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Numǎrul de condiţionare pentru funcţii pǎtratice. Rescalarea
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Detalii privind evaluarea



Detalii privind evaluarea

• Evaluare continuǎ (EC) (N1) (30% din nota finalǎ):
• teme din patru în patru sǎptǎmâni (termen de depunere a

temei=patru sǎptǎmâni, nota la teme se decide dupǎ ce rezolvǎrile
sunt explicate în ultima sǎptǎmânǎ) (50% din evaluarea continuǎ),

• activitatea la seminar (50% din evaluarea continuǎ);

• Examen final mixt
• rezolvarea a douǎ exerciţii/scriere de programe din care unul foarte

asemǎnǎtor cu cele din fişele de lucru pentru laboratoare şi teme şi
explicarea rezolvǎrii lor (N2) (40% din nota finalǎ);

• explicarea noţiunilor teoretice prin extragerea a douǎ bilete (N3)
(30% din nota finalǎ).
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Scopul cursului



Scop general

Ne propunem sǎ gǎsim algoritmi numerici pentru rezolvarea unui sistem
de n ecuaţii cu n necunoscute, adicǎ

n∑
j=1

aijxj = bj , i = 1, 2, ...,m

unde aij ∈ R, bj ∈ R, i = 1, 2, ...,m, j = 1, 2, ..., n.

Definind matricea A având componentele aij , i = 1, 2, ...,m, j = 1, 2, ..., n
(matricea sistemului), vectorul coloanǎ x de componente xj
(necunoscuta) şi vectorul coloanǎ b de componente bj (termenul liber) ,
sistemul poate fi scris în forma matricealǎ

Ax = b.

A determina soluţia înseamnǎ a determina vectorul x ∈ Rn care verificǎ
sistemul de mai sus.

Prezentǎm diverse strategii de rezolvare împreunǎ, pe cât posibil, cu
aplicaţii ale lor în practicǎ, însǎ scopul principal este de argumenta
metodele din punct de vedere matematic. 6



Scop iniţial

Ne propunem sǎ gǎsim algoritmi numerici pentru rezolvarea unui sistem
de n ecuaţii cu n necunoscute, adicǎ

n∑
j=1

aijxj = bj , i = 1, 2, ..., n,

unde aij ∈ R, bj ∈ R, i , j = 1, 2, ..., n.

Definind matricea A având componentele aij , i , j = 1, 2, ..., n (matricea
sistemului), vectorul coloanǎ x de componente xj (necunoscuta) şi
vectorul coloanǎ b de componente bj (termenul liber) , sistemul poate fi
scris în forma matricealǎ

Ax = b.

Vom presupune pentru început cǎ sistemul este unic determinar, adicǎ
detA ̸= 0.
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Ne reamintim cǎ sistemul admite soluţie unicǎ dacǎ una dintre
urmǎtoarele condiţii este verificatǎ:

• A este inversabilǎ (atunci x = A−1b);

• rankA = n.

Dacǎ sistemul este omogen (b = 0), atunci admite soluţia nulǎ

x =



0
...
0
...
0


∈ Rn.
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Regula lui Cramer

Dacǎ A este inversabilǎ atunci regula lui Cramer ne conduce la soluţie

xj =
∆j

detA
, j = 1, 2, ..., n,

unde ∆j este determinantul matricei obţinute din A prin înlocuirea
coloanei j cu coloane termenilor liberi b.

Totuşi, aceastǎ formulǎ nu este prea indicatǎ în practicǎ pentru cǎ dacǎ
folosim regula lui Laplace pentru calculul determinanţilor atunci regula lui
Cramer necesitǎ (n + 1)! operaţii.

Având în vedere cǎ în practicǎ sistemele sunt mari, aceasta înseamnǎ
timp mare de lucru.
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Metode numerice

• DIRECTE (numǎr finit de paşi): se construieşte soluţia într-un
numǎr finit de paşi (calcule cu ajutorul liniilor), folosind factorizǎri
A = LU, A = LD MT , ...

• INDIRECTE: se construieşte un şir (xk) ⊂ Rn care sǎ conveargǎ la
soluţia sistemului. Teoretic am un numǎr infinit de paşi, dar de fapt
ne oprim când xk este “suficient de aproape" de x .
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Sisteme mari!!! Ne mai ajutǎ metodele învǎţate?

Dar ce facem când avem sisteme foarte mari şi vrem sǎ gǎsim o soluţie?

Aplicǎm teorema Kronecker-Capelli şi facem calcule pe hârtie calculând,
de exemplu determinanţi de matrice 1000×1000?
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Matrice-Recapitulare



Matrice pozitiv definite

Pozitiva definire a unei matrice

• Spunem cǎ matricea A ∈ Rn×n este simetricǎ dacǎ A = AT ,

• Spunem cǎ matricea simetricǎ A ∈ Rn×n este pozitiv semidefinitǎ,
notǎm A ⪰ 0, dacǎ ⟨Ax , x⟩ ≥ 0 pentru orice x ∈ Rn, unde ⟨·, ·⟩
reprezintǎ produsul scalar standard din Rn.

• Spunem cǎ matricea simetricǎ A ∈ Rn×n este pozitiv definitǎ,
notǎm A ≻ 0, dacǎ ⟨Ax , x⟩ > 0 pentru orice x ∈ Rn, x ̸= 0.
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Valori proprii şi vectori proprii

Fie A ∈ Rn×n. Un vector nenul v ∈ Czn se numeşte vector propriu
pentru A dacǎ existǎ λ ∈ C astfel încât

Av = λ v .

Scalarul λ se numeşte valoarea proprie corespunzǎtoare vectorului propriu
v . În general, matricele reale pot avea valori proprii complexe, dar
matricele simetrice reale admit doar valori proprii reale. Demonstraţi!

Valorile proprii ale unei matrice simetrice A ∈ Rn×n vor fi notate cu

λ1(A) ≥ λ2(A) ≥ ... ≥ λn(A).

Cea mai mare valoare proprie va fi notatǎ cu λmax(A) = λ1(A) şi cea mai
micǎ valoare proprie va fi notatǎ cu λmin(A) = λn(A).
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Pozitiva definire şi valori proprii

Fie A o matrice simetricǎ din Rn×n. Atunci

• A este pozitiv semidefinitǎ dacǎ şi numai dacǎ valorile sale proprii
sunt mai mari sau egale cu 0.

• A este pozitiv definitǎ dacǎ şi numai dacǎ valorile sale proprii sunt
strict mai mari decât 0.

Criteriul minorilor principali

Fie A o matrice simetricǎ din Rn×n. Atunci A este pozitiv definitǎ
dacǎ şi numai dacǎ minorii principali detA(1 : i , 1 : i), i = 1, 2, · · · , n,
sunt strict pozitivi.
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O matrice A ∈ Rn×n se numeşte diagonal dominantǎ pe linii dacǎ

|aii | ≥
n∑

j=1,j ̸=i

|aij |, with i = 1, · · · , n. (1)

O matrice A ∈ Rn×n se numeşte diagonal dominantǎ pe coloane dacǎ

|aii | ≥
n∑

j=1,j ̸=i

|aji |, with i = 1, · · · , n, (2)

Dacǎ inegalitǎţile sunt stricte, spunem cǎ A este strict diagonal
dominantǎ (pe linii, respectiv, pe coloane).

Teoremǎ
O matrice simetricǎ strict diagonal dominantǎ cu elemente strict pozitive
pe diagonalǎ este pozitiv definitǎ.

Este reciproca valabilǎ?
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Metode directe de rezolvare a
sistemelor algebrice liniare unic
determinate



Rezolvarea sistemelor inferior triunghiulare

Pentru exemplificare sǎ considerǎm sistemull11 0 0
l21 l22 0
l31 l32 l33


x1

x2

x3

 =

b1

b2

b3

 , (3)

unde lii ̸= 0, i = 1, 2, 3.

Ultima condiţie ne asigurǎ cǎ matricea sistemului este inversabilǎ, soluţia
fiind datǎ de

x1 =
b1

l11
,

x2 =
b2 − l21x1

l22
,

x3 =
b3 − l31x1 − l32x2

l33
.

Acest algoritm se numeşte metoda substituţiilor succesice (forward).
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În general pentru n ≥ 2 avem

x1 =
b1

l11
,

xi =

bi −
i−1∑
j=1

lijxj

lii
, i = 2, ..., n. (4)

Câte operaţii trebuiesc fǎcute?
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În general pentru n ≥ 2 avem

x1 =
b1

l11
,

xi =

bi −
i−1∑
j=1

lijxj

lii
, i = 2, ..., n. (5)

Câte operaţii trebuiesc fǎcute?
n(n+1)

2 înmulţiri şi n(n−1)
2 adunǎri şi scǎderi = n2 operaţii.
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În general pentru n ≥ 2 avem

x1 =
b1

l11
,

xi =

bi −
i−1∑
j=1

lijxj

lii
, i = 2, ..., n. (6)

Câte operaţii trebuiesc fǎcute?
n(n+1)

2 înmulţiri şi n(n−1)
2 adunǎri şi scǎderi = n2 operaţii.

Comparaţi cu (n + 1)! de la regula lui Cramer.
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Rezolvarea sistemelor superior triunghiulare

Pentru exemplificare sǎ considerrǎm sistemulu11 u12 u13

0 u22 u23

0 0 u33


x1

x2

x3

 =

b1

b2

b3

 , (7)

unde uii ̸= 0, i = 1, 2, 3.

Ultima condiţie ne asigurǎ cǎ matricea sistemului este inversabilǎ, soluţia
în cazul general fiind datǎ de

xn =
bn
unn

,

xi =

bi −
n∑

j=i+1

uijxj

uii
, i = n − 1, ..., 1. (8)

Acest algoritm se numeşte metoda substituţiilor backward.

Avem tot n2 operaţii.
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Pentru implementare

Pentru implementare ar fi indicat sǎ stocǎm doar elementele nenule
atunci când avem de rezolvat sistemele triunghiulare.
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Eliminare gaussianǎ şi
factorizarea LU



Eliminare gaussianǎ

Eliminare gaussianǎ ne ajutǎ sǎ reducem un sistem

Ax = b

la un sistem (sau douǎ sisteme) triunghiular prin transformǎri succesive
ale sistemului în sisteme echivalente

A(1) x = b(1) → A(2) x = b(2) → · · · → A(k) x = b(k).

Presupunem cǎ la fiecare pas elementul a(k)kk al matricei A(k) este nenul.

Acest element va fi numit pivot.

Presupunem cǎ A este inversabilǎ, adicǎ sistemul admite soluţie unicǎ.
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Pasul 1

Plecǎm de la sistemul

a
(1)
11 a

(1)
12 · · · · · · a

(1)
1n

a
(1)
21 a

(1)
22 · · · · · · a

(1)
2n

a
(1)
31 a

(1)
32 · · · · · · a

(1)
2n

...
...

. . . . . .
...

a
(1)
n1 a

(1)
n2 · · · · · · a

(1)
nn


︸ ︷︷ ︸

≡A


x1

x2
...
xn

 =


b
(1)
1

b
(1)
2
...

b
(1)
n



Definim multiplicatorii mi1 =
a
(1)
i1

a
(1)
11
, i = 2, 3, ..., n, înmulţim prima linie cu

mi1, pe rând, şi scǎdem rezultatele din linia i = 2, 3, ..., n, respectiv.
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Pasul 1

Se obţine astfel un nou sistem, echivalent cu cel iniţial

a
(1)
11 a

(1)
12 · · · · · · a

(1)
1n

0 a
(2)
22 · · · · · · a

(2)
2n

0 a
(2)
32 · · · · · · a

(2)
2n

...
...

. . . . . .
...

0 a
(2)
n2 · · · · · · a

(2)
nn


︸ ︷︷ ︸

:=A(2)


x1

x2
...
xn

 =


b
(2)
1

b
(2)
2
...

b
(2)
n

 .
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Pasul k

Repetând procedeul, la pasul k se obţine astfel un nou sistem, echivalent
cu cel iniţial

a
(1)
11 a

(1)
12 · · · · · · · · · a

(1)
1n

0 a
(2)
22 · · · · · · · · · a

(2)
2n

...
...

. . . . . . . . .
...

0 0 · · · a
(k)
kk · · · a

(k)
kn

...
...

. . . . . . . . .
...

0 0 · · · a
(k)
nk · · · a

(k)
nn


︸ ︷︷ ︸

:=A(k)


x1

x2
...
xn

 =



b
(1)
1

b
(2)
2
...

b
(k)
k
...

b
(k)
n


︸ ︷︷ ︸
:=b(k)

.
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Pasul n − 1

Dupǎ n − 1 paşi se obţine astfel un nou sistem, echivalent cu cel iniţial
dar superior triunghiular

a
(1)
11 a

(1)
12 · · · · · · · · · a

(1)
1n

0 a
(2)
22 · · · · · · · · · a

(2)
2n

...
...

. . . . . . . . .
...

0 0 · · · a
(k)
kk · · · a

(k)
kn

...
...

. . . . . . . . .
...

0 0 · · · 0 · · · a
(n)
nn


︸ ︷︷ ︸

:=A(n)


x1

x2
...
xn

 =



b
(1)
1

b
(2)
2
...

b
(k)
k
...

b
(n)
n


︸ ︷︷ ︸

:=b(n)

.
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Algoritm

În concluzie, formulele dupǎ care se modificǎ sistemul de la pasul k în
sistemul de la pasul k + 1 sunt

mik =
a
(k)
ik

a
(k)
kk

, i = k + 1, ..., n,

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj , i , j = k + 1, ..., n, (9)

b
(k+1)
i = b

(k)
i −mikb

(k)
k , i , j = k + 1, ..., n.
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Numǎrul de operaţii

• Aplicând GEM avem 2(n−1)n(n+1)
3 + n(n − 1) operaţii pentru a aduce

sistemul la o formǎ triunghiularǎ.

• Se adaugǎ n2 operaţii pentru rezolvarea sistemului superior
triunghiular.

• În total 2n3

3 + 2 n2 operaţii.
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GEM funcţioneazǎ dacǎ a
(k)
kk ̸= 0, k = 1, 2, ..., n − 1.

Din pǎcate, plecând cu o matrice nenulǎ pe diagonalǎ nu avem
certitudinea cǎ la un pas ulterior k nu vom avea a

(k)
kk ̸= 0.

De exemplu, considerând matricea

A =

1 2 3
2 4 5
7 8 9


dupǎ primul pas gǎsim

A(2) =

1 2 3
0 0 −1
0 −6 −12

 .
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Ce e de fǎcut?
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Ce e de fǎcut?

Nu mai rezolvǎm sisteme sau mergem cu un algoritm care e posibil sǎ nu
funcţioneze?

Nu. Constientizǎm problema şi acoperim toate cazurile construind noi
strategii.
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Ce e de fǎcut?

Nu mai rezolvǎm sisteme sau mergem cu un algoritm care e posibil sǎ nu
funcţioneze?

Nu. Constientizǎm problema şi acoperim toate cazurile construind noi
strategii.

Regândim teoretic problema fǎrǎ a recurge la “peticiri" de moment.
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Anticipǎm

Poate putem şti de la bun început dacǎ pentru o matrice este potrivit sau
nu sǎ folosim GEM?

Într-adevǎr sunt criterii care ne asigurǎ cǎ putem folosi GEM, de exemplu

• Matrice dominate pe linii sau coloane.

• Matrice pozitiv definite.

Însǎ toate acestea trebuiesc cercetate şi argumentate, bǎnuilile nefiind
justificǎri.
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În continuare urmǎrim sǎ rescriem matricea A ∈ Rn×n sub forma
A = LU, unde L este inferior triunghiularǎ iar U este superior
triunghiularǎ.

Facem acest lucru deoarece dupǎ ce vom reuşi, sistemul iniţial va putea fi
rescris sub forma a douǎ sisteme triunghiulare, adicǎ

Ax = b ↔ LU x = b ↔

{
L y = b

U x = y
(10)

ce se vor rezolva pe rând.
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GEM prin multiplicare de matrice

Sǎ remarcǎm cǎ operaţiile pe care le-am fǎcut asupra primei coloane se
rezumǎ la a înmulţi matricea A(1) := A, la stânga, cu matricea

M1 =



1 0 0 · · · · · · 0

−m21 1 0 · · ·
. . . 0

−m31 0 1 · · ·
. . . 0

...
. . . . . . . . . · · · 0

−mn1 0 0 · · · · · · 1


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GEM prin multiplicare de matrice

Adicǎ 

1 0 0 · · · · · · 0

−m21 1 0 · · ·
. . . 0

−m31 0 1 · · ·
. . . 0

...
. . . . . . . . . · · · 0

−mn1 0 0 · · · · · · 1


︸ ︷︷ ︸

=M1

A(1) := A(2).
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GEM prin multiplicare de matrice

Adicǎ

1 0 0 · · · · · · 0

−m21 1 0 · · ·
. . . 0

−m31 0 1 · · ·
. . . 0

...
. . . . . . . . . · · · 0

−mn1 0 0 · · · · · · 1


︸ ︷︷ ︸

=M1



a
(1)
11 a

(1)
12 · · · · · · a

(1)
1n

a
(1)
21 a

(1)
22 · · · · · · a

(1)
2n

a
(1)
31 a

(1)
32 · · · · · · a

(1)
2n

...
...

. . . . . .
...

a
(1)
n1 a

(1)
n2 · · · · · · a

(1)
nn


︸ ︷︷ ︸

≡A

:= A(2).
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GEM prin multiplicare de matrice

Adicǎ

1 0 0 · · · · · · 0

− a
(1)
21

a
(1)
11

1 0 · · ·
. . . 0

− a
(1)
31

a
(1)
11

0 1 · · ·
. . . 0

...
. . . . . . . . . · · · 0

− a
(1)
n1

a
(1)
11

0 0 · · · · · · 1


︸ ︷︷ ︸

=M1



a
(1)
11 a

(1)
12 · · · · · · a

(1)
1n

a
(1)
21 a

(1)
22 · · · · · · a

(1)
2n

a
(1)
31 a

(1)
32 · · · · · · a

(1)
2n

...
...

. . . . . .
...

a
(1)
n1 a

(1)
n2 · · · · · · a

(1)
nn


︸ ︷︷ ︸

≡A

:= A(2).
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GEM prin multiplicare de matrice

Apoi 

1 0 0 · · · · · · 0

0 1 0 · · ·
. . . 0

0 −m32 1 · · ·
. . . 0

...
. . . . . . . . . · · · 0

0 −mn2 0 · · · · · · 1


︸ ︷︷ ︸

=M2

A(2) := A(3)

şi aşa mai departe repetând procedeul de n − 1 ori pânǎ se ajunge la

Mn−1Mn−2 · · ·M2M1A = A(n) =: U matrice superior triunghiularǎ.
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Eliminare gaussianǎ

Considerǎm o matrice A ∈ Rn×n. Scopul este de a construi o secvenţǎ
A(k) = (a

(k)
ij ) de matrici prin efectuarea de transformǎri liniare, astfel

încât sǎ ajungem la o matrice superior triunghiularǎ U = (uij) dupǎ
câţiva paşi finiţi.

În ultima sǎptǎmânǎ am vǎzut cǎ dacǎ presupunem cǎ pivoţii a11 ̸= 0,
a
(k)
kk = (Mk−1...M1 A)kk ̸= 0 la orice pas k = 2, ..., n − 1, atunci

Mn−1Mn−2...M1 A = U, (11)

cu U o matrice superior triunghiularǎ, unde

Mk =



1 · · · 0 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 0 · · · 0
0 · · · −mk+1,k 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −mn,k 0 · · · 1


= In −mk e

T
k , (12)
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şi

mk =



0
...
0
0

mk+1,k
...

mn,k


∈ Rn, ek =



0
...
0
1
0
...
0


∈ Rn, mik =

a
(k)
ik

a
(k)
kk

, i = k + 1, · · · , n.

(13)
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Mai mult, deoarece M−1
k = In +mk e

T
k (Exerciţiu), deducem (cum?

Detaliazǎ calculele!)

A = (In +
n−1∑
i=1

mie
T
i )U =



1 0 · · · 0 · · · 0

m21 1 0 · · · · · ·
...

m31 m32 1 0 · · ·
...

...
...

...
. . .

... 0
mn1 mn2 · · · mn,n−1 1


︸ ︷︷ ︸

:=L

U

(14)
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Deci dacǎ nu întâlnim pivoţi nuli (a(k)kk ) atunci putem construi
factorizarea LU a acelei matrice.

Dar cum ştim dacǎ vom întâlni pivoţi nuli fǎrǎ a începe procesul de
construcţie al factorizǎrii?
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Existenţa şi unicitatea factorizǎrii LU

Teoremǎ
Fie A ∈ Rn×n. Existǎ factorizarea LU a matricei A cu lii = 1 pentru orice
i = 1, · · · , n şi este unicǎ dacǎ şi numai dacǎ submatricele principale
Ai = A(1 : i , 1 : i) ale lui de orice ordin i = 1, · · · , n− 1 sunt nesingulare.

Vom demonstra mai întâi implicaţia “⇐=". Vom demonstra faptul cǎ
dacǎ submatricea principalǎ Ai−1 admite descumpunere LU, atunci şi Ai

admite descompunere LU.

Pentru i = 1: A1 = a11 = 1︸︷︷︸
:=L

· a11︸︷︷︸
:=U

.

Presupunem cǎ existǎ descompunerea LU pentru Ai−1, adicǎ existǎ
matricea inferior triunghiularǎ Li−1 având elementele de pe diagonalǎ
egale cu 1 şi matricea superior triunghiularǎ Ui−1 astfel încât

Ai−1 = Li−1Ui−1.

Construim Li şi Ui astfel încât Ai = Li Ui .

44



Construim Li şi Ui astfel încât Ai = Li Ui .

Pentru aceasta dorim sǎ determinǎm vectorii ℓ şi u şi scalarul uii pentru
care (

Ai−1 c

dT aii

)
= Ai =

(
Li−1 0
ℓT 1

)
︸ ︷︷ ︸

:=Li

(
Ui−1 u

0T uii

)
︸ ︷︷ ︸

:=Ui

.

Trebuie sǎ avem(
Ai−1 c

dT aii

)
=

(
Li−1 0
ℓT 1

)
︸ ︷︷ ︸

:=Li

(
Ui−1 u

0T uii

)
︸ ︷︷ ︸

:=Ui

=

(
Li−1Ui−1 Li−1 u

ℓTUi−1 ℓTu + uii .

)
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Li−1 u = c ,

UT
i−1ℓ = d , (15)

ℓTu = aii − uii .

Deorece Ai−1 sunt nesigulare, vom avea cǎ Ui−1 sunt nesingulare.
Matricele Li−1 sunt nesingulare, având determinantul egal cu 1.

Prin urmare existǎ u, ℓ şi uii care verificǎ sistemul de mai sus şi care
construiesc matricea Li .
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Sǎ demonstrǎm implicaţia inversǎ “=⇒".

Avem de demonstrat: Dacǎ existǎ factorizare LU cu lii = 1 şi este unicǎ,
atunci primele n − 1 submatrici principale ale lui A sunt inversabile.

Vom împǎrţi dicuţia pe douǎ cazuri.

Cazul 1. A este inversabilǎ, detA ̸= 0:

Presupunem cǎ existǎ factorizare LU cu lii = 1 şi este unicǎ

Sǎ remarcǎm faptul cǎ din forma factorizǎrii rezultǎ cǎ a11 ̸= 0.

Deoarece factorizare LU existǎ pentru A, va exista şi pentru Ai şi
detAi = det L(i) detU(i) = detU(i) = u11u22 · · · uii , i = 1, n − 1.

Deoarece detAn ̸= 0, rezultǎ cǎ u11u22 · · · unn ̸= 0, adicǎ, în particular,
detAi = det L(i) detU(i) = detU(i) = u11u22 · · · uii ̸= 0, i = 1, n − 1.
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Cazul 2. A nu este inversabilǎ, detA = 0: Cu alte cuvinte presupunem
cǎ mǎcar un element de pe diagonala lui U este egal cu zero.

Notǎm cu ukk elementul nenul de index minim k (pentru cǎ ar putea sǎ
fie şi alţii, dar îl alegem astfel).

În baza procedeului iterativ descris în prima parte a demonstraţiei va
rezulta cǎ factorizarea poate fi calculatǎ pânǎ la pasul k + 1.

De la acest pas, pentru cǎ matricea U(k) = U(1 : k, 1 : k) este
neinversabilǎ, existenţa şi unicitatea vectorului ℓ se pierde, şi, deci
întreaga factorizare LU pentru A(k + 1) = U(1 : k + 1, 1 : k + 1) şi
pentru matricea A.

