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Detalii privind evaluarea

e Evaluare continud (EC) (N1) (50% din nota finala):

un referat la seminar in care s3 se sumarizeze notiunile teoretice si sa
se exemplifice aplicarea lor (25% din nota finala),
activitatea la seminar (25% din nota finala);

e Examen final mixt (50% din nota finala)

rezolvarea a doua exercitii/scriere de programe din care unul foarte
asemanator cu cele din fisele de lucru pentru laboratoare sau din
referatele prezentate (25% din nota finala),

explicarea notiunilor teoretice prin extragerea a doua bilete (25% din
nota finala).



Scop general

Ne propunem s3 gasim algoritmi numerici pentru rezolvarea unui sistem
de n ecuatii cu n necunoscute, adica

n
E ajjXj = bj7 = 1,2,...,”’7
j=1

unde aj e R,bjeR,i=1,2,...m,j=1,2..n.

Definind matricea A avand componentele aj, i =1,2,....m,j=1,2,...,n
(matricea sistemului), vectorul coloana x de componente x;
(necunoscuta) si vectorul coloana b de componente b; (termenul liber) ,
sistemul poate fi scris In forma matricealad

Ax =b.
A determina solutia inseamna a determina vectorul x € R" care verifica

sistemul de mai sus.

Prezentam diverse strategii de rezolvare impreund, pe cat posibil, cu
aplicatii ale lor in practica, insa scopul principal este de argumenta
metodele din punct de vedere matematic.



Scop initial
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Ne propunem sa gasim algoritmi numerici pentru rezolvarea unui sistem
de n ecuatii cu n necunoscute, adica

n
E ajjixj = bj, i=1,2,....n,
=1

unde aj e R, b e R, i,j=1,2,...,n.

Definind matricea A avand componentele aj;, i,j =1,2,...,n (matricea
sistemului), vectorul coloand x de componente x; (necunoscuta) si
vectorul coloand b de componente b; (termenul liber) , sistemul poate fi
scris in forma matriceald

Ax = b.

Vom presupune pentru inceput ca sistemul este unic determinar, adica
det A #£ 0.



Ne reamintim ca sistemul admite solutie unica daca una dintre

urmatoarele conditii este verificata:

e A este inversabila (atunci x = A71b);

e rank A = n.

Daca sistemul este omogen (b = 0), atunci admite solutia nula
0

x=10] eR".



gula lui Cra

Daca A este inversabila atunci regula lui Cramer ne conduce la solutie

A
Xj =
I det A’

j=1,2,....n,

unde A; este determinantul matricei obtinute din A prin inlocuirea
coloanei j cu coloane termenilor liberi b.

Totusi, aceasta formula nu este prea indicata ™n practicd pentru ca daca
folosim regula lui Laplace pentru calculul determinantilor atunci regula lui

Cramer necesitd (n + 1)! operatii.

Avand in vedere ca in practicad sistemele sunt mari, aceasta inseamna

timp mare de lucru.



Metode numerice

e DIRECTE (numar finit de pasi): se construieste solutia intr-un
numar finit de pasi (calcule cu ajutorul liniilor), folosind factorizari
A=LU A=LDMT, ..

e INDIRECTE: se construieste un sir (xx) C R" care sa convearga la
solutia sistemului. Teoretic am un numar infinit de pasi, dar de fapt
ne oprim cand x, este “suficient de aproape" de x.



Sisteme mari!!! Ne mai ajuta metodele in

Dar ce facem cand avem sisteme foarte mari si vrem sa gasim o solutie?

Aplicam teorema Kronecker-Capelli si facem calcule pe héartie calculand,
de exemplu determinanti de matrice 100010007
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Matrice-Recapitulare



Matrice pozitiv definite

Pozitiva definire a unei matrice

e Spunem ci matricea A € R"%" este simetrica daca A= AT,

e Spunem ca matricea simetrica A € R"*" este pozitiv semidefinita,
notdm A > 0, daca (Ax,x) > 0 pentru orice x € R", unde (-, -)
reprezinta produsul scalar standard din R”.

e Spunem ca matricea simetrica A € R"*" este pozitiv definita,
notam A > 0, daca (Ax,x) > 0 pentru orice x € R", x # 0.
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Valori proprii si vectori proprii

Fie A € R"". Un vector nenul v € C" se numeste vector propriu pentru
A daca exista \ € C astfel incat

Av=JAv.

Scalarul X\ se numeste valoarea proprie corespunzatoare vectorului propriu
v. In general, matricele reale pot avea valori proprii complexe, dar
matricele simetrice reale admit doar valori proprii reale. Demonstrati!

Valorile proprii ale unei matrice simetrice A € R"*" vor fi notate cu

AL(A) > Aa(A) > ... > Ao(A).

Cea mai mare valoare proprie va fi notata cu Apax(A) = A1(A) si cea mai
mica valoare proprie va fi notata cu Apin(A) = An(A).
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Pozitiva definire si valori proprii

Fie A o matrice simetrica din R"*". Atunci

e A este pozitiv semidefinita dacd si numai daca valorile sale proprii
sunt mai mari sau egale cu 0.

e A este pozitiv definita daca si numai daca valorile sale proprii sunt
strict mai mari decét 0.

Criteriul minorilor principali
Fie A o matrice simetrica din R"*". Atunci A este pozitiv definita
daca si numai daca minorii principali det A(1:/,1:4), i=1,2,--- n,

sunt strict pozitivi.
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O matrice A € R"™" se numeste diagonal dominanta pe linii daca

n

|aii| > Z |aij|7 with i = 1a ) N (1)

j=Li#i

O matrice A € R"™" se numeste diagonal dominanta pe coloane daca

n

Jail > > lapl, with i=1,--,n, (2)

J=Li#i
Daca inegalitatile sunt stricte, spunem ca A este strict diagonal
dominanta (pe linii, respectiv, pe coloane).

Teorema

O matrice simetrica strict diagonal dominanta cu elemente strict pozitive
pe diagonala este pozitiv definita.

Este reciproca valabila?
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Metode directe de rezolvare a
sistemelor algebrice liniare unic
determinate



Rezolvarea sistemelor inferior triunghiulare

Pentru exemplificare sa consideram sistemul

/1 1 0 O X1 bl
b1 h» O x| =1b|, (3)
B ha ki) \x3 bs

unde [; #£0, i =1,2,3.

Ultima conditie ne asigura ca matricea sistemului este inversabila, solutia

fiind data de
X1 = Ev
o — by — h1x
b2
5 = bz — h1x; — /32X2.

lz3
Acest algoritm se numeste metoda substitutiilor succesice (forward).

15



In general pentru n > 2 avem

by
X1 = 7,
/11
i—1
bi— > Iy
j=1 .
Xp= ——————— i=2,..n.

li

Cate operatii trebuiesc facute?

16



In general pentru n > 2 avem

by
X1 = 7,
h1
Al
bi— > Iy
=
Xj =

li

Cate operatii trebuiesc facute?

1) . . on(n—1
% inmultiri si "("2 )

)

i=2,..

, n.

adunari si scaderi = n® operatii.
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In general pentru n > 2 avem

=2
1 I]_]_,
i—1
bi =D lix
xi=—31 iz2..n (6)

o

Cate operatii trebuiesc facute?
w nmultiri si w adunari si scaderi = n? operatii.

Comparati cu (n+ 1)! de la regula lui Cramer.
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Rezolvarea sistemelor superior triunghiulare

Pentru exemplificare sa considerram sistemul

uil; U2 U3 X1 b1
0  wux w3 x| =1b|, (7)
0 0 us3 X3 b3

unde u; #0,71=1,2,3.

Ultima conditie ne asigura ca matricea sistemului este inversabila, solutia
in cazul general fiind data de

by
Xn = )
Unpn
n
bi— Y uyx;
j=i+1 .
==y i=n—1,..1. (8)
uji

Acest algoritm se numeste metoda substitutiilor backward.

Avem tot n? operatii.
19



Pentru implementare

Pentru implementare ar fi indicat sa stocam doar elementele nenule
atunci cand avem de rezolvat sistemele triunghiulare.
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Eliminare gaussiana si
factorizarea LU



Eliminare gaussiana

Eliminare gaussiana ne ajutd sa reducem un sistem
Ax=0b

la un sistem (sau doud sisteme) triunghiular prin transformari succesive
ale sistemului n sisteme echivalente

A 5 — p1) 5 AQ) o — p(2) s oLy AGK) 5 — pK)

= o (@ k o
Presupunem ca la fiecare pas elementul a(kk) al matricei A%) este nenul.
Acest element va fi numit pivot.

Presupunem c3 A este inversabilad, adica sistemul admite solutie unica.
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Plecam de la sistemul

A S Y

1 (1 (1) X1 by

BB % k][

D

931 d3p ottt dgy = ,

TR U T

1 1 1 Xn b
A A A

=A

(®)
.. a_ Mg .. &k . N . . ..
Definim multiplicatorii mj; = <&, i =2,3,...,n, inmultim prima linie cu
a

11
m;1, pe rand, si scadem rezultatele din linia i = 2,3, ..., n, respectiv.
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Se obtine astfel un nou sistem, echivalent cu cel initial

1 1 1
351) 3&2) R ag.n) 2)
@) @ | (x b,
0 a22 PRI PR a2n X2 b(2)
; ; L @)
Xn b
0 35122) e 3537) n
=AR)
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Repetand procedeul, la pasul k se obtine astfel un nou sistem, echivalent

cu cel initial

1 1 1
Ry

a7 n

k s
0 0 aik) afm)
0 0 aff,i) ag,l,(,)

:=AK)

X1

X2

24



Dupa n — 1 pasi se obtine astfel un nou sistem, echivalent cu cel initial

dar superior triunghiular

1 1 1

3 & al})

0 af a5)

: : . ]

0 0 ag(k) afm)

0 0 0 am
=An)

X1

X2
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In concluzie, formulele dupa care se modifica sistemul de la pasul k n
sistemul de la pasul k + 1 sunt

A0
my = Sk i=k+1,..,n,
RO
kk
k+1 k ;i
al(j ) —3r('j) mlkagq)> hj=k+1,..,n, (9)
B = b — mub{, i j=k+1,.n

26



Numarul de operatii

e Aplicand GEM avem % + n(n — 1) operatii pentru a aduce
sistemul la o forma triunghiulara.

e Se adauga n® operatii pentru rezolvarea sistemului superior

triunghiular.

~ 3 ao
e In total 20~ + 2 n? operatii.

27



GEM functioneaza dacd ai’;) #0, k=1,2,...n—1.

Din pacate, plecand cu o matrice nenula pe diagonald nu avem
. B . k
certitudinea ca la un pas ulterior k nu vom avea aik) £ 0.

De exemplu, considerand matricea

1 2 3
A=12 4 5
7 8 9
dupa primul pas gasim
1 2 3
AD =10 0 -1
0 -6 -12

28



Ce e de facut?

29



Ce e de facut?

Nu mai rezolvdm sisteme sau mergem cu un algoritm care e posibil s nu
functioneze?

Nu. Constientizdm problema si acoperim toate cazurile construind noi
strategii.

30



Ce e de facut?

Nu mai rezolvdm sisteme sau mergem cu un algoritm care e posibil s nu
functioneze?

Nu. Constientizam problema si acoperim toate cazurile construind noi
strategii.

Regandim teoretic problema fara a recurge la “peticiri" de moment.
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Poate putem sti de la bun inceput daca pentru o matrice este potrivit sau
nu sa folosim GEM?
Intr-adevar sunt criterii care ne asigura ca putem folosi GEM, de exemplu

e Matrice dominate pe linii sau coloane.

e Matrice pozitiv definite.

Tnsa toate acestea trebuiesc cercetate si argumentate, banuilile nefiind
justificari.
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In continuare urmarim sa rescriem matricea A € R™" sub forma
A = LU, unde L este inferior triunghiulara iar U este superior
triunghiulara.

Facem acest lucru deoarece dupa ce vom reusi, sistemul initial va putea fi
rescris sub forma a doua sisteme triunghiulare, adica

Ly=b
Ax=b & LUx=b & Y (10)
Ux=y

ce se vor rezolva pe rand.
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GEM prin multiplicare de matrice

Sa remarcam ca operatiile pe care le-am facut asupra primei coloane se
rezuma3 la a inmulti matricea A1) := A, la stanga, cu matricea

1 0 0 0

—my; 1 0 0
Mi=1|_-my o0 1 0
0

S 1

34



GEM prin multiplicare de matrice

Adica

—mo 1 0 o0

—mz; O 1 AL — A

—my 00 e e 1

=M,

35



GEM prin multiplicare de matrice

Apoi
1 0 0 0
0 1 0 0
0 —mp 1 0 | A® = A
0
0 —mp O 1
=M>

si asa mai departe repetand procedeul de n — 1 ori pana se ajunge la

M, 1M, 5 MoM A=A = U matrice superior triunghiulara.
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Eliminare gaussiana

Consideram o matrice A € R"™*". Scopul este de a construi o secventa
Al = (a,(-jk)) de matrici prin efectuarea de transformari liniare, astfel
ncat sa ajungem la o matrice superior triunghiulara U = (uj;) dupa
cativa pasi finiti.

In ultima saptamana am vazut ca daca presupunem c3 pivotii aj1 # 0,
ai’;) = (Mk_1...My A)kx # 0 la orice pas k = 2,...,n— 1, atunci

My 1Mp_o..My A= U, (11)
cu U o matrice superior triunghiulara, unde
1 ... 0 0 --- 0
0 --- 1 0 --- 0
M, = =, — myel 12
k 0 . . 1 ... 0 n mg €, ( )
0 —Mp K 0 1

37



si

M1,k

Mmp k

eR",

e =

(k)

ik
(k)’
kk

1 ER", mjx = i=k+1,---,n.

a

38



Mai mult, deoarece M, ! = I, + my e/ (Exercitiu), deducem (cum?
Detaliaza calculele!)

1 0 0 0
il mo 1 0
A=+ me VU= my myp 1 0 U
i=1 .
Mpr My -0 Mppa 1
=L

39



Deci daca nu intalni pivoti nuli (35(?) atunci putem construi factorizarea
LU a acelei matrice.

Dar cum stim daca vom fintalni pivoti nuli fa ra a incepe procesul de
constructie al factorizarii?

40



Existenta si unicitatea factorizarii L U

Teorema

Fie A € R"*". Exista factorizarea LU a matricei A cu l;; = 1 pentru orice
i=1,---,n si este unica daca si numai daca submatricele principale

A =A(1:1i,1:1i) ale lui de orice ordin i =1,---,n—1 sunt nesingulare.

Vom demonstra mai intai implicatia “<=". Vom demonstra faptul ca
dacad submatricea principala A;_1 admite descumpunere L U, atunci si A;
admite descompunere L U.

Pentrui=1:. Ai=a11=_1 - a1 .
1 11 11
=L =V
Presupunem ca exista descompunerea LU pentru A;_1, adica exista

matricea inferior triunghiularad L;_; avand elementele de pe diagonala
egale cu 1 si matricea superior triunghiulard U;_; astfel incat

A1 =L 11U
Construim L; si U; astfel incat A; = L; U;.

41



Construim L; si U; astfel incat A; = L; U;.

Pentru aceasta dorim sa determinam vectorii £ si u si scalarul u; pentru

care
Aic1 ¢\ A Liey O\ (U-1 u
dT aji I ET 1 OT uji ’

i=L; =U;

Trebuie sa avem

Aicr ¢\  [(L-x O\ (U1 v (L1U-1 L1u
dT aji N ZT 1 OT uj; N KTU,',l ETU‘FUH.
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L/—l u=c,
Ul t=d (15)
i—1% —
T
'y = aji — Ujj.
Deorece A;_1 sunt nesigulare, vom avea ca U;_; sunt nesingulare.
Matricele L;_; sunt nesingulare, avand determinantul egal cu 1.

Prin urmare exista u, £ si uj; care verifica sistemul de mai sus si care
construiesc matricea L;.
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Sa demonstram implicatia inversa “=—".

Avem de demonstrat: Daca exista factorizare LU cu /;; = 1 si este unica,
atunci primele n — 1 submatrici principale ale lui A sunt inversabile.

Vom imparti dicutia pe doua cazuri.

Cazul 1. A este inversabila, det A # 0:

Presupunem ca exista factorizare LU cu [; = 1 si este unica

Sa remarcam faptul c3 din forma factorizarii rezulta ca a;; # 0.

Deoarece factorizare LU exista pentru A, va exista si pentru A; si
det A; = det L det U(’) = det U(') = U1l --- U, i =1,n—1.

Deoarece det A, # 0, rezulta ca uyuny - - - up, # 0, adica, n particular,
det A; = det L) det U = det UM = uiilop - - - Ujj 75 0,i=1,n—1.
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Cazul 2. A nu este inversabild, det A = 0: Cu alte cuvinte presupunem
ca macar un element de pe diagonala lui U este egal cu zero.

Notam cu wukx elementul nenul de index minim k (pentru ca ar putea sa
fie si altii, dar il alegem astfel).

Tn baza procedeului iterativ descris in prima parte a demonstratiei va
rezulta ca factorizarea poate fi calculatd pana la pasul k + 1.

De la acest pas, pentru ca matricea U(k) = U(1: k,1: k) este
neinversabila, existenta si unicitatea vectorului £ se pierde, si, deci
intreaga factorizare LU pentru A(k +1) = U(1: k+1,1: k+1) si
pentru matricea A.

Pentru ca acest fapt sa nu se intdmple, elementul nul k. ar trebui sa fie
de index k = n— 1. Deoarece

det A; = det L) det U) = det U) = wqqupn -+~ uji, i = 1,n — 1, toate
matricele principale A, vor fi inversabile k =1,--- , n—1
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Example

Consideram matricele
g=(12), c=(° 1Y), po=(°1Y). (g
1 2 1 0 0 2

e B admite o unica factorizare LU.
e matricea neinversabild C nu admite factorizare LU.

e matricea neinversabila D admite o infinitate de factorizari de forma
D= Lﬁ Uﬁ, cu

1 0 0 1
oo (1Y) w0 ,1,) veen
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Exista un alt rezultat:

Teorema

Daca A este o matrice diagonal dominanta (pe linii sau coloane), atunci
exista si este unicd factorizarea LU. In particular, daca A este diagonal
dominanta pe coloane, atunci |l;j| <1 Vi, j.
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Forma compacta a factorizarii



Forma compacta a factorizarii

Variantd remarcabild a factorizarii LU este factorizarea Doolittle.
Aceasta este cunoscuta si ca formd compacta a metodei de eliminare
Gauss.

Aceastd denumire se datoreaza faptului ca aceste abordari necesita mai
putine rezultate intermediare decdt metoda GEM standard pentru a
genera factorizarea lui A.

Calcularea factorizarii LU a lui A este echivalenta din punct de vedere
formal cu rezolvarea urmatorului sistem neliniar de ecuatii n?

mln I

Z llrufj7l7_/ - 1 (17)

necunoscutele fiind intrarile n? + n ale matricelor triunghiulare L si U.

Daca stabilim in mod arbitrar n coeficienti (/;) la 1, ajungem la metoda
Doolittle care ofera o cale eficienta sistemului neliniar.
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De fapt, presupunand ca primele k — 1 coloane din L si primele randuri

din U sunt disponibile si stabilind /i, = 1 (metoda Doolittle), se obtin
urmatoarele ecuatii din

k=1

akj:Z/krurj+ukj7 J:k7 , 1, (18)
=
k—1

ajx = Z lirtie + g, 1=k +1,---,n. (19)
r=1

Retineti ca aceste ecuatii pot fi rezolvate intr-un mod secvential in ceea
ce priveste variabilele rosii uy; si fj.
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Din metoda compacta Doolittle obtinem astfel mai intai al k-lea rand al
lui U si apoi a k-a coloana a lui L, dupa cum urmeaza: pentru
k=1,---,n

k—1
ukj:akj_zlkrulja J:k7 > 1, (20)

r=1

k—1
1

/ik:uk<aik_§ /irurk)a i=k+1,---,n (21)
r =il
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Factorizarea LDMT



Factorizarea LDMT

Este posibil s3 se conceapa si alte tipuri de factorizari ale lui A.

Mai exact, vom aborda unele variante in care factorizarea lui A este de
forma

A=LDMT, (22)

unde L, MT si D sunt matrici inferior triunghiulare, superior triunghiulare
si, respectiv, diagonale.

Dupa construirea acestei factorizari, rezolvarea sistemului se poate realiza
rezolvand mai intéi sistemul inferior triunghiulara Ly = b, apoi cel
diagonal Dz = y si in final sistemul superior triunghiulara M7 x = z, cu
un cost de n? + n flop-uri.

n cazul simetric, obtinem M = L, iar factorizarea LDLT poate fi
calculata cu jumatate din cost, dupa cum vom vedea in sectiunea
urmatoare. Factorizarea LDMT se bucura de o proprietate analoga cu
cea pentru factorizarea LU. in particular, se aplici urmatorul rezultat.
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Teorema

Daca toti minorii principali ai unei matrice A € R"™" sunt nenuli, atunci
existd o matrice diagonald unicd D, o matrice inferior triunghiulara
unitara unica® L si o matrice superior triunghiulard unitard unica M7,
astfel incit A= LDMT |

Demonstratie: Stim deja ca exista o factorizare unica LU a lui A cu

li =1 pentru i = 1,--- , n. Daca stabilim ca intrarile diagonale ale lui D
sunt egale cu u; (nu sunt zero deoarece U este nesingulard), atunci

A= LU = LD(D~'U). Dupa definirea MT = D~1U, rezults existenta
factorizarii LDMT, unde D~'U este o matrice superior triunghiulara
unitara. Unicitatea factorizarii LDMT este o consecinta a unicitatii
factorizarii LU.

INoi numim matrice triunghiulard unitard o matrice triunghiulara care are intrarile
diagonale egale cu 1.
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Pivotare



Dupa cum s-a subliniat anterior, procesul GEM se intrerupe imediat ce se
calculeaza o intrare pivotalad zero. Intr-un astfel de caz, trebuie s3 se
apeleze la asa-numita tehnica de pivotare, care consta in schimbarea
randurilor (sau a coloanelor) din sistem astfel incat si se obtina pivoti

nenuli.

Strategia de pivotare adoptatd pana in prezent poate fi generalizata prin
cautarea, la fiecare pas k al procedurii de eliminare, a unei intrari
pivotante care nu este nula, cautand in interiorul intrarilor din subcoloana
A®)(k : n, k). Din acest motiv, se numeste pivotare partiala (pe randuri).
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o)
~ . a., .
Se poate observa ca o valoare mare a lui my = k5, i=k+1,---,n
a

kk
(generata, de exemplu, de o valoare mica a pivotului a%{)) poate

. . .. c (K
amplifica erorile de rotunjire care afecteaza intrarile ay’-

Prin urmare, pentru a asigura o mai buna stabilitate, pivotul kj AK)(j, k)
se alege ca fiind cea mai mare intrare (in modul) din coloana

A (k - n, k) si, in general, se efectueaza o pivotare partiala la fiecare
etapa a procedurii de eliminare, chiar daca nu este strict necesar (adica
chiar daca se gasesc intrari pivotale diferite de zero).

Alternativ, procesul de cautare ar fi putut fi extins la intreaga submatrice
AW (k : n, k : n), finalizandu-se cu o pivotare completa.

