
Calcul ştiinţific

Ionel-Dumitrel Ghiba

dumitrel.ghiba@uaic.ro
https://www.math.uaic.ro/ ghiba/teaching.html

Table of contents i

Detalii privind evaluarea

Matrice-Recapitulare

Metode directe de rezolvare a sistemelor algebrice liniare unic determinate

Analiza erorii

Algebrǎ liniarǎ: completǎri

Sisteme nedeterminate

Problema celor mai mici pǎtrate: “Soluţia” sistemelor supra-determinate,
Data Fitting

Sisteme nedeterminate cu factorizarea QR

Sisteme nedeterminate cu descompunerea în valori singulare (SVD) şi
pseudoinversǎ

Metoda gradientului folositǎ pentru rezolvarea sistemelor

The Gauss—Newton Method

1

Table of contents ii

Pure Newton’s Method, Damped Newton’s Method, Hybrid
Gradient-Newton Method

Fermat-Weber problem

Linear Programming

Simplex method

2

Bibliografie

Întreaga prezentare se bazeazǎ şi conţine rezultate şi calcule din

• MATLAB Lucian Maticiuc, Introducere în MATLAB, Iaşi, 2019,
disponibil on-line la adresa
https://www.math.uaic.ro/ maticiuc/didactic/MATLAB_Course.pdf

• Quarteroni, Alfio, Riccardo Sacco, and Fausto Saleri. Numerical
mathematics. Vol. 37. Springer Science & Business Media, 2010.

• Gander, Walter, Martin J. Gander, and Felix Kwok. Scientific
computing-An introduction using Maple and MATLAB. Vol. 11.
Springer Science & Business, 2014.

• Amir Beck, Introduction to nonlinear optimization-Theory,
Algorithms, and Applications with MATLAB, SIAM, 2014.

3

Detalii privind evaluarea

Detalii privind evaluarea

• Evaluare continuǎ (EC) (N1) (50% din nota finalǎ):
• un referat la seminar în care sǎ se sumarizeze noţiunile teoretice şi sǎ

se exemplifice aplicarea lor (25% din nota finalǎ),
• activitatea la seminar (25% din nota finalǎ);

• Examen final mixt (50% din nota finalǎ)
• rezolvarea a douǎ exerciţii/scriere de programe din care unul foarte

asemǎnǎtor cu cele din fişele de lucru pentru laboratoare sau din
referatele prezentate (25% din nota finalǎ),

• explicarea noţiunilor teoretice prin extragerea a douǎ bilete (25% din
nota finalǎ).

4

Scop general

Ne propunem sǎ gǎsim algoritmi numerici pentru rezolvarea unui sistem
de n ecuaţii cu n necunoscute, adicǎ

n∑
j=1

aijxj = bj , i = 1, 2, ...,m

unde aij ∈ R, bj ∈ R, i = 1, 2, ...,m, j = 1, 2, ..., n.

Definind matricea A având componentele aij , i = 1, 2, ...,m, j = 1, 2, ..., n
(matricea sistemului), vectorul coloanǎ x de componente xj
(necunoscuta) şi vectorul coloanǎ b de componente bj (termenul liber) ,
sistemul poate fi scris în forma matricealǎ

A x = b.

A determina soluţia înseamnǎ a determina vectorul x ∈ Rn care verificǎ
sistemul de mai sus.

Prezentǎm diverse strategii de rezolvare împreunǎ, pe cât posibil, cu
aplicaţii ale lor în practicǎ, însǎ scopul principal este de argumenta
metodele din punct de vedere matematic. 5

Scop iniţial

Ne propunem sǎ gǎsim algoritmi numerici pentru rezolvarea unui sistem
de n ecuaţii cu n necunoscute, adicǎ

n∑
j=1

aijxj = bj , i = 1, 2, ..., n,

unde aij ∈ R, bj ∈ R, i , j = 1, 2, ..., n.

Definind matricea A având componentele aij , i , j = 1, 2, ..., n (matricea
sistemului), vectorul coloanǎ x de componente xj (necunoscuta) şi
vectorul coloanǎ b de componente bj (termenul liber) , sistemul poate fi
scris în forma matricealǎ

A x = b.

Vom presupune pentru început cǎ sistemul este unic determinar, adicǎ
detA 6= 0.

6

Ne reamintim cǎ sistemul admite soluţie unicǎ dacǎ una dintre
urmǎtoarele condiţii este verificatǎ:

• A este inversabilǎ (atunci x = A−1b);

• rank A = n.

Dacǎ sistemul este omogen (b = 0), atunci admite soluţia nulǎ

x =



0
...
0
...
0


∈ Rn.

7

Regula lui Cramer

Dacǎ A este inversabilǎ atunci regula lui Cramer ne conduce la soluţie

xj =
∆j

detA
, j = 1, 2, ..., n,

unde ∆j este determinantul matricei obţinute din A prin înlocuirea
coloanei j cu coloane termenilor liberi b.

Totuşi, aceastǎ formulǎ nu este prea indicatǎ în practicǎ pentru cǎ dacǎ
folosim regula lui Laplace pentru calculul determinanţilor atunci regula lui
Cramer necesitǎ (n + 1)! operaţii.

Având în vedere cǎ în practicǎ sistemele sunt mari, aceasta înseamnǎ
timp mare de lucru.

8

Metode numerice

• DIRECTE (numǎr finit de paşi): se construieşte soluţia într-un
numǎr finit de paşi (calcule cu ajutorul liniilor), folosind factorizǎri
A = L U, A = L D MT , ...

• INDIRECTE: se construieşte un şir (xk) ⊂ Rn care sǎ conveargǎ la
soluţia sistemului. Teoretic am un numǎr infinit de paşi, dar de fapt
ne oprim când xk este “suficient de aproape" de x .

9

Sisteme mari!!! Ne mai ajutǎ metodele învǎţate?

Dar ce facem când avem sisteme foarte mari şi vrem sǎ gǎsim o soluţie?

Aplicǎm teorema Kronecker-Capelli şi facem calcule pe hârtie calculând,
de exemplu determinanţi de matrice 1000×1000?

10

Matrice-Recapitulare

Matrice pozitiv definite

Pozitiva definire a unei matrice

• Spunem cǎ matricea A ∈ Rn×n este simetricǎ dacǎ A = AT ,

• Spunem cǎ matricea simetricǎ A ∈ Rn×n este pozitiv semidefinitǎ,
notǎm A � 0, dacǎ 〈A x , x〉 ≥ 0 pentru orice x ∈ Rn, unde 〈·, ·〉
reprezintǎ produsul scalar standard din Rn.

• Spunem cǎ matricea simetricǎ A ∈ Rn×n este pozitiv definitǎ,
notǎm A � 0, dacǎ 〈A x , x〉 > 0 pentru orice x ∈ Rn, x 6= 0.

11

Valori proprii şi vectori proprii

Fie A ∈ Rn×n. Un vector nenul v ∈ Cn se numeşte vector propriu pentru
A dacǎ existǎ λ ∈ C astfel încât

A v = λ v .

Scalarul λ se numeşte valoarea proprie corespunzǎtoare vectorului propriu
v . În general, matricele reale pot avea valori proprii complexe, dar
matricele simetrice reale admit doar valori proprii reale. Demonstraţi!

Valorile proprii ale unei matrice simetrice A ∈ Rn×n vor fi notate cu

λ1(A) ≥ λ2(A) ≥ ... ≥ λn(A).

Cea mai mare valoare proprie va fi notatǎ cu λmax(A) = λ1(A) şi cea mai
micǎ valoare proprie va fi notatǎ cu λmin(A) = λn(A).

12

Pozitiva definire şi valori proprii

Fie A o matrice simetricǎ din Rn×n. Atunci

• A este pozitiv semidefinitǎ dacǎ şi numai dacǎ valorile sale proprii
sunt mai mari sau egale cu 0.

• A este pozitiv definitǎ dacǎ şi numai dacǎ valorile sale proprii sunt
strict mai mari decât 0.

Criteriul minorilor principali

Fie A o matrice simetricǎ din Rn×n. Atunci A este pozitiv definitǎ
dacǎ şi numai dacǎ minorii principali detA(1 : i , 1 : i), i = 1, 2, · · · , n,
sunt strict pozitivi.

13

O matrice A ∈ Rn×n se numeşte diagonal dominantǎ pe linii dacǎ

|aii | ≥
n∑

j=1,j 6=i

|aij |, with i = 1, · · · , n. (1)

O matrice A ∈ Rn×n se numeşte diagonal dominantǎ pe coloane dacǎ

|aii | ≥
n∑

j=1,j 6=i

|aji |, with i = 1, · · · , n, (2)

Dacǎ inegalitǎţile sunt stricte, spunem cǎ A este strict diagonal
dominantǎ (pe linii, respectiv, pe coloane).

Teoremǎ
O matrice simetricǎ strict diagonal dominantǎ cu elemente strict pozitive
pe diagonalǎ este pozitiv definitǎ.

Este reciproca valabilǎ?

14

Metode directe de rezolvare a
sistemelor algebrice liniare unic
determinate

Rezolvarea sistemelor inferior triunghiulare

Pentru exemplificare sǎ considerǎm sistemull11 0 0
l21 l22 0
l31 l32 l33


x1

x2
x3

 =

b1
b2
b3

 , (3)

unde lii 6= 0, i = 1, 2, 3.

Ultima condiţie ne asigurǎ cǎ matricea sistemului este inversabilǎ, soluţia
fiind datǎ de

x1 =
b1
l11
,

x2 =
b2 − l21x1

l22
,

x3 =
b3 − l31x1 − l32x2

l33
.

Acest algoritm se numeşte metoda substituţiilor succesice (forward).

15

În general pentru n ≥ 2 avem

x1 =
b1
l11
,

xi =

bi −
i−1∑
j=1

lijxj

lii
, i = 2, ..., n. (4)

Câte operaţii trebuiesc fǎcute?

16

În general pentru n ≥ 2 avem

x1 =
b1
l11
,

xi =

bi −
i−1∑
j=1

lijxj

lii
, i = 2, ..., n. (5)

Câte operaţii trebuiesc fǎcute?
n(n+1)

2 înmulţiri şi n(n−1)
2 adunǎri şi scǎderi = n2 operaţii.

17

În general pentru n ≥ 2 avem

x1 =
b1
l11
,

xi =

bi −
i−1∑
j=1

lijxj

lii
, i = 2, ..., n. (6)

Câte operaţii trebuiesc fǎcute?
n(n+1)

2 înmulţiri şi n(n−1)
2 adunǎri şi scǎderi = n2 operaţii.

Comparaţi cu (n + 1)! de la regula lui Cramer.

18

Rezolvarea sistemelor superior triunghiulare

Pentru exemplificare sǎ considerrǎm sistemulu11 u12 u13
0 u22 u23
0 0 u33


x1

x2
x3

 =

b1
b2
b3

 , (7)

unde uii 6= 0, i = 1, 2, 3.

Ultima condiţie ne asigurǎ cǎ matricea sistemului este inversabilǎ, soluţia
în cazul general fiind datǎ de

xn =
bn

unn
,

xi =

bi −
n∑

j=i+1

uijxj

uii
, i = n − 1, ..., 1. (8)

Acest algoritm se numeşte metoda substituţiilor backward.

Avem tot n2 operaţii.
19

Pentru implementare

Pentru implementare ar fi indicat sǎ stocǎm doar elementele nenule
atunci când avem de rezolvat sistemele triunghiulare.

20

Eliminare gaussianǎ şi
factorizarea LU

Eliminare gaussianǎ

Eliminare gaussianǎ ne ajutǎ sǎ reducem un sistem

A x = b

la un sistem (sau douǎ sisteme) triunghiular prin transformǎri succesive
ale sistemului în sisteme echivalente

A(1) x = b(1) → A(2) x = b(2) → · · · → A(k) x = b(k).

Presupunem cǎ la fiecare pas elementul a
(k)
kk al matricei A(k) este nenul.

Acest element va fi numit pivot.

Presupunem cǎ A este inversabilǎ, adicǎ sistemul admite soluţie unicǎ.

21

Pasul 1

Plecǎm de la sistemul

a
(1)
11 a

(1)
12 · · · · · · a

(1)
1n

a
(1)
21 a

(1)
22 · · · · · · a

(1)
2n

a
(1)
31 a

(1)
32 · · · · · · a

(1)
2n

...
...

.
...

a
(1)
n1 a

(1)
n2 · · · · · · a

(1)
nn


︸ ︷︷ ︸

≡A


x1
x2
...

xn

 =


b

(1)
1

b
(1)
2
...

b
(1)
n



Definim multiplicatorii mi1 =
a

(1)
i1

a
(1)
11
, i = 2, 3, ..., n, înmulţim prima linie cu

mi1, pe rând, şi scǎdem rezultatele din linia i = 2, 3, ..., n, respectiv.

22

Pasul 1

Se obţine astfel un nou sistem, echivalent cu cel iniţial

a
(1)
11 a

(1)
12 · · · · · · a

(1)
1n

0 a
(2)
22 · · · · · · a

(2)
2n

0 a
(2)
32 · · · · · · a

(2)
2n

...
...

.
...

0 a
(2)
n2 · · · · · · a

(2)
nn


︸ ︷︷ ︸

:=A(2)


x1
x2
...

xn

 =


b

(2)
1

b
(2)
2
...

b
(2)
n

 .

23

Pasul k

Repetând procedeul, la pasul k se obţine astfel un nou sistem, echivalent
cu cel iniţial

a
(1)
11 a

(1)
12 · · · · · · · · · a

(1)
1n

0 a
(2)
22 · · · · · · · · · a

(2)
2n

...
...

.
...

0 0 · · · a
(k)
kk · · · a

(k)
kn

...
...

.
...

0 0 · · · a
(k)
nk · · · a

(k)
nn


︸ ︷︷ ︸

:=A(k)


x1
x2
...

xn

 =



b
(1)
1

b
(2)
2
...

b
(k)
k
...

b
(k)
n


︸ ︷︷ ︸

:=b(k)

.

24

Pasul n − 1

Dupǎ n − 1 paşi se obţine astfel un nou sistem, echivalent cu cel iniţial
dar superior triunghiular

a
(1)
11 a

(1)
12 · · · · · · · · · a

(1)
1n

0 a
(2)
22 · · · · · · · · · a

(2)
2n

...
...

.
...

0 0 · · · a
(k)
kk · · · a

(k)
kn

...
...

.
...

0 0 · · · 0 · · · a
(n)
nn


︸ ︷︷ ︸

:=A(n)


x1
x2
...

xn

 =



b
(1)
1

b
(2)
2
...

b
(k)
k
...

b
(n)
n


︸ ︷︷ ︸

:=b(n)

.

25

Algoritm

În concluzie, formulele dupǎ care se modificǎ sistemul de la pasul k în
sistemul de la pasul k + 1 sunt

mik =
a

(k)
ik

a
(k)
kk

, i = k + 1, ..., n,

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj , i , j = k + 1, ..., n, (9)

b
(k+1)
i = b

(k)
i −mikb

(k)
k , i , j = k + 1, ..., n.

26

Numǎrul de operaţii

• Aplicând GEM avem 2(n−1)n(n+1)
3 + n(n − 1) operaţii pentru a aduce

sistemul la o formǎ triunghiularǎ.

• Se adaugǎ n2 operaţii pentru rezolvarea sistemului superior
triunghiular.

• În total 2n3

3 + 2 n2 operaţii.

27

GEM funcţioneazǎ dacǎ a
(k)
kk 6= 0, k = 1, 2, ..., n − 1.

Din pǎcate, plecând cu o matrice nenulǎ pe diagonalǎ nu avem
certitudinea cǎ la un pas ulterior k nu vom avea a

(k)
kk 6= 0.

De exemplu, considerând matricea

A =

1 2 3
2 4 5
7 8 9


dupǎ primul pas gǎsim

A(2) =

1 2 3
0 0 −1
0 −6 −12

 .

28

Ce e de fǎcut?

29

Ce e de fǎcut?

Nu mai rezolvǎm sisteme sau mergem cu un algoritm care e posibil sǎ nu
funcţioneze?

Nu. Constientizǎm problema şi acoperim toate cazurile construind noi
strategii.

30

Ce e de fǎcut?

Nu mai rezolvǎm sisteme sau mergem cu un algoritm care e posibil sǎ nu
funcţioneze?

Nu. Constientizǎm problema şi acoperim toate cazurile construind noi
strategii.

Regândim teoretic problema fǎrǎ a recurge la “peticiri" de moment.

31

Anticipǎm

Poate putem şti de la bun început dacǎ pentru o matrice este potrivit sau
nu sǎ folosim GEM?

Într-adevǎr sunt criterii care ne asigurǎ cǎ putem folosi GEM, de exemplu

• Matrice dominate pe linii sau coloane.

• Matrice pozitiv definite.

Însǎ toate acestea trebuiesc cercetate şi argumentate, bǎnuilile nefiind
justificǎri.

32

În continuare urmǎrim sǎ rescriem matricea A ∈ Rn×n sub forma
A = L U, unde L este inferior triunghiularǎ iar U este superior
triunghiularǎ.

Facem acest lucru deoarece dupǎ ce vom reuşi, sistemul iniţial va putea fi
rescris sub forma a douǎ sisteme triunghiulare, adicǎ

A x = b ↔ L U x = b ↔

{
L y = b

U x = y
(10)

ce se vor rezolva pe rând.

33

GEM prin multiplicare de matrice

Sǎ remarcǎm cǎ operaţiile pe care le-am fǎcut asupra primei coloane se
rezumǎ la a înmulţi matricea A(1) := A, la stânga, cu matricea

M1 =



1 0 0 · · · · · · 0

−m21 1 0 · · ·
. . . 0

−m31 0 1 · · ·
. . . 0

...
. · · · 0

−mn1 0 0 · · · · · · 1



34

GEM prin multiplicare de matrice

Adicǎ 

1 0 0 · · · · · · 0

−m21 1 0 · · ·
. . . 0

−m31 0 1 · · ·
. . . 0

...
. · · · 0

−mn1 0 0 · · · · · · 1


︸ ︷︷ ︸

=M1

A(1) := A(2).

35

GEM prin multiplicare de matrice

Apoi 

1 0 0 · · · · · · 0

0 1 0 · · ·
. . . 0

0 −m32 1 · · ·
. . . 0

...
. · · · 0

0 −mn2 0 · · · · · · 1


︸ ︷︷ ︸

=M2

A(2) := A(3)

şi aşa mai departe repetând procedeul de n − 1 ori pânǎ se ajunge la

Mn−1Mn−2 · · ·M2M1A = A(n) =: U matrice superior triunghiularǎ.

36

Eliminare gaussianǎ

Considerǎm o matrice A ∈ Rn×n. Scopul este de a construi o secvenţǎ
A(k) = (a

(k)
ij) de matrici prin efectuarea de transformǎri liniare, astfel

încât sǎ ajungem la o matrice superior triunghiularǎ U = (uij) dupǎ
câţiva paşi finiţi.

În ultima sǎptǎmânǎ am vǎzut cǎ dacǎ presupunem cǎ pivoţii a11 6= 0,
a

(k)
kk = (Mk−1...M1 A)kk 6= 0 la orice pas k = 2, ..., n − 1, atunci

Mn−1Mn−2...M1 A = U, (11)

cu U o matrice superior triunghiularǎ, unde

Mk =



1 · · · 0 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 0 · · · 0
0 · · · −mk+1,k 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −mn,k 0 · · · 1


= In −mk eT

k , (12)

37

şi

mk =



0
...
0
0

mk+1,k
...

mn,k


∈ Rn, ek =



0
...
0
1
0
...
0


∈ Rn, mik =

a
(k)
ik

a
(k)
kk

, i = k + 1, · · · , n.

(13)

38

Mai mult, deoarece M−1k = In + mk eT
k (Exerciţiu), deducem (cum?

Detaliazǎ calculele!)

A = (In +
n−1∑
i=1

mie
T
i) U =



1 0 · · · 0 · · · 0

m21 1 0 · · · · · ·
...

m31 m32 1 0 · · ·
...

...
...

...
. . .

... 0
mn1 mn2 · · · mn,n−1 1


︸ ︷︷ ︸

:=L

U

(14)

39

Deci dacǎ nu întâlni pivoţi nuli (a(k)
kk) atunci putem construi factorizarea

LU a acelei matrice.

Dar cum ştim dacǎ vom întâlni pivoţi nuli fǎ rǎ a începe procesul de
construcţie al factorizǎrii?

40

Existenţa şi unicitatea factorizǎrii LU

Teoremǎ
Fie A ∈ Rn×n. Existǎ factorizarea LU a matricei A cu lii = 1 pentru orice
i = 1, · · · , n şi este unicǎ dacǎ şi numai dacǎ submatricele principale
Ai = A(1 : i , 1 : i) ale lui de orice ordin i = 1, · · · , n− 1 sunt nesingulare.

Vom demonstra mai întâi implicaţia “⇐=". Vom demonstra faptul cǎ
dacǎ submatricea principalǎ Ai−1 admite descumpunere L U, atunci şi Ai

admite descompunere L U.

Pentru i = 1: A1 = a11 = 1︸︷︷︸
:=L

· a11︸︷︷︸
:=U

.

Presupunem cǎ existǎ descompunerea LU pentru Ai−1, adicǎ existǎ
matricea inferior triunghiularǎ Li−1 având elementele de pe diagonalǎ
egale cu 1 şi matricea superior triunghiularǎ Ui−1 astfel încât

Ai−1 = Li−1Ui−1.

Construim Li şi Ui astfel încât Ai = Li Ui .

41

Construim Li şi Ui astfel încât Ai = Li Ui .

Pentru aceasta dorim sǎ determinǎm vectorii ` şi u şi scalarul uii pentru
care (

Ai−1 c

dT aii

)
= Ai =

(
Li−1 0
`T 1

)
︸ ︷︷ ︸

:=Li

(
Ui−1 u

0T uii

)
︸ ︷︷ ︸

:=Ui

.

Trebuie sǎ avem(
Ai−1 c

dT aii

)
=

(
Li−1 0
`T 1

)
︸ ︷︷ ︸

:=Li

(
Ui−1 u

0T uii

)
︸ ︷︷ ︸

:=Ui

=

(
Li−1Ui−1 Li−1 u

`TUi−1 `Tu + uii .

)

42

Li−1 u = c ,

UT
i−1` = d , (15)

`Tu = aii − uii .

Deorece Ai−1 sunt nesigulare, vom avea cǎ Ui−1 sunt nesingulare.
Matricele Li−1 sunt nesingulare, având determinantul egal cu 1.

Prin urmare existǎ u, ` şi uii care verificǎ sistemul de mai sus şi care
construiesc matricea Li .

43

Sǎ demonstrǎm implicaţia inversǎ “=⇒".

Avem de demonstrat: Dacǎ existǎ factorizare LU cu lii = 1 şi este unicǎ,
atunci primele n − 1 submatrici principale ale lui A sunt inversabile.

Vom împǎrţi dicuţia pe douǎ cazuri.

Cazul 1. A este inversabilǎ, detA 6= 0:

Presupunem cǎ existǎ factorizare LU cu lii = 1 şi este unicǎ

Sǎ remarcǎm faptul cǎ din forma factorizǎrii rezultǎ cǎ a11 6= 0.

Deoarece factorizare LU existǎ pentru A, va exista şi pentru Ai şi
detAi = det L(i) detU(i) = detU(i) = u11u22 · · · uii , i = 1, n − 1.

Deoarece detAn 6= 0, rezultǎ cǎ u11u22 · · · unn 6= 0, adicǎ, în particular,
detAi = det L(i) detU(i) = detU(i) = u11u22 · · · uii 6= 0, i = 1, n − 1.

44

Cazul 2. A nu este inversabilǎ, detA = 0: Cu alte cuvinte presupunem
cǎ macar un element de pe diagonala lui U este egal cu zero.

Notǎm cu ukk elementul nenul de index minim k (pentru cǎ ar putea sǎ
fie şi alţii, dar îl alegem astfel).

În baza procedeului iterativ descris în prima parte a demonstraţiei va
rezulta cǎ factorizarea poate fi calculatǎ pânǎ la pasul k + 1.

De la acest pas, pentru cǎ matricea U(k) = U(1 : k , 1 : k) este
neinversabilǎ, existenţa şi unicitatea vectorului ` se pierde, şi, deci
întreaga factorizare LU pentru A(k + 1) = U(1 : k + 1, 1 : k + 1) şi
pentru matricea A.

Pentru ca acest fapt sǎ nu se întâmple, elementul nul ukk ar trebui sǎ fie
de index k = n − 1. Deoarece
detAi = det L(i) detU(i) = detU(i) = u11u22 · · · uii , i = 1, n − 1, toate
matricele principale Ak vor fi inversabile k = 1, · · · , n − 1

45

Example
Considerǎm matricele

B =

(
1 2
1 2

)
, C =

(
0 1
1 0

)
, D =

(
0 1
0 2

)
. (16)

• B admite o unicǎ factorizare LU.

• matricea neinversabilǎ C nu admite factorizare LU.

• matricea neinversabilǎ D admite o infinitate de factorizǎri de forma
D = LβUβ , cu

Lβ =

(
1 0
β 1

)
, Uβ =

(
0 1
0 2− β

)
∀ β ∈ R.

46

Existǎ un alt rezultat:

Teoremǎ
Dacǎ A este o matrice diagonal dominantǎ (pe linii sau coloane), atunci
existǎ şi este unicǎ factorizarea LU. În particular, dacǎ A este diagonal
dominantǎ pe coloane, atunci |lij | ≤ 1 ∀i , j .

47

Forma compactǎ a factorizǎrii

Forma compactǎ a factorizǎrii

Variantǎ remarcabilǎ a factorizǎrii LU este factorizarea Doolittle.
Aceasta este cunoscutǎ şi ca formǎ compactǎ a metodei de eliminare
Gauss.

Aceastǎ denumire se datoreazǎ faptului cǎ aceste abordǎri necesitǎ mai
puţine rezultate intermediare decât metoda GEM standard pentru a
genera factorizarea lui A.

Calcularea factorizǎrii LU a lui A este echivalentǎ din punct de vedere
formal cu rezolvarea urmǎtorului sistem neliniar de ecuaţii n2

aij =

min(i,j)∑
r=1

lirurj , i , j = 1, ..., n, (17)

necunoscutele fiind intrǎrile n2 + n ale matricelor triunghiulare L şi U.

Dacǎ stabilim în mod arbitrar n coeficienţi (lii) la 1, ajungem la metoda
Doolittle care oferǎ o cale eficientǎ sistemului neliniar.

48

De fapt, presupunând cǎ primele k − 1 coloane din L şi primele rânduri
din U sunt disponibile şi stabilind lkk = 1 (metoda Doolittle), se obţin
urmǎtoarele ecuaţii din

akj =
k−1∑
r=1

lkrurj + ukj , j = k , · · · , n, (18)

aik =
k−1∑
r=1

lirurk + likukk , i = k + 1, · · · , n. (19)

Reţineţi cǎ aceste ecuaţii pot fi rezolvate într-un mod secvenţial în ceea
ce priveşte variabilele roşii ukj şi lik .

49

Din metoda compactǎ Doolittle obţinem astfel mai întâi al k-lea rând al
lui U şi apoi a k-a coloanǎ a lui L, dupǎ cum urmeazǎ: pentru
k = 1, · · · , n

ukj = akj −
k−1∑
r=1

lkrurj , j = k , · · · , n, (20)

lik =
1

urk

(
aik −

k−1∑
r=1

lirurk

)
, i = k + 1, · · · , n. (21)

50

Factorizarea LDMT

Factorizarea LDMT

Este posibil sǎ se conceapǎ şi alte tipuri de factorizǎri ale lui A.

Mai exact, vom aborda unele variante în care factorizarea lui A este de
forma

A = L D MT , (22)

unde L, MT şi D sunt matrici inferior triunghiulare, superior triunghiulare
şi, respectiv, diagonale.

Dupǎ construirea acestei factorizǎri, rezolvarea sistemului se poate realiza
rezolvând mai întâi sistemul inferior triunghiularǎ Ly = b, apoi cel
diagonal Dz = y şi în final sistemul superior triunghiularǎ MT x = z , cu
un cost de n2 + n flop-uri.

În cazul simetric, obţinem M = L, iar factorizarea LDLT poate fi
calculatǎ cu jumǎtate din cost, dupǎ cum vom vedea în secţiunea
urmǎtoare. Factorizarea LDMT se bucurǎ de o proprietate analogǎ cu
cea pentru factorizarea LU. În particular, se aplicǎ urmǎtorul rezultat.

51

Teoremǎ
Dacǎ toţi minorii principali ai unei matrice A ∈ Rn×n sunt nenuli, atunci
existǎ o matrice diagonalǎ unicǎ D, o matrice inferior triunghiularǎ
unitarǎ unicǎ1 L şi o matrice superior triunghiularǎ unitarǎ unicǎ MT ,
astfel încât A = LDMT .