Pentru ca acest fapt sǎ nu se întâmple, elementul nul ukk ar trebui sǎ fie
de index k = n − 1. Deoarece
detAi = det L(i) detU(i) = detU(i) = u11u22 · · · uii , i = 1, n − 1, toate
matricele principale Ak vor fi inversabile k = 1, · · · , n − 1
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Example
Considerǎm matricele

B =

(
1 2
1 2

)
, C =

(
0 1
1 0

)
, D =

(
0 1
0 2

)
. (16)

• B admite o unicǎ factorizare LU.

• matricea neinversabilǎ C nu admite factorizare LU.

• matricea neinversabilǎ D admite o infinitate de factorizǎri de forma
D = LβUβ , cu

Lβ =

(
1 0
β 1

)
, Uβ =

(
0 1
0 2 − β

)
∀ β ∈ R.

49



Existǎ un alt rezultat:

Teoremǎ
Dacǎ A este o matrice diagonal dominantǎ (pe linii sau coloane), atunci
existǎ şi este unicǎ factorizarea LU. În particular, dacǎ A este diagonal
dominantǎ pe coloane, atunci |lij | ≤ 1 ∀i , j .
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Forma compactǎ a factorizǎrii

Variantǎ remarcabilǎ a factorizǎrii LU este factorizarea Doolittle.
Aceasta este cunoscutǎ şi ca formǎ compactǎ a metodei de eliminare
Gauss.

Aceastǎ denumire se datoreazǎ faptului cǎ aceste abordǎri necesitǎ mai
puţine rezultate intermediare decât metoda GEM standard pentru a
genera factorizarea lui A.

Calcularea factorizǎrii LU a lui A este echivalentǎ din punct de vedere
formal cu rezolvarea urmǎtorului sistem neliniar de ecuaţii n2

aij =

min(i,j)∑
r=1

lirurj , i , j = 1, ..., n, (17)

necunoscutele fiind intrǎrile n2 + n ale matricelor triunghiulare L şi U.

Dacǎ stabilim în mod arbitrar n coeficienţi (lii ) la 1, ajungem la metoda
Doolittle care oferǎ o cale eficientǎ sistemului neliniar.
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De fapt, presupunând cǎ primele k − 1 coloane din L şi primele rânduri
din U sunt disponibile şi stabilind lkk = 1 (metoda Doolittle), se obţin
urmǎtoarele ecuaţii din

akj =
k−1∑
r=1

lkrurj + ukj , j = k, · · · , n, (18)

aik =
k−1∑
r=1

lirurk + likukk , i = k + 1, · · · , n. (19)

Reţineţi cǎ aceste ecuaţii pot fi rezolvate într-un mod secvenţial în ceea
ce priveşte variabilele roşii ukj şi lik .
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Din metoda compactǎ Doolittle obţinem astfel mai întâi al k-lea rând al
lui U şi apoi a k-a coloanǎ a lui L, dupǎ cum urmeazǎ: pentru
k = 1, · · · , n

ukj = akj −
k−1∑
r=1

lkrurj , j = k, · · · , n, (20)

lik =
1
urk

(
aik −

k−1∑
r=1

lirurk

)
, i = k + 1, · · · , n. (21)

53



Factorizarea LDMT



Factorizarea LDMT

Este posibil sǎ se conceapǎ şi alte tipuri de factorizǎri ale lui A.

Mai exact, vom aborda unele variante în care factorizarea lui A este de
forma

A = LD MT , (22)

unde L, MT şi D sunt matrici inferior triunghiulare, superior triunghiulare
şi, respectiv, diagonale.

Dupǎ construirea acestei factorizǎri, rezolvarea sistemului se poate realiza
rezolvând mai întâi sistemul inferior triunghiularǎ Ly = b, apoi cel
diagonal Dz = y şi în final sistemul superior triunghiularǎ MT x = z , cu
un cost de n2 + n flop-uri.

În cazul simetric, obţinem M = L, iar factorizarea LDLT poate fi
calculatǎ cu jumǎtate din cost, dupǎ cum vom vedea când vom vorbi
despre cazul matricelor simetrice. Factorizarea LDMT se bucurǎ de o
proprietate analogǎ cu cea pentru factorizarea LU. În particular, se aplicǎ
urmǎtorul rezultat. 54



Teoremǎ
Dacǎ toţi minorii principali ai unei matrice A ∈ Rn×n sunt nenuli, atunci
existǎ o matrice diagonalǎ unicǎ D, o matrice inferior triunghiularǎ
unitarǎ unicǎ1 L şi o matrice superior triunghiularǎ unitarǎ unicǎ MT ,
astfel încât A = LDMT .

Demonstraţie: Ştim deja cǎ existǎ o factorizare unicǎ LU a lui A cu
lii = 1 pentru i = 1, · · · , n. Dacǎ stabilim cǎ intrǎrile diagonale ale lui D
sunt egale cu uii (nu sunt zero deoarece U este nesingularǎ), atunci
A = LU = LD(D−1U). Dupǎ definirea MT = D−1U, rezultǎ existenţa
factorizǎrii LDMT , unde D−1U este o matrice superior triunghiularǎ
unitarǎ. Unicitatea factorizǎrii LDMT este o consecinţǎ a unicitǎţii
factorizǎrii LU.

1Noi numim matrice triunghiularǎ unitarǎ o matrice triunghiularǎ care are intrǎrile
diagonale egale cu 1.
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Pivotare

Dupǎ cum s-a subliniat anterior, procesul GEM se întrerupe imediat ce se
calculeazǎ o intrare pivotalǎ zero. Într-un astfel de caz, trebuie sǎ se
apeleze la aşa-numita tehnicǎ de pivotare, care constǎ în schimbarea
rândurilor (sau a coloanelor) din sistem astfel încât sǎ se obţinǎ pivoţi
nenuli.

Strategia de pivotare adoptatǎ pânǎ în prezent poate fi generalizatǎ prin
cǎutarea, la fiecare pas k al procedurii de eliminare, a unei intrǎri
pivotante care nu este nulǎ, cǎutând în interiorul intrǎrilor din subcoloana
A(k)(k : n, k). Din acest motiv, se numeşte pivotare parţialǎ (pe rânduri).
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Se poate observa cǎ o valoare mare a lui mik =
a
(k)
ik

a
(k)
kk

, i = k + 1, · · · , n

(generatǎ, de exemplu, de o valoare micǎ a pivotului a(k)kk ) poate
amplifica erorile de rotunjire care afecteazǎ intrǎrile a

(k)
kj .

Prin urmare, pentru a asigura o mai bunǎ stabilitate, pivotul kj A(k)(j , k)

se alege ca fiind cea mai mare intrare (în modul) din coloana
A(k)(k : n, k) şi, în general, se efectueazǎ o pivotare parţialǎ la fiecare
etapǎ a procedurii de eliminare, chiar dacǎ nu este strict necesar (adicǎ
chiar dacǎ se gǎsesc intrǎri pivotale diferite de zero).

Alternativ, procesul de cǎutare ar fi putut fi extins la întreaga submatrice
A(k)(k : n, k : n), finalizându-se cu o pivotare completǎ.

Observaţi, totuşi, cǎ în timp ce pivotarea parţialǎ necesitǎ un cost
suplimentar de aproximativ n2 cǎutǎri, pivotarea completǎ necesitǎ
aproximativ 2n3/3, cu o creştere considerabilǎ a costului de calcul al
GEM.
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Matrice de permutare

Schimbul dintre a i-a şi j-a linie a unei matrice; acest lucru se poate face
prin înmulţirea prealabilǎ a lui A cu matricea P(i,j) de elemente

p(i,j)rs =


1 dacǎ r = s = 1, · · · , i − 1, i + 1, · · · j − 1, j + 1, · · · n,
1 dacǎ r = j , s = i or r = i , s = j ,

0, în caz contrar.

(23)

Matricele de tipul P(i,j) se numesc matrice de permutare elementarǎ.

Produsul matricelor de permutare elementarǎ se numeşte matrice de
permutare şi efectueazǎ schimburile de rânduri asociate fiecǎrei matrice
de permutare elementarǎ.

În practicǎ, o matrice de permutare este o reordonare pe rânduri a
matricei identitate.
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Sǎ analizǎm modul în care pivotarea parţialǎ afecteazǎ factorizarea LU
indusǎ de GEM.

La prima etapǎ a GEM cu pivotare parţialǎ, dupǎ ce se aflǎ intrarea ar1
de modul maxim din prima coloanǎ, se construieşte matricea elementarǎ
de permutare P1 care schimbǎ prima linie cu a r -a linie (dacǎ r = 1, P1

este matricea identitate).

În continuare, se genereazǎ prima matrice de transformare gaussianǎ M1

şi se stabileşte

A(2) = M1P1A
(1). (24)

O abordare similarǎ se face acum pentru A(2), cǎutând o nouǎ matrice de
permutare P2 şi o nouǎ matrice M2 astfel încât

A(3) = M2P2A
(2) = M2P2M1P1A

(1). (25)

Executând toate etapele de eliminare, matricea superior triunghiularǎ U

rezultatǎ este acum datǎ de

U = A(n) = Mn−1Pn−1 · · ·M2P2M1P1︸ ︷︷ ︸
:=M

A(1). (26)
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Reţineţi cǎ m
(k)
ik utilizat în construcţia lui Mk este acum m

(k)
ik =

b
(k)
ik

b
(k)
kk

,

unde b
(k)
ik sunt intrǎrile matricei PkA

(k).

Obţinem cǎ U = M A şi, astfel, U = (MP−1)PA, unde P = Pn−1 · · ·P1.
Afirmǎm cǎ L = PM−1 este inferior triunghiularǎ unitarǎ.
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Afirmǎm cǎ L = PM−1 este inferior triunghiularǎ unitarǎ.

Nu trebuie sǎ fim îngrijoraţi de prezenţa inversului lui M, deoarece
M−1 = P−1

1 M−1
1 · · ·P−1

n−1M
−1
n−1 şi P−1

i = PT
i , în timp ce

M−1
i = 2In −Mi = In +mk e

T
k .

Prin urmare, avem

L = Pn−1 · · ·P2P1P
−1
1 (In +m1 e

T
1 )P−1

2 (In +m2 e
T
2 ) · · ·P−1

n−1(In +mn−1 e
T
n−1)

= Pn−1 · · ·P2(In +m1 e
T
1 )P−1

2 (In +m2 e
T
2 ) · · ·P−1

n−1(In +mn−1 e
T
n−1).

Sǎ discutǎm acum

Pn−1 · · ·P2(In +m1 e
T
1 )

= (Pn−1 · · ·P2 + Pn−1 · · ·P2m1 e
T
1 PT

2 · · ·PT
n−1Pn−1 · · ·P2)

= (Pn−1 · · ·P2 + Pn−1 · · ·P2m1 e
T
1 (Pn−1 · · ·P2)

TPn−1 · · ·P2)

= (Pn−1 · · ·P2 + Pn−1 · · ·P2m1(Pn−1 · · ·P2e1)
TPn−1 · · ·P2) (27)

= [In + Pn−1 · · ·P2m1(Pn−1 · · ·P2e1)
T ]Pn−1 · · ·P2.
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Vom avea

Pn−1 · · ·P2(In +m1 e
T
1 )

= [In + Pn−1 · · ·P2m1︸ ︷︷ ︸
:=m̃1

(Pn−1 · · ·P2e1)
T ]Pn−1 · · ·P2. (28)

Dar permutarea Pn−1 · · ·P2 permutǎ doar intrǎrile de la 2 la n dintr-un
vector; intrǎrile 1 rǎmân neatinse. Aceasta înseamnǎ cǎ primele intrǎri
ale lui m̃1 sunt încǎ zero şi e1 este neschimbatǎ permutarea, adicǎ
Pn−1 · · ·P2e1 = e1.

Astfel, avem de fapt

Pn−1 · · ·P2(In +m1 e
T
1 )

= [In + m̃1e
T
1 ]︸ ︷︷ ︸

inferior triunghiularǎ

Pn−1 · · ·P2 (29)

şi

L = [In + m̃1e
T
1 ]︸ ︷︷ ︸

inferior triunghiularǎ

Pn−1 · · ·P2P
−1
2 (In +m2 e

T
2 ) · · ·P−1

n−1(In +mn−1 e
T
n−1).

Repetând argumentul avem cǎ L este inferior triunghiularǎ.
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Deoarece L = PM−1 este inferior triunghiularǎ unitar, factorizarea LU se
citeşte

PA = LU. (30)

Odatǎ ce L, U şi P sunt disponibile, rezolvarea sistemului liniar iniţial se
rezumǎ la rezolvarea sistemelor triunghiulare Ly = Pb şi Ux = y .
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Teoremǎ
Fie A ∈ Rn×n o matrice nesingularǎ. Atunci existǎ o matrice de
permutare P astfel încât P A = LU, unde L şi U sunt matricile
triunghiulare inferioarǎ şi superioarǎ obţinute prin eliminarea gaussianǎ.

Proof.
Demonstraţia este deja fǎcutǎ, cu excepţia faptului cǎ la orice pas avem

max abs(A(k)(k : n, k)) ̸= 0. (31)

Dacǎ ar fi posibil sǎ avem

max abs(A(k)(k : n, k)) = 0, (32)

atunci detA = 0 ceea ce este evitat de ipotezǎ.
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Dacǎ se realizeazǎ pivotarea completǎ, la primul pas al procesului, odatǎ
gǎsit elementul aqr al celui mai mare modul din submatricea
A(1 : n, 1 : n), trebuie sǎ schimbǎm prima linie şi prima coloanǎ cu a q-a
linie şi a r -a coloanǎ. Se genereazǎ astfel matricea P1A

(1)Q1, unde P1 şi
Q1 sunt matrici de permutare pe rânduri şi, respectiv, pe coloane.

În consecinţǎ, acţiunea matricei M1 este acum astfel încât
A(2) = M1P1A

(1)Q1. Repetând procesul, la ultima etapǎ, obţinem

U = A(n) = Mn−1Pn−1 · · ·M1P1A
(1)Q1 · · ·Qn−1. (33)

În cazul pivotǎrii complete, factorizarea LU devine

PAQ = LU, (34)

unde Q = Q = Q1 · · ·Qn−1 este o matrice de permutare care ţine cont de
toate permutǎrile care au fost operate. Prin construcţie, matricea L este
tot inferior triunghiularǎ, cu intrǎri de modul mai mici sau egale cu 1.
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Calculul inversei unei matrice

Calculul explicit al inversei unei matrice poate fi efectuat folosind
factorizarea LU dupǎ cum urmeazǎ.

Notând cu X inversa unei matrice nesingulare în Rn×n, vectorii coloanǎ ai
lui X sunt soluţiile sistemelor liniare Axi = ei , pentru i = 1, · · · , n.

Presupunând cǎ PA = LU, unde P este matricea de permutare cu
pivotare parţialǎ, trebuie sǎ rezolvǎm 2n sisteme triunghiulare de forma
Lyi = Pei , U xi = yi , i = 1, · · · , n, adicǎ o succesiune de sisteme liniare
care au aceeaşi matrice de coeficienţi, dar pǎrţi drepte diferite.
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Aplicarea factorizǎrii LU într-o problemǎ de deformare elasticǎ
1D

Se considerǎ o barǎ elasticǎ de lungime L = 1 m, cu capetele menţinute
fixe

u(0) = u(1) = 0.

Ecuaţia care descrie deformarea barei este de tip Poisson:

−k u′′(x) = q(x), 0 < x < 1,

unde u este deplasarea, k este un coeficient de elasticitiate, iar q(x) forţa
care acţioneazǎ pe acea barǎ.
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Aproximarea numericǎ a derivatei a doua

Pentru fiecare nod interior xi , a doua derivatǎ u′′(xi ) se poate aproxima
prin diferenţe finite centrale.

Pornim de la seriile Taylor în jurul nodului xi :

u(xi + h) = u(xi ) + hu′(xi ) +
h2

2
u′′(xi ) +

h3

6
u′′′(xi ) + O(h4),

u(xi − h) = u(xi )− hu′(xi ) +
h2

2
u′′(xi )−

h3

6
u′′′(xi ) + O(h4).

Adunând cele douǎ ecuaţii, derivata întâi se eliminǎ:

u(xi + h) + u(xi − h) = 2u(xi ) + h2u′′(xi ) + O(h4),

de unde rezultǎ formula de diferenţe finite centrale:

u′′(xi ) ≈
u(xi−1)− 2u(xi ) + u(xi+1)

h2 .

Aceastǎ formulǎ stǎ la baza discretizǎrii ecuaţiei Poisson pentru fiecare
nod interior. 68



Discretizare numericǎ a ecuaţiei Poisson

Împǎrţim bara în N = 4 segmente egale (h = L/(N + 1) = 0.2 m) şi
notǎm deformarea în nodurile interioare u1, u2, u3, u4.

Înlocuind aproximaţia derivatei a doua în ecuaţia Poisson:

−ui−1 − 2ui + ui+1

h2 =
q(xi )

k
, i = 1, . . . , 4,

sau echivalent:
2ui − ui−1 − ui+1 = h2 q(xi )

k
.

Astfel se genereazǎ un sistem liniar tridiagonal:

A · u = b,

unde

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 , b =


h2q(x1)/k

h2q(x2)/k

h2q(x3)/k

h2q(x4)/k

 .
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Factorizarea LU

Observaţie: valoarea deplasuarii în fiecare nod interior depinde doar de
nodul precedent şi urmǎtor, ceea ce face sistemul tridiagonal şi foarte
potrivit pentru factorizarea LU. Pentru rezolvarea eficientǎ, factorǎm
matricea A ca:

A = L · U,

unde L este inferior triunghiularǎ şi U superior triunghiularǎ:

L =


1 0 0 0
− 1

2 1 0 0
0 − 2

3 1 0
0 0 − 3

4 1

 , U =


2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4

 .
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Matrice de tip bandǎ

Metodele de discretizare pentru problemele cu valori la frontierǎ conduc
adesea la rezolvarea sistemelor liniare cu matrici care au forme de bandǎ,
bloc sau rare. Exploatarea structurii matricei permite o reducere drasticǎ
a costurilor de calcul ale factorizǎrii şi ale algoritmilor de substituţie.

Vom aborda variante speciale ale factorizǎrii GEM sau LU care sunt
concepute în mod corespunzǎtor pentru a trata matrici de acest tip.
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Factorizarea Cholesky



Matrice simetrice pozitiv definite: Factorizarea Cholesky

Dupǎ cum s-a arǎtat deja, factorizarea LDMT se simplificǎ considerabil
atunci când A este simetricǎ, deoarece într-un astfel de caz M = L,
obţinându-se aşa-numita factorizare LDLT . Costul de calcul se
înjumǎtǎţeşte, faţǎ de factorizarea LU, la aproximativ (n3/3) flop-uri.
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Factorizarea Cholesky

Teoremǎ
Fie A ∈ Rn×n o matrice simetricǎ şi pozitiv definitǎ. Atunci, existǎ o
matrice superior triunghiularǎ unicǎ H cu intrǎri diagonale pozitive astfel
încât

A = HTH. (35)

Aceastǎ factorizare se numeşte factorizare Cholesky.
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Proof: Existenţa.

Deoarece A este pozitiv definitǎ, avem det(A(1 : k, 1 : k)) > 0, pentru
toate k ∈ {1, 2, ..., n}.

Printr-un rezultat anterior, rezultǎ cǎ existǎ L,U ∈ R astfel încât
A = LU, unde L este inferior triunghiularǎ cu 1 pe diagonalǎ, iar U este
superior triunghiularǎ.

Fie D = diag(
√
u11, ...,

√
unn). Atunci

A = LU = (LD)︸ ︷︷ ︸
:=B

(D−1U)︸ ︷︷ ︸
:=C

, (36)

unde B este inferior triunghiularǎ şi C este superior triunghiularǎ, ambele
cu elemente

√
u11, ...,

√
unn pe diagonalǎ.

Acum vom demonstra cǎ B = CT .
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Demonstraţie: Existenţǎ

Din moment ce A = AT , rezultǎ

BC = CTBT ⇒ (CT )−1B = BTC−1. (37)

În partea stângǎ a ultimei egalitǎţi, ambele matrici sunt inferior
triunghiulare, adicǎ partea stângǎ este inferior triunghiularǎ, în timp ce în
partea dreaptǎ a ultimei egalitǎţi, ambele matrici sunt superior
triunghiulare, adicǎ partea dreaptǎ este superior triunghiularǎ.

În plus, partea stângǎ are 1 pe diagonalǎ, iar partea dreaptǎ, la fel.

Dar singura matrice care este inferior triunghiularǎ-superioarǎ cu 1 pe
diagonalǎ este matricea identitate In.

Aşadar, (CT )−1B = In şi CT = B, ceea ce încheie dovada existenţei
factorizǎrii Cholesky.
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Demonstraţie: Unicitate

Fie C1,C2 superior triunghiulare cu elemente diagonale pozitive astfel
încât

A = CT
1 C1 = CT

2 C2. (38)

Fie D1 = diag(C1),D2 = diag(C2).

Atunci

CT
1 D−1

1︸ ︷︷ ︸
inferior triunghiularǎ cu 1 pe diag

D1C1︸ ︷︷ ︸
superior triunghiularǎ

= CT
2 D−1

2 D2C2. (39)

Din unicitatea factorizǎrii LU rezultǎ cǎ D1C1 = D2C2.

Aceasta implicǎ [(C1)ii ]
2 = [(C2)ii ]

2, i = 1, 2, ..., n, adicǎ D1 = D2.

Prin urmare, C1 = C2 şi dovada este completǎ.
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Calcularea factorizǎrii Cholesky în practicǎ

Teoremǎ
Intrǎrile hij din HT pot fi calculate dupǎ cum urmeazǎ:

h11 =
√
a11 =

√
a11. (40)

şi, pentru i = 2, · · · , n,

hij =

(
aij −

j−1∑
k=1

hikhjk

)
/hjj , j = 1, · · · , i − 1, (41)

hii =

√√√√aii −
i−1∑
k=1

h2
ik . (42)
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Demonstraţie:

Sǎ demonstrǎm teorema procedând prin inducţie asupra mǎrimii i a
matricei, amintind cǎ dacǎ Ai ∈ Ri×i este simetricǎ pozitiv definitǎ,
atunci toate submatricile sale principale se bucurǎ de aceeaşi proprietate.

Pentru i = 1 rezultatul este evident adevǎrat. Prin urmare, sǎ
presupunem cǎ este valabil pentru i − 1 şi sǎ demonstrǎm cǎ este valabil
şi pentru i . Existǎ o matrice superior triunghiularǎ Hi−1 astfel încât
Ai−1 = HT

i−1Hi−1. Sǎ partiţionǎm Ai astfel

Ai =

(
Ai−1 v

vT α

)
(43)

cu α ∈ R+, v ∈ Ri−1 şi cǎutǎm o factorizare a lui Ai de forma

Ai = HT
i Hi =

(
HT

i−1 0
hT β

)(
Hi−1 h

0T β

)
. (44)
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Prin aplicarea egalitǎţii cu intrǎrile lui Ai se obţin ecuaţiile HT
i−1h = v şi

hTh + β2 = α.

Astfel, vectorul h este determinat în mod unic, deoarece HT
i−1 este

nesingularǎ. În ceea ce priveşte β, datoritǎ proprietǎţilor determinanţilor

0 < det(Ai ) = det(HT
i ) det(Hi ) = β2(det(Hi−1))

2, (45)

putem concluziona cǎ trebuie sǎ fie un numǎr real. Ca urmare,
β =

√
α− hTh intrarea diagonalǎ doritǎ şi astfel se încheie argumentul

inductiv.

Sǎ demonstrǎm acum restul formulelor.

Faptul cǎ h11 =
√
a11 este o consecinţǎ imediatǎ a argumentului de

inducţie pentru i = 1. În cazul unui i generic, se obţine relaţii sunt
formulele de substituţie directǎ pentru soluţia sistemului liniar
HT

i−1h = v , iar demonstraţia este completǎ.
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Folosim Cholesky doar pentru sisteme cu matrice simetricǎ?

Sǎ presupunem cǎ avem de rezolvat un sistem de forma Ax = b,
A ∈ Rn×n, detA ̸= 0, b ∈ Rn.

Matricea A nu este consideratǎ neapǎrat simetricǎ, însǎ prin înmulţire cu
AT , avem sistemul echivalent

ATAx = ATb, (46)

a cǎrui matrice este simetricǎ şi chiar pozitiv definitǎ. (Demonstraţi!)