Observati, totusi, ca in timp ce pivotarea partiala necesita un cost
suplimentar de aproximativ n? ciutari, pivotarea completd necesita
aproximativ 2n3/3, cu o crestere considerabil3 a costului de calcul al
GEM.
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Matrice de permutare

Schimbul dintre a i-a si j-a linie a unei matrice; acest lucru se poate face
prin inmultirea prealabil3 a lui A cu matricea PU) de elemente

1 dacar=s=1,---,i—1,i+4+1,---j—1,j+1,---n,
pg’j)z 1 dacar=j,s=iorr=i,s=j,
0, 7n caz contrar.
(23)

Matricele de tipul PU~) se numesc matrice de permutare elementara.

Produsul matricelor de permutare elementara se numeste matrice de
permutare si efectueaza schimburile de randuri asociate fiecarei matrice
de permutare elementara.

In practica, o matrice de permutare este o reordonare pe randuri a
matricei identitate.
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Sa analizam modul in care pivotarea partiala afecteaza factorizarea LU
indusa de GEM.

La prima etapa a GEM cu pivotare partiald, dupa ce se afld intrarea a,;
de modul maxim din prima coloana, se construieste matricea elementara
de permutare P; care schimba prima linie cu a r-a linie (daca r =1, P;
este matricea identitate).

In continuare, se genereaza prima matrice de transformare gaussiana M;
si se stabileste

AR = M P A, (24)

O abordare similara se face acum pentru A®) c3utand o noui matrice de
permutare P, si o noud matrice M, astfel incat

A®) = My P, A®) = My Py My PLAD). (25)

Executand toate etapele de eliminare, matricea superior triunghiulara U
rezultata este acum data de

U=A(n) =M, 1Py_1--- MyPyM; Py A, (26)

=M

56



e (K)o s i The %
Retineti ca m,(k) utilizat in constructia lui My este acum m,(-k) = ds,
bkk

unde bf:) sunt intrarile matricei P, AK).

Obtinem ca U = M A si, astfel, U = (MP~1)PA, unde P = P,_1--- P;.
Afirmam ca L = PM~1 este inferior triunghiulara unitara.
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Afirmam ca L = PM~1 este inferior triunghiulara unitara.

Nu trebuie sa fim ingrijorati de prezenta inversului lui M, deoarece
M=t =P iMoo P MY s P = P

n g v

M=t =21, — M; =1, + mge].

in timp ce

Prin urmare, avem

L="P, 1---PoPiP7 Ul +myel )P (o +maed)- - P (o 4+ ma_1el )
= Fp—1-"" P2(In + my elT)Pg ( -+ mo € ) ;jl(ln + mp_1 e,;rfl)-

S3 discutam acum

Pn—l DRI P2(In =+ my elT)
(Ppi++ Pot Po_y---Pomiel Py - Pl Py P,)
=(Po1-+Pat Poy---Pomyef (Poy-- P2)  Poy--- P2)
(Pooy-PodPyy--Pomy(Py_1---Pyer) " Po_y---Po)  (27)
[+ Pp_y -+ Pamy(Pp_1 -+ Paer) [Py Pa.

~
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Vom avea

Po1-+ Pa(ly+myef)

=l + Po1-- Pomy(Po_1---Paer)T]Po i Po. (28)
Dar permutarea P,_; --- P> permuta doar intrarile de la 2 la n dintr-un
vector; intrarile 1 rdman neatinse. Aceasta inseamna ca primele intrari
ale lui my sunt Tnca zero si e; este neschimbatd permutarea, adica
P, 1---Pyey = eq.

Astfel, avem de fapt
P,,,l 000 P2(In + nma 617—)
= [In+ﬁ71€17—] R (29)
—_———
inferior triunghiulara
si
L= [lh+mel] Po1---PoPyt(la+mae]) - P (lh+ma_rel ;).
—_———
inferior triunghiulara

Repetand argumentul avem ca L este inferior triunghiulara.



Deoarece L = PM~! este inferior triunghiulara unitar, factorizarea LU se
citeste

PA=LU. (30)

Odata ce L, U si P sunt disponibile, rezolvarea sistemului liniar initial se
rezuma la rezolvarea sistemelor triunghiulare Ly = Pb si Ux = y.
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Teorema

Fie A € R"*" o matrice nesingulard. Atunci existd o matrice de
permutare P astfel incdt P A= L U, unde L si U sunt matricile
triunghiulare inferioard si superioara obtinute prin eliminarea gaussiana.

Proof.

Demonstratia este deja facuta, cu exceptia faptului ca la orice pas avem
max A (k : n, k) # 0. (31)
Daca ar fi posibil sa avem
max A (k : n, k) =0, (32)

atunci det A = 0 ceea ce este evitat de ipoteza. O
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Daca se realizeaza pivotarea completa, la primul pas al procesului, odata
gasit elementul ag, al celui mai mare modul din submatricea

A(1: n,1: n), trebuie sa schimbam prima linie si prima coloana cu a g-a
linie si a r-a coloana. Se genereaza astfel matricea P;AM Qy, unde Py si
@1 sunt matrici de permutare pe randuri si, respectiv, pe coloane.

n consecinta, actiunea matricei M; este acum astfel incat
AR = M; P A Q;. Repetand procesul, la ultima etapa, obtinem

U= A" = My_1Ppy--- MiPLAD Q- Qpr (33)
Tn cazul pivotarii complete, factorizarea LU devine
PAQ = LU, (34)

unde @ = Q@ = Q1 -+ Q,_1 este o matrice de permutare care tine cont de
toate permutarile care au fost operate. Prin constructie, matricea L este
tot inferior triunghiulara, cu intrari de modul mai mici sau egale cu 1.
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Calculul inversei unei matrice

Calculul explicit al inversei unei matrice poate fi efectuat folosind
factorizarea LU dupa cum urmeaza.

Notand cu X inversa unei matrice nesingulare in R"*" vectorii coloana ai
lui X sunt solutiile sistemelor liniare Ax; = ¢;, pentru i = 1,--- , n.

Presupunand ca PA = LU, unde P este matricea de permutare cu
pivotare partiala, trebuie sa rezolvam 2n sisteme triunghiulare de forma
Ly; = Pe;, Ux; = y;, i =1,--- ,n, adica o succesiune de sisteme liniare
care au aceeasi matrice de coeficienti, dar parti drepte diferite.
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Aplicarea factorizarii LU intr-o problema de deformare elastica

1D

Se considera o bard elastica de lungime L = 1 m, cu capetele mentinute
fixe

Ecuatia care descrie deformarea barei este de tip Poisson:
—k u"(x) = q(x), 0<x<1,

unde u este deplasarea, k este un coeficient de elasticitiate, iar g(x) forta
care actioneaza pe acea bara.
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Aproximarea numerica a derivatei a doua

Pentru fiecare nod interior x;, a doua derivata u”(x;) se poate aproxima
prin diferente finite centrale.

Pornim de la seriile Taylor in jurul nodului x;:

h? h3

u(x; + h) = u(x;) + hu'(x;) + 7u”(x,-) + gu”'(x,-) + O(h*),
h? h?

u(x; — h) = u(x;) — hd'(x;) + 7u”(x,-) — Fu’”(x,-) + O(h*).

Adunand cele doud ecuatii, derivata intai se elimina:

u(x; + h) + u(x; — h) = 2u(x;) + h*u”’ (x;) + O(h*),

de unde rezultd formula de diferente finite centrale:

u”(x;) & u(xi-1) = 2“}5?‘) + u(xi+1) ]

Aceasta formula sta la baza discretizarii ecuatiei Poisson pentru fiecare

nod interior. 65



Discretizare numerica a ecuatiei Poisson

{mpartim bara in N = 4 segmente egale (h = L/(N +1) = 0.2 m) si
notam deformarea in nodurile interioare uy, Uy, Uz, ug.

Inlocuind aproximatia derivatei a doua in ecuatia Poisson:

Cuim1 —2ui+u - q(x)

= =02, i=1,...,4
sau echivalent:
2u; — Uiy — U1 = h? 9(xi)
k
Astfel se genereaza un sistem liniar tridiagonal:
A-u=Db,
unde
2 -1 0 0 h?q(x1)/k
A -1 2 -1 0 b— h?q(x2)/k
0 -1 2 -1 Hq(x3)/ k
0O 0 -1 2 h?q(xq)/k
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Factorizarea LU

Observatie: valoarea deplasuarii in fiecare nod interior depinde doar de
nodul precedent si urmator, ceea ce face sistemul tridiagonal si foarte
potrivit pentru factorizarea LU. Pentru rezolvarea eficientd, factoram
matricea A ca:

A=L-U,

unde L este inferior triunghiulara si U superior triunghiulara:

1 0 0 0 2 -1 0
1 -3 1 0 0 U= |0 3 -1 0
0 -2 1 of’ 0o 0 3 -1
0 0 -321 o 0o o0 2
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Matrice de tip banda

Metodele de discretizare pentru problemele cu valori la frontiera conduc
adesea la rezolvarea sistemelor liniare cu matrici care au forme de banda,
bloc sau rare. Exploatarea structurii matricei permite o reducere drastica
a costurilor de calcul ale factorizarii si ale algoritmilor de substitutie.

Vom aborda variante speciale ale factorizarii GEM sau LU care sunt

concepute in mod corespunzator pentru a trata matrici de acest tip.
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Factorizarea Cholesky



Matrice simetrice pozitiv definite: Factorizarea Cholesky

Dupa cum s-a aratat deja, factorizarea LDMT se simplifica considerabil
atunci cand A este simetrica, deoarece intr-un astfel de caz M = L,
obtinandu-se asa-numita factorizare LDLT. Costul de calcul se
injumatateste, fata de factorizarea LU, la aproximativ (n*/3) flop-uri.
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Factorizarea Cholesky

Teorema

Fie A € R"*" o matrice simetrica si pozitiv definitd. Atunci, existd o
matrice superior triunghiulard unica H cu intrari diagonale pozitive astfel

Tncat

A=HTH. (35)

Aceasta factorizare se numeste factorizare Cholesky.
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Proof: Existenta.

Deoarece A este pozitiv definita, avem det(A(1: k,1: k)) > 0, pentru
toate k € {1,2,...,n}.

Printr-un rezultat anterior, rezulta ca exista L, U € R astfel incat
A = LU, unde L este inferior triunghiulard cu 1 pe diagonala, iar U este

superior triunghiulara.

Fie D = diag(\/t11, -, /Unn)- Atunci
A= LU = (LD)(D~1U), (36)
N ——

‘=B =

unde B este inferior triunghiulara si C este superior triunghiulara, ambele

cu elemente \/u11, ..., /U,y pe diagonala.

Acum vom demonstra ca B= CT.
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Demonstratie: Existenta

Din moment ce A= AT, rezulta
BC=C"™B" = (c")y'B=B"C™. (37)

Tn partea stanga a ultimei egalitati, ambele matrici sunt inferior
triunghiulare, adica partea stanga este inferior triunghiulara, in timp ce in
partea dreapta a ultimei egalitati, ambele matrici sunt superior
triunghiulare, adica partea dreapta este superior triunghiulara.

Tn plus, partea stanga are 1 pe diagonal3, iar partea dreapts, la fel.

Dar singura matrice care este inferior triunghiulara-superioara cu 1 pe
diagonala este matricea identitate /,.

Asadar, (CT)"1B =1,si CT = B, ceea ce incheie dovada existentei
factorizarii Cholesky.
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Demonstratie: Unicitate

Fie Cy, G, superior triunghiulare cu elemente diagonale pozitive astfel
incat

A=C/ G =0 G. (38)

Fie D; = diag(Gy), Dy = diag(G).

Atunci

¢/ Dt DG =CG'D;y'D, G (39)

inferior triunghiulara cu 1 pe diag superior triunghiulara

Din unicitatea factorizarii LU rezultd ca D; G = D> G,.
Aceasta implica [(C1)i]? = [(&)i]? i =1,2,...,n, adicd D; = D».

Prin urmare, C; = G, si dovada este completa.
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Calcularea factorizarii Cholesky in practica

Teorema

Intrarile hj; din H pot fi calculate dupd cum urmeaza:

hi1 = /a1 = an. (40)
si, pentru i =2, ---.n,
j—1
hij = (afizh"khfk> [his J=1 50 =1, (41)
k=1
hi = (42)

74



monstratie:

Sa demonstram teorema procedand prin inductie asupra marimii i a
matricei, amintind ca daca A; € R™*/ este simetrica pozitiv definita,
atunci toate submatricile sale principale se bucura de aceeasi proprietate.

Pentru / = 1 rezultatul este evident adevarat. Prin urmare, sa
presupunem ca este valabil pentru / — 1 si sa demonstrdm ca este valabil
si pentru /. Exista o matrice superior triunghiularda H;_; astfel incat
A;i_1 = HT |H;_;. S& partitionam A; astfel

Ai = (43)

cua € Ry, veR™!sicautam o factorizare a lui A; de forma

g HThs = (P2 O (Hia b

AT B or g (44)
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Prin aplicarea egalitatii cu intrarile lui A; se obtin ecuatiile H” ;h = v si
hTh+ 8% =a.

Astfel, vectorul h este determinat Th mod unic, deoarece Hitl este
nesingulara. Tn ceea ce priveste 3, datorita proprietatilor determinantilor

0 < det(A;) = det(H.”) det(H;) = 8?(det(H;_1))?, (45)

putem concluziona ca trebuie sa fie un numar real. Ca urmare,
B =+« — hTh intrarea diagonala dorita si astfel se incheie argumentul
inductiv.

Sa demonstram acum restul formulelor.

Faptul ca h;; = \/a11 este o consecinta imediata a argumentului de
inductie pentru i = 1. In cazul unui i generic, se obtine relatii sunt
formulele de substitutie directa pentru solutia sistemului liniar

H.I ,h = v, iar demonstratia este completa.
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Folosim Cholesky doar pentru sisteme cu matrice simetrica?

Sa presupunem cd avem de rezolvat un sistem de forma Ax = b,
AcR™" detA#0, beR".

Matricea A nu este considerata neaparat simetrica, insa prin inmultire cu
AT, avem sistemul echivalent

ATAx = ATb, (46)

a carui matrice este simetrica si chiar pozitiv definita. (Demonstrati!)

Prin urmare se poate folosi factorizarea Cholesky care este mai eficientd
decat factorizarea LU.

Vom vedea c3 factorizare Cholesky poate fi folosita si pentru rezolvarea
aproximativa a sistemelor supradeterminate (cu aplicatii practice in
corelarea datelor, probleme de identificare a locatiei optime, eliminarea
zgomotelor din semnale etc.).
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Matrice de tip banda



Matrice de tip banda

Definitie
Spunem ca o matrice A € R™*" are banda inferioara p daca aj = 0 cind

i > j+ p si banda superioara q daca ajj =0 cand j > i+ q.

Matricele diagonale sunt matrici cu benzi pentru care p = q = 0, in timp
ce matricele trapezoidale au p = 1,q = 1 este o matrice tridiagonala.
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Rezultatul principal pentru matrici cu benzi este urmatorul.

Teorema

Fie A € R"*". 53 presupunem c3 exista o factorizare LU a lui A. Daca A
are latimea de banda superioard q si latimea de band3 inferioara p, atunci
L are Iatimea de band3 inferioara p si U are latimea de banda superioard
qg.

in special, observati ci aceeasi zona de memorie utilizat3 pentru A este
suficientd pentru a stoca si factorizarea sa LU.
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Sa consideram, intr-adevar, cd o matrice A avand latimea de banda
superioara g si latimea de band3 inferioara p este de obicei stocata intr-o
matrice (p +qg-+ 1) X n, pe care o vom nota cu B, presupunand ca

bi—j+g+1j = ajj (47)

pentru toti indicii i,/ care se incadreaza in banda matricei, in rest fiind
zero.

De exemplu, in cazul matricei tridiagonale
2 -1 0 0
-1 2 -1 0
A=10 -1 2 -1

o O O

stocarea compacta se citeste
© =l =l =i =i
B=(2 2 2 2 2 (49)
=il =i =i =i @
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Acelasi format poate fi utilizat pentru stocarea factorizarii LU a lui A.

Este clar ca acest format de stocare poate fi destul de incomod in cazul
in care doar cateva benzi ale matricei sunt mari.

La limita, daca doar o coloana si un rand ar fi pline, am avea p=qg=n

si astfel B ar fi o matrice plind cu multe intrari zero.

In cele din urma, observam ca inversa unei matrice cu benzi este in
general plina (asa cum se Intdmpla pentru matricea A consideratad mai

sus).
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Matrice tridiagonale

Consideram cazul particular al unui sistem liniar cu matrice tridiagonala
nesingulara A data de

ai Gl 0

b2 an (50)
i Ch—1

0 b, an

n acest caz, matricile L si U din factorizarea LU a lui A sunt matrici
bidiagonale de forma

1 0 0 ar a
i 0 0
” , " 51
0 Ch—1
0 By 1 0 0 a,
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Algoritmul Thomas

Coeficientii «;, 8; pot fi calculati cu usurintd prin urmatoarele relatii

b; .
1 = ai, Bi:a : ’ ai:aiiﬁl’ci—lv I:27'”3n' (52)
i—1
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Algoritmul Thomas poate fi extins si pentru a rezolva intregul sistem
tridiagonal Ax = f. Acest lucru inseamna rezolvarea a doua sisteme
bidiagonale Ly = f si Ux = y, pentru care se aplica urmatoarele formule:
(Ly:f) Y1:f17}/i:fi*5i}’i—1’ I:27 , 1, (53)
=M TR 11 (54)

i — )

Ux = : n ’
(Ux=y): x=2 =
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Sisteme pe blocuri

n aceasta sectiune ne ocupam de factorizarea LU a matricelor
partitionate in blocuri, in care fiecare bloc poate avea o dimensiune
diferita.

Obiectivul nostru este dublu: optimizarea ocuparii spatiului de stocare
prin exploatarea adecvatd a structurii matricei si reducerea costului de
calcul al solutiei sistemului.
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Factorizarea LU

Fie A =R" " urmatoarea matrice partitionata in blocuri

A A
A— 11 12 7 (55)
A1 A
unde Aj; € R™*" este o matrice nesingulara a carei factorizare L1 D1 Ry1

este cunoscuta, in timp ce Ay € R(=r)x(n=r),

In acest caz este posibila factorizarea A folosind doar factorizarea LU a
blocului A;;. Intr-adevar, este adevarat ca

(e d)-( )3 o) ) e
unde
Loy = AnR;'D Y,
Rio = Dy ML Ao, (57)
D> = Azx — Lo1 D1 Ryo.
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Daca este necesar, procedura de reducere poate fi repetata pe matricea
D,, obtinandu-se astfel o versiune in bloc a factorizarii LU.

Daca A1 ar fi un scalar, abordarea de mai sus ar reduce cu unu

dimensiunea factorizarii unei matrice date.

Prin aplicarea iterativa a acestei metode se obtine un mod alternativ de

efectuare a eliminarii Gauss.
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Analiza erorii



Algebra liniara: completari



Descompunerii spectrala

Unul dintre cele mai utile rezultate legate de valorile proprii este teorema
descompunerii spectrale, care afirma ca orice matrice simetrica A are o
baza ortonormala de vectori proprii.

Teorema descompunerii spectrale

Fie A o matrice simetrica in R"*". Atunci exista o matrice ortogonala
UeR™" (UTU=UUT =1)si o matrice diagonal3
D = diag(d, d>, ..., d,) pentru care

UT AU =D.

Coloanele matricei U din factorizare constituie o baza ortonormata
formata din vectorii proprii ai lui A, iar elementele diagonale ale lui D
sunt valorile proprii corespunzatoare.

Demonstrati ca tr(A) = >.7_; \i(A) si det(A) = [1_; Xi(A) .

i=1
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Norme matriceale

Ansamblul valorilor proprii ale lui A se numeste spectrul lui A, notat prin
a(A).

Se pot demonstra urmatoarele proprietati

det(A) = H A, (A=A (58)

i=1

si se concluzioneaza ca o(A) = o(AT), si a(A”) = o(A), unde A = Al
Modulul maxim al valorilor proprii ale lui A se numeste raza spectrala a
lui A si se noteaza cu

p(A) = max [A]. (59)

Aeo(A)
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Norme in R”

Un exemplu de spatiu normat este R”, echipat, de exemplu, cu norma p
(sau norma Holder); aceasta din urma se defineste pentru un vector x cu
componente x; ca fiind

)

n
lIxIl, = Z B for 1<p<oo. (60)
i=1

Observati ca limita pe masura ce p merge la infinit a lui ||x||, exista, este
finitd si este egald cu modulul maxim al componentelor lui x. O astfel de
limita defineste, la randul s3u, o norma, numita norma infinit (sau norma
maxim), data de

Illoe = max bl (61)

Cand p = 2, regasim definitia standard a normei euclidiene

n 2
Ixlla={ >l = (T %)= (62)
i=1
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Norme matriceale

Definitie

O norma matriciala este o functie || - || : R™*" — R astfel inc4t
1. |Al >0VAeR™" si||Al| =0 dacd si numai dacd A = 0;
2. JaAl| =lof |A] Va € R, VA € R™*";
3. [|[A+ Bl < [[All +[|B]| VA, B nR™".

Definitie
Spunem ca o norma matriciald || - ||gmxn este compatibild sau consistenta
cu normele vectoriald || - ||gm si || - ||gr dacad

A X|lRm < [|A|lgm=n [|x]|re V¥ Xx € R™. (63)
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Definitie
Spunem ca o norma matriciald || - || este submultiplicativa daca
VA€ R™™ VB eRM™ I,

IAB[ < [IA[[IB]- (64)

In multe lucrari, definitia unei norme matriciale include si
submultiplicitatea.

Aceasta proprietate nu este satisfacuta de toate normele matriciale. De

exemplu, norma ||A||a = maxj=1_.nj=1,..m |aj| nu indeplineste conditia

submultiplicativa, de exemplu, aceasta conditie nu este indeplinita pentru
11 . <

pentru A= B = 1 1) Prin urmare, este o norma, dar nu este o

norma submultiplicativa.
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Observati ca, data fiind o anumita norma submultiplicativa | - ||, exista
intotdeauna o norma vectoriala compatibila. De exemplu, dat fiind orice
vector fix y # 0 in R", este suficient s3 se defineasca norma vectoriala
consistenta sub forma

IxIl =[xy "lla Vx €R". (65)

Un exemplu de norma matriciala este norma Frobenius (sau norma
e Rt A TR
euclidiand in R™)

tr(AAT) (66)
si este compatibild cu norma vectoriala euclidiana || - ||o. Tntr-adevar,
IAx]13 = Z | ZBUXJI = Z Z |2yl Z 2 | = IAIElIx]2- (67)

i=1 j=1

Observati ca pentru o astfel de norma ||/,||r = v/n. Pentru o norma
oarecare, care ar putea fi o asteptare rezonabila pentru ||/,]|7
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Norme matriceale induse

Teorema
Fie || - [|gm si || - ||rn norme vectoriale. Functia
A -
A = sup 12x01z (68)
x#0  |1X||Re

este o norma matriciala numitd norma indusa sau norma matriciala
naturala.
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Cazuri relevante de norme matriceale induse sunt asa-numitele norme p
definite astfel

A
Al = sup 1A%l
x#0 HX”P

(69)

Norma 1 si norma infinit sunt usor de calculat, deoarece

m n
1Al = max > fagl, (Al = max > |aj] (70)
Jj=1,..., n< i=1,...,n 4
i=1 i=1
si se numesc norma sumei coloanelor si, respectiv, norma sumei
randurilor.
Mai mult, avem ||A||; = ||AT||oo si dacd A este simetrica ||All; = [|Also-
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Teorema
Fie || - ||[gmxn © norma matriceala indusa de normele vectoriale || - ||gm si
|| - |lgn. Atunci, urmdatoarele relatii sunt valabile:

1. [[Ax||grm < ||Al|gmxn ||x|lgn, adicd norma matriceald indusa este
compatibild cu norma vectoriala care o induce;
2. ||l =1;

3. |AB|lgmxn < ||Al|gmxn || B||gmxn, adica fiecare norma matriceala
indusa este submultiplicativa.