Demonstraţie: Ştim deja cǎ existǎ o factorizare unicǎ LU a lui A cu
lii = 1 pentru i = 1, · · · , n. Dacǎ stabilim cǎ intrǎrile diagonale ale lui D

sunt egale cu uii (nu sunt zero deoarece U este nesingularǎ), atunci
A = LU = LD(D−1U). Dupǎ definirea MT = D−1U, rezultǎ existenţa
factorizǎrii LDMT , unde D−1U este o matrice superior triunghiularǎ
unitarǎ. Unicitatea factorizǎrii LDMT este o consecinţǎ a unicitǎţii
factorizǎrii LU.

1Noi numim matrice triunghiularǎ unitarǎ o matrice triunghiularǎ care are intrǎrile
diagonale egale cu 1.

52

Pivotare

Pivotare

Dupǎ cum s-a subliniat anterior, procesul GEM se întrerupe imediat ce se
calculeazǎ o intrare pivotalǎ zero. Într-un astfel de caz, trebuie sǎ se
apeleze la aşa-numita tehnicǎ de pivotare, care constǎ în schimbarea
rândurilor (sau a coloanelor) din sistem astfel încât sǎ se obţinǎ pivoţi
nenuli.

Strategia de pivotare adoptatǎ pânǎ în prezent poate fi generalizatǎ prin
cǎutarea, la fiecare pas k al procedurii de eliminare, a unei intrǎri
pivotante care nu este nulǎ, cǎutând în interiorul intrǎrilor din subcoloana
A(k)(k : n, k). Din acest motiv, se numeşte pivotare parţialǎ (pe rânduri).

53

Se poate observa cǎ o valoare mare a lui mik =
a

(k)
ik

a
(k)
kk

, i = k + 1, · · · , n

(generatǎ, de exemplu, de o valoare micǎ a pivotului a
(k)
kk) poate

amplifica erorile de rotunjire care afecteazǎ intrǎrile a
(k)
kj .

Prin urmare, pentru a asigura o mai bunǎ stabilitate, pivotul kj A(k)(j , k)

se alege ca fiind cea mai mare intrare (în modul) din coloana
A(k)(k : n, k) şi, în general, se efectueazǎ o pivotare parţialǎ la fiecare
etapǎ a procedurii de eliminare, chiar dacǎ nu este strict necesar (adicǎ
chiar dacǎ se gǎsesc intrǎri pivotale diferite de zero).

Alternativ, procesul de cǎutare ar fi putut fi extins la întreaga submatrice
A(k)(k : n, k : n), finalizându-se cu o pivotare completǎ.

Observaţi, totuşi, cǎ în timp ce pivotarea parţialǎ necesitǎ un cost
suplimentar de aproximativ n2 cǎutǎri, pivotarea completǎ necesitǎ
aproximativ 2n3/3, cu o creştere considerabilǎ a costului de calcul al
GEM.

54

Matrice de permutare

Schimbul dintre a i-a şi j-a linie a unei matrice; acest lucru se poate face
prin înmulţirea prealabilǎ a lui A cu matricea P(i,j) de elemente

p(i,j)
rs =


1 dacǎ r = s = 1, · · · , i − 1, i + 1, · · · j − 1, j + 1, · · · n,
1 dacǎ r = j , s = i or r = i , s = j ,

0, în caz contrar.

(23)

Matricele de tipul P(i,j) se numesc matrice de permutare elementarǎ.

Produsul matricelor de permutare elementarǎ se numeşte matrice de
permutare şi efectueazǎ schimburile de rânduri asociate fiecǎrei matrice
de permutare elementarǎ.

În practicǎ, o matrice de permutare este o reordonare pe rânduri a
matricei identitate.

55

Sǎ analizǎm modul în care pivotarea parţialǎ afecteazǎ factorizarea LU
indusǎ de GEM.

La prima etapǎ a GEM cu pivotare parţialǎ, dupǎ ce se aflǎ intrarea ar1
de modul maxim din prima coloanǎ, se construieşte matricea elementarǎ
de permutare P1 care schimbǎ prima linie cu a r -a linie (dacǎ r = 1, P1

este matricea identitate).

În continuare, se genereazǎ prima matrice de transformare gaussianǎ M1

şi se stabileşte

A(2) = M1P1A(1). (24)

O abordare similarǎ se face acum pentru A(2), cǎutând o nouǎ matrice de
permutare P2 şi o nouǎ matrice M2 astfel încât

A(3) = M2P2A(2) = M2P2M1P1A(1). (25)

Executând toate etapele de eliminare, matricea superior triunghiularǎ U

rezultatǎ este acum datǎ de

U = A(n) = Mn−1Pn−1 · · ·M2P2M1P1︸ ︷︷ ︸
:=M

A(1). (26)

56

Reţineţi cǎ m
(k)
ik utilizat în construcţia lui Mk este acum m

(k)
ik =

b
(k)
ik

b
(k)
kk

,

unde b
(k)
ik sunt intrǎrile matricei PkA(k).

Obţinem cǎ U = M A şi, astfel, U = (MP−1)PA, unde P = Pn−1 · · ·P1.
Afirmǎm cǎ L = PM−1 este inferior triunghiularǎ unitarǎ.

57

Afirmǎm cǎ L = PM−1 este inferior triunghiularǎ unitarǎ.

Nu trebuie sǎ fim îngrijoraţi de prezenţa inversului lui M, deoarece
M−1 = P−11 M−11 · · ·P

−1
n−1M−1n−1 şi P−1i = PT

i , în timp ce
M−1i = 2In −Mi = In + mk eT

k .

Prin urmare, avem

L = Pn−1 · · ·P2P1P−11 (In + m1 eT
1)P−12 (In + m2 eT

2) · · ·P−1n−1(In + mn−1 eT
n−1)

= Pn−1 · · ·P2(In + m1 eT
1)P−12 (In + m2 eT

2) · · ·P−1n−1(In + mn−1 eT
n−1).

Sǎ discutǎm acum

Pn−1 · · ·P2(In + m1 eT
1)

= (Pn−1 · · ·P2 + Pn−1 · · ·P2m1 eT
1 PT

2 · · ·PT
n−1Pn−1 · · ·P2)

= (Pn−1 · · ·P2 + Pn−1 · · ·P2m1 eT
1 (Pn−1 · · ·P2)TPn−1 · · ·P2)

= (Pn−1 · · ·P2 + Pn−1 · · ·P2m1(Pn−1 · · ·P2e1)TPn−1 · · ·P2) (27)

= [In + Pn−1 · · ·P2m1(Pn−1 · · ·P2e1)T]Pn−1 · · ·P2.

58

Vom avea

Pn−1 · · ·P2(In + m1 eT
1)

= [In + Pn−1 · · ·P2m1︸ ︷︷ ︸
:=m̃1

(Pn−1 · · ·P2e1)T]Pn−1 · · ·P2. (28)

Dar permutarea Pn−1 · · ·P2 permutǎ doar intrǎrile de la 2 la n dintr-un
vector; intrǎrile 1 rǎmân neatinse. Aceasta înseamnǎ cǎ primele intrǎri
ale lui m̃1 sunt încǎ zero şi e1 este neschimbatǎ permutarea, adicǎ
Pn−1 · · ·P2e1 = e1.

Astfel, avem de fapt

Pn−1 · · ·P2(In + m1 eT
1)

= [In + m̃1eT
1]︸ ︷︷ ︸

inferior triunghiularǎ

Pn−1 · · ·P2 (29)

şi

L = [In + m̃1eT
1]︸ ︷︷ ︸

inferior triunghiularǎ

Pn−1 · · ·P2P−12 (In + m2 eT
2) · · ·P−1n−1(In + mn−1 eT

n−1).

Repetând argumentul avem cǎ L este inferior triunghiularǎ.
59

Deoarece L = PM−1 este inferior triunghiularǎ unitar, factorizarea LU se
citeşte

PA = LU. (30)

Odatǎ ce L, U şi P sunt disponibile, rezolvarea sistemului liniar iniţial se
rezumǎ la rezolvarea sistemelor triunghiulare Ly = Pb şi Ux = y .

60

Teoremǎ
Fie A ∈ Rn×n o matrice nesingularǎ. Atunci existǎ o matrice de
permutare P astfel încât P A = L U, unde L şi U sunt matricile
triunghiulare inferioarǎ şi superioarǎ obţinute prin eliminarea gaussianǎ.

Proof.
Demonstraţia este deja fǎcutǎ, cu excepţia faptului cǎ la orice pas avem

maxA(k)(k : n, k) 6= 0. (31)

Dacǎ ar fi posibil sǎ avem

maxA(k)(k : n, k) = 0, (32)

atunci detA = 0 ceea ce este evitat de ipotezǎ.

61

Dacǎ se realizeazǎ pivotarea completǎ, la primul pas al procesului, odatǎ
gǎsit elementul aqr al celui mai mare modul din submatricea
A(1 : n, 1 : n), trebuie sǎ schimbǎm prima linie şi prima coloanǎ cu a q-a
linie şi a r -a coloanǎ. Se genereazǎ astfel matricea P1A(1)Q1, unde P1 şi
Q1 sunt matrici de permutare pe rânduri şi, respectiv, pe coloane.

În consecinţǎ, acţiunea matricei M1 este acum astfel încât
A(2) = M1P1A(1)Q1. Repetând procesul, la ultima etapǎ, obţinem

U = A(n) = Mn−1Pn−1 · · ·M1P1A(1)Q1 · · ·Qn−1. (33)

În cazul pivotǎrii complete, factorizarea LU devine

PAQ = LU, (34)

unde Q = Q = Q1 · · ·Qn−1 este o matrice de permutare care ţine cont de
toate permutǎrile care au fost operate. Prin construcţie, matricea L este
tot inferior triunghiularǎ, cu intrǎri de modul mai mici sau egale cu 1.

62

Calculul inversei unei matrice

Calculul explicit al inversei unei matrice poate fi efectuat folosind
factorizarea LU dupǎ cum urmeazǎ.

Notând cu X inversa unei matrice nesingulare în Rn×n, vectorii coloanǎ ai
lui X sunt soluţiile sistemelor liniare A xi = ei , pentru i = 1, · · · , n.

Presupunând cǎ PA = LU, unde P este matricea de permutare cu
pivotare parţialǎ, trebuie sǎ rezolvǎm 2n sisteme triunghiulare de forma
Lyi = Pei , U xi = yi , i = 1, · · · , n, adicǎ o succesiune de sisteme liniare
care au aceeaşi matrice de coeficienţi, dar pǎrţi drepte diferite.

63

Aplicarea factorizǎrii LU într-o problemǎ de deformare elasticǎ
1D

Se considerǎ o barǎ elasticǎ de lungime L = 1m, cu capetele menţinute
fixe

u(0) = u(1) = 0.

Ecuaţia care descrie deformarea barei este de tip Poisson:

−k u′′(x) = q(x), 0 < x < 1,

unde u este deplasarea, k este un coeficient de elasticitiate, iar q(x) forţa
care acţioneazǎ pe acea barǎ.

64

Aproximarea numericǎ a derivatei a doua

Pentru fiecare nod interior xi , a doua derivatǎ u′′(xi) se poate aproxima
prin diferenţe finite centrale.

Pornim de la seriile Taylor în jurul nodului xi :

u(xi + h) = u(xi) + hu′(xi) +
h2

2
u′′(xi) +

h3

6
u′′′(xi) + O(h4),

u(xi − h) = u(xi)− hu′(xi) +
h2

2
u′′(xi)−

h3

6
u′′′(xi) + O(h4).

Adunând cele douǎ ecuaţii, derivata întâi se eliminǎ:

u(xi + h) + u(xi − h) = 2u(xi) + h2u′′(xi) + O(h4),

de unde rezultǎ formula de diferenţe finite centrale:

u′′(xi) ≈
u(xi−1)− 2u(xi) + u(xi+1)

h2
.

Aceastǎ formulǎ stǎ la baza discretizǎrii ecuaţiei Poisson pentru fiecare
nod interior. 65

Discretizare numericǎ a ecuaţiei Poisson

Împǎrţim bara în N = 4 segmente egale (h = L/(N + 1) = 0.2 m) şi
notǎm deformarea în nodurile interioare u1, u2, u3, u4.

Înlocuind aproximaţia derivatei a doua în ecuaţia Poisson:

−ui−1 − 2ui + ui+1

h2
=

q(xi)

k
, i = 1, . . . , 4,

sau echivalent:
2ui − ui−1 − ui+1 = h2

q(xi)

k
.

Astfel se genereazǎ un sistem liniar tridiagonal:

A · u = b,

unde

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 , b =


h2q(x1)/k

h2q(x2)/k

h2q(x3)/k

h2q(x4)/k

 .
66

Factorizarea LU

Observaţie: valoarea deplasuarii în fiecare nod interior depinde doar de
nodul precedent şi urmǎtor, ceea ce face sistemul tridiagonal şi foarte
potrivit pentru factorizarea LU. Pentru rezolvarea eficientǎ, factorǎm
matricea A ca:

A = L · U,

unde L este inferior triunghiularǎ şi U superior triunghiularǎ:

L =


1 0 0 0
− 1

2 1 0 0
0 − 2

3 1 0
0 0 − 3

4 1

 , U =


2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4

 .

67

Matrice de tip bandǎ

Metodele de discretizare pentru problemele cu valori la frontierǎ conduc
adesea la rezolvarea sistemelor liniare cu matrici care au forme de bandǎ,
bloc sau rare. Exploatarea structurii matricei permite o reducere drasticǎ
a costurilor de calcul ale factorizǎrii şi ale algoritmilor de substituţie.

Vom aborda variante speciale ale factorizǎrii GEM sau LU care sunt
concepute în mod corespunzǎtor pentru a trata matrici de acest tip.

68

Factorizarea Cholesky

Matrice simetrice pozitiv definite: Factorizarea Cholesky

Dupǎ cum s-a arǎtat deja, factorizarea LDMT se simplificǎ considerabil
atunci când A este simetricǎ, deoarece într-un astfel de caz M = L,
obţinându-se aşa-numita factorizare LDLT . Costul de calcul se
înjumǎtǎţeşte, faţǎ de factorizarea LU, la aproximativ (n3/3) flop-uri.

69

Factorizarea Cholesky

Teoremǎ
Fie A ∈ Rn×n o matrice simetricǎ şi pozitiv definitǎ. Atunci, existǎ o
matrice superior triunghiularǎ unicǎ H cu intrǎri diagonale pozitive astfel
încât

A = HTH. (35)

Aceastǎ factorizare se numeşte factorizare Cholesky.

70

Proof: Existenţa.

Deoarece A este pozitiv definitǎ, avem det(A(1 : k , 1 : k)) > 0, pentru
toate k ∈ {1, 2, ..., n}.

Printr-un rezultat anterior, rezultǎ cǎ existǎ L,U ∈ R astfel încât
A = LU, unde L este inferior triunghiularǎ cu 1 pe diagonalǎ, iar U este
superior triunghiularǎ.

Fie D = diag(
√

u11, ...,
√

unn). Atunci

A = LU = (LD)︸ ︷︷ ︸
:=B

(D−1U)︸ ︷︷ ︸
:=C

, (36)

unde B este inferior triunghiularǎ şi C este superior triunghiularǎ, ambele
cu elemente

√
u11, ...,

√
unn pe diagonalǎ.

Acum vom demonstra cǎ B = CT .

71

Demonstraţie: Existenţǎ

Din moment ce A = AT , rezultǎ

BC = CTBT ⇒ (CT)−1B = BTC−1. (37)

În partea stângǎ a ultimei egalitǎţi, ambele matrici sunt inferior
triunghiulare, adicǎ partea stângǎ este inferior triunghiularǎ, în timp ce în
partea dreaptǎ a ultimei egalitǎţi, ambele matrici sunt superior
triunghiulare, adicǎ partea dreaptǎ este superior triunghiularǎ.

În plus, partea stângǎ are 1 pe diagonalǎ, iar partea dreaptǎ, la fel.

Dar singura matrice care este inferior triunghiularǎ-superioarǎ cu 1 pe
diagonalǎ este matricea identitate In.

Aşadar, (CT)−1B = In şi CT = B, ceea ce încheie dovada existenţei
factorizǎrii Cholesky.

72

Demonstraţie: Unicitate

Fie C1,C2 superior triunghiulare cu elemente diagonale pozitive astfel
încât

A = CT
1 C1 = CT

2 C2. (38)

Fie D1 = diag(C1),D2 = diag(C2).

Atunci

CT
1 D−11︸ ︷︷ ︸

inferior triunghiularǎ cu 1 pe diag

D1C1︸ ︷︷ ︸
superior triunghiularǎ

= CT
2 D−12 D2C2. (39)

Din unicitatea factorizǎrii LU rezultǎ cǎ D1C1 = D2C2.

Aceasta implicǎ [(C1)ii]
2 = [(C2)ii]

2, i = 1, 2, ..., n, adicǎ D1 = D2.

Prin urmare, C1 = C2 şi dovada este completǎ.

73

Calcularea factorizǎrii Cholesky în practicǎ

Teoremǎ

Intrǎrile hij din HT pot fi calculate dupǎ cum urmeazǎ:

h11 =
√

a11 =
√

a11. (40)

şi, pentru i = 2, · · · , n,

hij =

(
aij −

j−1∑
k=1

hikhjk

)
/hjj , j = 1, · · · , i − 1, (41)

hii =

√√√√aii −
i−1∑
k=1

h2ik . (42)

74

Demonstraţie:

Sǎ demonstrǎm teorema procedând prin inducţie asupra mǎrimii i a
matricei, amintind cǎ dacǎ Ai ∈ Ri×i este simetricǎ pozitiv definitǎ,
atunci toate submatricile sale principale se bucurǎ de aceeaşi proprietate.

Pentru i = 1 rezultatul este evident adevǎrat. Prin urmare, sǎ
presupunem cǎ este valabil pentru i − 1 şi sǎ demonstrǎm cǎ este valabil
şi pentru i . Existǎ o matrice superior triunghiularǎ Hi−1 astfel încât
Ai−1 = HT

i−1Hi−1. Sǎ partiţionǎm Ai astfel

Ai =

(
Ai−1 v

vT α

)
(43)

cu α ∈ R+, v ∈ Ri−1 şi cǎutǎm o factorizare a lui Ai de forma

Ai = HT
i Hi =

(
HT

i−1 0
hT β

)(
Hi−1 h

0T β

)
. (44)

75

Prin aplicarea egalitǎţii cu intrǎrile lui Ai se obţin ecuaţiile HT
i−1h = v şi

hTh + β2 = α.

Astfel, vectorul h este determinat în mod unic, deoarece HT
i−1 este

nesingularǎ. În ceea ce priveşte β, datoritǎ proprietǎţilor determinanţilor

0 < det(Ai) = det(HT
i) det(Hi) = β2(det(Hi−1))2, (45)

putem concluziona cǎ trebuie sǎ fie un numǎr real. Ca urmare,
β =
√
α− hTh intrarea diagonalǎ doritǎ şi astfel se încheie argumentul

inductiv.

Sǎ demonstrǎm acum restul formulelor.

Faptul cǎ h11 =
√

a11 este o consecinţǎ imediatǎ a argumentului de
inducţie pentru i = 1. În cazul unui i generic, se obţine relaţii sunt
formulele de substituţie directǎ pentru soluţia sistemului liniar
HT

i−1h = v , iar demonstraţia este completǎ.

76

Folosim Cholesky doar pentru sisteme cu matrice simetricǎ?

Sǎ presupunem cǎ avem de rezolvat un sistem de forma A x = b,
A ∈ Rn×n, detA 6= 0, b ∈ Rn.

Matricea A nu este consideratǎ neapǎrat simetricǎ, însǎ prin înmulţire cu
AT , avem sistemul echivalent

ATA x = ATb, (46)

a cǎrui matrice este simetricǎ şi chiar pozitiv definitǎ. (Demonstraţi!)

Prin urmare se poate folosi factorizarea Cholesky care este mai eficientǎ
decât factorizarea LU.

Vom vedea cǎ factorizare Cholesky poate fi folositǎ şi pentru rezolvarea
aproximativǎ a sistemelor supradeterminate (cu aplicaţii practice în
corelarea datelor, probleme de identificare a locaţiei optime, eliminarea
zgomotelor din semnale etc.).

77

Matrice de tip bandǎ

Matrice de tip bandǎ

Definiţie
Spunem cǎ o matrice A ∈ Rm×n are bandǎ inferioarǎ p dacǎ aij = 0 când
i > j + p şi banda superioarǎ q dacǎ aij = 0 când j > i + q.

Matricele diagonale sunt matrici cu benzi pentru care p = q = 0, în timp
ce matricele trapezoidale au p = 1, q = 1 este o matrice tridiagonalǎ.

78

Rezultatul principal pentru matrici cu benzi este urmǎtorul.

Teoremǎ
Fie A ∈ Rn×n. Sǎ presupunem cǎ existǎ o factorizare LU a lui A. Dacǎ A

are lǎţimea de bandǎ superioarǎ q şi lǎţimea de bandǎ inferioarǎ p, atunci
L are lǎţimea de bandǎ inferioarǎ p şi U are lǎţimea de bandǎ superioarǎ
q.

În special, observaţi cǎ aceeaşi zonǎ de memorie utilizatǎ pentru A este
suficientǎ pentru a stoca şi factorizarea sa LU.

79

Sǎ considerǎm, într-adevǎr, cǎ o matrice A având lǎţimea de bandǎ
superioarǎ q şi lǎţimea de bandǎ inferioarǎ p este de obicei stocatǎ într-o
matrice (p + q + 1)× n, pe care o vom nota cu B, presupunând cǎ

bi−j+q+1,j = aij (47)

pentru toţi indicii i , j care se încadreazǎ în banda matricei, în rest fiind
zero.

De exemplu, în cazul matricei tridiagonale

A =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 (48)

stocarea compactǎ se citeşte

B =

 0 −1 −1 −1 −1
2 2 2 2 2
−1 −1 −1 −1 0

 (49)

80

Acelaşi format poate fi utilizat pentru stocarea factorizǎrii LU a lui A.

Este clar cǎ acest format de stocare poate fi destul de incomod în cazul
în care doar câteva benzi ale matricei sunt mari.

La limitǎ, dacǎ doar o coloanǎ şi un rând ar fi pline, am avea p = q = n

şi astfel B ar fi o matrice plinǎ cu multe intrǎri zero.

În cele din urmǎ, observǎm cǎ inversa unei matrice cu benzi este în
general plinǎ (aşa cum se întâmplǎ pentru matricea A consideratǎ mai
sus).

81

Matrice tridiagonale

Considerǎm cazul particular al unui sistem liniar cu matrice tridiagonalǎ
nesingularǎ A datǎ de 

a1 c1 0

b2 a2
. . .

. cn−1
0 bn an

 . (50)

În acest caz, matricile L şi U din factorizarea LU a lui A sunt matrici
bidiagonale de forma

1 0 0

β2 1
. . .

. 0
0 βn 1

 ,


α1 c1

0 α2
. . . 0

. cn−1
0 0 αn

 (51)

82

Algoritmul Thomas

Coeficienţii αi , βi pot fi calculaţi cu uşurinţǎ prin urmǎtoarele relaţii

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, · · · , n. (52)

83

Algoritmul Thomas poate fi extins şi pentru a rezolva întregul sistem
tridiagonal Ax = f . Acest lucru înseamnǎ rezolvarea a douǎ sisteme
bidiagonale Ly = f şi Ux = y , pentru care se aplicǎ urmǎtoarele formule:

(Ly = f) : y1 = f1, yi = fi − βiyi−1, i = 2, · · · , n, (53)

(Ux = y) : xn =
yn
αn
, xi =

yi − cixi+1

αi
, i = n − 1, · · · , 1. (54)

84

Sisteme pe blocuri

În aceastǎ secţiune ne ocupǎm de factorizarea LU a matricelor
partiţionate în blocuri, în care fiecare bloc poate avea o dimensiune
diferitǎ.

Obiectivul nostru este dublu: optimizarea ocupǎrii spaţiului de stocare
prin exploatarea adecvatǎ a structurii matricei şi reducerea costului de
calcul al soluţiei sistemului.

85

Factorizarea LU

Fie A = Rn×n urmǎtoarea matrice partiţionatǎ în blocuri

A =

(
A11 A12

A21 A22

)
, (55)

unde A11 ∈ Rr×r este o matrice nesingularǎ a cǎrei factorizare L11D1R11

este cunoscutǎ, în timp ce A22 ∈ R(n−r)×(n−r).

În acest caz este posibilǎ factorizarea A folosind doar factorizarea LU a
blocului A11. Într-adevǎr, este adevǎrat cǎ

A =

(
A11 A12

A21 A22

)
=

(
L11 0
L21 In−r

)(
D1 0
0 D2

)(
R11 R12

0 In−r

)
, (56)

unde

L21 = A21R−111 D−11 ,

R12 = D−11 L−111 A12, (57)

D2 = A22 − L21D1R12.

86

Dacǎ este necesar, procedura de reducere poate fi repetatǎ pe matricea
D2, obţinându-se astfel o versiune în bloc a factorizǎrii LU.

Dacǎ A11 ar fi un scalar, abordarea de mai sus ar reduce cu unu
dimensiunea factorizǎrii unei matrice date.

Prin aplicarea iterativǎ a acestei metode se obţine un mod alternativ de
efectuare a eliminǎrii Gauss.

87

Analiza erorii

Algebrǎ liniarǎ: completǎri

Descompunerii spectralǎ

Unul dintre cele mai utile rezultate legate de valorile proprii este teorema
descompunerii spectrale, care afirmǎ cǎ orice matrice simetricǎ A are o
bazǎ ortonormalǎ de vectori proprii.

Teorema descompunerii spectrale

Fie A o matrice simetricǎ în Rn×n. Atunci existǎ o matrice ortogonalǎ
U ∈ Rn×n (UTU = U UT = I) şi o matrice diagonalǎ
D = diag(d1, d2, ..., dn) pentru care

UT A U = D.

Coloanele matricei U din factorizare constituie o bazǎ ortonormatǎ
formatǎ din vectorii proprii ai lui A, iar elementele diagonale ale lui D

sunt valorile proprii corespunzǎtoare.

Demonstraţi cǎ tr(A) =
∑n

i=1 λi (A) şi det(A) =
∏n

i=1 λi (A) .

88

Norme matriceale

Ansamblul valorilor proprii ale lui A se numeşte spectrul lui A, notat prin
σ(A).

Se pot demonstra urmǎtoarele proprietǎţi

det(A) =
n∏

i=1

λi , tr(A) =
n∑

i=1

λi (58)

şi se concluzioneazǎ cǎ σ(A) = σ(AT), şi σ(AH) = σ(A), unde AH = A
T
.

Modulul maxim al valorilor proprii ale lui A se numeşte raza spectralǎ a
lui A şi se noteazǎ cu

ρ(A) = max
λ∈σ(A)

|λ|. (59)

89

Norme în Rn

Un exemplu de spaţiu normat este Rn, echipat, de exemplu, cu norma p

(sau norma Hölder); aceasta din urmǎ se defineşte pentru un vector x cu
componente xi ca fiind

‖x‖p =

(
n∑

i=1

|xi |p
) 1

p

, for 1 ≤ p <∞. (60)

Observaţi cǎ limita pe mǎsurǎ ce p merge la infinit a lui ‖x‖p existǎ, este
finitǎ şi este egalǎ cu modulul maxim al componentelor lui x . O astfel de
limitǎ defineşte, la rândul sǎu, o normǎ, numitǎ norma infinit (sau norma
maxim), datǎ de

‖x‖∞ = max
1≤i≤n

|xi |. (61)

Când p = 2, regǎsim definiţia standard a normei euclidiene

‖x‖2 =

(
n∑

i=1

|xi |2
) 1

2

= (xT x)
1
2 . (62)

90

Norme matriceale

Definiţie
O normǎ matricialǎ este o funcţie ‖ · ‖ : Rm×n → R astfel încât

1. ‖A‖ ≥ 0 ∀A ∈ Rm×n şi ‖A‖ = 0 dacǎ şi numai dacǎ A = 0;

2. ‖αA‖ = |α| ‖A‖ ∀α ∈ R, ∀A ∈ Rm×n;

3. ‖A + B‖ ≤ ‖A‖+ ‖B‖ ∀A,B nRm×n.

Definiţie
Spunem cǎ o normǎ matricialǎ ‖ · ‖Rm×n este compatibilǎ sau consistentǎ
cu normele vectorialǎ ‖ · ‖Rm şi ‖ · ‖Rn dacǎ

‖A x‖Rm ≤ ‖A‖Rm×n ‖x‖Rn ∀ x ∈ Rn. (63)

91

Definiţie
Spunem cǎ o normǎ matricialǎ ‖ · ‖ este submultiplicativǎ dacǎ
∀A ∈ Rn×m, ∀B ∈ Rm×q.