Prin urmare se poate folosi factorizarea Cholesky care este mai eficientǎ
decât factorizarea LU.

Vom vedea cǎ factorizare Cholesky poate fi folositǎ şi pentru rezolvarea
aproximativǎ a sistemelor supradeterminate (cu aplicaţii practice în
corelarea datelor, probleme de identificare a locaţiei optime, eliminarea
zgomotelor din semnale etc.).
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Matrice de tip bandǎ



Matrice de tip bandǎ

Definiţie
Spunem cǎ o matrice A ∈ Rm×n are bandǎ inferioarǎ p dacǎ aij = 0 când
i > j + p şi banda superioarǎ q dacǎ aij = 0 când j > i + q.

Matricele diagonale sunt matrici cu benzi pentru care p = q = 0, în timp
ce matricele trapezoidale au p = 1 sau q = 1 iar dacǎ p = 1 şi q = 1
atunci spunedm cǎ avem o matrice tridiagonalǎ.

81



Rezultatul principal pentru matrici cu benzi este urmǎtorul.

Teoremǎ
Fie A ∈ Rn×n. Sǎ presupunem cǎ existǎ o factorizare LU a lui A. Dacǎ A

are lǎţimea de bandǎ superioarǎ q şi lǎţimea de bandǎ inferioarǎ p, atunci
L are lǎţimea de bandǎ inferioarǎ p şi U are lǎţimea de bandǎ superioarǎ
q.

În special, observaţi cǎ aceeaşi zonǎ de memorie utilizatǎ pentru A este
suficientǎ pentru a stoca şi factorizarea sa LU.
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Sǎ considerǎm, într-adevǎr, cǎ o matrice A având lǎţimea de bandǎ
superioarǎ q şi lǎţimea de bandǎ inferioarǎ p este de obicei stocatǎ într-o
matrice (p + q + 1)× n, pe care o vom nota cu B, presupunând cǎ

bi−j+q+1,j = aij (47)

pentru toţi indicii i , j care se încadreazǎ în banda matricei, în rest fiind
zero.

De exemplu, în cazul matricei tridiagonale

A =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 (48)

stocarea compactǎ se citeşte

B =

 0 −1 −1 −1 −1
2 2 2 2 2
−1 −1 −1 −1 0

 (49)
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Acelaşi format poate fi utilizat pentru stocarea factorizǎrii LU a lui A.

Este clar cǎ acest format de stocare poate fi destul de incomod în cazul
în care doar câteva benzi ale matricei sunt mari.

La limitǎ, dacǎ doar o coloanǎ şi un rând ar fi pline, am avea p = q = n

şi astfel B ar fi o matrice plinǎ cu multe intrǎri zero.

În cele din urmǎ, observǎm cǎ inversa unei matrice cu benzi este în
general plinǎ (aşa cum se întâmplǎ pentru matricea A consideratǎ mai
sus).

84



Matrice tridiagonale

Considerǎm cazul particular al unui sistem liniar cu matrice tridiagonalǎ
nesingularǎ A datǎ de 

a1 c1 0

b2 a2
. . .

. . . . . . cn−1

0 bn an

 . (50)

În acest caz, matricile L şi U din factorizarea LU a lui A sunt matrici
bidiagonale de forma

1 0 0

β2 1
. . .

. . . . . . 0
0 βn 1

 ,


α1 c1

0 α2
. . . 0

. . . . . . cn−1

0 0 αn

 (51)
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Algoritmul Thomas

Coeficienţii αi , βi pot fi calculaţi cu uşurinţǎ prin urmǎtoarele relaţii

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, · · · , n. (52)
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Algoritmul Thomas poate fi extins şi pentru a rezolva întregul sistem
tridiagonal Ax = f . Acest lucru înseamnǎ rezolvarea a douǎ sisteme
bidiagonale Ly = f şi Ux = y , pentru care se aplicǎ urmǎtoarele formule:

(Ly = f ) : y1 = f1, yi = fi − βiyi−1, i = 2, · · · , n, (53)

(Ux = y) : xn =
yn
αn

, xi =
yi − cixi+1

αi
, i = n − 1, · · · , 1. (54)
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Sisteme pe blocuri

În aceastǎ secţiune ne ocupǎm de factorizarea LU a matricelor
partiţionate în blocuri, în care fiecare bloc poate avea o dimensiune
diferitǎ.

Obiectivul nostru este dublu: optimizarea ocupǎrii spaţiului de stocare
prin exploatarea adecvatǎ a structurii matricei şi reducerea costului de
calcul al soluţiei sistemului.
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Factorizarea LU

Fie A = Rn×n urmǎtoarea matrice partiţionatǎ în blocuri

A =

(
A11 A12

A21 A22

)
, (55)

unde A11 ∈ Rr×r este o matrice nesingularǎ a cǎrei factorizare L11D1R11

este cunoscutǎ, în timp ce A22 ∈ R(n−r)×(n−r).

În acest caz este posibilǎ factorizarea A folosind doar factorizarea LU a
blocului A11. Într-adevǎr, este adevǎrat cǎ

A =

(
A11 A12

A21 A22

)
=

(
L11 0
L21 In−r

)(
D1 0
0 D2

)(
R11 R12

0 In−r

)
, (56)

unde

L21 = A21R
−1
11 D−1

1 ,

R12 = D−1
1 L−1

11 A12, (57)

D2 = A22 − L21D1R12.
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Dacǎ este necesar, procedura de reducere poate fi repetatǎ pe matricea
D2, obţinându-se astfel o versiune în bloc a factorizǎrii LU.

Dacǎ A11 ar fi un scalar, abordarea de mai sus ar reduce cu unu
dimensiunea factorizǎrii unei matrice date.

Prin aplicarea iterativǎ a acestei metode se obţine un mod alternativ de
efectuare a eliminǎrii Gauss.
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Analiza erorii



Algebrǎ liniarǎ: completǎri



Descompunerii spectralǎ

Unul dintre cele mai utile rezultate legate de valorile proprii este teorema
descompunerii spectrale, care afirmǎ cǎ orice matrice simetricǎ A are o
bazǎ ortonormalǎ de vectori proprii.

Teorema descompunerii spectrale

Fie A o matrice simetricǎ în Rn×n. Atunci existǎ o matrice ortogonalǎ
U ∈ Rn×n (UTU = U UT = I ) şi o matrice diagonalǎ
D = diag(d1, d2, ..., dn) pentru care

UT AU = D.

Coloanele matricei U din factorizare constituie o bazǎ ortonormatǎ
formatǎ din vectorii proprii ai lui A, iar elementele diagonale ale lui D
sunt valorile proprii corespunzǎtoare.

Demonstraţi cǎ tr(A) =
∑n

i=1 λi (A) şi det(A) =
∏n

i=1 λi (A) .
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Norme matriceale

Ansamblul valorilor proprii ale lui A se numeşte spectrul lui A, notat prin
σ(A).

Se pot demonstra urmǎtoarele proprietǎţi

det(A) =
n∏

i=1

λi , tr(A) =
n∑

i=1

λi (58)

şi se concluzioneazǎ cǎ σ(A) = σ(AT ), şi σ(AH) = σ(A), unde AH = A
T
.

Modulul maxim al valorilor proprii ale lui A se numeşte raza spectralǎ a
lui A şi se noteazǎ cu

ρ(A) = max
λ∈σ(A)

|λ|. (59)
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Norme în Rn

Un exemplu de spaţiu normat este Rn, echipat, de exemplu, cu norma p

(sau norma Hölder); aceasta din urmǎ se defineşte pentru un vector x cu
componente xi ca fiind

∥x∥p =

(
n∑

i=1

|xi |p
) 1

p

, for 1 ≤ p < ∞. (60)

Observaţi cǎ limita pe mǎsurǎ ce p merge la infinit a lui ∥x∥p existǎ, este
finitǎ şi este egalǎ cu modulul maxim al componentelor lui x . O astfel de
limitǎ defineşte, la rândul sǎu, o normǎ, numitǎ norma infinit (sau norma
maxim), datǎ de

∥x∥∞ = max
1≤i≤n

|xi |. (61)

Când p = 2, regǎsim definiţia standard a normei euclidiene

∥x∥2 =

(
n∑

i=1

|xi |2
) 1

2

= (xT x)
1
2 . (62)
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Norme matriceale

Definiţie
O normǎ matricialǎ este o funcţie ∥ · ∥ : Rm×n → R astfel încât

1. ∥A∥ ≥ 0 ∀A ∈ Rm×n şi ∥A∥ = 0 dacǎ şi numai dacǎ A = 0;

2. ∥αA∥ = |α| ∥A∥ ∀α ∈ R, ∀A ∈ Rm×n;

3. ∥A+ B∥ ≤ ∥A∥+ ∥B∥ ∀A,B nRm×n.

Definiţie
Spunem cǎ o normǎ matricialǎ ∥ · ∥Rm×n este compatibilǎ sau consistentǎ
cu normele vectorialǎ ∥ · ∥Rm şi ∥ · ∥Rn dacǎ

∥Ax∥Rm ≤ ∥A∥Rm×n ∥x∥Rn ∀ x ∈ Rn. (63)
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Definiţie
Spunem cǎ o normǎ matricialǎ ∥ · ∥ este submultiplicativǎ dacǎ
∀A ∈ Rn×m, ∀B ∈ Rm×q.

∥AB∥ ≤ ∥A∥ ∥B∥. (64)

În multe lucrǎri, definiţia unei norme matriciale include şi
submultiplicitatea.

Aceastǎ proprietate nu este satisfǎcutǎ de toate normele matriciale. De
exemplu, norma ∥A∥∆ = maxi=1,...,n,j=1,...,m |aij | nu îndeplineşte condiţia
submultiplicativǎ, de exemplu, aceastǎ condiţie nu este îndeplinitǎ pentru

pentru A = B =

(
1 1
1 1

)
. Prin urmare, este o normǎ, dar nu este o

normǎ submultiplicativǎ.
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Observaţi cǎ, datǎ fiind o anumitǎ normǎ submultiplicativǎ ∥ · ∥α, existǎ
întotdeauna o normǎ vectorialǎ compatibilǎ. De exemplu, dat fiind orice
vector fix y ̸= 0 în Rn, este suficient sǎ se defineascǎ norma vectorialǎ
consistentǎ sub forma

∥x∥ = ∥x yT∥α ∀ x ∈ Rn. (65)

Un exemplu de normǎ matricialǎ este norma Frobenius (sau norma
euclidianǎ în Rn2

)

∥A∥F =

√√√√ n∑
i,j=1

|aij |2 =
√

tr(AAT ) (66)

şi este compatibilǎ cu norma vectorialǎ euclidianǎ ∥ · ∥2. Într-adevǎr,

∥Ax∥2
2 =

n∑
i=1

|
n∑

j=1

aijxj |2 ≤
n∑

i=1

 n∑
j=1

|aij |2
n∑

j=1

|xj |2
 = ∥A∥2

F∥x∥2
2. (67)

Observaţi cǎ pentru o astfel de normǎ ∥In∥F =
√
n. Pentru o normǎ

oarecare, care ar putea fi o aşteptare rezonabilǎ pentru ∥In∥?
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Norme matriceale induse

Teoremǎ
Fie ∥ · ∥Rm şi ∥ · ∥Rn norme vectoriale. Funcţia

∥A∥ = sup
x ̸=0

∥Ax∥Rm

∥x∥Rn

(68)

este o normǎ matricialǎ numitǎ normǎ indusǎ sau normǎ matricialǎ
naturalǎ.
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Cazuri relevante de norme matriceale induse sunt aşa-numitele norme p

definite astfel

∥A∥p = sup
x ̸=0

∥Ax∥p
∥x∥p

. (69)

Norma 1 şi norma infinit sunt uşor de calculat, deoarece

∥A∥1 = max
j=1,...,n

m∑
i=1

|aij |, ∥A∥∞ = max
i=1,...,n

n∑
i=1

|aij | (70)

şi se numesc norma sumei coloanelor şi, respectiv, norma sumei
rândurilor.

Mai mult, avem ∥A∥1 = ∥AT∥∞ şi dacǎ A este simetricǎ ∥A∥1 = ∥A∥∞.
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Teoremǎ
Fie ∥ · ∥Rm×n o normǎ matricealǎ indusǎ de normele vectoriale ∥ · ∥Rm şi
∥ · ∥Rn . Atunci, urmǎtoarele relaţii sunt valabile:

1. ∥Ax∥Rm ≤ ∥A∥Rm×n ∥x∥Rn , adicǎ norma matricealǎ indusǎ este
compatibilǎ cu norma vectorialǎ care o induce;

2. ∥In∥ = 1;

3. ∥AB∥Rm×n ≤ ∥A∥Rm×n ∥B∥Rm×n , adicǎ fiecare normǎ matricealǎ
indusǎ este submultiplicativǎ.

Proof.
TO DO.

Observaţi cǎ normele p sunt submultiplicative. Mai mult, observǎm cǎ
proprietatea de submultiplicativitate ar permite doar sǎ concluzionǎm cǎ
∥In∥ ≥ 1. Într-adevǎr, ∥In∥ = ∥In In∥ ≤ ∥In∥2.
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Norma ∥A∥∆ = maxi=1,...,n,j=1,...,m |aij | care nu este submultiplicativǎ, de
asemenea, nu este o normǎ matricealǎ indusǎ. O normǎ care nu este
indusǎ poate fi sau nu submultiplicativǎ. De exemplu, ∥ · ∥∆ nu este
submultiplicativǎ, dar norma Frobenius

∥A∥F =

√√√√ n∑
i,j=1

|aij |2 =
√

tr(AAT ) (71)

este submultiplicativǎ, chiar dacǎ nu este indusǎ (de ce?), de asemenea.
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Norma spectralǎ pentru matrice simetrice

Teoremǎ
Fie A o matrice realǎ simetricǎ. Atunci

∥A∥2 = ρ(A). (72)

Proof.
Deoarece A este simetricǎ, existǎ matricea unitarǎ U astfel încât
UTAU = diag(λ1, ...., λn), unde λi sunt valorile proprii ale lui A. Fie
y = UT x . Atunci

∥A∥2 = sup
x ̸=0

√
∥Ax∥2

∥x∥2
= sup

x ̸=0

√
⟨Ax ,Ax⟩

∥x∥2
= sup

y ̸=0

√
⟨AUy ,AUy⟩

∥Uy∥2

= sup
y ̸=0

√
⟨UTATAUy , y⟩

∥y∥2
= sup

y ̸=0

√
⟨diag(λ2

1, ...., λ
2
n)y , y⟩

∥y∥2

= sup
y ̸=0

√∑n
i=1 λ

2
i y

2
i∑n

i=1 y
2
i

=
√

max
i=1,2,...,n

|λ2
i | = max

i=1,2,...,n
|λi | = ρ(A).

Calculeazǎ ∥In∥2!
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Matrice nesimetrice

Definiţie
Fie A ∈ Rm×n. Se numesc valori singulare ale matricei A, numerele reale
σi (A) definite prin

σi (A) =
√
λi (ATA). (73)

Dacǎ A este simetricǎ, atunci

σi (A) =
√

λ)i(ATA) =
√

λi (A2) =
√

λ2
i (A) = |λi (A)|. (74)
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Norma spectralǎ pentru matrice simetrice

Teoremǎ
Fie σ1(A) cea mai mare valoare singularǎ a matrice A ∈ Rn×n. Atunci

∥A∥2 =
√
ρ(ATA) = σ1(A). (75)
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Este clar cǎ a calcula ∥A∥2 este mult mai costisitor decât cel al lui ∥A∥1

sau ∥A∥∞. Cu toate acestea, dacǎ este necesarǎ doar o estimare a lui
∥A∥2, urmǎtoarele relaţii pot fi utilizate în mod profitabil în cazul
matricelor pǎtrate

max
i,j

|aij || ≤ ∥A∥2 ≤ nmax |aij |,

1√
n
∥A∥∞ ≤ ∥A∥2 ≤

√
n ∥A∥∞, (76)

1√
n
∥A∥1 ≤ ∥A∥2 ≤

√
n ∥A∥1, ∥A∥2 ≤

√
∥A∥1∥A∥∞.
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Relaţii dintre norme şi raza spectralǎ

Teoremǎ
Fie ∥ · ∥ o normǎ matricealǎ consistentǎ, atunci

ρ(A) ≤ ∥A∥ ∀A ∈ Rn×n. (77)

Proof.
Fie λ o valoare proprie a lui A şi v ̸= 0 un vector propriu asociat acestei
valori proprii. Deoarece norma este consistentǎ, avem

|λ|∥v∥ = ∥λ v∥ = ∥Av∥ ≤ ∥A∥ ∥v∥, (78)

şi deci |λ| ≤ ∥A∥.

În restul prelegerilor noastre, dacǎ nu specificǎm altceva, considerǎm
norma matricei spectrale şi o vom nota cu ∥ · ∥.
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Relaţii dintre norme şi raza spectralǎ

Teoremǎ
Fie A ∈ Rn×n şi ε > 0. Atunci, existǎ o normǎ matricealǎ indusǎ notatǎ
∥ · ∥A,ε (depinzând de ε) astfel încât

∥ · ∥A,ε ≤ ρ(A) + ϵ. (79)

Deci, fixând o toleranţǎ arbitrarǎ, mereu existǎ o normǎ matricealǎ care
este apropiatǎ de norma spectralǎ a matricei A.
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Analiza senzivitǎţii soluţiei

La fiecare pas al GEM în urma rotunjirilor numerelor se rezolvǎ un sistem
perturbat

(A+ δA)(x + δ x) = b + δb, (80)

soluţia acestui sistem perturbat fiind perturbatǎ faţǎ de solutţia
sistemului de start

Ax = b. (81)

Ne dorim sǎ caracterizǎm perturbarea δx în funcţie de pertubǎrile δA şi
δb.

Un rol important va fi jucat de numǎrul de condiţionare.
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Numǎrul de condiţionare

Numǎrul de condiţionare al unei matrice A ∈ Rn×n este definit prin

K (A) = ∥A∥ ∥A−1∥, (82)

unde ∥ · ∥ este o normǎ indusǎ.

Se poate observa cǎ numǎrul de condiţionare depinde de norma aleasǎ.

Se observǎ însǎ cǎ indiferent de norma aleasǎ K (A) ≥ 1 deoarece

1 = ∥AA−1∥ ≤ ∥A∥ ∥A−1∥ = K (A).

Mai mult, K (A) = K (A−1) şi K (αA) = K (A), ∀α ̸= 0.

Pentru norma ∥ · ∥2 pe Rn×n, K2(A) = ∥A∥2 ∥A−1∥2 este dat de

K2(A) =
σ1(A)

σn(A)
, (83)
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iar în cazul matricelor pozitiv definite

K2(A) =
λ1(A)

λn(A)
=

λmax(A)

λmin(A)
. (84)

K2(A) se numeşte numǎrul de condiţionare spectral.
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Analiza a priori a erorii

Theorem
Fie A ∈ Rn×n o matrice inversabilǎ şi δA ∈ Rn×n astfel ca

∥A−1∥ ∥δA∥ < 1 (85)

este verificatǎ într-o normǎ indusǎ. Atunci dacǎ x ∈ Rn este soluţie a
sistemului Ax = b cu b ∈ Rn (b ̸= 0) şi δx ∈ Rn verificǎ

(A+ δA)(x + δx) = b + δb, (86)

atunci

∥δx∥
∥x∥

≤ K (A)

1 − K (A)∥δA∥/∥A∥

(
∥δb∥
∥b∥

+
∥δA∥
∥A∥

)
(87)
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Câteva observaţii

Condiţia ∥A−1∥ ∥δA∥ < 1 asigurǎ faptul cǎ (A+ δA) rǎmâne inversabilǎ.

Dacǎ ∥A−1∥ ∥δA∥ < 1 , atunci ρ(A−1δA) < 1.
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Lemma
Fie A ∈ Rn×n, Atunci

lim
k→∞

Ak = 0 ⇔ ρ(A) < 1. (88)

În plus, seria geometricǎ
∑∞

k=0 A
k este convergentǎ dacǎ şi numai dacǎ

ρ(A) < 1. În acest caz

∞∑
k=0

Ak = (I − A)−1. (89)

Prin urmare, dacǎ ρ(A) < 1, matricea I − A este inversabilǎ şi au loc
inegalitǎţile

1
1 + ∥A∥

≤ ∥(I − A)−1∥ ≤ 1
1 − ∥A∥

, (90)

unde ∥ · ∥ este o matrice indusǎ astfel încât ∥A∥ < 1.
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Demonstraţia lemei

Dacǎ ρ(A) < 1 atunci ∃ ε > 0 astfel încât ρ(A) < 1 − ε şi va rezulta cǎ
existǎ o normǎ indusǎ astfel încât ∥A∥ ≤ ρ(A) + ϵ < 1.

Din ∥Ak∥ ≤ ∥A∥k < 1 şi din definiţia convergenţei rezultǎ cǎ
limk→∞ Ak = 0.

Invers. Presupunem cǎ limk→∞ Ak = 0. Fie λ o valoare proprie a lui A.
Atunci Akx = λkx . Atunci λk → 0. Deci avem |λ| < 1. Atunci, pentru
cǎ λ a fost consideratǎ o valoare proprie genericǎ, vom avea ρ(A) < 1.

Pentru urmǎtoarea parte din teoremǎ, sǎ remarcǎm pentru început cǎ
valorile proprii ale lui I − A sunt 1− λ(A), λ(A) fiind valoare proprie a lui
A. Pe de altǎ parte, deoarece ρ(A) < 1 deducem cǎ I −A este inversabilǎ.
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Demonstraţia lemei

Atunci, din identitatea

(I − A)(I + A+ ...+ An) = I − An+1, (91)

şi considerând limita n → ∞ vom avea

(I − A)
∞∑
k=0

Ak = I . (92)

În final, deoarece pentru o normǎ indusǎ ∥I∥ = 1, avem

1 = ∥I∥ ≤ ∥(I − A)∥ ∥(I − A)−1∥ ≤ (1 + ∥A∥)∥(I − A)−1∥, (93)

adicǎ prima inegalitate pe care noi o aveam de demonstrat.

Legat de ce-a de a doua inegalitate, din I = I −A+ A şi prin multiplicare
cu (I − A)−1 avem

(I − A)−1 = I + A(I − A)−1. (94)
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Demonstraţia lemei

Trecând la normǎ în

(I − A)−1 = I + A(I − A)−1, (95)

gǎsim

∥(I − A)−1∥ ≤ 1 + ∥A∥ ∥(I − A)−1∥, (96)

adicǎ inegalitatea a doua pentru cǎ avem ∥A∥ < 1.
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Revenim torema de demonstrat: Analiza a priori a erorii

Theorem
Fie A ∈ Rn×n o matrice inversabilǎ şi δA ∈ Rn×n astfel ca

∥A−1∥ ∥δA∥ < 1 (97)

este verificatǎ într-o normǎ indusǎ. Atunci dacǎ x ∈ Rn este soluţie a
sistemului Ax = b cu b ∈ Rn (b ̸= 0) şi δx ∈ Rn verificǎ

(A+ δA)(x + δx) = b + δb, (98)

atunci

∥δx∥
∥x∥

≤ K (A)

1 − K (A)∥δA∥/∥A∥

(
∥δb∥
∥b∥

+
∥δA∥
∥A∥

)
(99)
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Revenim la demonstraţia teoremei

Deoarece ∥A−1δA∥ < 1, avem cǎ cǎ I + A−1δA este inversabilǎ şi din
lema precedentǎ rezultǎ cǎ

∥(I + A−1δ A)−1∥ ≤ 1
1 − ∥A−1δA∥

≤ 1
1 − ∥A−1∥ ∥δA∥

. (100)

Pe de altǎ parte, din

(A+ δA)(x + δx) = b + δb, (101)

şi Ax = b gǎsim

δx = (I + A−1δA)−1A−1(δb − δAx), (102)

iar trecând la normǎ deducem

∥δx∥ ≤ ∥A−1∥
1 − ∥A−1∥ ∥δA∥

(∥δb∥+ ∥δA∥ ∥x∥). (103)

În final, împǎrţind prin ∥x∥ (care nu e zero pentru cǎ b ̸= 0 şi A este
inversabilǎ), apoi folosinf cǎ ∥x∥ ≥ ∥b∥

∥A∥ se deduce inegalitatea doritǎ.
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Îmbunǎtǎţirea acurateţei GEM



Îmbunǎtǎţirea acurateţei GEM

Dupǎ cum s-a menţionat anterior, dacǎ matricea sistemului este prost
condiţionatǎ, soluţia generatǎ de GEM ar putea fi inexactǎ, chiar dacǎ
reziduul sǎu la pasul i , adicǎ r (i) = b(i) − A(i)x (i), este mic. În aceastǎ
secţiune, menţionǎm douǎ tehnici de îmbunǎtǎţire a acurateţei soluţiei
calculate de GEM.
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Scalarea problemei

În cazul în care intrǎrile din A variazǎ foarte mult ca mǎrime, este
probabil ca în timpul procesului de eliminare intrǎrile mari sǎ fie însumate
cu intrǎrile mici, având drept consecinţǎ apariţiei erorilor de rotunjire. Un
remediu constǎ în efectuarea unei redimensionǎri a matricei A înainte de
a se efectua eliminarea.