Proof.
TO DO. O

Observati ca normele p sunt submultiplicative. Mai mult, observam ca
proprietatea de submultiplicativitate ar permite doar sa concluzionam ca
1a]] > 1. Tntr-adevar, ||1]| = ||/ Il < ||a]|?-
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Norma ||Alja = maxj=1,... nj=1,...,m |jj| care nu este submultiplicativa, de
asemenea, nu este o norma matriceala indusa. O norma care nu este
indusa poate fi sau nu submultiplicativa. De exemplu, || - ||a nu este

submultiplicativa, dar norma Frobenius

[AllF = Z |aj[? = \/tr(AAT) (71)

ij=1

este submultiplicativa, chiar dacd nu este indusa (de ce?), de asemenea.
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Norma spectrala pentru matrice simetrice

Teorema

Fie A o matrice reald simetrica. Atunci
|All2 = p(A). (72)

Proof.

Deoarece A este simetrica, exista matricea unitara U astfel incat

UTAU = diag(\1, ...., \n), unde \; sunt valorile proprii ale lui A. Fie
y = UTx. Atunci

|2 (Ax, Ax) (A Uy, AUy)
|All2 —SUP T
|| (B3 N (| Uy||2
o (UTATAUy,y) <diag(A§, s A2)Y, )
y;éO vl llyll2
y

I'I
= sup 7’: )\2— ~max [\ = p(A).
y£0 | Dot y? \/ ,:1, ‘ | =1,2,....,n il (4) 98




Matrice nesimetrice

Definitie
Fie A € R™*" Se numesc valori singulare ale matricei A, numerele reale

oi(A) definite prin

7i(A) = \/\i(ATA). (73)

Daca A este simetrica, atunci

ai(A) = \[N)i(ATA) = VXi(A?) = \/AH(A) = [Ni(A). - (74)
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Norma spectrala pentru matrice simetrice

Teorema

Fie o1(A) cea mai mare valoare singulard a matrice A € R"*". Atunci

[All2 = 1/ (AT A) = 51 (A). (75)
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Este clar ca a calcula ||Al|2 este mult mai costisitor decat cel al lui [|A|1
sau ||A|leo. Cu toate acestea, daca este necesara doar o estimare a lui
||Al|2, urmatoarele relatii pot fi utilizate in mod profitabil in cazul

matricelor patrate

x| < |4l S mmesey;

1
N Alloe < All2 < V7 |All o, 7
Tl < Al < VAl (76)

1
WIIAIM <Al < vnllAl, [[All2 < VAl Alloo-
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Relatii dintre norme si raza spectrala

Teorema
Fie || - || o norma matriceala consistentd, atunci

p(A) <Al VAeR™" (77)
Proof.

Fie A\ o valoare proprie a lui A si v # 0 un vector propriu asociat acestei
valori proprii. Deoarece norma este consistenta, avem

IAllIvIl= [Vl = A vIE < ATV (78)

si deci |\ < || Al O

In restul prelegerilor noastre, daca nu specificam altceva, consideram
norma matricei spectrale si o vom nota cu || - ||.
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Relatii dintre norme si raza spectrala

Teorema

Fie A€ R"™" sie > 0. Atunci, exista o norma matriceald indusd notata
| - lae (depinzénd de €) astfel incat

I llae < p(A) +e (79)

Deci, fixdnd o toleranta arbitrara, mereu exista o norma matriceala care
este apropiatd de norma spectrald a matricei A.
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Analiza senzivitatii solutiei

La fiecare pas al GEM in urma rotunjirilor numerelor se rezolva un sistem

perturbat
(A+6A)(x+dx) = b+ b, (80)

solutia acestui sistem perturbat fiind perturbata fata de soluttia
sistemului de start

Ax = b. (81)

Ne dorim sa caracterizam perturbarea dx in functie de pertubarile 0A si

ob.

Un rol important va fi jucat de numarul de conditionare.
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Numarul de conditionare

Numarul de conditionare al unei matrice A € R"*" este definit prin
K(A) = lIAI A7, (82)

unde || - || este o norma indusa.
Se poate observa ca numarul de conditionare depinde de norma aleasa.

Se observa insa ca indiferent de norma aleasd K(A) > 1 deoarece

1=AATH < [IA AT = K(A).

Mai mult, K(A) = K(A™1) si K(a A) = K(A), Va # 0.
Pentru norma || - |2 pe R™", K»(A) = ||Al|2 [|A~1|> este dat de

(83)
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iar In cazul matricelor pozitiv definite

>

=5 T o

K>(A) se numeste numarul de conditionare spectral.
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Analiza a priori a erorii

Theorem

Fie A € R" " o matrice inversabild si §A € R"*" astfel ca
IA=Y [|6A]| < 1 (85)

este verificatd intr-o norma indusa. Atunci daca x € R" este solutie a
sistemului Ax = b cu b e R" (b+#0) si 6x € R" verifica

(A + 6A)(x + 6x) = b + ob, (86)
atunci

6] K(A) 166l . [l5A]

Wl < T KA BAT/TA ( E |A||) (87)
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Cateva observatii

Conditia [|[A71[|||6A|| < 1 asigura faptul ca (A + 0A) ramane inversabila.
Daca [|A71]|||6A|l < 1, atunci p(A~15A) < 1.
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Lemma
Fie A € R"™" Atunci

lim AX =0 & p(A) < 1. (88)

k—o0

In plus, seria geometrica 37 , A este convergenta daca si numai daca
p(A) < 1. In acest caz

S A =(1-AT (89)
k=0
Prin urmare, daca p(A) < 1, matricea | — A este inversabila si au loc
inegalitatile
1 1
Toar SN0 =A)7H < 7= (90)
1+ [A] 1—[|A]
unde || - || este o matrice indusa astfel incat ||Al| < 1.
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Demonstratia lemei

Dacad p(A) < 1 atunci 3 € > 0 astfel incat p(A) < 1 — ¢ si va rezulta ca
existd o norma indusa astfel incat [|A|| < p(A) +e < 1.

Din ||AX|| < ||A||* < 1 si din definitia convergentei rezulta ca
Iimk_mo Ak =0.
Invers. Presupunem ca lim,_,., A = 0. Fie \ o valoare proprie a lui A.

Atunci Akx = \fx. Atunci Ak — 0. Deci avem |\| < 1. Atunci, pentru
ca A a fost consideratd o valoare proprie generica, vom avea p(A) < 1.

Pentru urmatoarea parte din teorema, sa remarcam pentru inceput ca
valorile proprii ale lui | — A sunt 1 — A(A), A(A) fiind valoare proprie a lui
A. Pe de alta parte, deoarece p(A) < 1 deducem ca | — A este inversabila.
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Demonstratia lemei

Atunci, din identitatea
(I =A)( +A+ .. +A") =] AL (91)

si considerand limita n — oo vom avea

(1-A)Y A =1 (92)
k=0
in final, deoarece pentru o norma indusa ||/|| = 1, avem
L=< 10 =AU = AT < @+ IADINC = A)THL, (93)

adica prima inegalitate pe care noi o aveam de demonstrat.

Legat de ce-a de a doua inegalitate, din /| = | — A+ A si prin multiplicare
cu (I —A)~! avem

(I—A)t=1+A(-A)" (94)



Demonstratia lemei

Trecand la norma in
(I=A)t=1+A(l-A)", (95)
gasim
(=AY < T+ AL = A (96)

adica inegalitatea a doua pentru ca avem [|A| < 1.
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Revenim torema de demonstrat: Analiza a priori a erorii

Theorem

Fie A € R" " o matrice inversabild si §A € R"*" astfel ca
IA=Y [|6A]| < 1 (97)

este verificatd intr-o norma indusa. Atunci daca x € R" este solutie a
sistemului Ax = b cu b e R" (b+#0) si 6x € R" verifica

(A+ 0A)(x + 0x) = b + b, (98)

atunci

1] K(A) 16b]] , [[6Al
X = T= KARAT/TAT ( Tel Al ) &)
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Revenim la demonstratia teoremei

Deoarece ||A~10A|| < 1, avem ca ca | + A15A este inversabila si din
lema precedenta rezultad ca
1 1

10+ A0 AN < T amgay < = ()
Pe de altd parte, din
(A4 0A)(x + 0x) = b+ db, (101)
si Ax = b gasim
ox = (I + A"15A) LA (0b — A X), (102)
iar trecdnd la norma deducem
l6x]] < 1|||:‘11””M”(5b|| + IGAIlIx1)- (103)

In final, impartind prin ||x|| (care nu e zero pentru ca b # 0 si A este

inversabila), apoi folosinf ca ||x|| > I“Z“ se deduce inegalitatea dorita.



Imbunatatirea acuratetei GEM



Imbunatatirea acuratetei GEM

Dupa cum s-a mentionat anterior, daca matricea sistemului este prost
conditionata, solutia generatd de GEM ar putea fi inexactd, chiar daca
reziduul sau la pasul i, adica r() = p() — A)x() este mic. In aceasta
sectiune, mentionam doua tehnici de imbunatatire a acuratetei solutiei
calculate de GEM.
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Scalarea problemei

n cazul in care intrarile din A variaza foarte mult ca marime, este
probabil ca in timpul procesului de eliminare intrarile mari sa fie insumate
cu intrarile mici, avand drept consecinta aparitiei erorilor de rotunjire. Un
remediu consta in efectuarea unei redimensionari a matricei A Tnainte de
a se efectua eliminarea.

Scalarea pe rénd a lui A consta in gasirea unei matrice diagonale
nesingulare D; astfel incat intrarile diagonale ale lui D;A sa aiba acelasi
ordin de marime (aceeasi dimensiune). Sistemul liniar Ax = b se
transforma n

DlAX = le (104)
Atunci cand atat liniile cat si coloanele lui A trebuie sa fie scalate,
versiunea scalata a sistemului devine
(D1ADy)y =Dib cu  y=Dy'x, (105)

presupunand, de asemenea, ca D, este inversabil. Matricea Dy
redimensioneaza ecuatiile, Tn timp ce D, redimensioneaza necunoscutele. 116



Scalarea problemei

Observati ca, pentru a preveni erorile de rotunjire, matricile de scalare
sunt alese sub forma

Dy = diag(8™, ..., 8™), D = diag(8<, ..., ) (106)

unde [ este baza aritmeticii in virgula mobila utilizata, iar exponentii
r, -+, C1,- - ,Cn trebuie determinati.



Rafinare iterativa

Rafinarea iterativa este o tehnica de imbunatatire a acuratetei unei solutii
obtinute printr-o metoda directa. S3 presupunem ca sistemul liniar

AX = b a fost rezolvat cu ajutorul factorizarii LU (cu pivotare partiala
sau completa) si s3 notam cu x(0) solutia calculata. Dupa ce s-a fixat o
toleranta de eroare, tol, rafinarea iterativa se desfasoara astfel: pentru
i=0,1,---, pana la convergenta:

1. se calculeaza rezidualul r() = p() — AW x (D).

2. rezolva sistemul liniar A z() = () folosind factorizarea LU a lui
Al

3. actualizati solutia stabilind x( 1) = x() 4 (),

4. daca ||z||/||xU* V|| < tol, atunci incheiem procesul returnand
solutia x(Ut1). Tn caz contrar, algoritmul reincepe de la pasul 1.

In absenta erorilor de rotunjire, procesul s-ar opri la primul pas,
producand solutia exacta.
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Sisteme nedeterminate



“Solutia” sistemelor
supradeterminate



Sisteme algebrice liniare

Sa consideram urmatorul sistem algebric de ecuatii liniare:
x1+x0 =1,
X1 — Xo = 2.

Semnificatia geometrica a acestui sistem este ca se cautd un punct de
intersectie a doua drepte, vezi figura.

X2
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Eliminarea gaussiana

In mod clar, efectudnd o eliminare gaussiana, Tnmultim prima ecuatie cu
(—1) si o addugam la a doua pentru a obtine urmatorul sistem echivalent

x1+x =1,
-2 Xo = 1.
A doua ecuatie ne dd x, = —% si, Tmpreuna cu prima ecuatie, gasim si
_3
X1 = 5

Prin urmare, punctul de intersectie al celor doua drepte este punctul

(X17X2) = (%a 7%)
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Sisteme supradeterminate

Acum, sa ludm in considerare urmatorul sistem algebric de ecuatii liniare:
x1+x =1,
X1 — Xo = 2,
3x1 +x = 4.

Punctul de intersectie al acestor trei drepte este acelasi cu cel din
exemplul anterior, deoarece ultima ecuatie este redundanta.

X2
10}
3x1 +x2=4
5|
m
L L L \L " L
3 2 -1 1 ‘\\3 X1
Xp—Xp = 2
It 121



Sisteme supradeterminate

Dar ce se intdmpla daca a treia ecuatie nu este redundanta? Spunem c3

sistemul este supradeterminat. De exemplu

Nu exista un punct de intersectie a acestor trei drepte.

x1+x =1,
X1—X2:2,
3X1+X2:3.

X2

3xq :|>X2:3

:
05 1015

X2 =2

20X1
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“Solutia” sistemelor supradeterminate

Deci, sistemul algebric

x1+x =1,
X1—X2:2,
3X1+X2:3.

nu are o solutie.

Cu toate acestea, suntem in continuare interesati sa gasim un punct
(x1,x2) care este “o solutie aproximativa”.
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“Solutia” sistemelor supradeterminate

Deci, sistemul algebric

X1—|—X2:].,
X1 — Xo = 2,
3x1+x =3

nu are o solutie.

Cu toate acestea, suntem in continuare interesati sa gasim un punct
(x1,x2) care este “‘o solutie aproximativa”.

De ce?



“Solutia” sistemelor supradeterminates

De ce?

Pentru a raspunde la aceasta intrebare, trebuie sa remarcam ca sistemul
algebric

X1+X2:1,
X1—X2:2,

3x1+x =4
are o solutie unica, in timp ce perturbata sistemul algebric perturbat

x1+x2=1,
X1 — X2 = 27
3x1 +x =4.0001
nu are o solutie.
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Pentru cad aceste sisteme provin din practica si este posibil sa avem nu

exista valori exacte (corecte) ale coeficientilor. O mica eroare in
masuratori ar putea conduce la un sistem algebric nedeterminat si ne
intereseaza sa vedem care punct (x1, x2) satisface “mai bine” sistemul.
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“Solutia” sistemelor supradeterminate

Mai inti de toate, sa remarcam ca sistemul algebric

x1+x =1,
X1 — X =2,
3X1+X2:3.

poate fi scris sub formad de matrice sub forma

Ax = b,
1 1
unde A=|1 -1 6R3X2,x:(xl> ER?sib=|2]| eR3.
X2
1 3



“Solutia” sistemelor supradeterminate

Printr-o “solutie” a sistemului supradeterminat

Ax=0>b
X 5
intelegem un vector x = '] € R? astfel incat Ax si nu fie "atat de
X2
. X N
departe" de b. Cu alte cuvinte, un vector x = 1) € R? astfel incat
X2
0
Ax — b sa nu fie "departe” de | 0
0

Dar ce inseamna ca un vector nu este “atat de departe” de un alt vector?
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Problema celor mai mici
patrate: “Solutia” sistemelor
supra-determinate, Data Fitting



Am vazut ca solutia sistemului liniar Ax = b exista si este unica daca
n = m si A este nesingulara.

In aceasta sectiune dam un sens solutiei unui sistem liniar in cazul
supradeterminat, m > n.
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“Solutia” sistemelor supradeterminate

Sa presupunem ca ni se dd un sistem liniar de forma

Ax=b, unde AcR™" si beR” cu m>n.

Presupunem, de asemenea, ca rank(A) = n.

In aceste conditii, sistemul de ecuatii liniare considerat poate fi

incompatibil (nu are solutie).

Observam c3 un sistem nedeterminat nu are, in general, solutie decat
daca partea dreapta b este un element al lui
Range(A) :={y e R"|F x € R" a. . Ax = y}.
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Aproximarea solutiei sistemelor supradeterminate

O abordare obisnuita pentru gasirea unei solutii aproximative consta in
alegerea gasirea acelui x pentru care se realizeaza valoarea minima a
normei reziduului r = Ax — b, pe R™, adica

. Rl2
(LS)  min[lAx — bl|*.

Aceasta este o problema de minimizare a unei functii patratice pe intreg
spatiu, functia obiectiv patratica fiind data de

f(x) = (AT Ax,x) — 2(b, Ax) +||b||>.
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Problema celor mai mici patrate

Dat fiind A€ R™*" cu m > n, b € R™, spunem ca x* € R" este o
solutie a sistemului liniar Ax = b in sensul celor mai mici patrate daca

f(x*) = |Ax* — b||3 < min ||Ax — b||3 = min f(x). (107)
XER e xER"

=f(x)

Astfel, problema consta in minimizarea normei euclidiene a reziduului.
Solutia problemei de minimizare poate fi gasitd prin impunerea conditiei
ca gradientul functiei f sa fie egal cu zero la x*.
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Din
f(x) = (Ax — b)T(Ax — b) = xTATAx —2xTATb+ b"h,  (108)
aflam ca
VF(x*) = 2ATAx* —2ATb =0, (109)
de unde rezultd ca x* trebuie s3 fie solutia sistemului patratic
ATAx* = ATh (110)

cunoscut sub numele de ecuatia normala.

Sistemul este nesingular daca A are rang complet si, in acest caz, solutia
celor mai mici patrate exista si este unica.
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Observam ca B = AT A este o matrice simetrica si pozitiv definita.
Astfel, pentru a rezolva ecuatiile normale, se poate calcula mai intéi
factorizarea Cholesky B = HT H si apoi se pot rezolva cele doua sisteme
HTy = ATh si Hx* = y. Cu toate acestea, din cauza erorilor de
rotunjire, calculul lui AT A poate fi afectat de o pierdere de cifre
semnificative, cu o pierdere consecventa a definitiei pozitive sau a
nesingularitatii matricei, asa cum se intdmpla in urmatorul exemplu
(implementat in MATLAB) in care, pentru o matrice A cu rang complet,
matricea corespunzatoare f/(ATA) se dovedeste a fi singulara

1 1
11
A=|27%7 0 |, fI(ATA) = (111)
o 11
0o 2

Prin urmare, in cazul matricelor prost conditionate, este mai convenabil
sa se utilizeze o metoda alternativa bazata pe factorizarea QR.
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Data Fitting




A 2D picture

Un domeniu in care se utilizeaza problema cel mai mici patrate este
corelarea datelor.

275

250

225

2.00

175

150

125

1.00

0.0 0.2 0.4 0.6 0.8 1.0
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Date n puncte in R”, obiectivul este de a gasi o dreapta de forma
y=ax+b

care se potriveste cel mai bine cu acestea. Aceasta inseamna ca trebuie
sa gasim a si b care sa defineasca aceasta dependenta liniara.
Corespondentele liniare corespunzatoare care trebuiesc corelate sunt

yi = ax; + b, i=1,2,...,n,

adica, sistemul care trebuie "rezolvat" este

x1 1 %1

x3 1 a Y2
b

X, 1 Yn
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Deci, gasiti a si b “solutie" pentru

x 1 1
X2 1 a _y2
: bl :
Xn 1 Yn
N—— S~——
=X =y

Solutia problemei celor mai mici patrate este

(Z) = (XTX)"1XTy.
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Unul dintre domeniile n care se utilizeazd problema celor mai mici
patrate este corelarea datelor.

Sa presupunem ca ni se da un set de date (s, t;), i = 1,2,...,m, unde
si€ R"si t; € R, si sa presupunem ca o relatie liniara de forma
ti=(si,x), i=12,..,m,

este cautata. Gasiti x pentru a putea aproxima aceasta dependenta
liniara!

Aplicatii?
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Deci, problema este de a gasi vectorul de parametri x € R" care rezolva

problema
m

)[2%@ . 1(<5i,X> — i)
=

Aceasta este o problema (LS) scrisa ca

min||S x — t||?,
xXER"

—=g == t

—=gf == t>
unde S = . , b=

s=glh == tm

'm
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Alte situatii

0.75

0.50

0.25
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Alte situatii

0.5

0.0

-1.0

Polynomial order 1

Polynomial order 2

Polynomial order 3

1.0
° ®
0.5 /\
0.0 1@ &\
-0.5 X
-1.0 \'/
0.0 25 50 7.5 0.0 25 50 75 00 25 50 75
Polynomial order 4 10 Polynomial order 5 Polynomial order 6
° : °
/f\ 0.5 0.5
0.0 0.0
-05 -05 p
/ /
-1.0 -1.0 D
0.0 25 50 7.5 00 25 50 75 0.0 25 50 7.5
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Mai multe despre corelarea datelor

Abordarea celor mai mici patrate poate fi utilizatd si in cazul ajustarilor
neliniare. Sa presupunem, de exemplu, ca ni se da un set de puncte in
R2: (uj,y;), i=1,2,...,m, si ca stim a priori ca aceste puncte sunt
aproximativ legate prin intermediul unui polinom de grad cel mult d;
adica exista ag, ay, ..., aq astfel incat

d
E ajul =y, i=1,...,m.
j=0

Abordarea prin metoda celor mai mici patrate a acestei probleme este:
cauta ag, as, ..., a4 care sa fie solutia celor mai mici patrate a sistemului

liniar
1 uf e uf ao y1
1 w ug cee ug ai Vo
1 um u,zn cee u,",’1 aq Ym

(LS) este, desigur, bine definitd dacd m > d + 1. Matricea este
asa-numita matrice Vandermonde, despre care se stie ca este de rang

d + 1 daca d + 1 din uj-uri sunt diferite intre ele. 142



Regularizarea Problemei celor
mai mici patrate, Eliminarea
zgomotului dintr-un semnal



Regularizarea Problemei celor mai mici patrate

Atunci cand A este subdeterminatd, adica atunci cand existd mai putine
ecuatii decat variabile, existd mai multe solutii optime pentru problema
celor mai mici patrate si nu este clar care dintre aceste solutii optime este
cea care trebuie luatd in considerare.

In modelul de optimizare ar trebui incorporat un anumit tip de informatii
prealabile despre x.

O modalitate de a face acest lucru este de a lua Tn considerare o
problema penalizata in care o functie de regularizare R(-) este adaugata
la functia obiectiv.

143



Regularized Least Squares

Problema regularizatd a celor mai mici patrate (RLS) are forma
(RLS) min || Ax — b||? + A R(x),
xeR"

unde A > 0 este parametrul de regularizare. Pe masura ce \ devine mai
mare, functia de regularizare primeste o pondere mai mare.

n multe cazuri, se considerd ca regularizarea este patratica. In special
R(x) = ||[Dx||?, cu D € RP*" dat. Functia de regularizare patratica
urmareste sa controleze norma lui D x si este formulatd dupa cum
urmeaza:

(RLS)  min|lAx— |+ A|Dx]?,
sau, echivalent ca

(RLS)  min{fars(x) = (AT A+ ADT D)x,x) = 2(b, Ax) + [[b]*},
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(RLS)  min {fars(x) = ((ATA+ADT D) x,x) —2(b, Ax) + | b||*},

Deoarece D si A sunt cautati a.i. matricea hessiana a functiei obiectiv
dats de V2fzrs(x) = 2(AT A+ ADT D) = 0 sa fie positiv definita,
rezultad ca orice punct stationar este un punct minim global.

Punctele stationare sunt cele care satisfac
VfRLs(X) = 0

adica
(ATA+ADT D)x = AT b.

