefinita dacd si numai daca valorile sale proprii
sunt mai mari sau egale cu 0.

e A este pozitiv definita daca si numai daca valorile sale proprii sunt
strict mai mari decét 0.

Criteriul minorilor principali
Fie A o matrice simetrica din R"*". Atunci A este pozitiv definita
daca si numai daca minorii principali det A(1:/,1:4), i=1,2,--- ,n,

sunt strict pozitivi.
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O matrice A € R"™" se numeste diagonal dominanta pe linii daca

n

lail = Y layl, with i=1,---,n. (1)

Jj=Li#i

O matrice A € R"*" se numeste diagonal dominanta pe coloane daca

n

|a,-,-| > Z |aj,-|, with i=1,---,n, (2)

=L
Daca inegalitatile sunt stricte, spunem ca A este strict diagonal
dominanta (pe linii, respectiv, pe coloane).

Teorema
O matrice simetrica strict diagonal dominanta cu elemente strict pozitive

pe diagonala este pozitiv definita.

Este reciproca valabila?
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Metode directe de rezolvare a
sistemelor algebrice liniare unic
determinate



Rezolvarea sistemelor inferior triunghiulare

Pentru exemplificare sa consideram sistemul

/1 1 0 O X1 bl
b1 h» O x| =1b|, (3)
B ha ki) \x3 bs

unde [; #£0, i =1,2,3.

Ultima conditie ne asigura ca matricea sistemului este inversabila, solutia

fiind data de
X1 = Ev
o — by — h1x
b2
5 = bz — l1x1 — /32X2.

lz3
Acest algoritm se numeste metoda substitutiilor succesice (forward).
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In general pentru n > 2 avem

by
X1 = 7,
/11
i—1
bi— > Iy
j=1 .
Xp= —————— i=2,..n.

li

Cate operatii trebuiesc facute?

17



In general pentru n > 2 avem

by
X1 = 7,
h1
Al
bi— > Iy
=
Xj =

li

Cate operatii trebuiesc facute?

1 . . on(n—1
% inmultiri si "("2 )

)

i=2,..

, n.

adunari si scaderi = n® operatii.
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In general pentru n > 2 avem

=2
1 I]_]_,
i—1
b= > lix
xi=—3  i=2..n (6)

o

Cate operatii trebuiesc facute?
w nmultiri si @ adunari si scaderi = n? operatii.

Comparati cu (n+ 1)! de la regula lui Cramer.

19



Rezolvarea sistemelor superior triunghiulare

Pentru exemplificare sa considerram sistemul

uil; U2 U3 X1 b1
0  ux w3 x| =1b|, (7)
0 0 us3 X3 b3

unde u; #0,71=1,2,3.

Ultima conditie ne asigura ca matricea sistemului este inversabila, solutia
in cazul general fiind data de

by
Xn = )
Unpn
n
bi— Y uyx;
j=i+1 .
==y i=n—1,..1. (8)
uji

Acest algoritm se numeste metoda substitutiilor backward.

Avem tot n? operatii.
20



Pentru implementare

Pentru implementare ar fi indicat sa stocam doar elementele nenule
atunci cand avem de rezolvat sistemele triunghiulare.

21



Eliminare gaussiana si
factorizarea LU



Eliminare gaussiana

Eliminare gaussiana ne ajutd sa reducem un sistem
Ax=0b

la un sistem (sau doud sisteme) triunghiular prin transformari succesive
ale sistemului n sisteme echivalente

A 5 — p1) 5 AQ) o — p(2) s Ly AGK) 5 — p(K)

= o (@ k o
Presupunem ca la fiecare pas elementul a(kk) al matricei A%) este nenul.
Acest element va fi numit pivot.

Presupunem c3 A este inversabilad, adica sistemul admite solutie unica.

22



Plecam de la sistemul

A Y

1 (1 (1) X1 by

BB % k][

D

931 d3p ottt dgy = ,

o U

1 1 1 Xn b
A A

=A

(®)
.. a_ Mg .. &k . N . . -
Definim multiplicatorii m;j; = <&, i=2,3,...,n, inmultim prima linie cu
a

11
m;1, pe rand, si scadem rezultatele din linia i = 2,3, ..., n, respectiv.
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Se obtine astfel un nou sistem, echivalent cu cel initial

1 1 1
351) 3&2) R ag.n) 2)
@) @ | (x b,
0 a22 PRI PR a2n X2 b(2)
; ; L @)
Xn b
0 35122) e 3537) n
=AR)
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Repetand procedeul, la pasul k se obtine astfel un nou sistem, echivalent

cu cel initial

1 1 1
Ry

a7 An

k s
0 0 aik) afm)
0 0 aff,i) ag,l,(,)

:=AK)

X1

X2

25



Dupa n — 1 pasi se obtine astfel un nou sistem, echivalent cu cel initial

dar superior triunghiular

1 1 1

3 & al})

0 af) a5)

: : ; ]

0 0 aik) afm)

0 0 0 am
=An)

X1

X2

26



In concluzie, formulele dupa care se modifica sistemul de la pasul k n
sistemul de la pasul k + 1 sunt

"
my = K, i=k+1,..,n,
i0)
Kk
k+1 K K .
a,(j+ )—a,('j)_mikaij)? IaJ:k+17"'7n7 (9)
B — b8 b, Q= k41,0,

27



Numarul de operatii

e Aplicand GEM avem % + n(n — 1) operatii pentru a aduce
sistemul la o forma triunghiulara.

e Se adauga n® operatii pentru rezolvarea sistemului superior

triunghiular.

~ 3 ao
e In total 22~ + 2 n? operatii.

28



GEM functioneaza dacd ai’;) #0, k=1,2,...n—1.

Din pacate, plecand cu o matrice nenula pe diagonald nu avem
. B . k
certitudinea ca la un pas ulterior k nu vom avea aik) #0.

De exemplu, considerand matricea

1 2 3
A=12 4 5
7 8 9
dupa primul pas gasim
1 2 3
AP =0 0o -1
0 -6 -12

29



Ce e de facut?

30



Ce e de facut?

Nu mai rezolvdm sisteme sau mergem cu un algoritm care e posibil s nu
functioneze?

Nu. Constientizam problema si acoperim toate cazurile construind noi
strategii.

31



Ce e de facut?

Nu mai rezolvdm sisteme sau mergem cu un algoritm care e posibil s nu
functioneze?

Nu. Constientizdm problema si acoperim toate cazurile construind noi
strategii.

Regandim teoretic problema fara a recurge la “peticiri" de moment.

32



Poate putem sti de la bun inceput daca pentru o matrice este potrivit sau
nu sa folosim GEM?

Intr-adevar sunt criterii care ne asigura ca putem folosi GEM, de exemplu

e Matrice dominate pe linii sau coloane.

e Matrice pozitiv definite.

Insa toate acestea trebuiesc cercetate si argumentate, banuilile nefiind
justificari.

33



In continuare urmarim sa rescriem matricea A € R™" sub forma
A = LU, unde L este inferior triunghiulara iar U este superior
triunghiulara.

Facem acest lucru deoarece dupa ce vom reusi, sistemul initial va putea fi
rescris sub forma a doua sisteme triunghiulare, adica

Ly=b
Ax=b & LUx=b & Y (10)
Ux=y

ce se vor rezolva pe rand.

34



GEM prin multiplicare de matrice

Sa remarcam ca operatiile pe care le-am facut asupra primei coloane se
rezuma3 la a inmulti matricea A1) := A, la stanga, cu matricea

1 0 0 0

—my; 1 0 0
Mi=1|_-my; o0 1 0
0

—mm 0 0 1

35



GEM prin multiplicare de matrice

Adica

—mo 1 0 o0

—ms; O 1 AL — A

—my 00 e e 1

=M,

36



GEM prin multiplicare de matrice

Adica
1 0 1 1 1
0 0 agl) agz) 3§,,)
-mp; 1 0 0 agll) ag) ag},)
1 1 (1)
—m3; 0 il ocoo % (@ agl) agz) s ay) | = AG),
. : ) .
1 1 1
—Mp1 0 0 1 3571) a512) agm)
=M, =A

37



GEM prin multiplicare de matrice

Adica
1 0 O 0
1 M (1)

w1 of (7 B 0
aililz 32% 32]? .o SN azf

_% ® 1 oo °% (@ agl) 322) a(2n) =A@,
. 0 :

B 1) \¢ WAy e al)
‘3(111) =A

=M,

38



GEM prin multiplicare de matrice

Apoi
1 0 0 0
0 1 0 0
0 —mp 1 0 | A® = AP
0
0 —mp O 1
=M>

si asa mai departe repetand procedeul de n — 1 ori pana se ajunge la

M, 1M, 5 MaMA=AM = U matrice superior triunghiulara.

39



Eliminare gaussiana

Consideram o matrice A € R"™". Scopul este de a construi o secventa
Al = (a,(-jk)) de matrici prin efectuarea de transformari liniare, astfel
ncat sa ajungem la o matrice superior triunghiulara U = (uj;) dupa
cativa pasi finiti.

In ultima saptamana am vazut ca daca presupunem ci pivotii aj1 # 0,
ai’;) = (Mk_1...My A)kx # 0 la orice pas k = 2,...,n— 1, atunci

My 1Mp_o..M; A= U, (11)
cu U o matrice superior triunghiulara, unde
1 ... 0 0 --- 0
0 --- 1 0 --- 0
My = =, — mye] 12
k 0 - oy 1 ... 0 n mg €, ( )
0 —Mp K 0 1

40



si

My1,k

Mmp k

eR",

e =

(k)

ik
(k)’
kk

1 ER", mjx = i=k+1,---,n.

a

41



Mai mult, deoarece M, ! = I, + my e/ (Exercitiu), deducem (cum?
Detaliaza calculele!)

1 0 0 0
il moy 1 0
A=+ me VU= my myp 1 0 U
i=1 .
Mpr My -0 Mpp1 1
=L

42



Deci daca nu intalnim pivoti nuli (aff,i)) atunci putem construi

factorizarea LU a acelei matrice.

Dar cum stim daca vom intalni pivoti nuli fara a incepe procesul de

constructie al factorizarii?

43



Existenta si unicitatea factorizarii L U

Teorema
Fie A € R"*". Exista factorizarea LU a matricei A cu l;; = 1 pentru orice

i=1,---,n si este unica daca si numai daca submatricele principale
Ai=A(1:i,1:1) ale lui de orice ordin i = 1,--- ,n— 1 sunt nesingulare.

Vom demonstra mai ntai implicatia “<=". Vom demonstra faptul ca
daca submatricea principald A;_; admite descumpunere L U, atunci si A;
admite descompunere L U.
Pentru i =1: A1 = a1 :\l/-ilfl/.

=L .—y
Presupunem c3 exista descompunerea LU pentru A;_1, adica exista
matricea inferior triunghiulard L;_; avand elementele de pe diagonala
egale cu 1 si matricea superior triunghiulard U;_; astfel incat

A1 =Li1Ui_1.

Construim L; si U; astfel incat A; = L; U;.

a4



Construim L; si U; astfel incat A; = L; U;.

Pentru aceasta dorim sa determinam vectorii £ si u si scalarul u; pentru

care
Aic1 ¢\ A Liey O\ (U-1 u
dT aji IR ET 1 OT uji ’

i=L; =U;

Trebuie sa avem

Aicr ¢\ (L-x O\ (U1 v (L1U-1 Li1u
dT aji N ZT 1 OT uj; N KTU,',l ETU‘FUH.
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L/—l u=c,
Ul t=d (15)
i—1% —
T
'y = aji — Ujj.
Deorece A;_1 sunt nesigulare, vom avea ca U;_; sunt nesingulare.
Matricele L;_; sunt nesingulare, avand determinantul egal cu 1.

Prin urmare exista u, £ si uj; care verifica sistemul de mai sus si care
construiesc matricea L;.

46



Sa demonstram implicatia inversa “=—".

Avem de demonstrat: Daca exista factorizare LU cu /;; = 1 si este unica,
atunci primele n — 1 submatrici principale ale lui A sunt inversabile.

Vom imparti dicutia pe doua cazuri.

Cazul 1. A este inversabila, det A # 0:

Presupunem ca exista factorizare LU cu [; = 1 si este unica

Sa remarcam faptul c3 din forma factorizarii rezulta ca a;; # 0.

Deoarece factorizare LU exista pentru A, va exista si pentru A; si
det A; = det L() det U') = det U = uyqupp -+ - uji,i = 1,n — 1.

Deoarece det A, # 0, rezulta ca uyuny - - - up, # 0, adica, n particular,
det A; = det L) det U) = det U) = uyqump -+~ ujj £ 0,i=1,n—1.
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Cazul 2. A nu este inversabild, det A = 0: Cu alte cuvinte presupunem
ca macar un element de pe diagonala lui U este egal cu zero.

Notam cu wukx elementul nenul de index minim k (pentru ca ar putea sa
fie si altii, dar il alegem astfel).

Tn baza procedeului iterativ descris in prima parte a demonstratiei va
rezulta ca factorizarea poate fi calculatd pana la pasul k + 1.

De la acest pas, pentru ca matricea U(k) = U(1: k,1: k) este
neinversabila, existenta si unicitatea vectorului ¢ se pierde, si, deci
intreaga factorizare LU pentru A(k +1) = U(1: k+1,1: k+1)si
pentru matricea A.

Pentru ca acest fapt sa nu se intdmple, elementul nul k. ar trebui sa fie
de index k = n— 1. Deoarece

det A; = det L) det U = det U = uqqupp -« - uji, i =1,n—1, toate
matricele principale A, vor fi inversabile k =1,--- ,n—1
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Example
Consideram matricele

1 2 01 0 1
B:<1 2)’ C:<1 o)’ DZ(O 2)' (16)

e B admite o unica factorizare LU.
e matricea neinversabild C nu admite factorizare LU.

e matricea neinversabila D admite o infinitate de factorizari de forma
D= Lﬁ Ug, cu

1 0 0 1
oo (1Y) w=(0 ;1) vaen

49



Exista un alt rezultat:

Teorema

Daca A este o matrice diagonal dominanta (pe linii sau coloane), atunci
existd si este unica factorizarea LU. In particular, daca A este diagonal
dominanta pe coloane, atunci |l;j| <1 Vi, j.

50



Forma compacta a factorizarii



Forma compacta a factorizarii

Varianta remarcabild a factorizarii LU este factorizarea Doolittle.
Aceasta este cunoscuta si ca formd compacta a metodei de eliminare
Gauss.

Aceastd denumire se datoreaza faptului ca aceste abordari necesita mai
putine rezultate intermediare decdt metoda GEM standard pentru a
genera factorizarea lui A.

Calcularea factorizarii LU a lui A este echivalenta din punct de vedere
formal cu rezolvarea urmatorului sistem neliniar de ecuatii n?

mln I

Z llrufj7l7_/ - 1 (17)

necunoscutele fiind intrarile n? + n ale matricelor triunghiulare L si U.

Daca stabilim in mod arbitrar n coeficienti (/;) la 1, ajungem la metoda
Doolittle care ofera o cale eficienta sistemului neliniar.
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De fapt, presupunand ca primele k — 1 coloane din L si primele randuri

din U sunt disponibile si stabilind /i, = 1 (metoda Doolittle), se obtin
urmatoarele ecuatii din

k=1

akj:Z/krurj+ukj7 J:k7 , 1, (18)
=
k—1

aj = Z lirtie + lctpge, 1=k +1,---,n. (19)
r=1

Retineti cd aceste ecuatii pot fi rezolvate intr-un mod secvential in ceea
ce priveste variabilele rosii uy; si fj.
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Din metoda compacta Doolittle obtinem astfel mai intai al k-lea rand al
lui U si apoi a k-a coloana a lui L, dupa cum urmeaza: pentru
k=1,---,n

k—1
ukj:akj_zlkrulja J:k7 > 1, (20)

r=1

k—1
1

/ik:uk<aik_§ /irurk)a i=k+1,---,n (21)
r =il

53



Factorizarea LDMT



Factorizarea LDMT

Este posibil s3 se conceapa si alte tipuri de factorizari ale lui A.

Mai exact, vom aborda unele variante in care factorizarea lui A este de
forma

A=LDMT, (22)

unde L, MT si D sunt matrici inferior triunghiulare, superior triunghiulare
si, respectiv, diagonale.

Dupa construirea acestei factorizari, rezolvarea sistemului se poate realiza
rezolvand mai intéi sistemul inferior triunghiulara Ly = b, apoi cel
diagonal Dz = y si in final sistemul superior triunghiulara M7 x = z, cu
un cost de n? + n flop-uri.

n cazul simetric, obtinem M = L, iar factorizarea LDLT poate fi

calculata cu jumatate din cost, dupa cum vom vedea cand vom vorbi

despre cazul matricelor simetrice. Factorizarea LDMT se bucura de o
proprietate analoga cu cea pentru factorizarea LU. in particular, se aplica
urmatorul rezultat. 54



Teorema
Daca toti minorii principali ai unei matrice A € R"™ " sunt nenuli, atunci

existd o matrice diagonald unicd D, o matrice inferior triunghiulara
unitara unica' L si o matrice superior triunghiulard unitara unica M7,
astfel incat A= LDMT |

Demonstratie: Stim deja ca exista o factorizare unica LU a lui A cu

li =1 pentru i = 1,--- ,n. Daca stabilim ca intrarile diagonale ale lui D
sunt egale cu uj (nu sunt zero deoarece U este nesingulard), atunci

A= LU = LD(D71U). Dupa definirea MT = D=1U, rezults existenta
factorizarii LDMT, unde D=1 U este o matrice superior triunghiulara
unitara. Unicitatea factorizarii LDMT este o consecinta a unicitatii
factorizarii LU.

INoi numim matrice triunghiulard unitard o matrice triunghiulara care are intrarile
diagonale egale cu 1.
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Pivotare



Dupa cum s-a subliniat anterior, procesul GEM se intrerupe imediat ce se
calculeaza o intrare pivotalad zero. Intr-un astfel de caz, trebuie s3 se
apeleze la asa-numita tehnica de pivotare, care consta in schimbarea
randurilor (sau a coloanelor) din sistem astfel incat si se obtina pivoti

nenuli.

Strategia de pivotare adoptatd pana in prezent poate fi generalizata prin
cautarea, la fiecare pas k al procedurii de eliminare, a unei intrari
pivotante care nu este nula, cautand in interiorul intrarilor din subcoloana
A®)(k : n, k). Din acest motiv, se numeste pivotare partiala (pe randuri).
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o)
~ . a., .
Se poate observa ca o valoare mare a lui my = k5, i=k+1,---,n
a

kk
(generata, de exemplu, de o valoare mica a pivotului a%{)) poate

. . .. c (K
amplifica erorile de rotunjire care afecteaza intrarile ay’-

Prin urmare, pentru a asigura o mai buna stabilitate, pivotul kj A®)(j, k)
se alege ca fiind cea mai mare intrare (in modul) din coloana

AW (k : n, k) si, in general, se efectueaza o pivotare partiala la fiecare
etapa a procedurii de eliminare, chiar daca nu este strict necesar (adica
chiar daca se gasesc intrari pivotale diferite de zero).