Scalarea pe rând a lui A constǎ în gǎsirea unei matrice diagonale
nesingulare D1 astfel încât intrǎrile diagonale ale lui D1A sǎ aibǎ acelaşi
ordin de mǎrime (aceeaşi dimensiune). Sistemul liniar Ax = b se
transformǎ în

D1Ax = D1b. (104)

Atunci când atât liniile cât şi coloanele lui A trebuie sǎ fie scalate,
versiunea scalatǎ a sistemului devine

(D1AD2)y = D1b cu y = D−1
2 x , (105)

presupunând, de asemenea, cǎ D2 este inversabil. Matricea D1

redimensioneazǎ ecuaţiile, în timp ce D2 redimensioneazǎ necunoscutele. 119



Scalarea problemei

Observaţi cǎ, pentru a preveni erorile de rotunjire, matricile de scalare
sunt alese sub forma

D1 = diag(βr1 , ..., βrn),D2 = diag(βc1 , ..., βcn) (106)

unde β este baza aritmeticii în virgulǎ mobilǎ utilizatǎ, iar exponenţii
r1, · · · , rn, c1, · · · , cn trebuie determinaţi.
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Rafinare iterativǎ

Rafinarea iterativǎ este o tehnicǎ de îmbunǎtǎţire a acurateţei unei soluţii
obţinute printr-o metodǎ directǎ. Sǎ presupunem cǎ sistemul liniar
AX = b a fost rezolvat cu ajutorul factorizǎrii LU (cu pivotare parţialǎ
sau completǎ) şi sǎ notǎm cu x(0) soluţia calculatǎ. Dupǎ ce s-a fixat o
toleranţǎ de eroare, tol, rafinarea iterativǎ se desfǎşoarǎ astfel: pentru
i = 0, 1, · · · , pânǎ la convergenţǎ:

1. se calculeazǎ rezidualul r (i) = b(i) − A(i)x (i);

2. rezolvǎ sistemul liniar A(i)z (i) = r (i) folosind factorizarea LU a lui
A(i);

3. actualizaţi soluţia stabilind x (i+1) = x (i) + z (i);

4. dacǎ ∥z (i)∥/∥x (i+1)∥ < tol , atunci încheiem procesul returnând
soluţia x (i+1). În caz contrar, algoritmul reîncepe de la pasul 1.

În absenţa erorilor de rotunjire, procesul s-ar opri la primul pas,
producând soluţia exactǎ.
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Metode iterative de rezolvare a
sistemelor



Despre convergenţa metodelor iterative

Ideea de bazǎ a metodelor iterative este de a construi o secvenţǎ de
vectori x (k) care se bucurǎ de proprietatea de convergenţǎ

x = lim
k→∞

x (k), (107)

unde x este soluţia pentru

Ax = b. (108)

În practicǎ, procesul iterativ se opreşte la valoarea minimǎ a lui n astfel
încât ∥x (n) − x∥ < ε, unde ε este o toleranţǎ fixǎ şi ∥ · ∥ este orice normǎ
vectorialǎ convenabilǎ.

Cu toate acestea, deoarece soluţia exactǎ nu este, evident, disponibilǎ,
este necesar sǎ se introducǎ criterii de oprire adecvate pentru a
monitoriza convergenţa iteraţiei.
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Clasificarea metodelor iterative

Iteraţiile introduse mai sus sunt cazuri speciale de metodelor iterative de
forma

x (0) = f0(A, b), (109)

x (n+1) = fn+1(x
(n), x (n−1), · · · , x (n−m),A, b), pentru n ≥ m, (110)

unde fi şi x (m), · · · , x (1) sunt funcţii şi, respectiv, vectori daţi.

Numǎrul de paşi de care depinde iteraţia curentǎ se numeşte ordinul
metodei.

Dacǎ funcţiile fi sunt independente de indicele de pas i , metoda se
numeşte staţionarǎ, în caz contrar este nestaţionarǎ.

În sfârşit, dacǎ fi depinde liniar de x (0), · · · , x (m), metoda se numeşte
liniarǎ, în caz contrar este neliniarǎ.

În lumina acestor definiţii, metodele pe care le vom considera sunt
metode iterative liniare staţionare de ordinul întâi.
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Luǎm în considerare metodele iterative de forma

datǎ x (0), x (k+1) = Bx (k) + f , k ≥ 0, (111)

având notatǎ cu B o matrice pǎtratǎ de n × n numitǎ matrice de iteraţie
şi cu f un vector care se obţine din partea dreaptǎ b.

Definiţie
Se spune cǎ o metodǎ iterativǎ de forma (111) este conformǎ cu Ax = b

dacǎ f şi B sunt astfel încât x = Bx + f . În mod echivalent,

f = (I − B)A−1b. (112)
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Dupǎ ce am notat cu

e(k) = x (k) − x (113)

eroarea la al k-lea pas al iteraţiei, condiţia de convergenţǎ se rezumǎ la a
cere ca limk→∞ e(k) = 0 pentru orice alegere a datelor iniţiale. x (0)

(adesea numitǎ presupunere iniţialǎ).

Consistenţa nu este suficientǎ pentru a asigura convergenţa iteraţiei.
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Teoremǎ
Fie (111) o metodǎ consistentǎ. Atunci, secvenţa de vectori x (k)

converge cǎtre soluţia lui Ax = b pentru orice alegere a lui x (0) dacǎ şi
numai dacǎ ρ(B) < 1.

Demonstraţie: Din (111) şi din ipoteza de consistenţǎ, rezultǎ relaţia
recursivǎ

e(k+1) = Be(k). (114)

Prin urmare,

e(k) = Bke(0), ∀ k = 0, 1, · · · . (115)

Rezultǎ cǎ limk→∞ Bke(0) = 0 pentru orice e(0) dacǎ ρ(B) < 1.

Invers, sǎ presupunem cǎ ρ(B) > 1, atunci existǎ cel puţin o valoare
proprie λ(B) cu modul mai mare de 1. Fie e(0) un vector propriu asociat
cu λ; atunci Be(0) = λ e(0) şi, prin urmare, e(k) = λk e(0). În consecinţǎ,
e(k) nu poate tinde la 0 pe mǎsurǎ ce k → ∞, deoarece |λ| > 1.
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Metode iterative liniare

O tehnicǎ generalǎ de concepere a unor metode iterative liniare
consistente se bazeazǎ pe o scriere aditivǎ a matricei A de forma
A = P −N, unde P şi N sunt douǎ matrici adecvate şi P este nesingularǎ.

Din motive care vor fi clarificate în secţiunile ulterioare, P se numeşte
matrice de precondiţionare.

Mai exact, dat fiind x (0), se poate calcula x (k) pentru k ≥ 1, rezolvând
sistemele

Px (k+1) = Nx (k) + b ⇔ x (k+1) = P−1Nx (k) + P−1b, k ≥ 0.
(116)

Alternativ, iteraţia poate fi scrisǎ sub forma

x (k+1) = x (k) + P−1r (k) k ≥ 0. (117)

unde

r (k) = b − Ax (k) (118)

reprezintǎ vectorul rezidual la pasul k.
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x (k+1) = x (k) + P−1r (k) k ≥ 0. (119)

unde

r (k) = b − Ax (k) (120)

reprezintǎ vectorul rezidual la pasul k.

Relaţia de mai sus evidenţiazǎ faptul cǎ un sistem liniar, cu matricea
coeficienţilor P, trebuie rezolvat pentru a actualiza soluţia la pasul k + 1.

Prin urmare, P, pe lângǎ faptul cǎ nu este singularǎ, trebuie sǎ fie uşor
de inversat, pentru a menţine costul total de calcul scǎzut. (Observaţi
cǎ, dacǎ P ar fi egal cu A şi N = 0, metoda ar converge într-o singurǎ
iteraţie, dar la acelaşi cost ca şi o metodǎ directǎ).
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Menţionǎm (fǎrǎ a demonstra) douǎ rezultate care asigurǎ convergenţa
iteraţiei

Teoremǎ
Fie A = P − N, cu A şi P simetrice şi pozitiv definite. Dacǎ matricea
2P − A este pozitiv definitǎ, atunci metoda iterativǎ definitǎ mai sus este
convergentǎ pentru orice alegere a datelor iniţiale x (0) şi2

ρ(B) = ∥B∥A = ∥B∥P < 1. (121)

Mai mult, convergenţa iteraţiei este monotonǎ în raport cu normele ∥ · ∥P
şi ∥ · ∥A (adicǎ, ∥e(k+1)∥P < ∥e(k)∥P şi ∥e(k+1)∥A < ∥e(k)∥A
k = 0, 1, 2, · · · ).

2Aici, ∥B∥A = ∥A1/2B∥2, unde A1/2 este soluţia ecuaţiei X 2 = A.
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Teoremǎ
Fie A = P − N, A fiind simetricǎ şi pozitiv definitǎ. Dacǎ matricea
P + PT − A este pozitiv definitǎ, atunci P este inversabilǎ, metoda
iterativǎ definitǎ mai sus este convergentǎ monoton în raport cu norma
∥ · ∥A şi ρ(B) ≤ ∥B∥A < 1.
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Jacobi, Gauss-Seidel şi metode
relaxate



Jacobi, Gauss-Seidel şi metode relaxate

În aceastǎ secţiune vom considera câteva metode iterative liniare clasice.
Dacǎ intrǎrile diagonale ale lui A sunt diferite de zero, putem extrage în
fiecare ecuaţie necunoscuta corespunzǎtoare, obţinând sistemul liniar
echivalent

xi =
1
aii

bi − n∑
j=1,j ̸=i

aijxj

 , i = 1, · · · , n. (122)

În metoda Jacobi, odatǎ ce a fost aleasǎ o valoare iniţialǎ arbitrarǎ x (0),
x (k+1) se calculeazǎ prin formulele

x
(k+1)
i =

1
aii

bi − n∑
j=1,j ̸=i

aijx
(k)
j

 , i = 1, · · · , n. (123)
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Acest lucru înseamnǎ sǎ efectuǎm urmǎtoare scriere pentru A.

P = D, N = D − A = E + F , (124)

unde D este matricea diagonalǎ a intrǎrilor diagonale din A, E este
matricea triunghiularǎ inferioarǎ a intrǎrilor eij = −aij dacǎ i > j , eij = 0
dacǎ i ≤ j , iar F este matricea triunghiularǎ superioarǎ a intrǎrilor
fij = −aij dacǎ j > i , fij = 0 dacǎ j ≤ i . Ca o consecinţǎ,

A = D − (E + F ), (125)

iar matricea de iteraţie a metodei Jacobi este astfel datǎ de

BJ = D−1(E + F ) = In − D−1A. (126)
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Metoda Jacobi relaxatǎ

O generalizare a metodei Jacobi este metoda relaxatǎ (sau JOR), în care,
dupǎ introducerea unui parametru de relaxare ω, iteraţia Jacobi este
înlocuitǎ cu

x
(k+1)
i =

ω

aii

bi − n∑
j=1,j ̸=i

aijx
(k)
j

+ (1 − ω)x
(k)
i , i = 1, · · · , n.

(127)

Matricea de iteraţie corespunzǎtoare este

BJω = ωBJ + (1 − ω)In. (128)

Scrisǎ în termenii vectorului rezidual, metoda JOR corespunde la

x (k+1) = x (k) + ωD−1r (k). (129)

Aceastǎ metodǎ este conformǎ pentru orice ω = 0, iar pentru ω = 1
coincide cu metoda Jacobi.
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Gauss-Seidel method

Metoda Gauss-Seidel se deosebeşte de metoda Jacobi prin faptul cǎ la al
k + 1-lea pas se folosesc valorile disponibile ale lui x (k+1) pentru a
actualiza soluţia, astfel încât, se are

x
(k+1)
i =

1
aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , i = 1, · · · , n.

(130)

Aceastǎ metodǎ echivaleazǎ cu efectuarea urmǎtoarei împǎrţiri pentru A

în

P = D − E , N = F , (131)

iar matricea de iteraţie asociatǎ este

BGS = (D − E )−1F . (132)
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Gauss-Seidel over-relaxation method

Pornind de la metoda Gauss-Seidel, prin analogie cu ceea ce s-a fǎcut
pentru iteraţiile Jacobi, introducem metoda relaxǎrii succesive (sau
metoda SOR)

x
(k+1)
i =

ω

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

+ (1 − ω)x
(k)
i , i = 1, · · · , n.

(133)

Metoda SOR poate fi scrisǎ în formǎ vectorialǎ sub forma

(I − ωD−1E )x (k+1) = [(1 − ω)In + ωD−1F ]x (k) + ωD−1b, (134)

din care matricea de iteraţie este

B(ω) = (I − ωD−1E )−1[(1 − ω)I + ωD−1F ]. (135)
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Înmulţind cu D ambele pǎrţi ale lui

(I − ωD−1E )x (k+1) = [(1 − ω)In + ωD−1F ]x (k) + ωD−1b, (136)

şi amintind cǎ A = D − (E + F ), rezultǎ urmǎtoarea formǎ a metodei
SOR

x (k+1) = x (k) +

(
1
ω
D − E

)−1

r (k). (137)

Este compatibilǎ pentru orice ω ̸= 0, iar pentru ω = 1 coincide cu
metoda Gauss-Seidel. În special, dacǎ ω ∈ (0, 1), metoda se numeşte
sub-relaxare, în timp ce dacǎ ω > 1 se numeşte supra-relaxare.
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Convergenţa metodelor Jacobi
şi Gauss-Seidel



Convergenţa metodelor Jacobi şi Gauss-Seidel

Existǎ clase speciale de matrici pentru care este posibil sǎ se stabileascǎ a
priori unele rezultate de convergenţǎ pentru metodele examinate în
secţiunea anterioarǎ. Primul rezultat în aceastǎ direcţie este urmǎtorul.

Teoremǎ
Dacǎ A este o matrice dominantǎ strict diagonalǎ pe linii, metodele
Jacobi şi Gauss-Seidel sunt convergente.

Proof: Sǎ demonstrǎm doar partea teoremei referitoare la metoda Jacobi.
Deoarece A este strict diagonal dominantǎ pe rânduri, |aii | >

∑n
j=1 |aij |

pentru j ̸= i şi i = 1, · · · , n. În consecinţǎ,
∥BJ∥∞ = maxi=1,··· ,n |aij |/|aii | < 1, astfel încât metoda Jacobi este
convergentǎ.
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Teoremǎ
Dacǎ A şi 2D − A sunt matrici simetrice şi pozitiv definite, atunci
metoda Jacobi este convergentǎ şi ρ(BJ) = ∥BJ∥A = ∥BJ∥D .

Demonstraţie: Teorema rezultǎ din primul rezultat general luând P = D.
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Teoremǎ
Dacǎ A este simetricǎ şi pozitiv definitǎ, metoda Gauss-Seidel este
convergentǎ monotonic în raport cu norma ∥ · ∥A.

Proof: Putem aplica al doilea rezultat general pentru matricea
P = D − E , dupǎ ce verificǎm cǎ P + PT − A este definitǎ pozitiv.
Într-adevǎr,

P + PT − A = 2D − E − F − A = D, (138)

dupǎ ce am observat cǎ (D − E )T = D − F . Încheiem observând cǎ D

este pozitiv definitǎ.
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În cele din urmǎ, dacǎ A este tridiagonalǎ (sau tridiagonalǎ în bloc), se
poate demonstra cǎ

ρ(BGS) = ρ2(BJ) (139)

De aici putem concluziona cǎ ambele metode converg sau nu converg în
acelaşi timp. În primul caz, metoda Gauss-Seidel converge mai repede
decât metoda Jacobi, iar rata de convergenţǎ asimptoticǎ a metodei
Gauss-Seidel este dublǎ faţǎ de cea a metodei Jacobi. În special, dacǎ A
este tridiagonalǎ şi simetricǎ pozitiv definitǎ, teorema de mai sus implicǎ
convergenţa metodei Gauss-Seidel, iar ρ(BGS) = ρ2(BJ) asigurǎ
convergenţa şi pentru metoda Jacobi.
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Convergenţa metodelor relaxate

Teoremǎ
Dacǎ A este simetricǎ şi pozitiv definitǎ, atunci metoda JOR este
convergentǎ dacǎ 0 < ω < 2/ρ(D−1A).

Demonstraţie: Demonstraţia rezultǎ din BJω = ωBJ + (1 − ω)In şi
BJ = D−1(E + F ) = In − D−1A şi observând cǎ A are toate valorile
proprii reale.
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Convergenţa metodelor relaxate

Teoremǎ
Dacǎ metoda Jacobi este convergentǎ, atunci metoda JOR converge
dacǎ 0 < ω ≤ 1.

Demonstraţie: Obţinem cǎ valorile proprii ale lui BJω sunt

µk = ωλk + 1 − ω, k = 1, ..., n, (140)

unde λk sunt valorile proprii ale lui BJ . Apoi, reamintind formula lui Euler
pentru reprezentarea unui numǎr complex, lǎsǎm λk = rke

iθk şi obţinem

|µk |2 = ω2r2
k + 2ωrk cos(θk)(1 − ω) + (1 − ω)2 ≤ (ωrk + 1 − ω)2,

(141)

care este mai micǎ decât 1 dacǎ 0 < ω ≤ 1.
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Convergenţa metodelor relaxate

Teoremǎ
Pentru orice ω ∈ R avem ρ(B(ω) ≥ |ω − 1|; prin urmare, metoda SOR
nu converge dacǎ ω ≤ 0 sau ω ≥ 2.

Demonstraţie: Dacǎ {λi} reprezintǎ valorile proprii ale matricei de
iteraţie SOR, atunci

n∏
i=1

λi = | det[(1 − ω)I + ωD−1F ]| = |1 − ω|n (142)

Prin urmare, trebuie sǎ existe cel puţin o valoare proprie λi astfel încât
|λi | ≥ |1 − ω| şi, astfel, pentru a asigura convergenţa, trebuie sǎ avem
|1 − ω| < 1, adicǎ 0 < ω < 2.
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Sisteme nedeterminate



“Soluţia” sistemelor
supradeterminate



Sisteme algebrice liniare

Sǎ considerǎm urmǎtorul sistem algebric de ecuaţii liniare:

x1 + x2 = 1,

x1 − x2 = 2.

Semnificaţia geometricǎ a acestui sistem este cǎ se cautǎ un punct de
intersecţie a douǎ drepte, vezi figura.

-3 -2 -1 1 2 3

-4

-2

2

4

x1

x2

x1 + x2 = 1

x1 − x2 = 2
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Eliminarea gaussianǎ

În mod clar, efectuând o eliminare gaussianǎ, înmulţim prima ecuaţie cu
(−1) şi o adǎugǎm la a doua pentru a obţine urmǎtorul sistem echivalent

x1 + x2 = 1,

−2 x2 = 1.

A doua ecuaţie ne dǎ x2 = − 1
2 şi, împreunǎ cu prima ecuaţie, gǎsim şi

x1 = 3
2 .

Prin urmare, punctul de intersecţie al celor douǎ drepte este punctul
(x1, x2) = ( 3

2 ,−
1
2 ).
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Sisteme supradeterminate

Acum, sǎ luǎm în considerare urmǎtorul sistem algebric de ecuaţii liniare:

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 4.

Punctul de intersecţie al acestor trei drepte este acelaşi cu cel din
exemplul anterior, deoarece ultima ecuaţie este redundantǎ.

-3 -2 -1 1 2 3

-5

5

10

x1

x2

x1 + x2 = 1

x1 − x2 = 2

3 x1 + x2 = 4
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Sisteme supradeterminate

Dar ce se întâmplǎ dacǎ a treia ecuaţie nu este redundantǎ? Spunem cǎ
sistemul este supradeterminat. De exemplu

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 3.

Nu existǎ un punct de intersecţie a acestor trei drepte.

-0.5 0.5 1.0 1.5 2.0

-2

2

4

x1

x2

x1 + x2 = 1

x1 − x2 = 2

3 x1 + x2 = 3
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“Soluţia” sistemelor supradeterminate

Deci, sistemul algebric

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 3.

nu are o soluţie.

Cu toate acestea, suntem în continuare interesaţi sǎ gǎsim un punct
(x1, x2) care este “o soluţie aproximativǎ” .
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“Soluţia” sistemelor supradeterminate

Deci, sistemul algebric

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 3

nu are o soluţie.

Cu toate acestea, suntem în continuare interesaţi sǎ gǎsim un punct
(x1, x2) care este “ ‘o soluţie aproximativǎ” .

De ce?
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“Soluţia” sistemelor supradeterminates

De ce?

Pentru a rǎspunde la aceastǎ întrebare, trebuie sǎ remarcǎm cǎ sistemul
algebric

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 4

are o soluţie unicǎ, în timp ce perturbatǎ sistemul algebric perturbat

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 4.0001

nu are o soluţie.
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De ce?

Pentru cǎ aceste sisteme provin din practicǎ şi este posibil sǎ avem nu
existǎ valori exacte (corecte) ale coeficienţilor. O micǎ eroare în
mǎsurǎtori ar putea conduce la un sistem algebric nedeterminat şi ne
intereseazǎ sǎ vedem care punct (x1, x2) satisface “mai bine” sistemul.
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“Soluţia” sistemelor supradeterminate

Mai întâi de toate, sǎ remarcǎm cǎ sistemul algebric

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 3.

poate fi scris sub formǎ de matrice sub forma

Ax = b,

unde A =

1 1
1 −1
3 1

 ∈ R3×2, x =

(
x1

x2

)
∈ R2 şi b =

1
2
3

 ∈ R3.
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“Soluţia” sistemelor supradeterminate

Printr-o “soluţie” a sistemului supradeterminat

Ax = b

înţelegem un vector x =

(
x1

x2

)
∈ R2 astfel încât Ax sǎ nu fie "atât de

departe" de b. Cu alte cuvinte, un vector x =

(
x1

x2

)
∈ R2 astfel încât

Ax − b sǎ nu fie “departe” de

0
0
0

.

Dar ce înseamnǎ cǎ un vector nu este “atât de departe” de un alt vector?
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Problema celor mai mici
pǎtrate: “Soluţia” sistemelor
supra-determinate, Data Fitting



Am vǎzut cǎ soluţia sistemului liniar Ax = b existǎ şi este unicǎ dacǎ
n = m şi A este nesingularǎ.

În aceastǎ secţiune dǎm un sens soluţiei unui sistem liniar în cazul
supradeterminat, m > n.
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“Soluţia” sistemelor supradeterminate

Aproximarea soluţiei sistemelor supradeterminate
Sǎ presupunem cǎ ni se dǎ un sistem liniar de forma

Ax = b, unde A ∈ Rm×n şi b ∈ Rm cu m > n.

Presupunem, de asemenea, cǎ rank(A) = n.

În aceste condiţii, sistemul de ecuaţii liniare considerat poate fi
incompatibil (nu are soluţie).

Observǎm cǎ un sistem nedeterminat nu are, în general, soluţie decât
dacǎ partea dreaptǎ b este un element al lui
Range(A) := {y ∈ Rm|∃ x ∈ Rn a. î. Ax = y}.
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Aproximarea soluţiei sistemelor supradeterminate

O abordare obişnuitǎ pentru gǎsirea unei soluţii aproximative constǎ în
alegerea gǎsirea acelui x pentru care se realizeazǎ valoarea minimǎ a
normei reziduului r = Ax − b, pe Rm, adicǎ

(LS) min
x∈Rn

∥Ax − b∥2.