Prin urmare, daca D si A sunt astfel incat AT A+ D7 D = 0, atunci
solutia RLS este data de

xris = (ATA+ADT D)1AT b.
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Other situations

a5 35
3 3
28 25
P 2
4 15
5 1
A e 05
05 0
° -05
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Figure 3.2. A signal (left image) and its noisy version (right image).
A=1 10
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3 3
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‘ 2
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.
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Eliminarea zgomotului dintr-un semnal

Sa presupunem ca este dat un semnal bruiat a unui semnal x € R":
b=x+ w.

Aici x este un semnal necunoscut, w este un vector de zgomot
necunoscut, iar b este vectorul masuratorilor cunoscute.

Problema eliminarii zgomotului este urmatoarea: Avand in vedere b,
gasiti o estimare "buna" a lui x.

Aplicatii?
Problema celor mai mici patrate va va da solutia x = b.

Pentru a gasi o problema mai relevanta, vom adauga un termen de
regularizare. Pentru aceasta, trebuie sa exploatam unele informatii a
priori despre semnal.
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De exemplu, am putea sti ca semnalul este neted intr-un anumit sens. In

acest caz, este foarte natural s3 adaugam o penalizare patratica, care
este suma patratelor diferentelor dintre componentele consecutive ale
vectorului; adica functia de regularizare este

n—1

R(X) = Z(X,‘ — X,'+1)2.

i=1

2

Aceasta functie patratica poate fi scrisa si sub forma R(x) = ||L x|
unde L € R("=1)X1 este data de

1 -1 0 0 0 0

0 1 -10 0 0
L= ,

0 0 0 0 1 -1

~
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Problema rezultata a celor mai mici patrate regularizate este
min [|x — b + X ||L x||?,
x€ER"

iar solutia sa optima este data de
xrrs(A) = (I + ALTL) b,

unde X\ > 0 este un parametru de regularizare dat (bun).

Am putea gasi un astfel de A > 07
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Alte situatii

a5 35
3 3
28 25
P 2
4 15
5 1
A e 05
05 0
° -05
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.
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Problema neliniara a celor mai
mici patrate: Circle Fitting



Problema neliniara a celor mai mici patrate: Circle Fitting

Exista situatii in care ni se da un sistem de ecuatii neliniare
fi(X):Ch i:152a"'7m7

unde f; : R" = R, ¢; € R sunt date si x trebuie finantat.

In acest caz, problema de aproximare este cea a celor mai mici patrate
neliniare (NLS), care se formuleaza astfel

m
. 2
min fi(x) —¢)-.
min >(A(x) - @)
i=1
Nu exista o modalitate usoard de a rezolva problemele NLS. Metoda
Gauss-Newton este o modalitate, dar aceasta converge numai catre un
punct stationar.



Circle fitting

Sa presupunem ca ne sunt date m puncte aj, a», ..., am € R". Problema
adaptarii cercului urmareste sa gaseasca un cerc

Cx,r)={y eR": |ly — x| =r}
care se potriveste cel mai bine punctelor m.
Aplicatie?

Ecuatiile neliniare asociate cu aceasta problema sunt

lIx — ai|l = r, i=1,2

Deoarece dorim sa avem de-a face cu functii diferentiabile, iar functia
norma nu este diferentiabila, vom considera versiunea patratica a
acesteia:

2

Ix—ail>=r? i=12,...m.
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NLS for Circle fitting
Problema NLS asociata cu aceste ecuatii este

m

. o 12 _ 2)2
i, D= =l

Observatie: In aceasta forma nu avem o problema de optimizare fara
constrangeri!

Dar, de fapt, problema este echivalenta cu

m

i —2{a; 2 12 — p2)2.
min > (=2(ai,x) + [Ix]? + [l = )

i=1

Efectuand schimbarea de variabile R = ||x||> — r?, problema de mai sus
se reduce la

m

min  f(x,R) := Z(—2<ai,X> + R+ [lail®)?.

Rn 2>R
xeRe, [x[2> P
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De fapt, orice solutie optima (X, 1‘3) a problemei
m

min _ f(x,R) := Z(—2<ai7x> + R+ laill?)?

x€R" RER .
i=1

satisface in mod automat ||X||?> > R, deoarece altfel

—2(a;, X)+R+|ai|? > —2(ai, X)+||R|>+]|ai]|? = |x—ai? > 0, i = 1,2, ...

Prin ridicarea la patrat a ambelor parti ale primei inegalitati din ecuatia
de mai sus si adunarea la i rezulta

Z( 2(2;, %) + R+ [laill*)?

> Z( 2(a;, %) + X1 + [|ail|*)? = [IX — &l = £ (%, %),

aratand ca (X, ||x||?) conduce o valoare a functiei mai mica decat (X, ﬁ)

in contradictie cu optimimalitatea lui (X, ﬁ)



In concluzie, problema NLS

m

i f ,RZZ -2 i + R+ ,'22
wepin  FOGR) =3 (=2(aix) + R+ [aill’)

i=1

este de fapt echivalenta cu problema LS

. . X\ 2

2af -1 llax]?

2a; -1 [ER
unde A = ] ) si b=

2a;, -1 lam|?
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Daca A este de rang maxim, atunci solutia unica a problemei liniare a
celor mai mici patrate este

X

e = (ATA)LATb.

Optimul x este dat de primele n componente, iar raza r este data de

r=VIxE-R.
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Matrici dreptunghiulare:
Factorizarea QR



Factorizarea QR

Definitie
O matrice A€ R™" cu m > n, admite o factorizare QR daca exista o
matrice ortogonald @ € R™*™ si o matrice trapezoidala superior

R € R™*" cu randuri nule incepand de la al (n+ 1)-lea, astfel incat
A= QR.

Este de asemenea posibil si se genereze o versiune redusa a factorizarii
@R, asa cum este afirmat n rezultatul urmator.



Teorema
Fie A€ R™*", cu m > n, o matrice de rang n pentru care este cunoscuta
o factorizare QR. Atunci exista o factorizare unica a lui A de forma

A= QR,
unde Q si R sunt submatrice ale lui Q si R, date respectiv de
ézQ(l:m,l:n), ﬁ:R(l:n,l:n).

Mai mult, 6 are coloane vectoriale ortonormale si R este triunghiulara
superior si coincide cu factorul Cholesky H al matricei simetrice definite
pozitiv AT A, adica, ATA=R"R.
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Daca A are rangul n (adica, rang complet), atunci vectorii coloana ai lui
@ formeaza o baza ortonormala pentru spatiul vectorial

range(A) ={y e R" : y=Ax pentru x € R"}.

Ca o consecintd, construirea factorizarii QR poate fi interpretata si ca o
procedurad pentru generarea unei baze ortonormale pentru un set dat de
vectori.

Daca A are rangul r < n, factorizarea @R nu conduce neaparat la o baza
ortonormald pentru range(A). Totusi, se poate obtine o factorizare de

forma
Ri1 Rz

TAP =
q 0 0)’

unde Q este ortogonala, P este o matrice de permutare si Ry; este o

matrice triunghiulara superior nesingulara de ordin r.
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In general, cand folosim factorizarea QR, ne vom referi intotdeauna la

forma sa redusa, deoarece are aplicatie in rezolvarea sistemelor

supra-determinate.

Factorii matriciali Q si R pot fi calculati utilizand ortogonalizarea
Gram-Schmidt. Pornind de la un set de vectori liniar independenti,

X1, ,Xp, acest algoritm genereazd un nou set de vectori mutual
ortogonali, g1, - , gn, dati de
q1 = X1,
_ : (Qis Xky1) Kk —
CIk+1—Xk+1*E ——ai =1,---,n—1L
— (ai, CI/>
i=1
Notand cu ay,--- , a, vectorii coloana ai lui A, setam
~ dai
(0]} = e
[EN
si, pentru k =1,--- ,n— 1, calculam vectorii coloana ai lui @ ca
G G _ (G, akg1) ~
Qk+1 = [, unde Q41 = ak41 — E == e
[feramn e (g, qi)

(114)
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n continuare, impunand ca A = QR si folosind faptul ca Q este
ortogonala (adicd, @™ Q = 1,), elementele lui R pot fi calculate cu

usurinta.

De asemenea, este de remarcat faptul ca, daca A are rang complet,
matricea AT A este simetrica si pozitiv definita, si, prin urmare, admite o
factorizare Cholesky unici de forma H™ H. Pe de alta parte, deoarece
ortogonalitatea lui Q implica

HTH=ATA=R"Q"QR=R"R, (115)

concluzionam ci R este, de fapt, factorul Cholesky H al lui ATA.

Astfel, elementele diagonale ale lui R sunt nenule doar daca A are rang
complet.
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Metoda Gram-Schmidt are o utilitate practica redusa, deoarece vectorii
generati isi pierd independenta liniara din cauza erorilor de rotunjire.
Intr-adevar, in aritmetica cu virgula mobila, algoritmul produce valori
foarte mici pentru ||gx+1]]2 Si Tkk, ceea ce duce la instabilitate numerica si
pierderea ortogonalitatii pentru matricea Q.

Aceste neajunsuri sugereaza utilizarea unei versiuni mai stabile, cunoscuta
sub numele de metoda Gram-Schmidt modificata.

La inceputul pasului k + 1, proiectiile vectorului ax.; pe directia
vectorilor g1, -+, gxr1 sunt progresiv scazute din ax.1. Pe vectorul
rezultat, se realizeaza apoi pasul de ortogonalizare.
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In practica, dupa ce se calculeaza (g1, ax11)d1 la pasul k + 1, acest
vector este imediat scazut din a,, 1. De exemplu, se defineste

8&21 = ak+1 — (q1, 3k11)q1- (116)

Acest nou vector 3&)1 este proiectat pe directia lui gz, iar proiectia

obtinuta este scazuta din ag(lﬁl, obtinandu-se

2 1 = (D) o=
sk = A — (@ 0@ (117)

si asa mai departe, pana cand '35<k+)1 este calculat.

- 0 -
Se poate verifica faptul ca a,/; coincide cu vectorul corespunzator gy 1

din procesul Gram-Schmidt standard, deoarece, datorita ortogonalitatii lui
g, 5 Gk
k - - - - o~
85(31 = ak+1 — (G1,3k+1)q1 — (G2, k1 — (q1, ak41)q1)G2 + - -+ (118)
k
= aks1 — ) _(Gir h41) G-

=1
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Observati cd nu este posibila rescrierea factorizarii QR pe matricea A. In
general, matricea R este rescrisa pe A, Tn timp ce Q este stocata separat.
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Sisteme nedeterminate cu
factorizarea QR



Sisteme nedeterminate cu factorizarea QR

Teorema

Fie A€ R™*" cu m > n, o matrice de rang complet. Atunci solutia
unica a problemei

min ||Ax — b||3
XER e —
:=d(x)
este datad de
x* = R1QTb, (119)

unde R € R™<n si 6 € R™*" sunt matricile obtinute din factorizarea QR
a lui A. Mai mult, minimul lui ® este dat de

m

o(x) = > [(@Tb). (120)

i=n+1
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Demonstratie

Factorizarea QR a lui A exista si este unica, deoarece A are rang
complet. Astfel, exista doua matrici, @ € R™*™ si R € R™*", astfel
incdt A = QR, unde Q este ortogonala.

Deoarece matricile ortogonale pastreaza produsul scalar euclidian, rezulta
ca

IAx — blI3 = ||Rx — QT b|j3. (121)

Aducandu-ne aminte ca R este trapezoidala superior, avem

IRx — Qb3 =[IRx — QTbI3+ > [(QTH),  (122)

i=n+1

asa Tncat minimul este atins cand x = x*.
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Daca A nu are rang complet, tehnicile de solutionare de mai sus esueaza,
deoarece, in acest caz, dacd x* este o solutie a problemei

- 2
min ||[Ax — b
min A — bl
=d(x)
atunci vectorul x* + z, cu z € ker(A), este de asemenea o solutie. Prin

urmare, trebuie introdusd o constrangere suplimentara pentru a impune
unicitatea solutiei.

De obicei, se impune ca x* sa aiba norma euclidiana minima, astfel incat
problema celor mai mici patrate poate fi formulata astfel:
gasiti x* € R” cu norma euclidiand minima astfel incat
|AX*" — b2 < min | Ax — b[2. (123)
XERN ey

=d(x)

Instrumentul pentru rezolvarea acestei probleme noi este descompunerea
prin valori singulare (sau SVD).
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Reflectori Householder

Definitie

Fie u € R™ normat, adic3 ||ul| = 1. O matrice U € R™*™ de forma
U=1,—-2uu’

see numeste reflector elementat Householder de ordin m.

Matricea U are proprietatile

e UTU=(In—2uu") (lp—2uu")=lp—4uu+4u(u"u)u” = I,.
e UT =U
e Ux=(In—2uuT)x=x-2u(w" x)=x-2(w"x)u

N—— N——

=(ux) =(u,x)
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Reflectori Householder

Daca u nu are norma 1, putem defini totusi reflectorul Householder

1 ||U||2
= /] T = =0
U=1, uu unde B 5

1
Vom obtine Ux = (Im—%uuT)X:x—%u (u” x) =x— B(UTX) u
=(u,x) N——

=V
e pentru u=(0...0 uk ... uy)', reflectorul Houseldorf corespunzator
este

I ~ -
U = (kol q) , U fiind reflectorul asociat vectorului v = (u ... um)T
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

Consideram o matrice A € R™*" si dorim sa construim o matrice
Q@ € R™*™ ortogonald si o matrice R € R™*" astfel ca A= QR.

Daca notam cu a; prima coloand a matricei A,si definim
up = a; — ||a1]| e, unde e; este primul element al bazei canonice,

construind reflectorul Householder

1 u|?
Ul - Im - Eul u:[ra unde ﬁl - %7
vom avea
U1 a; = Halﬂ Ello
Prin urmare obtinem
1 1
R
AD — U A= 0 ay - 32',,
0 agz) aﬁ,:,l,),
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

La urmatorul pas definim

2= (A(l)(20: m,2)> ’ (124)

apoi definim
Up = ap — ||az]| &2, unde e, este al doilea element al bazei canonicei

construind reflectorul Householder

Al

U2 = Im — ——Uu> l12T7 unde BQ = )

B2

vom avea

U2 dpy = HazH o

In plus, deoarece prima linie si prima coloana din u, uJ sunt zero, prima

linie a lui A®) dar si prima coloana a lui nu se modifica AM) prin
inmultirea cu Us.
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

Prin urmare

(CORNCY (1)

llall iy a123 315
0 |lall aég’ aég)
A® = LAV = U, A= O 0 a3 - &
o o0 a2 a%2)
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

La pasul k definim

apoi definim
ux = ax — ||ak|| ek, unde e este elementul k al bazei canonicei

construind reflectorul Householder

_ llel?

1
Uk = /m — — Uk UZ—, unde ﬁk 5

B

vom avea
Uk dy = Hak|| €.

In plus, deoarece primele k — 1 linii si primele k — 1 coloana din uy u/

sunt zero, primele linii ale lui A—1) dar si primele coloane ale lui nu se
modifica A=Y prin inmultirea cu U. 173



Aplicatii ale reflectorilor Householder pentru factorizarea QR

Prin urmare

laf &) - a%; ag;
0 ||a2|| aZk a2n
AR . — UkA(kfl) — U Uy A= : : : )
0 0 ||akH agn)
0 0 o an) o am
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Aplicatii ale reflectorilor Householder pentru factorizarea QR

Repetand procedeul de n ori gasim

(1) (1)

laill & - 312n

0 faf - a5

Aln) . UnA(ﬂfl) =U,.U A= 0 0 o HanH
0 0 0

0 0 0
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Factorizarea este gasita

Deci, Q si R din factorizarea QR a lui A sunt

lasf & - Ei

2

0 flaof - a2

Q=Uy...U1U,siR=1| 0 0 - |lan
0 0 0

0 0 0
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Avand factorizarea QR vom putea deduce factorizarea QR si apoi putem
sa le folosim pentru rezolvarea problemei celor mai mici patrate, daca
rang A = n.
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Sisteme nedeterminate cu
descompunerea in valori
singulare (SVD) si
pseudoinversa



Descompunerea in valori singulare (SVD)

Descompunerea in valori singulare (SVD) a unei matrice A este un
instrument foarte util in contextul problemei celor mai mici patrate. Este
de asemenea foarte utila pentru analiza proprietatilor unei matrice. Cu
SVD-ul, poti ,radiografia” o matrice!

Teorema
Fie A € R"™ ™ Atunci exista matrice ortogonale U € R"™ " si V/ € R™*™
si o matrice diagonald ¥ = diag(cy,...,0,) € R™™ cu

01> 05> ...> 0, >0, astfel incat:

A=UzVT

are loc.
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A=UxVT

Definitie

Veectorii coloand ai lui U = [uy, . .., uy] sunt numiti vectori singulari
stangi si, similar, V= w1, ..., v,| sunt vectorii singulari drepti. Valorile
o; = \/Ai(AT A) sunt numite valorile singulare ale lui A (unde \;(AT A)

sunt valorile proprii ale lui AT A).
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Exemplu

1 3
Fie matricca A= | 5 7 | € R3*2. Descompunerea sa este datd de
9 1
1 3 0.207621 0.370412 0.905366 11.6522 0. 0.852871 0.522122
5 7 = 0.679634 0.611049 —0.405854 0. 5.4979 _0.522122 0.852871 N
] 1 0.703556 —0.699581 0.124878 0. 0. . .
=A =UEr3X3 =Y ER3X2 =vTer2x2

valorile singulare fiind oy = 11.6522 si 0, = 5.4979.

Din numarul valorilor singulare nenule ne putem da seama ca rangul
matricei este 2.
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Exemplu

. . 1 59 B
Fie matricea A = € R3%2. Descompunerea sa este data
3 71
de
1 5 o)\ [ oss2s71 —o.522122 116522 o o o-20Teat  omomns  oomesee
3 7 1 - 0.522122 0.852871 0. 5.4979 0. 0.703555 76 e o.i2437s
=A =UER2X2 =Y ER3X2 VT er3x3

valorile singulare fiind o7 = 11.6522 si 0, = 5.4979.

Din numarul valorilor singulare nenule ne putem da seama ca rangul

matricei este 2.
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monstratie

Norma 2 a lui A este definita de ||A2 = max|,=1 [|Ax||2. Astfel, exista
un vector x cu ||x|l2 = 1 astfel incat

2=Ax, zl2 = Al =: o.

z
zll2"

Notam y := Acest lucru duce la Ax = oy cu ||x]|2 = |ly|l2 = 1.

Apoi, extindem x n o baza ortonormata a lui R". Dacd V € R"™ " este
matricea care contine vectorii bazei drept coloane, atunci V este o
matrice ortogonala care poate fi scrisd ca V = [x, V4], unde V" x = 0.
Similar, putem construi o matrice ortogonala U € R"*™ care sa satisfaca
U=ly,l] Uy =0.
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Demonstratie

T y T Ax yTAVl] B [a wj

y
-
1

A =UTAV = Alx, V4] =

UTAx U] AV4 0 B

pentruca y ' Ax=y oy =oy'y =0 si U;—Ax = UUlTy = 0 deoarece
U1 1 y.

Afirmatia noastra este cad w' := y " AV; = 0. Pentru a demonstra acest

" (a) _ <02+ w%)
w Bw

si concluzionam din aceasta ecuatie ca

“(2)

lucru, calculam

2
= (0% + [w]3)* + [1Bwll3 > (02 + [[w]I3)*.
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Acum, deoarece V si U sunt ortogonale, ||A1|2 = [[UTAV|2 = ||Al2 =0

Jag o |\
a
w

0?2 0% + |lwl,

deducem

2

2 2\2
2 2 (0% + ||wll3)
o° = ||A1]|3 = max

o2+ |lwli3

2
>
Ixlz#0 [|Ix[|3  ~ ‘ .

2

2

Ultima ecuatie se scrie

si concluzionam ca w = 0. Astfel, am obtinut

0
A =UTav = |° .
! 0 B]
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Putem acum aplica aceeasi constructie la sub-matricea B si astfel, in
final, sa ajungem la o matrice diagonala.

Daca scriem ecuatia A = UX VT in forma partitionata, in care ¥, contine
doar valorile singulare nenule, obtinem

Y, 0 d
A = [Us, Ud] < ; o) Vi, Vol T = Ui, VT =D oy, (126)
i=1
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Pentru Matlab

fn Matlab existd doua variante pentru calculul SVD:
[U S V I=svd(A)— da o descompunere completa
[U S V ]=svd(A,0)— da o matrice m x n pentru U

Apelul svd(A,0) calculeaza o versiune intre una completa si una
economicad cu o matrice nepatratica U € R"*™. Aceasta forma este
uneori numita ,SVD subtire”.
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Valori si vectori singulari

Proprietati:

Av; = ojui si AT uj = ojv; pentru i =1 : n, unde u; si v; sunt
coloanele matricelor U si V din descompunerea spectrala.
Un1111||x||2 S ||AXH2 S 0max||XH2-

N T
A=Y oy
ATAv; = 0?v; si AAT u; = o?u; pentru i = 1 : n, ceea ce inseamna

ca v; e vector propriu pentru AT A iar u; e vector propriu pentru
AAT.
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In ceea ce priveste rangul, daca
01220, >041="=0p,=0. (127)

atunci rangul lui A este r, nucleul lui A este generat de vectorii coloana
V(:,r+1:n)ailui V, iar range(A) este general de vectorii coloana
U(:,1:r)ailui U.

Definitie

S3 presupunem ca A € R™*" are rang egal cu r si ca admite SVD de

tipul UTAV = ¥. Matricea At = VETUT este numits matricea
pseudo-inversa Moore-Penrose, unde

1 1
zf_diag<,---,,o,-.-,o). (128)

Matricea AT este, de asemenea, numita inversa generalizata a lui A.
Intr-adevar, daca rank(A) = n < m, atunci A" = (ATA)"*AT, iar daca
n=m = rank(A), AT = A~1,
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Revenind la sisteme

Daca A nu are rang complet, tehnicile de solutionare prin descompunerea
Q@R de mai sus nu functioneaza si avem nevoie de o altd tehnica

Teorema

Sa consideram A € R™*" cu SVD dat de A= ULV T. Atunci solutia
unica a problemei de minimizare

gaseste x* € R" cu norma Euclidiand minim3 astfel ca

|Ax* = blj3 < min || Ax — b|3 (129)
XERM e
=P(x)
este
x* = A'b, (130)

unde At este pseudo-inversa lui A.
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Demonstratie

Folosind SVD-ul lui A, sarcina este de a gasi w = VT astfel ca w are
norma Euclidiana minima si

[Zw — UTh|2 < ||IZy — UTb|3 Vy eR". (131)

Daca r este numarul de valori singulare nenule o; ale lui A, atunci

IZw — UTh3 =" (oowi — (UTB))* + S ((UTh))?,  (132)
i=1 i=r+1
ceea ce este minim daca w; = (U"b);/o; pentrui=1,...,r.

In plus, este clar ca printre vectorii w ai lui R” care au primele r
componente fixe, vectorul cu norma Euclidiand minima are celelalte n — r
componente egale cu zero.

Asadar, vectorul solutie este w* = ZTUT b, adicd x* = VETUT b= Alb,
unde ¥ este matricea diagonala definitd in definitia pseudo-inversei.
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Metoda gradientului folosita
pentru rezolvarea sistemelor



Dorim sa construim o solutie aproximativa pentru problema de minim

m]ilg f(x), unde f:R" — R estedeclass C!' pe R".
xeR"

De ce?