Alternativ, procesul de cautare ar fi putut fi extins la intreaga submatrice
AW (k : n, k : n), finalizandu-se cu o pivotare completa.

Observati, totusi, ca in timp ce pivotarea partiala necesita un cost
suplimentar de aproximativ n? ciutari, pivotarea completd necesita
aproximativ 2n3/3, cu o crestere considerabil3 a costului de calcul al
GEM.
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Matrice de permutare

Schimbul dintre a i-a si j-a linie a unei matrice; acest lucru se poate face
prin inmultirea prealabil3 a lui A cu matricea PU4) de elemente

1 dacar=s=1,---,i—1,i4+1,---j—1,j+1,---n,
pg’j)z 1 dacar=j,s=iorr=is=j,
0, 7n caz contrar.
(23)

Matricele de tipul PU~) se numesc matrice de permutare elementara.

Produsul matricelor de permutare elementara se numeste matrice de
permutare si efectueaza schimburile de randuri asociate fiecarei matrice
de permutare elementara.

In practica, o matrice de permutare este o reordonare pe randuri a
matricei identitate.
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Sa analizam modul in care pivotarea partiala afecteaza factorizarea LU
indusa de GEM.

La prima etapa a GEM cu pivotare partiald, dupa ce se afld intrarea a,;
de modul maxim din prima coloana, se construieste matricea elementara
de permutare P; care schimba prima linie cu a r-a linie (daca r =1, P;
este matricea identitate).

In continuare, se genereaza prima matrice de transformare gaussiana M;
si se stabileste

AR = M P A, (24)

O abordare similara se face acum pentru A®) c3utand o noui matrice de
permutare P, si o noud matrice M, astfel incat

A®) = My P, A®) = My Py My PLAD). (25)

Executand toate etapele de eliminare, matricea superior triunghiulara U
rezultata este acum data de

U=A(n) =M, 1Py_1--- MyPyM; Py AD. (26)

=M

59



e (K)o s i The %
Retineti ca m,(k) utilizat in constructia lui My este acum m,(-k) = ds,
bkk

unde bf:) sunt intrarile matricei P, AK).

Obtinem ca U = M A si, astfel, U = (MP~1)PA, unde P = P,_1--- P;.
Afirmam ca L = PM~1 este inferior triunghiulara unitara.
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Afirmam ca L = PM~1 este inferior triunghiulara unitara.

Nu trebuie sa fim ingrijorati de prezenta inversului lui M, deoarece
M=t =pPiMt PLMY s P =P

n g v

M=t =21, — M; = I, + mye].

in timp ce

Prin urmare, avem

L="P,1---PoPiP7 Ul +miel )P (o +maed) - P (o 4+ ma_1el )
= Fp—1-"" P2(In + my elT)Pg ( -+ mo € ) ;jl(ln + mp_1 e,;rfl)-

S3 discutam acum

Pn—l DRI P2(In =+ my elT)
(Ppi++ Pyt Po_y---Pomiel Py - Pl Py P,)
=(Po1-+-Pat Poy---Pomyef (Poy-- P2)  Poy--- P2)
(Pooy-PodPoy--Pomy(Py_1---Pyer) " Po_y---Po)  (27)
[+ Pp_y -+ Pamy(Pp_1 -+ Paer) |Po_y-- Pa.

-~
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Vom avea

Po1-+ Pa(ly+myef)

=l + Po1-- Pomy(Po_1--- Paer)T]Po i Po. (28)
Dar permutarea P,_; --- P> permuta doar intrarile de la 2 la n dintr-un
vector; intrarile 1 rdman neatinse. Aceasta inseamna ca primele intrari
ale lui my sunt inca zero si e; este neschimbatd permutarea, adica
P, 1 Pyey = eq.

Astfel, avem de fapt
P,,,l 000 P2(In + ma 617—)
= [In+ﬁ71€17—] Pii--- P (29)
—_———
inferior triunghiulara
si
L= [lh+mel] Po1---PoPyt(la+mae]) - P (I +ma_rel ;).
—_——
inferior triunghiulara

Repetand argumentul avem ca L este inferior triunghiulara.



Deoarece L = PM~! este inferior triunghiulara unitar, factorizarea LU se
citeste

PA=LU. (30)

Odata ce L, U si P sunt disponibile, rezolvarea sistemului liniar initial se
rezuma la rezolvarea sistemelor triunghiulare Ly = Pb si Ux = y.
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Teorema
Fie A € R"*" o matrice nesingulard. Atunci existd o matrice de

permutare P astfel incit P A= L U, unde L si U sunt matricile
triunghiulare inferioard si superioara obtinute prin eliminarea gaussiana.

Proof.
Demonstratia este deja facuta, cu exceptia faptului ca la orice pas avem

max abs(A®(k : n, k)) # 0. (31)
Daca ar fi posibil sa avem
maxabs(A®) (k : n, k)) =0, (32)

atunci det A = 0 ceea ce este evitat de ipoteza. O
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Daca se realizeaza pivotarea completa, la primul pas al procesului, odata
gasit elementul ag, al celui mai mare modul din submatricea

A(1: n,1: n), trebuie sa schimbam prima linie si prima coloana cu a g-a
linie si a r-a coloana. Se genereaza astfel matricea Py A Qy, unde Py si
@1 sunt matrici de permutare pe randuri si, respectiv, pe coloane.

n consecinta, actiunea matricei M; este acum astfel incat
AR = M; PLAM) Q;. Repetand procesul, la ultima etapa, obtinem

U= A" = My_1Ppy--- MiPLAY Q- Qpr (33)
Tn cazul pivotarii complete, factorizarea LU devine
PAQ = LU, (34)

unde @ = Q@ = Q1 -+ Q,_1 este o matrice de permutare care tine cont de
toate permutarile care au fost operate. Prin constructie, matricea L este
tot inferior triunghiulara, cu intrari de modul mai mici sau egale cu 1.
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Calculul inversei unei matrice

Calculul explicit al inversei unei matrice poate fi efectuat folosind
factorizarea LU dupa cum urmeaza.

Notand cu X inversa unei matrice nesingulare in R"*" vectorii coloana ai
lui X sunt solutiile sistemelor liniare Ax; = ¢;, pentru i = 1,--- , n.

Presupunand ca PA = LU, unde P este matricea de permutare cu
pivotare partiala, trebuie sa rezolvam 2n sisteme triunghiulare de forma
Ly; = Pej, Ux; = y;, i =1,--- ,n, adica o succesiune de sisteme liniare
care au aceeasi matrice de coeficienti, dar parti drepte diferite.

66



Aplicarea factorizarii LU intr-o problema de deformare elastica

1D

Se considera o bard elastica de lungime L = 1 m, cu capetele mentinute
fixe

Ecuatia care descrie deformarea barei este de tip Poisson:
—k u"(x) = q(x), 0<x<1,

unde u este deplasarea, k este un coeficient de elasticitiate, iar g(x) forta
care actioneaza pe acea bara.
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Aproximarea numerica a derivatei a doua

Pentru fiecare nod interior x;, a doua derivata u”(x;) se poate aproxima
prin diferente finite centrale.

Pornim de la seriile Taylor in jurul nodului x;:

h? h3

u(x; + h) = u(x;) + hu'(x;) + 7u”(x,-) + gu”'(x,-) + O(h*),
h? h?

u(x; — h) = u(x;) — hd'(x;) + 7u”(x,-) — Fu’”(x,-) + O(h*).

Adunand cele doud ecuatii, derivata intai se elimina:

u(x; + h) + u(x; — h) = 2u(x;) + h*u”’ (x;) + O(h*),

de unde rezultd formula de diferente finite centrale:

u”(x;) & u(xi-1) = 2“}551‘) + u(xi+1) ]

Aceasta formula sta la baza discretizarii ecuatiei Poisson pentru fiecare

nod interior. 68



Discretizare numerica a ecuatiei Poisson

{mpartim bara in N = 4 segmente egale (h = L/(N +1) = 0.2 m) si
notam deformarea in nodurile interioare uy, Uy, Uz, ug.

Inlocuind aproximatia derivatei a doua in ecuatia Poisson:

Cuim1 —2ui+ugn - g(x)

= =02, i=1,...,4,
sau echivalent:
2u; — Uiy — U1 = h? 9(xi)
k
Astfel se genereaza un sistem liniar tridiagonal:
A-u=b,
unde
2 -1 0 0 h?q(x1)/k
A -1 2 -1 0 b h?q(x2)/k
0 -1 2 -1 hq(x3)/ k
0O 0 -1 2 h?q(xa)/ k
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Factorizarea LU

Observatie: valoarea deplasuarii in fiecare nod interior depinde doar de
nodul precedent si urmator, ceea ce face sistemul tridiagonal si foarte
potrivit pentru factorizarea LU. Pentru rezolvarea eficientd, factoram
matricea A ca:

A=L-U,

unde L este inferior triunghiulara si U superior triunghiulara:

1 0 0 0 2 -1 0
1 -3 1 0 0 U |0 3 -1 0
0 -2 1 of’ 0o 0 3 -1
0 0 -31 o 0o o0 2
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Matrice de tip banda

Metodele de discretizare pentru problemele cu valori la frontiera conduc
adesea la rezolvarea sistemelor liniare cu matrici care au forme de banda,
bloc sau rare. Exploatarea structurii matricei permite o reducere drastica
a costurilor de calcul ale factorizarii si ale algoritmilor de substitutie.

Vom aborda variante speciale ale factorizarii GEM sau LU care sunt

concepute in mod corespunzator pentru a trata matrici de acest tip.
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Factorizarea Cholesky



Matrice simetrice pozitiv definite: Factorizarea Cholesky

Dupa cum s-a aratat deja, factorizarea LDM T se simplifica considerabil
atunci cand A este simetrica, deoarece intr-un astfel de caz M = L,
obtinandu-se asa-numita factorizare LDLT. Costul de calcul se
injumatateste, fata de factorizarea LU, la aproximativ (n*/3) flop-uri.
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Factorizarea Cholesky

Teorema
Fie A € R"™" o matrice simetrica si pozitiv definitd. Atunci, exista o

matrice superior triunghiulara unica H cu intrari diagonale pozitive astfel
fncat

A=HTH. (35)

Aceasta factorizare se numeste factorizare Cholesky.
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Proof: Existenta.

Deoarece A este pozitiv definita, avem det(A(1: k,1: k)) > 0, pentru
toate k € {1,2,...,n}.

Printr-un rezultat anterior, rezulta ca exista L, U € R astfel incat
A = LU, unde L este inferior triunghiulard cu 1 pe diagonala, iar U este

superior triunghiulara.

Fie D = diag(\/t11, -, \/Unn)- Atunci
A= LU = (LD)(D~U), (36)
N ——

=B =

unde B este inferior triunghiulara si C este superior triunghiulara, ambele

cu elemente \/u11, ..., /U,y pe diagonala.

Acum vom demonstra ca B= CT.
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Demonstratie: Existenta

Din moment ce A= AT, rezulta
BC=C"B" = (c")y'B=B"C™. (37)

Tn partea stanga a ultimei egalitati, ambele matrici sunt inferior
triunghiulare, adica partea stanga este inferior triunghiulara, in timp ce in
partea dreapta a ultimei egalitati, ambele matrici sunt superior
triunghiulare, adica partea dreapta este superior triunghiulara.

Tn plus, partea stanga are 1 pe diagonal3, iar partea dreapts, la fel.

Dar singura matrice care este inferior triunghiulara-superioara cu 1 pe
diagonala este matricea identitate /,.

Asadar, (CT)"1B =1,si CT = B, ceea ce incheie dovada existentei
factorizarii Cholesky.
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Demonstratie: Unicitate

Fie Cy, G, superior triunghiulare cu elemente diagonale pozitive astfel
incat

A=C/G =0 G. (38)

Fie D; = diag(Cy), D> = diag(G).

Atunci

¢/ Dt DG =CG/Dy'D, G (39)

inferior triunghiulara cu 1 pe diag superior triunghiulara

Din unicitatea factorizarii LU rezultd ca D; G = D> G,.
Aceasta implica [(C1)i]? = [(&)i]? i =1,2,...,n, adicd D; = D».

Prin urmare, C; = G, si dovada este completa.
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Calcularea factorizarii Cholesky in practica

Teorema
Intrarile hj din HT pot fi calculate dupa cum urmeaza:

hi1 = Van = v/an. (40)
si, pentru i =2,---,n,

j—1
hij = (aj - Zh,-khjk> Jhi, j=1,---,i—1, (41)
k=1
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monstratie:

Sa demonstram teorema procedand prin inductie asupra marimii i a
matricei, amintind ca daca A; € R™*/ este simetrica pozitiv definita,
atunci toate submatricile sale principale se bucura de aceeasi proprietate.

Pentru / = 1 rezultatul este evident adevarat. Prin urmare, sa
presupunem ca este valabil pentru /i — 1 si sa demonstrdm ca este valabil
si pentru /. Exista o matrice superior triunghiularda H;_; astfel incat
A;i_1 = HT |H;_;. S& partitionam A; astfel

Ai = (43)

cua € Ry, veR™Lsi cautam o factorizare a lui A; de forma

g T = (P2 O (Hia b

AT B or B (44)
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Prin aplicarea egalitatii cu intrarile lui A; se obtin ecuatiile H” ;h = v si
hTh+ 8% =a.

Astfel, vectorul h este determinat in mod unic, deoarece H; | este
nesingulara. Tn ceea ce priveste 3, datorita proprietatilor determinantilor

0 < det(A;) = det(H.”) det(H;) = 8?(det(H;_1))?, (45)

putem concluziona ca trebuie sa fie un numar real. Ca urmare,
= +va — hT h intrarea diagonala dorita si astfel se incheie argumentul
inductiv.

Sa demonstram acum restul formulelor.

Faptul ca hi; = \/a11 este o consecinta imediata a argumentului de
inductie pentru i = 1. In cazul unui i generic, se obtine relatii sunt
formulele de substitutie directa pentru solutia sistemului liniar

H.I  h = v, iar demonstratia este completa.
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Folosim Cholesky doar pentru sisteme cu matrice simetrica?

Sa presupunem cd avem de rezolvat un sistem de forma Ax = b,
AcR™" detA#0, beR".

Matricea A nu este considerata neaparat simetrica, insa prin inmultire cu
AT, avem sistemul echivalent

ATAx = ATb, (46)

a carui matrice este simetrica si chiar pozitiv definita. (Demonstrati!)

Prin urmare se poate folosi factorizarea Cholesky care este mai eficientd
decat factorizarea LU.

Vom vedea c3 factorizare Cholesky poate fi folosita si pentru rezolvarea
aproximativa a sistemelor supradeterminate (cu aplicatii practice in
corelarea datelor, probleme de identificare a locatiei optime, eliminarea
zgomotelor din semnale etc.).
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Matrice de tip banda



Matrice de tip banda

Definitie
Spunem ca o matrice A € R™*" are banda inferioara p daca aj = 0 cind
i > j+ p si banda superioara q daca ajj =0 cand j > i+ q.

Matricele diagonale sunt matrici cu benzi pentru care p = q = 0, in timp
ce matricele trapezoidale au p =1 sauq=1iardacap=1sig=1
atunci spunedm ca avem o matrice tridiagonala.
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Rezultatul principal pentru matrici cu benzi este urmatorul.

Teorema

Fie A € R"*". S3 presupunem c3 existd o factorizare LU a lui A. Daca A
are latimea de banda superioard q si latimea de band3 inferioara p, atunci
L are latimea de banda inferioara p si U are ldtimea de banda superioara
qg.

in special, observati ci aceeasi zona de memorie utilizat pentru A este
suficienta pentru a stoca si factorizarea sa LU.
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Sa consideram, intr-adevar, cd o matrice A avand latimea de banda
superioara g si latimea de band3 inferioara p este de obicei stocata intr-o
matrice (p +qg-+ 1) X n, pe care o vom nota cu B, presupunand ca

bi—jrg+1j = ajj (47)

pentru toti indicii /i, care se incadreaza in banda matricei, in rest fiind
zero.

De exemplu, in cazul matricei tridiagonale
2 -1 0 0
-1 2 -1 0
A=10 -1 2 -1

o O O

stocarea compacta se citeste
© =l =l =i =i
B=|(2 2 2 2 2 (49)
=il =i =i =i @
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Acelasi format poate fi utilizat pentru stocarea factorizarii LU a lui A.

Este clar ca acest format de stocare poate fi destul de incomod in cazul
in care doar cateva benzi ale matricei sunt mari.

La limita, daca doar o coloana si un rand ar fi pline, am avea p=qg=n

si astfel B ar fi o matrice plind cu multe intrari zero.

In cele din urma, observam ca inversa unei matrice cu benzi este in
general plina (asa cum se Intdmpld pentru matricea A consideratad mai

sus).

84



Matrice tridiagonale

Consideram cazul particular al unui sistem liniar cu matrice tridiagonala
nesingulara A data de

ai Gl 0

b2 an (50)
i Ch—1

0 b, an

n acest caz, matricile L si U din factorizarea LU a lui A sunt matrici
bidiagonale de forma

1 0 0 ar a
i 0 0
” , " 51
0 Ch—1
0 By 1 0 0 a,
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Algoritmul Thomas

Coeficientii «;, 8; pot fi calculati cu usurintd prin urmatoarele relatii

b; .
1 = ai, Bi:a : ’ ai:aiiﬁici—lv I:27'”3n' (52)
i—1
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Algoritmul Thomas poate fi extins si pentru a rezolva intregul sistem
tridiagonal Ax = f. Acest lucru inseamna rezolvarea a doua sisteme
bidiagonale Ly = f si Ux = y, pentru care se aplica urmatoarele formule:
(Ly:f) Y1:f17}’i:fi*5i}’i—1’ I:27 » 1, (53)
S LI (i T N )

i — )

Ux = : n ’
(U=y): x=2 =
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Sisteme pe blocuri

n aceasta sectiune ne ocupam de factorizarea LU a matricelor
partitionate in blocuri, in care fiecare bloc poate avea o dimensiune
diferita.

Obiectivul nostru este dublu: optimizarea ocuparii spatiului de stocare
prin exploatarea adecvatd a structurii matricei si reducerea costului de
calcul al solutiei sistemului.
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Factorizarea LU

Fie A =R" " urmatoarea matrice partitionata in blocuri

A A
A— 11 12 7 (55)
A1 A
unde Aj; € R™*" este o matrice nesingulara a carei factorizare L1 D1 Ry1

este cunoscuta, in timp ce Ay € R(=r)x(n=r),

In acest caz este posibila factorizarea A folosind doar factorizarea LU a
blocului A;;. Intr-adevar, este adevarat ca

(e d)-( )2 o) ) e
unde
Loy = AnR'D Y,
Rio = Dy ML Ao, (57)
D> = Azx — L21 D1 Ryo.
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Daca este necesar, procedura de reducere poate fi repetata pe matricea
D,, obtinandu-se astfel o versiune in bloc a factorizarii LU.

Daca A1 ar fi un scalar, abordarea de mai sus ar reduce cu unu

dimensiunea factorizarii unei matrice date.