‖A B‖ ≤ ‖A‖ ‖B‖. (64)

În multe lucrǎri, definiţia unei norme matriciale include şi
submultiplicitatea.

Aceastǎ proprietate nu este satisfǎcutǎ de toate normele matriciale. De
exemplu, norma ‖A‖∆ = maxi=1,...,n,j=1,...,m |aij | nu îndeplineşte condiţia
submultiplicativǎ, de exemplu, aceastǎ condiţie nu este îndeplinitǎ pentru

pentru A = B =

(
1 1
1 1

)
. Prin urmare, este o normǎ, dar nu este o

normǎ submultiplicativǎ.

92

Observaţi cǎ, datǎ fiind o anumitǎ normǎ submultiplicativǎ ‖ · ‖α, existǎ
întotdeauna o normǎ vectorialǎ compatibilǎ. De exemplu, dat fiind orice
vector fix y 6= 0 în Rn, este suficient sǎ se defineascǎ norma vectorialǎ
consistentǎ sub forma

‖x‖ = ‖x yT‖α ∀ x ∈ Rn. (65)

Un exemplu de normǎ matricialǎ este norma Frobenius (sau norma
euclidianǎ în Rn2

)

‖A‖F =

√√√√ n∑
i,j=1

|aij |2 =
√

tr(A AT) (66)

şi este compatibilǎ cu norma vectorialǎ euclidianǎ ‖ · ‖2. Într-adevǎr,

‖A x‖22 =
n∑

i=1

|
n∑

j=1

aijxj |2 ≤
n∑

i=1

 n∑
j=1

|aij |2
n∑

j=1

|xj |2
 = ‖A‖2F‖x‖22. (67)

Observaţi cǎ pentru o astfel de normǎ ‖In‖F =
√

n. Pentru o normǎ
oarecare, care ar putea fi o aşteptare rezonabilǎ pentru ‖In‖?

93

Norme matriceale induse

Teoremǎ
Fie ‖ · ‖Rm şi ‖ · ‖Rn norme vectoriale. Funcţia

‖A‖ = sup
x 6=0

‖A x‖Rm

‖x‖Rn

(68)

este o normǎ matricialǎ numitǎ normǎ indusǎ sau normǎ matricialǎ
naturalǎ.

94

Cazuri relevante de norme matriceale induse sunt aşa-numitele norme p

definite astfel

‖A‖p = sup
x 6=0

‖A x‖p
‖x‖p

. (69)

Norma 1 şi norma infinit sunt uşor de calculat, deoarece

‖A‖1 = max
j=1,...,n

m∑
i=1

|aij |, ‖A‖∞ = max
i=1,...,n

n∑
i=1

|aij | (70)

şi se numesc norma sumei coloanelor şi, respectiv, norma sumei
rândurilor.

Mai mult, avem ‖A‖1 = ‖AT‖∞ şi dacǎ A este simetricǎ ‖A‖1 = ‖A‖∞.

95

Teoremǎ
Fie ‖ · ‖Rm×n o normǎ matricealǎ indusǎ de normele vectoriale ‖ · ‖Rm şi
‖ · ‖Rn . Atunci, urmǎtoarele relaţii sunt valabile:

1. ‖A x‖Rm ≤ ‖A‖Rm×n ‖x‖Rn , adicǎ norma matricealǎ indusǎ este
compatibilǎ cu norma vectorialǎ care o induce;

2. ‖In‖ = 1;

3. ‖A B‖Rm×n ≤ ‖A‖Rm×n ‖B‖Rm×n , adicǎ fiecare normǎ matricealǎ
indusǎ este submultiplicativǎ.

Proof.
TO DO.

Observaţi cǎ normele p sunt submultiplicative. Mai mult, observǎm cǎ
proprietatea de submultiplicativitate ar permite doar sǎ concluzionǎm cǎ
‖In‖ ≥ 1. Într-adevǎr, ‖In‖ = ‖In In‖ ≤ ‖In‖2.

96

Norma ‖A‖∆ = maxi=1,...,n,j=1,...,m |aij | care nu este submultiplicativǎ, de
asemenea, nu este o normǎ matricealǎ indusǎ. O normǎ care nu este
indusǎ poate fi sau nu submultiplicativǎ. De exemplu, ‖ · ‖∆ nu este
submultiplicativǎ, dar norma Frobenius

‖A‖F =

√√√√ n∑
i,j=1

|aij |2 =
√

tr(A AT) (71)

este submultiplicativǎ, chiar dacǎ nu este indusǎ (de ce?), de asemenea.

97

Norma spectralǎ pentru matrice simetrice

Teoremǎ
Fie A o matrice realǎ simetricǎ. Atunci

‖A‖2 = ρ(A). (72)

Proof.
Deoarece A este simetricǎ, existǎ matricea unitarǎ U astfel încât
UTA U = diag(λ1,, λn), unde λi sunt valorile proprii ale lui A. Fie
y = UT x . Atunci

‖A‖2 = sup
x 6=0

√
‖A x‖2
‖x‖2

= sup
x 6=0

√
〈A x ,A x〉
‖x‖2

= sup
y 6=0

√
〈A Uy ,A Uy〉
‖Uy‖2

= sup
y 6=0

√
〈UTATA Uy , y〉

‖y‖2
= sup

y 6=0

√
〈diag(λ21,, λ

2
n)y , y〉

‖y‖2

= sup
y 6=0

√∑n
i=1 λ

2
i y2

i∑n
i=1 y2

i

=
√

max
i=1,2,...,n

|λ2i | = max
i=1,2,...,n

|λi | = ρ(A).

Calculeazǎ ‖In‖2!

98

Matrice nesimetrice

Definiţie
Fie A ∈ Rm×n. Se numesc valori singulare ale matricei A, numerele reale
σi (A) definite prin

σi (A) =
√
λi (ATA). (73)

Dacǎ A este simetricǎ, atunci

σi (A) =
√
λ)i(ATA) =

√
λi (A2) =

√
λ2i (A) = |λi (A)|. (74)

99

Norma spectralǎ pentru matrice simetrice

Teoremǎ
Fie σ1(A) cea mai mare valoare singularǎ a matrice A ∈ Rn×n. Atunci

‖A‖2 =
√
ρ(ATA) = σ1(A). (75)

100

Este clar cǎ a calcula ‖A‖2 este mult mai costisitor decât cel al lui ‖A‖1
sau ‖A‖∞. Cu toate acestea, dacǎ este necesarǎ doar o estimare a lui
‖A‖2, urmǎtoarele relaţii pot fi utilizate în mod profitabil în cazul
matricelor pǎtrate

max
i,j
|aij || ≤ ‖A‖2 ≤ nmax |aij |,

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
n ‖A‖∞, (76)

1√
n
‖A‖1 ≤ ‖A‖2 ≤

√
n ‖A‖1, ‖A‖2 ≤

√
‖A‖1‖A‖∞.

101

Relaţii dintre norme şi raza spectralǎ

Teoremǎ
Fie ‖ · ‖ o normǎ matricealǎ consistentǎ, atunci

ρ(A) ≤ ‖A‖ ∀A ∈ Rn×n. (77)

Proof.
Fie λ o valoare proprie a lui A şi v 6= 0 un vector propriu asociat acestei
valori proprii. Deoarece norma este consistentǎ, avem

|λ|‖v‖ = ‖λ v‖ = ‖A v‖ ≤ ‖A‖ ‖v‖, (78)

şi deci |λ| ≤ ‖A‖.

În restul prelegerilor noastre, dacǎ nu specificǎm altceva, considerǎm
norma matricei spectrale şi o vom nota cu ‖ · ‖.

102

Relaţii dintre norme şi raza spectralǎ

Teoremǎ
Fie A ∈ Rn×n şi ε > 0. Atunci, existǎ o normǎ matricealǎ indusǎ notatǎ
‖ · ‖A,ε (depinzând de ε) astfel încât

‖ · ‖A,ε ≤ ρ(A) + ε. (79)

Deci, fixând o toleranţǎ arbitrarǎ, mereu existǎ o normǎ matricealǎ care
este apropiatǎ de norma spectralǎ a matricei A.

103

Analiza senzivitǎţii soluţiei

La fiecare pas al GEM în urma rotunjirilor numerelor se rezolvǎ un sistem
perturbat

(A + δA)(x + δ x) = b + δb, (80)

soluţia acestui sistem perturbat fiind perturbatǎ faţǎ de solutţia
sistemului de start

A x = b. (81)

Ne dorim sǎ caracterizǎm perturbarea δx în funcţie de pertubǎrile δA şi
δb.

Un rol important va fi jucat de numǎrul de condiţionare.

104

Numǎrul de condiţionare

Numǎrul de condiţionare al unei matrice A ∈ Rn×n este definit prin

K (A) = ‖A‖ ‖A−1‖, (82)

unde ‖ · ‖ este o normǎ indusǎ.

Se poate observa cǎ numǎrul de condiţionare depinde de norma aleasǎ.

Se observǎ însǎ cǎ indiferent de norma aleasǎ K (A) ≥ 1 deoarece

1 = ‖A A−1‖ ≤ ‖A‖ ‖A−1‖ = K (A).

Mai mult, K (A) = K (A−1) şi K (αA) = K (A), ∀α 6= 0.

Pentru norma ‖ · ‖2 pe Rn×n, K2(A) = ‖A‖2 ‖A−1‖2 este dat de

K2(A) =
σ1(A)

σn(A)
, (83)

105

iar în cazul matricelor pozitiv definite

K2(A) =
λ1(A)

λn(A)
=
λmax(A)

λmin(A)
. (84)

K2(A) se numeşte numǎrul de condiţionare spectral.

106

Analiza a priori a erorii

Theorem
Fie A ∈ Rn×n o matrice inversabilǎ şi δA ∈ Rn×n astfel ca

‖A−1‖ ‖δA‖ < 1 (85)

este verificatǎ într-o normǎ indusǎ. Atunci dacǎ x ∈ Rn este soluţie a
sistemului A x = b cu b ∈ Rn (b 6= 0) şi δx ∈ Rn verificǎ

(A + δA)(x + δx) = b + δb, (86)

atunci

‖δx‖
‖x‖

≤ K (A)

1− K (A)‖δA‖/‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
(87)

107

Câteva observaţii

Condiţia ‖A−1‖ ‖δA‖ < 1 asigurǎ faptul cǎ (A + δA) rǎmâne inversabilǎ.

Dacǎ ‖A−1‖ ‖δA‖ < 1 , atunci ρ(A−1δA) < 1.

108

Lemma
Fie A ∈ Rn×n, Atunci

lim
k→∞

Ak = 0 ⇔ ρ(A) < 1. (88)

În plus, seria geometricǎ
∑∞

k=0 Ak este convergentǎ dacǎ şi numai dacǎ
ρ(A) < 1. În acest caz

∞∑
k=0

Ak = (I − A)−1. (89)

Prin urmare, dacǎ ρ(A) < 1, matricea I − A este inversabilǎ şi au loc
inegalitǎţile

1
1 + ‖A‖

≤ ‖(I − A)−1‖ ≤ 1
1− ‖A‖

, (90)

unde ‖ · ‖ este o matrice indusǎ astfel încât ‖A‖ < 1.

109

Demonstraţia lemei

Dacǎ ρ(A) < 1 atunci ∃ ε > 0 astfel încât ρ(A) < 1− ε şi va rezulta cǎ
existǎ o normǎ indusǎ astfel încât ‖A‖ ≤ ρ(A) + ε < 1.

Din ‖Ak‖ ≤ ‖A‖k < 1 şi din definiţia convergenţei rezultǎ cǎ
limk→∞ Ak = 0.

Invers. Presupunem cǎ limk→∞ Ak = 0. Fie λ o valoare proprie a lui A.
Atunci Akx = λkx . Atunci λk → 0. Deci avem |λ| < 1. Atunci, pentru
cǎ λ a fost consideratǎ o valoare proprie genericǎ, vom avea ρ(A) < 1.

Pentru urmǎtoarea parte din teoremǎ, sǎ remarcǎm pentru început cǎ
valorile proprii ale lui I − A sunt 1− λ(A), λ(A) fiind valoare proprie a lui
A. Pe de altǎ parte, deoarece ρ(A) < 1 deducem cǎ I −A este inversabilǎ.

110

Demonstraţia lemei

Atunci, din identitatea

(I − A)(I + A + ...+ An) = I − An+1, (91)

şi considerând limita n→∞ vom avea

(I − A)
∞∑
k=0

Ak = I . (92)

În final, deoarece pentru o normǎ indusǎ ‖I‖ = 1, avem

1 = ‖I‖ ≤ ‖(I − A)‖ ‖(I − A)−1‖ ≤ (1 + ‖A‖)‖(I − A)−1‖, (93)

adicǎ prima inegalitate pe care noi o aveam de demonstrat.

Legat de ce-a de a doua inegalitate, din I = I − A + A şi prin multiplicare
cu (I − A)−1 avem

(I − A)−1 = I + A(I − A)−1. (94)

111

Demonstraţia lemei

Trecând la normǎ în

(I − A)−1 = I + A(I − A)−1, (95)

gǎsim

‖(I − A)−1‖ ≤ 1 + ‖A‖ ‖(I − A)−1‖, (96)

adicǎ inegalitatea a doua pentru cǎ avem ‖A‖ < 1.

112

Revenim torema de demonstrat: Analiza a priori a erorii

Theorem
Fie A ∈ Rn×n o matrice inversabilǎ şi δA ∈ Rn×n astfel ca

‖A−1‖ ‖δA‖ < 1 (97)

este verificatǎ într-o normǎ indusǎ. Atunci dacǎ x ∈ Rn este soluţie a
sistemului A x = b cu b ∈ Rn (b 6= 0) şi δx ∈ Rn verificǎ

(A + δA)(x + δx) = b + δb, (98)

atunci

‖δx‖
‖x‖

≤ K (A)

1− K (A)‖δA‖/‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
(99)

113

Revenim la demonstraţia teoremei

Deoarece ‖A−1δA‖ < 1, avem cǎ cǎ I + A−1δA este inversabilǎ şi din
lema precedentǎ rezultǎ cǎ

‖(I + A−1δ A)−1‖ ≤ 1
1− ‖A−1δA‖

≤ 1
1− ‖A−1‖ ‖δA‖

. (100)

Pe de altǎ parte, din

(A + δA)(x + δx) = b + δb, (101)

şi A x = b gǎsim

δx = (I + A−1δA)−1A−1(δb − δA x), (102)

iar trecând la normǎ deducem

‖δx‖ ≤ ‖A−1‖
1− ‖A−1‖ ‖δA‖

(‖δb‖+ ‖δA‖ ‖x‖). (103)

În final, împǎrţind prin ‖x‖ (care nu e zero pentru cǎ b 6= 0 şi A este
inversabilǎ), apoi folosinf cǎ ‖x‖ ≥ ‖b‖‖A‖ se deduce inegalitatea doritǎ.

114

Îmbunǎtǎţirea acurateţei GEM

Îmbunǎtǎţirea acurateţei GEM

Dupǎ cum s-a menţionat anterior, dacǎ matricea sistemului este prost
condiţionatǎ, soluţia generatǎ de GEM ar putea fi inexactǎ, chiar dacǎ
reziduul sǎu la pasul i , adicǎ r (i) = b(i) − A(i)x (i), este mic. În aceastǎ
secţiune, menţionǎm douǎ tehnici de îmbunǎtǎţire a acurateţei soluţiei
calculate de GEM.

115

Scalarea problemei

În cazul în care intrǎrile din A variazǎ foarte mult ca mǎrime, este
probabil ca în timpul procesului de eliminare intrǎrile mari sǎ fie însumate
cu intrǎrile mici, având drept consecinţǎ apariţiei erorilor de rotunjire. Un
remediu constǎ în efectuarea unei redimensionǎri a matricei A înainte de
a se efectua eliminarea.

Scalarea pe rând a lui A constǎ în gǎsirea unei matrice diagonale
nesingulare D1 astfel încât intrǎrile diagonale ale lui D1A sǎ aibǎ acelaşi
ordin de mǎrime (aceeaşi dimensiune). Sistemul liniar Ax = b se
transformǎ în

D1A x = D1b. (104)

Atunci când atât liniile cât şi coloanele lui A trebuie sǎ fie scalate,
versiunea scalatǎ a sistemului devine

(D1A D2)y = D1b cu y = D−12 x , (105)

presupunând, de asemenea, cǎ D2 este inversabil. Matricea D1

redimensioneazǎ ecuaţiile, în timp ce D2 redimensioneazǎ necunoscutele. 116

Scalarea problemei

Observaţi cǎ, pentru a preveni erorile de rotunjire, matricile de scalare
sunt alese sub forma

D1 = diag(βr1 , ..., βrn),D2 = diag(βc1 , ..., βcn) (106)

unde β este baza aritmeticii în virgulǎ mobilǎ utilizatǎ, iar exponenţii
r1, · · · , rn, c1, · · · , cn trebuie determinaţi.

117

Rafinare iterativǎ

Rafinarea iterativǎ este o tehnicǎ de îmbunǎtǎţire a acurateţei unei soluţii
obţinute printr-o metodǎ directǎ. Sǎ presupunem cǎ sistemul liniar
AX = b a fost rezolvat cu ajutorul factorizǎrii LU (cu pivotare parţialǎ
sau completǎ) şi sǎ notǎm cu x(0) soluţia calculatǎ. Dupǎ ce s-a fixat o
toleranţǎ de eroare, tol, rafinarea iterativǎ se desfǎşoarǎ astfel: pentru
i = 0, 1, · · · , pânǎ la convergenţǎ:

1. se calculeazǎ rezidualul r (i) = b(i) − A(i)x (i);

2. rezolvǎ sistemul liniar A(i)z (i) = r (i) folosind factorizarea LU a lui
A(i);

3. actualizaţi soluţia stabilind x (i+1) = x (i) + z (i);

4. dacǎ ‖z (i)‖/‖x (i+1)‖ < tol , atunci încheiem procesul returnând
soluţia x (i+1). În caz contrar, algoritmul reîncepe de la pasul 1.

În absenţa erorilor de rotunjire, procesul s-ar opri la primul pas,
producând soluţia exactǎ.

118

Sisteme nedeterminate

“Soluţia” sistemelor
supradeterminate

Sisteme algebrice liniare

Sǎ considerǎm urmǎtorul sistem algebric de ecuaţii liniare:

x1 + x2 = 1,

x1 − x2 = 2.

Semnificaţia geometricǎ a acestui sistem este cǎ se cautǎ un punct de
intersecţie a douǎ drepte, vezi figura.

-3 -2 -1 1 2 3

-4

-2

2

4

x1

x2

x1 + x2 = 1

x1 − x2 = 2

119

Eliminarea gaussianǎ

În mod clar, efectuând o eliminare gaussianǎ, înmulţim prima ecuaţie cu
(−1) şi o adǎugǎm la a doua pentru a obţine urmǎtorul sistem echivalent

x1 + x2 = 1,

−2 x2 = 1.

A doua ecuaţie ne dǎ x2 = − 1
2 şi, împreunǎ cu prima ecuaţie, gǎsim şi

x1 = 3
2 .

Prin urmare, punctul de intersecţie al celor douǎ drepte este punctul
(x1, x2) = (32 ,−

1
2).

120

Sisteme supradeterminate

Acum, sǎ luǎm în considerare urmǎtorul sistem algebric de ecuaţii liniare:

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 4.

Punctul de intersecţie al acestor trei drepte este acelaşi cu cel din
exemplul anterior, deoarece ultima ecuaţie este redundantǎ.

-3 -2 -1 1 2 3

-5

5

10

x1

x2

x1 + x2 = 1

x1 − x2 = 2

3 x1 + x2 = 4

121

Sisteme supradeterminate

Dar ce se întâmplǎ dacǎ a treia ecuaţie nu este redundantǎ? Spunem cǎ
sistemul este supradeterminat. De exemplu

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 3.

Nu existǎ un punct de intersecţie a acestor trei drepte.

-0.5 0.5 1.0 1.5 2.0

-2

2

4

x1

x2

x1 + x2 = 1

x1 − x2 = 2

3 x1 + x2 = 3

122

“Soluţia” sistemelor supradeterminate

Deci, sistemul algebric

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 3.

nu are o soluţie.

Cu toate acestea, suntem în continuare interesaţi sǎ gǎsim un punct
(x1, x2) care este “o soluţie aproximativǎ” .

123

“Soluţia” sistemelor supradeterminate

Deci, sistemul algebric

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 3

nu are o soluţie.

Cu toate acestea, suntem în continuare interesaţi sǎ gǎsim un punct
(x1, x2) care este “ ‘o soluţie aproximativǎ” .

De ce?

124

“Soluţia” sistemelor supradeterminates

De ce?

Pentru a rǎspunde la aceastǎ întrebare, trebuie sǎ remarcǎm cǎ sistemul
algebric

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 4

are o soluţie unicǎ, în timp ce perturbatǎ sistemul algebric perturbat

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 4.0001

nu are o soluţie.

125

De ce?

Pentru cǎ aceste sisteme provin din practicǎ şi este posibil sǎ avem nu
existǎ valori exacte (corecte) ale coeficienţilor. O micǎ eroare în
mǎsurǎtori ar putea conduce la un sistem algebric nedeterminat şi ne
intereseazǎ sǎ vedem care punct (x1, x2) satisface “mai bine” sistemul.

126

“Soluţia” sistemelor supradeterminate

Mai întâi de toate, sǎ remarcǎm cǎ sistemul algebric

x1 + x2 = 1,

x1 − x2 = 2,

3 x1 + x2 = 3.

poate fi scris sub formǎ de matrice sub forma

A x = b,

unde A =

1 1
1 −1
3 1

 ∈ R3×2, x =

(
x1
x2

)
∈ R2 şi b =

1
2
3

 ∈ R3.

127

“Soluţia” sistemelor supradeterminate

Printr-o “soluţie” a sistemului supradeterminat

A x = b

înţelegem un vector x =

(
x1
x2

)
∈ R2 astfel încât A x sǎ nu fie "atât de

departe" de b. Cu alte cuvinte, un vector x =

(
x1
x2

)
∈ R2 astfel încât

A x − b sǎ nu fie “departe” de

0
0
0

.

Dar ce înseamnǎ cǎ un vector nu este “atât de departe” de un alt vector?

128

Problema celor mai mici
pǎtrate: “Soluţia” sistemelor
supra-determinate, Data Fitting

Am vǎzut cǎ soluţia sistemului liniar Ax = b existǎ şi este unicǎ dacǎ
n = m şi A este nesingularǎ.

În aceastǎ secţiune dǎm un sens soluţiei unui sistem liniar în cazul
supradeterminat, m > n.

129

“Soluţia” sistemelor supradeterminate

Aproximarea soluţiei sistemelor supradeterminate
Sǎ presupunem cǎ ni se dǎ un sistem liniar de forma

A x = b, unde A ∈ Rm×n şi b ∈ Rm cu m > n.

Presupunem, de asemenea, cǎ rank(A) = n.

În aceste condiţii, sistemul de ecuaţii liniare considerat poate fi
incompatibil (nu are soluţie).

Observǎm cǎ un sistem nedeterminat nu are, în general, soluţie decât
dacǎ partea dreaptǎ b este un element al lui
Range(A) := {y ∈ Rm|∃ x ∈ Rn a. î. Ax = y}.

130

Aproximarea soluţiei sistemelor supradeterminate

O abordare obişnuitǎ pentru gǎsirea unei soluţii aproximative constǎ în
alegerea gǎsirea acelui x pentru care se realizeazǎ valoarea minimǎ a
normei reziduului r = A x − b, pe Rm, adicǎ

(LS) min
x∈Rn
‖A x − b‖2.

Aceasta este o problemǎ de minimizare a unei funcţii pǎtratice pe întreg
spaţiu, funcţia obiectiv pǎtraticǎ fiind datǎ de

f (x) =
〈
AT A x , x

〉
− 2
〈
b,A x

〉
+ ‖b‖2.

131

Problema celor mai mici pǎtrate

Dat fiind A ∈ Rm×n cu m ≥ n, b ∈ Rm, spunem cǎ x∗ ∈ Rn este o
soluţie a sistemului liniar Ax = b în sensul celor mai mici pǎtrate dacǎ

f (x∗) = ‖Ax∗ − b‖22 ≤ min
x∈Rn
‖Ax − b‖22︸ ︷︷ ︸

:=f (x)

= min
x∈Rn

f (x). (107)

Astfel, problema constǎ în minimizarea normei euclidiene a reziduului.
Soluţia problemei de minimizare poate fi gǎsitǎ prin impunerea condiţiei
ca gradientul funcţiei f sǎ fie egal cu zero la x∗.

132

Din

f (x) = (Ax − b)T (Ax − b) = xTATAx − 2xTATb + bTb, (108)

aflǎm cǎ

∇f (x∗) = 2ATAx∗ − 2ATb = 0, (109)

de unde rezultǎ cǎ x∗ trebuie sǎ fie soluţia sistemului pǎtratic

ATAx∗ = ATb (110)

cunoscut sub numele de ecuaţia normalǎ.

Sistemul este nesingular dacǎ A are rang complet şi, în acest caz, soluţia
celor mai mici pǎtrate existǎ şi este unicǎ.

133

Observǎm cǎ B = ATA este o matrice simetricǎ şi pozitiv definitǎ.
Astfel, pentru a rezolva ecuaţiile normale, se poate calcula mai întâi
factorizarea Cholesky B = HTH şi apoi se pot rezolva cele douǎ sisteme
HT y = ATb şi Hx∗ = y . Cu toate acestea, din cauza erorilor de
rotunjire, calculul lui ATA poate fi afectat de o pierdere de cifre
semnificative, cu o pierdere consecventǎ a definiţiei pozitive sau a
nesingularitǎţii matricei, aşa cum se întâmplǎ în urmǎtorul exemplu
(implementat în MATLAB) în care, pentru o matrice A cu rang complet,
matricea corespunzǎtoare fl(ATA) se dovedeşte a fi singularǎ

A =

 1 1
2−27 0
0 2−27

 , fl(ATA) =

(
1 1
1 1

)
. (111)

Prin urmare, în cazul matricelor prost condiţionate, este mai convenabil
sǎ se utilizeze o metodǎ alternativǎ bazatǎ pe factorizarea QR.

134

Data Fitting

A 2D picture

Un domeniu în care se utilizeazǎ problema cel mai mici pǎtrate este
corelarea datelor.

135

Data Fitting

Linear Data Fitting in 2D
Date n puncte în Rn, obiectivul este de a gǎsi o dreaptǎ de forma

y = a x + b

care se potriveşte cel mai bine cu acestea. Aceasta înseamnǎ cǎ trebuie
sǎ gǎsim a şi b care sǎ defineascǎ aceastǎ dependenţǎ liniarǎ.

Corespondenţele liniare corespunzǎtoare care trebuiesc corelate sunt

yi = a xi + b, i = 1, 2, ..., n,

adicǎ, sistemul care trebuie "rezolvat" este
x1 1
x2 1
...

xn 1


(

a

b

)
=


y1
y2
...

yn

 .

136

Deci, gǎsiţi a şi b “soluţie" pentru
x1 1
x2 1
...

xn 1


︸ ︷︷ ︸

:=X

(
a

b

)
=


y1
y2
...

yn


︸ ︷︷ ︸

:=y

.

Soluţia problemei celor mai mici pǎtrate este(
a

b

)
= (XTX)−1XT y .

137

Data Fitting

Unul dintre domeniile în care se utilizeazǎ problema celor mai mici
pǎtrate este corelarea datelor.

Linear Data Fitting
Sǎ presupunem cǎ ni se dǎ un set de date (si , ti), i = 1, 2, ...,m, unde
si ∈ Rn şi ti ∈ R, şi sǎ presupunem cǎ o relaţie liniarǎ de forma

ti =
〈
si , x

〉
, i = 1, 2, ...,m,

este cǎutatǎ. Gǎsiţi x pentru a putea aproxima aceastǎ dependenţǎ
liniarǎ!

Aplicaţii?

138

Deci, problema este de a gǎsi vectorul de parametri x ∈ Rn care rezolvǎ
problema

min
x∈Rn

m∑
i=1

(
〈
si , x

〉
− ti)

2.

Aceasta este o problemǎ (LS) scrisǎ ca

min
x∈Rn
‖S x − t‖2,

unde S =


−− sT1 −−
−− sT2 −−

...
−− sTm −−

, t =


t1
t2
...
tm

 .