Pentru ¢ @ dup & cum am v azut, rezolvarea aproximativ & a unui sistem
de ecuatii se reduce la o problem a de optimizare, adic a g asirea unei

valori minime a unei functii p a tratice.
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Corelarea datelor

275

250

225

2.00

175

150

125

1.00

0.0 0.2 0.4 0.6 0.8 1.0

f:R2R,f(z)=(Az,2)+2(b,z) +¢c, A€R?®*? bcR? ceR.
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Alte probleme

@® B A
)
)
®
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Alte probleme
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Alte probleme
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De ce aproximativ?

Tn majoritatea problemelor, abordarile analitice obisnuite nu pot fi
aplicare in practicd din urmatoarele motive:

e ar putea fi o sarcina foarte dificild s3 se rezolve sistemul de ecuatii
(de obicei neliniare) Vf(x) = 0;

e chiar dac3 este posibila gasirea tuturor punctelor stationare, s-ar
putea sa existe un numar infinit de puncte stationare, iar sarcina de
a-l gasi pe cel care corespunde valorii minime a functiei este o
problema de optimizare care, prin ea insasi, ar putea fi la fel de
dificila ca si problema initiala.
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Metoda directiilor de
descrestere



Directii de descrestere

Consideram problema de minim

mLQ f(x), unde f:R”™ =R este o functie de clasi C' pe R".
xeR"

Tn loc s3 incercam sa gasim expresia analitica a unui punct stationar, vom
construi un algoritm iterativ pentru gasirea punctelor stationare.
Algoritmii iterativi pe care 1i vom lua in considerare in aceasta sectiune au
forma xx 11 = xx + te dx, k=0,1,2,...., unde dj este asa-numita
directie, iar t, este marimea pasului.

Definitie [Directia de descrestere]

Fie f : R” — R de clasa C! pe R". Un vector 0 # d € R" se numeste
directie de descrestere a lui f in x daca derivata directionala f'(x; d)

este negativa, ceea ce inseamna ca
f'(x;d) = (Vf(x),d) <0.
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Lemma [Proprietatea de descrestere pe directiilor de descrestere ]

Fie f : R” — R o functie de clasd C! pe R". Sa presupunem ca d este
o directie de descrestere a lui f in x. Atunci existd £ > 0 astfel incat

f(x+td) < f(x) pentru orice t € (0,¢].

Proof.
Deoarece f'(x; d) < 0, din definitia derivatei directionale rezulta ca

im f(x+td)—f(x)

t—0+ t

= f'(x;d) <O0.

Prin urmare, existd € > 0 astfel incat

f(x+td)—f(x) -
t

0 pentru orice t € (0,¢],

ceea ce implica cu usurinta rezultatul dorit. O
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Metoda directiilor de descrestere schematica

Initializare: Alegem xo € R" arbitrar;
Etapa generala: Pentru orice k =0,1,2, ..., se
alege o directie de descrestere d;
gaseste o marime a pasului t care sa satisfaca f(xx + txdk) < f(x«);
Setai;i Xk+1 = Xk + tidk;
se verificd daca un criteriu de oprire este satisfacut, atunci STOP si

Xk+1 este iesirea.

Atat de frumos si atat de neclar (doar conceptual)!
Multe detalii lipsesc din descrierea schematica de mai sus a algoritmului :

e Care este punctul de plecare?
e Cum se alege directia de descrestere?
e Ce marime a pasului trebuie sa fie luata?
e Care este criteriul de oprire?
199



Clarificari

e Punctul de pornire poate fi ales arbitrar, in absenta unei informatii
deja stiute despre solutia optima.
e Un exemplu de criteriu de oprire popular este [|Vf(xky1)]| < e.
e Principala diferenta intre diferitele metode este alegerea directiei de
descrestere .
e Vom presupune ca marimea pasului este aleasa astfel incat
f(xk+1) < f(xk). Inca nu este clar!
e marime constantd a pasului: tx = t,k =0,1,2,...; Util pentru
probleme simple.
e O constanta mare poate face ca algoritmul sa nu fie descrescator;
e O constanta mica poate cauza o convergenta lenta a metodei.
e cautarea exacta pe linie: tx este un minimizator al lui f de-a lungul
razei xx + t di, adicd tx = argmin,- of (xx + t dk).
e Pare mai atractiva la prima vedere;
e Dar, nu este intotdeauna posibil sa gasim minimizatorul exact.

e backtracking este un compromis intre ultimele doua abordari;
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Backtracking

Metoda necesita trei parametri: s >0, o € (0,1) 8 € (0,1). Alegerea lui
tx se face prin urmatoarea procedurd. In primul rand, ¢, se stabileste ca
fiind egal cu presupunerea initiald s. Apoi, atata timp cat

F(xk) — F(xk + ted) < —a b VF(xi), dic),

se stabileste t, = [ t.

Mairimea pasilor se alege ca t, = s 3%, unde ix este cel mai mic numar
intreg nenegativ pentru care se indeplineste conditia

f(xk) — f(xk + s B%di) > —as B*(VF(xk), d)

este satisfacuta.
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Validitatea conditiei de scadere suficienta

Fie f : R” — R o functie de clasa C! pe R” si fie x € R". Sa
presupunem ca 0 # d € R” este o directie de descrestere a lui f in x si
fie a € (0,1). Atunci existd € > 0 astfel incat

f(x)— f(x+td) > —at(VF(x),d) pentruorice te(0,e]
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Proof.

Deoarece f de clasa C! pe R” rezulta ca
f(x + td) = f(x) + t(VF(x),d) + o(t]|d]),
si, prin urmare
f(x) = f(x+ td) = —at(Vf(x),d) — (1 — a) t (VF(x),d) — o(t]|d]]),

Deoarece d este o directie de descrestere a lui  la x avem

i (L= 0) £(VF(). d) + otld])
t—0t t

=(1-a)(Vf(x),d) <0.

Prin urmare, exista £ > 0 astfel incat pentru toate t € (0, ] sa existe
inegalitatea (1 — a) t (V£(x),d) + o(t||d||) < 0, ceea ce conduce la
rezultatul dorit.
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Metoda gradientului




Metoda gradientului

in metoda gradientului, directia de descrestere este aleasi ca fiind
di = —Vf(x), k=0,1,2....
Aceasta este o alegere buna, deoarece
f'(xk; —VF(xk)) = 7<Vf(xk),Vf(xk)> = f||Vf(xk)||2 < 0.
Derivata directionala minima intre toate directiile normalizate

Fie f : R” — R o functie de clasa C! pe R” si fie x € R” un punct
nestationar. Atunci o solutie optima a

0 / . . _
min{f(x; d) : [ld] =1}

)
este = IRl
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Proof.

Din moment ce f'(x; d) = (Vf(x),d), problema este aceeasi ca si in
cazul in care

min{(VF(x),) : |ld]| =1}

Din inegalitatea Cauchy-Schwarz avem

(VF(x),d) > =[IVE)lId]] = =[IVF(x)]I.
Astfel, —||Vf(x)|| este o limitd inferioara a valorii optime a problemei de
f
minimizare. Pe de alta parte, introducand d = |§f§ ;” in functia

obiectiv obtinem ca

Vi(x)
IVEC I

Vi(x)

f'(x; — ) = (V£(x), _W> = —[[VF(x)I,

si astfel ajungem la concluzia ca limita inferioara —||Vf(x)|| se atinge la
Vf(x)

d —
VeI

ceea ce implica rezultatul dorit. O
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Metoda Gradient

e Input: € > 0 ca parametru de toleranta.
o Initializare: Se alege xo € R” in mod arbitrar.

o Etapa generala: Pentru orice k = 0,1, 2, ... se executa urmatorii
pasi:
o Se alege o marime a pasului tx printr-una dintre procedurile
mentionare mai sus pentru

g(t) = f(Xk = tVf(Xk)).

° Setati Xk4+1 = Xk — thf(Xk).
o Daca ||Vf(xk+1)|| <&, STOP si xit1 este valoarea de OUTPUT
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Metoda gradientului se poate comporta destul de rdu. Ca un exemplu, sa

consideram problema de minimizare

1
N S
Xt 100

si sa presupunem ca utilizim metoda gradientului cu vectorul initial
(L 1)T

10004/ -
Aceasta este o problema importanta, un raspuns partial poate fi gasit
folosind notiunea de numar de conditionare.
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Numarul de conditionare
pentru functii patratice.
Rescalarea problemei.



Se considera problema de minimizare patratica

Xng}l}gn{f(x) = (Ax,x)}, unde A>0.

Solutia optima este, evident, x* = 0. Metoda gradientului cu pas exact

are forma
Xk+1 = Xk + tidk,
unde dx = —2 Ax, este gradientul lui f in xy, iar pasul t; este gasit ca
fiind 5
.l
2 (Ady, di)
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Deci,

f(Xk+1) = <AXk+1,Xk+1> = <A (Xk + fkdk), (Xk + tkdk)>
= <AXk,Xk> + 2 tk<AXk, dk> P t£<A d, dk>
= (Axi, xi) — 2 ti(di, di ) + to{Ady, di).

Introducand in ultima relatie expresia pentru t, datd mai sus, obtinem ca

B 1 <dk,dk>2 B 1 <dk,dk>2
f(xk1) = <AXk,Xk> = Zm = <AX’<’X’<> (1 4 <A di, dk><AXkan>

(cho )" )

= fx) (1 " (Adk, di ) (A dy, dy)

209



Inegalitatea lui Kantorovici

Fie A o matrice n x n pozitiv definita. Atunci pentru orice 0 # x € R”
are loc inegalitatea

<X7 X>2 4 Amaux>\min
<AX7X><A71 % X> - ()‘max + )‘min)z '

Se noteazd m = A\pin Si M = A\.x. Valorile proprii ale matricei

A+ MmA=! sunt \; + @ i=1,...,n. Este usor de demonstrat ca
maximul functiei unidimensionale o(t) =t + @ pe [m, M] este atins in
punctele m si M cu o valoare corespunzatoare a functiei ¢ de M + m si,
prin urmare, din moment ce m < X\;(A) < M, rezulta c3 valorile proprii
ale lui A+ M m A~ sunt mai mici decat (M + m). Astfel,

A+ MmA™ < (M+m)l, insensul ca A+ MmA™ —(M+m)l, <0
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Adica.
<Ax,x> +Mm <A71 X,x> <(M+ m)<x,x>,
care, combinata cu inegalitatea simpld a8 < %(a +B)?Va,B€R

rezulta

<Ax,x> Mm<A_1x x>

)

IN

%[<A x,x> +Mm <A_1 X x>]2

2
< M<X’X>2’

care, dupa o simpla rearanjare a termenilor, conduce la rezultatul dorit.



Revenind la analiza ratei de convergentd a metodei gradientului, rezulta,

folosind inegalitatea lui Kantorovici, ca

F(xes1) < <1 - M) F(xe) = (% - :)2 Fxe),

unde M = >\max(A)v m = A111111(’4)-

Rezumand, avem
Analiza ratei de convergenta pentru functii patratice

Fie x, sirul generat de metoda gradientului cu pas constant pentru
rezolvarea problemei de minimizare patratica

Xné]llgn{f(x) = (Ax,x)}, unde A>0.

Atunci, pentru orice k =0,1, ...

f(Xk41) < (% J_r :)2 f (%),

unde M = )\max(A)v m = )\min(A)-
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Aceasta implica faptul ca pentru orice k = 0,1, ....

M-m\?_ (1)
f(xks1) < c* f(xo0), where c = () = | =a—
M ) 1
- Amax(A) . o .
Numarul kK = W se numeste numar de conditionare al lui A.

Matricele cu un numar mare de conditioare se numesc rdu conditionate,
iar matricele cu un numar mic de conditionare (aproape de 1) se numesc
bine conditionate.
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Rescalare




Rescalare

Problema matricelorr prost conditionate este una majora si au fost
dezvoltate multe metode pentru a o evita. Una dintre cele mai populare
abordari consta in “conditionarea” problemei prin efectuarea unei
transformari liniare corespunzatoare a variabilelor.

Mai precis, si consideram problema de minimizare fara constrangeri

min f(x).

Pentru o matrice nesingulara data S € R"*", efectuam transformarea
liniard x = S y si obtinem problema echivalenta

il sy = ASx)

Deoarece Vg(y) = STVFf(Sy) = STVF(x), rezults cd metoda
gradientului aplicatd problemei transformate ia forma

Yir1 = Yk — te STVF(S yk).



Din moment ce Vg(y) = STVf(Sy) = STVf(x), rezultd ca metoda
gradientului aplicatd problemeei transformate ia forma

Vi1 = Yk — te STVF(S yi).-

Inmultind aceastad ultima egalitate cu S la stanga si folosind notatia
xx = S yk, obtinem formula recursiva

Xk+1 = Xk — g SSTVf(Xk)

Definind D = S ST, obtinem urmatoarea versiune a metodei gradientului,
pe care o numim metoda gradientului scalat cu matrice de scalare D
(pozitiv definita):

Xk+1 = Xk — by DVf(Xk)
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Directia —DV f(xk) este o directie de descrestere a lui f in x, atunci
cand Vf(xx) # 0, deoarece

f'(xk; =DV f(xx)) = —<Vf(xk), DVf(Xk)> < 0.

Pentru a rezuma discutia de mai sus, am aratat ca metoda gradientului
scalat cu matricea de scalare D este echivalenta cu metoda gradientului
utilizata pentru functia g(y) = f(D/2y).

Aici S = DY/2 inseamni ca STS = D.
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Analiza convergentei metodei gradientului

Vom prezenta o analiza a convergentei metodei gradientului utilizata
pentru problema de minimizare fara restrictii.

min f(x).

Vom presupune ca functia obiectiv f este de clasa C! si ca gradientul siu
Vf este Lipschitz continuu pe R”, ceea ce inseamn3d ca

IVf(x) — Vf(y)|| < L|x —y| pentruorice x,y € R".



Retineti ca daca Vf este Lipschitz cu constanta L, atunci este de
asemenea Lipschitz cu constanta L > L. Prin urmare, exista un numar
infinit de constante Lipschitz pentru o functie cu gradient Lipschitz.

Clasa functiilor cu gradient Lipschitz cu constanta L este notata cu
CLl’l(R”) sau pur si simplu CLl’l.
e Functii liniare: f(x) = <a,x> cul=0.

e Functii patratice: f(x) = (Ax,x)+2(b,x) +ccuL=2|A
deoarece

IVE(x) = VEW)I < 2[|[Ax = Ayl| < 2[|All[Ix = yI-
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Propozitie
Fie f o functie de clasa C? pe R". Atunci urmatoarele doua afirmatii

sunt echivalente
(a) fe CINRM).
(b) ||V2f(x)|| < L pentru orice x € R”, unde ||-|| reprezinta norma

spectrala.

(b)— (). Sa presupunem ca ||V2f(x)|| < L pentru orice x € R". Atundi,
prin teorema fundamentala a calculului integral, avem pentru orice

x,y € R"

1
Vf(y) = VF(x) +/0 V2f(x + t(y — x)) (y — x)dt

= Vf(x)+ (/01 V3 (x + t(y — x))dt) (y — x),
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Deci
HVfU)—va)=ﬂ(A V”b«+dy—xnﬁ>(y—x)
gwgtﬁax+ﬂy—x»mMW—xn

1
s/nv%w+ww—xmwwy—w
0
<Llly =],

care demonstreaza rezultatul dorit, adica f € CLl’l.
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(a)— (b). Sa presupunem acum ca f € CLl’l. Atunci, prin teorema
fundamentala a calculului integral, avem pentru toti d € R" si @ > 0

Vf(x + ad) = VFf(x) + /Oa V3 f(x +td)ddt
Astfel,
”/Oa V3f(x + td)dtd| =||VF(x + ad) — f(x)|| < aL|d|.
Tmpartind cu o si luand o — 0T, obtinem
IV2f(x)d|| < L|d],

ceea ce implicd faptul ca [|[V2f(x) || < L.



Lema descresterii

Un rezultat important pentru functiile CLI"1 este acela ca acestea pot fi
marginite superior de o functie patratica pe intregul spatiu.

Fie f € C/'(R"). Atunci, pentru orice x,y € R”

F(y) < F00 + (VF(x)y —x) + 5 llx =yl

Din teorema fundamentald a calculului integral avem

1
“ﬂ—fU%:A<Vﬂx+ﬂy—ALy—@dt

Prin urmare,
f(y)—f(X)=<Vf(X)7y—x>+/O (VF(x+t(y —x))— VF(x),y —x) dt.
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Deci,
1
1£(y) = ) = (VFGy =l = | | (TF(c+ tly = x0) = V(). y =)
1
< / (VF(x+ tly — x)) — VF(x),y — x)| dt
0
1
< / IVF(x + £y — x)) = VEGO| Ly — x|l dt
0

! L
< [ eLly=x?de=5ly = xl.
0
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Retineti cd demonstratia lemei descresterii arata de fapt atat limitele
superioare, cat si cele inferioare ale functiei:

FOH(TF(),y—x)— 2 ly =l < Fly) < FOOH(TFG), y—x) 5 ly x|



Lema scaderii suficiente

Sa presupunem ca f € CLI’I(R”). Atunci, pentru orice x € R" si t >0

Fx) — F(x — EVF(x)) > (1 _ L) V()12

Proof.

Prin lema descresterii avem

2
fx = tVF(x)) < f(x) = t[VF)I? + Lftl\Vf( I

— ()=t (1= ) IV FCIR
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Scopul nostru este acum sa aratdm ca exista pasi viabili pentru fiecare
dintre strategiile de selectare a marimii pasilor:

® pas constant;
e ciutarea exacta pe linie;

e backtracking.

In cazul unui pas constant, presupunem ca t, =t € (0, %) Inlocuind
X = Xk, t =t In lema de scadere suficienta rezultd inegalitatea

Fo0) — Floxern) > (1 - “) 197 o)1

Retineti cd descrestere in metoda gradientului pe iteratie este

£(1-3) I9Fl?

226



Daca dorim sa obtinem cea mai mare limita garantata a scaderii, atunci
cautam maximul lui t (1 = %) in (0, 2). Acest maxim este atins pentru

F o 1 . . e ~ . 1
t = { $l, prin urmare, o alegere potrivita pentru marimea pasului este Te

In acest caz

1
1 L1

1
FOa) = Flxin) = 7 | 1= == | IVAGRIP > o7 VAN



In cadrul pasului constrant, formula iterativa a algoritmului este
Xk4+1 = Xk — thf(Xk),

unde tx = argmin,of (xx — t VF(xx)).

Prin definitia lui t; stim ca
fxk — teVi(xk)) < fxx — %Vf(xk)),
si astfel avem
FOk) = F(xk1) = Fxi) = FOx — V() > iL IV £ (a0l

Aceeasi estimare ca si in cazul marimii constante a pasilor.
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In cazul backtracking cautam pasul t, suficient de mic astfel incat
t t
F(ou) — Fx — Ekw(xk)) < agk IV F (x|

Inlocuind x = xi, t = % in lema scaderii suficiente obtinem ca

) = Fl = 2970) 2 % (1= %) IV AP
care, combinat cu estimarea de mai sus, implica faptul ca
% (1= 5%) IVFIP < 0519l
ceea ce este acelasi lucru cu
2(1—-w)p
-

In general, obtinem ca in cadrul backtracking-ului avem

2(1 - a)pB

tx > min{s, T},

t, >

ceea ce implica faptul ca

) — Floxe — V() 2 o mings, 20Dy 2.
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Lemma

Fie f € C/'(R"). Fie {xx}x>o sirul generat de metoda gradientului
pentru rezolvarea minyern f(x) cu una dintre urmatoarele strategii
gasire a pasilor:
o pas constant € (0, 2),
e pas exact,

o backtracking cu paramettrii s € (0,00), a € (0,1) si 3 € (0,1).

Atunci
Fx) = FOxus1) = MIIVF(xe)1%,
unde B
T( — %) pas constant,
M=q 3 pas exact,
a min{s, M} backtracking.
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Convergenta metodei gradientului

Fie f € C/'(R"). Fie {xx}x>o0 sirul generat de metoda gradientului
pentru rezolvarea minyegrn f(x) cu una dintre urmatoarele strategii de
gasire a pasilor:

pas constant t € (0, 7),

pas exact,
backtracking cu parametrii s € (0,00), a € (0,1) si 8 € (0,1).

Sa presupunem ca f este marginit inferior pe R”, adicd exista m € R
astfel incat f(x) > m pentru orice x € R". Atunci,

sirul {f(xx)} k>0 este descrescator. In plus, pentru orice k > 0,
f(xk+1) < f(x«), cu exceptia cazului in care Vf(xx) = 0.

Vif(xk) — 0 pentru k — oc.
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Proof.

a) Din lema anterioara avem c3
F(xi) — F(xes1) > MV F(x0)” >0,

pentru o anumita constantd M > 0 si, prin urmare, egalitatea
f(xk) = f(xk+1) poate avea loc numai atunci cadnd V£ (xx) = 0.

b) Deoarece sirul {f(xx)}x>0 este descrescator si marginit inferior, deci
converge. Astfel, in particular f(xx) — f(xk+1) — 0 cand k — oo,
ceea ce, combinat cu inegalitatea de mai sus, implica faptul ca
IVf(xk)|| — O pe masura ce k — oc.
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Rata de convergenta a normelor de gradient

n conditiile propozitiei anterioare, fie f* limita sirului {f(xk)}k>0.
Atunci, pentru orice n =0,1,2, ....

_min VA0 < ’m
unde
t (1 — %) dimensiunea pasului constant,
M = i pas exact,
a min{s, M} backtracking.
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Proof.
Prin adunarea inegalitatilor

F(xk) = F(xes1) = MIIVE(x) 1%,

pentru k = 0,1, ..., n, obtinem

F(x0) — F(xns1) = M VF(x0)|,
k=0

Deoarece f(xp4+1) > *, putem astfel concluziona ca

fxo) — F* = MY _[IVF(x)]>.

k=0

in final, folosind aceasta ultima inegalitate impreuna cu faptul ca pentru
fiecare k = 0,1, ..., n avem inegalitatea evidenta

[VF(xk)]|? > mink—o. 1. .nl|VF(xx)||?, rezults ca

50005

fo) = £ > M(n+1) _min[[VF(0)|
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The Gauss—Newton Method




The Gauss—Newton Method: Nonlinear Least Squares

There are situations in which we are given a system of nonlinear equations
filx)=c¢, i=12,..,m,

where f; : R" — R, ¢; € R are given and x is to be funded.

In this case, the approximation problem is as in the following

NLS is formulated as

min g(x) i= > (6(x) — &)®

x€Rn

There is no easy way to solve NLS problems. Gauss-Newton method is

an way.
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We will assume that f;, i = 1,2, ..., m are continuously differentiable over
R and ¢; € R. The problem is sometimes also written in the terms of the

function
fl(X) = (&l
fa(x) — c2
F(X) = . )
fn(x) — cm
and then it takes the form
] 2
min lF QNI

THE general step of the Gauss-Newton method goes as follows: given
the kth iterate xi, the next iterate is chosen to minimize the sum of
squares of the linear approximations of f; at x, that is,

Xk4+1 = Argmin cgn {Z[f,-(xk) + (Vi(xk), x — xic) — c,-]z} )

i=1
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The minimization problem above is essential a linear least squares

problem
min || Ax x — by ||,
xERN
where
Vfl(xk)T
sz(xk)T
Ak = . — J(Xk)
Vi (x) T

is the so-called Jacobian matrix and

(VA), i) — flxk) + c1
b (V(xk),xk) — f2(xx) + c2
k= ]

<Vf’"(xk)7xk>.7 fm(Xk) + Cm

= J(xi)xx — F(xx).
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The underlying assumption is of course that J(xx) is of a full columns
rank. In that case, we can also write explicit expression for the
Gauss-Newton iterates

Xir1 = (JOxk) "I (k) "I (xk) b
Note that the method can also be written as

X1 = (J0k) TI)) ™ 0a) T (k) xe — F(xe))
= xi — (Jxi) T I(xi) " I (xi) T F (k).
The Gauss-Newton direction is therefore
di = (J(xk) T J(xk)) "I (xk) T F(x«). Noting that Vg(x) = 2 J(x)" F(x),

we can conclude that

1 -
di = E(J(Xk)TJ(Xk)) Ve (),
meaning that the Gauss-Newton method is essentially a scaled gradient
method with the following positive definite scaling matrix
1

Dy = E(J(Xk)TJ(Xk))_l.
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Damped Gauss-Newton Method

This fact also explains why Gauss-Newton method is a descent direction
method. The method described so far is also called the pure
Gauss-Newton method since no stepsize is involved. To transform this
method into a practical algorithm, a stepsize is introduced, leading to the
damped Gauss-Newton method.