Prin aplicarea iterativa a acestei metode se obtine un mod alternativ de

efectuare a eliminarii Gauss.
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Analiza erorii



Algebra liniara: completari



Descompunerii spectrala

Unul dintre cele mai utile rezultate legate de valorile proprii este teorema
descompunerii spectrale, care afirma ca orice matrice simetrica A are o
baza ortonormala de vectori proprii.

Teorema descompunerii spectrale

Fie A o matrice simetrica in R"*". Atunci exista o matrice ortogonala
UeR™" (UTU=UUT =1)si o matrice diagonali
D = diag(d, d>, ..., d,) pentru care

UT AU =D.

Coloanele matricei U din factorizare constituie o baza ortonormata
formata din vectorii proprii ai lui A, iar elementele diagonale ale lui D
sunt valorile proprii corespunzatoare.

Demonstrati ca tr(A) = >.7_; \i(A) si det(A) = [T, Xi(A) .

i=1
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Norme matriceale

Ansamblul valorilor proprii ale lui A se numeste spectrul lui A, notat prin
a(A).

Se pot demonstra urmatoarele proprietati

det(A) = H A, (A=) N (58)

i=1

si se concluzioneaza ca o(A) = o(A"), si a(A"”) = o(A), unde A" = Al
Modulul maxim al valorilor proprii ale lui A se numeste raza spectrala a
lui A si se noteaza cu

p(A) = max [A]. (59)

Aeo(A)
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Norme in R”

Un exemplu de spatiu normat este R”, echipat, de exemplu, cu norma p
(sau norma Holder); aceasta din urma se defineste pentru un vector x cu
componente x; ca fiind

)

n
x|l = Z B for 1<p<oo. (60)
i=1

Observati ca limita pe masura ce p merge la infinit a lui ||x]|, exista, este
finitd si este egald cu modulul maxim al componentelor lui x. O astfel de
limita defineste, la randul s3u, o norma, numita norma infinit (sau norma
maxim), data de

Illoe = max bl (61)

Cand p = 2, regasim definitia standard a normei euclidiene

n 2
Ixlla={ >l = (T %)= (62)
i=1
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Norme matriceale

Definitie

O norma matriciala este o functie || - || : R™*" — R astfel inc4t
1. |Al >0VAeR™" si||Al| =0 dacd si numai dacd A = 0;
2. |aAl| =lof |A Va € R, VA € R™*";
3. [[A+ Bl < [[All +[|B]| VA, B nR™".

Definitie
Spunem cd o norma matriciala || - ||gmx» este compatibila sau consistenta
cu normele vectoriala || - ||gm si || - |rn daca

A X||Rm < [|A||gm=n [|x]|re VX € R (63)
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Definitie
Spunem cd o norma matricial || - || este submultiplicativa daca
VAeR™™ VB e RM™A,

IAB[ < [IAlB]- (64)

In multe lucrari, definitia unei norme matriciale include si
submultiplicitatea.

Aceasta proprietate nu este satisficuta de toate normele matriciale. De

exemplu, norma [|A||a = maxj=1,.._nj=1,...m |aj| nu indeplineste conditia

submultiplicativd, de exemplu, aceasta conditie nu este indeplinita pentru
1 1 . .

pentru A= B = 1 1) Prin urmare, este o norma, dar nu este o

norma submultiplicativa.
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Observati ca, data fiind o anumita norma submultiplicativa | - ||, exista
intotdeauna o norma vectoriala compatibila. De exemplu, dat fiind orice
vector fix y # 0 in R", este suficient s3 se defineasca norma vectoriala
consistenta sub forma

IxIl =[xy "lla Vx €R". (65)

Un exemplu de norma matriciala este norma Frobenius (sau norma
e Rt A TR
euclidiand in R™)

tr(AAT) (66)
si este compatibild cu norma vectoriala euclidiana || - ||o. Tntr-adevar,
IAx]3 = Z | ZBUXJI = Z Z |2l Z 2 | = IAIElIx]2- (67)

i=1 j=1

Observati ca pentru o astfel de norma ||/,||r = v/n. Pentru o norma
oarecare, care ar putea fi o asteptare rezonabila pentru ||/,]|7
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Norme matriceale induse

Teorema
Fie || - ||gm si || - |[g» norme vectoriale. Functia
Ax Rm
JA] = sup 1AXIIz" (68)
x#0 [|x[|mn

este o norma matriciala numita norma indusa sau norma matriciala
naturala.
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Cazuri relevante de norme matriceale induse sunt asa-numitele norme p
definite astfel

A
Al = sup 1A%l
2o [xIls

(69)

Norma 1 si norma infinit sunt usor de calculat, deoarece

m n
1Al = max > lagl, (Al = max > |yl (70)
Jj=1,..., n < i=1,...,n 4
i=1 i=1
si se numesc norma sumei coloanelor si, respectiv, norma sumei
randurilor.
Mai mult, avem ||A||; = ||AT||oo si dacd A este simetrica ||All; = [|Allso-
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Teorema
Fie || - ||[gmx» © norma matriceala indusa de normele vectoriale || - ||gm si

|| - |lgn. Atunci, urmdatoarele relatii sunt valabile:

1. [[Ax||grm < ||A||gmxn ||Xx||gn, adicd norma matriceald indusa este
compatibild cu norma vectoriala care o induce;

2 )l = 1;

3. |AB||gmxn < ||Al|gmxn ||B||gmxn, adica fiecare norma matriceala
indus3 este submultiplicativa.

Proof.
TO DO. O
Observati ca normele p sunt submultiplicative. Mai mult, observam ca

proprietatea de submultiplicativitate ar permite doar sa concluzionam ca
]| > 1. Tntr-adevar, ||1]| = ||1n Ial| < ||a]|?-
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Norma ||Alja = maxj=1,... nj=1,...,m |@jj| care nu este submultiplicativa, de
asemenea, nu este o norma matriceala indusa. O norma care nu este
indusa poate fi sau nu submultiplicativa. De exemplu, || - ||a nu este

submultiplicativa, dar norma Frobenius

[AllF = Z |aj[? = \/tr(AAT) (71)

ij=1

este submultiplicativa, chiar dacd nu este indusa (de ce?), de asemenea.
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Norma spectrala pentru matrice simetrice

Teorema
Fie A o matrice reald simetrica. Atunci

|A]l2 = p(A). (72)
Proof.

Deoarece A este simetrica, exista matricea unitara U astfel incat

UTAU = diag(\1, ..., A\y), unde \; sunt valorile proprii ale lui A. Fie
y = UTx. Atunci

1Al = sup ||Ax||2 (Ax, Ax) (A Uy, AUy)
l[x1]2 Tlxlz o | Uyll2
~ up (UTATAUy,y) \/ diag(A2, ..., \2)y, y)
o\ vl llyll2
A2y2
L NY; = | \)\2| = _max |)\,-| = p(A).
S yP ":17 o 12,..

= sup
y#0
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Matrice nesimetrice

Definitie
Fie A € R™*". Se numesc valori singulare ale matricei A, numerele reale
ai(A) definite prin

Daca A este simetrica, atunci

ai(A) = \JANI(ATA) = VXi(A) =\ /A2 (A) = [Ni(A). - (74)
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Norma spectrala pentru matrice simetrice

Teorema
Fie 01(A) cea mai mare valoare singulard a matrice A € R"*". Atunci

1All2 = /(AT A) = 01(A). (75)
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Este clar ca a calcula ||Al|2 este mult mai costisitor decat cel al lui [|A|1
sau ||A|leo. Cu toate acestea, daca este necesara doar o estimare a lui
||Al|2, urmatoarele relatii pot fi utilizate in mod profitabil in cazul

matricelor patrate

|| < |4l S mmessey

1
N Alloe < All2 < V7 |All o, 7
T4l < Al < Va4l (76)

1
WIIAIM <Al < vnllAl, [[All2 < VAl Alloo-
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Relatii dintre norme si raza spectrala

Teorema
Fie || - || o norma matriceala consistentd, atunci

p(A) < [lA  VAeR™" (77)
Proof.

Fie \ o valoare proprie a lui A si v # 0 un vector propriu asociat acestei
valori proprii. Deoarece norma este consistenta, avem

IAllIvIE = [IAvIE= A vIE < ATV (78)

si deci [A| < [JA. O

In restul prelegerilor noastre, daca nu specificam altceva, consideram
norma matricei spectrale si o vom nota cu || - ||.
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Relatii dintre norme si raza spectrala

Teorema
Fie A€ R"™" sie > 0. Atunci, existd o norma matriceald indus3 notat3
| - lae (depinzénd de ¢) astfel incat

|- llae < p(A) +e (79)

Deci, fixand o toleranta arbitrara, mereu exista o norma matriceala care
este apropiata de norma spectrald a matricei A.
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Analiza senzivitatii solutiei

La fiecare pas al GEM in urma rotunjirilor numerelor se rezolva un sistem

perturbat
(A+5A)(x+dx) = b+ b, (80)

solutia acestui sistem perturbat fiind perturbata fata de soluttia
sistemului de start

Ax = b. (81)

Ne dorim sa caracterizam perturbarea dx in functie de pertubarile 0A si

ob.

Un rol important va fi jucat de numarul de conditionare.
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Numarul de conditionare

Numarul de conditionare al unei matrice A € R"*" este definit prin
K(A) = IAI A7, (82)

unde || - || este o norma indusa.
Se poate observa ca numarul de conditionare depinde de norma aleasa.

Se observa insa ca indiferent de norma aleasd K(A) > 1 deoarece

1=AATH < [IA AT = K(A).

Mai mult, K(A) = K(A™1) si K(a A) = K(A), Ya # 0.
Pentru norma || - |2 pe R™", K»(A) = ||Al|2 [|A~1|> este dat de

(83)
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iar In cazul matricelor pozitiv definite

>

=5 T o

K>(A) se numeste numarul de conditionare spectral.

109



Analiza a priori a erorii

Theorem
Fie A € R"™*" o matrice inversabild si 0A € R"*" astfel ca

1A= l6A]| < 1 (85)

este verificata intr-o norma indusd. Atunci dacd x € R" este solutie a
sistemului Ax = b cu b € R" (b #0) si 6x € R" verifica

(A + 8A)(x + 6x) = b + 6b, (86)
atunci

5] K(A) 166 . [I5A]

Wl < T= R(ABAI/TA ( Tl |A||) (87)
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Cateva observatii

Conditia ||[A71[|||6A|| < 1 asigura faptul ca (A + 0A) ramane inversabila.
Daca [|A71]|||6A|l < 1, atunci p(A~15A) < 1.



Lemma
Fie A € R"™" Atunci

lim A* =0 & p(A) < 1. (88)

k—o0

In plus, seria geometrica > heo A este convergentd dacd si numai daca
p(A) < 1. In acest caz

YA =(-AT (89)
k=0
Prin urmare, daca p(A) < 1, matricea | — A este inversabild si au loc
inegalitatile
1 1
<l = A < ; (90)
1+ A 1—||A]
unde || - || este o matrice indusa astfel incat ||Al| < 1.
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Demonstratia lemei

Dacad p(A) < 1 atunci 3 € > 0 astfel incat p(A) < 1 — ¢ si va rezulta ca
existd o norma indusa astfel incat [|A|| < p(A) +¢e < 1.

Din ||AX|| < ||A||* < 1 si din definitia convergentei rezulta ca
Iimk_mo Ak =0.
Invers. Presupunem ca lim,_,., AK = 0. Fie \ o valoare proprie a lui A.

Atunci Akx = \fx. Atunci Ak — 0. Deci avem |A\| < 1. Atunci, pentru
ca A a fost consideratd o valoare proprie generica, vom avea p(A) < 1.

Pentru urmatoarea parte din teorema, sa remarcam pentru inceput ca
valorile proprii ale lui | — A sunt 1 — A(A), A(A) fiind valoare proprie a lui
A. Pe de alta parte, deoarece p(A) < 1 deducem ca | — A este inversabila.
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Demonstratia lemei

Atunci, din identitatea
(I =A)( +A+ .. +A") =] AL (91)

si considerand limita n — oo vom avea

(I-A)Y A =1 (92)
k=0
in final, deoarece pentru o norma indusa ||/|| = 1, avem
L=< 10 =AU = AT < @+ IADINC = AT, (93)

adica prima inegalitate pe care noi o aveam de demonstrat.

Legat de ce-a de a doua inegalitate, din /| =/ — A+ A si prin multiplicare
cu (I —A)~! avem

(I—A)t=1+A(-A)" (94)



Demonstratia lemei

Trecand la norma in
(I=A)t=1+A(l-A)", (95)
gasim
(= A)TH < T+ AL = A (96)

adica inegalitatea a doua pentru ca avem ||A| < 1.
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Revenim torema de demonstrat: Analiza a priori a erorii

Theorem
Fie A € R"™*" o matrice inversabild si 0A € R"*" astfel ca

1A= l6A]| < 1 (97)

este verificata intr-o norma indusd. Atunci dacd x € R" este solutie a
sistemului Ax = b cu b € R" (b #0) si 6x € R" verifica

(A + 8A)(x + 6x) = b + 6b, (98)
atunci

5] K(A) 166 . [I5A]

Wl < T= R(ABAI/TA ( Tl |A||) (%9)
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Revenim la demonstratia teoremei

Deoarece ||A~10A|| < 1, avem ca ca | + A15A este inversabila si din
lema precedenta rezultad ca
1 1

10+ A0 AN < T gy < = ()
Pe de altd parte, din
(A4 0A)(x + 0x) = b+ db, (101)
si Ax = b gasim
ox = (I + A715A) LA (0b — A X), (102)
iar trecdnd la norma deducem
[l6x]| < 1|||:‘11””M”(5b|| + AL lIx1)- (103)

In final, impartind prin ||x|| (care nu e zero pentru ca b # 0 si A este

inversabila), apoi folosinf ca ||x|| > I“Z“ se deduce inegalitatea dorita.
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Imbunatatirea acuratetei GEM

Dupa cum s-a mentionat anterior, daca matricea sistemului este prost
conditionata, solutia generatd de GEM ar putea fi inexactd, chiar daca
reziduul sau la pasul i, adica r() = p() — A)x() este mic. In aceasta
sectiune, mentionam doua tehnici de imbunatatire a acuratetei solutiei
calculate de GEM.
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Scalarea problemei

n cazul in care intrarile din A variaza foarte mult ca marime, este
probabil ca in timpul procesului de eliminare intrarile mari sa fie insumate
cu intrarile mici, avand drept consecinta aparitiei erorilor de rotunjire. Un
remediu consta in efectuarea unei redimensionari a matricei A Tnainte de
a se efectua eliminarea.

Scalarea pe rénd a lui A consta in gasirea unei matrice diagonale
nesingulare D; astfel incat intrarile diagonale ale lui D;A sa aiba acelasi
ordin de marime (aceeasi dimensiune). Sistemul liniar Ax = b se
transforma n

DlAX = le (104)
Atunci cand atat liniile cat si coloanele lui A trebuie sa fie scalate,
versiunea scalata a sistemului devine
(D1ADy)y =Dib cu  y=Dy'x, (105)

presupunand, de asemenea, ca D, este inversabil. Matricea Dy
redimensioneaza ecuatiile, Tn timp ce D, redimensioneaza necunoscutele. 119



Scalarea problemei

Observati ca, pentru a preveni erorile de rotunjire, matricile de scalare
sunt alese sub forma

Dy = diag(8™, ..., 8™), D = diag(8<, ..., 5) (106)

unde [ este baza aritmeticii in virgula mobila utilizata, iar exponentii
M, -, C1,- - ,Cn trebuie determinati.
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Rafinare iterativa

Rafinarea iterativa este o tehnica de imbunatatire a acuratetei unei solutii
obtinute printr-o metoda directa. S3 presupunem ca sistemul liniar

AX = b a fost rezolvat cu ajutorul factorizarii LU (cu pivotare partiala
sau completa) si s3 notam cu x(0) solutia calculata. Dupa ce s-a fixat o
toleranta de eroare, tol, rafinarea iterativa se desfisoara astfel: pentru
i=0,1,---, pana la convergenta:

1. se calculeaza rezidualul r() = p() — AW x (D).

2. rezolva sistemul liniar A z() = () folosind factorizarea LU a lui
Al

3. actualizati solutia stabilind x(+1) = x() 4 z();

4. daca ||z||/||x\* V|| < tol, atunci incheiem procesul returnand
solutia x(Ut1). Tn caz contrar, algoritmul reincepe de la pasul 1.

In absenta erorilor de rotunjire, procesul s-ar opri la primul pas,
producand solutia exacta.



Metode iterative de rezolvare a
sistemelor



Despre convergenta metodelor iterative

Ideea de baza a metodelor iterative este de a construi o secventa de
vectori x(K) care se bucura de proprietatea de convergenta

x = lim x®), (107)

k—o0

unde x este solutia pentru
Ax = b. (108)

In practica, procesul iterativ se opreste la valoarea minima a lui n astfel
incat ||[x(" — x|| < &, unde ¢ este o tolerant3 fixa si || - || este orice norma
vectoriala convenabila.

Cu toate acestea, deoarece solutia exacta nu este, evident, disponibila,
este necesar sa se introduca criterii de oprire adecvate pentru a
monitoriza convergenta iteratiei.
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Clasificarea metodelor iterative

Iteratiile introduse mai sus sunt cazuri speciale de metodelor iterative de

forma
X0 = f(A, b), (109)
x(nt1) — fn+1(x(”),x(”*1), o xtnmm A b), pentru n > m, (110)
unde £ si x(™ ... x() sunt functii si, respectiv, vectori dati.

Numarul de pasi de care depinde iteratia curentd se numeste ordinul
metodei.

Daca functiile f; sunt independente de indicele de pas /, metoda se
numeste stationara, in caz contrar este nestationara.

In sfarsit, daca f; depinde liniar de x(9, ...  x(™) metoda se numeste
liniara, in caz contrar este neliniara.

In lumina acestor definitii, metodele pe care le vom considera sunt
metode iterative liniare stationare de ordinul intai.
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Luam n considerare metodele iterative de forma
dati x©, X+ — Bylk) 4 f, k >0, (111)

avand notatd cu B o matrice patrata de n X n numita matrice de iteratie
si cu f un vector care se obtine din partea dreapta b.

Definitie

Se spune c3 o metoda iterativd de forma (111) este conforma cu Ax = b
daca f si B sunt astfel incat x = Bx + f . fn mod echivalent,

f=(—-B)A b (112)



Dupa ce am notat cu
el = x(k) _ x (113)

eroarea la al k-lea pas al iteratiei, conditia de convergenta se rezuma la a
cere ca limy_ oo (k) = 0 pentru orice alegere a datelor initiale. x(®)
(adesea numitd presupunere initiala).

Consistenta nu este suficientd pentru a asigura convergenta iteratiei.
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Teorema
Fie (111) o metoda consistents. Atunci, secventa de vectori x(k)

converge catre solutia lui Ax = b pentru orice alegere a lui x°) daca si
numai daca p(B) < 1.