Aceasta este o problemǎ de minimizare a unei funcţii pǎtratice pe întreg
spaţiu, funcţia obiectiv pǎtraticǎ fiind datǎ de

f (x) =
〈
AT Ax , x

〉
− 2
〈
b,Ax

〉
+ ∥b∥2.
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Problema celor mai mici pǎtrate

Dat fiind A ∈ Rm×n cu m ≥ n, b ∈ Rm, spunem cǎ x∗ ∈ Rn este o
soluţie a sistemului liniar Ax = b în sensul celor mai mici pǎtrate dacǎ

f (x∗) = ∥Ax∗ − b∥2
2 ≤ min

x∈Rn
∥Ax − b∥2

2︸ ︷︷ ︸
:=f (x)

= min
x∈Rn

f (x). (143)

Astfel, problema constǎ în minimizarea normei euclidiene a reziduului.
Soluţia problemei de minimizare poate fi gǎsitǎ prin impunerea condiţiei
ca gradientul funcţiei f sǎ fie egal cu zero la x∗.
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Din

f (x) = (Ax − b)T (Ax − b) = xTATAx − 2xTATb + bTb, (144)

aflǎm cǎ

∇f (x∗) = 2ATAx∗ − 2ATb = 0, (145)

de unde rezultǎ cǎ x∗ trebuie sǎ fie soluţia sistemului pǎtratic

ATAx∗ = ATb (146)

cunoscut sub numele de ecuaţia normalǎ.

Sistemul este nesingular dacǎ A are rang complet şi, în acest caz, soluţia
celor mai mici pǎtrate existǎ şi este unicǎ.
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Observǎm cǎ B = ATA este o matrice simetricǎ şi pozitiv definitǎ.
Astfel, pentru a rezolva ecuaţiile normale, se poate calcula mai întâi
factorizarea Cholesky B = HTH şi apoi se pot rezolva cele douǎ sisteme
HT y = ATb şi Hx∗ = y . Cu toate acestea, din cauza erorilor de
rotunjire, calculul lui ATA poate fi afectat de o pierdere de cifre
semnificative, cu o pierdere consecventǎ a definiţiei pozitive sau a
nesingularitǎţii matricei, aşa cum se întâmplǎ în urmǎtorul exemplu
(implementat în MATLAB) în care, pentru o matrice A cu rang complet,
matricea corespunzǎtoare fl(ATA) se dovedeşte a fi singularǎ

A =

 1 1
2−27 0

0 2−27

 , fl(ATA) =

(
1 1
1 1

)
. (147)

Prin urmare, în cazul matricelor prost condiţionate, este mai convenabil
sǎ se utilizeze o metodǎ alternativǎ bazatǎ pe factorizarea QR.
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A 2D picture

Un domeniu în care se utilizeazǎ problema cel mai mici pǎtrate este
corelarea datelor.
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Data Fitting

Linear Data Fitting in 2D
Date n puncte în Rn, obiectivul este de a gǎsi o dreaptǎ de forma

y = a x + b

care se potriveşte cel mai bine cu acestea. Aceasta înseamnǎ cǎ trebuie
sǎ gǎsim a şi b care sǎ defineascǎ aceastǎ dependenţǎ liniarǎ.

Corespondenţele liniare corespunzǎtoare care trebuiesc corelate sunt

yi = a xi + b, i = 1, 2, ..., n,

adicǎ, sistemul care trebuie "rezolvat" este
x1 1
x2 1
...
xn 1


(
a

b

)
=


y1

y2
...
yn

 .
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Deci, gǎsiţi a şi b “soluţie" pentru
x1 1
x2 1
...
xn 1


︸ ︷︷ ︸

:=X

(
a

b

)
=


y1

y2
...
yn


︸ ︷︷ ︸

:=y

.

Soluţia problemei celor mai mici pǎtrate este(
a

b

)
= (XTX )−1XT y .
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Data Fitting

Unul dintre domeniile în care se utilizeazǎ problema celor mai mici
pǎtrate este corelarea datelor.

Linear Data Fitting
Sǎ presupunem cǎ ni se dǎ un set de date (si , ti ), i = 1, 2, ...,m, unde
si ∈ Rn şi ti ∈ R, şi sǎ presupunem cǎ o relaţie liniarǎ de forma

ti =
〈
si , x

〉
, i = 1, 2, ...,m,

este cǎutatǎ. Gǎsiţi x pentru a putea aproxima aceastǎ dependenţǎ
liniarǎ!

Aplicaţii?
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Deci, problema este de a gǎsi vectorul de parametri x ∈ Rn care rezolvǎ
problema

min
x∈Rn

m∑
i=1

(
〈
si , x

〉
− ti )

2.

Aceasta este o problemǎ (LS) scrisǎ ca

min
x∈Rn

∥S x − t∥2,

unde S =


−− sT1 −−
−− sT2 −−

...
−− sTm −−

, t =


t1
t2
...
tm

 .
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Alte situaţii
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Alte situaţii
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Mai multe despre corelarea datelor

Abordarea celor mai mici pǎtrate poate fi utilizatǎ şi în cazul ajustǎrilor
neliniare. Sǎ presupunem, de exemplu, cǎ ni se dǎ un set de puncte în
R2: (ui , yi ), i = 1, 2, ...,m, şi cǎ ştim a priori cǎ aceste puncte sunt
aproximativ legate prin intermediul unui polinom de grad cel mult d ;
adicǎ existǎ a0, a1, ..., ad astfel încât

d∑
j=0

aju
j
i ≈ yi , i = 1, ...,m.

Abordarea prin metoda celor mai mici pǎtrate a acestei probleme este:
cautǎ a0, a1, ..., ad care sǎ fie soluţia celor mai mici pǎtrate a sistemului
liniar 

1 u1 u2
1 · · · ud1

1 u2 u2
2 · · · ud2

...
...

...
. . .

...
1 um u2

m · · · udm



a0

a1
...
ad

 =


y1
y2
...
ym

 .

(LS) este, desigur, bine definitǎ dacǎ m ≥ d + 1. Matricea este
aşa-numita matrice Vandermonde, despre care se ştie cǎ este de rang
d + 1 dacǎ d + 1 din ui -uri sunt diferite între ele. 167



Regularizarea Problemei celor
mai mici pǎtrate, Eliminarea
zgomotului dintr-un semnal



Regularizarea Problemei celor mai mici pǎtrate

Atunci când A este subdeterminatǎ, adicǎ atunci când existǎ mai puţine
ecuaţii decât variabile, existǎ mai multe soluţii optime pentru problema
celor mai mici pǎtrate şi nu este clar care dintre aceste soluţii optime este
cea care trebuie luatǎ în considerare.

În modelul de optimizare ar trebui încorporat un anumit tip de informaţii
prealabile despre x .

O modalitate de a face acest lucru este de a lua în considerare o
problemǎ penalizatǎ în care o funcţie de regularizare R(·) este adǎugatǎ
la funcţia obiectiv.
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Regularized Least Squares

RLS
Problema regularizatǎ a celor mai mici pǎtrate (RLS) are forma

(RLS) min
x∈Rn

∥Ax − b∥2 + λR(x),

unde λ > 0 este parametrul de regularizare. Pe mǎsurǎ ce λ devine mai
mare, funcţia de regularizare primeşte o pondere mai mare.

În multe cazuri, se considerǎ cǎ regularizarea este pǎtraticǎ. În special
R(x) = ∥D x∥2, cu D ∈ Rp×n dat. Funcţia de regularizare pǎtraticǎ
urmǎreşte sǎ controleze norma lui D x şi este formulatǎ dupǎ cum
urmeazǎ:

(RLS) min
x∈Rn

∥Ax − b∥2 + λ ∥D x∥2,

sau, echivalent ca

(RLS) min
x∈Rn

{fRLS(x) =
〈
(AT A+ λDT D) x , x

〉
− 2
〈
b,Ax

〉
+ ∥b∥2},
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(RLS) min
x∈Rn

{fRLS(x) =
〈
(AT A+ λDT D) x , x

〉
− 2
〈
b,Ax

〉
+ ∥b∥2},

Deoarece D şi λ sunt cǎutaţi a.î. matricea hessianǎ a funcţiei obiectiv
datǎ de ∇2fRLS(x) = 2 (AT A+ λDT D) ≻ 0 sǎ fie positiv definitǎ,
rezultǎ cǎ orice punct staţionar este un punct minim global.

Punctele staţionare sunt cele care satisfac

∇fRLS(x) = 0

adicǎ
(AT A+ λDT D) x = AT b.

Prin urmare, dacǎ D şi λ sunt astfel încât AT A+ λDT D ≻ 0, atunci
soluţia RLS este datǎ de

xRLS = (AT A+ λDT D)−1AT b.
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Other situations
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Eliminarea zgomotului dintr-un semnal

Denoising problem
Sǎ presupunem cǎ este dat un semnal bruiat a unui semnal x ∈ Rn:

b = x + w .

Aici x este un semnal necunoscut, w este un vector de zgomot
necunoscut, iar b este vectorul mǎsurǎtorilor cunoscute.

Problema eliminǎrii zgomotului este urmǎtoarea: Având în vedere b,
gǎsiţi o estimare "bunǎ" a lui x .

Aplicaţii?

Problema celor mai mici pǎtrate vǎ va da soluţia x = b.

Pentru a gǎsi o problemǎ mai relevantǎ, vom adǎuga un termen de
regularizare. Pentru aceasta, trebuie sǎ exploatǎm unele informaţii a
priori despre semnal.
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De exemplu, am putea şti cǎ semnalul este neted într-un anumit sens. În
acest caz, este foarte natural sǎ adǎugǎm o penalizare pǎtraticǎ, care
este suma pǎtratelor diferenţelor dintre componentele consecutive ale
vectorului; adicǎ funcţia de regularizare este

R(x) =
n−1∑
i=1

(xi − xi+1)
2.

Aceastǎ funcţie pǎtraticǎ poate fi scrisǎ şi sub forma R(x) = ∥L x∥2,
unde L ∈ R(n−1)×n este datǎ de

L =


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −1


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Problema rezultatǎ a celor mai mici pǎtrate regularizate este

min
x∈Rn

∥x − b∥2 + λ ∥L x∥2,

iar soluţia sa optimǎ este datǎ de

xRLS(λ) = (In + λLTL)−1b,

unde λ > 0 este un parametru de regularizare dat (bun).

Am putea gǎsi un astfel de λ > 0?
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Alte situaţii
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Aplicaţie de pe telefonul dumneavoastrǎ

Transmiteţi pe Whatsapp sau alt canal de comunicaţii un mesaj vocal
fǎcând un zgomot de fundal, de exemplu, sunetul cheilor sau al unui
clopoţel. Salvaţi fişierul cu numele sunet_bruiat.ogg şi folosiţi codul
de mai jos.

Pentru rezolvarea sistemului (I + λ LTL) x = b folosiţi diverse metode de
rezolvare a sistemelor (de exemplu, Cramer).

Comparaţi timpul în care se reconstruieşte semnalul. Acesta indicua
rapiditatea sau lentoarea metodei de rezolvare a sistemului.

Observaţi cǎ pentru unele metode apare la final un bruiaj în plus, ceva
nou! Aceasta indicǎ eroarea cu care se rezolvua sistemul prin metoda
aleasǎ. Practic, “auziţi eroarea”! Eroarea reiese în produsul final.

Folosiţi atât metode directe cât şi metode iterative!
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[b,fs] = audioread(’sunet_bruiat.ogg’);
%incarcam sunetul cu zgomot
%Verificam sunetul si afisam semnalul descris de acesta
sound(b, fs);
plot(b);
hold on
% Afisam lungimea pentru a intelege magnitudinea datelor
n = length(b)
% Construim matricele In si L folosind matrici rare (sparse)
%deoarece au dimensiuni
% foarte mari, dar majoritatea elementelor sunt nule
idn = speye(n);
e = ones(n-1,1);
L = spdiags([-e e], [0 1], n-1, n);
% Definim lambda (putem incepe de la o valoare mica
%si sa tot crestem)
lambda = 5;
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% Folosim metoda celor mai mici patrate cu regularizare
%patratica (vezi curs) si ajungem la format
% x = inv(In + lambda*L’*L) *b, dar nu folosim aceasta forma,
%deoarece matricea este prea mare.
% Fie folosim operatorul \ care implementeaza deja cea mai
%eficienta metoda de rezolvare a unui
% sistem liniar, luand in calcul si cazul matricelor rare:
x = (speye(n) + lambda*(L’*L)) \ b;
% Ascultam semnalul filtrat:
sound(x, fs);
plot(x);
hold on
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% Fie LU pe blocuri rezolvat in laboratoarele anterioare, dar
%se pierde putin din acuratete:
A = speye(n) + lambda*(L’*L);
db = floor(n/500) % numarul de blocuri (se poate modifica)
x = [];
for k = 1:499
[L,U]= FactorizareLU(A(1+(k-1)*db:k*db,1+(k-1)*db:k*db));
y = lowerSolve(L,b(1+(k-1)*db:k*db));
x1 = upperSolve(U,y);
x = [x x1’];
end
% Ascultam semnalul filtrat:
sound(x, fs);
plot(x);
legend(’Original’, ’Filtrat \’, ’Filtrat LU blocuri’);
xlabel(’Sample’);
ylabel(’Amplitudine’);
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Problema neliniarǎ a celor mai mici pǎtrate: Circle Fitting

Existǎ situaţii în care ni se dǎ un sistem de ecuaţii neliniare

fi (x) = ci , i = 1, 2, ...,m,

unde fi : Rn → R, ci ∈ R sunt date şi x trebuie finanţat.

În acest caz, problema de aproximare este cea a celor mai mici pǎtrate
neliniare (NLS), care se formuleazǎ astfel

min
x∈Rn

m∑
i=1

(fi (x)− ci )
2.

Nu existǎ o modalitate uşoarǎ de a rezolva problemele NLS. Metoda
Gauss-Newton este o modalitate, dar aceasta converge numai cǎtre un
punct staţionar.
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Circle fitting

Sǎ presupunem cǎ ne sunt date m puncte a1, a2, ..., am ∈ Rn. Problema
adaptǎrii cercului urmǎreşte sǎ gǎseascǎ un cerc

C (x , r) = {y ∈ Rn : ∥y − x∥ = r}

care se potriveşte cel mai bine punctelor m.

Aplicaţie?

Ecuaţiile neliniare asociate cu aceastǎ problemǎ sunt

∥x − ai∥ = r , i = 1, 2, ...,m.

Deoarece dorim sǎ avem de-a face cu funcţii diferenţiabile, iar funcţia
normǎ nu este diferenţiabilǎ, vom considera versiunea pǎtraticǎ a
acesteia:

∥x − ai∥2 = r2, i = 1, 2, ...,m.
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Problema locaţiei egal depǎrtate
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Problema locaţiei egal depǎrtate

min
x∈Rn,r∈R

m∑
i=1

(∥x − ai∥2 − r2)2.
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Problema locaţiei egal depǎrtate cu ponderi de importanţǎ

min
x∈Rn,r∈R

m∑
i=1

ωi (∥x − ai∥2 − r2)2.
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NLS for Circle fitting
Problema NLS asociatǎ cu aceste ecuaţii este

min
x∈Rn,r∈R+

m∑
i=1

(∥x − ai∥2 − r2)2.

Observaţie: În aceastǎ formǎ nu avem o problemǎ de optimizare fǎrǎ
constrângeri!

Dar, de fapt, problema este echivalentǎ cu

min
x∈Rn,r∈R

m∑
i=1

(−2
〈
ai , x

〉
+ ∥x∥2 + ∥ai∥2 − r2)2.

Efectuând schimbarea de variabile R = ∥x∥2 − r2, problema de mai sus
se reduce la

min
x∈Rn,∥x∥2≥R

f (x ,R) :=
m∑
i=1

(−2
〈
ai , x

〉
+ R + ∥ai∥2)2.
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De fapt, orice soluţie optimǎ (x̂ , R̂) a problemei

min
x∈Rn,R∈R

f (x ,R) :=
m∑
i=1

(−2
〈
ai , x

〉
+ R + ∥ai∥2)2

satisface în mod automat ∥x̂∥2 ≥ R̂, deoarece altfel

−2
〈
ai , x̂

〉
+R̂+∥ai∥2 > −2

〈
ai , x̂

〉
+∥x̂∥2+∥ai∥2 = ∥x̂−ai∥2 ≥ 0, i = 1, 2, ...,m.

Prin ridicarea la pǎtrat a ambelor pǎrţi ale primei inegalitǎţi din ecuaţia
de mai sus şi adunarea la i rezultǎ

f (x̂ , R̂) =
m∑
i=1

(−2
〈
ai , x̂

〉
+ R̂ + ∥ai∥2)2

>

m∑
i=1

(−2
〈
ai , x̂

〉
+ ∥x̂∥2 + ∥ai∥2)2 = ∥x̂ − ai∥2 = f (x̂ , ∥x̂∥2),

arǎtând cǎ (x̂ , ∥x̂∥2) conduce o valoare a funcţiei mai micǎ decât (x̂ , R̂),
în contradicţie cu optimimalitatea lui (x̂ , R̂).
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În concluzie, problema NLS

min
x∈Rn,∥x∥2≥R

f (x ,R) :=
m∑
i=1

(−2
〈
ai , x

〉
+ R + ∥ai∥2)2

este de fapt echivalentǎ cu problema LS

min
(x,R)∈Rn+1

f (x ,R) := ∥A

(
x

R

)
− b∥2,

unde A =


2 aT1 −1
2 aT2 −1

...
...

2 aTm −1

 şi b =


∥a1∥2

∥a2∥2

...
∥am∥2

 .
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Dacǎ A este de rang maxim, atunci soluţia unicǎ a problemei liniare a
celor mai mici pǎtrate este(

x

R

)
= (ATA)−1ATb.

Optimul x este dat de primele n componente, iar raza r este datǎ de

r =
√

∥x∥2 − R.
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Matrici dreptunghiulare:
Factorizarea QR



Factorizarea QR

Definiţie
O matrice A ∈ Rm×n, cu m ≥ n, admite o factorizare QR dacǎ existǎ o
matrice ortogonalǎ Q ∈ Rm×m şi o matrice trapezoidalǎ superior
R ∈ Rm×n, cu rânduri nule începând de la al (n + 1)-lea, astfel încât
A = QR.

Este de asemenea posibil sǎ se genereze o versiune redusǎ a factorizǎrii
QR, aşa cum este afirmat în rezultatul urmǎtor.
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Teoremǎ
Fie A ∈ Rm×n, cu m ≥ n, o matrice de rang n pentru care este cunoscutǎ
o factorizare QR. Atunci existǎ o factorizare unicǎ a lui A de forma

A = Q̃R̃,

unde Q̃ şi R̃ sunt submatrice ale lui Q şi R, date respectiv de

Q̃ = Q(1 : m, 1 : n), R̃ = R(1 : n, 1 : n).

Mai mult, Q̃ are coloane vectoriale ortonormale şi R̃ este triunghiularǎ
superior şi coincide cu factorul Cholesky H al matricei simetrice definite
pozitiv ATA, adicǎ, ATA = R̃T R̃.
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Demonstraţie

Putem demonstra direct existenţa factorizǎrii speciale apoi sǎ
consideruam cua mulţimea vectorilor liniari independenţi daţi de coloanele
lui Q̃ este completatua pânǎ la o bazua iar R se obţine adǎgând linii nule.

Presupunem aplicarea algoritmului Gram–Schmidt asupra coloanelor
matricei

A = (a1 | · · · | an).

Proiecţia unui vector a pe direcţia unui vector q se noteazǎ

projq(a) =
⟨q, a⟩
⟨q, q⟩

q, ⟨v ,w⟩ = vTw ,

unde ⟨·, ·⟩ reprezintǎ produsul scalar standard.
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Demonstraţie

Procedura începe cu:

u1 = a1, q1 =
u1

∥u1∥
,

iar vectorii urmǎtori se obţin prin eliminarea componentelor pe direcţiile
deja determinate:

u2 = a2 − projq1
a2, q2 =

u2

∥u2∥
,

u3 = a3 − projq1
a3 − projq2

a3, q3 =
u3

∥u3∥
,

...

uk = ak −
k−1∑
j=1

projqj ak , qk =
uk
∥uk∥

.
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Demonstraţie

Rearanjarea acestor relaţii astfel încît vectorii ai sǎ fie pe partea stîngǎ
conduce la:

a1 = q1∥u1∥,
a2 = projq1

a2 + q2∥u2∥,
a3 = projq1

a3 + projq2
a3 + q3∥u3∥,

...

ak =
k−1∑
j=1

projqj ak + qk∥uk∥.
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Demonstraţie

Rescriem

a1 = q1∥u1∥,
a2 = ⟨q1, a2⟩q1 + q2∥u2∥,
a3 = ⟨q1, a3⟩q1 + ⟨q2, a3⟩q2 + q3∥u3∥,

...

ak =
k−1∑
j=1

⟨qj , ak⟩qj + qk∥uk∥.

Toate aceste relaţii pot fi exprimate matriceal:

(q1 | . . . | qn)


∥u1∥ ⟨q1, a2⟩ ⟨q1, a3⟩ · · ·

0 ∥u2∥ ⟨q2, a3⟩ · · ·
0 0 ∥u3∥ · · ·
...

...
...

. . .

 .
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Demonstraţie

Produsul matricial reproduce exact matricea originalǎ A, astfel încît:

A = Q̃R̃,

unde Q̃ = (q1 | . . . | qn) este ortogonalǎ, iar R̃ este triangularǎ superior.

Cum R̃ = Q̃TA, obţinem explicit:

R̃ =


⟨q1, a1⟩ ⟨q1, a2⟩ ⟨q1, a3⟩ · · ·

0 ⟨q2, a2⟩ ⟨q2, a3⟩ · · ·
0 0 ⟨q3, a3⟩ · · ·
...

...
...

. . .

 .

Observǎm cǎ:

⟨qj , aj⟩ = ∥uj∥, ⟨qj , ak⟩ = 0 pentru j > k,

iar din relaţia Q̃Q̃T = I deducem

Q̃T = Q̃−1.
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Dacǎ A are rangul n (adicǎ, rang complet), atunci vectorii coloanǎ ai lui
Q̃ formeazǎ o bazǎ ortonormalǎ pentru spaţiul vectorial

range(A) = {y ∈ Rm : y = Ax pentru x ∈ Rn}.

Ca o consecinţǎ, construirea factorizǎrii QR poate fi interpretatǎ şi ca o
procedurǎ pentru generarea unei baze ortonormale pentru un set dat de
vectori.

Dacǎ A are rangul r < n, factorizarea QR nu conduce neapǎrat la o bazǎ
ortonormalǎ pentru range(A). Totuşi, se poate obţine o factorizare de
forma

QTAP =

(
R11 R12

0 0

)
,

unde Q este ortogonalǎ, P este o matrice de permutare şi R11 este o
matrice triunghiularǎ superior nesingularǎ de ordin r .
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În general, când folosim factorizarea QR, ne vom referi întotdeauna la
forma sa redusǎ, deoarece are aplicaţie în rezolvarea sistemelor
supra-determinate.

Factorii matriciali Q̃ şi R̃ pot fi calculaţi utilizând ortogonalizarea
Gram-Schmidt.

În continuare, impunând ca A = Q̃R̃ şi folosind faptul cǎ Q̃ este
ortogonalǎ (adicǎ, Q̃T Q̃ = In), elementele lui R̃ pot fi calculate cu
uşurinţǎ.

De asemenea, este de remarcat faptul cǎ, dacǎ A are rang complet,
matricea ATA este simetricǎ şi pozitiv definitǎ, şi, prin urmare, admite o
factorizare Cholesky unicǎ de forma HTH. Pe de altǎ parte, deoarece
ortogonalitatea lui Q̃ implicǎ

HTH = ATA = R̃T Q̃T Q̃R̃ = R̃T R̃, (148)

concluzionǎm cǎ R̃ este, de fapt, factorul Cholesky H al lui ATA.

Astfel, elementele diagonale ale lui R̃ sunt nenule doar dacǎ A are rang
complet.
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Metoda Gram-Schmidt modificatǎ

Metoda Gram-Schmidt are o utilitate practicǎ redusǎ, deoarece vectorii
generaţi îşi pierd independenţa liniarǎ din cauza erorilor de rotunjire. Deşi
este corectǎ din punct de vedere matematic, ea prezintǎ o dificultate
majorǎ în practicǎ: este instabilǎ numeric, în special atunci când vectorii
sunt aproape depedenţi liniar sau când erorile de rotunjire se acumuleazǎ.

Pentru a îmbunǎtǎţi stabilitatea, se utilizeazǎ Metoda Gram–Schmidt
modificatǎ (Modified Gram–Schmidt, MGS), o variantǎ echivalentǎ
teoretic, dar mult mai robustǎ.
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Metoda Gram-Schmidt modificatǎ

În forma clasicǎ, vectorul nou

uk = ak −
k−1∑
j=1

⟨qj , ak⟩qj

se obţine prin scǎderea dintr-o singurǎ operaţie a tuturor proiecţiilor pe
vectorii ortonormali anteriori. Aceastǎ operaţie implicǎ scǎderi între valori
apropiate, ceea ce conduce la pierderea de precizie în aritmetica flotantǎ.