Input: € > 0 as the tolerance parameter.

Initialization: Pick xp € R” arbitrarily.

General step: For any k = 0,1, 2, ... execute the following steps:
Set di = (J(Xk)TJ(Xk))_IJ(Xk)TF(Xk).
Pick a stepsize tx by a line search procedure on the function

h(t) = g(Xk = tdk).

Set Xkr1 = Xk — tg dk.
If |Vg(xk+1)|| < &, the STOP and xk+1 is the output.
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Pure Newton’s Method,
Damped Newton’s Method,
Hybrid Gradient-Newton
Method



Pure Newton’s Method

We note that the gradient method uses only first order information when
the following unconstrained minimization problem is solved

min{f(x) : x € R"},

where we assumed that f is continuously differentiable.

Now, we assume that f is twice continuously differentiable and we
present a second order method, i.e. we use information on both the
gradient and the Hessian matrix.

We assume that V2f(x), Vx € R" is positive definite, which implies that
there exists a unique optimal solution x*.
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The main idea of Newton method is the following:

X1 = argminxeRn{ﬁ(xk)+<vﬁ'(xk)aX — %K)

+%<V2f(xk)(x — i), (x — xk)>}.

Note that since V2f(x) is positive definite, the above formula is
well-defined. Why?

The unique minimizer of the minimization problem for finding xx.1 is the
the unique stationary point

VI )+V2F () (ks1—xk) =0 & xip1 = xk —(V2F(xx)) TV F(xk) -

Newton direction

We remark that when V2f(x) is positive definite for any k, pure
Newton's method is a scaled gradient method, and Newton's directions

are descent directions.
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The algorithm

Input: € > 0 as the tolerance parameter.
Initialization: Pick xp € R” arbitrarily.
General step: For any k = 0,1, 2, ... execute the following steps:

Compute the Newton direction dk, which is the solution to the linear
system V2f(xx) dk = —Vf(xk).

Set Xk+1 = Xk + dy.

If |Vf(xkt+1)|| < e, the STOP and xk+1 is the output.
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Remark about its convergence

Even if the assumption V2f(x) = 0, VxR" implies that there exists a
unique optimal solution x*, this is not enough to guarantee convergence,
see the following example.

Consider the function f(x) = /1 + x? defined over the real line. The
minimizer of f over R is of course x = 0. The first and second derivatives

of fare f(x) = -2, f(x) = \/ﬁ Therefore, (pure) Newton's
method has the form
F' (x«) 3

Xk4+1 = Xk — f”(xk) = —Xg-

Therefore, if [xg| > 1 the method diverges and that for |xo| < 1 the
method converges very rapidly to the correct solution x* = 0.
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Quadratic Local convergence of Newton's method

Theorem
Let f be a twice continuously differentiablle function defined over R".

Assume that

i) there exists m > 0 for which V2f(x) = m/ for any x € R”,

i) there exists L > 0 for which ||[V2f(x) — V2f(y)|| < L||x — y|| for any
x,y € R", where the considered matrix norm is the spectral norm.

Let {xx}x>0 be the sequence generated by Newton's method, and let
x* be the unique minimizer of f over R". Then for any k =0,1,2, ...
the inequality
L
ks = X711 < 5 [ = x|

holds. In addition, if |[xo — x*|| < 7, then

k
2m (1)°
||xk—x*§Lm(2> . k=0,1,2...
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Let k be a nonnegative integer. Then
Xkl — X* =x, — (V2f(xk))71Vf(xk) —x*
Vf(x*)=0 - — *
=0 — x* + (V2F(x)) [V (x*) = VF(xi)]

1
= X+ (v2f(xk))—1/ V2£(xe + (< — x)) (<" — ) dt
0
1
:(sz(xk))_l/ [V2f(xk +t(x" —xx)) — sz(xk)] (x* — xx) dt.
0
Combining the latter equality with the fact that V2f(xx) = m [ implies

that [|[(V2f(x) 7| < L1, we deduce
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s =< <O | 1920+ £ = x0) = 92 s0] (6" = )

<I(V2F (i) 7| /0 [[V2F (xk + £ (x* = x0)) = V2F(xi)] (x* = )| dt
1
SH(sz(Xk))’lll/O [[V2F (i + ¢ (" = x)) = V(]| (6" = xe) || dt

<L e =Pt = 2 o = %0l
—mjy k T 2m L

We will show our desired estimate by induction on k.
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Since we have assumed that

m
o —xIl < 7,

20
2m (1
,*<7 -
o —xll < (2) ,

establishing the first step of the induction. Assume that the estimate
holds for a given k, that is

2k
2m (1
Ml Z— ( =
o = xll < (2) ,

we will show it holds for kK + 1. Indeed, we have

so in particular

2 1
I x| < L” xR < < L (2m(l g _2m (1 > O
Xhott =X S 5 Pk = X om\ L \2 - \2) -
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However, in general, convergence is unfortunately not guaranteed in the
absence of these very restrictive assumptions and the implementation
must includes a divergence is criteria, e.g.the number of iterations is
smaller than 10000.

Pure Newton's method does not guarantee descent of the generated
sequence of function values even when the Hessian is positive definite,

e.g. for

minR\/X12+l+ x3 +1,

x1,x2€

when the basic assumption V2f(x) = m| is violated.
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Damped Newton's Method

What is missing is a stepsize chosen, leading to the so-called damped
Newton's Method.

Input: € > 0 as the tolerance parameter. «, 8 € (0, 1)-parameters

for the backtracking procedure.

Initialization: Pick xo € R" arbitrarily.

General step: For any k = 0,1, 2, ... execute the following steps:
Compute the Newton direction dk, which is the solution to the linear
system V2f(x) dk = —VF(xk).

Set tx = 1. While f(xx) — f(xk + tedk) < —a tx Vf(xk)Tdk set
te = B tk,

Set xx+1 = Xk + tk dk.

If ||V (xks+1)|| < e, the STOP and x41 is the output.
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The Cholesky Factorization

There are some important issue that naturally arises when employing
Newton's method:

e one of validating whether the Hessian matrix is positive definite;
e if it is, then how to solve the linear system V2f(xx) dx = —V(xk).

These two issues are resolved by using the Cholesky factorization, which
means that given a matrix A € R"*", find a lower triangular matrix
L € R"™" whose diagonal is positive, such that

A=LLT.
Given a Cholesky factorisation, the task of solving a linear system of

equations of the form Ax = b can be easily done by the following two
steps:

e Find the solution of the lower triangular algebraic system Lu = b.

e Find the solution of the upper triangular algebraic system L7 x = u.
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The process of computing the Cholesky factorization is well-defined as
long as all the diagonal ellements /; that are computed during the
process are positive, so that computing their square roots is possible.

The positiveness of these elements is equivalent to the property that the
matrix to be factored is positive definite.

Therefore, the Cholesky factorization process can be viewed as a criteria
for positive definiteness, and it is actually the test that is used in many
algorithms.

The Cholesky factorization is not the main aim of this course, so we will
use the Matlab command chol (A, ’lower?).



Hybrid Gradient-Newton Method

Newton's method (pure or not) assumes that the Hessian matrix is
positive definite and we are thus left with the question of how to employ
Newton's method when the Hessian is not always positive definite.

There are several ways to deal with this situation, but perhaps the
simplest one is to construct a hybrid method that employs either a
Newton step at iterations in which the Hessian is positive definite or a
gradient step when the Hessian is not positive definite.
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Hybrid Gradient-Newton Method

Input: € > 0 as the tolerance parameter. «, 8 € (0, 1)-parameters
for the backtracking procedure.

Initialization: Pick xo € R" arbitrarily.
General step: For any k =0, 1,2, ... execute the following steps:

Compute the Newton direction di as in the following
If sz(xk) > 0, then take dj as the Newton direction, which is the
solution to the linear system V2f(xx) dx = —Vf(xx).
Otherwise, set dy = —V 1 (x).

Set t, = 1. While f(Xk) = f(Xk a4 tkdk) < —o ty Vf(Xk)Tdk set

tk = Bk,

Set Xk+1 = Xk + tx dk.

If |Vf(xkt+1)|| < e, the STOP and xk+1 is the output.
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Fermat-Weber problem




Fermat problem

Pierre de Fermat posed the following problem:

Given three distinct points in the plane, find the point having
the minimal sum of distances to these three points.

The italian physicist Torricelli solved this problem and defined a
construction by ruler and compass for finding it. This point is called the
Torricelli point or the Torricelli-Fermat point.



Fermat-Weber problem

Later on, the Fermat problem was generalized by the German economist
Weber to a problem in the space R" and with an arbitrary number of

points.
The problem known today as “the Fermat-Weber problem” is the
following:

Given m distinct points a1, ap, ..., am in R", also called “anchor

points’- and m weights w1, w>, ...,wm > 0, find a point x € R"
that minimizes the weighted distance of x to each of the points

31,32, ..., am.
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min {f(x) := > willx —aill}.
i=1

Note that the objective function is not differentiable at the anchor points
a1, a2, ...,dm-
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Weiszfeld's solution (1937)

The starting point is the first order optimality condition

Vi(x)=0Vx & {a1,a,...,am} < Zw, — =0Vx¢{a1,as,...,am}-

I

After some algebraic manipulation, the latter relation can be written as

(Z x_a||>X—Z|| Wi aji ng{al,az,...,am},

which gives us

X =

Z i a, Vx & {a1,32,...,am}-
(Z, 1 Jx= a\l) i=1 [Ix —



We can reformulate the optimality condition as a fixed point problem
x = T(x),
where T is the operator

w,-a,-
(Z, 1 e aH) = =il

For a fixed point problem, a natural approach for solving the problem is

T(x) =

Vx &{a1,a2,....,am}.

via the iterations

Xk+1 — T(Xk).
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The algorithm

Initialization: Pick xo € R” such that xg & {a1, a2, ..., am}-
General step: For any k =0,1,2, ... compute xx+1 = T (xx).
Note that the algorithm is defined only when the iterates x; are all

different from ay, as, ..., am.
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Although the algorithm was initially presented as a fixed point method,
the surprising fact is that it is basically a gradient method by writting

m
1 Wi aj
Xert = DD
(Z?;ﬁ) i=1 b — ai

m
1 XK — aj
= o ) 2 el
(2;21 ka!a,-u) i=1 kol
1
m .
)

Therefore, Weiszfeld's method is essentially the gradient method with a

Vf(Xk).

:Xk_

special choice of stepsize:
1
th=——— "
m wj
(Cr: )
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Questions!

e |s the method well-defined?

e That is, can we guarantee that none of the iterates x, is equal to
any of the points a1, as, ..., am?
e The stepsize is not too large? Is the sequence of objective function

values decreases?

e Does the sequence {xk}«>0 converge to a global optimal solution?
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The first aim is to show that the generated sequence of function values is
nonincreasing.

for that, we define the auxiliary function

h(y, x) :—Z ||||y_ I yeR", xeR"\ A,

where A = {ay,a2,...,am}.

Lemma

For any x € R"\ A, one has

T(x) = argmin cg.{h(y,x) : y € R"}.
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Lemma

For any x € R"\ A, one has

T(x) = argmin, cg.{h(y,x) : y € R"}.

Proof. The function y — h(y, x) is a quadratic function whose

I, which is clear positive definite.

associated matrix is (an 1 Teeal

Therefore, the unique global minimimum of the mapping y — h(y, x),
which we denote by y*, is the unique stationary point of y — h(y, x),
that is, the point for which the gradient vanishes:

V,h(y*,x) =0.

Thus,

2 Zw, —a,ll =0.

Extracting y* from above yields y* = T(x), and the result is established.
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Therefore, the above lemma tells us that the iterations of Weiszfeld's

method read

Xkr1 = argmin{h(y,xx) : y € R"}.

In the next lemma we prove that the sequence {f(xk)}x>0 is

nonincreasing.

Lemma
If x € R"\ A, then

1. h(x,x) = f(x);

2. h(y,x) >2f(y) — f(x) for any y € R";
3.

4. x = T(x) if and only if V£(x) = 0.

f(T(x)) < f(x) and f(T(x)) = f(x) if and only if x = T(x);
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L h(x,x) = S w2l = S wiflx - ail] = £(x);
2. For any nonnegative number a and positive number b, the inequality
2
a
— >2a—b
5=
holds. Substituting a = ||y — a;|| and b = || x — a;|, it follows that
any i =1,2,....m

lly —aill?

>2|ly —a X — ajl|.
HX al” Hy l” H l”

Hence

m
ail

Zw”lx‘a“ 2Zw,uy aIII—Zw,Hx—alll

i=1

Therefore, h(y,x) > 2f(y) — f(x) for any y € R";
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3. Since T(x) = argmin, cg.h(y, x), it follows from 1. that
h(T(x),x) < h(x,x) = f(x).
Using 2. we have
h(T(x),x) = 2£(T(x)) — f(x),
which implies
F(x) = h(T(x),x) = 2£(T(x)) = f(x)
establishing the fact that

f(x) = F(T(x)).
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To complete the proof of this item, we need to show that
f(T(x)) = f(x) if and only if T(x) = x. Of course, if T(x) =
then f(T(x)) = f(x). To show the reverse implication, let us
assume that f(T(x)) = f(x).

By the chain of

it follows that f(T(x)) = f(x) implies
h(T(x),x) = f(x) = f(T(x)). Since the unique minimizer of
y + h(y,x)is T(x), it follows that x = T(x).

4. Clear.
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Lemma

Let {xx }x>0 be the sequence generated by Weiszfeld's method, where

we assume that x, & A for all k > 0. Then we have the following:

1. The sequence {f(xx)}«k>0 is noincreasing: for any k > 0 the
inequality f(xk+1) < f(xx) holds.

2. For any k, f(xk+1) = f(xx) if and only if V£ (xx) = 0.

Proof.

1. Since xx & A for all k > 0, this result follows by substituting x = x
in the previous lemma.

2. From the previous lemma it follows that for any k,
f(T(xk)) = f(xk+1) = f(xx) if and only if xx = xk11 = T(xk),
which is equivalent to Vf(xx) = 0.
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We have shown that {f(xx)}«>0 is noincreasing as long as we are not
stuck at a stationary point. The underlying assumption that x, & A is
problematic in the sense that it cannot be controlled easily.

One approach to make sure that the sequence generated by the method
does not contain anchor points is to choose the strating point xp so that
its values is strictly smaller than the values of the anchor points:

f(xo) < min{f(a1), f(a2),....f(am)}-

This assumption, combined with the monotonicity of the function values
of the sequence generated by the method, implies that the iterates do not
include anchor points.
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Theorem

Let {f(xk)}«>0 be the sequence generated by Weiszfeld's method and
assume that f(xp) < min{f(a1), f(a2),....,f(am)}. Then all the limit
points of {xx}x>o are stationary points of f.

Proof. Let {xk,}n>0 be a subsequence of {xx}«>o that converge to a
point x*. By the monotonicity of the method and the continuity of the

objective function we have f(x*) < f(xp) < min{f(a1), f(a2), ..., f(am)}.

Therefore, x* & A, and hence Vf(x*) is defined. We will show that
Vf(x*) = 0. By the continuity of the operator T at x*, it follows that
the sequence xx, 1 = T(xx,) = T(x*) as n — oco. The sequence of
function values {f(xx)}k>0 is noincreasing and bounded below by 0 and
thus converges to a value which we denote by f*. Obviously, both
{f(xk,)}n>0 and {f(xk,+1)}n>0 converge to f*. By the continuity of f,
we thus obtain that (T (x*)) = f(x*) = f*, which leads to T(x*) = x*
and Vf(x*) =0.

In fact, the stationary points are global optimal solutions, but this
analysis is beyond our lectures.
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Linear Programming




Formulating the Problem and a
Graphical Solution, Discussion
on possible approaches



A simple problem, for motivation [1] i

A family run a business that produced and sells dairy products from the
milk of the family cows, Algebra, Analysis and Geometry. Together, the
three cows produces 22 gallons of milk each week, and the family turn
the milk into ice cream and butter that they then sell at the Farmer's
Market each Saturday morning.

The butter-making process requires 2 gallons of milk to produce on
kilogram of butter, and 3 gallons of milk is required to make one gallon
of ice cream. The family has a huge refrigerator that can store practically
unlimited amounts of butter, but his freezer can hold at most 6 gallons of
ice cream.
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A simple problem, for motivation [1] ii

The family has at most 6 hours per week in total to spend on
manufacturing their delicious products. One hours of work is needed to
produce either 4 gallons of ice cream or one kilogram of butter. Any
fraction of one hour is needed to produce the corresponding fraction of
product.

The family's products have a great reputation, and he always sells
everything he produces. He sets the prices to ensure a profit of $5 per
gallon of ice cream and $4 per kilogram of butter.

He would like to figure out how much ice cream and butter he should
produce to maximize his profit.

Exercise

Solve the above problem by using the already known methods.
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The Professor’s dairy: Constraints and objective

The algebraic form of the professor’s dairy problem is:

max z=5x31+4x

x1,x2€R
subject to  xq < 6
0.25 X1 “+X2 S 6,
3 X1 +2 X2 S 22
x1,x2 > 0.

We call z, which in this case is the profit, the objective.

The set of points satisfying all five of the constraints is known as the
feasible region. In this problem the feasible region is the five-sided
polygonal region, see the next figure.
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A geometrical view of the problem

labor caistraint (25 x +y <=6) - freezer constraint (x <= 6)

solution (4.5)

¥ (butter) 4

milk constraint (Jx+2y <= 22)

=

Y

- T
x (ice cream)

4 .
N
% X

The linear programming problem is to find a point in the feasible region that
maximizes the objective z = 5x1 + 4 x2. As a step towards this goal, we plot in Figure
a dotted line representing the set of points at which z = 20. This line indicates feasible
points such as (x1,x2) = (0,5) and (x1,x2) = (2,2.5) that yield a profit of 20 dolars.



The Setup

Linear programming or linear programs
The optimization problems considered in this Section have some

particularities:
e Their variables can take any real values, subject to satisfying the
bounds and constraints.
e All constraints an bounds involve linear functions of the variables.

e The objective function (called profit) is also a linear function of the

variable.
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Formulation in the standard form

Linear programs in standard form

min Z=p1X1 + p2X2 + ... + pPpXp

x1,x2,...,xnER

subject to  A;1x;  + + Awinxn > by,

Am1X1 + + Aman Z bm7

X1y X2y ey Xp > 0.
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Formulation in the standard form

By grouping the variables into vectors and matrices, i.e.

X1 Aun ... A by p1

Xn Aml Amn bn Pn;

the linear programs in standard form becomes.

In matrix formulation

min 2= (p.x)

subjectto Ax>b x>0,

where “ > " is considered on each component.
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The canonical form

The canonical form of a linear program is

mp 7= (o)

subjectto Ax=b x>0.

A linear programming written in standard form can be converted in a
canonical form by introducing the so called slack variables, suggested by
the difference Ax — b.
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Tableau representation of the
problem, Vertices




All the linear programs can be reduce to the following

Standard form

mip 2=(p)
subjectto Ax>b x>0,

where p € R”, b € R™, and A € R™*",
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To create the initial tableau for the simplex method, we rewrite the
problem in the following

Canonical form

min 2= (p,xw) + (0, xg)

subjectto xg =Axy—b xg,xy >0,

where the index sets N and B are defined initially as N = {1,2, ..., n}
and B={n+1,n+2,...n+ m}.

The variables x,11, ..., X,+m are introduced to represent the slack in the
inequalities Ax > b and they are called slack variables.
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Tableau representation of the problem

We shall represent this canonical linear program by the following tableau

X1 Xn 1
Xpr1 = |A11 - A |[—h
Xn+m = Aml -« Amn |—bm
z =|p1 pn | O

In this tableau

® Xpi1,...,Xntm are the dependent variables, called basic;

® xi,..., X, are the independent variables, called nonbasic.
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A more succinct form of the initial tableau is know as the condensed
tableau, which is written as follows

XN 1
xg =| A —b
z =|pT 0

We “read” a tableau by setting the nonbasic variables xy to zero, thus
assigning the basic variables xg and the objective variable z the values in
the last columns of the tableau.

Thus, the tableau above represents the point xy = 0 and xg = —b with
the objective of z = 0.

The tableau is said to be feasible if the values assigned to the basic
variables by this procedure are nonnegative. In the above, the tableau
will be feasible if b < 0.
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A Simple Example

Linear programs in standard form

mn z=3x1—6x

x1,xER
subject to  xy + 2% > -1,
2x1 + x> 0,
Xy - x =2 -1
X1 — 4x, > -13,
—4xy + xx > =23,
x1,x2 > 0
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Linear programs in canonical form

The first step is to add slack variables to convert the constraints into a
set of general equalities combined with nonnegativity requirements on all
the variables. The slacks are defined as follows:

X3 =x1 + 2x2 — 1,

Xq =2 X1 + X2,

X5 =x1 — X2 + 1,

Xe =x1 — 4x0 + 13,
x7 =—4x1 4+ xo + 23,
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Tableau representation of the linear program

x1 x2 1
x3 = (1 2|1
x4 =2 110
xs = (1 —-1]1
x6 = |1 —4]|13
x7 = -4 1 |23

z =13 —-6|0

In MATLAB we store this tableau in a structure.

We may set a starting searching point by setting (the nonbasic variables)
x; = 0 and x = 0, since the table is feasible, i.e. the corresponding slack
variables (basic) remain positive.

The values of the objective in this tableau, z = 0, is obtained from the

bottom right element.

Let us move from this starting position! Why and How?
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Why to move from vertex to
vertex and not through all
feasible domain?



All possibilities for a linear programming

Infeasible case

min Z=Xx1+ x2

x1,x2€R
subjectto x3 + 2x < 8,
3x1 + 2x2 < 12
x1 + 3x > 13,
x1,x2 > 0.
3 e e
4 X +3x,213
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All possibilities for a linear programming

Unbounded case

min Z=2x1 — X2

x1,x2€R
subject to  x3 - xx < 1,
2x1 + x2 > 6,
x1,x2 > 0.
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All possibilities for a linear programming

Infinite number of optimal solutions

min zZ=2x1+2x2

x1,x2€R
subject to  x3 < 200,
x> < 300,
x1 + x2 < 400,
x1,x2 > 0.

\ x; = 300

100

0 50 100 150 200 250 300
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All possibilities for a linear programming

Unique optimal solution

min zZ=x1+6x2

x1,x2€R
subject to  x3 < 200,
x> < 300,
x1 + x2 < 400,
x1,x2 > 0.