Demonstratie: Din (111) si din ipoteza de consistenta, rezulta relatia
recursiva

elk+1) — Be(k). (114)
Prin urmare,
elk) = Bke(o),v k=0,1,---. (115)

Rezultd ca limy_,o, B¥e(®) =0 pentru orice e(®) daca p(B) < 1.

Invers, sa presupunem ca p(B) > 1, atunci exista cel putin o valoare
proprie A(B) cu modul mai mare de 1. Fie e(®) un vector propriu asociat

cu \; atunci Be(® = )\ ¢© si, prin urmare, ek) = \k e(0) in consecinta,

k)

e(®) nu poate tinde la 0 pe masura ce k — oo, deoarece |A| > 1.
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Metode iterative liniare

O tehnica generald de concepere a unor metode iterative liniare
consistente se bazeaza pe o scriere aditivdi a matricei A de forma
A =P — N, unde P si N sunt doua matrici adecvate si P este nesingulara.

Din motive care vor fi clarificate n sectiunile ulterioare, P se numeste
matrice de preconditionare.

Mai exact, dat fiind x(©), se poate calcula x(¥) pentru k > 1, rezolvand
sistemele

PxUHD) = NxK) 1 p o XD = pri() 4 p=lp k> 0.
(116)

Alternativ, iteratia poate fi scrisd sub forma

X+ — (k) p=1,.( >0, (117)
unde

rf) = b — Ax(K) (118) 127



XU — (k) 4 p=1p) >, (119)
unde
r) = p— Ax(K) (120)

reprezinta vectorul rezidual la pasul k.

Relatia de mai sus evidentiaza faptul cd un sistem liniar, cu matricea
coeficientilor P, trebuie rezolvat pentru a actualiza solutia la pasul k + 1.

Prin urmare, P, pe langa faptul ca nu este singulara, trebuie sa fie usor
de inversat, pentru a mentine costul total de calcul scazut. (Observati

ca, daca P ar fi egal cu Asi N =0, metoda ar converge intr-o singura

iteratie, dar la acelasi cost ca si o metoda directa).
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Mentionam (fard a demonstra) doua rezultate care asigura convergenta
iteratiei

Teorema

Fie A= P — N, cu A si P simetrice si pozitiv definite. Daca matricea

2P — A este pozitiv definita, atunci metoda iterativa definitd mai sus este
convergenta pentru orice alegere a datelor initiale x(©) sP

p(B) =IBlla=Blp <1. (121)
Mai mult, convergenta iteratiei este monotona in raport cu normele || - || p
sill-lla (adica, e*FV[p < [[eM]|p si[le® D4 < [le®)]|a

k=0,1,2,---).

2Aici, ||B|la = ||AY/2B||2, unde Al/2 este solutia ecuatiei X2 = A.
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Teorema ] ]
Fie A= P — N, A fiind simetrica si pozitiv definitad. Dacd matricea
P + PT — A este pozitiv definita, atunci P este inversabild, metoda

iterativa definita mai sus este convergenta monoton in raport cu norma
I 1la si p(B) < [|Blla < 1.
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Jacobi, Gauss-Seidel si metode
relaxate



Jacobi, Gauss-Seidel si metode relaxate

Tn aceast3 sectiune vom considera cateva metode iterative liniare clasice.
Daca intrarile diagonale ale lui A sunt diferite de zero, putem extrage in
fiecare ecuatie necunoscuta corespunzatoare, obtinand sistemul liniar
echivalent

1 - .
= b,—lzla,-jxj , i=1,---,n. (122)
J=1 A

In metoda Jacobi, odata ce a fost aleasd o valoare initiala arbitrard x(©),
x(k+1) se calculeaza prin formulele

1 n
Xl(k+1):;” b’_z a’JXJ(k) ) 1:17 , n. (123)
J=1j#
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Acest lucru Tnseamna sa efectuam urmatoare scriere pentru A.

[P =D, N=D-A=E+F, (124)
unde D este matricea diagonala a intrarilor diagonale din A, E este
matricea triunghiulara inferioara a intrarilor ej = —aj; daca i > j, ej =0
dacd i < j, iar F este matricea triunghiulard superioara a intrarilor
fi = —ajj daca j > i, f; = 0 daca j <i. Ca o consecinta,

A=D—(E+F), (125)

iar matricea de iteratie a metodei Jacobi este astfel data de

Bj=DYE+F)=1,—-DA. (126)
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Metoda Jacobi relaxata

O generalizare a metodei Jacobi este metoda relaxatd (sau JOR), in care,
dupa introducerea unui parametru de relaxare w, iteratia Jacobi este

Tnlocuita cu
l(k+1) Z a’J 17w)Xi(k)a I:]- ) M.
J=1#i
(127)
Matricea de iteratie corespunzatoare este
B_jw :wBJ+(1—w)/,,. (128)
Scrisd n termenii vectorului rezidual, metoda JOR corespunde la
xUHD) = x (&) 4 ;D=1 R, (129)

Aceastd metoda este conforma pentru orice w = 0, iar pentru w = 1
coincide cu metoda Jacobi.
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Gauss-Seidel method

Metoda Gauss-Seidel se deosebeste de metoda Jacobi prin faptul ca la al
k + 1-lea pas se folosesc valorile disponibile ale lui x(**1) pentru a
actualiza solutia, astfel incat, se are

i—1 n

D) _ 1| N kD) (B 1

X; = b; Zauxj Z ajx; |, i=1,---,n.
j=1 Jj=i+1

(130)

Aceastad metoda echivaleaza cu efectuarea urmdatoarei impartiri pentru A

n
P=D-E, N =F, (131)
iar matricea de iteratie asociata este

Bgs = (D — E)"'F. (132)

134



Gauss-Seidel over-relaxation method

Pornind de la metoda Gauss-Seidel, prin analogie cu ceea ce s-a facut
pentru iteratiile Jacobi, introducem metoda relaxarii succesive (sau
metoda SOR)

Xl(k+1 Z a’f L Z a’JXJ(k) + (1 - W)Xi(k)v = 17 RN

aii
" j=i+1

Metoda SOR poate fi scrisa in forma vectoriald sub forma
(I —wDE)XHD) = [(1 — W)l + wD FIX) + wD™1h,  (134)
din care matricea de iteratie este

B(w) = (I —wD™'E)™Y[(1 — w)/ +wD7IF]. (135)
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fnmultind cu D ambele parti ale lui
(I —wD7E) D) = [(1 — w)l, + wDTFIX™ 4 wD=th,  (136)

si amintind ca A= D — (E + F), rezulta urmatoarea forma a metodei

SOR

-1
x(k 1) — (k) | <1D — E) r(h, (137)
w

Este compatibila pentru orice w # 0, iar pentru w = 1 coincide cu
metoda Gauss-Seidel. In special, daci w € (0,1), metoda se numeste
sub-relaxare, In timp ce daca w > 1 se numeste supra-relaxare.
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Convergenta metodelor Jacobi
si Gauss-Seidel



Convergenta metodelor Jacobi si Gauss-Seidel

Exista clase speciale de matrici pentru care este posibil sa se stabileasca a
priori unele rezultate de convergenta pentru metodele examinate in
sectiunea anterioara. Primul rezultat in aceastd directie este urmatorul.

Teorema
Daca A este o matrice dominanta strict diagonala pe linii, metodele

Jacobi si Gauss-Seidel sunt convergente.

Proof. Sa demonstram doar partea teoremei referitoare la metoda Jacobi.
Deoarece A este strict diagonal dominanta pe randuri, |a;| > Zj'-’zl aj|
pentru j £ isii=1,---,n. In consecinta,

|| Bylloo = Maxi=1.....n|aj|/]aii| <1, astfel incat metoda Jacobi este
convergenta.
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Teorema .
Daca A si 2D — A sunt matrici simetrice si pozitiv definite, atunci

metoda Jacobi este convergenta si p(B;) = ||B,lla = ||BJllp-

Demonstratie: Teorema rezultd din primul rezultat general ludnd P = D.
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Teorema ]
Daca A este simetrica si pozitiv definitd, metoda Gauss-Seidel este

convergenta monotonic in raport cu norma || - || a-

Proof: Putem aplica al doilea rezultat general pentru matricea
P = D — E, dupa ce verificam ca P+ PT — A este definita pozitiv.
intr-adevar,

P+PT —A=2D-E—-F—-A=D, (138)

dupa ce am observat ca (D — E)T = D — F. Incheiem observand ca D
este pozitiv definita.
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in cele din urma, daca A este tridiagonala (sau tridiagonala in bloc), se
poate demonstra ca

p(Bes) = p*(By) (139)

De aici putem concluziona ca ambele metode converg sau nu converg in
acelasi timp. Tn primul caz, metoda Gauss-Seidel converge mai repede
decat metoda Jacobi, iar rata de convergenta asimptotica a metodei
Gauss-Seidel este dubli fatd de cea a metodei Jacobi. In special, daca A
este tridiagonala si simetrica pozitiv definitd, teorema de mai sus implica
convergenta metodei Gauss-Seidel, iar p(Bgs) = p?(B,) asigura
convergenta si pentru metoda Jacobi.
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Convergenta metodelor relaxate

Teorema )
Daca A este simetrica si pozitiv definita, atunci metoda JOR este

convergentd dacd 0 < w < 2/p(D~*A).

Demonstratie: Demonstratia rezulta din By, = wB; + (1 — w)/, si
By=D"YE+ F)=1,— D7 'Asi observand ca A are toate valorile
proprii reale.
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Convergenta metodelor relaxate

Teorema
Daca metoda Jacobi este convergenta, atunci metoda JOR converge

daca 0 < w < 1.

Demonstratie: Obtinem ca valorile proprii ale lui B, sunt
= whe +1 —w, k=1, ..,n, (140)

unde A, sunt valorile proprii ale lui B;. Apoi, reamintind formula lui Euler
pentru reprezentarea unui numar complex, lasam A = ree®* si obtinem

|uk|® = W?r + 2wr cos(Bk)(1 — w) + (1 — w)? < (wre +1 — w)?,
(141)

care este mai mica decat 1 daca 0 < w < 1.
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Convergenta metodelor relaxate

Teorema
Pentru orice w € R avem p(B(w) > |w — 1

; prin urmare, metoda SOR
nu converge dacd w < 0 sau w > 2.

Demonstratie: Daca {\;} reprezinta valorile proprii ale matricei de
iteratie SOR, atunci

[T = I det[(1 —w)l + wD™ F]| = |1 — w|" (142)
i=1

Prin urmare, trebuie sa existe cel putin o valoare proprie \; astfel incat
[Ai| > |1 — w]| si, astfel, pentru a asigura convergenta, trebuie sa avem
|1 —w| <1, adica 0 < w < 2.
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Sisteme nedeterminate




“Solutia” sistemelor
supradeterminate



Sisteme algebrice liniare

Sa consideram urmatorul sistem algebric de ecuatii liniare:

X1 +x0 =1,

X1—X2:2.

Semnificatia geometrica a acestui sistem este ca se cautd un punct de

intersectie a doua drepte, vezi figura.

X2

= X1
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Eliminarea gaussiana

In mod clar, efectudnd o eliminare gaussiana, Tnmultim prima ecuatie cu
(—1) si o0 addugam la a doua pentru a obtine urmatorul sistem echivalent

x1+x =1,
-2 Xo = 1.
A doua ecuatie ne dd x, = —% si, Tmpreuna cu prima ecuatie, gasim si
_3
X1 = 5

Prin urmare, punctul de intersectie al celor doua drepte este punctul

(X17X2) = (%a 7%)
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Sisteme supradeterminate

Acum, sa ludm in considerare urmatorul sistem algebric de ecuatii liniare:

Punctul de intersectie al acestor trei drepte este acelasi cu cel din

3x1+x =4.

x1+x =1,

X1—X2:2,

exemplul anterior, deoarece ultima ecuatie este redundanta.

m

3x1 +x2 =4

X2

5

-3

-2 -1

X3—Xo = 2

-5
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Sisteme supradeterminate

Dar ce se intdmpla daca a treia ecuatie nu este redundanta? Spunem c3

sistemul este supradeterminat. De exemplu

x1+x =1,
X1—X2:2,
3X1+X2:3.

Nu exista un punct de intersectie a acestor trei drepte.

X2
4L
3x1Hx2 =3
2+
—
~05 05 1015 20X1
— *
2.
X1 —[x2 =2
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“Solutia” sistemelor supradeterminate

Deci, sistemul algebric

x1+x =1,
X1—X2:2,
3X1+X2:3.

nu are o solutie.

Cu toate acestea, suntem in continuare interesati sa gasim un punct
(x1,x2) care este “o solutie aproximativa”.
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“Solutia” sistemelor supradeterminate

Deci, sistemul algebric

X1—|—X2:].,
X1 — Xo = 2,
3x1+x =3

nu are o solutie.

Cu toate acestea, suntem in continuare interesati sa gasim un punct
(x1,x2) care este “‘o solutie aproximativa”.

De ce?

149



“Solutia” sistemelor supradeterminates

De ce?

Pentru a raspunde la aceasta intrebare, trebuie sa remarcam ca sistemul
algebric

X1+X2:1,
X1—X2:2,

3x1+x =4
are o solutie unica, in timp ce perturbata sistemul algebric perturbat

x1+x2=1,
X1 — X2 = 27
3x1 +x =4.0001
nu are o solutie.
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Pentru cad aceste sisteme provin din practica si este posibil sa avem nu

exista valori exacte (corecte) ale coeficientilor. O mica eroare in
masuratori ar putea conduce la un sistem algebric nedeterminat si ne
intereseaza sa vedem care punct (x1, x2) satisface “mai bine” sistemul.



“Solutia” sistemelor supradeterminate

Mai inti de toate, sa remarcam ca sistemul algebric

x1+x =1,
X1 — X =2,
3X1+X2:3.

poate fi scris sub formad de matrice sub forma

Ax = b,
1 1
unde A=|1 -1 6R3X2,x:(xl> ER?sib=|2]| eR3.
X2
1 3
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“Solutia” sistemelor supradeterminate

Printr-o “solutie” a sistemului supradeterminat

Ax=0>b
X 5
intelegem un vector x = '] € R? astfel incat Ax si nu fie "atat de
X2
. X N
departe" de b. Cu alte cuvinte, un vector x = 1) € R? astfel incat
X2
0
Ax — b sa nu fie “departe” de | 0
0

Dar ce inseamna ca un vector nu este “atat de departe” de un alt vector?
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Problema celor mai mici
patrate: “Solutia” sistemelor
supra-determinate, Data Fitting



Am vazut ca solutia sistemului liniar Ax = b exista si este unica daca
n = m si A este nesingulara.

In aceasta sectiune dam un sens solutiei unui sistem liniar in cazul
supradeterminat, m > n.



“Solutia” sistemelor supradeterminate

Sa presupunem ca ni se dd un sistem liniar de forma

Ax=b, unde AcR™" si beR” cu m>n.

Presupunem, de asemenea, ca rank(A) = n.

In aceste conditii, sistemul de ecuatii liniare considerat poate fi

incompatibil (nu are solutie).

Observam c3 un sistem nedeterminat nu are, in general, solutie decat
daca partea dreapta b este un element al lui
Range(A) :={y e R"|F x € R" a. . Ax = y}.
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Aproximarea solutiei sistemelor supradeterminate

O abordare obisnuita pentru gasirea unei solutii aproximative consta in
alegerea gasirea acelui x pentru care se realizeaza valoarea minim3a a
normei reziduului r = Ax — b, pe R™, adica

. hl2
(LS)  min|lAx — bl|*.

Aceasta este o problema de minimizare a unei functii patratice pe intreg
spatiu, functia obiectiv patratica fiind data de

f(x) = (AT Ax,x) — 2(b, Ax) +||b||>.
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Problema celor mai mici patrate

Dat fiind A€ R™*" cu m > n, b € R™, spunem ca x* € R" este o
solutie a sistemului liniar Ax = b in sensul celor mai mici patrate daca

f(x*) = |Ax* — b||3 < min ||Ax — b||3 = min f(x). (143)
XER e s xER"

=f(x)

Astfel, problema consta in minimizarea normei euclidiene a reziduului.
Solutia problemei de minimizare poate fi gasitd prin impunerea conditiei
ca gradientul functiei f sa fie egal cu zero la x*.



Din
f(x) = (Ax — b)T(Ax — b) = xTATAx —2xTATb + bTh,  (144)
aflam ca
VF(x*) = 2ATAx* —2ATb =0, (145)
de unde rezultd ca x* trebuie s3 fie solutia sistemului patratic
ATAx* = ATh (146)

cunoscut sub numele de ecuatia normala.

Sistemul este nesingular daca A are rang complet si, in acest caz, solutia
celor mai mici patrate exista si este unica.
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Observam ca B = AT A este o matrice simetrica si pozitiv definita.
Astfel, pentru a rezolva ecuatiile normale, se poate calcula mai intéi
factorizarea Cholesky B = HT H si apoi se pot rezolva cele doua sisteme
HTy = ATh si Hx* = y. Cu toate acestea, din cauza erorilor de
rotunjire, calculul lui AT A poate fi afectat de o pierdere de cifre
semnificative, cu o pierdere consecventa a definitiei pozitive sau a
nesingularitatii matricei, asa cum se intdmpla in urmatorul exemplu
(implementat in MATLAB) in care, pentru o matrice A cu rang complet,
matricea corespunzatoare f/(ATA) se dovedeste a fi singulara

1 1
11
A= 227 o |, fIATA) = (147)
o 11
0 2

Prin urmare, in cazul matricelor prost conditionate, este mai convenabil
sd se utilizeze o metoda alternativa bazata pe factorizarea QR.
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A 2D picture

Un domeniu in care se utilizeaza problema cel mai mici patrate este
corelarea datelor.

275

250

225

2.00

175

150

125

1.00

0.0 0.2 0.4 0.6 0.8 1.0
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Date n puncte in R”, obiectivul este de a gasi o dreapta de forma
y=ax+b

care se potriveste cel mai bine cu acestea. Aceasta inseamna ca trebuie
sa gasim a si b care sa defineasca aceasta dependenta liniara.
Corespondentele liniare corespunzatoare care trebuiesc corelate sunt

yi = ax;+ b, i=1,2,...,n,

adica, sistemul care trebuie "rezolvat" este

x1 1 %1

x3 1 a Y2
b

X, 1 Yn
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Deci, gasiti a si b “solutie" pentru

x 1 1
X2 1 a _y2
: bl :
Xn 1 Yn
N—— S~——
=X =y

Solutia problemei celor mai mici patrate este

(Z) = (XTX)"1XTy.
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Unul dintre domeniile n care se utilizeazd problema celor mai mici
patrate este corelarea datelor.

Sa presupunem ca ni se da un set de date (s, t;), i = 1,2,...,m, unde
si€ R"si tj € R, si sa presupunem ca o relatie liniara de forma
ti=(si,x), i=12,.,m,

este cautata. Gasiti x pentru a putea aproxima aceasta dependenta
liniara!