139

Alte situaţii

140

Alte situaţii

141

Mai multe despre corelarea datelor

Abordarea celor mai mici pǎtrate poate fi utilizatǎ şi în cazul ajustǎrilor
neliniare. Sǎ presupunem, de exemplu, cǎ ni se dǎ un set de puncte în
R2: (ui , yi), i = 1, 2, ...,m, şi cǎ ştim a priori cǎ aceste puncte sunt
aproximativ legate prin intermediul unui polinom de grad cel mult d ;
adicǎ existǎ a0, a1, ..., ad astfel încât

d∑
j=0

aju
j
i ≈ yi , i = 1, ...,m.

Abordarea prin metoda celor mai mici pǎtrate a acestei probleme este:
cautǎ a0, a1, ..., ad care sǎ fie soluţia celor mai mici pǎtrate a sistemului
liniar 

1 u1 u2
1 · · · ud1

1 u2 u2
2 · · · ud2

...
...

...
. . .

...
1 um u2

m · · · udm



a0

a1
...
ad

 =


y1
y2
...
ym

 .

(LS) este, desigur, bine definitǎ dacǎ m ≥ d + 1. Matricea este
aşa-numita matrice Vandermonde, despre care se ştie cǎ este de rang
d + 1 dacǎ d + 1 din ui -uri sunt diferite între ele. 142

Regularizarea Problemei celor
mai mici pǎtrate, Eliminarea
zgomotului dintr-un semnal

Regularizarea Problemei celor mai mici pǎtrate

Atunci când A este subdeterminatǎ, adicǎ atunci când existǎ mai puţine
ecuaţii decât variabile, existǎ mai multe soluţii optime pentru problema
celor mai mici pǎtrate şi nu este clar care dintre aceste soluţii optime este
cea care trebuie luatǎ în considerare.

În modelul de optimizare ar trebui încorporat un anumit tip de informaţii
prealabile despre x .

O modalitate de a face acest lucru este de a lua în considerare o
problemǎ penalizatǎ în care o funcţie de regularizare R(·) este adǎugatǎ
la funcţia obiectiv.

143

Regularized Least Squares

RLS
Problema regularizatǎ a celor mai mici pǎtrate (RLS) are forma

(RLS) min
x∈Rn
‖A x − b‖2 + λR(x),

unde λ > 0 este parametrul de regularizare. Pe mǎsurǎ ce λ devine mai
mare, funcţia de regularizare primeşte o pondere mai mare.

În multe cazuri, se considerǎ cǎ regularizarea este pǎtraticǎ. În special
R(x) = ‖D x‖2, cu D ∈ Rp×n dat. Funcţia de regularizare pǎtraticǎ
urmǎreşte sǎ controleze norma lui D x şi este formulatǎ dupǎ cum
urmeazǎ:

(RLS) min
x∈Rn
‖A x − b‖2 + λ ‖D x‖2,

sau, echivalent ca

(RLS) min
x∈Rn
{fRLS(x) =

〈
(AT A + λDT D) x , x

〉
− 2
〈
b,A x

〉
+ ‖b‖2},

144

(RLS) min
x∈Rn
{fRLS(x) =

〈
(AT A + λDT D) x , x

〉
− 2
〈
b,A x

〉
+ ‖b‖2},

Deoarece D şi λ sunt cǎutaţi a.î. matricea hessianǎ a funcţiei obiectiv
datǎ de ∇2fRLS(x) = 2 (AT A + λDT D) � 0 sǎ fie positiv definitǎ,
rezultǎ cǎ orice punct staţionar este un punct minim global.

Punctele staţionare sunt cele care satisfac

∇fRLS(x) = 0

adicǎ
(AT A + λDT D) x = AT b.

Prin urmare, dacǎ D şi λ sunt astfel încât AT A + λDT D � 0, atunci
soluţia RLS este datǎ de

xRLS = (AT A + λDT D)−1AT b.

145

Other situations

146

Eliminarea zgomotului dintr-un semnal

Denoising problem
Sǎ presupunem cǎ este dat un semnal bruiat a unui semnal x ∈ Rn:

b = x + w .

Aici x este un semnal necunoscut, w este un vector de zgomot
necunoscut, iar b este vectorul mǎsurǎtorilor cunoscute.

Problema eliminǎrii zgomotului este urmǎtoarea: Având în vedere b,
gǎsiţi o estimare "bunǎ" a lui x .

Aplicaţii?

Problema celor mai mici pǎtrate vǎ va da soluţia x = b.

Pentru a gǎsi o problemǎ mai relevantǎ, vom adǎuga un termen de
regularizare. Pentru aceasta, trebuie sǎ exploatǎm unele informaţii a
priori despre semnal.

147

De exemplu, am putea şti cǎ semnalul este neted într-un anumit sens. În
acest caz, este foarte natural sǎ adǎugǎm o penalizare pǎtraticǎ, care
este suma pǎtratelor diferenţelor dintre componentele consecutive ale
vectorului; adicǎ funcţia de regularizare este

R(x) =
n−1∑
i=1

(xi − xi+1)2.

Aceastǎ funcţie pǎtraticǎ poate fi scrisǎ şi sub forma R(x) = ‖L x‖2,
unde L ∈ R(n−1)×n este datǎ de

L =


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −1



148

Problema rezultatǎ a celor mai mici pǎtrate regularizate este

min
x∈Rn
‖x − b‖2 + λ ‖L x‖2,

iar soluţia sa optimǎ este datǎ de

xRLS(λ) = (In + λLTL)−1b,

unde λ > 0 este un parametru de regularizare dat (bun).

Am putea gǎsi un astfel de λ > 0?

149

Alte situaţii

150

Problema neliniarǎ a celor mai
mici pǎtrate: Circle Fitting

Problema neliniarǎ a celor mai mici pǎtrate: Circle Fitting

Existǎ situaţii în care ni se dǎ un sistem de ecuaţii neliniare

fi (x) = ci , i = 1, 2, ...,m,

unde fi : Rn → R, ci ∈ R sunt date şi x trebuie finanţat.

În acest caz, problema de aproximare este cea a celor mai mici pǎtrate
neliniare (NLS), care se formuleazǎ astfel

min
x∈Rn

m∑
i=1

(fi (x)− ci)
2.

Nu existǎ o modalitate uşoarǎ de a rezolva problemele NLS. Metoda
Gauss-Newton este o modalitate, dar aceasta converge numai cǎtre un
punct staţionar.

151

Circle fitting

Sǎ presupunem cǎ ne sunt date m puncte a1, a2, ..., am ∈ Rn. Problema
adaptǎrii cercului urmǎreşte sǎ gǎseascǎ un cerc

C (x , r) = {y ∈ Rn : ‖y − x‖ = r}

care se potriveşte cel mai bine punctelor m.

Aplicaţie?

Ecuaţiile neliniare asociate cu aceastǎ problemǎ sunt

‖x − ai‖ = r , i = 1, 2, ...,m.

Deoarece dorim sǎ avem de-a face cu funcţii diferenţiabile, iar funcţia
normǎ nu este diferenţiabilǎ, vom considera versiunea pǎtraticǎ a
acesteia:

‖x − ai‖2 = r2, i = 1, 2, ...,m.

152

NLS for Circle fitting
Problema NLS asociatǎ cu aceste ecuaţii este

min
x∈Rn,r∈R+

m∑
i=1

(‖x − ai‖2 − r2)2.

Observaţie: În aceastǎ formǎ nu avem o problemǎ de optimizare fǎrǎ
constrângeri!

Dar, de fapt, problema este echivalentǎ cu

min
x∈Rn,r∈R

m∑
i=1

(−2
〈
ai , x

〉
+ ‖x‖2 + ‖ai‖2 − r2)2.

Efectuând schimbarea de variabile R = ‖x‖2 − r2, problema de mai sus
se reduce la

min
x∈Rn,‖x‖2≥R

f (x ,R) :=
m∑
i=1

(−2
〈
ai , x

〉
+ R + ‖ai‖2)2.

153

De fapt, orice soluţie optimǎ (x̂ , R̂) a problemei

min
x∈Rn,R∈R

f (x ,R) :=
m∑
i=1

(−2
〈
ai , x

〉
+ R + ‖ai‖2)2

satisface în mod automat ‖x̂‖2 ≥ R̂, deoarece altfel

−2
〈
ai , x̂

〉
+R̂+‖ai‖2 > −2

〈
ai , x̂

〉
+‖x̂‖2+‖ai‖2 = ‖x̂−ai‖2 ≥ 0, i = 1, 2, ...,m.

Prin ridicarea la pǎtrat a ambelor pǎrţi ale primei inegalitǎţi din ecuaţia
de mai sus şi adunarea la i rezultǎ

f (x̂ , R̂) =
m∑
i=1

(−2
〈
ai , x̂

〉
+ R̂ + ‖ai‖2)2

>

m∑
i=1

(−2
〈
ai , x̂

〉
+ ‖x̂‖2 + ‖ai‖2)2 = ‖x̂ − ai‖2 = f (x̂ , ‖x̂‖2),

arǎtând cǎ (x̂ , ‖x̂‖2) conduce o valoare a funcţiei mai micǎ decât (x̂ , R̂),
în contradicţie cu optimimalitatea lui (x̂ , R̂).

154

În concluzie, problema NLS

min
x∈Rn,‖x‖2≥R

f (x ,R) :=
m∑
i=1

(−2
〈
ai , x

〉
+ R + ‖ai‖2)2

este de fapt echivalentǎ cu problema LS

min
(x,R)∈Rn+1

f (x ,R) := ‖A

(
x

R

)
− b‖2,

unde A =


2 aT1 −1
2 aT2 −1
...

...
2 aTm −1

 şi b =


‖a1‖2

‖a2‖2
...

‖am‖2

 .

155

Dacǎ A este de rang maxim, atunci soluţia unicǎ a problemei liniare a
celor mai mici pǎtrate este(

x

R

)
= (ATA)−1ATb.

Optimul x este dat de primele n componente, iar raza r este datǎ de

r =
√
‖x‖2 − R.

156

Matrici dreptunghiulare:
Factorizarea QR

Factorizarea QR

Definiţie
O matrice A ∈ Rm×n, cu m ≥ n, admite o factorizare QR dacǎ existǎ o
matrice ortogonalǎ Q ∈ Rm×m şi o matrice trapezoidalǎ superior
R ∈ Rm×n, cu rânduri nule începând de la al (n + 1)-lea, astfel încât
A = QR.

Este de asemenea posibil sǎ se genereze o versiune redusǎ a factorizǎrii
QR, aşa cum este afirmat în rezultatul urmǎtor.

157

Teoremǎ
Fie A ∈ Rm×n, cu m ≥ n, o matrice de rang n pentru care este cunoscutǎ
o factorizare QR. Atunci existǎ o factorizare unicǎ a lui A de forma

A = Q̃R̃,

unde Q̃ şi R̃ sunt submatrice ale lui Q şi R, date respectiv de

Q̃ = Q(1 : m, 1 : n), R̃ = R(1 : n, 1 : n).

Mai mult, Q̃ are coloane vectoriale ortonormale şi R̃ este triunghiularǎ
superior şi coincide cu factorul Cholesky H al matricei simetrice definite
pozitiv ATA, adicǎ, ATA = R̃T R̃.

158

Dacǎ A are rangul n (adicǎ, rang complet), atunci vectorii coloanǎ ai lui
Q̃ formeazǎ o bazǎ ortonormalǎ pentru spaţiul vectorial

range(A) = {y ∈ Rm : y = A x pentru x ∈ Rn}.

Ca o consecinţǎ, construirea factorizǎrii QR poate fi interpretatǎ şi ca o
procedurǎ pentru generarea unei baze ortonormale pentru un set dat de
vectori.

Dacǎ A are rangul r < n, factorizarea QR nu conduce neapǎrat la o bazǎ
ortonormalǎ pentru range(A). Totuşi, se poate obţine o factorizare de
forma

QTA P =

(
R11 R12

0 0

)
,

unde Q este ortogonalǎ, P este o matrice de permutare şi R11 este o
matrice triunghiularǎ superior nesingularǎ de ordin r .

159

În general, când folosim factorizarea QR, ne vom referi întotdeauna la
forma sa redusǎ, deoarece are aplicaţie în rezolvarea sistemelor
supra-determinate.

Factorii matriciali Q̃ şi R̃ pot fi calculaţi utilizând ortogonalizarea
Gram-Schmidt. Pornind de la un set de vectori liniar independenţi,
x1, · · · , xn, acest algoritm genereazǎ un nou set de vectori mutual
ortogonali, q1, · · · , qn, daţi de

q1 = x1,

qk+1 = xk+1 −
k∑

i=1

〈qi , xk+1〉
〈qi , qi 〉

qi , k = 1, · · · , n − 1. (112)

Notând cu a1, · · · , an vectorii coloanǎ ai lui A, setǎm

q̃1 =
a1
‖a1‖

(113)

şi, pentru k = 1, · · · , n − 1, calculǎm vectorii coloanǎ ai lui Q̃ ca

q̃k+1 =
qk+1

‖qk+1‖
, unde qk+1 = ak+1 −

k∑
i=1

〈q̃i , ak+1〉
〈q̃i , q̃i 〉

q̃i . (114)

160

În continuare, impunând ca A = Q̃R̃ şi folosind faptul cǎ Q̃ este
ortogonalǎ (adicǎ, Q̃T Q̃ = In), elementele lui R̃ pot fi calculate cu
uşurinţǎ.

De asemenea, este de remarcat faptul cǎ, dacǎ A are rang complet,
matricea ATA este simetricǎ şi pozitiv definitǎ, şi, prin urmare, admite o
factorizare Cholesky unicǎ de forma HTH. Pe de altǎ parte, deoarece
ortogonalitatea lui Q̃ implicǎ

HTH = ATA = R̃T Q̃T Q̃R̃ = R̃T R̃, (115)

concluzionǎm cǎ R̃ este, de fapt, factorul Cholesky H al lui ATA.

Astfel, elementele diagonale ale lui R̃ sunt nenule doar dacǎ A are rang
complet.

161

Metoda Gram-Schmidt are o utilitate practicǎ redusǎ, deoarece vectorii
generaţi îşi pierd independenţa liniarǎ din cauza erorilor de rotunjire.
Într-adevǎr, în aritmetica cu virgulǎ mobilǎ, algoritmul produce valori
foarte mici pentru ‖qk+1‖2 şi r̃kk , ceea ce duce la instabilitate numericǎ şi
pierderea ortogonalitǎţii pentru matricea Q̃.

Aceste neajunsuri sugereazǎ utilizarea unei versiuni mai stabile, cunoscutǎ
sub numele de metoda Gram-Schmidt modificatǎ.

La începutul pasului k + 1, proiecţiile vectorului ak+1 pe direcţia
vectorilor q̃1, · · · , q̃k+1 sunt progresiv scǎzute din ak+1. Pe vectorul
rezultat, se realizeazǎ apoi pasul de ortogonalizare.

162

În practicǎ, dupǎ ce se calculeazǎ 〈q̃1, ak+1〉q̃1 la pasul k + 1, acest
vector este imediat scǎzut din ak+1. De exemplu, se defineşte

a
(1)
k+1 = ak+1 − 〈q̃1, ak+1〉q̃1. (116)

Acest nou vector a
(1)
k+1 este proiectat pe direcţia lui q̃2, iar proiecţia

obţinutǎ este scǎzutǎ din a
(1)
k+1, obţinându-se

a
(2)
k+1 = a

(1)
k+1 − 〈q̃2, a

(1)
k+1〉q̃2 (117)

şi aşa mai departe, pânǎ când a
(k)
k+1 este calculat.

Se poate verifica faptul cǎ a
(k)
k+1 coincide cu vectorul corespunzǎtor qk+1

din procesul Gram-Schmidt standard, deoarece, datoritǎ ortogonalitǎţii lui
q̃1, · · · , q̃k

a
(k)
k+1 = ak+1 − 〈q̃1, ak+1〉q̃1 − 〈q̃2, ak+1 − 〈q̃1, ak+1〉q̃1〉q̃2 + · · · (118)

= ak+1 −
k∑

i=1

〈q̃i , ak+1〉q̃i .

163

Observaţi cǎ nu este posibilǎ rescrierea factorizǎrii QR pe matricea A. În
general, matricea R̃ este rescrisǎ pe A, în timp ce Q̃ este stocatǎ separat.

164

Sisteme nedeterminate cu
factorizarea QR

Sisteme nedeterminate cu factorizarea QR

Teoremǎ
Fie A ∈ Rm×n, cu m ≥ n, o matrice de rang complet. Atunci soluţia
unicǎ a problemei

min
x∈Rn
‖Ax − b‖22︸ ︷︷ ︸

:=Φ(x)

este datǎ de

x∗ = R̃−1Q̃Tb, (119)

unde R̃ ∈ Rn×n şi Q̃ ∈ Rm×n sunt matricile obţinute din factorizarea QR

a lui A. Mai mult, minimul lui Φ este dat de

Φ(x∗) =
m∑

i=n+1

[(QTb)i]
2. (120)

165

Demonstraţie

Factorizarea QR a lui A existǎ şi este unicǎ, deoarece A are rang
complet. Astfel, existǎ douǎ matrici, Q ∈ Rm×m şi R ∈ Rm×n, astfel
încât A = QR, unde Q este ortogonalǎ.

Deoarece matricile ortogonale pǎstreazǎ produsul scalar euclidian, rezultǎ
cǎ

‖Ax − b‖22 = ‖Rx − QTb‖22. (121)

Aducându-ne aminte cǎ R este trapezoidalǎ superior, avem

‖Rx − QTb‖22 = ‖R̃x − Q̃Tb‖22 +
m∑

i=n+1

[(QTb)i]
2, (122)

aşa încât minimul este atins când x = x∗.

166

Dacǎ A nu are rang complet, tehnicile de soluţionare de mai sus eşueazǎ,
deoarece, în acest caz, dacǎ x∗ este o soluţie a problemei

min
x∈Rn
‖Ax − b‖22︸ ︷︷ ︸

:=Φ(x)

,

atunci vectorul x∗ + z , cu z ∈ ker(A), este de asemenea o soluţie. Prin
urmare, trebuie introdusǎ o constrângere suplimentarǎ pentru a impune
unicitatea soluţiei.

De obicei, se impune ca x∗ sǎ aibǎ norma euclidianǎ minimǎ, astfel încât
problema celor mai mici pǎtrate poate fi formulatǎ astfel:

gǎsiţi x∗ ∈ Rn cu norma euclidianǎ minimǎ astfel încât

‖A x∗ − b‖22 ≤ min
x∈Rn
‖Ax − b‖22︸ ︷︷ ︸

:=Φ(x)

. (123)

Instrumentul pentru rezolvarea acestei probleme noi este descompunerea
prin valori singulare (sau SVD).

167

Reflectori Householder

Definiţie
Fie u ∈ Rm normat, adicǎ ‖u‖ = 1. O matrice U ∈ Rm×m de forma

U = Im − 2 u uT

see numeşte reflector elementat Householder de ordin m.

Matricea U are proprietǎţile

• UTU = (Im−2 u uT)T (Im−2 u uT) = Im−4 u uT +4 u(uTu) uT = Im.

• UT = U

• U x = (Im − 2 u uT) x = x − 2 u (uT x)︸ ︷︷ ︸
=〈u,x〉

= x − 2 (uT x)︸ ︷︷ ︸
=〈u,x〉

u

168

Reflectori Householder

Dacǎ u nu are norma 1, putem defini totuşi reflectorul Householder

U = Im −
1
β

u uT , unde β =
‖u‖2

2
.

Vom obţine U x = (Im − 1
β u uT) x = x − 1

β u (uT x)︸ ︷︷ ︸
=〈u,x〉

= x − 1
β

(uT x)︸ ︷︷ ︸
:=ν

u

• pentru u = (0 ... 0 uk ... um)T , reflectorul Houseldorf corespunzǎtor
este

Uk =

(
Ik−1 0
0 Ũ

)
, Ũ fiind reflectorul asociat vectorului ũ = (uk ... um)T

169

Aplicaţii ale reflectorilor Householder pentru factorizarea QR

Considerǎm o matrice A ∈ Rm×n şi dorim sǎ construim o matrice
Q ∈ Rm×m ortogonalǎ şi o matrice R ∈ Rm×n astfel ca A = Q R.

Dacǎ notǎm cu a1 prima coloanǎ a matricei A,şi definim

u1 = a1 − ‖a1‖ e1, unde e1 este primul element al bazei canonice,

construind reflectorul Householder

U1 = Im −
1
β1

u1 uT
1 , unde β1 =

‖u1‖2

2
,

vom avea
U1 a1 = ‖a1‖ e1.

Prin urmare obţinem

A(1) := U1 A =


‖a1‖ a

(1)
12 · · · a

(1)
1n

0 a
(1)
22 · · · a

(1)
2n

...
... · · ·

...
0 a

(1)
m2 · · · a

(1)
mn


170

Aplicaţii ale reflectorilor Householder pentru factorizarea QR

La urmǎtorul pas definim

a2 =

(
0

A(1)(2 : m, 2)

)
, (124)

apoi definim

u2 = a2 − ‖a2‖ e2, unde e2 este al doilea element al bazei canonicei

construind reflectorul Householder

U2 = Im −
1
β2

u2 uT
2 , unde β2 =

‖u2‖2

2
vom avea

U2 a2 = ‖a2‖ e2.

În plus, deoarece prima linie şi prima coloanǎ din u2 uT
2 sunt zero, prima

linie a lui A(1) dar şi prima coloanǎ a lui nu se modificǎ A(1) prin
înmulţirea cu U2.

171

Aplicaţii ale reflectorilor Householder pentru factorizarea QR

Prin urmare

A(2) := U2A(1) = U2U1 A =



‖a1‖ a
(1)
12 a

(1)
13 · · · a

(1)
1n

0 ‖a2‖ a
(2)
23 · · · a

(2)
2n

0 0 a
(2)
33 · · · a

(2)
3n

...
... · · ·

...
0 0 a

(2)
m3 · · · a

(2)
mn



172

Aplicaţii ale reflectorilor Householder pentru factorizarea QR

La pasul k definim

ak =


0
...
0

A(k−1)(k : m, k)

 , (125)

apoi definim

uk = ak − ‖ak‖ ek , unde ek este elementul k al bazei canonicei

construind reflectorul Householder

Uk = Im −
1
βk

uk uT
k , unde βk =

‖uk‖2

2
vom avea

Uk ak = ‖ak‖ ek .

În plus, deoarece primele k − 1 linii şi primele k − 1 coloanǎ din uk uT
k

sunt zero, primele linii ale lui A(k−1) dar şi primele coloane ale lui nu se
modificǎ A(k−1) prin înmulţirea cu Uk . 173

Aplicaţii ale reflectorilor Householder pentru factorizarea QR

Prin urmare

A(k) := UkA(k−1) = Uk ...U1 A =



‖a1‖ a
(1)
12 · · · a

(1)
1k · · · a

(1)
1n

0 ‖a2‖ · · · a
(2)
2k · · · a

(2)
2n

...
... · · · · · ·

...
0 0 · · · ‖ak‖ · · · a

(k)
3n

...
... · · ·

...
...

0 0 · · · a
(k)
mk · · · a

(k)
mn



174

Aplicaţii ale reflectorilor Householder pentru factorizarea QR

Repetând procedeul de n ori gǎsim

A(n) := UnA(n−1) = Un...U1 A =



‖a1‖ a
(1)
12 · · · a

(1)
1n

0 ‖a2‖ · · · a
(2)
2n

...
... · · ·

0 0 · · · ‖an‖
0 0 · · · 0
...

... · · ·
0 0 · · · 0


.

175

Factorizarea este gǎsitǎ

Deci, Q şi R din factorizarea QR a lui A sunt

Q = U1....Un−1Un şi R =



‖a1‖ a
(1)
12 · · · a

(1)
1n

0 ‖a2‖ · · · a
(2)
2n

...
... · · ·

0 0 · · · ‖an‖
0 0 · · · 0
...

... · · ·
0 0 · · · 0



176

Având factorizarea QR vom putea deduce factorizarea Q̃R̃ şi apoi putem
sǎ le folosim pentru rezolvarea problemei celor mai mici pǎtrate, dacǎ
rang A = n.

177

Sisteme nedeterminate cu
descompunerea în valori
singulare (SVD) şi
pseudoinversǎ

Descompunerea în valori singulare (SVD)

Descompunerea în valori singulare (SVD) a unei matrice A este un
instrument foarte util în contextul problemei celor mai mici pǎtrate. Este
de asemenea foarte utilǎ pentru analiza proprietǎţilor unei matrice. Cu
SVD-ul, poţi „radiografia” o matrice!

Teoremǎ
Fie A ∈ Rn×m. Atunci existǎ matrice ortogonale U ∈ Rn×n şi V ∈ Rm×m

şi o matrice diagonalǎ Σ = diag(σ1, . . . , σn) ∈ Rn×m cu
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, astfel încât:

A = UΣV>

are loc.

178

A = UΣV>

Definiţie
Vectorii coloanǎ ai lui U = [u1, . . . , um] sunt numiţi vectori singulari
stângi şi, similar, V = [v1, . . . , vn] sunt vectorii singulari drepţi. Valorile
σi =

√
λi (A>A) sunt numite valorile singulare ale lui A (unde λi (A>A)

sunt valorile proprii ale lui A>A).

179

Exemplu

Fie matricea A =

 1 3
5 7
9 1

 ∈ R3×2. Descompunerea sa este datǎ de

 1 3
5 7
9 1


︸ ︷︷ ︸

=A

=

 0.207621 0.370412 0.905366
0.679634 0.611049 −0.405854
0.703556 −0.699581 0.124878


︸ ︷︷ ︸

:=U∈R3×3

 11.6522 0.
0. 5.4979
0. 0.


︸ ︷︷ ︸

:=Σ∈R3×2

(
0.852871 0.522122
−0.522122 0.852871

)
︸ ︷︷ ︸

=VT∈R2×2

,

valorile singulare fiind σ1 = 11.6522 şi σ2 = 5.4979.

Din numǎrul valorilor singulare nenule ne putem da seama cǎ rangul
matricei este 2.

180

Exemplu

Fie matricea A =

(
1 5 9
3 7 1

)
∈ R3×2. Descompunerea sa este datǎ

de
(

1 5 9
3 7 1

)
︸ ︷︷ ︸

=A

=

(
0.852871 −0.522122
0.522122 0.852871

)
︸ ︷︷ ︸

:=U∈R2×2

(
11.6522 0. 0.

0. 5.4979 0.

)
︸ ︷︷ ︸

:=Σ∈R3×2

 0.207621 0.370412 0.905366
0.679634 0.611049 −0.405854
0.703556 −0.699581 0.124878


︸ ︷︷ ︸

=VT∈R3×3

,

valorile singulare fiind σ1 = 11.6522 şi σ2 = 5.4979.

Din numǎrul valorilor singulare nenule ne putem da seama cǎ rangul
matricei este 2.

181

Demonstraţie

Norma 2 a lui A este definitǎ de ‖A‖2 = max‖x‖2=1 ‖Ax‖2. Astfel, existǎ
un vector x cu ‖x‖2 = 1 astfel încât

z = Ax , ‖z‖2 = ‖A‖2 =: σ.

Notǎm y := z
‖z‖2 . Acest lucru duce la Ax = σy cu ‖x‖2 = ‖y‖2 = 1.

Apoi, extindem x în o bazǎ ortonormatǎ a lui Rn. Dacǎ V ∈ Rn×n este
matricea care conţine vectorii bazei drept coloane, atunci V este o
matrice ortogonalǎ care poate fi scrisǎ ca V = [x ,V1], unde V>1 x = 0.
Similar, putem construi o matrice ortogonalǎ U ∈ Rn×m care sǎ satisfacǎ
U = [y ,U1], U>1 y = 0.

182

Demonstraţie

A1 = U>AV =

[
y>

U>1

]
A[x ,V1] =

[
y>Ax y>AV1

U>1 Ax U>1 AV1

]
=

[
σ ω>

0 B

]
,

pentru cǎ y>Ax = y>σy = σy>y = σ şi U>1 Ax = σU>1 y = 0 deoarece
U1 ⊥ y .

Afirmaţia noastrǎ este cǎ ω> := y>AV1 = 0. Pentru a demonstra acest
lucru, calculǎm

A1

(
σ

ω

)
=

(
σ2 + ‖ω‖21

Bω

)
şi concluzionǎm din aceastǎ ecuaţie cǎ

∥∥∥∥∥A1

(
σ

ω

)∥∥∥∥∥
2

2

= (σ2 + ‖ω‖22)2 + ‖Bω‖22 ≥ (σ2 + ‖ω‖22)2.
183

Demonstraţie

Acum, deoarece V şi U sunt ortogonale, ‖A1‖2 = ‖U>AV ‖2 = ‖A‖2 = σ

deducem

σ2 = ‖A1‖22 = max
‖x‖2 6=0

‖A1x‖22
‖x‖22

≥

∥∥∥∥∥A1

(
σ

ω

)∥∥∥∥∥
2

2∥∥∥∥∥
(
σ

ω

)∥∥∥∥∥
2

2

≥ (σ2 + ‖ω‖22)2

σ2 + ‖ω‖22
.