4001

180 Feasible region
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Geometry of linear programming

The geometry of linear programming is very beautiful. The simplex
algorithm exploits this geometry in a very fundamental way. We will prove
some basic geometric results here that are essential to this algorithm.

Definition
e The set {x € R"|(a,x) = b}, where a € R" and b € R, is called
hyperplane.

e The set {x € R"|(a,x) > b}, where a € R" and b € R, is called
hyperspace.
e The intersection of finitely many spaces is called a polyhedron.

e This is always a convex set: Halfspaces are convex (why?) and
intersections of convex sets are convex (why?).
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Definition

e A bounded polyhedron is called a polytope.

Which is polytope and which is polyhedron?
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Extreme points

A point x is an extreme point of a convex set P if it cannot be written as
a convex combination of two other points in P. In other words, there does
not exist y,z € P, y,z # x and A € [0,1] such that x = Ay + (1 — \) x.

Alternatively, x € P is an extreme point if x = Ay + (1 —\)z, y,z € P,
A €]0,1] implies x =y or x = z.

Which is extreme? What are the extreme points here?
e ’\‘\“ =
," B ",

T X3 ™ Y, ™
Xz :"I \
\ L / ( |

\ {
‘.I"‘. .‘.‘" '\\ /
\ ‘;‘" N y

Extreme points are always on the boundary, but not every points on the
boundary is extreme.
203



Linear Independence

A key idea in linear algebra is that of linear dependence, which is a
generalization of the idea of parallel lines.

We define linear dependence of the rows of a matrix A € R™*" formally
as follows:
zZTA=0 for some nonzero z € R™.

The negation of linear dependence is linear independence of the rows of
A, which is defined by the implication

zTA=0 = z=0.
The idea of linear independence extends also to linear functions. The

functions y(x) = Ax are linearly independence if and only if the rows of
the matrix A are linear independent.

Let us remark that y(x) are linear independent if and only if

zZTAx=0 VxeR" = zZ=0, 204



Definition
Consider a set of constrains

bi,
fox) < by,
bi,

Given a point X, we say that a constraint i is tight (or active or binding)

at x if (a], x) = b;.

I'lel7
iGMQ,
i€ Ms.

Equality constraints are tight by definition.

Definition

Two constraints are linearly independent if the corresponding a;'s are

independent.

With these two definitions, we can now define the notion of a vertex of a

polyhedron.
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A point x € R" is a vertex of a polyhedron P, if

i) it is feasible (x € P),

ii) 3 n linearly independent constraints that are tight at x.

vertex

B A

-
~\
not a vertex
o+

=
n-o‘ﬁ ices
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Vertex vs. extreme point

e You may be wondering if extreme points and vertices are the same
thing.

e Note that the notion of an extreme point is defined geometrically
while the notion of a vertex is defined algebraically.

e The algebraic definition is more useful for algorithmic purpose and is
crucial to the simplex algorithm. Yet, the geometric definition is
used to prove the fundamental fact that an optimal solution to an
linear program can always be found at a vertex. This is crucial to
correctness of the simplex algorithm.
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Equivalence of extreme point and vertex

Theorem
Let P={x € R"| Ax > b} be a non-empty polyhedron with A € R™*",
Let x € P. Then, X is an extreme point if and only if X is a vertex.

Proof.

“<" Let X € P be a vertex. This implies that n linearly independent
constraints are tight at X. Denote by A an n x n matrix whose rows are
that of A associated with the tight constraints. Similarly let b be a vector
of size n collecting entries of b corresponding to the tight constraints. So
Ax = b.

Suppose, we could write X = Ay + (1 — \)z for some y,z € P and
Ae[0,1], y #%, z#X. Then Ay > b, Az > b implies Ay > b and

Az > b.

We have
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Proof.

If A\=0, then X =z as A is invertible. If A\ = 1, then x =y. If
A € (0,1), then the previous equality forces Ay = Az = AX which
means that X = y = z as A is invertible.

With this the “ <" part of the proof is complete. OJ
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Proof.
“='" Suppose that X € P is not a vertex. Let

I={i=1,2,...,m|(al,x) = b;}. Since X is not a vertex, there does not
T

exist n linearly independent vectors a; (rows of the matrix A viewed as

vectors, i.e., as columns), i € /.

We claim that there exists a vector d # 0 such that (d,a]) =0, Vi € .
Indeed, take at most k < (n — 1) linearly independent a;, i € I. Let
assume that their indices are i = 1,2, ..., k. We want to argue that the

linear system

(af ,d) =0,
<a;a d> = 0;
(af,d) =0

has nontrivial solution. But recall that each a/ is of length n. So this is
an under-constrained linear system. O
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Proof.
Hence, it has infinitely many solutions, among which there is at least one
nonzero solution, which we take to be d.

Let y =X+ ¢ed and z =X — e d, where ¢ is some positive scalar. We
claim that for small enough & we have y,z € P:

o foricl: (al,y)=(a],z) = b;, because (a,d) = 0.

e for i & |: the claim follows from continuity of the function
§ — b —(a] ,x+ & d) and the fact that b; — (a],X) < 0 when i & /.

As X = % + 5, this implies that X is not an extreme point of P. O
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Theorem
Given a finite set of linear inequalities, there can only be a finite number
of extreme points.

Proof.

We have shown that extreme points and vertices are the same, so we
prove the results for vertices. Suppose we are given a total of n+ m
constraints. To obtain a vertex, we need to pick n linearly independent

constrains that are tight. There are at most C”, = ways of doing this and

m-+n
each subset of n linearly independent constraints gives a unique vertex
(as seen previously, the vertex x satisfies Ax = b where A is invertible).

As a consequence, the are at most C”,  vertices. O

n+m
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More about vertices

For the feasible region S := {x € R"|Ax > b, x > 0}, let
Xpri = Aix—bj, i=1,2,....m.

where A;. means the ith row of the matrix A, like in Matlab.

In other word, a vertex of S is any point X = (X1, X2, ...,X,) € S that
satisfies
xy =0,

where N is any subset of {1,2,...,n+ m} containing n elements such
that the linear functions defined by x;, j € N, are linearly independent.

It is important for the n functions in this definition to be linearly
independent. If not, then the system of equation xy = 0 has either zero
solution infinitely many solutions.

303



We know now how to characterize mathematically the vertices of the
feasible region, BUT we still do not know (it is not already proven and
not obvious) why to check for a solution of the linear program only
among the set of vertices.
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Definition
A polyhedron contains a line if there exists x € P and d € R", d # 0,
such that

x+AXdeP, VAeR.

YES
NO NO
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Existence of extreme point

Consider a nonempty polyhedron P. The following are equivalent:

i) P does not contain a line.

ii) P has at least one extreme point.

Therefore, every bounded polyhedron has an extreme point.
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Optimality of extreme points

Theorem

Consider a linear programming in the standard form, i.e.,

mn 2= ()

subject to Ax>b x>0,

where p € R", b€ R™, and A € R™*",

Suppose P has at least one extreme point and there exists an optimal
solution, then there exists an optimal solution which is at a vertex.
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Proof.

Let Q be the set of optimal solutions (assumed to be nonempty). In
other words, if v is the optimal value of the linear program, then
Q:={x|Ax>b,z=(p,x) = v}

Using the above theorem we know that if P has an extreme point then P
has not lines. Since @ C P, it follows that @ has no lines. Hence @ has
an extreme point.

Let x* be an extreme point of Q. We will show that x* is also extreme
point of P. Once this is prove, since (p, x*) = v, we would be done. [
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Proof.
Suppose that x* is not an extreme point of P. Then Jy # x*, z # x*,
A € [0,1], such that

xX*=Ay+(1-X)z

Multiplying by p on both sides, we obtain
v={(p,x") = Xp,y) + (1= A)p,2).

Since v is optimal, (p,y) > v and (p,z) > v. Combined with the
previous equality, this implies

(py) =v,(p,z) = v.

But this means that y € Q and z € Q. Hence, that x* is not an extreme
point of Q. Contradiction! O
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Implication of the theorems

e These theorems show that when looking for an optimal solution, it is
enough to examine only the extreme points (which is equivalent to
vertices).

e This leads to an algorithm for solving an linear program: if there are
m constraints in R”, then pick all possible subsets of n linearly
independent constraints out of the n 4+ m. Solve (in worst case)

CH

7. m Systems of equations of the type Ax = b, where A, b are the

restrictions of A and b to the subset of n constraints. This can be
done, e.g., by the gradient method from the previous lectures or by
Gaussian elimination. Evaluate the objective function at each
solution and pick the best.

e Unfortunately, this algorithm, even though correct, is very inefficient.
The reason is that there are too many vertices to explore. For
example, consider the constraints {—1 < x <1}, i=1,2,....n.
Then we have in general 2 n inequalities, but 2" extreme points.
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e The simplex method (which will be done in the following lectures) is
an intelligent algorithm for reducing the number of vertices visited.

Its name is the simplex algorithm and in a nutshell, this is all the
simplex algorithm does:

e start at a vertex,

e while there is a better neighboring vertex, move to it.

Definition

Two vertices are neighbors if they share n — 1 tight constraints.



How to move from vertex to
vertex whithout knowing their
possitions?



Back to our Simple Example

Linear programs in standard form

min z=3x3 —6x

x1,%2€R
subject to  xy + 2% > -1,
2x1 + x> 0,
Xy - x = -1
X1 — 4x > -13,
—4x; + xx > =23,
x1,x2 > 0

312



Linear programs in canonical form

The first step is to add slack variables to convert the constraints into a
set of general equalities combined with nonnegativity requirements on all
the variables. The slacks are defined as follows:

X3 =x1 + 2x2 — 1,

Xq =2 X1 + X2,

X5 =x1 — X2 + 1,

Xe =x1 — 4x0 + 13,
x7 =—4x1 4+ xo + 23,
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Tableau representation of the linear program

x1 x2 1
x3 =1 2|1
x4 =2 110
x5 = |1 -—-1]1
x6 = |1 —4]|13
x7 = |4 1 |23

z =13 —-6|0

In MATLAB we store this tableau in a structure.

We may set a starting searching point by setting (the nonbasic variables)
x; = 0 and x, = 0, since the table is feasible, i.e. the corresponding slack
variables (basic) remain positive.

The values of the objective in this tableau, z = 0, is obtained from the
bottom right element.

Let us move from this starting position! | know now why but we have to
understand how we could move from a vertex to another vertex?
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Tableau representation of the Vertex 1

Vertex 5

How to move in Vertex 2 and stock it in Tableau, i.e., in a structure? 315



Jordan Exchange

Consider the following simple linear equation in the one-dimensional
variables x and y:
y =ax.

The form of the equation indicates that x is the independent variable and
y is the dependent variable: Given a value of x, the equation tells us how
to determine the corresponding values of y, i.e.

y(x) :=ax.
If we assume that a # 0, we can reverse the roles of y and x as follows:

x=a "y.
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Jordan Exchange

The Jordan exchange is a generalization of the process above. It deals
with the case in which x € R" is a vector of independent variables and
y € R™ is a vector of dependent variables, and we wish to exchange one
of the independent variables with one of the dependent variables.

Let us consider a linear system y = Ax, where A € R™*" and change
the roles of a component y, of y and a component xs of x. We write this
system equation-wise as

yi=Anxi+Anxo+ ... +Anx,, =12 ..m,

where the independent variables are xi, x>, ..., x, and the dependent
variables are y1,ya, ..., Ym.
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Jordan Exchange

We can think of the y;'s as linear functions of x;'s, that is
y,'(X) =Anxi+Apxo+ ...+ Anx, [=1,2,...m

or, more succinctly, y(x) := Ax. This system can also be represented in
the following tableau form:

X1 Xs Xn
v =[An - An o Au
= Ar Ars Am
Ym = Aml Ams Amn

We now decribe the Jordan exchange or pivot operation with regard to

the tableau representation. The dependent variable y, become

independent, while x, changes from being independent to being

dependent. 318



X1 Xs Xn
yi =|Aui - Ais At1n
= Ar Ars Am
Ym = Aml e Ams o Amn

The process is carried out by the following three steps:

a) Solve the rth equation y, = A1x1 + ... + ApsXs + ... + Ax, for xg in

terms of X1, ..., Xs—1, Vr, Xs-t1, -+

, Xp. Note that this is possible if and

only if A,s # 0. (A is known as pivot element.)

b) Substitute for xs in all the remaining equations.

c) Write the linear dependency in a new tableau as follows
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X1 X3 X X1 Yr X

y1i =|An Ais Ain y1 =|Bu Bis Bin
vo =|An o As oo An xe =|Bu -+ Bs - Bnm
Ym = Am1 Ams Amn Ym = Bm1 Bms Bmn

To determine the elements Bjj in terms of the elemets Aj;, let us carry
out the algebra specified by the Jordan exchange.

Solution of the rth equation y, = A;1x1 + ... + Asxs + ... + Amx, for xg

gives
Xs = A Yr+ 2:

j]d#S\\f/
*Bm :=Brj
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Subtituting of the expression of xg, i.e.

Xs = A Yr+ Z

j=1 J#S\,—/
._Brs :=Brj

in the ith equation of the tableau (i # r), i.e. in
Vil Airxt 4 oo 4 Aisxs + .o+ AinXa,

we have the formulae defining the rows i = 1,2,...m, i # r:

Z AUXJ+A15 Al }/r+ Z

I’

Jj=Ll.j#s Jj=L1.j#s
n
AisA, A; .
= > (A,-j— 5 ”>xj+’sy,, Vi #r.
o Ars Ars
J=LAS e ~—~
:=B; =Bis



We may do multiple pivots in succession. Consider the linear function y
defined by y(x) = Ax, where A € R™*". After k pivots (with
appropriate reordering of rows and columns) denote the initial and kth
tableaus as follows:

Xy X, Yy XU
Yo =|Ann Ansn Xy =|Bunsn Bui
Yo =|Absu Akl Yio =|Biu Bihus

Here I, I> is a partition of {1,2,..., m} and J;, J> is a partition of
{1,2,...,n}, with /; and J; containing the same number of elements.
Both tableaus express the same identity in different ways.

The uniqueness

If the linear function y is defined by y(x) = Ax and also by
y(x) = Bx, then A= B.

Proof.
Since (A— B)x = 0 for all x € R”, take x the elements of the canonical
base in R". We conclude that A = B. O
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Linear Independence

A key idea in linear algebra is that of linear dependence, which is a
generalization of the idea of parallel lines.

We define linear dependence of the rows of a matrix A formally as follows:
zZTA=0 for some nonzero z € R™.

The negation of linear dependence is linear independence of the rows of
A, which is defined by the implication

zZTA=0 = z=0.
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Linear Independence

The idea of linear independence extends also to linear functions. The
functions y(x) = Ax are linearly independence if and only if the rows of
the matrix A are linear independent.

Let us remark that y(x) are linear independent if and only if

zTAx=0 VxeR" = z=0.

Remark
If the m linear functions y; are linearly independent, then any p of them
are also linearly independent, where p < m.

Proposition
If the linear functions y defined by y(x) = Ax, A € R™*", are linearly
independent, then m < n. Furthermore, in the tableau representation,
all m dependent y;'s can be made independent; that is, they can be
exchanged with m independent Xx;'s.
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Proof.

Suppose that the linear functions y(x) = Ax are linearly independent.
Exchange y's and x's in the tableau until no further pivots are possible,
at which point we are blocked by a tableau of the following form (after a
possible rearrangement of rows and columns):

XJy XJa Yy XJz
Yo =|Ann Ansn Xy =|Busu Bui
Yo =|Abn Akl Yo =|Bpsy O

If I, # (0, we have that the tableau says that

)/IZ(X) = B/ley/l(X) = []BIZJI /] <YI1 (X)> —0.
yfz(X)

Note that any row z of [—Bj,, /] is nonzero and the above relation
implies that the functions y(x) = Ax are linear dependent.

Hence, we must have /, = (), and therefore m < n and all the y;'s have
been pivoted to the top of the tableau, as required. O
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Proposition (Steinitz)

For a given matrix A € R™*", the linear functions y defined by

y(x) = Ax are linearly independent if and only if for the corresponding
tableau representation all y;'s can be exchanged with m independent

Xj S.

Proof The “only if " part follows from the previous Proposition. So, we
have to prove only the “if" part.

If all the y;'s can be exchanged to the top of the tableau, then we have
(by rearranging rows and columns if necessary) that

XJy XUy Y Xk

y =|Ay, A, x, o By B,
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XJ.

i XU Yi XU

y = A‘Jl A'Jz XJy BA_jl B'Jz

Suppose now that there is some z such that z" A = 0.

We therefore have that z" Ax = 0 for all x € R". In the right-hand side
tableau above, we may set the independent variables y = z, x;, =0,

whereupon x;, = B.;, z.

For this particular choice of x and y, we have actually y = Ax, and so it
follows that

T

zTAx=0 = z"y=0 = z'z=0 = z=0,

verifying that the rows of A are linearly independent.
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Again the definition of a vertex

For the feasible region S := {x e R"|Ax > b, x > 0}, let
Xnyi = Aix—bi, 1=1,2,...,m.

where A;. means the /th row of the matrix A, like in Matlab.

In other word, a vertex of S is any point (x1, X2, ..., X,) € S that satisfies
XN = 07

where N is any subset of {1,2,...,n+ m} containing n elements such
that the linear functions defined by x;, j € N, are linearly independent.

It is important for the n functions in this definition to be linearly
independent. If not, then the system of equation xy = 0 has either zero
solution infinitely many solutions.
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More about vertices

Let us consider a linear program for which (0,0, ...,0) € R" belongs to
the feasible region. Therefore, taking N = {1,2,...n}, the following table

XN 1
xg =| A —b
z =|pT 0

describes the vertex (0,0, ...,0). And we see directly form this tableau
that (0,0, ...,0) belongs to the feasible region only if —b has only
nonnegative values.

e Starting from one vertex of the domain of feasibility, how it is
possible to arrive to the tableau describing another vertex?

e An idea is to use Jordan exchanges.
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More about vertices

Let us consider a linear program for which (0,0, ...,0) € R" belongs to
the feasible region. Therefore, taking N = {1,2,...n}, the following table

XN 1
xg =| A —b
z =|c” 0

describes the vertex (0,0, ...,0). And we see directly form this tableau
that (0,0, ...,0) belongs to the feasible region only if —b has only
nonnegative values.

e Do we succeed to come to another tableau describing an arbitrary
vertex proceeding a finite number of Jordan exchanges?

e Perhaps, yes, due to the definition of a vertex and as a consequence

of the Steiniz's Theorem. Explain!
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More about vertices

Let us consider a linear program for which (0,0, ...,0) € R" belongs to
the feasible region. Therefore, taking N = {1, 2, ...n}, the following table

xy 1
Xp = A —b
z =|pT 0

describes the vertex (0,0, ...,0). And we see directly form this tableau
that (0,0, ...,0) belongs to the feasible region only if —b has only
nonnegative values.

e By proceeding a Jordan exchange to a feasible table, do we arrive to
a feasible tableau?

xy 1
xg =|H h

:pTa

That means to a tableau of the form

where N is now another subset of indices of {1,2,...,n4+ m} and h > 0. 331



A vertex means a feasible tableau.

Theorem
Suppose that X is a vertex of S with corresponding index set N. Then if

we define
A=[A -1, B:={1,2,...,n+m}\N,

then X satisfies the relationships
Apxg+Anxy=b, xg>0, xy=0,

where A.g is invertible. Moreover, X can represented by a tableau of

the form
xy 1
Xgp = H h
z = CT (0%

with h > 0, i.e., by a feasible one.
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By the definition of a vertex it follows that
Apxg+Anxy =b, Xg>0, xn=0.

It remains to prove that A.g is invertible. Suppose there exists a vector z
such that z7 A.g = 0. It follows from above that z" b = 0.

By the definition, the functions xy satisfy
A.BXB + A-NXN = ba

and so z" A.yx, = 0.

Since xy are linearly independent, it follows that z” A.y = 0. Together
with the assumption that z" A.g = 0, this implies that z" A = 0.

Since A has the (negative) identity matrix in its columns, this implies
that z = 0, and thus A.g is invertible.
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Finally, premultiplying
A.gxg + A nyxy = b,
by A.g and rearranging, we see that
xg = AgAnxy+ A b,

which can be viewed in the first m lines of the tableau from conclusion of

the theorem.

Regarding the last line of the tableau, let us remark that the initial
expression of the cost, i.e.,
z=p1x1+ p2x2 + ... + PnXn + 0 xpi1 + 0 X,0m, may be written
generically as
T T
Z = pgXB + PyXN-
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By substituting
xXg = .A:BI.A‘N XN + A:‘glb
=H =h

in this last form of the cost we obtain

z=pgxs + pyxn = (—pg Ag An + py)xn + pg Ag b,

cl =—pLAG AN+ py
and
a=pLAGb.
Note that h > 0 since X is a point of the feasible region, i.e., X > 0, but

it also satisfies

X = AjglA.N XN + A%lb
=H =h

and Xy = 0. Therefore, h = xg > 0.
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In which vertex it is optimal to
move?



General rule
We move from one vertex to another vertex only if the COST decrease!
Hence, only if we obtain something better.
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How to move optimal?

Tableau representation of the linear program

x1 x2 1
x3 = (1 2|1
x4 =2 110
xs = (1 —-1]1
x6 = |1 —4]|13
x7 = 4 1 |23

z =13 —-6|0

In MATLAB we store this tableau in a structure.

We may set a starting searching point by setting (the nonbasic variables)
x; = 0 and x = 0, since the table is feasible, i.e. the corresponding slack

variables (basic) remain positive.

The values of the objective in this tableau, z = 0, is obtained from the

bottom right element.

Let us move from this starting position! | know now why but we have to 3"



How to move optimal?
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How to move optimal?

Let us move from this starting position! Where is optimal?

We now seek a pivot - a Jordan exchange of a basic variable with a
nonbasic variable - that yields a decrease in the objective z.

The issue is to choose the nonbasic variable which is to become basic,
that is, to choose a pivot column in the tableau. In allowing a nonbasic
variable to become basic, we are allowing its value to possibly increase
from 0 to some positive value. After that, we study which effect will this
increase have on z and on the dependence (basic) variable.

In the given example, let us try increasing x; from 0. We assign x; the
nonnegative value A while holding the other nonbasic variable x; at zero;
that is

X1 = A, x> = 0.
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How to move optimal?

The tableau

x1 x2 1
x3 = |1 211
xqg = |2 110
x5 = |1 —-1]|1
x6 = |1 —4]13
x7 = F4 1 |23
z =3 —-6|0

tells us how the objective z depends on x; and x, and so for the values

given above we have
z=3XA-6-0=3X>0 for A > 0.

This expression tells us that z increases as A increases- the opposite of

what we want!
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How to move optimal?

Let us try instead choosing x> as the variable to increase, and set

x1 =0, X2 = A > 0.
The tableau

x1 x2 1
x3 = |1 211
x4 =2 110
s = |1 —1]1
x6 = |1 —4]|13
x7 = 4 1 |23
z =3 —-6{0

tells us how the objective z depends on x; and x;, and so for the values

given above we have
z=3-0—-6A=-6A<0 for A>0,

thus decreasing z, as we wished.
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How to move optimal?

The tableau

x1 x2 1
x3 = |1 211
X4 = 2 1 0
x = (1 —-1f1
x6 = |1 —4]13
x7 = 4 1 |23
z =13 —-6]|0

tells us how the objective z depends on x; and x, and so for the values

given above we have
z=3-0—6A=-6A<0 for A >0,
thus decreasing z, as we wished.

The general rule is to choose the pivot column to have a negative value
in the last row, as this indicates that z will decreases as the variable
corresponding to that column increases away from 0. 342



How to move optimal?