Aplicatii?
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Deci, problema este de a gasi vectorul de parametri x € R" care rezolva

problema
m

)[2%@ . 1(<5i,X> — i)
i

Aceasta este o problema (LS) scrisa ca

min ||S x — t||?,
XER"

—=g == t

—=gf == t>
unde S = . . b=

s=glh == tm

m
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Alte situatii
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165



Alte situatii
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Mai multe despre corelarea datelor

Abordarea celor mai mici patrate poate fi utilizatd si in cazul ajustarilor
neliniare. Sa presupunem, de exemplu, ca ni se da un set de puncte in
R2: (uj,y;), i=1,2,...,m, si ca stim a priori ca aceste puncte sunt
aproximativ legate prin intermediul unui polinom de grad cel mult d;
adica exista ag, as, ..., aq astfel incat

d
E ajul =y, i=1,...,m.
j=0

Abordarea prin metoda celor mai mici patrate a acestei probleme este:
cauta ag, as, ..., a4 care sa fie solutia celor mai mici patrate a sistemului

liniar
1 uf e uf ao y1
1 w ug cee ug ai Vo
1 um u,zn - u,",’1 aq Ym

(LS) este, desigur, bine definitd dacd m > d + 1. Matricea este
asa-numita matrice Vandermonde, despre care se stie ca este de rang

d + 1 daca d + 1 din uj-uri sunt diferite intre ele. 167



Regularizarea Problemei celor
mai mici patrate, Eliminarea
zgomotului dintr-un semnal



Regularizarea Problemei celor mai mici patrate

Atunci cand A este subdeterminatd, adica atunci cand existd mai putine
ecuatii decat variabile, existd mai multe solutii optime pentru problema
celor mai mici patrate si nu este clar care dintre aceste solutii optime este
cea care trebuie luatd in considerare.

In modelul de optimizare ar trebui incorporat un anumit tip de informatii
prealabile despre x.

O modalitate de a face acest lucru este de a lua Tn considerare o
problem3 penalizata in care o functie de regularizare R(-) este adaugata
la functia obiectiv.
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Regularized Least Squares

Problema regularizatd a celor mai mici patrate (RLS) are forma
(RLS) min || Ax — b||? + A R(x),
x€R?

unde \ > 0 este parametrul de regularizare. Pe masura ce \ devine mai
mare, functia de regularizare primeste o pondere mai mare.

n multe cazuri, se considerd ca regularizarea este patratica. In special
R(x) = ||[D x|, cu D € RP*" dat. Functia de regularizare patratica
urmareste sa controleze norma lui D x si este formulatd dupa cum
urmeaza:

(RLS)  min|lAx — |+ A[|Dx]?,
sau, echivalent ca

(RLS)  min{fars(x) = (AT A+ ADT D)x,x) = 2(b, Ax) + [[b]*},
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(RLS)  min {firs(x) = ((ATA+ADT D) x,x) —2(b, Ax) + ||b||*},

Deoarece D si A sunt cautati a.i. matricea hessiana a functiei obiectiv
data de V2fzrs(x) = 2(AT A+ ADT D) = 0 sa fie positiv definita,
rezulta ca orice punct stationar este un punct minim global.

Punctele stationare sunt cele care satisfac
VfRLs(X) = 0

adica
(ATA+ADT D)x = AT b.

Prin urmare, daca D si A sunt astfel incat AT A+ XD7 D = 0, atunci
solutia RLS este data de

xris = (ATA+ADT D) 1AT b.
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Other situations

as as
3 3
28 25
p 2
1 1.5
B 1
A N 05
05 0
o -05
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.
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Eliminarea zgomotului dintr-un semnal

Sa presupunem ca este dat un semnal bruiat a unui semnal x € R":
b=x+ w.

Aici x este un semnal necunoscut, w este un vector de zgomot
necunoscut, iar b este vectorul masuratorilor cunoscute.

Problema eliminarii zgomotului este urmatoarea: Avand in vedere b,
gasiti o estimare "buna" a lui x.

Aplicatii?
Problema celor mai mici patrate va va da solutia x = b.

Pentru a gasi o problema mai relevanta, vom adauga un termen de
regularizare. Pentru aceasta, trebuie sa exploatam unele informatii a
priori despre semnal.
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De exemplu, am putea sti ca semnalul este neted intr-un anumit sens. In

acest caz, este foarte natural s3 adaugam o penalizare patratica, care
este suma patratelor diferentelor dintre componentele consecutive ale
vectorului; adica functia de regularizare este

n—1

R(X) = Z(X,‘ — X,'+1)2.

i=1

2

Aceasta functie patratica poate fi scrisa si sub forma R(x) = ||L x|
unde L € R("=1X1 este data de

1 -1 0 0 0 0

0 1 -10 0 0
L= ,

0 0 0 0 1 -1

~
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Problema rezultata a celor mai mici patrate regularizate este
min ||x — b + X ||L x||?,
x€ER"

iar solutia sa optima este data de
xrrs(A) = (I + ALTL) b,

unde X\ > 0 este un parametru de regularizare dat (bun).

Am putea gasi un astfel de A > 07
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Alte situatii

3as as
3 3
28 25
P 2
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A N 05
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0 05
0 50 100 150 200 250 300 G 50 100 150 200 250 300
Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.
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Aplicatie de pe telefonul dumneavoastra

Transmiteti pe Whatsapp sau alt canal de comunicatii un mesaj vocal
facand un zgomot de fundal, de exemplu, sunetul cheilor sau al unui
clopotel. Salvati fisierul cu numele sunet_bruiat.ogg si folositi codul
de mai jos.

Pentru rezolvarea sistemului (/ + A LT L) x = b folositi diverse metode de
rezolvare a sistemelor (de exemplu, Cramer).

Comparati timpul in care se reconstruieste semnalul. Acesta indicua
rapiditatea sau lentoarea metodei de rezolvare a sistemului.

Observati ca pentru unele metode apare la final un bruiaj in plus, ceva
nou! Aceasta indica eroarea cu care se rezolvua sistemul prin metoda
aleasa. Practic, “auziti eroarea”! Eroarea reiese in produsul final.

Folositi atdt metode directe cat si metode iterative!
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[b,fs] = audioread(’sunet_bruiat.ogg’);

%incarcam sunetul cu zgomot

#Verificam sunetul si afisam semnalul descris de acesta
sound (b, fs);

plot(b);

hold on

% Afisam lungimea pentru a intelege magnitudinea datelor
n = length(b)

% Construim matricele In si L folosind matrici rare (sparse)
%deoarece au dimensiuni

% foarte mari, dar majoritatea elementelor sunt nule

idn = speye(n);

e = ones(n-1,1);

L = spdiags([-e e]l, [0 1], n-1, n);

% Definim lambda (putem incepe de la o valoare mica

%si sa tot crestem)

lambda = 5;
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% Folosim metoda celor mai mici patrate cu regularizare
%patratica (vezi curs) si ajungem la format

% x = inv(In + lambdax*L’*L) *b, dar nu folosim aceasta forma,
%deoarece matricea este prea mare.

% Fie folosim operatorul \ care implementeaza deja cea mai
heficienta metoda de rezolvare a unui

% sistem liniar, luand in calcul si cazul matricelor rare:
x = (speye(n) + lambdax(L’*L)) \ b;

% Ascultam semnalul filtrat:

sound(x, fs);

plot(x);

hold on
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% Fie LU pe blocuri rezolvat in laboratoarele anterioare, dar
%se pierde putin din acuratete:

A = speye(n) + lambdax*(L’*L);

db = floor(n/500) % numarul de blocuri (se poate modifica)
x = [1;

for k = 1:499

[L,U]l= FactorizareLU(A(1+(k-1)*db:k*db,1+(k-1)*db:k*db)) ;
y = lowerSolve(L,b(1+(k-1)*db:k*db)) ;

x1 = upperSolve(U,y);

x = [x x1°];

end

% Ascultam semnalul filtrat:

sound(x, fs);

plot(x);

legend(’Original’, ’Filtrat \’, ’Filtrat LU blocuri’);
xlabel (’Sample’);

ylabel (’Amplitudine’);
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Problema neliniara a celor mai mici patrate: Circle Fitting

Exista situatii in care ni se da un sistem de ecuatii neliniare
fi(X):Ch i:152a"'7m7

unde f; : R" = R, ¢; € R sunt date si x trebuie finantat.

In acest caz, problema de aproximare este cea a celor mai mici patrate
neliniare (NLS), care se formuleaza astfel

m
. 2
min fi(x) —¢)“.
min >(A(x) - @)
i=1
Nu exista o modalitate usoard de a rezolva problemele NLS. Metoda
Gauss-Newton este o modalitate, dar aceasta converge numai catre un
punct stationar.
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Circle fitting

Sa presupunem ca ne sunt date m puncte aj, a», ...,am € R". Problema
adaptarii cercului urmareste sa gaseasca un cerc

Cx,r)={y eR": |ly — x| =r}
care se potriveste cel mai bine punctelor m.
Aplicatie?

Ecuatiile neliniare asociate cu aceasta problema sunt

lIx — ai|l = r, i=1,2

Deoarece dorim sa avem de-a face cu functii diferentiabile, iar functia
norma nu este diferentiabila, vom considera versiunea patratica a

acesteia:

Ix—ail>=r? i=12,...m.

)
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Problema locatiei egal departate

@ B 4
)
)
®
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Problema locatiei egal departate
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Problema locatiei egal departate cu ponderi de importanta
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NLS for Circle fitting
Problema NLS asociata cu aceste ecuatii este

m

. o 12 _ 2)2
i, D=l =l

Observatie: In aceasta forma nu avem o problema de optimizare fara
constrangeri!

Dar, de fapt, problema este echivalenta cu

m

i —2{a; 2 12 — p2)2.
min > 2(=2(ai,x) + [Ix]? + [l = )

i=1

Efectuand schimbarea de variabile R = ||x||> — r?, problema de mai sus
se reduce la

m

min  f(x,R) := Z(—2<ai,X> + R+ [lail®)?.

Rn 2>R
xeRe, [x[2> P
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De fapt, orice solutie optima (X, 1‘3) a problemei

m

min _ f(x,R) := Z(—2<ai7x> + R+ laill?)?

xER",RER pa
satisface in mod automat ||x]||? > R, deoarece altfel
—2(a;, X)+R+|ai|? > —2(ai, ) +||R|>+]|ail|? = |X—ai? > 0, i = 1,2, ..., m.

Prin ridicarea la patrat a ambelor parti ale primei inegalitati din ecuatia
de mai sus si adunarea la i rezulta

Z( 2(a;, %) + R+ [|ail*)>
> Z( 2(a;, %) + X1 + l|ail|*)* = [I% — a1 = (%, %),
aratand ca (X, ||x||?) conduce o valoare a functiei mai mica decat (X, ﬁ)

in contradictie cu optimimalitatea lui (X, ﬁ)
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In concluzie, problema NLS

m

i f ,RZZ -2 i + R+ ,'22
renmin  FOGR) =3 (=2(aix) + R+ [aill’)

i=1

este de fapt echivalenta cu problema LS

. . x\ 2
i f(x,R) = ||A <R> b||%,

2af -1 llax]?

2a; -1 (e
unde A = ] ) si b=

2a;, -1 lam|?
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Daca A este de rang maxim, atunci solutia unica a problemei liniare a
celor mai mici patrate este

X

e = (ATA)LATb.

Optimul x este dat de primele n componente, iar raza r este data de

r=VIxE-R.
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Matrici dreptunghiulare:
Factorizarea QR



Factorizarea QR

Definitie

O matrice A € R™%" cu m > n, admite o factorizare QR dac3 exista o
matrice ortogonala @ € R™*™ si o matrice trapezoidala superior

R € R™*" cu rdnduri nule incepdnd de la al (n+ 1)-lea, astfel incat
A= QR.

Este de asemenea posibil sa se genereze o versiune redusa a factorizarii
@R, asa cum este afirmat in rezultatul urmator.
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Teorema
Fie A€ R™*" cu m > n, o matrice de rang n pentru care este cunoscutd
o factorizare QR. Atunci existd o factorizare unica a lui A de forma
A= QR,
unde 6 si R sunt submatrice ale lui Q si R, date respectiv de

Q@=Q(1:m,1:n), R=R(1:n,1:n).

Mai mult, Q are coloane vectoriale ortonormale si R este triunghiulard
superior si coincide cu factorul Cholesky H al matricei simetrice definite
pozitiv AT A, adica, ATA=R"R.
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monstratie

Putem demonstra direct existenta factorizarii speciale apoi sa
consideruam cua multimea vectorilor liniari independenti dati de coloanele
lui Q este completatua pana la o bazua iar R se obtine adagand linii nule.

Presupunem aplicarea algoritmului Gram—Schmidt asupra coloanelor

matricei
A= (a1 ]| ]an)

Proiectia unui vector a pe directia unui vector g se noteaza

{q,a)
(9,9)

unde (-, -) reprezinta produsul scalar standard.
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Demonstratie

Procedura incepe cu:

u
U = ai, a1 = )
[ |
iar vectorii urmatori se obtin prin eliminarea componentelor pe directiile
deja determinate:

] u2

Up = az — pro.]q1327 a = Ma
. g u3

U3 = a3z — proj,, as — proj,, as, 93 = Taall’
k—1 u
. k

Uk = ak — »_ Projqak, W= Tl
Jj=1 ,
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Rearanjarea acestor relatii astfel incit vectorii a; sa fie pe partea stinga
conduce la:

ap = CI1||U1||7
az = proj,, az + qa w2,

a3z = proj,, a3 + projy, as + gslusl|,

k—1

a = Zprojqjak + gl uk |-
j=1
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Rescriem
ap = CI1HU1||7
a2 = (q1,a2)q1 + q2||u2]|,
a3 = (q1, a3)q1 + (92, a3)q2 + g3||us]|,

k—1

ax = Z(Cb’, ak)qj + qilluk]|-
j=1

Toate aceste relatii pot fi exprimate matriceal:

luill  (q1,a2) (q1,as)

0 [wall (g2, a3)
(Q1 | | Cln) 0 0 ||U3H
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Demonstratie

Produsul matricial reproduce exact matricea originala A, astfel incit:
A= QR,

unde @ = (g1]--.1|gn) este ortogonala, iar R este triangular superior.

Cum R = QT A, obtinem explicit:

(g1,a1) (q1,a2) (q1,a3)

~ 0 G2,a2) (92, a3
- (02,22) (a2.5)

0 0 (g3, a3)
Observam ca:
<qjaaj>:||uj||v <qj,ak>:0pentruj>k,
iar din relatia @OVT = [ deducem
QT =@
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Daca A are rangul n (adica, rang complet), atunci vectorii coloana ai lui
Q@ formeaza o baza ortonormala pentru spatiul vectorial

range(A) ={y e R" : y = Ax pentru x € R"}.

Ca o consecintd, construirea factorizarii QR poate fi interpretata si ca o
procedurad pentru generarea unei baze ortonormale pentru un set dat de
vectori.

Daca A are rangul r < n, factorizarea @R nu conduce neaparat la o baza
ortonormala pentru range(A). Totusi, se poate obtine o factorizare de

forma
Ri1 Rz

TAP =
q 0 0)’

unde Q este ortogonala, P este o matrice de permutare si Ry; este o

matrice triunghiulara superior nesingulara de ordin r.
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In general, cand folosim factorizarea QR, ne vom referi intotdeauna la
forma sa redusa, deoarece are aplicatie in rezolvarea sistemelor
supra-determinate.

Factorii matriciali Q si R pot fi calculati utilizand ortogonalizarea
Gram-Schmidt.

n continuare, impunand ca A = QR si folosind faptul ca Q este
ortogonala (adica, @" Q = 1,), elementele lui R pot fi calculate cu
usurinta.

De asemenea, este de remarcat faptul ca, daca A are rang complet,
matricea AT A este simetrica si pozitiv definita, si, prin urmare, admite o
factorizare Cholesky unica de forma H™ H. Pe de alta parte, deoarece
ortogonalitatea lui Q implica

HTH=ATA=R"Q"QR=R"R, (148)
concluzionam ci R este, de fapt, factorul Cholesky H al lui AT A.

Astfel, elementele diagonale ale lui R sunt nenule doar daca A are rang

complet.
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Metoda Gram-Schmidt modificata

Metoda Gram-Schmidt are o utilitate practica redusa, deoarece vectorii
generati isi pierd independenta liniard din cauza erorilor de rotunjire. Desi
este corecta din punct de vedere matematic, ea prezinta o dificultate
majorad in practica: este instabila numeric, in special atunci cand vectorii
sunt aproape depedenti liniar sau cand erorile de rotunjire se acumuleaza.

Pentru a Tmbunatati stabilitatea, se utilizeaza Metoda Gram-Schmidt
modificatd (Modified Gram-Schmidt, MGS), o varianta echivalenta
teoretic, dar mult mai robusta.
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Metoda Gram-Schmidt modificata

n forma clasica, vectorul nou
k—1
ue=ak — Y _(qj, a)qj
j=1
se obtine prin scaderea dintr-o singura operatie a tuturor proiectiilor pe
vectorii ortonormali anteriori. Aceasta operatie implica scaderi intre valori
apropiate, ceea ce conduce la pierderea de precizie in aritmetica flotanta.

Metoda modificatd reorganizeaza calculele astfel incit proiectiile sunt
eliminate una cdte una, actualizdnd vectorul la fiecare pas:

U,EO) = dak,

Ulgj)zul(jil)_<qj;ul({71)>qj7 j:1’2""’k_1’
_(k-1)

ug = uk .

Aceasta procedura reduce riscul de anuldri numerice si limiteaza
propagarea erorilor.
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Observati cd nu este posibila rescrierea factorizarii QR pe matricea A. In
general, matricea R este rescrisa pe A, Tn timp ce Q este stocata separat.
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Sisteme nedeterminate cu
factorizarea QR



Sisteme nedeterminate cu factorizarea QR

Teorema
Fie A€ R™*" cu m > n, o matrice de rang complet. Atunci solutia

unica a problemei
min
xeR"

Ax — b3
——
=d(x)

este data de
x*=R1Q7b, (149)

unde R € R™n si (5 € R™*" sunt matricile obtinute din factorizarea QR
a lui A. Mai mult, minimul lui ® este dat de

m

o(x") = > [(QTh)]>. (150)

i=n+1
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Demonstratie

Factorizarea QR a lui A exista si este unica, deoarece A are rang
complet. Astfel, exista doua matrici, @ € R™*™ si R € R™*", astfel
incdt A = QR, unde Q este ortogonala.

Deoarece matricile ortogonale pastreaza produsul scalar euclidian, rezulta
ca

IAx — blI3 = ||Rx — QT b|j3. (151)

Aducandu-ne aminte ca R este trapezoidala superior, avem

IRx — Qb3 =[|Rx — QTbI3+ > [(RTH)I?,  (152)

i=n+1

asa Tncat minimul este atins cand x = x*.
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Daca A nu are rang complet, tehnicile de rezolvare de mai sus esueaza,
deoarece, in acest caz, dacd x* este o solutie a problemei

- 2
min ||[Ax — b
min A - bl
=d(x)
atunci vectorul x* + z, cu z € ker(A), este de asemenea o solutie. Prin

urmare, trebuie introdusd o constrangere suplimentara pentru a impune
unicitatea solutiei.