Ultima ecuaţie se scrie

σ2 ≥ σ2 + ‖ω‖22,
şi concluzionǎm cǎ ω = 0. Astfel, am obţinut

A1 = U>AV =

[
σ 0
0 B

]
.

184

Demonstraţie

Putem acum aplica aceeaşi construcţie la sub-matricea B şi astfel, in
final, sǎ ajungem la o matrice diagonalǎ.
Dacǎ scriem ecuaţia A = UΣV T în formǎ partitionatǎ, în care Σr conţine
doar valorile singulare nenule, obţinem

A = [U1,U2]

(
Σr 0
0 0

)
[V1,V2]T = U1ΣrV

T
1 =

r∑
i=1

σiuiv
T
i . (126)

185

Pentru Matlab

În Matlab existǎ douǎ variante pentru calculul SVD:
[U S V]=svd(A)− dǎ o descompunere completǎ
[U S V]=svd(A,0)− dǎ o matrice m × n pentru U

Apelul svd(A, 0) calculeazǎ o versiune între una completǎ şi una
economicǎ cu o matrice nepǎtraticǎ U ∈ Rn×m. Aceastǎ formǎ este
uneori numitǎ „SVD subţire”.

186

Valori şi vectori singulari

Proprietǎţi:

• A vi = σiui şi AT ui = σivi pentru i = 1 : n, unde ui şi vi sunt
coloanele matricelor U şi V din descompunerea spectralǎ.

• σmin‖x‖2 ≤ ‖A x‖2 ≤ σmax‖x‖2.
• A =

∑r
i=1 σiui vT

i .

• ATA vi = σ2i vi şi AAT ui = σ2i ui pentru i = 1 : n, ceea ce înseamnǎ
cǎ vi e vector propriu pentru ATA iar ui e vector propriu pentru
A AT .

187

În ceea ce priveşte rangul, dacǎ

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0. (127)

atunci rangul lui A este r , nucleul lui A este generat de vectorii coloanǎ
V (:, r + 1 : n) ai lui V , iar range(A) este general de vectorii coloanǎ
U(:, 1 : r) ai lui U.

Definiţie
Sǎ presupunem cǎ A ∈ Rm×n are rang egal cu r şi cǎ admite SVD de
tipul UTA V = Σ. Matricea A† = V Σ†UT este numitǎ matricea
pseudo-inversǎ Moore-Penrose, unde

Σ† = diag
(

1
σ1
, · · · , 1

σr
, 0, · · · , 0

)
. (128)

Matricea A† este, de asemenea, numitǎ inversa generalizatǎ a lui A.
Într-adevǎr, dacǎ rank(A) = n < m, atunci A† = (ATA)−1AT , iar dacǎ
n = m = rank(A), A† = A−1.

188

Revenind la sisteme

Dacǎ A nu are rang complet, tehnicile de soluţionare prin descompunerea
QR de mai sus nu funcţioneazǎ şi avem nevoie de o altǎ tehnicǎ

Teoremǎ

Sǎ considerǎm A ∈ Rm×n cu SVD dat de A = UΣV T . Atunci soluţia
unicǎ a problemei de minimizare

gǎseşte x∗ ∈ Rn cu norma Euclidianǎ minimǎ astfel cǎ

‖A x∗ − b‖22 ≤ min
x∈Rn
‖Ax − b‖22︸ ︷︷ ︸

:=Φ(x)

(129)

este

x∗ = A†b, (130)

unde A† este pseudo-inversa lui A.

189

Demonstraţie

Folosind SVD-ul lui A, sarcina este de a gǎsi w = V T astfel ca w are
norma Euclidianǎ minimǎ şi

‖Σw − UTb‖22 ≤ ‖Σy − UTb‖22 ∀ y ∈ Rn. (131)

Dacǎ r este numǎrul de valori singulare nenule σi ale lui A, atunci

‖Σw − UTb‖22 =
r∑

i=1

(
σiwi − (UTb)i

)2
+

m∑
i=r+1

(
(UTb)i

)2
, (132)

ceea ce este minim daca wi = (UTb)i/σi pentru i = 1, . . . , r .

În plus, este clar cǎ printre vectorii w ai lui Rn care au primele r

componente fixe, vectorul cu norma Euclidianǎ minimǎ are celelalte n − r

componente egale cu zero.

Aşadar, vectorul soluţie este w∗ = Σ†UTb, adicǎ x∗ = V Σ†UTb = A†b,
unde Σ† este matricea diagonalǎ definitǎ în definiţia pseudo-inversei.

190

Metoda gradientului folositǎ
pentru rezolvarea sistemelor

Scop

Dorim sǎ construim o soluţie aproximativǎ pentru problema de minim

min
x∈Rn

f (x), unde f : Rn → R este de clasǎ C 1 pe Rn.

De ce?

Pentru c ǎ dup ǎ cum am v ǎzut, rezolvarea aproximativ ǎ a unui sistem
de ecuaţii se reduce la o problem ǎ de optimizare, adic ǎ g ǎsirea unei
valori minime a unei funcţii p ǎ tratice.

191

Corelarea datelor

f : R2 → R, f (z) = 〈A z , z〉+ 2〈b, z〉+ c , A ∈ R2×2, b ∈ R2, c ∈ R.

192

Alte probleme

193

Alte probleme

min
x∈Rn,r∈R

m∑
i=1

(‖x − ai‖2 − r2)2.

194

Alte probleme

min
x∈Rn,r∈R

m∑
i=1

ωi (‖x − ai‖2 − r2)2.

195

De ce aproximativ?

În majoritatea problemelor, abordǎrile analitice obişnuite nu pot fi
aplicare în practicǎ din urmǎtoarele motive:

• ar putea fi o sarcinǎ foarte dificilǎ sǎ se rezolve sistemul de ecuaţii
(de obicei neliniare) ∇f (x) = 0;

• chiar dacǎ este posibilǎ gǎsirea tuturor punctelor staţionare, s-ar
putea sǎ existe un numǎr infinit de puncte staţionare, iar sarcina de
a-l gǎsi pe cel care corespunde valorii minime a funcţiei este o
problemǎ de optimizare care, prin ea însǎşi, ar putea fi la fel de
dificilǎ ca şi problema iniţialǎ.

196

Metoda direcţiilor de
descreştere

Direcţii de descreştere

Considerǎm problema de minim

min
x∈Rn

f (x), unde f : Rn → R este o funcţie de clasǎ C 1 pe Rn.

În loc sǎ încercǎm sǎ gǎsim expresia analiticǎ a unui punct staţionar, vom
construi un algoritm iterativ pentru gǎsirea punctelor staţionare.

Algoritmii iterativi pe care îi vom lua în considerare în aceastǎ secţiune au
forma xk+1 = xk + tk dk , k = 0, 1, 2,, unde dk este aşa-numita
direcţie, iar tk este mǎrimea pasului.

Definiţie [Direcţia de descreştere]

Fie f : Rn → R de clasǎ C 1 pe Rn. Un vector 0 6= d ∈ Rn se numeşte
direcţie de descreştere a lui f în x dacǎ derivata direcţionalǎ f ′(x ; d)

este negativǎ, ceea ce înseamnǎ cǎ

f ′(x ; d) =
〈
∇f (x), d

〉
< 0.

197

Lemma [Proprietatea de descreştere pe direcţiilor de descreştere]

Fie f : Rn → R o funcţie de clasǎ C 1 pe Rn. Sǎ presupunem cǎ d este
o direcţie de descreştere a lui f în x . Atunci existǎ ε > 0 astfel încât

f (x + t d) < f (x) pentru orice t ∈ (0, ε].

Proof.
Deoarece f ′(x ; d) < 0, din definiţia derivatei direcţionale rezultǎ cǎ

lim
t→0+

f (x + t d)− f (x)

t
= f ′(x ; d) < 0.

Prin urmare, existǎ ε > 0 astfel încât

f (x + t d)− f (x)

t
< 0 pentru orice t ∈ (0, ε],

ceea ce implicǎ cu uşurinţǎ rezultatul dorit.

198

Metoda direcţiilor de descreştere schematicǎ

Algoritmul metodei direcţiilor de descreştere

• Initializare: Alegem x0 ∈ Rn arbitrar;

• Etapa generalǎ: Pentru orice k = 0, 1, 2, ..., se
• alege o direcţie de descreştere dk ;
• gǎseşte o mǎrime a pasului tk care sǎ satisfacǎ f (xk + tkdk) < f (xk);
• Setaţi xk+1 = xk + tkdk ;
• se verificǎ dacǎ un criteriu de oprire este satisfǎcut, atunci STOP şi

xk+1 este ieşirea.

Atât de frumos şi atât de neclar (doar conceptual)!

Multe detalii lipsesc din descrierea schematicǎ de mai sus a algoritmului :

• Care este punctul de plecare?
• Cum se alege direcţia de descreştere?
• Ce mǎrime a pasului trebuie sǎ fie luatǎ?
• Care este criteriul de oprire?

199

Clarificǎri

• Punctul de pornire poate fi ales arbitrar, în absenţa unei informaţii
deja ştiute despre soluţia optimǎ.

• Un exemplu de criteriu de oprire popular este ‖∇f (xk+1)‖ ≤ ε.
• Principala diferenţǎ între diferitele metode este alegerea direcţiei de

descreştere .
• Vom presupune cǎ mǎrimea pasului este aleasǎ astfel încât

f (xk+1) < f (xk). Încǎ nu este clar!
• mǎrime constantǎ a pasului: tk = t, k = 0, 1, 2, ...; Util pentru

probleme simple.
• O constantǎ mare poate face ca algoritmul sǎ nu fie descrescǎtor;
• O constantǎ micǎ poate cauza o convergenţǎ lentǎ a metodei.

• cǎutarea exactǎ pe linie: tk este un minimizator al lui f de-a lungul
razei xk + t dk , adicǎ tk = argmint≥0f (xk + t dk).

• Pare mai atractivǎ la prima vedere;
• Dar, nu este întotdeauna posibil sǎ gǎsim minimizatorul exact.

• backtracking este un compromis între ultimele douǎ abordǎri;

200

Backtracking

Metoda necesitǎ trei parametri: s > 0, α ∈ (0, 1) β ∈ (0, 1). Alegerea lui
tk se face prin urmǎtoarea procedurǎ. În primul rând, tk se stabileşte ca
fiind egal cu presupunerea iniţialǎ s. Apoi, atâta timp cât

f (xk)− f (xk + tkdk) < −α tk
〈
∇f (xk), dk

〉
,

se stabileşte tk = β tk .

Mǎrimea paşilor se alege ca tk = s βik , unde ik este cel mai mic numǎr
întreg nenegativ pentru care se îndeplineşte condiţia

f (xk)− f (xk + s βik dk) ≥ −α s βik
〈
∇f (xk), dk

〉
este satisfǎcutǎ.

201

Validitatea condiţiei de scǎdere suficientǎ

Fie f : Rn → R o funcţie de clasǎ C 1 pe Rn şi fie x ∈ Rn. Sǎ
presupunem cǎ 0 6= d ∈ Rn este o direcţie de descreştere a lui f în x şi
fie α ∈ (0, 1). Atunci existǎ ε > 0 astfel încât

f (x)− f (x + t d) ≥ −α t
〈
∇f (x), d

〉
pentru orice t ∈ (0, ε].

202

Proof.

Deoarece f de clasǎ C 1 pe Rn rezultǎ cǎ

f (x + t d) = f (x) + t
〈
∇f (x), d

〉
+ o(t‖d‖),

şi, prin urmare

f (x)− f (x + t d) = −α t
〈
∇f (x), d

〉
− (1− α) t

〈
∇f (x), d

〉
− o(t‖d‖),

Deoarece d este o direcţie de descreştere a lui f la x avem

lim
t→0+

(1− α) t
〈
∇f (x), d

〉
+ o(t‖d‖)

t
= (1− α)

〈
∇f (x), d

〉
< 0.

Prin urmare, existǎ ε > 0 astfel încât pentru toate t ∈ (0, ε] sǎ existe
inegalitatea (1− α) t

〈
∇f (x), d

〉
+ o(t‖d‖) < 0, ceea ce conduce la

rezultatul dorit.

203

Metoda gradientului

Metoda gradientului

În metoda gradientului, direcţia de descreştere este aleasǎ ca fiind

dk = −∇f (xk), k = 0, 1, 2... .

Aceasta este o alegere bunǎ, deoarece

f ′(xk ;−∇f (xk)) = −
〈
∇f (xk),∇f (xk)

〉
= −‖∇f (xk)‖2 < 0.

Derivata direcţionalǎ minimǎ între toate direcţiile normalizate

Fie f : Rn → R o funcţie de clasǎ C 1 pe Rn şi fie x ∈ Rn un punct
nestaţionar. Atunci o soluţie optimǎ a

min
d∈Rn
{f ′(x ; d) : ‖d‖ = 1}

este d = − ∇f (x)

‖∇f (x)‖
.

204

Proof.

Din moment ce f ′(x ; d) =
〈
∇f (x), d

〉
, problema este aceeaşi ca şi în

cazul în care
min
d∈Rn
{
〈
∇f (x), d

〉
: ‖d‖ = 1}

Din inegalitatea Cauchy-Schwarz avem〈
∇f (x), d

〉
≥ −‖∇f (x)‖ ‖d‖ = −‖∇f (x)‖.

Astfel, −‖∇f (x)‖ este o limitǎ inferioarǎ a valorii optime a problemei de

minimizare. Pe de altǎ parte, introducând d = − ∇f (x)

‖∇f (x)‖
în funcţia

obiectiv obţinem cǎ

f ′(x ;− ∇f (x)

‖∇f (x)‖
) =

〈
∇f (x),− ∇f (x)

‖∇f (x)‖
〉

= −‖∇f (x)‖,

şi astfel ajungem la concluzia cǎ limita inferioarǎ −‖∇f (x)‖ se atinge la

d = − ∇f (x)

‖∇f (x)‖
, ceea ce implicǎ rezultatul dorit.

205

Metoda Gradient

• Input: ε > 0 ca parametru de toleranţǎ.

• Initializare: Se alege x0 ∈ Rn în mod arbitrar.

• Etapa generalǎ: Pentru orice k = 0, 1, 2, ... se executǎ urmǎtorii
paşi:
• Se alege o mǎrime a pasului tk printr-una dintre procedurile

menţionare mai sus pentru

g(t) = f (xk − t∇f (xk)).

• Setaţi xk+1 = xk − tk∇f (xk).
• Dacǎ ‖∇f (xk+1)‖ ≤ ε, STOP şi xk+1 este valoarea de OUTPUT

206

Metoda gradientului se poate comporta destul de rǎu. Ca un exemplu, sǎ
considerǎm problema de minimizare

min
x,y∈Rn

x2 +
1
100

y2,

şi sǎ presupunem cǎ utilizǎm metoda gradientului cu vectorul iniţial
(1
100 , 1)T .

Aceasta este o problemǎ importantǎ, un rǎspuns parţial poate fi gǎsit
folosind noţiunea de numǎr de condiţionare.

207

Numǎrul de condiţionare
pentru funcţii pǎtratice.
Rescalarea problemei.

Se considerǎ problema de minimizare pǎtraticǎ

min
x∈Rn
{f (x) :=

〈
A x , x

〉
}, unde A � 0.

Soluţia optimǎ este, evident, x∗ = 0. Metoda gradientului cu pas exact
are forma

xk+1 = xk + tkdk ,

unde dk = −2A xk este gradientul lui f în xk , iar pasul tk este gǎsit ca
fiind

tk =
‖dk‖2

2
〈
A dk , dk

〉 .

208

Deci,

f (xk+1) =
〈
A xk+1, xk+1

〉
=
〈
A (xk + tkdk), (xk + tkdk)

〉
=
〈
A xk , xk

〉
+ 2 tk

〈
A xk , dk

〉
+ t2k

〈
A dk , dk

〉
=
〈
A xk , xk

〉
− 2 tk

〈
dk , dk

〉
+ t2k

〈
A dk , dk

〉
.

Introducând în ultima relaţie expresia pentru tk datǎ mai sus, obţinem cǎ

f (xk+1) =
〈
A xk , xk

〉
− 1

4

〈
dk , dk

〉2〈
A dk , dk

〉 =
〈
A xk , xk

〉(
1− 1

4

〈
dk , dk

〉2〈
A dk , dk

〉〈
A xk , xk

〉)

= f (xk)

(
1−

〈
dk , dk

〉2〈
A dk , dk

〉〈
A−1 dk , dk

〉)

209

Inegalitatea lui Kantorovici
Fie A o matrice n × n pozitiv definitǎ. Atunci pentru orice 0 6= x ∈ Rn

are loc inegalitatea 〈
x , x
〉2〈

A x , x
〉〈

A−1 x , x
〉 ≥ 4λmaxλmin

(λmax + λmin)2
.

Se noteazǎ m = λmin şi M = λmax. Valorile proprii ale matricei
A + M m A−1 sunt λi + M m

λi
, i = 1, ..., n. Este uşor de demonstrat cǎ

maximul funcţiei unidimensionale ϕ(t) = t + M m
t pe [m,M] este atins în

punctele m şi M cu o valoare corespunzǎtoare a funcţiei ϕ de M + m şi,
prin urmare, din moment ce m ≤ λi (A) ≤ M, rezultǎ cǎ valorile proprii
ale lui A + M m A−1 sunt mai mici decât (M + m). Astfel,

A + M m A−1 � (M + m)In în sensul cǎ A + M m A−1 − (M + m)In � 0

210

Adicǎ. 〈
A x , x

〉
+ M m

〈
A−1 x , x

〉
≤ (M + m)

〈
x , x
〉
,

care, combinatǎ cu inegalitatea simplǎ αβ ≤ 1
4 (α + β)2 ∀α, β ∈ R

rezultǎ 〈
A x , x

〉
M m

〈
A−1 x , x

〉
≤ 1

4
[
〈
A x , x

〉
+ M m

〈
A−1 x , x

〉
]2

≤ (M + m)2

4
〈
x , x
〉2
,

care, dupǎ o simplǎ rearanjare a termenilor, conduce la rezultatul dorit.

211

Revenind la analiza ratei de convergenţǎ a metodei gradientului, rezultǎ,
folosind inegalitatea lui Kantorovici, cǎ

f (xk+1) ≤
(
1− 4m M

(M + m)2

)
f (xk) =

(
M −m

M + m

)2

f (xk),

unde M = λmax(A), m = λmin(A).

Rezumând, avem

Analiza ratei de convergenţǎ pentru funcţii pǎtratice
Fie xk şirul generat de metoda gradientului cu pas constant pentru
rezolvarea problemei de minimizare pǎtraticǎ

min
x∈Rn
{f (x) :=

〈
A x , x

〉
}, unde A � 0.

Atunci, pentru orice k = 0, 1, ...

f (xk+1) ≤
(

M −m

M + m

)2

f (xk),

unde M = λmax(A), m = λmin(A).

212

Aceasta implicǎ faptul cǎ pentru orice k = 0, 1,

f (xk+1) ≤ ck f (x0), where c =

(
M −m

M + m

)2

=

 λmax(A)
λmin(A) − 1
λmax(A)
λmin(A) + 1

2

.

Numǎrul κ =
λmax(A)

λmin(A)
se numeşte numǎr de condiţionare al lui A.

Matricele cu un numǎr mare de condiţioare se numesc rǎu condiţionate,
iar matricele cu un numǎr mic de condiţionare (aproape de 1) se numesc
bine condiţionate.

213

Rescalare

Rescalare

Problema matricelorr prost condiţionate este una majorǎ şi au fost
dezvoltate multe metode pentru a o evita. Una dintre cele mai populare
abordǎri constǎ în “condiţionarea” problemei prin efectuarea unei
transformǎri liniare corespunzǎtoare a variabilelor.

Mai precis, sǎ considerǎm problema de minimizare fǎrǎ constrângeri

min
x∈Rn

f (x).

Pentru o matrice nesingularǎ datǎ S ∈ Rn×n, efectuǎm transformarea
liniarǎ x = S y şi obţinem problema echivalentǎ

min
y∈Rn

g(y) := f (S y).

Deoarece ∇g(y) = ST∇f (S y) = ST∇f (x), rezultǎ cǎ metoda
gradientului aplicatǎ problemei transformate ia forma

yk+1 = yk − tk ST∇f (S yk).

214

Din moment ce ∇g(y) = ST∇f (S y) = ST∇f (x), rezultǎ cǎ metoda
gradientului aplicatǎ problemeei transformate ia forma

yk+1 = yk − tk ST∇f (S yk).

Înmulţind aceastǎ ultimǎ egalitate cu S la stânga şi folosind notaţia
xk = S yk , obţinem formula recursivǎ

xk+1 = xk − tk S ST∇f (xk).

Definind D = S ST , obţinem urmǎtoarea versiune a metodei gradientului,
pe care o numim metoda gradientului scalat cu matrice de scalare D

(pozitiv definitǎ):
xk+1 = xk − tk D∇f (xk).

215

Direcţia −D∇f (xk) este o direcţie de descreştere a lui f în xk atunci
când ∇f (xk) 6= 0, deoarece

f ′(xk ;−D∇f (xk)) = −
〈
∇f (xk),D∇f (xk)

〉
< 0.

Pentru a rezuma discuţia de mai sus, am arǎtat cǎ metoda gradientului
scalat cu matricea de scalare D este echivalentǎ cu metoda gradientului
utilizatǎ pentru funcţia g(y) = f (D1/2y).

Aici S = D1/2 înseamnǎ cǎ STS = D.

216

Analiza convergenţei metodei gradientului

Vom prezenta o analizǎ a convergenţei metodei gradientului utilizatǎ
pentru problema de minimizare fǎrǎ restricţii.

min
x∈Rn

f (x).

Vom presupune cǎ funcţia obiectiv f este de clasǎ C 1 şi cǎ gradientul sǎu
∇f este Lipschitz continuu pe Rn, ceea ce înseamnǎ cǎ

‖∇f (x)−∇f (y)‖ ≤ L ‖x − y‖ pentru orice x , y ∈ Rn.

217

Reţineţi cǎ dacǎ ∇f este Lipschitz cu constanta L, atunci este de
asemenea Lipschitz cu constanta L̃ ≥ L. Prin urmare, existǎ un numǎr
infinit de constante Lipschitz pentru o funcţie cu gradient Lipschitz.

Clasa funcţiilor cu gradient Lipschitz cu constanta L este notatǎ cu
C 1,1
L (Rn) sau pur şi simplu C 1,1

L .

• Funcţii liniare: f (x) =
〈
a, x
〉
cu L = 0.

• Funcţii pǎtratice: f (x) =
〈
A x , x

〉
+ 2
〈
b, x
〉

+ c cu L = 2 ‖A‖,
deoarece

‖∇f (x)−∇f (y)‖ ≤ 2 ‖A x − A y‖ ≤ 2 ‖A‖ ‖x − y‖.

218

Propoziţie

Fie f o funcţie de clasǎ C 2 pe Rn. Atunci urmǎtoarele douǎ afirmaţii
sunt echivalente

(a) f ∈ C 1,1
L (Rn).

(b) ‖∇2f (x)‖ ≤ L pentru orice x ∈ Rn, unde ‖·‖ reprezintǎ norma
spectralǎ.

(b)→ (a). Sǎ presupunem cǎ ‖∇2f (x)‖ ≤ L pentru orice x ∈ Rn. Atunci,
prin teorema fundamentalǎ a calculului integral, avem pentru orice
x , y ∈ Rn

∇f (y) = ∇f (x) +

∫ 1

0
∇2f (x + t(y − x)) (y − x)dt

= ∇f (x) +

(∫ 1

0
∇2f (x + t(y − x))dt

)
(y − x),

219

Deci

‖∇f (y)−∇f (x)‖ =‖
(∫ 1

0
∇2f (x + t(y − x))dt

)
(y − x)‖

≤‖
∫ 1

0
∇2f (x + t(y − x))dt‖ ‖y − x‖

≤
∫ 1

0
‖∇2f (x + t(y − x))‖dt ‖y − x‖

≤L ‖y − x‖,

care demonstreazǎ rezultatul dorit, adicǎ f ∈ C 1,1
L .

220

(a)→ (b). Sǎ presupunem acum cǎ f ∈ C 1,1
L . Atunci, prin teorema

fundamentalǎ a calculului integral, avem pentru toţi d ∈ Rn şi α > 0

∇f (x + αd) = ∇f (x) +

∫ α

0
∇2f (x + t d) d dt

Astfel,

‖
∫ α

0
∇2f (x + t d) dt d‖ =‖∇f (x + αd)− f (x)‖ ≤ α L ‖d‖.

Împǎrţind cu α şi luând α→ 0+, obţinem

‖∇2f (x) d‖ ≤ L‖d‖,

ceea ce implicǎ faptul cǎ ‖∇2f (x) ‖ ≤ L.

221

Lema descreşterii

Un rezultat important pentru funcţiile C 1,1
L este acela cǎ acestea pot fi

mǎrginite superior de o funcţie pǎtraticǎ pe întregul spaţiu.

Propoziţie [Lema descreşterii]

Fie f ∈ C 1,1
L (Rn). Atunci, pentru orice x , y ∈ Rn

f (y) ≤ f (x) +
〈
∇f (x), y − x

〉
+

L

2
‖x − y‖2.

Din teorema fundamentalǎ a calculului integral avem

f (y)− f (x) =

∫ 1

0

〈
∇f (x + t(y − x)), y − x

〉
dt.

Prin urmare,

f (y)− f (x) =
〈
∇f (x), y − x

〉
+

∫ 1

0

〈
∇f (x + t(y − x))−∇f (x), y − x

〉
dt.

222

Deci,

‖f (y)− f (x)−
〈
∇f (x), y − x

〉
‖ =

∣∣∣ ∫ 1

0

〈
∇f (x + t(y − x))−∇f (x), y − x

〉
dt
∣∣∣

≤
∫ 1

0
|
〈
∇f (x + t(y − x))−∇f (x), y − x

〉
| dt

≤
∫ 1

0
‖∇f (x + t(y − x))−∇f (x)‖ ‖y − x‖ dt

≤
∫ 1

0
t L ‖y − x‖2 dt =

L

2
‖y − x‖.

223

Reţineţi cǎ demonstraţia lemei descreşterii aratǎ de fapt atât limitele
superioare, cât şi cele inferioare ale funcţiei:

f (x)+
〈
∇f (x), y−x

〉
−L

2
‖y−x‖2 ≤ f (y) ≤ f (x)+

〈
∇f (x), y−x

〉
+

L

2
‖y−x‖2.

224

Lema scǎderii suficiente

Lema scǎderii suficiente

Sǎ presupunem cǎ f ∈ C 1,1
L (Rn). Atunci, pentru orice x ∈ Rn şi t > 0

f (x)− f (x − t∇f (x)) ≥ t

(
1− L t

2

)
‖∇f (x)‖2.

Proof.
Prin lema descreşterii avem

f (x − t∇f (x)) ≤ f (x)− t ‖∇f (x)‖2 +
L t2

2
‖∇f (x)‖2

= f (x)− t

(
1− L t

2

)
‖∇f (x)‖2

225

Scopul nostru este acum sǎ arǎtǎm cǎ existǎ paşi viabili pentru fiecare
dintre strategiile de selectare a mǎrimii paşilor:

• pas constant;

• cǎutarea exactǎ pe linie;

• backtracking.

În cazul unui pas constant, presupunem cǎ tk = t ∈ (0, 2L). Înlocuind
x = xk , t = t în lema de scǎdere suficientǎ rezultǎ inegalitatea

f (xk)− f (xk+1) ≥ t

(
1− L t

2

)
‖∇f (xk)‖2.

Reţineţi cǎ descreştere în metoda gradientului pe iteraţie este

t

(
1− L t

2

)
‖∇f (xk)‖2

226

Dacǎ dorim sǎ obţinem cea mai mare limitǎ garantatǎ a scǎderii, atunci
cǎutǎm maximul lui t

(
1− L t

2

)
în (0, 2L). Acest maxim este atins pentru

t = 1
L şi, prin urmare, o alegere potrivitǎ pentru mǎrimea pasului este 1

L .

În acest caz

f (xk)− f (xk+1) ≥ 1
L

(
1−

L 1
L

2

)
‖∇f (xk)‖2 ≥ 1

2 L
‖∇f (xk)‖2.

227

În cadrul pasului constrant, formula iterativǎ a algoritmului este

xk+1 = xk − tk∇f (xk),

unde tk = argmint≥0f (xk − t∇f (xk)).