We use the term pricing to indicate selection of the pivot column.

We call the label of the pivot column the entering variable, as this
variable is the one that “enters” the basis as this step of the simplex
method.

To determine which of the basis variables is to change places with the
entering variable, we examine the effect of increasing the entering
variable on each of the basis variables.
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The tableau

x1 x2 1
x3 =1 2|1
xq =12 110
x5 = |1 —-1]1
x6 = |1 —4]|13
x7 = |4 1 |23

z =13 —6]|0

indicates the following dependences of the basic variables in the
non-basic variables

x3= 2A+1,
Xg = A,

X3 =—A+1,
Xg = — 4+ 13,
x7 = A+23.
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Since z = —6\, we clearly would like to make \ as large as possible to
obtain the largest possible decrease in z. On the other hand, we cannot
allow A to become too large, as this would force some of the basic
variables to become negative. By enforcing the nonnegativity restrictions
on the variables above, we obtain the following restrictions on the value
of \:

x3= 2A4+1>0 = AX>-1/2
x3= AX>0 = AX>0
x5=—A+1>0 = X<1

X6 =—4X+13>0 = A<13/14
x7= A+23>0 = A>-23.

We see that the largest nonnegative value that A can take without
violating any of these constraints is A = 1. Moreover, we observe that
the blocking variable-the one that will become negative if we increase A
above its limit of 1-is xs.
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We choose the row for which x5 is the label as the pivot row and refer to
x5 as the leaving variable—the one that changes from being basic to
being nonbasic. The pivot row selection process just outlined is called the

ratio test.

By setting A = 1, we have that x; and x5 are zero, while the other

variables remain nonnegative.

We obtain the tableau corresponding to this point by performing the
Jordan exchange of the row labeled x5 (row 3) with the column labeled

xo (column 2). The new tableau is as follows

X3
X4
X2
X6

X7

Note that z decreased from 0 to —6 and that the table corresponds to
the vertex characterised bv x1 = 0 x=« — 0

x1 x5 1
g 2|8
3 —-1]1
1 —-1]1
-3 4 19
—3 —1 |24
-3 6 |—6
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Therefore, we have moved from the vertex x; = 0, xo = 0 to the vertex

X1 :0,X5 =0.

Vertex 5

6 7 8
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Pricing and Ration Test

Given the tableau

XN 1
xg =|H h
z = CT «

where B represents the current set of basic variables and N represents
the current set of nonbasic variables, a pivot step of the simplex method
is a Jordan exchange between a basic and nonbasic variable according to
the following:
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Pricing and Ration Test

Pricing (selection of pivot column s): The pivot column is a column
s with a negative element in the bottom row. These elements are

called reduced costs.

Ratio Test (selection of pivot row r): The pivot row is a row r such

that
h, . h;
—— = mijn{—— | His < 0}.
Hrs i His
XN 1 Xﬁ 1
XB — H h — XE = ﬁ F
z =[cf @ z =|¢T a
Cshe

Here, by the Jordan exchange formulas a = o — < «, where the

strict inequality follows from the properties of cs, h, and H,s.
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Note that there is considerable flexibility in selection of the pivot column,
as it is often the case that many of the reduced costs are negative.

One simple rule is to choose the column with the most negative reduced
cost. This gives the biggest decrease in z per unit increase in the
entering variable.

However, since we cannot tell how much we can increase the entering
variable until we perform the ratio test, it is not generally true that this
choice leads to the best decrease in z on this step, among all possible

pivot columns.
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Returning to the example, we are now interested how (or if it is needed)
to move from vertex x; = 0, xs = 0 to another vertex.

Vertex 5

6 7 g



We see that column 1, the one labeled xi, is the only possible choice for
pivot column. The ratio test indicates that row 4, labeled by xg, should
be the pivot row. We thus obtain

X3
X4
X2
X6

X7

X1

X6 X5
x3 = —1 2 |12
xg = -1 3 |10
xp = —0.33 033 4
x3 = —0.33 1.33| 3
X7 = 1 -5 115
2 = 1 2 |-15
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X6 X5 1

x3 = -1 2 12
xq = —1 3 10
x2 = —0.33 0.33

x1 = —0.33 1.33( 3
X7 = 1 —5 | 15
2 = 1 2 |-15

In this tableau, all reduced costs are positive, and so the pivot column
selection procedure does not identify an appropriate column.

This is as it should be, because this tableau is optimal! For any other
feasible point than the one indicated by this tableau, we would have
xs > 0 0 and x5 > 0, giving an objective z = xg + 2 x5 — 15 > —15.

Hence, we cannot improve z over its current value of —15 by allowing
either x5 or xg to enter the basis, and so the tableau is optimal.
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X6 X5 1

x3 = -1 2 12
xqg = -1 3 10
xp = —0.33 033]| 4
x1 = —0.33 1.33]| 3
X7 = 1 —5 | 15
z 1 2 |-15

The values of the basic variables can be read from the last column of the
optimal tableau. We are particularly interested in the values of the two
variables x; and x» from the original standard formulation of the problem;
they are x; = 3 and x, = 4.

In general, we have an optimal tableau when both the last column and
the bottom row are nonnegative.

Note: when talking about the last row or last column, we do not include
in our considerations the bottom right element of the tableau, the one
indicating the current value of the objective. Its sign is irrelevant to the
optimization process.
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Simplex method




Simplex method

We consider that the linear program is in the canonical form.

We split the simplex method in two phases:

Phase |: finds a starting point that satisfies the constraints, i.e., it
identifies a starting vertex. Note that we cannot always start the
initial tableau, given by the definition of the slacks variables, since
these tableau correspond to the origin (0,0,...0) € R" and it does
not belong always to the feasible region.

Phase Il: starts with a feasible tableau and applies the pivots needed
to move to an optimal tableau, thus solving the linear program.
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Simplex Algorithm

Construct an initial tableau. If the problem is in standard form, this
process amounts to simply adding slack variables.

If the tableau is not feasible, apply a Phase | procedure to generate
a feasible tableau, if one exists (TO DO in the next lectures). Let us
consider that a starting vertex is found, i.e., we know a feasible
tableau. For now we shall assume the origin xy = 0 is feasible, but
only to can implement Phase I, firstly.

Use the pricing rule to determine the pivot column s. If none exists,
STOP; (a): tableau is optimal.

Use the ratio test to determine the pivot row r. If none exists,
STOP; (b): tableau is unbounded.

Exchange xpg(r) and xy(s) using a Jordan exchange on H,s .

Go to Step 3.
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The Phase Il Procedure: optimal

Phase Il comprises Steps 3 through 6 of the method above—that part of
the algorithm that occurs after an initial feasible tableau has been
identified.

The method terminates in one of two ways.

e Stop (a) indicates optimality. This occurs when the last row is
nonnegative. In this case, there is no benefit to be obtained by
letting any of the nonbasic variables xy increase away from zero. We
can verify this claim mathematically by writing out the last row of
the tableau, which indicates that the objective function is

z = chN + a.

When ¢ > 0 and xy > 0, we have z > «a. Therefore, the point
corresponding to the tableau, xg = h and xy = 0, is optimal, with
objective function value «.
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The Phase |l Procedure: unbounded

e The second way that the method above terminates, Stop (b), occurs
when a column with a negative cost ¢; has been identified, but the
ratio test fails to identify a pivot row. This situation can occur only
when all the entries in the pivot column H.; are nonnegative.

In this case, by allowing xp(s) to grow larger, without limit, we will
be decreasing the objective function to —oo without violating

feasibility.
XN 1
xg =|H h
z = CT «
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Unbounded

In other words, by setting xy(s) = A for any positive value A, we have for
the basic variables xg that

XB()\) =H\N+h>h>0,
so the full set of variables x(\) € R™*" is defined by the formula

A if J = N(s),
x(A) = Hsh+ b i j=B(i),
0 fje N\{N(s)},

which is feasible for all A > 0.
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The Phase |l Procedure: unbounded

The objective function for x(\) is

z=c"xy(\) +a=cA+a,

which tends to —oco as A — co. Thus the set of points x(\) for A > 0
identifies a ray of feasible points along which the objective function
approaches —oc.
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More than one solution?

Linear programs may have more than one solution. In fact, given any
collection of solutions x1, x2, ..., x¥, any other point in the convex hull of

these solutions, defined by

K K
{x|x= Za;xi,Za; =10 >0,i=12,...K}
i=1 i=1

is also a solution.

To prove this claim, we need to verify that any such x is feasible with
respect to the constraints Ax > b, x > 0 and also that x achieves the
same objective value as each of the solutions x’,i = 1,2, ..., K. First,

note that
K K
Ax = Za;Ax’ > Za;b = b,
i=1 i=1

and so the inequality constraint is satisfied. Since x is a nonnegative
combination of the nonnegative vectors x, it is also nonnegative, and so

the constraint x > 0 is also satisfied.
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Finally, since each x; is a solution, we have that p” x’ = z for some scalar
Zopt and all i =1,2, ..., K. Hence,

K K
T T i
p xX= § aip X = § QjZopt = Zopt-
i=1 i=1

Since x is feasible and attains the optimal objective value z,,, we
conclude that x is a solution, as claimed.

Phase Il can be extended to identify multiple solutions by performing
additional pivots on columns with zero reduced costs after an optimal
tableau has been identified.

xy 1
xg =|H h
z =|cT a
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The Phase | Procedure

In all the problems we have examined to date, the linear program has
been stated in standard form, and the tableau constructed from the
problem data has been feasible.

This situation occurs when x; =0, i = 1,2, ..., n is feasible with respect
to the constraints, that is, when the right-hand side b of all the inequality
constraints is nonpositive.

xy 1
Xp = A —b
z =|p’ 0

In general, however, this need not be the case, and we are often faced
with the task of identifying a feasible initial point (that is, a feasible
tableau), so that we can go ahead and apply the Phase Il procedure
already described.
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The Phase | Procedure

The process of identifying an initial feasible tableau is called Phase I.

Phase | entails the solution of a linear program that is different from,
though closely related to, the problem we actually wish to solve.

It is easy to identify an initial feasible tableau for the modified problem,
and its eventual solution tells us whether the original problem has a
feasible tableau or not.

If the original problem has a feasible tableau, it can be easily constructed
from the tableau resulting from Phase I.
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The Phase | Procedure

The Phase | problem contains one additional variable xgy, a set of
constraints that is the same as the original problem except for the
addition of xg to some of them, and an objective function of xq itself.

It can be stated as follows:

min Z0 = X

X0,X1,X2,---,Xn ER 0 0
subject to  x,.;, = Aaxit+ ... +Anx, —bi +xo if b >0
Xp+i = Ainxi+ ... +Anx, —b; if b <0

X15 X2y -5 Xn+-ms X0 > 0.

The variable xg is an artificial variable.

Note that the objective zy is bounded below by 0, since xg is constrained
to be nonnegative.
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The Phase | Procedure

min Zo — Xo
X0,X1,X2,---,Xn ER

subject to  x,.;, = Aaxit+ ... FAwxy, —bi +xo if b >0
Xp+i = Aixi+ ... +Apnx, —b; if b <0

X15 X2y -5 Xn+-ms X0 > 0.

We note a number of important facts about this problem:

e We can obtain a feasible point for the auxiliary problem by setting
xo = max(maxi<j<n b;,0) and xy =0 for N = {1,2,...,n}. The
dependent variables xg, where B = {n+1,n+2,...,n+ m}, then
take the following initial values:
bi >0 = xpp;=A.x—bj+x0=—b + max b; > —b; + b; =0,
1<j<m,b;>0

bi <0 = xpp; =A.x—bj=—b; >0.

so that xg > 0, and these components are also feasible. 366



The Phase | Procedure

min Z0 = Xo
X0,X1,X2,..-,Xn ER
subjectto Xpnyi = Ainxi+ ... FAnxn, —bi “+xo if b >0
Xn+i — A,‘1X1—|— —|—A,'an —b,' if b,’ S 0

X15 X2y -5 Xnd-ms X0 > 0.

A number of important facts about this problem:

e If there exists a point X that is feasible for the original problem, then
the point (xg, x) = (0,X) is feasible for the Phase | problem. (It is
easy to check this fact by verifying that x,,; > 0 for i =1,2,....m.)
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The Phase | Procedure

Xo7X17>g1,l-r-1-,XnER 2 =20
subject to  x,.;, = Aaxit+ ... FAwxy, —bi +xo if b >0
Xp+i = Ainxi+ ... +Anx, —b; if b <0

X1y X2 ++ey Xnt-m» X0 > 0.

A number of important facts about this problem:

e Conversely, if (0,x) is a solution of the Phase | problem, then x is
feasible for the original problem. We see this by examining the
constraint set for the Phase | problem and noting that

b >0 = OSXH+;:Ai.X—b;+X0:A;.X—b,',
bi<0 = 0< Xn+j = Ai.x — b,',
so that Ax > b.
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The Phase | Procedure

min Z0 = X
X0,X1,X2,---,Xn ER 0 0
subject to  x,.;, = Aaxit+ ... FAwx, —bi +xo if b >0
Xp+i = Ainxi+ ... +Anx, —b; if b <0

X1 X2y -5 Xnt-ms X0 > 0.

A number of important facts about this problem:

e If (xo,x) is a solution of the Phase | problem and xg is strictly
positive, then the original problem must be infeasible. This fact
follows immediately from the observations above: If the original
problem were feasible, it would be possible to find a feasible point
for the Phase | problem with objective zero.
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We can set up this starting point by forming the initial tableau for the
auxiliary problem, in the usual way and performing a “special pivot.” We
select the xg column as the pivot column and choose the pivot row to be
a row with the most negative entry in the last column of the tableau.

After the special pivot, the tableau contains only nonnegative entries in
its last column, and the simplex method can proceed, using the usual
rules for pivot column and row selection.
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An example

min  z=4x; +5x

x1,x2€ER
subjectto x3 + x > -1,
X1 4+ 2x = 1,
4x, 4+ 2x» > 8,
-x1 — x > =3
-1+ x> 1
x1,x2 > 0
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We start by loading the data into a tableau and then adding a column for

the artificial variable xg and the Phase | objective zg.

x1 X2 xp| 1
x3 = 1 1 0|1
x2 = 1 2 1]|-1
xs = 4 2 1/[-8
x = —1 -1 0|3
xx = =1 1 1]-1

z = 4 5 00
zg = 0 0 1/O0

x1 X2 xg 1

X3 1 1 0|1
Xa -3 0 1|7
X0 —4 -2 1| 8
X6 -1 -1 0| 3
X7 -5 -1 1|7
z 4 5 00

20 -4 -2 1| 8
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Since the objective of the auxiliary problem is bounded below (by zero),
it can terminate only at an optimal tableau. Two possibilities then arise.

e The optimal objective z is strictly positive. In this case, we
conclude that the original problem is infeasible, and so we terminate
without going to Phase II.

e The optimal objective zg is zero. In this case, xo must also be zero,
and the remaining components of x are a feasible initial point for the
original problem. We can construct a feasible table for the initial
problem from the optimal tableau for the Phase | problem as follows.

e First, if xo is still a dependent variable in the tableau (that is, one of
the row labels), perform a Jordan exchange to make it an
independent variable. (Since xo = 0, this pivot will be a degenerate
pivot, and the values of the other variables will not change.)

e Next, delete the column labeled by xo and the row labeled by zo from
the tableau.

The tableau that remains is feasible for the original problem, and we
can proceed with Phase Il, as described above.
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Phase I:

1. If b<0, then xg = —b, xy = is a feasible point corresponding to
the initial tableau and no Phase | is required. Skip to Phase II.

2. If b >0, introduce the artificial variable x0 (and objective function
29 = xp) and set up the Phase | auxiliar problem and the
corresponding tableau.

3. Perform the “special pivot” of the xp column with a row
corresponding to the most negative entry of the last column to
obtain a feasible tableau for Phase I.

4. Apply standard simplex pivot rules until an optimal tableau for the
Phase | problem is attained.

o If the optimal value (for zo) is positive, stop: The original problem
has no feasible point.

o Otherwise, perform an extra pivot (if needed) to move xo to the top
of the tableau.

5. Strike out the column corresponding to xp and the row
corresponding to zg and proceed to Phase II.
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X0 Xe Xs 1
x3 = 0 -1 0 4
xa = 15 -3 —0.5( 4
xx1 = —05 1 05| 1
x2 = 05 -2 —05[ 2
x7 = 2 =3 —-1[0
z = 05 -6 —0.5|14
zo = 1 0 0 0

Although feasible, this tableau is not optimal for Phase Il. Simplex rules

X7 X5 1
x3 = 1/3 1/3 |4
Xa 1 0.5 |4
X1 11/3 1/6 |1
X2 2/3 1/6 (2
X6 -1/3 -1/3 |0
z 2 15 (14

lead us to perform the following degenerate pivot:

X7 X5 1
x3 = -1 0 |4
xg = —3 —05| 4
xx = 1 051
X6 = -2 —0.5]2
x7 = =3 —-11]0
z = —6 —-05(14
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Finite Termination




Why cycling?

Again the definition of a vertex

For the feasible region S := {x € R"| Ax > b, x > 0}, let
Xppi = Aix— by, =12 ..m.
where A;. means the /th row of the matrix A, like in Matlab.
In other word, a vertex of S is any point (x1, X2, ..., X,) € S that satisfies
xy =0,

where N is any subset of {1,2,...,n+ m} containing n elements such
that the linear functions defined by x;, j € N, are linearly independent.

The set N that corresponds to a particular vertex may not be uniquely

defined; that is, the same vertex may be specified by more than one set
N.
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See the vertex 1 from out example!
It is defined by
e xy =0and x, =0;
e x3 =0 and
X4 =2x1 +x0 =0;
e x, =0 and
X4 =2x1+ x = 0.
So, by 3 (different
tableaux. Note that
(x1,%) +— x3 and
(x1,%2) = 2x1 + x» are
linearly independent, and

so the other two.
A vertex that can be specified by more than one set N is sometimes
called a degenerate vertex.

Therefore, there is no reason why to affirm that the algorithm do not
remain in a cycle in Vertex 1, by characterising it through 3 different
tableaux. 378



generate/nondegenerate tableau

Definition

A feasible tableau is degenerate if the last column contains any zero
elements. If the elements in the last column are all strictly positive, the
tableau is nondegenerate. A linear program is said to be nondegenerate if
all feasible tableaus for that linear program are nondegenerate.

X7  Xg 1

x3 = =1 0 4

xa = —3 —05(4

For instance, see xx = 1 051
x6 = —2 —0.5](2

x72 = —3 —=1{0

z = —6 —0.5|14
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Geometrically, a tableau is nondegenerate if the vertex it defines is at the
intersection of exactly n hyperplanes of the form x; = 0; namely, those
hyperplanes defined by j € N.

Consequently, a linear program is nondegenerate if each of the vertices of
the feasible region for that linear program is defined uniquely by a set N.

We encounter degenerate tableaus during the simplex method when there
is a tie in the ratio test for selection of the pivot row. After the pivot is
performed, zeros appear in the last column of the row(s) that tied but
were not selected as pivots. The finite termination of the simplex method
under these assumptions is now shown.
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The nondegenerate case

Theorem

If a linear program is feasible and nondegenerate, then starting at any
feasible tableau, the objective function strictly decreases at each pivot
step. After a finite number of pivots the method terminates with an
optimal point or else identifies a direction of unboundedness.

Proof.

At every iteration, we must have a nonoptimal, optimal, or unbounded
tableau. In the latter two cases, termination occurs. In the first case, the
following transformation occurs when we pivot on an element H,s , for
which h, > 0 (nondegeneracy) and ¢; < 0 (by pivot selection), and

H,s < 0 (by the ratio test):

XN]. X/vl
xg =|H h — xz =|H h O
z =|c’ a : =|e7 @
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z =|cC «

Here, by the Jordan exchange formulas a = o — Cf_,—h < a, where the
strict inequality follows from the properties of ¢, h, and H,s.

Hence, we can never return to the tableau with objective «, since this
would require us to increase the objective at a later iteration, something
the simplex method does not allow. Since we can only visit each possible
tableau at most once, and since there are only a finite number of possible
tableaus, the method must eventually terminate at either an optimal or
an unbounded tableau.

In fact, a bound on the number of possible tableaus is obtained by
determining the number ofways to choose the nonbasic setN (with n
indices) from the index set {1,2,..., m + n} which, by elementary
combinatorics, is C] ..
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The general case

Beale (1955) shown that for a degenerate linear program, reasonable
rules for selecting pivots can fail to produce finite termination.

Finite termination depends crucially on the rule used to select pivot
columns (in the event of more than one negative entry in the last row)
and on the rule for selecting the pivot row (in the event of a tie in the
ratio test). As shown above, even apparently reasonable rules can fail to

produce finite termination.

We now modify the pivot selection rule of the simplex method to
overcome this problem.
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Smallest-subscript rule

This rule was introduced by Bland (1977) and is commonly called
Bland's rule or the smallest-subscript rule.

Pricing (selection of pivot column s): The pivot column is the
smallest N(s) of nonbasic variable indices such that column s has a
negative element in the bottom row (reduced cost).

Ratio Test (selection of pivot row r): The pivot row is the smallest
B(r) of basic variable indices such that row r satisfies

h,
HfS

hi

In other words, among all possible pivot columns (those with negative
reduced costs), we choose the one whose label has the smallest subscript.
Among all possible pivot rows (those that tie for the minimum in the ratio

test), we again choose the one whose label has the smallest subscript. -



The following theorem establishes finiteness of the simplex method using
the smallest-subscript rule, without any nondegeneracy assumption. The
proof closely follows the one given by Chvatal (1983).

Theorem

If a linear program is feasible, then starting at any feasible tableau, and
using the smallest-subscript anticycling rule, the simplex method
terminates after a finite number of pivots at an optimal or unbounded
tableau.

Theorem

For a linear program, the two-phase simplex method with the
smallest-subscript anticycling rule terminates after a finite number of
pivots with a conclusion that the problem is infeasible, or at an optimal
or unbounded tableau.
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Linear Programs in
Nonstandard Form



Transforming Constraints and Variables

The complete process for solving a general linear program involves the
following steps:

1. Convert maximization problems into minimization problems.
max({p, x) & min —(p, x)
2. Replace equations in inequalities
ax+b=0 & ax+b<0 and ax-+b>0.
3. Transform less-than inequalities into greater-than inequalities.

ax—b<0 & —ax+b>0.
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Transforming Constraints and Variables

4. Use substitution to convert generally bounded variables into
nonnegative.

0<x<bh = x—b<O0 = —x+b>0,
x<b = x—b<0 = —x+b>0,
——
=y
x>b & xX—b>0
——
=y

5. Use substitution to convert free variables into nonnegative.

xeR & x=y"—y~, yT,y~ >0.

6. Replace bounded variables and free variables and equations from the
formulation.
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Transforming Constraints and Variables

7. If the tableau is infeasible, apply the Phase | method to generate a
feasible tableau. If Phase | terminates with a positive objective
function value, stop and declare the problem infeasible.

8. Apply Phase Il pivots to determine unboundedness or an optimal
tableau.

9. Recover the values of the original variables if substitution was
applied.

10. If the problem was originally a maximization, negate the objective
value in the final tableau to give the optimal value of the original

problem.
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A final result about the Simplex Method

Theorem

Given any linear program, suppose we apply Scheme | together with the
two-phase simplex method using the smallest-subscript anticycling rule.
Then, after a finite number of pivots, the algorithm either terminates
with a conclusion that the problem is infeasible or else arrives at an
optimal or unbounded tableau.
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Succes in calatoria voastral