Metoda modificatǎ reorganizeazǎ calculele astfel încît proiecţiile sunt
eliminate una câte una, actualizând vectorul la fiecare pas:

u
(0)
k = ak ,

u
(j)
k = u

(j−1)
k − ⟨qj , u(j−1)

k ⟩qj , j = 1, 2, . . . , k − 1,

uk = u
(k−1)
k .

Aceastǎ procedurǎ reduce riscul de anulǎri numerice şi limiteazǎ
propagarea erorilor.
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Observaţi cǎ nu este posibilǎ rescrierea factorizǎrii QR pe matricea A. În
general, matricea R̃ este rescrisǎ pe A, în timp ce Q̃ este stocatǎ separat.
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Sisteme nedeterminate cu
factorizarea QR



Sisteme nedeterminate cu factorizarea QR

Teoremǎ
Fie A ∈ Rm×n, cu m ≥ n, o matrice de rang complet. Atunci soluţia
unicǎ a problemei

min
x∈Rn

∥Ax − b∥2
2︸ ︷︷ ︸

:=Φ(x)

este datǎ de

x∗ = R̃−1Q̃Tb, (149)

unde R̃ ∈ Rn×n şi Q̃ ∈ Rm×n sunt matricile obţinute din factorizarea QR

a lui A. Mai mult, minimul lui Φ este dat de

Φ(x∗) =
m∑

i=n+1

[(QTb)i ]
2. (150)
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Demonstraţie

Factorizarea QR a lui A existǎ şi este unicǎ, deoarece A are rang
complet. Astfel, existǎ douǎ matrici, Q ∈ Rm×m şi R ∈ Rm×n, astfel
încât A = QR, unde Q este ortogonalǎ.

Deoarece matricile ortogonale pǎstreazǎ produsul scalar euclidian, rezultǎ
cǎ

∥Ax − b∥2
2 = ∥Rx − QTb∥2

2. (151)

Aducându-ne aminte cǎ R este trapezoidalǎ superior, avem

∥Rx − QTb∥2
2 = ∥R̃x − Q̃Tb∥2

2 +
m∑

i=n+1

[(QTb)i ]
2, (152)

aşa încât minimul este atins când x = x∗.
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Dacǎ A nu are rang complet, tehnicile de rezolvare de mai sus eşueazǎ,
deoarece, în acest caz, dacǎ x∗ este o soluţie a problemei

min
x∈Rn

∥Ax − b∥2
2︸ ︷︷ ︸

:=Φ(x)

,

atunci vectorul x∗ + z , cu z ∈ ker(A), este de asemenea o soluţie. Prin
urmare, trebuie introdusǎ o constrângere suplimentarǎ pentru a impune
unicitatea soluţiei.

De obicei, se impune ca x∗ sǎ aibǎ norma euclidianǎ minimǎ, astfel încât
problema celor mai mici pǎtrate poate fi formulatǎ astfel:

gǎsiţi x∗ ∈ Rn cu norma euclidianǎ minimǎ astfel încât

∥Ax∗ − b∥2
2 ≤ min

x∈Rn
∥Ax − b∥2

2︸ ︷︷ ︸
:=Φ(x)

. (153)

Instrumentul pentru rezolvarea acestei probleme noi este descompunerea
prin valori singulare (sau SVD).
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Reflectori Householder

Definiţie
Fie u ∈ Rm normat, adicǎ ∥u∥ = 1. O matrice U ∈ Rm×m de forma

U = Im − 2 u uT

se numeşte reflector elementat Householder de ordin m.

Matricea U are proprietǎţile

• UTU = (Im−2 u uT )T (Im−2 u uT ) = Im−4 u uT+4 u(uTu) uT = Im.

• UT = U

• U x = (Im − 2 u uT ) x = x − 2 u (uT x)︸ ︷︷ ︸
=⟨u,x⟩

= x − 2 (uT x)︸ ︷︷ ︸
=⟨u,x⟩

u
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Reflectori Householder

Dacǎ u nu are norma 1, putem defini totuşi reflectorul Householder

U = Im − 1
β
u uT , unde β =

∥u∥2

2
.

Vom obţine U x = (Im − 1
β u uT ) x = x − 1

β u (uT x)︸ ︷︷ ︸
=⟨u,x⟩

= x − 1
β
(uT x)︸ ︷︷ ︸
:=ν

u

• pentru u = (0 ... 0 uk ... um)
T , reflectorul Houseldorf corespunzǎtor

este

Uk =

(
Ik−1 0
0 Ũ

)
, Ũ fiind reflectorul asociat vectorului ũ = (uk ... um)

T
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Aplicaţii ale reflectorilor Householder pentru factorizarea QR

Considerǎm o matrice A ∈ Rm×n şi dorim sǎ construim o matrice
Q ∈ Rm×m ortogonalǎ şi o matrice R ∈ Rm×n astfel ca A = Q R.

Dacǎ notǎm cu a1 prima coloanǎ a matricei A, şi definim (De ce u1 este
nenul?)

u1 = a1 − ∥a1∥ e1, unde e1 este primul element al bazei canonice,

construind reflectorul Householder

U1 = Im − 1
β1

u1 uT1 , unde β1 =
∥u1∥2

2
,

vom avea
U1 a1 = ∥a1∥ e1.

Prin urmare obţinem

A(1) := U1 A =


∥a1∥ a

(1)
12 · · · a

(1)
1n

0 a
(1)
22 · · · a

(1)
2n

...
... · · ·

...
0 a

(1)
m2 · · · a

(1)
mn


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Aplicaţii ale reflectorilor Householder pentru factorizarea QR

La urmǎtorul pas definim

a2 =

(
0

A(1)(2 : m, 2)

)
, (154)

apoi definim

u2 = a2 − ∥a2∥ e2, unde e2 este al doilea element al bazei canonice şi

construind reflectorul Householder

U2 = Im − 1
β2

u2 uT2 , unde β2 =
∥u2∥2

2
vom avea

U2 a2 = ∥a2∥ e2.

În plus, deoarece prima linie şi prima coloanǎ din u2 uT2 sunt zero, prima
linie a lui A(1) dar şi prima coloanǎ a lui nu se modificǎ A(1) prin
înmulţirea cu U2.
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Aplicaţii ale reflectorilor Householder pentru factorizarea QR

Prin urmare

A(2) := U2A
(1) = U2U1 A =



∥a1∥ a
(1)
12 a

(1)
13 · · · a

(1)
1n

0 ∥a2∥ a
(2)
23 · · · a

(2)
2n

0 0 a
(2)
33 · · · a

(2)
3n

...
... · · ·

...
0 0 a

(2)
m3 · · · a

(2)
mn


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Aplicaţii ale reflectorilor Householder pentru factorizarea QR

La pasul k definim

ak =


0
...
0

A(k−1)(k : m, k)

 , (155)

apoi definim

uk = ak − ∥ak∥ ek , unde ek este elementul k al bazei canonicei

construind reflectorul Householder

Uk = Im − 1
βk

uk uTk , unde βk =
∥uk∥2

2
vom avea

Uk ak = ∥ak∥ ek .

În plus, deoarece primele k − 1 linii şi primele k − 1 coloanǎ din uk uTk
sunt zero, primele linii ale lui A(k−1) dar şi primele coloane ale lui nu se
modificǎ A(k−1) prin înmulţirea cu Uk . 209



Aplicaţii ale reflectorilor Householder pentru factorizarea QR

Prin urmare

A(k) := UkA
(k−1) = Uk ...U1 A =



∥a1∥ a
(1)
12 · · · a

(1)
1k · · · a

(1)
1n

0 ∥a2∥ · · · a
(2)
2k · · · a

(2)
2n

...
... · · · · · ·

...
0 0 · · · ∥ak∥ · · · a

(k)
3n

...
... · · ·

...
...

0 0 · · · a
(k)
mk · · · a

(k)
mn


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Aplicaţii ale reflectorilor Householder pentru factorizarea QR

Repetând procedeul de n ori gǎsim

A(n) := UnA
(n−1) = Un...U1 A =



∥a1∥ a
(1)
12 · · · a

(1)
1n

0 ∥a2∥ · · · a
(2)
2n

...
... · · ·

0 0 · · · ∥an∥
0 0 · · · 0
...

... · · ·
0 0 · · · 0


.
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Factorizarea este gǎsitǎ

Deci, Q şi R din factorizarea QR a lui A sunt

Q = U1....Un−1Un şi R =



∥a1∥ a
(1)
12 · · · a

(1)
1n

0 ∥a2∥ · · · a
(2)
2n

...
... · · ·

0 0 · · · ∥an∥
0 0 · · · 0
...

... · · ·
0 0 · · · 0


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Având factorizarea QR vom putea deduce factorizarea Q̃R̃ şi apoi putem
sǎ le folosim pentru rezolvarea problemei celor mai mici pǎtrate, dacǎ
rang A = n.
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Metoda gradientului folositǎ
pentru rezolvarea sistemelor



Scop

Dorim sǎ construim o soluţie aproximativǎ pentru problema de minim

min
x∈Rn

f (x), unde f : Rn → R este de clasǎ C 1 pe Rn.

De ce?

Pentru cǎ dupǎ cum am v ǎzut, rezolvarea aproximativǎ a unui sistem de
ecuaţii se reduce la o problemǎ de optimizare, adicǎ gǎsirea unei valori
minime a unei funcţii pǎ tratice.
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Corelarea datelor

f : R2 → R, f (z) = ⟨A z , z⟩+ 2⟨b, z⟩+ c , A ∈ R2×2, b ∈ R2, c ∈ R.
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Alte probleme
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Alte probleme

min
x∈Rn,r∈R

m∑
i=1

(∥x − ai∥2 − r2)2.
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Alte probleme

min
x∈Rn,r∈R

m∑
i=1

ωi (∥x − ai∥2 − r2)2.
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De ce aproximativ?

În majoritatea problemelor, abordǎrile analitice obişnuite nu pot fi
aplicare în practicǎ din urmǎtoarele motive:

• ar putea fi o sarcinǎ foarte dificilǎ sǎ se rezolve sistemul de ecuaţii
(de obicei neliniare) ∇f (x) = 0;

• chiar dacǎ este posibilǎ gǎsirea tuturor punctelor staţionare, s-ar
putea sǎ existe un numǎr infinit de puncte staţionare, iar sarcina de
a-l gǎsi pe cel care corespunde valorii minime a funcţiei este o
problemǎ de optimizare care, prin ea însǎşi, ar putea fi la fel de
dificilǎ ca şi problema iniţialǎ.
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Direcţii de descreştere

Considerǎm problema de minim

min
x∈Rn

f (x), unde f : Rn → R este o funcţie de clasǎ C 1 pe Rn.

În loc sǎ încercǎm sǎ gǎsim expresia analiticǎ a unui punct staţionar, vom
construi un algoritm iterativ pentru gǎsirea punctelor staţionare.

Algoritmii iterativi pe care îi vom lua în considerare în aceastǎ secţiune au
forma xk+1 = xk + tk dk , k = 0, 1, 2, ...., unde dk este aşa-numita
direcţie, iar tk este mǎrimea pasului.

Definiţie [Direcţia de descreştere]

Fie f : Rn → R de clasǎ C 1 pe Rn. Un vector 0 ̸= d ∈ Rn se numeşte
direcţie de descreştere a lui f în x dacǎ derivata direcţionalǎ f ′(x ; d)

este negativǎ, ceea ce înseamnǎ cǎ

f ′(x ; d) =
〈
∇f (x), d

〉
< 0.
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Lemma [Proprietatea de descreştere pe direcţiilor de descreştere ]

Fie f : Rn → R o funcţie de clasǎ C 1 pe Rn. Sǎ presupunem cǎ d este
o direcţie de descreştere a lui f în x . Atunci existǎ ε > 0 astfel încât

f (x + t d) < f (x) pentru orice t ∈ (0, ε].

Proof.
Deoarece f ′(x ; d) < 0, din definiţia derivatei direcţionale rezultǎ cǎ

lim
t→0+

f (x + t d)− f (x)

t
= f ′(x ; d) < 0.

Prin urmare, existǎ ε > 0 astfel încât

f (x + t d)− f (x)

t
< 0 pentru orice t ∈ (0, ε],

ceea ce implicǎ cu uşurinţǎ rezultatul dorit.
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Metoda direcţiilor de descreştere schematicǎ

Algoritmul metodei direcţiilor de descreştere

• Initializare: Alegem x0 ∈ Rn arbitrar;

• Etapa generalǎ: Pentru orice k = 0, 1, 2, ..., se
• alege o direcţie de descreştere dk ;
• gǎseşte o mǎrime a pasului tk care sǎ satisfacǎ f (xk + tkdk) < f (xk);
• Setaţi xk+1 = xk + tkdk ;
• se verificǎ dacǎ un criteriu de oprire este satisfǎcut, atunci STOP şi

xk+1 este ieşirea.

Atât de frumos şi atât de neclar (doar conceptual)!

Multe detalii lipsesc din descrierea schematicǎ de mai sus a algoritmului :

• Care este punctul de plecare?
• Cum se alege direcţia de descreştere?
• Ce mǎrime a pasului trebuie sǎ fie luatǎ?
• Care este criteriul de oprire?
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Clarificǎri

• Punctul de pornire poate fi ales arbitrar, în absenţa unei informaţii
deja ştiute despre soluţia optimǎ.

• Un exemplu de criteriu de oprire popular este ∥∇f (xk+1)∥ ≤ ε.

• Principala diferenţǎ între diferitele metode este alegerea direcţiei de
descreştere .

• Vom presupune cǎ mǎrimea pasului este aleasǎ astfel încât
f (xk+1) < f (xk). Încǎ nu este clar!

• mǎrime constantǎ a pasului: tk = t, k = 0, 1, 2, ...; Util pentru
probleme simple.

• O constantǎ mare poate face ca algoritmul sǎ nu fie descrescǎtor;
• O constantǎ micǎ poate cauza o convergenţǎ lentǎ a metodei.

• cǎutarea exactǎ pe linie: tk este un minimizator al lui f de-a lungul
razei xk + t dk , adicǎ tk = argmint≥0f (xk + t dk).

• Pare mai atractivǎ la prima vedere;
• Dar, nu este întotdeauna posibil sǎ gǎsim minimizatorul exact.

• backtracking este un compromis între ultimele douǎ abordǎri;
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Backtracking

Metoda necesitǎ trei parametri: s > 0, α ∈ (0, 1) β ∈ (0, 1). Alegerea lui
tk se face prin urmǎtoarea procedurǎ. În primul rând, tk se stabileşte ca
fiind egal cu presupunerea iniţialǎ s. Apoi, atâta timp cât

f (xk)− f (xk + tkdk) < −α tk
〈
∇f (xk), dk

〉
,

se stabileşte tk = β tk .

Mǎrimea paşilor se alege ca tk = s βik , unde ik este cel mai mic numǎr
întreg nenegativ pentru care se îndeplineşte condiţia

f (xk)− f (xk + s βikdk) ≥ −α s βik
〈
∇f (xk), dk

〉
este satisfǎcutǎ.
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Validitatea condiţiei suficiente de scǎdere

Fie f : Rn → R o funcţie de clasǎ C 1 pe Rn şi fie x ∈ Rn. Sǎ
presupunem cǎ 0 ̸= d ∈ Rn este o direcţie de descreştere a lui f în x şi
fie α ∈ (0, 1). Atunci existǎ ε > 0 astfel încât

f (x)− f (x + t d) ≥ −α t
〈
∇f (x), d

〉
pentru orice t ∈ (0, ε].
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Proof.

Deoarece f de clasǎ C 1 pe Rn rezultǎ cǎ

f (x + t d) = f (x) + t
〈
∇f (x), d

〉
+ o(t∥d∥),

şi, prin urmare

f (x)− f (x + t d) = −α t
〈
∇f (x), d

〉
− (1 − α) t

〈
∇f (x), d

〉
− o(t∥d∥),

Deoarece d este o direcţie de descreştere a lui f la x avem

lim
t→0+

(1 − α) t
〈
∇f (x), d

〉
+ o(t∥d∥)

t
= (1 − α)

〈
∇f (x), d

〉
< 0.

Prin urmare, existǎ ε > 0 astfel încât pentru toate t ∈ (0, ε] sǎ existe
inegalitatea (1 − α) t

〈
∇f (x), d

〉
+ o(t∥d∥) < 0, ceea ce conduce la

rezultatul dorit.
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Metoda gradientului

În metoda gradientului, direcţia de descreştere este aleasǎ ca fiind

dk = −∇f (xk), k = 0, 1, 2... .

Aceasta este o alegere bunǎ, deoarece

f ′(xk ;−∇f (xk)) = −
〈
∇f (xk),∇f (xk)

〉
= −∥∇f (xk)∥2 < 0.

Derivata direcţionalǎ minimǎ între toate direcţiile normalizate

Fie f : Rn → R o funcţie de clasǎ C 1 pe Rn şi fie x ∈ Rn un punct
nestaţionar. Atunci o soluţie optimǎ a

min
d∈Rn

{f ′(x ; d) : ∥d∥ = 1}

este d = − ∇f (x)

∥∇f (x)∥
.
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Proof.
Din moment ce f ′(x ; d) =

〈
∇f (x), d

〉
, problema este aceeaşi ca şi în

cazul în care
min
d∈Rn

{
〈
∇f (x), d

〉
: ∥d∥ = 1}

Din inegalitatea Cauchy-Schwarz avem〈
∇f (x), d

〉
≥ −∥∇f (x)∥ ∥d∥ = −∥∇f (x)∥.

Astfel, −∥∇f (x)∥ este o limitǎ inferioarǎ a valorii optime a problemei de

minimizare. Pe de altǎ parte, introducând d = − ∇f (x)

∥∇f (x)∥
în funcţia

obiectiv obţinem cǎ

f ′(x ;− ∇f (x)

∥∇f (x)∥
) =

〈
∇f (x),− ∇f (x)

∥∇f (x)∥
〉
= −∥∇f (x)∥,

şi astfel ajungem la concluzia cǎ limita inferioarǎ −∥∇f (x)∥ se atinge la

d = − ∇f (x)

∥∇f (x)∥
, ceea ce implicǎ rezultatul dorit.
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Metoda Gradient

• Input: ε > 0 ca parametru de toleranţǎ.

• Initializare: Se alege x0 ∈ Rn în mod arbitrar.

• Etapa generalǎ: Pentru orice k = 0, 1, 2, ... se executǎ urmǎtorii
paşi:

• Se alege o mǎrime a pasului tk printr-una dintre procedurile
menţionare mai sus pentru

g(t) = f (xk − t∇f (xk)).

• Setaţi xk+1 = xk − tk∇f (xk).
• Dacǎ ∥∇f (xk+1)∥ ≤ ε, STOP şi xk+1 este valoarea de OUTPUT
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Metoda gradientului se poate comporta destul de rǎu. Ca un exemplu, sǎ
considerǎm problema de minimizare

min
x,y∈Rn

x2 +
1

100
y2,

şi sǎ presupunem cǎ utilizǎm metoda gradientului cu vectorul iniţial
( 1
100 , 1)

T .

Aceasta este o problemǎ importantǎ, un rǎspuns parţial poate fi gǎsit
folosind noţiunea de numǎr de condiţionare.
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Se considerǎ problema de minimizare pǎtraticǎ

min
x∈Rn

{f (x) :=
〈
Ax , x

〉
}, unde A ≻ 0.

Soluţia optimǎ este, evident, x∗ = 0. Metoda gradientului cu pas exact
are forma

xk+1 = xk + tkdk ,

unde dk = −2Axk este gradientul lui f în xk , iar pasul tk este gǎsit ca
fiind

tk =
∥dk∥2

2
〈
Adk , dk

〉 .

231



Deci,

f (xk+1) =
〈
Axk+1, xk+1

〉
=
〈
A (xk + tkdk), (xk + tkdk)

〉
=
〈
Axk , xk

〉
+ 2 tk

〈
Axk , dk

〉
+ t2k

〈
Adk , dk

〉
=
〈
Axk , xk

〉
− 2 tk

〈
dk , dk

〉
+ t2k

〈
Adk , dk

〉
.

Introducând în ultima relaţie expresia pentru tk datǎ mai sus, obţinem cǎ

f (xk+1) =
〈
Axk , xk

〉
− 1

4

〈
dk , dk

〉2〈
Adk , dk

〉 =
〈
Axk , xk

〉(
1 − 1

4

〈
dk , dk

〉2〈
Adk , dk

〉〈
Axk , xk

〉)

= f (xk)

(
1 −

〈
dk , dk

〉2〈
Adk , dk

〉〈
A−1 dk , dk

〉)
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Inegalitatea lui Kantorovici
Fie A o matrice n × n pozitiv definitǎ. Atunci pentru orice 0 ̸= x ∈ Rn

are loc inegalitatea 〈
x , x
〉2〈

Ax , x
〉〈
A−1 x , x

〉 ≥ 4λmaxλmin

(λmax + λmin)2
.

Se noteazǎ m = λmin şi M = λmax. Valorile proprii ale matricei
A+MmA−1 sunt λi +

M m
λi

, i = 1, ..., n. Este uşor de demonstrat cǎ
maximul funcţiei unidimensionale φ(t) = t + M m

t pe [m,M] este atins în
punctele m şi M cu o valoare corespunzǎtoare a funcţiei φ de M +m şi,
prin urmare, din moment ce m ≤ λi (A) ≤ M, rezultǎ cǎ valorile proprii
ale lui A+MmA−1 sunt mai mici decât (M +m). Astfel,

A+MmA−1 ⪯ (M +m)In în sensul cǎ A+MmA−1 − (M +m)In ⪯ 0
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Adicǎ. 〈
Ax , x

〉
+Mm

〈
A−1 x , x

〉
≤ (M +m)

〈
x , x
〉
,

care, combinatǎ cu inegalitatea simplǎ αβ ≤ 1
4 (α+ β)2 ∀α, β ∈ R

rezultǎ 〈
Ax , x

〉
Mm

〈
A−1 x , x

〉
≤ 1

4
[
〈
Ax , x

〉
+Mm

〈
A−1 x , x

〉
]2

≤ (M +m)2

4
〈
x , x
〉2
,

care, dupǎ o simplǎ rearanjare a termenilor, conduce la rezultatul dorit.
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Revenind la analiza ratei de convergenţǎ a metodei gradientului, rezultǎ,
folosind inegalitatea lui Kantorovici, cǎ

f (xk+1) ≤
(

1 − 4mM

(M +m)2

)
f (xk) =

(
M −m

M +m

)2

f (xk),

unde M = λmax(A), m = λmin(A).

Rezumând, avem

Analiza ratei de convergenţǎ pentru funcţii pǎtratice
Fie xk şirul generat de metoda gradientului cu pas constant pentru
rezolvarea problemei de minimizare pǎtraticǎ

min
x∈Rn

{f (x) :=
〈
Ax , x

〉
}, unde A ≻ 0.

Atunci, pentru orice k = 0, 1, ...

f (xk+1) ≤
(
M −m

M +m

)2

f (xk),

unde M = λmax(A), m = λmin(A).
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Aceasta implicǎ faptul cǎ pentru orice k = 0, 1, ....

f (xk+1) ≤ ck f (x0), where c =

(
M −m

M +m

)2

=

 λmax(A)
λmin(A)

− 1
λmax(A)
λmin(A)

+ 1

2

.

Numǎrul κ =
λmax(A)

λmin(A)
se numeşte numǎr de condiţionare al lui A.

Matricele cu un numǎr mare de condiţioare se numesc rǎu condiţionate,
iar matricele cu un numǎr mic de condiţionare (aproape de 1) se numesc
bine condiţionate.
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Rescalare



Rescalare

Problema matricelorr prost condiţionate este una majorǎ şi au fost
dezvoltate multe metode pentru a o evita. Una dintre cele mai populare
abordǎri constǎ în “condiţionarea” problemei prin efectuarea unei
transformǎri liniare corespunzǎtoare a variabilelor.

Mai precis, sǎ considerǎm problema de minimizare fǎrǎ constrângeri

min
x∈Rn

f (x).

Pentru o matrice nesingularǎ datǎ S ∈ Rn×n, efectuǎm transformarea
liniarǎ x = S y şi obţinem problema echivalentǎ

min
y∈Rn

g(y) := f (S y).

Deoarece ∇g(y) = ST∇f (S y) = ST∇f (x), rezultǎ cǎ metoda
gradientului aplicatǎ problemei transformate ia forma

yk+1 = yk − tk S
T∇f (S yk).
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Din moment ce ∇g(y) = ST∇f (S y) = ST∇f (x), rezultǎ cǎ metoda
gradientului aplicatǎ problemeei transformate ia forma

yk+1 = yk − tk S
T∇f (S yk).