De obicei, se impune ca x* sa aiba norma euclidiana minima, astfel incat
problema celor mai mici patrate poate fi formulata astfel:
gasiti x* € R” cu norma euclidiand minima astfel incat
|AX*" — b2 < min [ Ax — b[3. (153)
XERM ey

=d(x)

Instrumentul pentru rezolvarea acestei probleme noi este descompunerea
prin valori singulare (sau SVD).
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Reflectori Householder

Definitie
Fie u € R™ normat, adica ||u|| = 1. O matrice U € R™*™ de forma

U=1,—-2uu’

se numeste reflector elementat Householder de ordin m.

Matricea U are proprietatile
e UTU=(In—2uu")T(ln—2uu")=lp—4uu"+4u(u"u)u’ = Ip,.
o UT =U
e Ux=(lp—2uu")x=x-2u (uTx) =x-—2 (uTx) u

N~ N——
() = (i)
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Reflectori Householder

Daca u nu are norma 1, putem defini totusi reflectorul Householder

1 2
U=lp—=uu', unde B= M
B
1
Vom obtine Ux:(lmf%uuT)X:xf%u (u x) :xfB(uTx) u
g

e pentru v = (0 ... 0 ug ... uy)", reflectorul Houseldorf corespunzator

este

L — 0 ~ -
U, = (kol U) , U fiind reflectorul asociat vectorului v = (u ... um)T
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

Consideram o matrice A € R™*" si dorim sa construim o matrice
Q@ € R™*™ ortogonald si o matrice R € R™*" astfel ca A= QR.

Daca notam cu a; prima coloanad a matricei A, si definim (De ce 1y este
nenul?)

up = a; — ||a1]| e1, unde e; este primul element al bazei canonice,

construind reflectorul Householder

1 up |2
U1:/m—EU1 UlT, unde Blzw,
vom avea
U1 a) = Ha;lH Gilo
Prin urmare obtinem
1 1
R
0 a e a
A(l) — UlA _ 22 2n
0 3571'2) coo ag,)j 206



Aplicatii ale reflectorilor Householder pentru factorizarea QR

La urmatorul pas definim

2= (A(l)(20: m,2)> ’ (154)

apoi definim
Up = ay — ||a2]| &2, unde e, este al doilea element al bazei canonice si

construind reflectorul Householder

_ llef?

U2 = Im — — U l12T7 unde BQ 5

B2

vom avea

U2 dpy = HazH Eo

In plus, deoarece prima linie si prima coloana din u, u] sunt zero, prima

linie a lui A®) dar si prima coloana a lui nu se modifica A™) prin
inmultirea cu Us.
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

Prin urmare

(VRN CY (1)

llall a1y a123 315
0 |lall aég’ aég)
A® = LAV = U, A= O 0 a3 - a2
o o0 a2 a%2)
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

La pasul k definim

apoi definim
ux = ax — ||ak|| ek, unde e este elementul k al bazei canonicei

construind reflectorul Householder

_ llel?

1
Uk = /m — — Uk UZ—, unde ﬁk 5

B

vom avea
Uk dy = Hak|| €.

In plus, deoarece primele k — 1 linii si primele k — 1 coloana din uy u/

sunt zero, primele linii ale lui A—1) dar si primele coloane ale lui nu se
modifica A=Y prin inmultirea cu U. 209



Aplicatii ale reflectorilor Householder pentru factorizarea QR

Prin urmare

laf &) - a%; ag;
0 ||a2|| aZk a2n
AR . — UkA(kfl) — U Uy A= : : : )
0 0 ||akH agn)
0 0 A o am
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

Repetand procedeul de n ori gasim

(1) (1)

laill &> - 312n

0 faf - a5

Aln) . UnA(ﬂfl) =U,.U A= 0 0 HanH
0 0 0

0 0 0




Factorizarea este gasita

Deci, Q si R din factorizarea QR a lui A sunt

lagf &Y - Ei

2

0 flaof - a2

Q=Uy...U1U,siR=1| 0 0 - Jlan
0 0 0

0 0 0
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Avand factorizarea QR vom putea deduce factorizarea QR si apoi putem
sa le folosim pentru rezolvarea problemei celor mai mici patrate, daca
rang A = n.
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Metoda gradientului folosita
pentru rezolvarea sistemelor



Dorim sa construim o solutie aproximativa pentru problema de minim

m]ilg f(x), unde f:R" — R estedeclass C!' pe R".
xeR"

De ce?

Pentru cd dupd cum am v azut, rezolvarea aproximativa a unui sistem de
ecuatii se reduce la o problema de optimizare, adica gasirea unei valori
minime a unei functii pa tratice.



Corelarea datelor

275

250

225

2.00

175

150

125

1.00

0.0 0.2 0.4 0.6 0.8 1.0

f:R25R,f(z)=(Az,2)+2(b,z)+¢c, AeR?®*? becR? ceR.
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Alte probleme

@® B A
)
)
®
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Alte probleme



Alte probleme
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De ce aproximativ?

Tn majoritatea problemelor, abordarile analitice obisnuite nu pot fi
aplicare in practicd din urmatoarele motive:

e ar putea fi o sarcina foarte dificild s3 se rezolve sistemul de ecuatii
(de obicei neliniare) Vf(x) = 0;

e chiar dac3 este posibila gasirea tuturor punctelor stationare, s-ar
putea sa existe un numar infinit de puncte stationare, iar sarcina de
a-l gasi pe cel care corespunde valorii minime a functiei este o
problema de optimizare care, prin ea insasi, ar putea fi la fel de
dificila ca si problema initiala.
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Directii de descrestere

Consideram problema de minim

mLQ f(x), unde f:R” =R este o functie de clasi C' pe R".
xeR"

Tn loc s3 incercam sa gasim expresia analitica a unui punct stationar, vom
construi un algoritm iterativ pentru gasirea punctelor stationare.
Algoritmii iterativi pe care 1i vom lua in considerare in aceasta sectiune au
forma xx 11 = xx + te dx, k=0,1,2,...., unde dj este asa-numita
directie, iar t; este marimea pasului.

Definitie [Directia de descrestere]

Fie f : R” — R de clasa C! pe R". Un vector 0 # d € R" se numeste
directie de descrestere a lui f in x daca derivata directionala f'(x; d)

este negativa, ceea ce inseamna ca
f'(x;d) = (Vf(x),d) <0.
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Lemma [Proprietatea de descrestere pe directiilor de descrestere |

Fie f : R” — R o functie de clasd C! pe R". Sa presupunem ca d este
o directie de descrestere a lui f in x. Atunci existd £ > 0 astfel incat

f(x+td) < f(x) pentru orice t e (0,¢].

Proof.
Deoarece f'(x; d) < 0, din definitia derivatei directionale rezulta ca

im f(x+td)—f(x)

t—0+ t

= f'(x;d) < 0.

Prin urmare, existd € > 0 astfel incat

f(x+td)—f(x) -
t

0 pentru orice t € (0,¢],

ceea ce implica cu usurinta rezultatul dorit. O



Metoda directiilor de descrestere schematica

Initializare: Alegem xo € R" arbitrar;
Etapa generala: Pentru orice k =0,1,2, ..., se
alege o directie de descrestere d;
gaseste o marime a pasului t, care sa satisfaca f(xx + tedk) < f(x«);
Setati xxr1 = Xk + tkdk;
se verifica daca un criteriu de oprire este satisfacut, atunci STOP si

Xk+1 este iesirea.

Atat de frumos si atat de neclar (doar conceptual)!
Multe detalii lipsesc din descrierea schematica de mai sus a algoritmului :

e Care este punctul de plecare?

e Cum se alege directia de descrestere?

e Ce marime a pasului trebuie sa fie luata?
e Care este criteriul de oprire?
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Clarificari

e Punctul de pornire poate fi ales arbitrar, in absenta unei informatii
deja stiute despre solutia optima.
e Un exemplu de criteriu de oprire popular este [|Vf(xxi1)|| < e.

e Principala diferenta intre diferitele metode este alegerea directiei de
descrestere .
e Vom presupune cad marimea pasului este aleasa astfel Incat
f(xkt1) < f(xx). Inca nu este clar!
e marime constant3 a pasului: t, =t,k =0,1,2,...; Util pentru
probleme simple.
e O constanta mare poate face ca algoritmul sa nu fie descrescator;
e O constanta mica poate cauza o convergenta lenta a metodei.
e cautarea exacta pe linie: tx este un minimizator al lui f de-a lungul
razei xx + tdy, adica tx = argmintzof(xk + tdk).
e Pare mai atractiva la prima vedere;

e Dar, nu este intotdeauna posibil sa gasim minimizatorul exact.

e backtracking este un compromis intre ultimele doua abordari;
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Backtracking

Metoda necesita trei parametri: s >0, o € (0,1) 8 € (0,1). Alegerea lui
tx se face prin urmatoarea procedurd. In primul rand, ¢, se stabileste ca
fiind egal cu presupunerea initiald s. Apoi, atata timp cat

F(xk) — F(xk + tedk) < —a b VF(xi), dic),

se stabileste t, = [ t.

Mairimea pasilor se alege ca t, = s 3%, unde ix este cel mai mic numar
intreg nenegativ pentru care se indeplineste conditia

f(xk) — f(xk + s B%di) > —as B*(VF(xk), de)

este satisfacuta.



Validitatea conditiei suficiente de scadere

Fie f : R” — R o functie de clasa C! pe R” si fie x € R". Sa
presupunem ca 0 # d € R” este o directie de descrestere a lui f in x si
fie a € (0,1). Atunci existd € > 0 astfel incat

f(x)— f(x+td) > —at(VFf(x),d) pentruorice te(0,e]
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Proof.

Deoarece f de clasa C! pe R” rezulta ca
f(x+ td) = f(x) + t(VF(x),d) + o(t]|d]),
si, prin urmare
f(x) = f(x+ td) = —at(Vf(x),d) — (1 — a) t (VF(x),d) — o(t]|d]]),

Deoarece d este o directie de descrestere a lui  la x avem

o L (VF(x),d) + o(tld|])
t—0t t

=(1-a)(Vf(x),d) <0.

Prin urmare, exista € > 0 astfel incat pentru toate t € (0, ] sa existe
inegalitatea (1 — a) t (V£(x),d) + o(t||d||) < 0, ceea ce conduce la
rezultatul dorit.
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Metoda gradientului

in metoda gradientului, directia de descrestere este aleasi ca fiind
di = —Vf(x), k=0,1,2....
Aceasta este o alegere buna, deoarece
f'(xk; —VF(xk)) = 7<Vf(xk),Vf(xk)> = f||Vf(xk)||2 < 0.
Derivata directionala minima intre toate directiile normalizate

Fie f : R” — R o functie de clasa C! pe R” si fie x € R” un punct
nestationar. Atunci o solutie optima a

0 / . . _
min{f(x; d) : [ld] =1}

R
este = IR



Proof.
Din moment ce f'(x; d) = <Vf d> problema este aceeasi ca si in

cazul in care

min {(VF(x), d) : |d]l =1}

Din inegalitatea Cauchy-Schwarz avem

(VF(x),d) = =[[VE()IlId]] = =[IVF(x)]I.
Astfel, —||Vf(x)]| este o limita inferioara a valorii optime a problemei de
f'
minimizare. Pe de alta parte, introducand d = |§f§ ;” in functia
obiectiv obtinem ca
V£(x) V£ (x)
F(x — o) = (V) — o7 A7) = IV,
el = 0 el
si astfel ajungem la concluzia ca limita inferioara —||Vf(x)|| se atinge la
_Vf(x) . .
d=— ceea ce implica rezultatul dorit. O
INS]
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Metoda Gradient
o Input: £ > 0 ca parametru de toleranta.

o Initializare: Se alege xg € R” in mod arbitrar.

o Etapa generala: Pentru orice k = 0,1,2, ... se executa urmatorii
pasi:
o Se alege o marime a pasului tx printr-una dintre procedurile
mentionare mai sus pentru

g(t) = f(Xk = tVf(Xk)).

° Setati Xk+1 = Xk — thf(Xk).
o Daca ||Vf(xk+1)|| <&, STOP si xit1 este valoarea de OUTPUT
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Metoda gradientului se poate comporta destul de rdu. Ca un exemplu, sa

consideram problema de minimizare

1
N S
Xt 1007

si sa presupunem ca utilizim metoda gradientului cu vectorul initial
(L 1)T

10004/ -
Aceasta este o problema importanta, un raspuns partial poate fi gasit
folosind notiunea de numar de conditionare.
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Se considera problema de minimizare patratica

Xng]llgn{f(x) = (Ax,x)}, unde A-0.

Solutia optima este, evident, x* = 0. Metoda gradientului cu pas exact

are forma
Xk+1 = Xk + tidk,
unde dx = —2 A x, este gradientul lui f in xy, iar pasul t; este gasit ca
fiind )
i
2 (Ady, di)
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Deci,

f(Xk+1) = <AXk+1,Xk+1> = <A (Xk + fkdk), (Xk + tkdk)>
= <AXk,Xk> + 2 tk<AXk, dk> P t£<A d, dk>
= (Axi, xi) — 2 ti(di, di ) + to{Ady, di).

Introducand in ultima relatie expresia pentru t, datd mai sus, obtinem ca

B 1 <dk,dk>2 B 1 <dk,dk>2
f(xk1) = <AXk,Xk> = Zm = <AX’<’X’<> (1 4 <A di, dk><AXkan>

(cho )" )

= fx) (1 " (Adk, di ) (AL dy, dy)
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Inegalitatea lui Kantorovici

Fie A o matrice n x n pozitiv definita. Atunci pentru orice 0 # x € R”
are loc inegalitatea

<X7 X>2 4 Amaux>\min
<AX7X><A71 % X> - ()‘max + )‘min)z '

Se noteazd m = A\pin Si M = A\.x. Valorile proprii ale matricei

A+ MmA=! sunt \; + @ i=1,...,n. Este usor de demonstrat ca
maximul functiei unidimensionale ¢(t) =t + @ pe [m, M] este atins in
punctele m si M cu o valoare corespunzatoare a functiei ¢ de M + m si,
prin urmare, din moment ce m < X\;(A) < M, rezulta c3 valorile proprii
ale lui A+ M m A~ sunt mai mici decat (M + m). Astfel,

A+ MmA™ < (M+m)l, insensul ca A+ MmA™ — (M +m)l, <0
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Adica.
<Ax,x> +Mm <A71 X,x> <(M+ m)<x,x>,
care, combinata cu inegalitatea simpld a8 < %(a +B)2Va,B€R

rezulta

<Ax,x> Mm<A_1x x>

)

IN

%[<A x,x> +Mm <A_1 X x>]2

2
< M<X’X>2’

care, dupa o simpla rearanjare a termenilor, conduce la rezultatul dorit.
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Revenind la analiza ratei de convergentd a metodei gradientului, rezulta,

folosind inegalitatea lui Kantorovici, ca

F(xer1) < <1 - M) F(xk) = (% ~ :)2 F(x),

unde M = >\max(A)v m = A111111(’4)-

Rezumand, avem
Analiza ratei de convergenta pentru functii patratice

Fie xx sirul generat de metoda gradientului cu pas constant pentru
rezolvarea problemei de minimizare patratica

Xng]llgn{f(x) .= (Ax,x)}, unde A=0.

Atunci, pentru orice k =0,1, ...

f(Xk41) < (% J_r :)2 f (%),

unde M = )\max(A)v m = )\min(A)-
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Aceasta implica faptul ca pentru orice k = 0,1, ....

m-m\?_ (1)
f(xis1) < c* f(xo0), where c = () = | = —
M ) 1
- Amax(A) . o .
Numarul kK = W se numeste numar de conditionare al lui A.

Matricele cu un numar mare de conditioare se numesc rdu conditionate,
iar matricele cu un numar mic de conditionare (aproape de 1) se numesc
bine conditionate.
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Rescalare




Rescalare

Problema matricelorr prost conditionate este una majora si au fost
dezvoltate multe metode pentru a o evita. Una dintre cele mai populare
abordari consta in “conditionarea” problemei prin efectuarea unei
transformari liniare corespunzatoare a variabilelor.

Mai precis, si consideram problema de minimizare fara constrangeri

)[re]]lan f(x).

Pentru o matrice nesingulara data S € R"*", efectuam transformarea

liniard x = S y si obtinem problema echivalenta

eyl = 1S

Deoarece Vg(y) = STVFf(Sy) = STVF(x), rezults cd metoda
gradientului aplicatd problemei transformate ia forma

Yit1 = Yk — te STVF(S yk).
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Din moment ce Vg(y) = STVf(Sy) = STVf(x), rezultd ca metoda
gradientului aplicatd problemeei transformate ia forma

Yer1 = Yk — te STVF(S yi).

Inmultind aceastad ultima egalitate cu S la stanga si folosind notatia
xx = S yk, obtinem formula recursiva

Xk+1 = Xk — g SSTVf(Xk)

Definind D = S ST, obtinem urmatoarea versiune a metodei gradientului,
pe care o numim metoda gradientului scalat cu matrice de scalare D
(pozitiv definita):

Xk+1 = Xk — by DVf(Xk)
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Directia —DV f(xk) este o directie de descrestere a lui f in xi atunci
cand Vf(xx) # 0, deoarece

f'(xk; =DV f(xx)) = —<Vf(xk), DVf(Xk)> < 0.

Pentru a rezuma discutia de mai sus, am aratat ca metoda gradientului
scalat cu matricea de scalare D este echivalenta cu metoda gradientului
utilizata pentru functia g(y) = f(D/2y).

Aici S = DY/2 inseamni ca STS = D.
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Analiza convergentei metodei gradientului

Vom prezenta o analiza a convergentei metodei gradientului utilizata
pentru problema de minimizare fara restrictii.

min f(x).

Vom presupune ca functia obiectiv f este de clasa C! si ca gradientul siu
V' este Lipschitz continuu pe R”, ceea ce inseamn3d ca

IVf(x) — Vf(y)|| < L|x —y| pentruorice x,y € R".
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Retineti ca daca Vf este Lipschitz cu constanta L, atunci este de
asemenea Lipschitz cu constanta L > L. Prin urmare, exista un numar
infinit de constante Lipschitz pentru o functie cu gradient Lipschitz.

Clasa functiilor cu gradient Lipschitz cu constanta L este notata cu
CLl’l(R”) sau pur si simplu CLl’l.
e Functii liniare: f(x) = <a,x> cul=0.

e Functii patratice: f(x) = (Ax,x)+2(b,x)+ccuL=2|A
deoarece

IVE(x) = VEW)I < 2[|[Ax = Ayl| < 2[|A]l[]x = ¥ -
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Propozitie
Fie f o functie de clasa C? pe R". Atunci urmatoarele doua afirmatii

sunt echivalente
(a) fe CINRM).
(b) ||V2f(x)|| < L pentru orice x € R”, unde ||-|| reprezinta norma

spectrala.