Prin definiţia lui tk ştim cǎ

f (xk − tk∇f (xk)) ≤ f (xk −
1
L
∇f (xk)),

şi astfel avem

f (xk)− f (xk+1) ≥ f (xk)− f (xk − tk∇f (xk)) ≥ 1
2 L
‖∇f (xk)‖2.

Aceeaşi estimare ca şi în cazul mǎrimii constante a paşilor.

228

În cazul backtracking cǎutǎm pasul tk suficient de mic astfel încât

f (xk)− f (xk −
tk
β
∇f (xk)) < α

tk
β
‖∇f (xk)‖2.

Înlocuind x = xk , t = tk
β în lema scǎderii suficiente obţinem cǎ

f (xk)− f (xk −
tk
β
∇f (xk)) ≥ tk

β

(
1− L tk

2β

)
‖∇f (xk)‖2

care, combinat cu estimarea de mai sus, implicǎ faptul cǎ

tk
β

(
1− L tk

2β

)
‖∇f (xk)‖2 < α

tk
β
‖∇f (xk)‖2

ceea ce este acelaşi lucru cu

tk >
2(1− α)β

L
.

În general, obţinem cǎ în cadrul backtracking-ului avem

tk > min{s, 2(1− α)β

L
},

ceea ce implicǎ faptul cǎ

f (xk)− f (xk − tk∇f (xk)) ≥ α min{s, 2(1− α)β

L
}‖∇f (xk)‖2.

229

Lemma

Fie f ∈ C 1,1
L (Rn). Fie {xk}k≥0 şirul generat de metoda gradientului

pentru rezolvarea minx∈Rn f (x) cu una dintre urmǎtoarele strategii
gǎsire a paşilor:

• pas constant t ∈ (0, 2L),

• pas exact,

• backtracking cu parametrii s ∈ (0,∞), α ∈ (0, 1) şi β ∈ (0, 1).

Atunci
f (xk)− f (xk+1) ≥ M‖∇f (xk)‖2,

unde

M =


t
(
1− tL

2

)
pas constant,

1
2 L pas exact,

α min{s, 2(1−α)β
L } backtracking.

230

Convergenţa metodei gradientului

Propoziţie

Fie f ∈ C 1,1
L (Rn). Fie {xk}k≥0 şirul generat de metoda gradientului

pentru rezolvarea minx∈Rn f (x) cu una dintre urmǎtoarele strategii de
gǎsire a paşilor:

• pas constant t ∈ (0, 2L),

• pas exact,

• backtracking cu parametrii s ∈ (0,∞), α ∈ (0, 1) şi β ∈ (0, 1).

Sǎ presupunem cǎ f este mǎrginit inferior pe Rn, adicǎ existǎ m ∈ R
astfel încât f (x) > m pentru orice x ∈ Rn. Atunci,

a) şirul {f (xk)}k≥0 este descrescǎtor. În plus, pentru orice k ≥ 0,
f (xk+1) < f (xk), cu excepţia cazului în care ∇f (xk) = 0.

b) ∇f (xk)→ 0 pentru k →∞.

231

Proof.

a) Din lema anterioarǎ avem cǎ

f (xk)− f (xk+1) ≥ M‖∇f (xk)‖2 ≥ 0,

pentru o anumitǎ constantǎ M > 0 şi, prin urmare, egalitatea
f (xk) = f (xk+1) poate avea loc numai atunci când ∇f (xk) = 0.

b) Deoarece şirul {f (xk)}k≥0 este descrescǎtor şi mǎrginit inferior, deci
converge. Astfel, în particular f (xk)− f (xk+1)→ 0 când k →∞,
ceea ce, combinat cu inegalitatea de mai sus, implicǎ faptul cǎ
‖∇f (xk)‖ → 0 pe mǎsurǎ ce k →∞.

232

Rata de convergenţǎ a normelor de gradient

Propoziţie

În condiţiile propoziţiei anterioare, fie f ∗ limita şirului {f (xk)}k≥0.
Atunci, pentru orice n = 0, 1, 2,

min
k=0,1,...,n

‖∇f (xk)‖ ≤

√
f (x0)− f ∗

M(n + 1)
,

unde

M =


t
(
1− tL

2

)
dimensiunea pasului constant,

1
2 L pas exact,

α min{s, 2(1−α)β
L } backtracking.

233

Proof.
Prin adunarea inegalitǎţilor

f (xk)− f (xk+1) ≥ M‖∇f (xk)‖2,

pentru k = 0, 1, ..., n, obţinem

f (x0)− f (xn+1) ≥ M
n∑

k=0

‖∇f (xk)‖2,

Deoarece f (xn+1) ≥ f ∗, putem astfel concluziona cǎ

f (x0)− f ∗ ≥ M
n∑

k=0

‖∇f (xk)‖2.

În final, folosind aceastǎ ultimǎ inegalitate împreunǎ cu faptul cǎ pentru
fiecare k = 0, 1, ..., n avem inegalitatea evidentǎ
‖∇f (xk)‖2 ≥ mink=0,1,...,n‖∇f (xk)‖2, rezultǎ cǎ

f (x0)− f ∗ ≥ M(n + 1) min
k=0,1,...,n

‖∇f (xk)‖2.
234

The Gauss—Newton Method

The Gauss—Newton Method: Nonlinear Least Squares

There are situations in which we are given a system of nonlinear equations

fi (x) = ci , i = 1, 2, ...,m,

where fi : Rn → R, ci ∈ R are given and x is to be funded.

In this case, the approximation problem is as in the following

Nonlinear least squares (NLS) problem
NLS is formulated as

min
x∈Rn

g(x) :=
m∑
i=1

(fi (x)− ci)
2.

There is no easy way to solve NLS problems. Gauss-Newton method is
an way.

235

We will assume that fi , i = 1, 2, ...,m are continuously differentiable over
R and ci ∈ R. The problem is sometimes also written in the terms of the
function

F (x) =


f1(x)− c1
f2(x)− c2

...
fm(x)− cm

 ,

and then it takes the form

min
x∈Rn
‖F (x)‖2.

THE general step of the Gauss-Newton method goes as follows: given
the kth iterate xk , the next iterate is chosen to minimize the sum of
squares of the linear approximations of fi at xk , that is,

xk+1 = argminx∈Rn

{
m∑
i=1

[fi (xk) +
〈
∇fi (xk), x − xk

〉
− ci]

2

}
.

236

The minimization problem above is essential a linear least squares
problem

min
x∈Rn
‖Ak x − bk‖2,

where

Ak =


∇f1(xk)T

∇f2(xk)T

...
∇fm(xk)T

 = J(xk)

is the so-called Jacobian matrix and

bk =


〈
∇f1(xk), xk

〉
− f1(xk) + c1〈

∇f2(xk), xk
〉
− f2(xk) + c2
...〈

∇fm(xk), xk
〉
− fm(xk) + cm

 = J(xk)xk − F (xk).

237

The underlying assumption is of course that J(xk) is of a full columns
rank. In that case, we can also write explicit expression for the
Gauss-Newton iterates

xk+1 = (J(xk)T J(xk))−1J(xk)Tbk .

Note that the method can also be written as

xk+1 = (J(xk)T J(xk))−1J(xk)T (J(xk)xk − F (xk))

= xk − (J(xk)T J(xk))−1J(xk)TF (xk).

The Gauss-Newton direction is therefore
dk = (J(xk)T J(xk))−1J(xk)TF (xk). Noting that ∇g(x) = 2 J(x)TF (x),
we can conclude that

dk =
1
2

(J(xk)T J(xk))−1∇g(xk),

meaning that the Gauss-Newton method is essentially a scaled gradient
method with the following positive definite scaling matrix

Dk =
1
2

(J(xk)T J(xk))−1.

238

Damped Gauss-Newton Method

This fact also explains why Gauss-Newton method is a descent direction
method. The method described so far is also called the pure
Gauss-Newton method since no stepsize is involved. To transform this
method into a practical algorithm, a stepsize is introduced, leading to the
damped Gauss-Newton method.

Damped Gauss-Newton Method

• Input: ε > 0 as the tolerance parameter.

• Initialization: Pick x0 ∈ Rn arbitrarily.

• General step: For any k = 0, 1, 2, ... execute the following steps:
• Set dk = (J(xk)

TJ(xk))
−1J(xk)

TF (xk).
• Pick a stepsize tk by a line search procedure on the function

h(t) = g(xk − t dk).

• Set xk+1 = xk − tk dk .
• If ‖∇g(xk+1)‖ ≤ ε, the STOP and xk+1 is the output.

239

Pure Newton’s Method,
Damped Newton’s Method,
Hybrid Gradient-Newton
Method

Pure Newton’s Method

We note that the gradient method uses only first order information when
the following unconstrained minimization problem is solved

min{f (x) : x ∈ Rn},

where we assumed that f is continuously differentiable.

Now, we assume that f is twice continuously differentiable and we
present a second order method, i.e. we use information on both the
gradient and the Hessian matrix.

We assume that ∇2f (x), ∀x ∈ Rn is positive definite, which implies that
there exists a unique optimal solution x∗.

240

The main idea of Newton method is the following:

xk+1 = argminx∈Rn

{
fi (xk)+

〈
∇fi (xk), x − xk

〉
+
1
2
〈
∇2f (xk)(x − xk), (x − xk)

〉}
.

Note that since ∇2f (xk) is positive definite, the above formula is
well-defined. Why?

The unique minimizer of the minimization problem for finding xk+1 is the
the unique stationary point

∇f (xk)+∇2f (xk)(xk+1−xk) = 0 ⇔ xk+1 = xk −(∇2f (xk))−1∇f (xk)︸ ︷︷ ︸
Newton direction

.

We remark that when ∇2f (xk) is positive definite for any k , pure
Newton’s method is a scaled gradient method, and Newton’s directions
are descent directions.

241

The algorithm

Pure Newton’s method

• Input: ε > 0 as the tolerance parameter.

• Initialization: Pick x0 ∈ Rn arbitrarily.

• General step: For any k = 0, 1, 2, ... execute the following steps:
• Compute the Newton direction dk , which is the solution to the linear

system ∇2f (xk) dk = −∇f (xk).
• Set xk+1 = xk + dk .
• If ‖∇f (xk+1)‖ ≤ ε, the STOP and xk+1 is the output.

242

Remark about its convergence

Even if the assumption ∇2f (x) � 0, ∀xRn implies that there exists a
unique optimal solution x∗, this is not enough to guarantee convergence,
see the following example.

Consider the function f (x) =
√
1 + x2 defined over the real line. The

minimizer of f over R is of course x = 0. The first and second derivatives
of f are f ′(x) = x√

1+x2 , f ′′(x) = 1√
(1+x2)3

. Therefore, (pure) Newton’s

method has the form

xk+1 = xk −
f ′(xk)

f ′′(xk)
= −x3

k .

Therefore, if |x0| ≥ 1 the method diverges and that for |x0| < 1 the
method converges very rapidly to the correct solution x∗ = 0.

243

Quadratic Local convergence of Newton’s method

Theorem
Let f be a twice continuously differentiablle function defined over Rn.
Assume that

i) there exists m > 0 for which ∇2f (x) � m I for any x ∈ Rn,

ii) there exists L > 0 for which ‖∇2f (x)−∇2f (y)‖ ≤ L‖x − y‖ for any
x , y ∈ Rn, where the considered matrix norm is the spectral norm.

Let {xk}k≥0 be the sequence generated by Newton’s method, and let
x∗ be the unique minimizer of f over Rn. Then for any k = 0, 1, 2, ...
the inequality

‖xk+1 − x∗‖ ≤ L

2m
‖xk − x∗‖2

holds. In addition, if ‖x0 − x∗‖ ≤ m
L , then

‖xk − x∗‖ ≤ 2m

L

(
1
2

)2k

, k = 0, 1, 2.....

244

Proof

Let k be a nonnegative integer. Then

xk+1 − x∗ =xk − (∇2f (xk))−1∇f (xk)− x∗

∇f (x∗)=0
= xk − x∗ + (∇2f (xk))−1[∇f (x∗)−∇f (xk)]

=xk − x∗ + (∇2f (xk))−1
∫ 1

0
∇2f (xk + t (x∗ − xk)) (x∗ − xk) dt

=(∇2f (xk))−1
∫ 1

0
[∇2f (xk + t (x∗ − xk))−∇2f (xk)] (x∗ − xk) dt.

Combining the latter equality with the fact that ∇2f (xk) � m I implies
that ‖(∇2f (xk)−1‖ ≤ 1

m , we deduce

245

Proof

‖xk+1 − x∗‖ ≤‖(∇2f (xk))−1‖
∥∥∥∥∫ 1

0
[∇2f (xk + t (x∗ − xk))−∇2f (xk)] (x∗ − xk) dt

∥∥∥∥
≤‖(∇2f (xk))−1‖

∫ 1

0

∥∥[∇2f (xk + t (x∗ − xk))−∇2f (xk)] (x∗ − xk)
∥∥ dt

≤‖(∇2f (xk))−1‖
∫ 1

0

∥∥[∇2f (xk + t (x∗ − xk))−∇2f (xk)]
∥∥ ‖(x∗ − xk)‖ dt

≤ L

m

∫ 1

0
t ‖(x∗ − xk)‖2 dt =

L

2m
‖(x∗ − xk)‖2 .

We will show our desired estimate by induction on k .

246

Proof

Since we have assumed that

‖x0 − x∗‖ ≤ m

L
,

so in particular

‖x0 − x∗‖ ≤ 2m

L

(
1
2

)20

,

establishing the first step of the induction. Assume that the estimate
holds for a given k , that is

‖xk − x∗‖ ≤ 2m

L

(
1
2

)2k

,

we will show it holds for k + 1. Indeed, we have

‖xk+1 − x∗‖ ≤ L

2m
‖xk − x∗‖2 ≤ L

2m

(
2m

L

(
1
2

)2k
)2

=
2m

L

(
1
2

)2k+1

.�

247

However, in general, convergence is unfortunately not guaranteed in the
absence of these very restrictive assumptions and the implementation
must includes a divergence is criteria, e.g.the number of iterations is
smaller than 10000.

Pure Newton’s method does not guarantee descent of the generated
sequence of function values even when the Hessian is positive definite,
e.g. for

min
x1,x2∈R

√
x2
1 + 1 +

√
x2
2 + 1,

when the basic assumption ∇2f (x) � m I is violated.

248

Damped Newton’s Method

What is missing is a stepsize chosen, leading to the so-called damped
Newton’s Method.

Damped Newton’s Method

• Input: ε > 0 as the tolerance parameter. α, β ∈ (0, 1)-parameters
for the backtracking procedure.

• Initialization: Pick x0 ∈ Rn arbitrarily.

• General step: For any k = 0, 1, 2, ... execute the following steps:
• Compute the Newton direction dk , which is the solution to the linear

system ∇2f (xk) dk = −∇f (xk).
• Set tk = 1. While f (xk)− f (xk + tkdk) < −α tk ∇f (xk)Tdk set

tk = β tk ,
• Set xk+1 = xk + tk dk .
• If ‖∇f (xk+1)‖ ≤ ε, the STOP and xk+1 is the output.

249

The Cholesky Factorization

There are some important issue that naturally arises when employing
Newton’s method:

• one of validating whether the Hessian matrix is positive definite;
• if it is, then how to solve the linear system ∇2f (xk) dk = −∇f (xk).

These two issues are resolved by using the Cholesky factorization, which
means that given a matrix A ∈ Rn×n, find a lower triangular matrix
L ∈ Rn×n whose diagonal is positive, such that

A = L LT .

Given a Cholesky factorisation, the task of solving a linear system of
equations of the form A x = b can be easily done by the following two
steps:

• Find the solution of the lower triangular algebraic system L u = b.
• Find the solution of the upper triangular algebraic system LT x = u.

250

The process of computing the Cholesky factorization is well-defined as
long as all the diagonal ellements lii that are computed during the
process are positive, so that computing their square roots is possible.

The positiveness of these elements is equivalent to the property that the
matrix to be factored is positive definite.

Therefore, the Cholesky factorization process can be viewed as a criteria
for positive definiteness, and it is actually the test that is used in many
algorithms.

The Cholesky factorization is not the main aim of this course, so we will
use the Matlab command chol(A,’lower’).

251

Hybrid Gradient-Newton Method

Newton’s method (pure or not) assumes that the Hessian matrix is
positive definite and we are thus left with the question of how to employ
Newton’s method when the Hessian is not always positive definite.

There are several ways to deal with this situation, but perhaps the
simplest one is to construct a hybrid method that employs either a
Newton step at iterations in which the Hessian is positive definite or a
gradient step when the Hessian is not positive definite.

252

Hybrid Gradient-Newton Method

Hybrid Gradient– Newton Method

• Input: ε > 0 as the tolerance parameter. α, β ∈ (0, 1)-parameters
for the backtracking procedure.

• Initialization: Pick x0 ∈ Rn arbitrarily.

• General step: For any k = 0, 1, 2, ... execute the following steps:
• Compute the Newton direction dk as in the following

• If ∇2f (xk) � 0, then take dk as the Newton direction, which is the
solution to the linear system ∇2f (xk) dk = −∇f (xk).

• Otherwise, set dk = −∇f (xk).

• Set tk = 1. While f (xk)− f (xk + tkdk) < −α tk ∇f (xk)Tdk set
tk = β tk ,

• Set xk+1 = xk + tk dk .
• If ‖∇f (xk+1)‖ ≤ ε, the STOP and xk+1 is the output.

253

Fermat-Weber problem

Fermat problem

Pierre de Fermat posed the following problem:

Given three distinct points in the plane, find the point having
the minimal sum of distances to these three points.

The italian physicist Torricelli solved this problem and defined a
construction by ruler and compass for finding it. This point is called the
Torricelli point or the Torricelli-Fermat point.

254

Fermat-Weber problem

Later on, the Fermat problem was generalized by the German economist
Weber to a problem in the space Rn and with an arbitrary number of
points.

The problem known today as “the Fermat-Weber problem” is the
following:

Given m distinct points a1, a2, ..., am in Rn, also called “anchor
points”- and m weights ω1, ω2, ..., ωm > 0, find a point x ∈ Rn

that minimizes the weighted distance of x to each of the points
a1, a2, ..., am.

255

Mathematically, the Fermat-Weber Problem can be cast as the
minimization

min
x∈Rn
{f (x) :=

m∑
i=1

ωi‖x − ai‖}.

Note that the objective function is not differentiable at the anchor points
a1, a2, ..., am.

256

Weiszfeld’s solution (1937)

The starting point is the first order optimality condition

∇f (x) = 0 ∀ x 6∈ {a1, a2, ..., am} ⇔
m∑
i=1

ωi
x − ai
‖x − ai‖

= 0 ∀ x 6∈ {a1, a2, ..., am}.

After some algebraic manipulation, the latter relation can be written as(
m∑
i=1

ωi

‖x − ai‖

)
x =

m∑
i=1

ωi ai
‖x − ai‖

∀ x 6∈ {a1, a2, ..., am},

which gives us

x =
1(∑m

i=1
ωi

‖x−ai‖

) m∑
i=1

ωi ai
‖x − ai‖

∀ x 6∈ {a1, a2, ..., am}.

257

We can reformulate the optimality condition as a fixed point problem

x = T (x),

where T is the operator

T (x) =
1(∑m

i=1
ωi

‖x−ai‖

) m∑
i=1

ωi ai
‖x − ai‖

∀ x 6∈ {a1, a2, ..., am}.

For a fixed point problem, a natural approach for solving the problem is
via the iterations

xk+1 = T (xk).

258

The algorithm

Weiszfeld’s Method

• Initialization: Pick x0 ∈ Rn such that x0 6∈ {a1, a2, ..., am}.
• General step: For any k = 0, 1, 2, ... compute xk+1 = T (xk).

!? Note that the algorithm is defined only when the iterates xk are all
different from a1, a2, ..., am.

259

Although the algorithm was initially presented as a fixed point method,
the surprising fact is that it is basically a gradient method by writting

xk+1 =
1(∑m

i=1
ωi

‖xk−ai‖

) m∑
i=1

ωi ai
‖xk − ai‖

= xk −
1(∑m

i=1
ωi

‖xk−ai‖

) m∑
i=1

ωi
xk − ai
‖xk − ai‖

= xk −
1(∑m

i=1
ωi

‖xk−ai‖

) ∇f (xk).

Therefore, Weiszfeld’s method is essentially the gradient method with a
special choice of stepsize:

tk =
1(∑m

i=1
ωi

‖xk−ai‖

) .

260

Questions!

• Is the method well-defined?

• That is, can we guarantee that none of the iterates xk is equal to
any of the points a1, a2, ..., am?

• The stepsize is not too large? Is the sequence of objective function
values decreases?

• Does the sequence {xk}k≥0 converge to a global optimal solution?

261

The first aim is to show that the generated sequence of function values is
nonincreasing.

for that, we define the auxiliary function

h(y , x) :=
m∑
i=1

ωi
‖y − ai‖2

‖x − ai‖
, y ∈ Rn, x ∈ Rn \ A,

where A = {a1, a2, ..., am}.

Lemma
For any x ∈ Rn \ A, one has

T (x) = argminy∈Rn{h(y , x) : y ∈ Rn}.

262

Lemma
For any x ∈ Rn \ A, one has

T (x) = argminy∈Rn{h(y , x) : y ∈ Rn}.

Proof. The function y 7→ h(y , x) is a quadratic function whose
associated matrix is

(∑m
i=1

ωi

‖x−ai‖

)
In, which is clear positive definite.

Therefore, the unique global minimimum of the mapping y 7→ h(y , x),
which we denote by y∗, is the unique stationary point of y 7→ h(y , x),
that is, the point for which the gradient vanishes:

∇yh(y∗, x) = 0.

Thus,

2
m∑
i=1

ωi
y∗ − ai
‖x − ai‖

= 0.

Extracting y∗ from above yields y∗ = T (x), and the result is established.

263

Therefore, the above lemma tells us that the iterations of Weiszfeld’s
method read

xk+1 = argmin{h(y , xk) : y ∈ Rn}.

In the next lemma we prove that the sequence {f (xk)}k≥0 is
nonincreasing.

Lemma
If x ∈ Rn \ A, then

1. h(x , x) = f (x);

2. h(y , x) ≥ 2 f (y)− f (x) for any y ∈ Rn;

3. f (T (x)) ≤ f (x) and f (T (x)) = f (x) if and only if x = T (x);

4. x = T (x) if and only if ∇f (x) = 0.

264

1. h(x , x) =
∑m

i=1 ωi
‖x−ai‖2
‖x−ai‖ =

∑m
i=1 ωi‖x − ai‖ = f (x);

2. For any nonnegative number a and positive number b, the inequality

a2

b
≥ 2 a− b

holds. Substituting a = ‖y − ai‖ and b = ‖x − ai‖, it follows that
any i = 1, 2, ...,m

‖y − ai‖2

‖x − ai‖
≥ 2 ‖y − ai‖ − ‖x − ai‖.

Hence
m∑
i=1

ωi
‖y − ai‖2

‖x − ai‖
≥ 2

m∑
i=1

ωi‖y − ai‖ −
m∑
i=1

ωi‖x − ai‖.

Therefore, h(y , x) ≥ 2 f (y)− f (x) for any y ∈ Rn;

265

3. Since T (x) = argminy∈Rnh(y , x), it follows from 1. that

h(T (x), x) ≤ h(x , x) = f (x).

Using 2. we have

h(T (x), x) ≥ 2 f (T (x))− f (x),

which implies

f (x) ≥ h(T (x), x) ≥ 2 f (T (x))− f (x)

establishing the fact that

f (x) ≥ f (T (x)).

266

To complete the proof of this item, we need to show that
f (T (x)) = f (x) if and only if T (x) = x . Of course, if T (x) = x ,
then f (T (x)) = f (x). To show the reverse implication, let us
assume that f (T (x)) = f (x).
By the chain of

f (x) ≥ h(T (x), x) ≥ 2 f (T (x))− f (x)

it follows that f (T (x)) = f (x) implies
h(T (x), x) = f (x) = f (T (x)). Since the unique minimizer of
y 7→ h(y , x) is T (x), it follows that x = T (x).

4. Clear.

267

Lemma
Let {xk}k≥0 be the sequence generated by Weiszfeld’s method, where
we assume that xk 6∈ A for all k ≥ 0. Then we have the following:

1. The sequence {f (xk)}k≥0 is noincreasing: for any k ≥ 0 the
inequality f (xk+1) ≤ f (xk) holds.

2. For any k , f (xk+1) = f (xk) if and only if ∇f (xk) = 0.

Proof.

1. Since xk 6∈ A for all k ≥ 0, this result follows by substituting x = xk
in the previous lemma.

2. From the previous lemma it follows that for any k ,
f (T (xk)) = f (xk+1) = f (xk) if and only if xk = xk+1 = T (xk),
which is equivalent to ∇f (xk) = 0.

268

We have shown that {f (xk)}k≥0 is noincreasing as long as we are not
stuck at a stationary point. The underlying assumption that xk 6∈ A is
problematic in the sense that it cannot be controlled easily.

One approach to make sure that the sequence generated by the method
does not contain anchor points is to choose the strating point x0 so that
its values is strictly smaller than the values of the anchor points:

f (x0) < min{f (a1), f (a2), ..., f (am)}.

This assumption, combined with the monotonicity of the function values
of the sequence generated by the method, implies that the iterates do not
include anchor points.

269

Theorem
Let {f (xk)}k≥0 be the sequence generated by Weiszfeld’s method and
assume that f (x0) < min{f (a1), f (a2), ..., f (am)}. Then all the limit
points of {xk}k≥0 are stationary points of f .

Proof. Let {xkn}n≥0 be a subsequence of {xk}k≥0 that converge to a
point x∗. By the monotonicity of the method and the continuity of the
objective function we have f (x∗) ≤ f (x0) < min{f (a1), f (a2), ..., f (am)}.
Therefore, x∗ 6∈ A, and hence ∇f (x∗) is defined. We will show that
∇f (x∗) = 0. By the continuity of the operator T at x∗, it follows that
the sequence xkn+1 = T (xkn)→ T (x∗) as n→∞. The sequence of
function values {f (xk)}k≥0 is noincreasing and bounded below by 0 and
thus converges to a value which we denote by f ∗. Obviously, both
{f (xkn)}n≥0 and {f (xkn+1)}n≥0 converge to f ∗. By the continuity of f ,
we thus obtain that f (T (x∗)) = f (x∗) = f ∗, which leads to T (x∗) = x∗

and ∇f (x∗) = 0.

In fact, the stationary points are global optimal solutions, but this
analysis is beyond our lectures.

270

Linear Programming

Formulating the Problem and a
Graphical Solution, Discussion
on possible approaches

A simple problem, for motivation [1] i

A family run a business that produced and sells dairy products from the
milk of the family cows, Algebra, Analysis and Geometry. Together, the
three cows produces 22 gallons of milk each week, and the family turn
the milk into ice cream and butter that they then sell at the Farmer’s
Market each Saturday morning.

The butter-making process requires 2 gallons of milk to produce on
kilogram of butter, and 3 gallons of milk is required to make one gallon
of ice cream. The family has a huge refrigerator that can store practically
unlimited amounts of butter, but his freezer can hold at most 6 gallons of
ice cream.

271

A simple problem, for motivation [1] ii

The family has at most 6 hours per week in total to spend on
manufacturing their delicious products. One hours of work is needed to
produce either 4 gallons of ice cream or one kilogram of butter. Any
fraction of one hour is needed to produce the corresponding fraction of
product.

The family’s products have a great reputation, and he always sells
everything he produces. He sets the prices to ensure a profit of $5 per
gallon of ice cream and $4 per kilogram of butter.

He would like to figure out how much ice cream and butter he should
produce to maximize his profit.

Exercise
Solve the above problem by using the already known methods.

272

The Professor’s dairy: Constraints and objective

The algebraic form of the professor’s dairy problem is:

max
x1,x2∈R

z = 5 x1 + 4 x2

subject to x1 ≤ 6,
0.25 x1 +x2 ≤ 6,
3 x1 +2 x2 ≤ 22,

x1, x2 ≥ 0.

We call z , which in this case is the profit, the objective.

The set of points satisfying all five of the constraints is known as the
feasible region. In this problem the feasible region is the five-sided
polygonal region, see the next figure.

273

A geometrical view of the problem

The linear programming problem is to find a point in the feasible region that
maximizes the objective z = 5 x1 + 4 x2. As a step towards this goal, we plot in Figure
a dotted line representing the set of points at which z = 20. This line indicates feasible
points such as (x1, x2) = (0, 5) and (x1, x2) = (2, 2.5) that yield a profit of 20 dolars.

274

The Setup

Linear programming or linear programs
The optimization problems considered in this Section have some
particularities:

• Their variables can take any real values, subject to satisfying the
bounds and constraints.