Înmulţind aceastǎ ultimǎ egalitate cu S la stânga şi folosind notaţia
xk = S yk , obţinem formula recursivǎ

xk+1 = xk − tk S ST∇f (xk).

Definind D = S ST , obţinem urmǎtoarea versiune a metodei gradientului,
pe care o numim metoda gradientului scalat cu matrice de scalare D

(pozitiv definitǎ):
xk+1 = xk − tk D∇f (xk).
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Direcţia −D∇f (xk) este o direcţie de descreştere a lui f în xk atunci
când ∇f (xk) ̸= 0, deoarece

f ′(xk ;−D∇f (xk)) = −
〈
∇f (xk),D∇f (xk)

〉
< 0.

Pentru a rezuma discuţia de mai sus, am arǎtat cǎ metoda gradientului
scalat cu matricea de scalare D este echivalentǎ cu metoda gradientului
utilizatǎ pentru funcţia g(y) = f (D1/2y).

Aici S = D1/2 înseamnǎ cǎ STS = D.
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Analiza convergenţei metodei gradientului (Opţional)

Vom prezenta o analizǎ a convergenţei metodei gradientului utilizatǎ
pentru problema de minimizare fǎrǎ restricţii.

min
x∈Rn

f (x).

Vom presupune cǎ funcţia obiectiv f este de clasǎ C 1 şi cǎ gradientul sǎu
∇f este Lipschitz continuu pe Rn, ceea ce înseamnǎ cǎ

∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥ pentru orice x , y ∈ Rn.
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Reţineţi cǎ dacǎ ∇f este Lipschitz cu constanta L, atunci este de
asemenea Lipschitz cu constanta L̃ ≥ L. Prin urmare, existǎ un numǎr
infinit de constante Lipschitz pentru o funcţie cu gradient Lipschitz.

Clasa funcţiilor cu gradient Lipschitz cu constanta L este notatǎ cu
C 1,1
L (Rn) sau pur şi simplu C 1,1

L .

• Funcţii liniare: f (x) =
〈
a, x
〉

cu L = 0.

• Funcţii pǎtratice: f (x) =
〈
Ax , x

〉
+ 2
〈
b, x
〉
+ c cu L = 2 ∥A∥,

deoarece

∥∇f (x)−∇f (y)∥ ≤ 2 ∥Ax − Ay∥ ≤ 2 ∥A∥ ∥x − y∥.
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Propoziţie

Fie f o funcţie de clasǎ C 2 pe Rn. Atunci urmǎtoarele douǎ afirmaţii
sunt echivalente

(a) f ∈ C 1,1
L (Rn).

(b) ∥∇2f (x)∥ ≤ L pentru orice x ∈ Rn, unde ∥·∥ reprezintǎ norma
spectralǎ.

(b)→ (a). Sǎ presupunem cǎ ∥∇2f (x)∥ ≤ L pentru orice x ∈ Rn. Atunci,
prin teorema fundamentalǎ a calculului integral, avem pentru orice
x , y ∈ Rn

∇f (y) = ∇f (x) +

∫ 1

0
∇2f (x + t(y − x)) (y − x)dt

= ∇f (x) +

(∫ 1

0
∇2f (x + t(y − x))dt

)
(y − x),
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Deci

∥∇f (y)−∇f (x)∥ =∥
(∫ 1

0
∇2f (x + t(y − x))dt

)
(y − x)∥

≤∥
∫ 1

0
∇2f (x + t(y − x))dt∥ ∥y − x∥

≤
∫ 1

0
∥∇2f (x + t(y − x))∥dt ∥y − x∥

≤L ∥y − x∥,

care demonstreazǎ rezultatul dorit, adicǎ f ∈ C 1,1
L .
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(a)→ (b). Sǎ presupunem acum cǎ f ∈ C 1,1
L . Atunci, prin teorema

fundamentalǎ a calculului integral, avem pentru toţi d ∈ Rn şi α > 0

∇f (x + αd) = ∇f (x) +

∫ α

0
∇2f (x + t d) d dt

Astfel,

∥
∫ α

0
∇2f (x + t d) dt d∥ =∥∇f (x + αd)− f (x)∥ ≤ α L ∥d∥.

Împǎrţind cu α şi luând α → 0+, obţinem

∥∇2f (x) d∥ ≤ L∥d∥,

ceea ce implicǎ faptul cǎ ∥∇2f (x) ∥ ≤ L.
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Lema descreşterii

Un rezultat important pentru funcţiile C 1,1
L este acela cǎ acestea pot fi

mǎrginite superior de o funcţie pǎtraticǎ pe întregul spaţiu.

Propoziţie [Lema descreşterii]

Fie f ∈ C 1,1
L (Rn). Atunci, pentru orice x , y ∈ Rn

f (y) ≤ f (x) +
〈
∇f (x), y − x

〉
+

L

2
∥x − y∥2.

Din teorema fundamentalǎ a calculului integral avem

f (y)− f (x) =

∫ 1

0

〈
∇f (x + t(y − x)), y − x

〉
dt.

Prin urmare,

f (y)− f (x) =
〈
∇f (x), y − x

〉
+

∫ 1

0

〈
∇f (x+ t(y − x))−∇f (x), y − x

〉
dt.
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Deci,

∥f (y)− f (x)−
〈
∇f (x), y − x

〉
∥ =

∣∣∣ ∫ 1

0

〈
∇f (x + t(y − x))−∇f (x), y − x

〉
dt
∣∣∣

≤
∫ 1

0
|
〈
∇f (x + t(y − x))−∇f (x), y − x

〉
| dt

≤
∫ 1

0
∥∇f (x + t(y − x))−∇f (x)∥ ∥y − x∥ dt

≤
∫ 1

0
t L ∥y − x∥2 dt =

L

2
∥y − x∥.
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Reţineţi cǎ demonstraţia lemei descreşterii aratǎ de fapt atât limitele
superioare, cât şi cele inferioare ale funcţiei:

f (x)+
〈
∇f (x), y−x

〉
−L

2
∥y−x∥2 ≤ f (y) ≤ f (x)+

〈
∇f (x), y−x

〉
+
L

2
∥y−x∥2.
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Lema scǎderii suficiente

Lema scǎderii suficiente

Sǎ presupunem cǎ f ∈ C 1,1
L (Rn). Atunci, pentru orice x ∈ Rn şi t > 0

f (x)− f (x − t∇f (x)) ≥ t

(
1 − L t

2

)
∥∇f (x)∥2.

Proof.
Prin lema descreşterii avem

f (x − t∇f (x)) ≤ f (x)− t ∥∇f (x)∥2 +
L t2

2
∥∇f (x)∥2

= f (x)− t

(
1 − L t

2

)
∥∇f (x)∥2
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Scopul nostru este acum sǎ arǎtǎm cǎ existǎ paşi viabili pentru fiecare
dintre strategiile de selectare a mǎrimii paşilor:

• pas constant;

• cǎutarea exactǎ pe linie;

• backtracking.

În cazul unui pas constant, presupunem cǎ tk = t ∈ (0, 2
L ). Înlocuind

x = xk , t = t în lema de scǎdere suficientǎ rezultǎ inegalitatea

f (xk)− f (xk+1) ≥ t

(
1 − L t

2

)
∥∇f (xk)∥2.

Reţineţi cǎ descreştere în metoda gradientului pe iteraţie este

t

(
1 − L t

2

)
∥∇f (xk)∥2
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Dacǎ dorim sǎ obţinem cea mai mare limitǎ garantatǎ a scǎderii, atunci
cǎutǎm maximul lui t

(
1 − L t

2

)
în (0, 2

L ). Acest maxim este atins pentru

t = 1
L şi, prin urmare, o alegere potrivitǎ pentru mǎrimea pasului este 1

L .

În acest caz

f (xk)− f (xk+1) ≥
1
L

(
1 −

L 1
L

2

)
∥∇f (xk)∥2 ≥ 1

2 L
∥∇f (xk)∥2.

250



În cadrul pasului constrant, formula iterativǎ a algoritmului este

xk+1 = xk − tk∇f (xk),

unde tk = argmint≥0f (xk − t∇f (xk)).

Prin definiţia lui tk ştim cǎ

f (xk − tk∇f (xk)) ≤ f (xk −
1
L
∇f (xk)),

şi astfel avem

f (xk)− f (xk+1) ≥ f (xk)− f (xk − tk∇f (xk)) ≥
1

2 L
∥∇f (xk)∥2.

Aceeaşi estimare ca şi în cazul mǎrimii constante a paşilor.
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În cazul backtracking cǎutǎm pasul tk suficient de mic astfel încât

f (xk)− f (xk −
tk
β
∇f (xk)) < α

tk
β

∥∇f (xk)∥2.

Înlocuind x = xk , t = tk
β în lema scǎderii suficiente obţinem cǎ

f (xk)− f (xk −
tk
β
∇f (xk)) ≥

tk
β

(
1 − L tk

2β

)
∥∇f (xk)∥2

care, combinat cu estimarea de mai sus, implicǎ faptul cǎ

tk
β

(
1 − L tk

2β

)
∥∇f (xk)∥2 < α

tk
β
∥∇f (xk)∥2

ceea ce este acelaşi lucru cu

tk >
2(1 − α)β

L
.

În general, obţinem cǎ în cadrul backtracking-ului avem

tk > min{s, 2(1 − α)β

L
},

ceea ce implicǎ faptul cǎ

f (xk)− f (xk − tk∇f (xk)) ≥ α min{s, 2(1 − α)β

L
}∥∇f (xk)∥2.
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Lemma

Fie f ∈ C 1,1
L (Rn). Fie {xk}k≥0 şirul generat de metoda gradientului

pentru rezolvarea minx∈Rn f (x) cu una dintre urmǎtoarele strategii
gǎsire a paşilor:

• pas constant t ∈ (0, 2
L ),

• pas exact,

• backtracking cu parametrii s ∈ (0,∞), α ∈ (0, 1) şi β ∈ (0, 1).

Atunci
f (xk)− f (xk+1) ≥ M∥∇f (xk)∥2,

unde

M =


t
(
1 − tL

2

)
pas constant,

1
2 L pas exact,

α min{s, 2(1−α)β
L } backtracking.
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Convergenţa metodei gradientului

Propoziţie

Fie f ∈ C 1,1
L (Rn). Fie {xk}k≥0 şirul generat de metoda gradientului

pentru rezolvarea minx∈Rn f (x) cu una dintre urmǎtoarele strategii de
gǎsire a paşilor:

• pas constant t ∈ (0, 2
L ),

• pas exact,

• backtracking cu parametrii s ∈ (0,∞), α ∈ (0, 1) şi β ∈ (0, 1).

Sǎ presupunem cǎ f este mǎrginit inferior pe Rn, adicǎ existǎ m ∈ R
astfel încât f (x) > m pentru orice x ∈ Rn. Atunci,

a) şirul {f (xk)}k≥0 este descrescǎtor. În plus, pentru orice k ≥ 0,
f (xk+1) < f (xk), cu excepţia cazului în care ∇f (xk) = 0.

b) ∇f (xk) → 0 pentru k → ∞.
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Proof.

a) Din lema anterioarǎ avem cǎ

f (xk)− f (xk+1) ≥ M∥∇f (xk)∥2 ≥ 0,

pentru o anumitǎ constantǎ M > 0 şi, prin urmare, egalitatea
f (xk) = f (xk+1) poate avea loc numai atunci când ∇f (xk) = 0.

b) Deoarece şirul {f (xk)}k≥0 este descrescǎtor şi mǎrginit inferior, deci
converge. Astfel, în particular f (xk)− f (xk+1) → 0 când k → ∞,
ceea ce, combinat cu inegalitatea de mai sus, implicǎ faptul cǎ
∥∇f (xk)∥ → 0 pe mǎsurǎ ce k → ∞.
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Rata de convergenţǎ a normelor de gradient (Opţional)

Propoziţie

În condiţiile propoziţiei anterioare, fie f ∗ limita şirului {f (xk)}k≥0.
Atunci, pentru orice n = 0, 1, 2, ....

min
k=0,1,...,n

∥∇f (xk)∥ ≤

√
f (x0)− f ∗

M(n + 1)
,

unde

M =


t
(
1 − tL

2

)
dimensiunea pasului constant,

1
2 L pas exact,

α min{s, 2(1−α)β
L } backtracking.
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Proof.
Prin adunarea inegalitǎţilor

f (xk)− f (xk+1) ≥ M∥∇f (xk)∥2,

pentru k = 0, 1, ..., n, obţinem

f (x0)− f (xn+1) ≥ M
n∑

k=0

∥∇f (xk)∥2,

Deoarece f (xn+1) ≥ f ∗, putem astfel concluziona cǎ

f (x0)− f ∗ ≥ M
n∑

k=0

∥∇f (xk)∥2.

În final, folosind aceastǎ ultimǎ inegalitate împreunǎ cu faptul cǎ pentru
fiecare k = 0, 1, ..., n avem inegalitatea evidentǎ
∥∇f (xk)∥2 ≥ mink=0,1,...,n∥∇f (xk)∥2, rezultǎ cǎ

f (x0)− f ∗ ≥ M(n + 1) min
k=0,1,...,n

∥∇f (xk)∥2.
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The Gauss–Newton Method



The Gauss—Newton Method: Nonlinear Least Squares

There are situations in which we are given a system of nonlinear equations

fi (x) = ci , i = 1, 2, ...,m,

where fi : Rn → R, ci ∈ R are given and x is to be funded.

In this case, the approximation problem is as in the following

Nonlinear least squares (NLS) problem
NLS is formulated as

min
x∈Rn

g(x) :=
m∑
i=1

(fi (x)− ci )
2.

There is no easy way to solve NLS problems. Gauss-Newton method is
an way.
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We will assume that fi , i = 1, 2, ...,m are continuously differentiable over
R and ci ∈ R. The problem is sometimes also written in the terms of the
function

F (x) =


f1(x)− c1
f2(x)− c2

...
fm(x)− cm

 ,

and then it takes the form

min
x∈Rn

∥F (x)∥2.

THE general step of the Gauss-Newton method goes as follows: given
the kth iterate xk , the next iterate is chosen to minimize the sum of
squares of the linear approximations of fi at xk , that is,

xk+1 = argminx∈Rn

{
m∑
i=1

[fi (xk) +
〈
∇fi (xk), x − xk

〉
− ci ]

2

}
.
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The minimization problem above is essential a linear least squares
problem

min
x∈Rn

∥Ak x − bk∥2,

where

Ak =


∇f1(xk )

T

∇f2(xk )
T

...
∇fm(xk )

T

 = J(xk)

is the so-called Jacobian matrix and

bk =


〈
∇f1(xk ), xk

〉
− f1(xk ) + c1〈

∇f2(xk ), xk
〉
− f2(xk ) + c2
...〈

∇fm(xk ), xk
〉
− fm(xk ) + cm

 = J(xk)xk − F (xk).
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The underlying assumption is of course that J(xk) is of a full columns
rank. In that case, we can also write explicit expression for the
Gauss-Newton iterates

xk+1 = (J(xk)
T J(xk))

−1J(xk)
Tbk .

Note that the method can also be written as

xk+1 = (J(xk)
T J(xk))

−1J(xk)
T (J(xk)xk − F (xk))

= xk − (J(xk)
T J(xk))

−1J(xk)
TF (xk).

The Gauss-Newton direction is therefore
dk = (J(xk)

T J(xk))
−1J(xk)

TF (xk). Noting that ∇g(x) = 2 J(x)TF (x),
we can conclude that

dk =
1
2
(J(xk)

T J(xk))
−1∇g(xk),

meaning that the Gauss-Newton method is essentially a scaled gradient
method with the following positive definite scaling matrix

Dk =
1
2
(J(xk)

T J(xk))
−1.
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Damped Gauss-Newton Method

This fact also explains why Gauss-Newton method is a descent direction
method. The method described so far is also called the pure
Gauss-Newton method since no stepsize is involved. To transform this
method into a practical algorithm, a stepsize is introduced, leading to the
damped Gauss-Newton method.

Damped Gauss-Newton Method

• Input: ε > 0 as the tolerance parameter.

• Initialization: Pick x0 ∈ Rn arbitrarily.

• General step: For any k = 0, 1, 2, ... execute the following steps:
• Set dk = (J(xk)

TJ(xk))
−1J(xk)

TF (xk).
• Pick a stepsize tk by a line search procedure on the function

h(t) = g(xk − t dk).

• Set xk+1 = xk − tk dk .
• If ∥∇g(xk+1)∥ ≤ ε, the STOP and xk+1 is the output.
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Sisteme nedeterminate cu
descompunerea în valori
singulare (SVD) şi
pseudoinversǎ



Descompunerea în valori singulare (SVD)

Descompunerea în valori singulare (SVD) a unei matrice A este un
instrument foarte util în contextul problemei celor mai mici pǎtrate. Este
de asemenea foarte utilǎ pentru analiza proprietǎţilor unei matrice. Cu
SVD-ul, poţi „radiografia” o matrice!

Teoremǎ
Fie A ∈ Rm×n. Atunci existǎ matrice ortogonale U ∈ Rm×m şi V ∈ Rn×n

şi o matrice diagonalǎ Σ = diag(σ1, . . . , σn) ∈ Rm×n cu
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, astfel încât:

A = UΣV⊤

are loc.
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A = UΣV⊤

Definiţie
Vectorii coloanǎ ai lui U = [u1, . . . , um] sunt numiţi vectori singulari
stângi şi, similar, V = [v1, . . . , vn] sunt vectorii singulari drepţi. Valorile
σi =

√
λi (A⊤A) sunt numite valorile singulare ale lui A (unde λi (A

⊤A)

sunt valorile proprii ale lui A⊤A).
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Exemplu

Fie matricea A =

 1 3
5 7
9 1

 ∈ R3×2. Descompunerea sa este datǎ de

 1 3
5 7
9 1


︸ ︷︷ ︸

=A

=

 0.207621 0.370412 0.905366
0.679634 0.611049 −0.405854
0.703556 −0.699581 0.124878


︸ ︷︷ ︸

:=U∈R3×3

 11.6522 0.
0. 5.4979
0. 0.


︸ ︷︷ ︸

:=Σ∈R3×2

(
0.852871 0.522122

−0.522122 0.852871

)
︸ ︷︷ ︸

=VT∈R2×2

,

valorile singulare fiind σ1 = 11.6522 şi σ2 = 5.4979.

Din numǎrul valorilor singulare nenule ne putem da seama cǎ rangul
matricei este 2.
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Exemplu

Fie matricea A =

(
1 5 9
3 7 1

)
∈ R3×2. Descompunerea sa este datǎ

de
(

1 5 9
3 7 1

)
︸ ︷︷ ︸

=A

=

(
0.852871 −0.522122
0.522122 0.852871

)
︸ ︷︷ ︸

:=U∈R2×2

(
11.6522 0. 0.

0. 5.4979 0.

)
︸ ︷︷ ︸

:=Σ∈R3×2

 0.207621 0.370412 0.905366
0.679634 0.611049 −0.405854
0.703556 −0.699581 0.124878


︸ ︷︷ ︸

=VT∈R3×3

,

valorile singulare fiind σ1 = 11.6522 şi σ2 = 5.4979.

Din numǎrul valorilor singulare nenule ne putem da seama cǎ rangul
matricei este 2.
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Demonstraţie

Considerǎm matricea
B := ATA ∈ Rn×n.

• B este simetricǎ:

BT = (ATA)T = AT (AT )T = ATA = B.

• B este pozitiv semidefinitǎ:

xTBx = xTATAx = (Ax)T (Ax) = ∥Ax∥2 ≥ 0, ∀x ∈ Rn.

Deci toate valorile proprii λi ale lui B sunt nenegative: λi ≥ 0.
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Demonstraţie

Prin teorema spectralǎ pentru matrici simetrice, existǎ o matrice
ortogonalǎ V ∈ Rn×n şi o matrice diagonalǎ Λ, astfel încît

B = ATA = VΛV T , Λ = diag(λ1, . . . , λn), λi ≥ 0.

Notǎm coloanele lui V cu

V = (v1 | v2 | · · · | vn),

unde vectorii vi sunt ortonormali şi satisfac

Bvi = λivi .
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Demonstraţie

Punem
σi :=

√
λi ≥ 0.

Acestea vor fi valorile singulare ale lui A.

Presupunem cǎ exact r dintre valorile proprii sunt strict pozitive:

λ1 ≥ λ2 ≥ · · · ≥ λr > 0, λr+1 = · · · = λn = 0.

Pentru i = 1, . . . , r definim

ui :=
1
σi
Avi .

Norma lui ui :

∥ui∥2 = uTi ui =

(
1
σi
Avi

)T ( 1
σi
Avi

)
=

1
σ2
i

vT
i ATAvi =

1
σ2
i

vT
i Bvi .

Deoarece Bvi = λivi , rezultǎ

∥ui∥2 =
1
σ2
i

λiv
T
i vi =

λi

σ2
i

· 1 =
λi

λi
= 1.

Deci ∥ui∥ = 1. 269



Demonstraţie

Ortogonalitatea: pentru i ̸= j ,

uTi uj =

(
1
σi
Avi

)T ( 1
σj

Avj

)
=

1
σiσj

vT
i ATAvj =

1
σiσj

vT
i Bvj .

Folosing Bvj = λjvj ,

uTi uj =
1

σiσj
λjv

T
i vj =

λj

σiσj
· 0 = 0,

deoarece vT
i vj = 0 pentru i ̸= j .

Astfel, u1, . . . , ur sunt ortonormali în Rm.
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Demonstraţie

Dacǎ r < m, completǎm mulţimea {u1, . . . , ur} la o bazǎ ortonormalǎ a
lui Rm adǎugând vectori ur+1, . . . , um (de exemplu, prin Gram–Schmidt).

Definim
U := (u1 | u2 | · · · | um) ∈ Rm×m,

care este ortogonalǎ: UTU = Im.

Deja avem V ortogonalǎ:

V = (v1 | · · · | vn), V TV = In.
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Demonstraţie

Pentru i ≤ r , prin definiţie:

Avi = σiui .

Pentru i > r , λi = 0, deci

Bvi = ATAvi = 0.

Atunci
∥Avi∥2 = (Avi )

T (Avi ) = vT
i ATAvi = vT

i Bvi = 0,

deci Avi = 0.

Prin urmare:

Avi =

{
σiui , i ≤ r ,

0, i > r .
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Demonstraţie

Considerǎm produsul

AV = A(v1 | · · · | vn) = (Av1 | · · · | Avn).

Din relaţiile de mai sus, aceasta este

AV = (σ1u1 | · · · | σrur | 0 | · · · | 0).

Definim Σ ∈ Rm×n ca fiind matricea diagonalǎ dreptunghiularǎ

Σ =



σ1

σ2
. . .

σr

0
. . .

0


,

unde diagonala are σ1, . . . , σr , iar restul elementelor sunt 0.
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Demonstraţie

Atunci produsul
UΣ = (u1 | · · · | um)Σ

are coloana i egalǎ cu:

• σiui , dacǎ iλer ;

• 0, dacǎ i > r .

Deci coloanele lui AV coincid cu coloanele lui UΣ, de unde

AV = UΣ.

Înmulţind la dreapta cu V T (folosind cǎ V T = V−1) obţinem

A = UΣV T ,

ceea ce doream sǎ demonstrǎm.
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Valori şi vectori singulari

Proprietǎţi:

• Avi = σiui şi AT ui = σivi pentru i = 1 : n, unde ui şi vi sunt
coloanele matricelor U şi V din descompunerea spectralǎ.

• σmin∥x∥2 ≤ ∥Ax∥2 ≤ σmax∥x∥2.

• A =
∑r

i=1 σiui v
T
i .

• ATAvi = σ2
i vi şi AAT ui = σ2

i ui pentru i = 1 : n, ceea ce înseamnǎ
cǎ vi e vector propriu pentru ATA iar ui e vector propriu pentru
AAT .
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Exemplul 1: matrice cu mai multe linii decât coloane (m > n)

Luǎm

A =

1 0
0 2
0 0

 ∈ R3×2.

Calculǎm

AT =

(
1 0 0
0 2 0

)
, ATA =

(
1 0 0
0 2 0

)1 0
0 2
0 0

 =

(
1 0
0 4

)
.

Valorile proprii ale lui ATA sunt λ1 = 1 şi λ2 = 4. Valorile singulare sunt

σ1 =
√

1 = 1, σ2 =
√

4 = 2.
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Calculǎm vectorii proprii şi matricea V

Pentru λ1 = 1, un vector propriu este v1 = (1, 0)T . Pentru λ2 = 4, un
vector propriu este v2 = (0, 1)T .