(b)— (). Sa presupunem ca ||V2f(x)|| < L pentru orice x € R". Atundi,
prin teorema fundamentala a calculului integral, avem pentru orice

x,y € R"

1
Vf(y) = VF(x) +/0 V2f(x + t(y — x)) (y — x)dt

= VFf(x)+ (/01 V3 (x + t(y — x))dt) (y — x),
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Deci
HVfu>—Vfu):4(A V”b«+dy—xnﬁ>(y—x)
gwgtﬁax+ﬂy—x»mMW—xu

1
s/nv%w+ww—xmwwy—w
0
<Ly =],

care demonstreaza rezultatul dorit, adica f € CLl’l.
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(a)— (b). Sa presupunem acum ca f € CLl’l. Atunci, prin teorema
fundamentala a calculului integral, avem pentru toti d € R" si @ > 0

Vf(x + ad) = VFf(x) + /Oa V3f(x +td)ddt
Astfel,
”/Oa V3f(x + td)dtd| =||VF(x + ad) — f(x)|| < aL|d|.
Tmpartind cu o si luand o« — 0T, obtinem
IV2f(x)d|| < L|d],

ceea ce implic3 faptul ca [|[V2f(x) || < L.
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Lema descresterii

Un rezultat important pentru functiile CLI"1 este acela ca acestea pot fi
marginite superior de o functie patratica pe intregul spatiu.

Fie f € C/'(R"). Atunci, pentru orice x,y € R”

F(y) < F00 + (VF(x),y —x) + 5 llx =yl

Din teorema fundamentald a calculului integral avem

1
“ﬂ—fU%:A<Vﬂx+ﬂy—ALy—@dt

Prin urmare,
f(y)—f(X)=<Vf(X)7y—x>+/O (VF(x+t(y —x))— VF(x),y —x) dt.
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Deci,
1
1£(y) = ) = (VFGy =l = | | (TF(x+ tly = x0) = V(). y =)
1
< / (VF(x+ tly — x)) — VF(x),y — x)| dt
0
1
< / IVF(x + £y = x)) = VEGO| Ly - x|l dt
0

! L
< [ eLly = x?de=5ly = xl.
0
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Retineti cd demonstratia lemei descresterii arata de fapt atat limitele
superioare, cat si cele inferioare ale functiei:

FOOH(T A0, y—x)— 2 ly =l < Fly) < FOOH(TFG), y—x) 5 ly x|
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Lema scaderii suficiente

Sa presupunem ca f € CLI’I(R”). Atunci, pentru orice x € R" si t >0

Fx) — F(x — EVF(x)) > (1 ~ L) V()|

Proof.

Prin lema descresterii avem

2
Fx = tVF(x)) < f(x) — t[VF)I? + Lftl\Vf( I

— () -t (1= ) IVFC0I?

248



Scopul nostru este acum sa aratdm ca exista pasi viabili pentru fiecare
dintre strategiile de selectare a marimii pasilor:

® pas constant;
e ciutarea exacta pe linie;

e backtracking.

In cazul unui pas constant, presupunem ca t, =t € (0, %) Inlocuind
X = Xk, t =t In lema de scadere suficienta rezultd inegalitatea

Fo0) — Floxrn) > T (1 - “) 197412

Retineti cd descrestere in metoda gradientului pe iteratie este

£(1-3) I9Fl?
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Daca dorim sa obtinem cea mai mare limita garantata a scaderii, atunci
cautam maximul lui t (1 = %) in (0, 2). Acest maxim este atins pentru

F 1 . . e ~ . 1
t = { $l, prin urmare, o alegere potrivita pentru marimea pasului este Te

In acest caz

1
1 L1

1
FOa) = flxirn) = 7 | 1= == | IVAGRIP > 57 VAN
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In cadrul pasului constrant, formula iterativa a algoritmului este
Xk4+1 = Xk — thf(Xk),

unde ty = argmin,of (xx — t VF(xx)).

Prin definitia lui t; stim ca
f(xk — e Vi(xk)) < fxx — %Vf(xk)),
si astfel avem
FOk) = F(xk1) = Fxi) = FOw — 6V (x)) > iL IV £ (a0l

Aceeasi estimare ca si in cazul marimii constante a pasilor.



In cazul backtracking cautam pasul t, suficient de mic astfel incat
t t
Foa) — F(x — Ekw(xk)) < agk IV F (x|

Inlocuind x = xi, t = % in lema scaderii suficiente obtinem ca

) = Flm = 29700) 2 % (1= %) IV AP
care, combinat cu estimarea de mai sus, implica faptul ca
% (1= 5%) IVFIP < o519l
ceea ce este acelasi lucru cu
2(1—-w)p
-

In general, obtinem ca in cadrul backtracking-ului avem

2(1 - a)pB

tx > min{s, T},

t, >

ceea ce implica faptul ca

f(xk) — F(xk — taVF(xk)) > o min{s, M}HV}‘(X@H%
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Lemma

Fie f € C/'(R"). Fie {xx}x>o0 sirul generat de metoda gradientului
pentru rezolvarea minyern f(x) cu una dintre urmatoarele strategii
gasire a pasilor:
o pas constant € (0, 2),
e pas exact,

o backtracking cu paramettrii s € (0,00), a € (0,1) si 3 € (0,1).

Atunci
fOxu) = FOxus1) = MIIVF(xe)|1%,
unde B
f( — %) pas constant,
M=q3 pas exact,
a min{s, M} backtracking.
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Convergenta metodei gradientului

Fie f € C/'(R"). Fie {xx}x>o0 sirul generat de metoda gradientului
pentru rezolvarea minyegrn f(x) cu una dintre urmatoarele strategii de
gasire a pasilor:

pas constant t € (0, 7),

pas exact,
backtracking cu parametrii s € (0,00), a € (0,1) si 8 € (0,1).

Sa presupunem ca f este marginit inferior pe R”, adicd exista m € R
astfel incat f(x) > m pentru orice x € R". Atunci,

sirul {f(xx)} k>0 este descrescator. In plus, pentru orice k > 0,
f(xk+1) < f(x«), cu exceptia cazului in care Vf(xx) = 0.

Vif(xk) — 0 pentru k — oc.



Proof.

a) Din lema anterioara avem c3
F(xi) — F(xes1) > MV F(x)” >0,

pentru o anumita constantd M > 0 si, prin urmare, egalitatea
f(xk) = f(xk+1) poate avea loc numai atunci cadnd V£ (xx) = 0.

b) Deoarece sirul {f(xx)}x>0 este descrescator si marginit inferior, deci
converge. Astfel, in particular f(xx) — f(xk+1) — 0 cand k — oo,
ceea ce, combinat cu inegalitatea de mai sus, implica faptul ca
IVf(xk)|| — O pe masura ce k — oc.
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Rata de convergenta a normelor de gradient

n conditiile propozitiei anterioare, fie f* limita sirului {f(xk)}k>0-
Atunci, pentru orice n =0,1,2,....

min V7o) < ’m
unde
t (1 — %) dimensiunea pasului constant,
M = i pas exact,
a min{s, M} backtracking.
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Proof.
Prin adunarea inegalitatilor

F(x) = f(xi1) = MIIVE(x)|,

pentru k = 0,1, ..., n, obtinem

f(x0) = flxme1) = MY _[IVF(a)|?,
k=0

Deoarece f(x,1+1) > *, putem astfel concluziona ca

f(xo) — F* > /\//ZHVf(Xk)H2.
k=0

In final, folosind aceasta ultima inegalitate impreuna cu faptul ci pentru
fiecare k = 0,1, ..., n avem inegalitatea evidenta

V(x> > mink—o.1,...nl| VF(xx)|?, rezults ca

o) = = M(n+1),_min [ V(x0)|.



The Gauss—Newton Method




The Gauss—Newton Method: Nonlinear Least Squares

There are situations in which we are given a system of nonlinear equations
filx)=c¢, i=12..,m,

where f; : R" — R, ¢; € R are given and x is to be funded.

In this case, the approximation problem is as in the following

NLS is formulated as

min g(x) i= > (h(x) — &)®

x€Rn

There is no easy way to solve NLS problems. Gauss-Newton method is

an way.
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We will assume that f;, i = 1,2, ..., m are continuously differentiable over
R and ¢; € R. The problem is sometimes also written in the terms of the

function
fl(X) = (&l
fa(x) — c2
F(X) = . )
fn(x) — cm
and then it takes the form
g 2
min lF (NI

THE general step of the Gauss-Newton method goes as follows: given
the kth iterate xi, the next iterate is chosen to minimize the sum of
squares of the linear approximations of f; at x, that is,

Xk4+1 = Argming cgn {Z[f,-(xk) + (Vi(xk), x — xic) — c,-]z} )

i=1



The minimization problem above is essential a linear least squares

problem
min || Ax x — by ||,
xERN
where
Vfl(xk)T
sz(xk)T
Ak = . — J(Xk)
Vim(x) T

is the so-called Jacobian matrix and

(VA(x), k) — flx) + c1
b (V(xk),xk) — f2(xx) + c2
k= ]

<Vf’"(xk)7xk>.7 fm(Xk) + Cm

= J(xi)xx — F(xx).
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The underlying assumption is of course that J(xx) is of a full columns
rank. In that case, we can also write explicit expression for the
Gauss-Newton iterates

X1 = (JOxk) "I (k) " I (xk) b
Note that the method can also be written as

Xirr = (J0) TI)) ™1 0a) T (k) xe — F(xe))
= xi — (J(xi) T I(xi) " I (xi) T F (%)
The Gauss-Newton direction is therefore
di = (J(xk) T J(xk)) "I (xk) T F(x«). Noting that Vg(x) = 2 J(x)" F(x),

we can conclude that

1 -
di = E(J(Xk)TJ(Xk)) Ve (x),
meaning that the Gauss-Newton method is essentially a scaled gradient
method with the following positive definite scaling matrix
1

Dy = E(J(Xk)TJ(Xk))_l.
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Damped Gauss-Newton Method

This fact also explains why Gauss-Newton method is a descent direction
method. The method described so far is also called the pure
Gauss-Newton method since no stepsize is involved. To transform this
method into a practical algorithm, a stepsize is introduced, leading to the
damped Gauss-Newton method.

Input: € > 0 as the tolerance parameter.

Initialization: Pick xo € R” arbitrarily.

General step: For any k = 0,1, 2, ... execute the following steps:
Set di = (J(xxk)"J(x)) "I (xk) T F(xk).
Pick a stepsize tx by a line search procedure on the function

h(t) = g(Xk = tdk).

Set Xk+1 = Xk — bk d.
If |Vg(xks+1)|| < &, the STOP and xi41 is the output.
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Sisteme nedeterminate cu
descompunerea in valori
singulare (SVD) si
pseudoinversa



Descompunerea in valori singulare (SVD)

Descompunerea in valori singulare (SVD) a unei matrice A este un
instrument foarte util in contextul problemei celor mai mici patrate. Este
de asemenea foarte utila pentru analiza proprietatilor unei matrice. Cu
SVD-ul, poti ,radiografia” o matrice!

Teorema
Fie A € R™*". Atunci exista matrice ortogonale U € R™*™ sj V € R"*"
si o matrice diagonald ¥ = diag(oy,...,0,) € R™*" cu

01> 00> ...> 0, >0, astfel incat:

A=UxzVT

are loc.
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A=UxVT

Definitie
Vectorii coloan3 ai lui U = [uy, . .., uy] sunt numiti vectori singulari
stangi si, similar, V = [v1, ..., vy] sunt vectorii singulari drepti. Valorile

o; = \/Ai(ATA) sunt numite valorile singulare ale lui A (unde \;(A" A)
sunt valorile proprii ale lui ATA).
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Exemplu

1 3
Fie matricca A= | 5 7 | € R3*2. Descompunerea sa este datd de
9 1
1 3 0.207621 0.370412 0.905366 11.6522 0. 0.852871 0.522122
5 7 = 0.679634 0.611049 —0.405854 0. 5.4979 _0.522122 0.852871 N
] 1 0.703556 —0.699581 0.124878 0. 0. i .
=A =UEr3X3 =Y E€R3X2 =vTer2x2

valorile singulare fiind oy = 11.6522 si 0, = 5.4979.

Din numarul valorilor singulare nenule ne putem da seama ca rangul
matricei este 2.
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Exemplu

. . 1 59 B
Fie matricea A = € R3%2. Descompunerea sa este data
3 71
de
1 5 o)\ [ oss2s71 —o.522122 116522 o o o-20Teat  omomns  oomesee
3 7 1 - 0.522122 0.852871 0. 5.4979 0. 0.703555 76 e 8 i2437s
=A =UER2X2 =Y ER3X2 VT er3x3

valorile singulare fiind o7 = 11.6522 si 0, = 5.4979.

Din numarul valorilor singulare nenule ne putem da seama ca rangul

matricei este 2.
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Consideram matricea
B:=ATAeR™".

e B este simetrica:
BT = (ATA)T =AT(AT)T = ATA=B.
e B este pozitiv semidefinita:
x"Bx = xTAT Ax = (Ax)T(Ax) = ||Ax||> > 0, Vx € R".

Deci toate valorile proprii A; ale lui B sunt nenegative: \; > 0.
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monstratie

Prin teorema spectrala pentru matrici simetrice, exista o matrice
ortogonala V € R"*" si o matrice diagonald A, astfel incit

B=ATA=VAVT A=diag(\1,...,\s), \; >0.

Notam coloanele lui V' cu
V=(vi|va|-[w),
unde vectorii v; sunt ortonormali si satisfac

BV,' = /\,'V,'.
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monstratie

Punem
g; .= \/)\7, Z 0.

Acestea vor fi valorile singulare ale lui A.
Presupunem ca exact r dintre valorile proprii sunt strict pozitive:
A=A 2> 2> A >0, >\r+1:"':)\n:0~

Pentru i =1,...,r definim

Norma lui u;:

-
1 1 1 1

Hui||2 = UiTUi = (AVI> (AVi> = Svil ATAv, = = v/ By,
agj o

o2
Deoarece Bv; = \;v;, rezulta
1
2 T
luil|* = =5 Xiv;" vi =
s

1
Deci ||ui|| = 1. 269



Ortogonalitatea: pentru | # j,

1 N\ /1 1
u,-TuJ- = (Av;) (Avj) = v,-TATAvj =
o o ;

1

Folosing Bvj = A;v;,

1 Aj
u,-TuJ- = —)\jv,-TvJ- ==L .0=0,
gi0j gi0j

T

deoarece v, v; = 0 pentru / # j.

Astfel, u1, ..., u, sunt ortonormali in R™.
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monstratie

Daca r < m, completam multimea {u1,...,u,} la o bazd ortonormala a
lui R™ adaugand vectori u,y1, ..., U, (de exemplu, prin Gram—Schmidt).
Definim

Ui=(u|u] | um) e R™™,

care este ortogonala: UTU = I,,.

Deja avem V ortogonala:

V=] |w), VV=I,.
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Pentru i < r, prin definitie:

AV,' = ojuj.

Pentru i > r, \; =0, deci
Bvi = AT Av; = 0.

Atunci
|AVi|I? = (Av))T(Av;) = v;" AT Av; = v By, = 0,

deci Av; = 0.

Prin urmare:
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Consideram produsul

AV =Avr |- | vn) = (Avg | -+ | Avp).

Din relatiile de mai sus, aceasta este

AV = (oyuy | -+ | oyu, | O] - | 0).

Definim ¥ € R™*" ca fiind matricea diagonala dreptunghiulara

01

unde diagonala are o4, ..

02

Or

0

., 0y, iar restul elementelor sunt 0.
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Atunci produsul
U= (v | umX

are coloana / egala cu:

e ojuj, daca i).r;

e 0,dacai>r.
Deci coloanele lui AV coincid cu coloanele lui UY, de unde

AV = UL.

inmultind la dreapta cu V7 (folosind ca VT = V~1) obtinem
A=UZVT,
ceea ce doream sa demonstram.
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Valori si vectori singulari

Proprietati:

Av; = ojui si AT uj = ojv; pentru i =1 : n, unde u; si v; sunt
coloanele matricelor U si V din descompunerea spectrala.
Un1111||x||2 S ||AXH2 S 0max||XH2-

N T
A=Y oy
ATAv; = 0?v; si AAT u; = o?u; pentru i = 1 : n, ceea ce inseamna

ca v; e vector propriu pentru AT A iar u; e vector propriu pentru
AAT.
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Exemplul 1: matrice cu mai multe linii decat coloane (m > n)

Luam
1 0
A=1|0 2| eRrR®*2
00

Calculam

10
1 00 1 00 10
2 ’ 0 20 0 4
0 0 00
Valorile proprii ale lui AT A sunt \; = 1 si Ay = 4. Valorile singulare sunt

Ulz\f].:l, 0’2:\/122.
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Calculam vectorii proprii si matricea V

Pentru A\; = 1, un vector propriu este v; = (1,0)7. Pentru A, =4, un

vector propriu este v, = (0,1)7.

Deci putem lua

10
V= —

Calculam vectorii u; si matricea U

Definim

1 1
ul—Avl—Avl—A<>
g1 0
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Observam c3 vy si up sunt deja ortonormali. Completam la o baza

ortonormald adaugand

0
uz = 0
1
Astfel
1 00
U=10 1 0| =%h
0 0 1

Scriem matricea

Y are dimensiunea 3 x 2 si diagonala (o1, 02):

M

I
o O =
o NN O
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Verificarea lui A= UX VT
Aici U = I3, X este chiar A, iar V = I, deci

UV  =5L-Y - L=Y% =A.

Am obtinut descompunerea SVD:

A=UZVT =50 2|b.

279



Exemplul 2: matrice cu mai putine linii decat coloane (m < n)

Luam
1 0 0
A= e R?x3,
(O 2 0)
Calculul lui ATA
1 1 1 0 0
T 0 T : 1 0 0
AT=10 2|, ATA=l0 2|, , ]=[0 4 0
0 0 0 0 0 0O
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Valorile proprii:
AM=1 X=4 X=0.

Valorile singulare:
o1=1, o0,=2, o03=0.
Vectorii proprii si matricea V

Pentru A\; = 1, putem lua v; = (1,0,0)7. Pentru Ay = 4, ludm
v = (0,1,0)7. Pentru A3 =0, luam v3 = (0,0,1)7.

Deci

<

Il
O O =
o = O
= O O

Il

&
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Vectorii u; si matricea U

Pentru i = 1,2,

Acestia sunt deja ortonormali in R2. Nu mai avem nevoie de alti vectori,

deci
10
= = .
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Matricea ¥

Y este de dimensiune 2 x 3, cu diagonala (o1, 02) = (1, 2):

- 1 00 .
0 2 0
Verificarea lui A= U VT

1 00
2, (0 2 0)7 8

UV  =5hL-Y - =% =A.

Aici

Deci

Am obtinut din nou descompunerea SVD:

A=UxVT.
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Aceste doua exemple aratd modul in care se aplica teorema
descompunerii spectrale pentru matrici dreptunghiulare atat in cazul
m > n, cat si in cazul m < n.