• All constraints an bounds involve linear functions of the variables.

• The objective function (called profit) is also a linear function of the
variable.

275

Formulation in the standard form

Linear programs in standard form

min
x1,x2,...,xn∈R

z = p1x1 + p2x2 + ...+ pnxn

subject to A11x1 + ... + A1nxn ≥ b1,
...

. . .
...

...
Am1x1 + ... + Amnxn ≥ bm,

x1, x2, ..., xn ≥ 0.

276

Formulation in the standard form

By grouping the variables into vectors and matrices, i.e.

x =

x1
...

xn

 , A =

A11 ... A1n
...

. . .
...

Am1 ... Amn

 , b =

b1
...

bn

 , p =

p1
...

pn,


the linear programs in standard form becomes.

In matrix formulation

min
x∈Rn

z =
〈
p, x
〉

subject to A x ≥ b x ≥ 0,

where “ ≥ ” is considered on each component.

277

The canonical form

The canonical form of a linear program is

min
x∈Rn

z =
〈
p, x
〉

subject to A x = b x ≥ 0.

A linear programming written in standard form can be converted in a
canonical form by introducing the so called slack variables, suggested by
the difference A x − b.

278

Tableau representation of the
problem, Vertices

The settings

All the linear programs can be reduce to the following

Standard form

min
x∈Rn

z =
〈
p, x
〉

subject to A x ≥ b x ≥ 0,

where p ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

279

To create the initial tableau for the simplex method, we rewrite the
problem in the following

Canonical form

min
x∈Rn+m

z =
〈
p, xN

〉
+
〈
0, xB

〉
subject to xB = A xN − b xB , xN ≥ 0,

where the index sets N and B are defined initially as N = {1, 2, ..., n}
and B = {n + 1, n + 2, ..., n + m}.

The variables xn+1, ..., xn+m are introduced to represent the slack in the
inequalities A x ≥ b and they are called slack variables.

280

Tableau representation of the problem

We shall represent this canonical linear program by the following tableau

x1 · · · xn 1

xn+1 = A11 · · · A1n −b1

...
...

. . .
...

...
xn+m = Am1 · · · Amn −bm
z = p1 · · · pn 0

In this tableau

• xn+1, ..., xn+m are the dependent variables, called basic;

• x1, ..., xn are the independent variables, called nonbasic.

281

A more succinct form of the initial tableau is know as the condensed
tableau, which is written as follows

xN 1

xB = A −b

z = pT 0

We “read” a tableau by setting the nonbasic variables xN to zero, thus
assigning the basic variables xB and the objective variable z the values in
the last columns of the tableau.

Thus, the tableau above represents the point xN = 0 and xB = −b with
the objective of z = 0.

The tableau is said to be feasible if the values assigned to the basic
variables by this procedure are nonnegative. In the above, the tableau
will be feasible if b ≤ 0.

282

A Simple Example

Linear programs in standard form

min
x1,x2∈R

z = 3 x1 − 6 x2

subject to x1 + 2x2 ≥ −1,
2 x1 + x2 ≥ 0,
x1 − x2 ≥ −1,
x1 − 4 x2 ≥ −13,
−4 x1 + x2 ≥ −23,

x1, x2 ≥ 0.

283

Linear programs in canonical form
The first step is to add slack variables to convert the constraints into a
set of general equalities combined with nonnegativity requirements on all
the variables. The slacks are defined as follows:

x3 =x1 + 2x2 − 1,

x4 =2 x1 + x2,

x5 =x1 − x2 + 1,

x6 =x1 − 4 x2 + 13,

x7 =− 4 x1 + x2 + 23,

284

Tableau representation of the linear program

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

In MATLAB we store this tableau in a structure.

We may set a starting searching point by setting (the nonbasic variables)
x1 = 0 and x2 = 0, since the table is feasible, i.e. the corresponding slack
variables (basic) remain positive.

The values of the objective in this tableau, z = 0, is obtained from the
bottom right element.

Let us move from this starting position! Why and How?

285

286

Why to move from vertex to
vertex and not through all
feasible domain?

All possibilities for a linear programming

Infeasible case
min

x1,x2∈R
z = x1 + x2

subject to x1 + 2 x2 ≤ 8,
3 x1 + 2 x2 ≤ 12,
x1 + 3 x2 ≥ 13,

x1, x2 ≥ 0.

287

All possibilities for a linear programming

Unbounded case
min

x1,x2∈R
z = 2 x1 − x2

subject to x1 − x2 ≤ 1,
2 x1 + x2 ≥ 6,

x1, x2 ≥ 0.

288

All possibilities for a linear programming

Infinite number of optimal solutions
min

x1,x2∈R
z = 2 x1 + 2 x2

subject to x1 ≤ 200,
x2 ≤ 300,

x1 + x2 ≤ 400,

x1, x2 ≥ 0.

289

All possibilities for a linear programming

Unique optimal solution
min

x1,x2∈R
z = x1 + 6 x2

subject to x1 ≤ 200,
x2 ≤ 300,

x1 + x2 ≤ 400,

x1, x2 ≥ 0.

290

Geometry of linear programming

The geometry of linear programming is very beautiful. The simplex
algorithm exploits this geometry in a very fundamental way. We will prove
some basic geometric results here that are essential to this algorithm.

Definition

• The set {x ∈ Rn | 〈a, x〉 = b}, where a ∈ Rn and b ∈ R, is called
hyperplane.

• The set {x ∈ Rn | 〈a, x〉 ≥ b}, where a ∈ Rn and b ∈ R, is called
hyperspace.

• The intersection of finitely many spaces is called a polyhedron.
• This is always a convex set: Halfspaces are convex (why?) and

intersections of convex sets are convex (why?).

291

Definition

• A bounded polyhedron is called a polytope.

Which is polytope and which is polyhedron?

292

Extreme points

A point x is an extreme point of a convex set P if it cannot be written as
a convex combination of two other points in P. In other words, there does
not exist y , z ∈ P, y , z 6= x and λ ∈ [0, 1] such that x = λ y + (1− λ) x .

Alternatively, x ∈ P is an extreme point if x = λ y + (1− λ) z , y , z ∈ P,
λ ∈ [0, 1] implies x = y or x = z .

Extreme points are always on the boundary, but not every points on the
boundary is extreme.

293

Linear Independence

A key idea in linear algebra is that of linear dependence, which is a
generalization of the idea of parallel lines.

We define linear dependence of the rows of a matrix A ∈ Rm×n formally
as follows:

zT A = 0 for some nonzero z ∈ Rm.

The negation of linear dependence is linear independence of the rows of
A, which is defined by the implication

zT A = 0 ⇒ z = 0.

The idea of linear independence extends also to linear functions. The
functions y(x) = A x are linearly independence if and only if the rows of
the matrix A are linear independent.

Let us remark that y(x) are linear independent if and only if

zT A x = 0 ∀ x ∈ Rn ⇒ z = 0. 294

Definition
Consider a set of constrains

〈aTi , x〉 ≥ bi , i ∈ M1,

〈aTi , x〉 ≤ bi , i ∈ M2,

〈aTi , x〉 = bi , i ∈ M3.

Given a point x , we say that a constraint i is tight (or active or binding)
at x if 〈aTi , x〉 = bi .

Equality constraints are tight by definition.

Definition
Two constraints are linearly independent if the corresponding ai ’s are
independent.

With these two definitions, we can now define the notion of a vertex of a
polyhedron.

295

Vertex

A point x ∈ Rn is a vertex of a polyhedron P, if

i) it is feasible (x ∈ P),

ii) ∃ n linearly independent constraints that are tight at x .

296

Vertex vs. extreme point

• You may be wondering if extreme points and vertices are the same
thing.

• Note that the notion of an extreme point is defined geometrically
while the notion of a vertex is defined algebraically.

• The algebraic definition is more useful for algorithmic purpose and is
crucial to the simplex algorithm. Yet, the geometric definition is
used to prove the fundamental fact that an optimal solution to an
linear program can always be found at a vertex. This is crucial to
correctness of the simplex algorithm.

297

Equivalence of extreme point and vertex

Theorem
Let P = {x ∈ Rn |A x ≥ b} be a non-empty polyhedron with A ∈ Rm×n.
Let x ∈ P. Then, x is an extreme point if and only if x is a vertex.

Proof.
“⇐′′ Let x ∈ P be a vertex. This implies that n linearly independent
constraints are tight at x . Denote by Ã an n × n matrix whose rows are
that of A associated with the tight constraints. Similarly let b̃ be a vector
of size n collecting entries of b corresponding to the tight constraints. So
Ã x = b̃.

Suppose, we could write x = λ y + (1− λ)z for some y , z ∈ P and
λ ∈ [0, 1], y 6= x , z 6= x . Then A y ≥ b, A z ≥ b implies Ãy ≥ b̃ and
Ãz ≥ b̃.

We have

Ã x = b̃ = λ Ã y + (1− λ)Ã z ≥ b̃.

298

Proof.

If λ = 0, then x = z as Ã is invertible. If λ = 1, then x = y . If
λ ∈ (0, 1), then the previous equality forces Ã y = Ã z = Ã x which
means that x = y = z as Ã is invertible.

With this the “⇐′′ part of the proof is complete.

299

Proof.
“⇒′′ Suppose that x ∈ P is not a vertex. Let
I = {i = 1, 2, ...,m | 〈aTi , x〉 = bi}. Since x is not a vertex, there does not
exist n linearly independent vectors aTi (rows of the matrix A viewed as
vectors, i.e., as columns), i ∈ I .

We claim that there exists a vector d 6= 0 such that 〈d , aTi 〉 = 0, ∀ i ∈ I .
Indeed, take at most k ≤ (n − 1) linearly independent ai , i ∈ I . Let
assume that their indices are i = 1, 2, ..., k . We want to argue that the
linear system

〈aT1 , d〉 = 0,

〈aT2 , d〉 = 0,
...

〈aTk , d〉 = 0

has nontrivial solution. But recall that each aTi is of length n. So this is
an under-constrained linear system.

300

Proof.
Hence, it has infinitely many solutions, among which there is at least one
nonzero solution, which we take to be d .

Let y = x + ε d and z = x − ε d , where ε is some positive scalar. We
claim that for small enough ε we have y , z ∈ P:

• for i ∈ I : 〈aTi , y〉 = 〈aTi , z〉 = bi , because 〈aTi , d〉 = 0.

• for i 6∈ I : the claim follows from continuity of the function
δ → bi − 〈aTi , x + δ d〉 and the fact that bi − 〈aTi , x〉 < 0 when i 6∈ I .

As x = y
2 + z

2 , this implies that x is not an extreme point of P.

301

Theorem
Given a finite set of linear inequalities, there can only be a finite number
of extreme points.

Proof.
We have shown that extreme points and vertices are the same, so we
prove the results for vertices. Suppose we are given a total of n + m

constraints. To obtain a vertex, we need to pick n linearly independent
constrains that are tight. There are at most C n

m+n ways of doing this and
each subset of n linearly independent constraints gives a unique vertex
(as seen previously, the vertex x satisfies Ãx = b̃ where Ã is invertible).
As a consequence, the are at most C n

n+m vertices.

302

More about vertices

For the feasible region S := {x ∈ Rn |A x ≥ b, x ≥ 0}, let

xn+i = Ai·x − bi , i = 1, 2, ...,m.

where Ai· means the ith row of the matrix A, like in Matlab.

In other word, a vertex of S is any point x = (x1, x2, ..., xn) ∈ S that
satisfies

xN = 0,

where N is any subset of {1, 2, ..., n + m} containing n elements such
that the linear functions defined by xj , j ∈ N, are linearly independent.

It is important for the n functions in this definition to be linearly
independent. If not, then the system of equation xN = 0 has either zero
solution infinitely many solutions.

303

We know now how to characterize mathematically the vertices of the
feasible region, BUT we still do not know (it is not already proven and
not obvious) why to check for a solution of the linear program only
among the set of vertices.

304

Definition
A polyhedron contains a line if there exists x ∈ P and d ∈ Rn, d 6= 0,
such that

x + λ d ∈ P, ∀λ ∈ R.

305

Existence of extreme point

Consider a nonempty polyhedron P. The following are equivalent:

i) P does not contain a line.

ii) P has at least one extreme point.

Therefore, every bounded polyhedron has an extreme point.

306

Optimality of extreme points

Theorem
Consider a linear programming in the standard form, i.e.,

min
x∈Rn

z =
〈
p, x
〉

subject to A x ≥ b x ≥ 0,

where p ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

Suppose P has at least one extreme point and there exists an optimal
solution, then there exists an optimal solution which is at a vertex.

307

Proof.
Let Q be the set of optimal solutions (assumed to be nonempty). In
other words, if v is the optimal value of the linear program, then
Q := {x |A x ≥ b, z =

〈
p, x
〉

= v}.

Using the above theorem we know that if P has an extreme point then P

has not lines. Since Q ⊂ P, it follows that Q has no lines. Hence Q has
an extreme point.

Let x∗ be an extreme point of Q. We will show that x∗ is also extreme
point of P. Once this is prove, since 〈p, x∗〉 = v , we would be done.

308

Proof.
Suppose that x∗ is not an extreme point of P. Then ∃ y 6= x∗, z 6= x∗,
λ ∈ [0, 1], such that

x∗ = λ y + (1− λ) z .

Multiplying by p on both sides, we obtain

v = 〈p, x∗〉 = λ〈p, y〉+ (1− λ)〈p, z〉.

Since v is optimal, 〈p, y〉 ≥ v and 〈p, z〉 ≥ v . Combined with the
previous equality, this implies

〈p, y〉 = v , 〈p, z〉 = v .

But this means that y ∈ Q and z ∈ Q. Hence, that x∗ is not an extreme
point of Q. Contradiction!

309

Implication of the theorems

• These theorems show that when looking for an optimal solution, it is
enough to examine only the extreme points (which is equivalent to
vertices).

• This leads to an algorithm for solving an linear program: if there are
m constraints in Rn, then pick all possible subsets of n linearly
independent constraints out of the n + m. Solve (in worst case)
C n
n+m systems of equations of the type Ãx = b̃, where Ã, b̃ are the

restrictions of A and b to the subset of n constraints. This can be
done, e.g., by the gradient method from the previous lectures or by
Gaussian elimination. Evaluate the objective function at each
solution and pick the best.

• Unfortunately, this algorithm, even though correct, is very inefficient.
The reason is that there are too many vertices to explore. For
example, consider the constraints {−1 ≤ x ≤ 1}, i = 1, 2, ..., n.
Then we have in general 2 n inequalities, but 2n extreme points.

310

• The simplex method (which will be done in the following lectures) is
an intelligent algorithm for reducing the number of vertices visited.

Its name is the simplex algorithm and in a nutshell, this is all the
simplex algorithm does:

• start at a vertex,

• while there is a better neighboring vertex, move to it.

Definition
Two vertices are neighbors if they share n − 1 tight constraints.

311

How to move from vertex to
vertex whithout knowing their
possitions?

Back to our Simple Example

Linear programs in standard form

min
x1,x2∈R

z = 3 x1 − 6 x2

subject to x1 + 2x2 ≥ −1,
2 x1 + x2 ≥ 0,
x1 − x2 ≥ −1,
x1 − 4 x2 ≥ −13,
−4 x1 + x2 ≥ −23,

x1, x2 ≥ 0.

312

Linear programs in canonical form
The first step is to add slack variables to convert the constraints into a
set of general equalities combined with nonnegativity requirements on all
the variables. The slacks are defined as follows:

x3 =x1 + 2x2 − 1,

x4 =2 x1 + x2,

x5 =x1 − x2 + 1,

x6 =x1 − 4 x2 + 13,

x7 =− 4 x1 + x2 + 23,

313

Tableau representation of the linear program

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

In MATLAB we store this tableau in a structure.

We may set a starting searching point by setting (the nonbasic variables)
x1 = 0 and x2 = 0, since the table is feasible, i.e. the corresponding slack
variables (basic) remain positive.

The values of the objective in this tableau, z = 0, is obtained from the
bottom right element.

Let us move from this starting position! I know now why but we have to
understand how we could move from a vertex to another vertex?

314

Tableau representation of the Vertex 1

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

How to move in Vertex 2 and stock it in Tableau, i.e., in a structure? 315

Jordan Exchange

Consider the following simple linear equation in the one-dimensional
variables x and y :

y = a x .

The form of the equation indicates that x is the independent variable and
y is the dependent variable: Given a value of x , the equation tells us how
to determine the corresponding values of y , i.e.

y(x) := a x .

If we assume that a 6= 0, we can reverse the roles of y and x as follows:

x = a−1 y .

316

Jordan Exchange

The Jordan exchange is a generalization of the process above. It deals
with the case in which x ∈ Rn is a vector of independent variables and
y ∈ Rm is a vector of dependent variables, and we wish to exchange one
of the independent variables with one of the dependent variables.

Let us consider a linear system y = A x , where A ∈ Rm×n, and change
the roles of a component yr of y and a component xs of x . We write this
system equation-wise as

yi = Ai1 x1 + Ai2 x2 + ...+ Ain xn, i = 1, 2, ...,m,

where the independent variables are x1, x2, ..., xn and the dependent
variables are y1, y2, ..., ym.

317

Jordan Exchange

We can think of the yi ’s as linear functions of xj ’s, that is

yi (x) = Ai1 x1 + Ai2 x2 + ...+ Ain xn, i = 1, 2, ...,m

or, more succinctly, y(x) := A x . This system can also be represented in
the following tableau form:

x1 · · · xs · · · xn

y1 = A11 · · · A1s · · · A1n

...
... · · ·

... · · ·
...

yr = Ar1 · · · Ars · · · Arn

...
... · · ·

... · · ·
...

ym = Am1 · · · Ams · · · Amn

We now decribe the Jordan exchange or pivot operation with regard to
the tableau representation. The dependent variable yr become
independent, while xr changes from being independent to being
dependent. 318

x1 · · · xs · · · xn

y1 = A11 · · · A1s · · · A1n

...
... · · ·

... · · ·
...

yr = Ar1 · · · Ars · · · Arn

...
... · · ·

... · · ·
...

ym = Am1 · · · Ams · · · Amn

The process is carried out by the following three steps:

a) Solve the r th equation yr = Ar1x1 + ...+ Arsxs + ...+ Arnxn for xs in
terms of x1, ..., xs−1, yr , xs+1, ..., xn. Note that this is possible if and
only if Ars 6= 0. (Ars is known as pivot element.)

b) Substitute for xs in all the remaining equations.

c) Write the linear dependency in a new tableau as follows

319

x1 · · · xs · · · xn

y1 = A11 · · · A1s · · · A1n

...
... · · ·

... · · ·
...

yr = Ar1 · · · Ars · · · Arn

...
... · · ·

... · · ·
...

ym = Am1 · · · Ams · · · Amn

x1 · · · yr · · · xn

y1 = B11 · · · B1s · · · B1n

...
... · · ·

... · · ·
...

xs = Br1 · · · Brs · · · Brn

...
... · · ·

... · · ·
...

ym = Bm1 · · · Bms · · · Bmn

To determine the elements Bij in terms of the elemets Aij , let us carry
out the algebra specified by the Jordan exchange.

Solution of the r th equation yr = Ar1x1 + ...+ Arsxs + ...+ Arnxn for xs
gives

xs =
1

Ars︸︷︷︸
:=Brs

yr +
n∑

j=1,j 6=s

−Arj

Ars︸ ︷︷ ︸
:=Brj

xj .

320

Subtituting of the expression of xs , i.e.

xs =
1

Ars︸︷︷︸
:=Brs

yr +
n∑

j=1,j 6=s

−Arj

Ars︸ ︷︷ ︸
:=Brj

xj

in the ith equation of the tableau (i 6= r), i.e. in
yi = Ai1x1 + ...+ Aisxs + ...+ Ainxn,

we have the formulae defining the rows i = 1, 2, ...m, i 6= r :

yi =
n∑

j=1,j 6=s

Aij xj + Ais

 1
Ars

yr +
n∑

j=1,j 6=s

−Arj

Ars
xj


=

n∑
j=1,j 6=s

(
Aij −

AisArj

Ars

)
︸ ︷︷ ︸

:=Bij

xj +
Ais

Ars︸︷︷︸
:=Bis

yr , ∀i 6= r .

321

We may do multiple pivots in succession. Consider the linear function y

defined by y(x) = A x , where A ∈ Rm×n. After k pivots (with
appropriate reordering of rows and columns) denote the initial and kth
tableaus as follows:

xJ1 xJ2

yI1 = AI1J1 AI1J2

yI2 = AI2J1 AI2J2

yI1 xJ2

xJ1 = BI1J1 BI1J2

yI2 = BI2J1 BI2J2

Here I1, I2 is a partition of {1, 2, ...,m} and J1, J2 is a partition of
{1, 2, ..., n}, with I1 and J1 containing the same number of elements.

Both tableaus express the same identity in different ways.

The uniqueness
If the linear function y is defined by y(x) = A x and also by
y(x) = B x , then A = B.

Proof.
Since (A− B)x = 0 for all x ∈ Rn, take x the elements of the canonical
base in Rn. We conclude that A = B. 322

Linear Independence

A key idea in linear algebra is that of linear dependence, which is a
generalization of the idea of parallel lines.

We define linear dependence of the rows of a matrix A formally as follows:

zT A = 0 for some nonzero z ∈ Rm.

The negation of linear dependence is linear independence of the rows of
A, which is defined by the implication

zT A = 0 ⇒ z = 0.

323

Linear Independence

The idea of linear independence extends also to linear functions. The
functions y(x) = A x are linearly independence if and only if the rows of
the matrix A are linear independent.

Let us remark that y(x) are linear independent if and only if

zT A x = 0 ∀ x ∈ Rn ⇒ z = 0.

Remark
If the m linear functions yi are linearly independent, then any p of them
are also linearly independent, where p ≤ m.

Proposition

If the linear functions y defined by y(x) = A x , A ∈ Rm×n, are linearly
independent, then m ≤ n. Furthermore, in the tableau representation,
all m dependent yi ’s can be made independent; that is, they can be
exchanged with m independent xj ’s.

324

Proof.
Suppose that the linear functions y(x) = A x are linearly independent.
Exchange y ’s and x ’s in the tableau until no further pivots are possible,
at which point we are blocked by a tableau of the following form (after a
possible rearrangement of rows and columns):

xJ1 xJ2

yI1 = AI1J1 AI1J2

yI2 = AI2J1 AI2J2

yI1 xJ2

xJ1 = BI1J1 BI1J2

yI2 = BI2J1 0

If I2 6= ∅, we have that the tableau says that

yI2(x) = BI2J1yI1(x) ⇒ []BI2J1 I]

(
yI1(x)

yI2(x)

)
= 0.

Note that any row z of [−BI2J1 I] is nonzero and the above relation
implies that the functions y(x) = A x are linear dependent.

Hence, we must have I2 = ∅, and therefore m ≤ n and all the yi ’s have
been pivoted to the top of the tableau, as required. 325

Proposition (Steinitz)

For a given matrix A ∈ Rm×n, the linear functions y defined by
y(x) = A x are linearly independent if and only if for the corresponding
tableau representation all yi ’s can be exchanged with m independent
xj ’s.

Proof The “only if ” part follows from the previous Proposition. So, we
have to prove only the “if” part.

If all the yi ’s can be exchanged to the top of the tableau, then we have
(by rearranging rows and columns if necessary) that

xJ1 xJ2

y = A·J1 A·J2

yI1 xJ2

xJ1 = B·J1 B·J2

326

xJ1 xJ2

y = A·J1 A·J2

yI1 xJ2

xJ1 = B·J1 B·J2

Suppose now that there is some z such that zTA = 0.

We therefore have that zTA x = 0 for all x ∈ Rn. In the right-hand side
tableau above, we may set the independent variables y = z , xJ2 = 0,
whereupon xJ1 = B·J1z .

For this particular choice of x and y , we have actually y = A x , and so it
follows that

zTA x = 0 ⇒ zT y = 0 ⇒ zT z = 0 ⇒ z = 0,

verifying that the rows of A are linearly independent.

327

Again the definition of a vertex

For the feasible region S := {x ∈ Rn |A x ≥ b, x ≥ 0}, let

xn+i = Ai·x − bi , i = 1, 2, ...,m.

where Ai· means the ith row of the matrix A, like in Matlab.

In other word, a vertex of S is any point (x1, x2, ..., xn) ∈ S that satisfies

xN = 0,

where N is any subset of {1, 2, ..., n + m} containing n elements such
that the linear functions defined by xj , j ∈ N, are linearly independent.

It is important for the n functions in this definition to be linearly
independent. If not, then the system of equation xN = 0 has either zero
solution infinitely many solutions.

328

More about vertices

Let us consider a linear program for which (0, 0, ..., 0) ∈ Rn belongs to
the feasible region. Therefore, taking N = {1, 2, ...n}, the following table

xN 1

xB = A −b

z = pT 0

describes the vertex (0, 0, ..., 0). And we see directly form this tableau
that (0, 0, ..., 0) belongs to the feasible region only if −b has only
nonnegative values.

• Starting from one vertex of the domain of feasibility, how it is
possible to arrive to the tableau describing another vertex?
• An idea is to use Jordan exchanges.

329

More about vertices

Let us consider a linear program for which (0, 0, ..., 0) ∈ Rn belongs to
the feasible region. Therefore, taking N = {1, 2, ...n}, the following table

xN 1

xB = A −b

z = cT 0

describes the vertex (0, 0, ..., 0). And we see directly form this tableau
that (0, 0, ..., 0) belongs to the feasible region only if −b has only
nonnegative values.

• Do we succeed to come to another tableau describing an arbitrary
vertex proceeding a finite number of Jordan exchanges?
• Perhaps, yes, due to the definition of a vertex and as a consequence

of the Steiniz’s Theorem. Explain!

330

More about vertices

Let us consider a linear program for which (0, 0, ..., 0) ∈ Rn belongs to
the feasible region. Therefore, taking N = {1, 2, ...n}, the following table

xN 1

xB = A −b

z = pT 0

describes the vertex (0, 0, ..., 0). And we see directly form this tableau
that (0, 0, ..., 0) belongs to the feasible region only if −b has only
nonnegative values.

• By proceeding a Jordan exchange to a feasible table, do we arrive to
a feasible tableau?

That means to a tableau of the form

xN 1

xB = H h

z = pT α

where N is now another subset of indices of {1, 2, ..., n + m} and h ≥ 0. 331

A vertex means a feasible tableau.

Theorem
Suppose that x is a vertex of S with corresponding index set N. Then if
we define

A := [A − I], B := {1, 2, ..., n + m} \ N,

then x satisfies the relationships

A·BxB +A·NxN = b, xB ≥ 0, xN = 0,

where A·B is invertible. Moreover, x can represented by a tableau of
the form

xN 1

xB = H h

z = cT α

with h ≥ 0, i.e., by a feasible one.

332

Proof

By the definition of a vertex it follows that

A·BxB +A·NxN = b, xB ≥ 0, xN = 0.

It remains to prove that A·B is invertible. Suppose there exists a vector z

such that zTA·B = 0. It follows from above that zTb = 0.

By the definition, the functions xN satisfy

A·BxB +A·NxN = b,

and so zTA·Nxn = 0.

Since xN are linearly independent, it follows that zTA·N = 0. Together
with the assumption that zTA·B = 0, this implies that zTA = 0.

Since A has the (negative) identity matrix in its columns, this implies
that z = 0, and thus A·B is invertible.

333

Proof

Finally, premultiplying

A·BxB +A·NxN = b,

by A·B and rearranging, we see that

xB = A−1·B A·N︸ ︷︷ ︸
:=H

xN +A−1·B b︸ ︷︷ ︸
:=h

,

which can be viewed in the first m lines of the tableau from conclusion of
the theorem.

Regarding the last line of the tableau, let us remark that the initial
expression of the cost, i.e.,
z = p1x1 + p2x2 + ...+ pnxn + 0 · xn+1 + 0 · xn+m, may be written
generically as

z = pT
B xB + pT

N xN .

334

By substituting
xB = A−1·B A·N︸ ︷︷ ︸

:=H

xN +A−1·B b︸ ︷︷ ︸
:=h

in this last form of the cost we obtain

z = pT
B xB + pT

N xN = (−pT
BA−1·B A·N + pT

N)xN + pT
BA−1·B b,

i.e.,
cT = −pT

BA−1·B A·N + pT
N

and
α = pT

BA−1·B b.

Note that h ≥ 0 since x is a point of the feasible region, i.e., x > 0, but
it also satisfies

xB = A−1·B A·N︸ ︷︷ ︸
:=H

xN +A−1·B b︸ ︷︷ ︸
:=h

and xN = 0. Therefore, h = xB ≥ 0.

335

In which vertex it is optimal to
move?