Deci putem lua

V =

(
1 0
0 1

)
= I2.

Calculǎm vectorii ui şi matricea U

Definim

u1 =
1
σ1

Av1 = Av1 = A

(
1
0

)
=

1
0
0

 ,

u2 =
1
σ2

Av2 =
1
2
A

(
0
1

)
=

1
2

0
2
0

 =

0
1
0

 .
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Observǎm cǎ u1 şi u2 sunt deja ortonormali. Completǎm la o bazǎ
ortonormalǎ adǎugând

u3 =

0
0
1

 .

Astfel

U =

1 0 0
0 1 0
0 0 1

 = I3.

Scriem matricea Σ

Σ are dimensiunea 3 × 2 şi diagonala (σ1, σ2):

Σ =

1 0
0 2
0 0

 .
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Verificarea lui A = UΣV T

Aici U = I3, Σ este chiar A, iar V = I2, deci

UΣV T = I3 · Σ · I2 = Σ = A.

Am obţinut descompunerea SVD:

A = UΣV T = I3

1 0
0 2
0 0

 I2.
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Exemplul 2: matrice cu mai puţine linii decât coloane (m < n)

Luǎm

A =

(
1 0 0
0 2 0

)
∈ R2×3.

Calculul lui ATA

AT =

1 0
0 2
0 0

 , ATA =

1 0
0 2
0 0

(1 0 0
0 2 0

)
=

1 0 0
0 4 0
0 0 0

 .
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Valorile proprii:
λ1 = 1, λ2 = 4, λ3 = 0.

Valorile singulare:
σ1 = 1, σ2 = 2, σ3 = 0.

Vectorii proprii şi matricea V

Pentru λ1 = 1, putem lua v1 = (1, 0, 0)T . Pentru λ2 = 4, luǎm
v2 = (0, 1, 0)T . Pentru λ3 = 0, luǎm v3 = (0, 0, 1)T .

Deci

V =

1 0 0
0 1 0
0 0 1

 = I3.
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Vectorii ui şi matricea U

Pentru i = 1, 2,

u1 =
1
σ1

Av1 = A

1
0
0

 =

(
1
0

)
,

u2 =
1
σ2

Av2 =
1
2
A

0
1
0

 =
1
2

(
0
2

)
=

(
0
1

)
.

Aceştia sunt deja ortonormali în R2. Nu mai avem nevoie de alţi vectori,
deci

U =

(
1 0
0 1

)
= I2.
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Matricea Σ

Σ este de dimensiune 2 × 3, cu diagonala (σ1, σ2) = (1, 2):

Σ =

(
1 0 0
0 2 0

)
.

Verificarea lui A = UΣV T

Aici

U = I2, Σ =

(
1 0 0
0 2 0

)
, V = I3.

Deci
UΣV T = I2 · Σ · I3 = Σ = A.

Am obţinut din nou descompunerea SVD:

A = UΣV T .
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Aceste douǎ exemple aratǎ modul în care se aplicǎ teorema
descompunerii spectrale pentru matrici dreptunghiulare atât în cazul
m > n, cât şi în cazul m < n.

Pentru Matlab În Matlab existǎ douǎ variante pentru calculul SVD:
[U S V ]=svd(A)− dǎ o descompunere completǎ
[U S V ]=svd(A,0)− dǎ o matrice m × n pentru U

Apelul svd(A, 0) calculeazǎ o versiune între una completǎ şi una
economicǎ cu o matrice nepǎtraticǎ U ∈ Rn×m. Aceastǎ formǎ este
uneori numitǎ „SVD subţire”.
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În ceea ce priveşte rangul, dacǎ

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0. (156)

atunci rangul lui A este r , nucleul lui A este generat de vectorii coloanǎ
V (:, r + 1 : n) ai lui V , iar range(A) este general de vectorii coloanǎ
U(:, 1 : r) ai lui U.

Definiţie
Sǎ presupunem cǎ A ∈ Rm×n are rang egal cu r şi cǎ admite SVD de
tipul UTAV = Σ. Matricea A† = VΣ†UT este numitǎ matricea
pseudo-inversǎ Moore-Penrose, unde

Σ† = diag
(

1
σ1

, · · · , 1
σr

, 0, · · · , 0
)
. (157)

Matricea A† este, de asemenea, numitǎ inversa generalizatǎ a lui A.
Într-adevǎr, dacǎ rank(A) = n < m, atunci A† = (ATA)−1AT , iar dacǎ
n = m = rank(A), A† = A−1.

285



Revenind la sisteme

Dacǎ A nu are rang complet, tehnicile de soluţionare prin descompunerea
QR de mai sus nu funcţioneazǎ şi avem nevoie de o altǎ tehnicǎ

Teoremǎ
Sǎ considerǎm A ∈ Rm×n cu SVD dat de A = UΣV T . Atunci soluţia
unicǎ a problemei de minimizare

gǎseşte x∗ ∈ Rn cu norma Euclidianǎ minimǎ astfel cǎ

∥Ax∗ − b∥2
2 ≤ min

x∈Rn
∥Ax − b∥2

2︸ ︷︷ ︸
:=Φ(x)

(158)

este

x∗ = A†b, (159)

unde A† este pseudo-inversa lui A.
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Demonstraţie

Folosind SVD-ul lui A, sarcina este de a gǎsi w = V T astfel ca w are
norma Euclidianǎ minimǎ şi

∥Σw − UTb∥2
2 ≤ ∥Σy − UTb∥2

2 ∀ y ∈ Rn. (160)

Dacǎ r este numǎrul de valori singulare nenule σi ale lui A, atunci

∥Σw − UTb∥2
2 =

r∑
i=1

(
σiwi − (UTb)i

)2
+

m∑
i=r+1

(
(UTb)i

)2
, (161)

ceea ce este minim daca wi = (UTb)i/σi pentru i = 1, . . . , r .

În plus, este clar cǎ printre vectorii w ai lui Rn care au primele r

componente fixe, vectorul cu norma Euclidianǎ minimǎ are celelalte n − r

componente egale cu zero.

Aşadar, vectorul soluţie este w∗ = Σ†UTb, adicǎ x∗ = VΣ†UTb = A†b,
unde Σ† este matricea diagonalǎ definitǎ în definiţia pseudo-inversei.
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Aplicaţii ale descompunerii în
valori singulare (SVD) în
compresia imaginilor



Descompunerea în valori singulare (SVD)

Descompunerea în valori singulare (SVD) a unei matrice A nu este un
instrument foarte util doar în contextul problemei celor mai mici pǎtrate
ci este folosit deseori în practicua.

În continuare vom indica câteva metode simple şi directe de aplicare în
comprimarea imaginilor.

Ne aducem aminte.

Teoremǎ
Fie A ∈ Rm×n. Atunci existǎ matrice ortogonale U ∈ Rm×m şi V ∈ Rn×n

şi o matrice diagonalǎ Σ = diag(σ1, . . . , σn) ∈ Rm×n cu
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, astfel încât:

A = UΣV⊤

are loc.
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A = UΣV⊤

Definiţie
Vectorii coloanǎ ai lui U = [u1, . . . , um] sunt numiţi vectori singulari
stângi şi, similar, V = [v1, . . . , vn] sunt vectorii singulari drepţi. Valorile
σi =

√
λi (A⊤A) sunt numite valorile singulare ale lui A (unde λi (A

⊤A)

sunt valorile proprii ale lui A⊤A).
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În ceea ce priveşte rangul, dacǎ

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0. (162)

atunci rangul lui A este r , nucleul lui A este generat de vectorii coloanǎ
V (:, r + 1 : n) ai lui V , iar range(A) este generat de vectorii coloanǎ
U(:, 1 : r) ai lui U.

Matricea A se poate scrie ca o sumǎ de matrice

A =
r∑

i=1

σiui v
T
i = σ1u1 v

T
1 + σ2u2 v

T
2 + ...+ σrur v

T
r + 0 + 0 + ...+ 0.
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Tensor de ordin 2

Vom folosi în continuare noţiunea de tensor de ordin 2.

Prin produsul tensorial a doi vectori ξ ∈ Rn, η ∈ Rm, notat
ξ ⊗ η ∈ Rn×m, înţelegem un operator liniar

ξ ⊗ η : Rm → Rn, (ξ ⊗ η) .v = ⟨η, v⟩ ξ . (163)

Fiind un operator liniar, un tensor este un obiect matematic care poate fi
caracterizat prin elementele unei baze din domeniu şi a unei baze din
codomeniu.

Prin urmare în baze diferite, vom avea caracterizǎri diferite.
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Fie o bazǎ ortonormatǎ e i , i = 1, 2, ..., n în Rn şi o bazǎ ortonormatǎ f j ,
j = 1, 2, ..., n în Rm.

Din

ξ ⊗ η =
n∑

i=1

m∑
j=1

ξiηje i ⊗ f j

rezultǎ cǎ
{e i ⊗ f j | i = 1, 2, ..., n, j = 1, 2, ...,m}

este un sistem de generatori pentru mulţimea tuturor produselor tensoriale

{ξ ⊗ η | ξ ∈ Rn, η ∈ Rm}.

De fapt, este uşor de arǎtat cǎ

{e i ⊗ f j | i = 1, 2, ..., n, j = 1, 2, ...,m}

este o bazǎ pe spaţiul vectorial al tuturor produselor tensoriale

{ξ ⊗ η | ξ ∈ Rn, η ∈ Rm}.

292



Tensor de ordin 2

Fie o bazǎ ortonormatǎ e i , i = 1, 2, ..., n în Rn şi o bazǎ ortonormatǎ f j ,
j = 1, 2, ..., n în Rm.

Pentru cele necesare nouǎ, prin tensor de ordin 2 vom înţelege un obiect
matematic I definit prin

I =
n∑

i=1

m∑
j=1

Iij (e i ⊗ f j),

iar Iij se vor numi componentele tensorului I relativ la bazele e i şi f j .

Tensorul de ordin 2 se poate identifica cu matricea sa într-o pereche de
baze. ATENŢIE! Dacǎ schimbǎm una dintre baze, atunci matricea cu
care se ideentificǎ tensorul se SCHIMBǍ dupǎ regulile pentru operatori
liniari!
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Considerând doi vectori ξ =
∑n

i=1 ξie i ∈ Rn, η =
∑m

j=1 ηj f j ∈ Rm

produsul tensorial al lor este complet definit de matricea operatorului
liniar.

Deoarece

ξ ⊗ η =
n∑

i=1

m∑
j=1

ξiηje i ⊗ f j

şi

(ξ ⊗ η).f k =
n∑

i=1

m∑
j=1

ξiηj(e i ⊗ f j).f k =
n∑

i=1

m∑
j=1

ξiηj⟨f j , f k⟩e i =
n∑

i=1

ξiηke i

matricea operatorului în bazele considerate are componentele

(ξ ⊗ η)ij = ξi ηj .

Dar ξi ηj sunt chiar componentele matricei produs ξ · ηT .
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Avem
(ξ ⊗ η)ij = ξi ηj .

Dar ξi ηj sunt chiar componentele matricei produs ξ · ηT .

Sǎ ne întoarcem acum la descompunerea în valori singulare şi la scrierea
matricei A ca

A =
r∑

i=1

σiui v
T
i = σ1u1 v

T
1 + σ2u2 v

T
2 + ...+ σrur v

T
r + 0 + 0 + ...+ 0.

Folosind terminologia de la tensori, putem scrie

Scrierea matricei ca sumǎ de tensori
Prin urmare, identificând produsul tensorial cu matricea sa în baza
canonicǎ, avem

A =
r∑

i=1

σiui ⊗ vi = σ1u1 ⊗ v1 + σ2u2 ⊗ v2 + ...+ σrur ⊗ vr .
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Scrierea matricei ca sumǎ de tensori
Prin urmare, identificând produsul tensorial cu matricea sa în baza
canonicǎ, avem

A =
r∑

i=1

σiui ⊗ vi = σ1u1 ⊗ v1 + σ2u2 ⊗ v2 + ...+ σrur ⊗ vr .

Mai mult, deoarece ui şi vi sunt vectori ortonormaţi în Rn, respectiv, Rm,
putem spune cǎ scriere

A =
r∑

i=1

σiui ⊗ vi

ne oferǎ o descompunere a matricei A în spaţiul tensorilor de ordin 2.

Sǎ mai remarcǎm cǎ rangul matricelor asociate oricǎrui produs tensorial
ξ ⊗ η este 1, scriem rank(ξ ⊗ η) = 1.
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Deci, în scrierea

A =
r∑

i=1

σiui ⊗ vi = σ1u1 ⊗ v1 + σ2u2 ⊗ v2 + ...+ σrur ⊗ vr

avem descompunerea lui A în funţie de o bazǎ formatǎ din tensori de
rang 1.

Mai mult, se poate arata cǎ pentru orice 1 < k ≥ r avem

rank(σ1u1 ⊗ v1 + σ2u2 ⊗ v2 + ...+ σkuk ⊗ vk) = k .

Ne întrebǎm dacǎ nu putem COMPRIMA matricea A folosind doar o
parte din termenii sumei. POATE DOAR PÂNǍ CÂND σi începe sǎ nu
mai conteze. Ce înseamnǎ oare asta?

Deoarece am scris valorile singulare ordonate descrescǎtor, aceasta ar
însemna cǎ se aproximeazǎ matricea A cu o matrice de rang k .

Dar care o fi cea mai bunǎ aproximare a sa?
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Aproximarea cu o matrice de rang k

Fie A o matrice m × n de rang r şi fie

A = UΣV⊤

o descompunere în valori singulare (SVD) a lui A. Notǎm cu ui
coloanele lui U, cu vi coloanele lui V , şi cu

σ1 ≥ σ2 ≥ · · · ≥ σp, p = min(m, n),

valorile singulare ale lui A.

Atunci, matricea de rang k < r cea mai apropiatǎ de A (în norma
spectralǎ ∥ · ∥2) este datǎ de

Ak =
k∑

i=1

σiui ⊗ v⊤
i = U diag(σ1, . . . , σk , 0, . . . , 0)V⊤,

şi
∥A− Ak∥2 = σk+1.
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Proof.
Prin construcţie, Ak are rang k, şi avem

∥A−Ak∥2 =

∥∥∥∥∥
p∑

i=k+1

σiuiv
⊤
i

∥∥∥∥∥
2

=
∥∥U diag(0, . . . , 0, σk+1, . . . , σp)V

⊤∥∥
2 = σk+1.

Rǎmâne de arǎtat cǎ
∥A− B∥2 ≥ σk+1

pentru orice matrice B de rang k. Fie B o astfel de matrice. Atunci
nucleul sǎu are dimensiunea n − k. Subspaţiul Vk+1 generat de
(v1, . . . , vk+1) are dimensiunea k + 1, iar deoarece suma dimensiunilor
nucleului lui B şi a lui Vk+1 este

(n − k) + (k + 1) = n + 1,

cele douǎ subspaţii trebuie sǎ se intersecteze într-un subspaţiu de
dimensiune cel puţin 1.
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Proof.
Alegem un vector unitar h ∈ ker(B) ∩ Vk+1. Atunci Bh = 0, iar deoarece
V şi U sunt izometrii, obţinem

∥A− B∥2
2 ≥ ∥(A− B)h∥2

2 = ∥Ah∥2
2

= ∥UΣV⊤h∥2
2 = ∥ΣV⊤h∥2

2 ≥ σ2
k+1∥V⊤h∥2

2 = σ2
k+1,

ceea ce demonstreazǎ afirmaţia.

Observǎm cǎ Ak poate fi stocatǎ folosind (m + n)k elemente, în loc de
mn elemente. Când k ≪ m, n, acest lucru reprezintǎ un câştig
substanţial.
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Figure 1: Considerǎm aceastǎ fotografie şi dorim sǎ o
comprimǎm.

Salvarea acestei fotografii în Matlab se face sub forma unei matrice.

A comprima imaginea revine la a folosi o matrice de dimensiuni mai mici.
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A = im2double(imread(’cameraman.tif’)); % exemplu grayscale
[U,S,V] = svd(A,’econ’);
size(A)
figure(1)
imshow(A), title(sprintf(’Initial’));
k = 20;
Ak = U(:,1:k) * S(1:k,1:k) * V(:,1:k)’;
figure(2)
imshow(Ak), title(sprintf(’SVD rank-%d’, k));
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k = 40;
Ak = U(:,1:k) * S(1:k,1:k) * V(:,1:k)’;
figure(3)
imshow(Ak), title(sprintf(’SVD rank-%d’, k));
k = 100;
Ak = U(:,1:k) * S(1:k,1:k) * V(:,1:k)’;
figure(4)
imshow(Ak), title(sprintf(’SVD rank-%d’, k));
k = 200;
Ak = U(:,1:k) * S(1:k,1:k) * V(:,1:k)’;
figure(5)
imshow(Ak), title(sprintf(’SVD rank-%d’, k));
s = svd(A);
cs = cumsum(s) / sum(s);
figure
plot(cs, "LineWidth", 2)
xlabel("k")
ylabel("Suma cumulativa normalizata")
title("Suma cumulativa normalizata")
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Figure 2: Fotografie iniţialǎ. Figure 3: Fotografie reconstruitǎ
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Figure 4: Fotografie iniţialǎ. Figure 5: Fotografie reconstruitǎ

305



Figure 6: Fotografie iniţialǎ. Figure 7: Fotografie reconstruitǎ
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Figure 8: Fotografie iniţialǎ.

Figure 9: Se observǎ cǎ în jur de
valoarea 200 valoarea stagneazǎ,
ceea ce însemnǎ cǎ nu mai am
informaţii la care sǎ nu se poatǎ
renunţa.
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Fotografii color

O imagine color nu este o matrice, ci un tensor de ordin 3:

I ∈ Rm×n×3

• dimensiunea 1=m: înǎlţime

• dimensiunea 2=n: lǎţime

• dimensiunea 3=3: canal de culoare (R, G, B) (roşu, verde, albastru)
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Figure 10: Fiecare “felie” este o
imagine grayscale.

Figure 11: Avem “un vector de
matrice", adicǎ un tensor de
ordin 3.
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Figure 12: Fiecare “felie" este o imagine grayscale.
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Putem sǎ aplicǎm SVD pentru fiecare canal

I = im2double(imread("peppers.png")); % imagine RGB
size(I) % m x n x 3
figure(1)
imshow(I)
k = 100; % rangul de aproximare
Ic = zeros(size(I));
for c = 1:3
A = I(:,:,c);
[U,S,V] = svd(A, "econ");
Ic(:,:,c) = U(:,1:k) * S(1:k,1:k) * V(:,1:k)’;
end
figure(2)
imshow(Ic); title(sprintf("SVD RGB -- rank %d", k))
for c = 1:3
s = svd(I(:,:,c)); cs = cumsum(s.^2) / sum(s.^2);
figure(c+2); plot(cs, "LineWidth", 2); xlabel("k");
ylabel("Energie cumulativa"); title(sprintf("Canal %d (R=1, G=2, B=3)", c))
end 311



Figure 13: Fotografie iniţialǎ. Figure 14: Fotografie reconstruitǎ
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Figure 15: Suma cumulativǎ canal
1.

Figure 16: Suma cumulativǎ canal
2.
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Figure 17: Fotografie iniţialǎ. Figure 18: Fotografie reconstruitǎ
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O abordare care sǎ nu separe canalele

O altǎ strategie este sǎ se lipeascǎ matricele tensorului (se mai numesc
canale) si sǎ se facǎ SVD şi compresie pentru matricea mare, încât
reducerea sǎ se facǎ corelat pe cele 3 canale, o aproximare care sǎ ţinǎ
cont de întregul tensor.
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I = im2double(imread("peppers.png"));
[m,n,~] = size(I);
A = [I(:,:,1), I(:,:,2), I(:,:,3)]; % m x (3n)
[U,S,V] = svd(A,"econ");

figure(1); imshow(I); title(sprintf("Initial"))
k = 60;
Ak = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;
R = Ak(:, 1:n);
G = Ak(:, n+1:2*n);
B = Ak(:, 2*n+1:3*n);
Ic = cat(3, R, G, B);
imshow(Ic)

figure(2); imshow(Ic); title(sprintf("SVD RGB -rank %d", k))
s = svd(A);
cs = cumsum(s.^2) / sum(s.^2);
figure(3); clf; plot(cs, "LineWidth", 2); xlabel("k")
ylabel("Energie cumulativa");

title(sprintf("Suma cumulativ-canale reunite"))
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YCbCr în loc de RGB

YCbCr este folosit în loc de RGB pentru cǎ permite o comprimare mult
mai eficientǎ perceptual, adicǎ se pierde mai puţin din informaţia
perceputǎ de ochiul uman, chiar dacǎ, din punct de vedere numeric,
pierderile sunt mai mari.

Limitǎrile spaţiului de culoare RGB

În spaţiul de culoare RGB:

• canalele R, G , B sunt puternic corelate;
• fiecare canal amestecǎ informaţia de:

• luminanţǎ (luminozitate);
• culoare.

Dacǎ se aplicǎ metode de comprimare direct în RGB:

• se pierd simultan luminanţa şi culoarea;

• degradarea imaginii devine rapid vizibilǎ.
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Componentele spaţiului de culoare YCbCr

Y , Cb şi Cr sunt cele trei componente ale spaţiului de culoare YCbCr,
fiecare având un rol distinct în reprezentarea şi comprimarea imaginilor.

Componenta Y – Luminanţǎ (brightness). Componenta Y reprezintǎ
luminozitatea imaginii:

• indicǎ cât de deschis sau închis este un pixel;

• conţine structura, contururile şi detaliile imaginii;

• este componenta la care ochiul uman este cel mai sensibil.

Dacǎ se puastreazǎ doar componenta Y , se obţine o imagine grayscale
foarte apropiatǎ de original.
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Componentele spaţiului de culoare YCbCr

Componenta Cb – Crominanţǎ albastrǎ (blue-difference).

Componenta Cb muasoarǎ diferenţa dintre componenta albastrǎ şi
luminanţua:

Cb = B − Y (scalat)

Aceasta:

• indicǎ cât de albastru este pixelul faţǎ de luminozitatea sa;

• conţine informaţie de culoare, nu de structurǎ;

• este mai puţin importantǎ din punct de vedere perceptual.
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Componentele spaţiului de culoare YCbCr

Componenta Cr – Crominanţǎ roşie (red-difference).

Componenta Cr muasoarǎ diferenţa dintre componenta roşie şi
luminanţǎ:

Cr = R − Y (scalat)

Aceasta:

• indicǎ cât de roşu este pixelul faţǎ de luminozitatea sa;

• conţine informaţie de culoare;

• este, la fel ca Cb, mai puţin importantǎ perceptual.
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Relaţia dintre RGB şi YCbCr

Componenta Y poate fi aproximatǎ ca o combinaţie ponderatǎ a
canalelor RGB, iar Cb şi Cr reprezintǎ deviaţii de culoare faţǎ de Y .
Conversia standard (simplificatǎ ) este:

Y = 0.299R + 0.587G + 0.114B,

Cb = B − Y ,

Cr = R − Y .
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Figure 19: Valori pentru Cb şi Cr.

Figure 20: Ce extrage Y, Cb, Cr?
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?Implementare cu YCbCr

I = im2double(imread("peppers.png")); % m x n x 3
YCC = rgb2ycbcr(I);
kY = 80; kC = 25;
J = zeros(size(YCC));
for c = 1:3
A = YCC(:,:,c);
[U,S,V] = svd(A,"econ");
k = (c==1)*kY + (c~=1)*kC;
J(:,:,c) = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;
end
Ic = ycbcr2rgb(J);
figure(1)
imshow(Ic)
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Alte abordǎri

• În loc sǎ se aplice SVD pentru toatǎ imaginea, se aplicǎ pe blocuri,
încât ce se pierde sǎ fie local.

• Se generalizeazǎ descompunerea SVD pentru tensori de ordin
superior.

• Se poate lucra cu optimizare pe spaţii de tensori.
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Morala cursului?



Morala 1: E bine sǎ ai în buzunar cunoştinţe
de algebrǎ numericǎ şi calcul ştiinţific

Figure 21:
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Morala 2: Slide-ul conţine o imagine generatǎ de AI dar are şi
unele greşeli. PUTEŢI SǍ LE IDENTIFICAŢI?

Figure 22:
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Soluţii pot fi date de AI, dar
noi trebuie sǎ avem capacitatea
de a le analiza critic!



Succes în cǎlǎtoria voastrǎ!
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