Pentru Matlab Tn Matlab exista doua variante pentru calculul SVD:

[U S V ]=svd(A)— da o descompunere completa
[U S V ]=svd(A,0)— da o matrice m x n pentru U

Apelul svd(A,0) calculeaza o versiune intre una completa si una
economica cu o matrice nepatratica U € R"*™. Aceastd forma este
uneori numita ,SVD subtire”.
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Tn ceea ce priveste rangul, daca
01> >0, >041=-=0,=0. (156)

atunci rangul lui A este r, nucleul lui A este generat de vectorii coloana
V(:,r+1:n)ailui V, iar range(A) este general de vectorii coloana
U(:,1:r)ailui U.

Definitie

S3 presupunem ca A € R™*" are rang egal cu r si ca admite SVD de
tipul UTAV = ¥.. Matricea A" = VETUT este numitd matricea
pseudo-inversa Moore-Penrose, unde

1 1
ZT—diag<,-~~,,O,-~70). (157)

o1 Or

Matricea AT este, de asemenea, numita inversa generalizata a lui A.
Intr-adevar, daca rank(A) = n < m, atunci AT = (ATA)~*AT, iar daca
n = m = rank(A), At = A=1.
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Revenind la sisteme

Daca A nu are rang complet, tehnicile de solutionare prin descompunerea
QR de mai sus nu functioneaza si avem nevoie de o alta tehnica

Teorema
Sa consideram A € R™*" cu SVD dat de A= UL V. Atunci solutia

unica a problemei de minimizare

gaseste x* € R" cu norma Euclidiand minim3 astfel ca

[Ax* = b[|3 < min ||Ax — b]|3 (158)
XER e —
=d(x)
este
x* = Afb, (159)

unde At este pseudo-inversa lui A.
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Demonstratie

Folosind SVD-ul lui A, sarcina este de a gasi w = VT astfel ca w are
norma Euclidiana minima si

|[Zw — UTh|2 < ||Zy — UTb|3 vy eR". (160)

Daca r este numarul de valori singulare nenule o; ale lui A, atunci

IZw — UTh3 =" (oowi — (UTB))* + S ((UTh))*,  (161)
i=1 i=r+1
ceea ce este minim daca w; = (U'b);/o; pentrui=1,...,r.

In plus, este clar ca printre vectorii w ai lui R” care au primele r
componente fixe, vectorul cu norma Euclidiand minima are celelalte n — r
componente egale cu zero.

Asadar, vectorul solutie este w* = ETUT b, adica x* = VETUTb = Alb,
unde ¥t este matricea diagonala definitd in definitia pseudo-inversei.
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Aplicatii ale descompunerii in
valori singulare (SVD) in
compresia imaginilor



Descompunerea in valori singulare (SVD)

Descompunerea in valori singulare (SVD) a unei matrice A nu este un
instrument foarte util doar Tn contextul problemei celor mai mici patrate
ci este folosit deseori in practicua.

In continuare vom indica cateva metode simple si directe de aplicare in
comprimarea imaginilor.

Ne aducem aminte.

Teorema
Fie A € R™*". Atunci exista matrice ortogonale U € R™*™ sj V € R"*"
si o matrice diagonald ¥ = diag(o1,...,0,) € R™" cu

01> 00> ...> 0, >0, astfel incat:

A=UxVT

are loc.
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A=UxVT

Definitie
Vectorii coloan3 ai lui U = [uy, . .., uy] sunt numiti vectori singulari
stangi si, similar, V = [v1, ..., vy] sunt vectorii singulari drepti. Valorile

o; = \/Ai(ATA) sunt numite valorile singulare ale lui A (unde \;(A" A)
sunt valorile proprii ale lui ATA).
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In ceea ce priveste rangul, daca
01220, >041 = =0,=0. (162)

atunci rangul lui A este r, nucleul lui A este generat de vectorii coloana
V(:,r+1:n) ailui V, iar range(A) este generat de vectorii coloana
U(:,1:r) ailui U.

Matricea A se poate scrie ca o suma de matrice

A= Za;u; viT =01 vlT + oo > v2T +...+o.u, v,T +0+0+...4+0.
i=1
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Tensor de ordin 2

Vom folosi in continuare notiunea de tensor de ordin 2.

Prin produsul tensorial a doi vectori £ € R", 7 € R™, notat
E®m € R™M intelegem un operator liniar

EQN:RT=R", (£@7).v=(7,V)E. (163)

Fiind un operator liniar, un tensor este un obiect matematic care poate fi
caracterizat prin elementele unei baze din domeniu si a unei baze din
codomeniu.

Prin urmare in baze diferite, vom avea caracterizari diferite.
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Fie o baza ortonormata &;, i = 1,2, ...,nin R" si o baza ortonormata £,
j=212,...,nIn R™.
Din

n m

E@n= &g ® f;

i=1 j=1

rezultd ca
{&i®@fj|i=1,2,.,nj=12,.,m}

este un sistem de generatori pentru multimea tuturor produselor tensoriale
{€®@7|€€R", neR™}.
De fapt, este usor de aratat ca
{ei®@fj|i=1,2,.,nj=12,..,m}
este o baza pe spatiul vectorial al tuturor produselor tensoriale

{€@M|¢ R, neR™}.
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Tensor de ordin 2

Fie o baza ortonormata &;, i = 1,2,...,nin R" si o baza ortonormata f;,
j=12,...,nTn R™.

Pentru cele necesare noud, prin tensor de ordin 2 vom intelege un obiect
matematic / definit prin

n m
[l = E E li (8i ® f}),
i=1 j=1
iar l; se vor numi componentele tensorului / relativ la bazele &; si ?j.

Tensorul de ordin 2 se poate identifica cu matricea sa intr-o pereche de
baze. ATENTIE! Daca schimbam una dintre baze, atunci matricea cu
care se ideentifica tensorul se SCHIMBA dupa regulile pentru operatori
liniari!
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Considerand doi vectori £ = 37, &8 € R", 7= ", n;f; € R™
produsul tensorial al lor este complet definit de matricea operatorului

liniar.
Deoarece
szje, ®F;
si
EemFfa=>> tmiEaF)Fi= ZZE:WJ (Fj.fi)e Zfﬂ?ke,
i=1 j=1 i=1 j=1

matricea operatorului in bazele considerate are componentele
(@) = &inj.

Dar & n; sunt chiar componentele matricei produs £ -7".
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Avem
(E®@mn); = ¢&inj
Dar &; n; sunt chiar componentele matricei produs & - 7.

Sa ne intoarcem acum la descompunerea in valori singulare si la scrierea
matricei A ca

r
A= Za;u,- v,-T EX1 vlT + oo lp V2T +..4+o.u, v,T +0+0+...+0.
i=1

Folosind terminologia de la tensori, putem scrie

Scrierea matricei ca suma de tensori

Prin urmare, identificind produsul tensorial cu matricea sa in baza
canonica, avem

r
A= E oiuiQVi=01U1 V1 + 02U Qo+ ... +0,U R V.
i=1
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Scrierea matricei ca suma de tensori
Prin urmare, identificind produsul tensorial cu matricea sa in baza

canonica, avem

g
A= E OiUui @ Vi =01U1 @ V1 + 02U @ Vo + ... + 0 U @ V.
i=1

Mai mult, deoarece u; si v; sunt vectori ortonormati in R”, respectiv, R™,

.
A= E oilui Q Vi
i=1

ne oferd o descompunere a matricei A in spatiul tensorilor de ordin 2.

putem spune ca scriere

Sa& mai remarcam ca rangul matricelor asociate oricarui produs tensorial

£ ®7 este 1, scriem rank(§ ® 7)) = 1.
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Deci, in scrierea

r
A= E OilUi Vi =01U1 ® V1 +02Ur X Vo + ... +0,U RV,
i=1

avem descompunerea lui A in funtie de o bazad formata din tensori de
rang 1.

Mai mult, se poate arata ca pentru orice 1 < k > r avem

rank(o1u; @ vi + oallr @ Vo + ... + opuk @ vi) = k.

Ne intrebam daca nu putem COMPRIMA matricea A folosind doar o
parte din termenii sumei. POATE DOAR PANA CAND o; incepe sa nu
mai conteze. Ce Tnseamna oare asta?

Deoarece am scris valorile singulare ordonate descrescator, aceasta ar
insemna ca se aproximeaza matricea A cu o matrice de rang k.

Dar care o fi cea mai buna aproximare a sa?
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Aproximarea cu o matrice de rang k

Fie A o matrice m x n de rang r si fie
A=UxzV'

o descompunere n valori singulare (SVD) a lui A. Notam cu vu;
coloanele lui U, cu v; coloanele lui V, si cu

012022"'20[)7 p:min(man)7

valorile singulare ale lui A.

Atunci, matricea de rang k < r cea mai apropiata de A (in norma
spectralad || - ||2) este data de

k
A=Y o @ v = Udiag(oy,...,04,0,...,0) V7,

i=1

|A— Akll2 = o1
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Proof.
Prin constructie, Ax are rang k, si avem

P
IA=Allz = || > oy || = ||Udiag(0,...,0,0us1,...,05) V|,
i=k+1 5

Ramane de aratat ca
[A=Bll2 = ok+1

pentru orice matrice B de rang k. Fie B o astfel de matrice. Atunci
nucleul sdu are dimensiunea n — k. Subspatiul Vi1 generat de
(va,..., Vks1) are dimensiunea k + 1, iar deoarece suma dimensiunilor
nucleului lui B si a lui V), este

(n—k)+(k+1)=n+1,

cele doud subspatii trebuie sa se intersecteze intr-un subspatiu de
dimensiune cel putin 1.

= Ok+1-
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Proof.
Alegem un vector unitar h € ker(B) N Viy1. Atunci Bh = 0, iar deoarece

V' si U sunt izometrii, obtinem
1A~ BIIZ > (A~ B)hlj3 = ||Ahlj3
= |UZV T h|3 = EV T h|I3 > ok VTS = of,
ceea ce demonstreaza afirmatia.

O

Observam ca Ay poate fi stocati folosind (m + n)k elemente, in loc de
mn elemente. Cand k < m, n, acest lucru reprezinta un cistig

substantial.
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Figure 1: Consideram aceasta fotografie si dorim s3 o
comprimam.
Salvarea acestei fotografii In Matlab se face sub forma unei matrice.

A comprima imaginea revine la a folosi o matrice de dimensiuni mai mici.
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A = im2double(imread(’cameraman.tif’)); 7 exemplu grayscale
[U,S,V] = svd(A,’econ’);

size(A)

figure(1)

imshow(A), title(sprintf(’Initial’));

k = 20;

Ak = U(:,1:k) * S(1:k,1:k) * V(:,1:k)?;

figure(2)

imshow(Ak), title(sprintf (’SVD rank-%d’, k));
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k = 40;
Ak = U(:,1:k) * S(1:k,1:k) * V(:,1:k)’;

figure(3)

imshow(Ak), title(sprintf (’SVD rank-%d’, k));
k = 100;

Ak = U(:,1:k) * S(1:k,1:k) = V(:,1:k)’;
figure(4)

imshow(Ak), title(sprintf (’SVD rank-%d’, k));
k = 200;

Ak = U(:,1:k) * S(1:k,1:k) = V(:,1:k)’;
figure(5)

imshow(Ak), title(sprintf (’SVD rank-%d’, k));
s = svd(A);

cs = cumsum(s) / sum(s);

figure

plot(cs, "LineWidth", 2)

xlabel ("k")

ylabel ("Suma cumulativa normalizata") 303



Initial SVD rank-20

Figure 2: Fotografie initiala. Figure 3: Fotografie reconstruita
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Initial SVD rank-40

Figure 4: Fotografie initiala. Figure 5: Fotografie reconstruita
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Initial SVD rank-200

Figure 6: Fotografie initiala. Figure 7: Fotografie reconstruita
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Initial

Figure 8: Fotografie initiala.

Suma cumulativa normalizata

e
EY

Suma cumulativa normalizata
) o
IS >

bl
o

0 50 100 150 200 250 300

Figure 9: Se observa ca in jur de
valoarea 200 valoarea stagneaza,
ceea ce tTnsemna ca nu mai am

informatii la care sa nu se poata

renunta.
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Fotografii color

O imagine color nu este o matrice, ci un tensor de ordin 3:

= Rmxnx3

e dimensiunea 1=m: naltime
e dimensiunea 2=n: l3time

e dimensiunea 3=3: canal de culoare (R, G, B) (rosu, verde, albastru)
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3 Colour Channels

Height: 4 Units
(Pixels)

Width: 4 Units
I (Pixels)
2

Figure 11: Avem “un vector de

Figure 10: Fiecare “felie” este o matrice". adica un tensor de

imagine grayscale. ordin 3.
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Figure 12: Fiecare “felie" este o imagine grayscale.
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Putem sa aplicam SVD pentru fiecare canal

I = im2double(imread("peppers.png")); 7’ imagine RGB
size(I) % mxnx 3

figure(1)

imshow (I)

k = 100; % rangul de aproximare

Ic = zeros(size(I));

for ¢ = 1:3

A=1IC,:,0);

[U,S,V] = svd(A, "econ");

Ic(:,:,c) =U(:,1:k) * S(1:k,1:k) * V(:,1:k)’;

end

figure(2)

imshow(Ic); title(sprintf("SVD RGB -- rank %d", k))
for ¢ = 1:3

s = svd(I(:,:,c)); cs = cumsum(s."2) / sum(s."2);

figure(c+2); plot(cs, "LineWidth", 2); xlabel("k");
ylabel("Energie cumulativa"); title(sprintf("Canal %d (R=1, G=2, B=3)
end 311



SVD RGB -rank 10

Figure 13: Fotografie initiala. Figure 14: Fotografie reconstruitd
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Figure 15: Suma cumulativa canal
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Figure 16: Suma cumulativa canal
2.
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SVD RGB -rank 100

Figure 17: Fotografie initiala. Figure 18: Fotografie reconstruitd
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O abordare care sa nu separe canalele

O alt3 strategie este si se lipeasca matricele tensorului (se mai numesc
canale) si sa se faca SVD si compresie pentru matricea mare, incat
reducerea sa se faca corelat pe cele 3 canale, o aproximare care sa tina
cont de intregul tensor.
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I = im2double(imread("peppers.png"));

[m,n,”] = size(I);
A= [IC,:,1), I(C:,:,2), I(C:,:,3)]; % m x (3n)
[U,S,V] = svd(A,"econ");
figure(1); imshow(I); title(sprintf("Initial"))
k = 60;

Ak = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;
R = Ak(:, 1:n);
G = Ak(:, n+1:2%n);
B = Ak(:, 2*n+1:3%n);
Ic = cat(3, R, G, B);
imshow (Ic)
figure(2); imshow(Ic); title(sprintf("SVD RGB -rank %d", k
s = svd(A);
cs = cumsum(s."2) / sum(s."2);
figure(3); clf; plot(cs, "LineWidth", 2); xlabel("k")
ylabel ("Energie cumulativa");

title(sprintf ("Suma cumulativ-canale reunite"))
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YCbCr in loc de RGB

YCbCr este folosit in loc de RGB pentru ca permite o comprimare mult
mai eficientd perceptual, adica se pierde mai putin din informatia
perceputa de ochiul uman, chiar daca, din punct de vedere numeric,
pierderile sunt mai mari.

Limitarile spatiului de culoare RGB

Tn spatiul de culoare RGB:

e canalele R, G, B sunt puternic corelate;
e fiecare canal amesteca informatia de:

e luminanta (luminozitate);
e culoare.

Daca se aplica metode de comprimare direct in RGB:

e se pierd simultan luminanta si culoarea;

e degradarea imaginii devine rapid vizibila.

317



Componentele spatiului de culoare YCbCr

Y, Cb si Cr sunt cele trei componente ale spatiului de culoare YCbCr,
fiecare avand un rol distinct in reprezentarea si comprimarea imaginilor.

Componenta Y — Luminanta (brightness). Componenta Y reprezinta
luminozitatea imaginii:

e indica cat de deschis sau inchis este un pixel;
e contine structura, contururile si detaliile imaginii;

e este componenta la care ochiul uman este cel mai sensibil.

Daca se puastreaza doar componenta Y, se obtine o imagine grayscale
foarte apropiata de original.
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Componentele spatiului de culoare YCbCr

Componenta Cb — Crominanta albastra (blue-difference).

Componenta Cb muasoara diferenta dintre componenta albastra si
luminantua:
Cb=B—-Y (scalat)

Aceasta:

e indicd cat de albastru este pixelul fatd de luminozitatea sa;
e contine informatie de culoare, nu de structura;

e este mai putin importanta din punct de vedere perceptual.

319



Componentele spatiului de culoare YCbCr

Componenta Cr — Crominanta rosie (red-difference).

Componenta Cr muasoara diferenta dintre componenta rosie si
luminanta:
Cr=R-Y (scalat)

Aceasta:

e indicd cat de rosu este pixelul fatd de luminozitatea sa;
e contine informatie de culoare;

e este, la fel ca Cbh, mai putin importanta perceptual.
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Relatia dintre RGB si YCbCr

Componenta Y poate fi aproximata ca o combinatie ponderata a
canalelor RGB, iar Cb si Cr reprezinta deviatii de culoare fata de Y.
Conversia standard (simplificatd ) este:

Y = 0.299R + 0.587G + 0.114B,
Cb=B-Y,
Cr=R-Y.



0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

Figure 19: Valori pentru Cb si Cr.

Figure 20: Ce extrage Y, Cb, Cr?
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?Implementare cu YCbCr

I = im2double(imread("peppers.png")); %#mxnzx3
YCC = rgb2ycbcr(I);

kY = 80; kC = 25;

J = zeros(size(YCC));

for ¢ = 1:3

A = YCC(:,:,c);

[U,s,V] = svd(A,"econ");

k = (c==1)*kY + (c~=1)*kC;

J(C:y:,c) = UC,1:k)*S(1:k,1:k)*V(:,1:k)7;
end

Ic = ycber2rgb(J);

figure(1)

imshow(Ic)
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Alte abordari

e In loc sa se aplice SVD pentru toata imaginea, se aplica pe blocuri,
incat ce se pierde sa fie local.

e Se generalizeaza descompunerea SVD pentru tensori de ordin
superior.

e Se poate lucra cu optimizare pe spatii de tensori.
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Morala cursului?




Morala 1: E bine sa ai in buzunar cunostinte
de algebra numerica si calcul stiintific

Formule bazate pe SVD
*X=UxzvT
* aproximatie rank-k: X = U, EVk
® trunchiere: U, = primele k coloane din
© eroare Frobenius: ||X - UExV|,
® covarianta: X = UTXU

-1

® PCA:X=WEVT, W=yx

pseudoinversa: X*=VETUT
 compresie:

o energie

Figure 21:
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Morala 2: Slide-ul contine o imagine generaté?de Al dar are si
unele greseli. PUTETI SA LE IDENTIFICATI?

Formule bazate pe SVD
*X=UxzvT
* aproximatie rank-k: X = U, EVk
® trunchiere: U, = primele k coloane di
© eroare Frobenius: ||X - UExV|,
® covarianta: ¥ = UTXU
-1
® PCA:X=WEVT, W=yx
pseudoinversa: X*=
 compresie:

® energie: E, =

Figure 22:
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Solutii pot fi date de Al, dar
noi trebuie sa avem capacitatea
de a le analiza critic!



Succes in calatoria voastral
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