General rule
We move from one vertex to another vertex only if the COST decrease!
Hence, only if we obtain something better.

336

How to move optimal?

Tableau representation of the linear program

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

In MATLAB we store this tableau in a structure.

We may set a starting searching point by setting (the nonbasic variables)
x1 = 0 and x2 = 0, since the table is feasible, i.e. the corresponding slack
variables (basic) remain positive.

The values of the objective in this tableau, z = 0, is obtained from the
bottom right element.

Let us move from this starting position! I know now why but we have to
understand how we could move from a vertex to another vertex?

337

How to move optimal?

338

How to move optimal?

Let us move from this starting position! Where is optimal?

We now seek a pivot - a Jordan exchange of a basic variable with a
nonbasic variable - that yields a decrease in the objective z .

The issue is to choose the nonbasic variable which is to become basic,
that is, to choose a pivot column in the tableau. In allowing a nonbasic
variable to become basic, we are allowing its value to possibly increase
from 0 to some positive value. After that, we study which effect will this
increase have on z and on the dependence (basic) variable.

In the given example, let us try increasing x1 from 0. We assign x1 the
nonnegative value λ while holding the other nonbasic variable x2 at zero;
that is

x1 = λ, x2 = 0.

339

How to move optimal?

The tableau

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

tells us how the objective z depends on x1 and x2, and so for the values
given above we have

z = 3λ− 6 · 0 = 3λ > 0 for λ > 0.

This expression tells us that z increases as λ increases- the opposite of
what we want!

340

How to move optimal?

Let us try instead choosing x2 as the variable to increase, and set

x1 = 0, x2 = λ > 0.

The tableau

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

tells us how the objective z depends on x1 and x2, and so for the values
given above we have

z = 3 · 0− 6λ = −6λ < 0 for λ > 0,

thus decreasing z , as we wished.
341

How to move optimal?

The tableau

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

tells us how the objective z depends on x1 and x2, and so for the values
given above we have

z = 3 · 0− 6λ = −6λ < 0 for λ > 0,

thus decreasing z , as we wished.

The general rule is to choose the pivot column to have a negative value
in the last row, as this indicates that z will decreases as the variable
corresponding to that column increases away from 0. 342

How to move optimal?

We use the term pricing to indicate selection of the pivot column.

We call the label of the pivot column the entering variable, as this
variable is the one that “enters” the basis as this step of the simplex
method.

To determine which of the basis variables is to change places with the
entering variable, we examine the effect of increasing the entering
variable on each of the basis variables.

343

The tableau

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

indicates the following dependences of the basic variables in the
non-basic variables

x3 = 2λ+ 1,

x4 = λ,

x5 =− λ+ 1,

x6 =− 4λ+ 13,

x7 = λ+ 23.

344

Since z = −6λ, we clearly would like to make λ as large as possible to
obtain the largest possible decrease in z . On the other hand, we cannot
allow λ to become too large, as this would force some of the basic
variables to become negative. By enforcing the nonnegativity restrictions
on the variables above, we obtain the following restrictions on the value
of λ:

x3 = 2λ+ 1 ≥ 0 ⇒ λ ≥ −1/2
x4 = λ ≥ 0 ⇒ λ ≥ 0

x5 =− λ+ 1 ≥ 0 ⇒ λ ≤ 1

x6 =− 4λ+ 13 ≥ 0 ⇒ λ ≤ 13/14

x7 = λ+ 23 ≥ 0 ⇒ λ ≥ −23.

We see that the largest nonnegative value that λ can take without
violating any of these constraints is λ = 1. Moreover, we observe that
the blocking variable-the one that will become negative if we increase λ
above its limit of 1-is x5.

345

We choose the row for which x5 is the label as the pivot row and refer to
x5 as the leaving variable—the one that changes from being basic to
being nonbasic. The pivot row selection process just outlined is called the
ratio test.

By setting λ = 1, we have that x1 and x5 are zero, while the other
variables remain nonnegative.

We obtain the tableau corresponding to this point by performing the
Jordan exchange of the row labeled x5 (row 3) with the column labeled
x2 (column 2). The new tableau is as follows

x1 x5 1
x3 = 3 −2 3
x4 = 3 −1 1
x2 = 1 −1 1
x6 = −3 4 9
x7 = −3 −1 24
z = −3 6 −6

Note that z decreased from 0 to −6 and that the table corresponds to
the vertex characterised by x1 = 0, x5 = 0.

346

Therefore, we have moved from the vertex x1 = 0, x2 = 0 to the vertex
x1 = 0, x5 = 0.

Let us review the procedure above for a single step, indicating the general
rules for selecting pivot columns and rows, i.e., the new vertex we have to
move up.

347

Pricing and Ration Test

Given the tableau

xN 1

xB = H h

z = cT α

where B represents the current set of basic variables and N represents
the current set of nonbasic variables, a pivot step of the simplex method
is a Jordan exchange between a basic and nonbasic variable according to
the following:

348

Pricing and Ration Test

Pivot selection rules:

1. Pricing (selection of pivot column s): The pivot column is a column
s with a negative element in the bottom row. These elements are
called reduced costs.

2. Ratio Test (selection of pivot row r): The pivot row is a row r such
that

− hr

Hrs
= min

i
{− hi

His
|His < 0}.

xN 1

xB = H h

z = cT α

→
x
Ñ

1

x
B̃

= H̃ h̃

z = c̃T α̃

Here, by the Jordan exchange formulas α̃ = α− cs hr
Hrs

< α, where the
strict inequality follows from the properties of cs , hr and Hrs .

349

Note that there is considerable flexibility in selection of the pivot column,
as it is often the case that many of the reduced costs are negative.

One simple rule is to choose the column with the most negative reduced
cost. This gives the biggest decrease in z per unit increase in the
entering variable.

However, since we cannot tell how much we can increase the entering
variable until we perform the ratio test, it is not generally true that this
choice leads to the best decrease in z on this step, among all possible
pivot columns.

350

Returning to the example, we are now interested how (or if it is needed)
to move from vertex x1 = 0, x5 = 0 to another vertex.

From the graphic, it is not simple to see. But all the needed data are in
the table representation.

351

x1 x5 1
x3 = 3 −2 3
x4 = 3 −1 1
x2 = 1 −1 1
x6 = −3 4 9
x7 = −3 −1 24
z = −3 6 −6

We see that column 1, the one labeled x1, is the only possible choice for
pivot column. The ratio test indicates that row 4, labeled by x6, should
be the pivot row. We thus obtain

x6 x5 1
x3 = −1 2 12
x4 = −1 3 10
x2 = −0.33 0.33 4
x1 = −0.33 1.33 3
x7 = 1 −5 15
z = 1 2 −15

352

x6 x5 1
x3 = −1 2 12
x4 = −1 3 10
x2 = −0.33 0.33 4
x1 = −0.33 1.33 3
x7 = 1 −5 15
z = 1 2 −15

In this tableau, all reduced costs are positive, and so the pivot column
selection procedure does not identify an appropriate column.

This is as it should be, because this tableau is optimal! For any other
feasible point than the one indicated by this tableau, we would have
x6 ≥ 0 0 and x5 ≥ 0, giving an objective z = x6 + 2 x5 − 15 ≥ −15.

Hence, we cannot improve z over its current value of −15 by allowing
either x5 or x6 to enter the basis, and so the tableau is optimal.

353

x6 x5 1
x3 = −1 2 12
x4 = −1 3 10
x2 = −0.33 0.33 4
x1 = −0.33 1.33 3
x7 = 1 −5 15
z = 1 2 −15

The values of the basic variables can be read from the last column of the
optimal tableau. We are particularly interested in the values of the two
variables x1 and x2 from the original standard formulation of the problem;
they are x1 = 3 and x2 = 4.

In general, we have an optimal tableau when both the last column and
the bottom row are nonnegative.

Note: when talking about the last row or last column, we do not include
in our considerations the bottom right element of the tableau, the one
indicating the current value of the objective. Its sign is irrelevant to the
optimization process.

354

Simplex method

Simplex method

We consider that the linear program is in the canonical form.

We split the simplex method in two phases:

• Phase I: finds a starting point that satisfies the constraints, i.e., it
identifies a starting vertex. Note that we cannot always start the
initial tableau, given by the definition of the slacks variables, since
these tableau correspond to the origin (0, 0, ...0) ∈ Rn and it does
not belong always to the feasible region.

• Phase II: starts with a feasible tableau and applies the pivots needed
to move to an optimal tableau, thus solving the linear program.

355

Simplex Algorithm

Simplex Method:

1. Construct an initial tableau. If the problem is in standard form, this
process amounts to simply adding slack variables.

2. If the tableau is not feasible, apply a Phase I procedure to generate
a feasible tableau, if one exists (TO DO in the next lectures). Let us
consider that a starting vertex is found, i.e., we know a feasible
tableau. For now we shall assume the origin xN = 0 is feasible, but
only to can implement Phase II, firstly.

3. Use the pricing rule to determine the pivot column s. If none exists,
STOP; (a): tableau is optimal.

4. Use the ratio test to determine the pivot row r. If none exists,
STOP; (b): tableau is unbounded.

5. Exchange xB(r) and xN(s) using a Jordan exchange on Hrs .

6. Go to Step 3.

356

The Phase II Procedure: optimal

Phase II comprises Steps 3 through 6 of the method above—that part of
the algorithm that occurs after an initial feasible tableau has been
identified.

The method terminates in one of two ways.

• Stop (a) indicates optimality. This occurs when the last row is
nonnegative. In this case, there is no benefit to be obtained by
letting any of the nonbasic variables xN increase away from zero. We
can verify this claim mathematically by writing out the last row of
the tableau, which indicates that the objective function is

z = cT xN + α.

When c ≥ 0 and xN ≥ 0, we have z ≥ α. Therefore, the point
corresponding to the tableau, xB = h and xN = 0, is optimal, with
objective function value α.

357

The Phase II Procedure: unbounded

• The second way that the method above terminates, Stop (b), occurs
when a column with a negative cost cs has been identified, but the
ratio test fails to identify a pivot row. This situation can occur only
when all the entries in the pivot column H·s are nonnegative.
In this case, by allowing xN(s) to grow larger, without limit, we will
be decreasing the objective function to −∞ without violating
feasibility.

xN 1

xB = H h

z = cT α

358

Unbounded

In other words, by setting xN(s) = λ for any positive value λ, we have for
the basic variables xB that

xB(λ) = H·sλ+ h ≥ h ≥ 0,

so the full set of variables x(λ) ∈ Rm+n is defined by the formula

xj(λ) =


λ if j = N(s),

Hisλ+ hi if j = B(i),

0 if j ∈ N \ {N(s)},

which is feasible for all λ ≥ 0.

359

The Phase II Procedure: unbounded

The objective function for x(λ) is

z = cT xN(λ) + α = csλ+ α,

which tends to −∞ as λ→∞. Thus the set of points x(λ) for λ ≥ 0
identifies a ray of feasible points along which the objective function
approaches −∞.

360

More than one solution?

Linear programs may have more than one solution. In fact, given any
collection of solutions x1, x2, ..., xk , any other point in the convex hull of
these solutions, defined by

{x | x =
K∑
i=1

αix
i ,

K∑
i=1

αi = 1, αi ≥ 0, i = 1, 2, ...,K}

is also a solution.

To prove this claim, we need to verify that any such x is feasible with
respect to the constraints Ax ≥ b, x ≥ 0 and also that x achieves the
same objective value as each of the solutions x i , i = 1, 2, ...,K . First,
note that

A x =
K∑
i=1

αiA x i ≥
K∑
i=1

αi b = b,

and so the inequality constraint is satisfied. Since x is a nonnegative
combination of the nonnegative vectors x , it is also nonnegative, and so
the constraint x ≥ 0 is also satisfied.

361

Finally, since each xi is a solution, we have that pT x i = z for some scalar
zopt and all i = 1, 2, ...,K . Hence,

pT x =
K∑
i=1

αip
T x i =

K∑
i=1

αizopt = zopt .

Since x is feasible and attains the optimal objective value zopt , we
conclude that x is a solution, as claimed.

Phase II can be extended to identify multiple solutions by performing
additional pivots on columns with zero reduced costs after an optimal
tableau has been identified.

xN 1

xB = H h

z = cT α

362

The Phase I Procedure

In all the problems we have examined to date, the linear program has
been stated in standard form, and the tableau constructed from the
problem data has been feasible.

This situation occurs when xi = 0, i = 1, 2, ..., n is feasible with respect
to the constraints, that is, when the right-hand side b of all the inequality
constraints is nonpositive.

xN 1

xB = A −b

z = pT 0

In general, however, this need not be the case, and we are often faced
with the task of identifying a feasible initial point (that is, a feasible
tableau), so that we can go ahead and apply the Phase II procedure
already described.

363

The Phase I Procedure

The process of identifying an initial feasible tableau is called Phase I.

Phase I entails the solution of a linear program that is different from,
though closely related to, the problem we actually wish to solve.

It is easy to identify an initial feasible tableau for the modified problem,
and its eventual solution tells us whether the original problem has a
feasible tableau or not.

If the original problem has a feasible tableau, it can be easily constructed
from the tableau resulting from Phase I.

364

The Phase I Procedure

The Phase I problem contains one additional variable x0, a set of
constraints that is the same as the original problem except for the
addition of x0 to some of them, and an objective function of x0 itself.

It can be stated as follows:

min
x0,x1,x2,...,xn∈R

z0 = x0

subject to xn+i = Ai1x1+ ... +Ainxn −bi +x0 if bi > 0
xn+i = Ai1x1+ ... +Ainxn −bi if bi ≤ 0

x1, x2, ..., xn+m, x0 ≥ 0.

The variable x0 is an artificial variable.

Note that the objective z0 is bounded below by 0, since x0 is constrained
to be nonnegative.

365

The Phase I Procedure

min
x0,x1,x2,...,xn∈R

z0 = x0

subject to xn+i = Ai1x1+ ... +Ainxn −bi +x0 if bi > 0
xn+i = Ai1x1+ ... +Ainxn −bi if bi ≤ 0

x1, x2, ..., xn+m, x0 ≥ 0.

We note a number of important facts about this problem:

• We can obtain a feasible point for the auxiliary problem by setting
x0 = max(max1≤i≤n bi , 0) and xN = 0 for N = {1, 2, ..., n}. The
dependent variables xB , where B = {n + 1, n + 2, ..., n + m}, then
take the following initial values:

bi > 0 ⇒ xn+i = Ai·x − bi + x0 = −bi + max
1≤j≤m,bj>0

bi ≥ −bi + bi = 0,

bi ≤ 0 ⇒ xn+i = Ai·x − bi = −bi ≥ 0.

so that xB ≥ 0, and these components are also feasible. 366

The Phase I Procedure

min
x0,x1,x2,...,xn∈R

z0 = x0

subject to xn+i = Ai1x1+ ... +Ainxn −bi +x0 if bi > 0
xn+i = Ai1x1+ ... +Ainxn −bi if bi ≤ 0

x1, x2, ..., xn+m, x0 ≥ 0.

A number of important facts about this problem:

• If there exists a point x that is feasible for the original problem, then
the point (x0, x) = (0, x) is feasible for the Phase I problem. (It is
easy to check this fact by verifying that xn+i ≥ 0 for i = 1, 2, ...,m.)

367

The Phase I Procedure

min
x0,x1,x2,...,xn∈R

z0 = x0

subject to xn+i = Ai1x1+ ... +Ainxn −bi +x0 if bi > 0
xn+i = Ai1x1+ ... +Ainxn −bi if bi ≤ 0

x1, x2, ..., xn+m, x0 ≥ 0.

A number of important facts about this problem:

• Conversely, if (0, x) is a solution of the Phase I problem, then x is
feasible for the original problem. We see this by examining the
constraint set for the Phase I problem and noting that

bi > 0 ⇒ 0 ≤ xn+i = Ai·x − bi + x0 = Ai·x − bi ,

bi ≤ 0 ⇒ 0 ≤ xn+i = Ai·x − bi ,

so that A x ≥ b.

368

The Phase I Procedure

min
x0,x1,x2,...,xn∈R

z0 = x0

subject to xn+i = Ai1x1+ ... +Ainxn −bi +x0 if bi > 0
xn+i = Ai1x1+ ... +Ainxn −bi if bi ≤ 0

x1, x2, ..., xn+m, x0 ≥ 0.

A number of important facts about this problem:

• If (x0, x) is a solution of the Phase I problem and x0 is strictly
positive, then the original problem must be infeasible. This fact
follows immediately from the observations above: If the original
problem were feasible, it would be possible to find a feasible point
for the Phase I problem with objective zero.

369

We can set up this starting point by forming the initial tableau for the
auxiliary problem, in the usual way and performing a “special pivot.” We
select the x0 column as the pivot column and choose the pivot row to be
a row with the most negative entry in the last column of the tableau.

After the special pivot, the tableau contains only nonnegative entries in
its last column, and the simplex method can proceed, using the usual
rules for pivot column and row selection.

370

An example

min
x1,x2∈R

z = 4 x1 + 5 x2

subject to x1 + x2 ≥ −1,
x1 + 2 x2 ≥ 1,
4 x1 + 2 x2 ≥ 8,
−x1 − x2 ≥ −3,
−x1 + x2 ≥ 1,

x1, x2 ≥ 0.

371

We start by loading the data into a tableau and then adding a column for
the artificial variable x0 and the Phase I objective z0.

x1 x2 x0 1
x3 = 1 1 0 1
x4 = 1 2 1 −1
x5 = 4 2 1 −8
x6 = −1 −1 0 3
x7 = −1 1 1 −1
z = 4 5 0 0
z0 = 0 0 1 0

→

x1 x2 x5 1
x3 = 1 1 0 1
x4 = −3 0 1 7
x0 = −4 −2 1 8
x6 = −1 −1 0 3
x7 = −5 −1 1 7
z = 4 5 0 0
z0 = −4 −2 1 8

372

Since the objective of the auxiliary problem is bounded below (by zero),
it can terminate only at an optimal tableau. Two possibilities then arise.

• The optimal objective z0 is strictly positive. In this case, we
conclude that the original problem is infeasible, and so we terminate
without going to Phase II.

• The optimal objective z0 is zero. In this case, x0 must also be zero,
and the remaining components of x are a feasible initial point for the
original problem. We can construct a feasible table for the initial
problem from the optimal tableau for the Phase I problem as follows.

• First, if x0 is still a dependent variable in the tableau (that is, one of
the row labels), perform a Jordan exchange to make it an
independent variable. (Since x0 = 0, this pivot will be a degenerate
pivot, and the values of the other variables will not change.)

• Next, delete the column labeled by x0 and the row labeled by z0 from
the tableau.

The tableau that remains is feasible for the original problem, and we
can proceed with Phase II, as described above.

373

Phase I:

1. If b ≤ 0, then xB = −b, xN = is a feasible point corresponding to
the initial tableau and no Phase I is required. Skip to Phase II.

2. If b > 0, introduce the artificial variable x0 (and objective function
z0 = x0) and set up the Phase I auxiliar problem and the
corresponding tableau.

3. Perform the “special pivot” of the x0 column with a row
corresponding to the most negative entry of the last column to
obtain a feasible tableau for Phase I.

4. Apply standard simplex pivot rules until an optimal tableau for the
Phase I problem is attained.
• If the optimal value (for z0) is positive, stop: The original problem

has no feasible point.
• Otherwise, perform an extra pivot (if needed) to move x0 to the top

of the tableau.

5. Strike out the column corresponding to x0 and the row
corresponding to z0 and proceed to Phase II.

374

What about our exemple?

x1 x2 x0 1
x3 = 1 1 0 1
x4 = 1 2 1 −1
x5 = 4 2 1 −8
x6 = −1 −1 0 3
x7 = −1 1 1 −1
z = 4 5 0 0
z0 = 0 0 1 0

→

x1 x2 x5 1
x3 = 1 1 0 1
x4 = −3 0 1 7
x0 = −4 −2 1 8
x6 = −1 −1 0 3
x7 = −5 −1 1 7
z = 4 5 0 0
z0 = −4 −2 1 8

x1 x6 x5 1
x3 = 0 −1 0 4
x4 = −3 0 1 7
x0 = −2 2 1 2
x2 = −1 −1 0 3
x7 = −4 1 1 4
z = −1 −5 0 15
z0 = −2 2 1 2

→

x0 x6 x5 1
x3 = 0 −1 0 4
x4 = 1.5 −3 −0.5 4
x1 = −0.5 1 0.5 1
x2 = 0.5 −2 −0.5 2
x7 = 2 −3 −1 0
z = 0.5 −6 −0.5 14
z0 = 1 0 0 0

375

x0 x6 x5 1
x3 = 0 −1 0 4
x4 = 1.5 −3 −0.5 4
x1 = −0.5 1 0.5 1
x2 = 0.5 −2 −0.5 2
x7 = 2 −3 −1 0
z = 0.5 −6 −0.5 14
z0 = 1 0 0 0

→

x7 x5 1

x3 = 1/3 1/3 4

x4 = 1 0.5 4

x1 = 11/3 1/6 1

x2 = 2/3 1/6 2

x6 = −1/3 −1/3 0

z = 2 1.5 14

Although feasible, this tableau is not optimal for Phase II. Simplex rules
lead us to perform the following degenerate pivot:

x7 x5 1
x3 = −1 0 4
x4 = −3 −0.5 4
x1 = 1 0.5 1
x6 = −2 −0.5 2
x7 = −3 −1 0
z = −6 −0.5 14

376

Finite Termination

Why cycling?

Again the definition of a vertex

For the feasible region S := {x ∈ Rn |A x ≥ b, x ≥ 0}, let

xn+i = Ai·x − bi , i = 1, 2, ...,m.

where Ai· means the ith row of the matrix A, like in Matlab.

In other word, a vertex of S is any point (x1, x2, ..., xn) ∈ S that satisfies

xN = 0,

where N is any subset of {1, 2, ..., n + m} containing n elements such
that the linear functions defined by xj , j ∈ N, are linearly independent.

The set N that corresponds to a particular vertex may not be uniquely
defined; that is, the same vertex may be specified by more than one set
N.

377

See the vertex 1 from out example!
It is defined by

• x1 = 0 and x2 = 0;

• x1 = 0 and
x4 ≡ 2 x1 + x2 = 0;

• x2 = 0 and
x4 ≡ 2 x1 + x2 = 0.

So, by 3 different
tableaux. Note that
(x1, x2) 7→ x1 and
(x1, x2) 7→ 2 x1 + x2 are
linearly independent, and
so the other two.

A vertex that can be specified by more than one set N is sometimes
called a degenerate vertex.

Therefore, there is no reason why to affirm that the algorithm do not
remain in a cycle in Vertex 1, by characterising it through 3 different
tableaux. 378

Degenerate/nondegenerate tableau

Definition
A feasible tableau is degenerate if the last column contains any zero
elements. If the elements in the last column are all strictly positive, the
tableau is nondegenerate. A linear program is said to be nondegenerate if
all feasible tableaus for that linear program are nondegenerate.

For instance, see

x7 x5 1
x3 = −1 0 4
x4 = −3 −0.5 4
x1 = 1 0.5 1
x6 = −2 −0.5 2
x7 = −3 −1 0
z = −6 −0.5 14

379

Geometrically, a tableau is nondegenerate if the vertex it defines is at the
intersection of exactly n hyperplanes of the form xj = 0; namely, those
hyperplanes defined by j ∈ N.

Consequently, a linear program is nondegenerate if each of the vertices of
the feasible region for that linear program is defined uniquely by a set N.

We encounter degenerate tableaus during the simplex method when there
is a tie in the ratio test for selection of the pivot row. After the pivot is
performed, zeros appear in the last column of the row(s) that tied but
were not selected as pivots. The finite termination of the simplex method
under these assumptions is now shown.

380

The nondegenerate case

Theorem
If a linear program is feasible and nondegenerate, then starting at any
feasible tableau, the objective function strictly decreases at each pivot
step. After a finite number of pivots the method terminates with an
optimal point or else identifies a direction of unboundedness.

Proof.
At every iteration, we must have a nonoptimal, optimal, or unbounded
tableau. In the latter two cases, termination occurs. In the first case, the
following transformation occurs when we pivot on an element Hrs , for
which hr > 0 (nondegeneracy) and cs < 0 (by pivot selection), and
Hrs < 0 (by the ratio test):

xN 1

xB = H h

z = cT α

→
x
Ñ

1

x
B̃

= H̃ h̃

z = c̃T α̃

381

Proof

xN 1

xB = H h

z = cT α

→
x
Ñ

1

x
B̃

= H̃ h̃

z = c̃T α̃

Here, by the Jordan exchange formulas α̃ = α− cs hr
Hrs

< α, where the
strict inequality follows from the properties of cs , hr and Hrs .

Hence, we can never return to the tableau with objective α, since this
would require us to increase the objective at a later iteration, something
the simplex method does not allow. Since we can only visit each possible
tableau at most once, and since there are only a finite number of possible
tableaus, the method must eventually terminate at either an optimal or
an unbounded tableau.

In fact, a bound on the number of possible tableaus is obtained by
determining the number ofways to choose the nonbasic setN (with n
indices) from the index set {1, 2, ...,m + n} which, by elementary
combinatorics, is C n

m+n. 382

The general case

Beale (1955) shown that for a degenerate linear program, reasonable
rules for selecting pivots can fail to produce finite termination.

Finite termination depends crucially on the rule used to select pivot
columns (in the event of more than one negative entry in the last row)
and on the rule for selecting the pivot row (in the event of a tie in the
ratio test). As shown above, even apparently reasonable rules can fail to
produce finite termination.

We now modify the pivot selection rule of the simplex method to
overcome this problem.

383

Smallest-subscript rule

This rule was introduced by Bland (1977) and is commonly called
Bland’s rule or the smallest-subscript rule.

Pivot selection rules:

1. Pricing (selection of pivot column s): The pivot column is the
smallest N(s) of nonbasic variable indices such that column s has a
negative element in the bottom row (reduced cost).

2. Ratio Test (selection of pivot row r): The pivot row is the smallest
B(r) of basic variable indices such that row r satisfies

− hr

Hrs
= min

i
{− hi

His
|His < 0}.

In other words, among all possible pivot columns (those with negative
reduced costs), we choose the one whose label has the smallest subscript.
Among all possible pivot rows (those that tie for the minimum in the ratio
test), we again choose the one whose label has the smallest subscript.

384

The following theorem establishes finiteness of the simplex method using
the smallest-subscript rule, without any nondegeneracy assumption. The
proof closely follows the one given by Chvátal (1983).

Theorem
If a linear program is feasible, then starting at any feasible tableau, and
using the smallest-subscript anticycling rule, the simplex method
terminates after a finite number of pivots at an optimal or unbounded
tableau.

Theorem
For a linear program, the two-phase simplex method with the
smallest-subscript anticycling rule terminates after a finite number of
pivots with a conclusion that the problem is infeasible, or at an optimal
or unbounded tableau.

385

Proof

386

Linear Programs in
Nonstandard Form

Transforming Constraints and Variables

The complete process for solving a general linear program involves the
following steps:

1. Convert maximization problems into minimization problems.

max〈p, x〉 ⇔ min−〈p, x〉

2. Replace equations in inequalities

ax + b = 0 ⇔ ax + b ≤ 0 and ax + b ≥ 0.

3. Transform less-than inequalities into greater-than inequalities.

a x − b ≤ 0 ⇔ −a x + b ≥ 0.

387

Transforming Constraints and Variables

4. Use substitution to convert generally bounded variables into
nonnegative.

0 ≤ x ≤ b ⇔ x − b ≤ 0 ⇔ −x + b ≥ 0,

x ≤ b ⇔ x − b ≤ 0 ⇔ −x + b︸ ︷︷ ︸
:=y

≥ 0,

x ≥ b ⇔ x − b︸ ︷︷ ︸
:=y

≥ 0.

5. Use substitution to convert free variables into nonnegative.

x ∈ R ⇔ x = y + − y−, y +, y− ≥ 0.

6. Replace bounded variables and free variables and equations from the
formulation.

388

Transforming Constraints and Variables

7. If the tableau is infeasible, apply the Phase I method to generate a
feasible tableau. If Phase I terminates with a positive objective
function value, stop and declare the problem infeasible.

8. Apply Phase II pivots to determine unboundedness or an optimal
tableau.

9. Recover the values of the original variables if substitution was
applied.

10. If the problem was originally a maximization, negate the objective
value in the final tableau to give the optimal value of the original
problem.

389

A final result about the Simplex Method

Theorem
Given any linear program, suppose we apply Scheme I together with the
two-phase simplex method using the smallest-subscript anticycling rule.
Then, after a finite number of pivots, the algorithm either terminates
with a conclusion that the problem is infeasible or else arrives at an
optimal or unbounded tableau.

390

Succes în cǎlǎtoria voastrǎ!

