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€, C,U,N - notatiile uzuale din teoria multimilor
char K - caracteristica corpului K

V - K-spatiu liniar

V,, - K-spatiu liniar n dimensional

span - infaguratoarea liniara

L(V,W) - multimea aplicatiilor liniare de la V' la W
Ly S(V) - multimea formelor biliniare simetrice pe V/
P(V) - multimea formelor patratice pe V

o = (X, 7, @) - spatiu afin

oy, - spatiu afin de dimensiune finita n

A,B,C,... - puncte

u,v,w, ... -vectori

()af - Infagurdtoarea afina

Z - reper afin, R - reper cartezian

AB - dreapta AB, ABC' - planul ABC

(Ao, A1, ..., Ap) - m-simplexul cu varfurile Ag, Ay, ..., 4,

(Ao;@i,...,an) - m-paralelipipedul cu varf Ay i muchii ay, . ..

&= (E, ﬁ, ¢) - spatiu afin euclidian

&n - spatiu afin euclidian de dimensiune finita n
(u,v) - produsul scalar al vectorilor @ si ©

u x U - produsul vectorial al vectorilor @ si v

(u, v, w) - produsul mixt al vectorilor @, T si @
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Capitolul 1
Spatii afine

1.1 Introducere

In acest capitol este introdusi notiunea de spatiu afin peste un corp comuta-
tiv, sunt prezentate proprietatile fundamentale ale acestei notiuni rezultate din
teoria spatiilor liniare gi sunt enumerate unele exemple clasice.

Sunt studiate subspatiile afine gi morfismele afine, cu atentie deosebita pen-
tru translatii, omotetii, proiectii si simetrii.

Este abordata problematica specifica cu privire la spatii afine finit dimen-
sionale: repere carteziene si afine, p-plane, morfisme afine.

Capitolul se incheie cu trei teoreme clasice de geometrie afina: Teorema lui
Thales, Teorema lui Pappus, Teorema lui Desargues, demonstrabile folosind
atat calculul baricentric cat si dilatarile afine.
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1.2 Definitie. Proprietati. Exemple

Definitia 1.1
Se numeste spativ afin peste un cAmp K un triplet & = (X, ?,(ﬁ), unde X
este o multime nevida, ? este un K-spatiu vectorial si
b X x X — X,
(P,Q)— &(P,Q) = PG,
este o aplicatie pentru care sunt satisfacute urmatoarele axiome:
(A1) exista O € X astfel incat
60X — X,
P— ¢o(P) = ¢(0, P)
este o aplicatie bijectiva,
(A2) Relatia lui Chasles
?(P,Q) +6(Q, R) = ¢(P, R),
pentru orice P,Q, R € X.

Elementele multimii X se numesc puncte, spatiul vectorial Y se numeste spatiul
vectorial director al spatiului afin <7, iar aplicatia ¢ se numeste morfismul de
structurd al spativlui afin <o .

Propozitia 1.2

Fie &7 = (X,},cz)) un K-spatiu afin. Pentru fiecare punct P din X exista o
structura de K-spatiu vectorial pe X astfel incat aplicatia

op: X — X,
Qr— 9p(Q) = ¢(P. Q)

este izomorfism de spatii vectoriale.

Spatiul vectorial obtinut se noteazd Tp(X) gi se numesgte spatiul vectorial
tangent la X in P. Aceasta structurd nu este canonica deoarece depinde de
alegerea punctului P.

Demonstratie
Operatiile de adunare si inmultire cu scalar sunt

A+ B =¢p'(¢p(A) +¢p(B)), A BEeX,
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a-A=¢p'(a-dpp(A), A€ X,acK.
Atunci (X, 4+, ) este un K-spatiu vectorial notat Tp(X). O

Teorema 1.3 (Caracterizarea spatiilor afine)
Fie & = (X, 7, ¢) un K-spatiu afin. Aplicatia definitd prin

+: X x Xk — X,

(P,u) — P +71 = ¢p' (),

are urmatoarele proprietati:
(i) P+ (w+7v)=(P+7u)+7, pentru orice P € X, 4,7 € Y,
(i) P+ u = P dacd si numai dacd u =0,
(iii) pentru orice P,@Q € X exista si este unic @ € 7 astfel incat Q@ = P + a.

Reciproc, data o aplicatie “+” cu proprietétile (i), (ii), (iii), exista o struc-

turd de K-spatiu afin pe X cu spatiul vectorial director ?

Demonstratie

Proprietatile (i), (ii), (iii) se verificd imediat, tindnd cont de Definitia 1.1.
Reciproc, data o aplicatie “+” cu proprietatile (i), (ii), (iii), se definegte

b: X x X — X,
(P,Q)— ¢(P,Q) =1,

unde Q = P + u. Pentru tripletul (X, ?, @) astfel obtinut se verifici axiomele
din Definitia 1.1. U

Definitia 1.4

Fie G un grup si X o multime nevidd. Notdm cu S(X) grupul substitutiilor
multimii X, S(X) = {f : X — X / f bijectie}.
Se numeste G-actiune pe X un homomorfism de grupuri

v: G — S(X),
g—»(9), ¢(@)(r)=g z,xeX.
Astfel,

(i) (g1 -92) = ¢(g1) o p(g2), pentru orice g1, g2 € G,
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(ii) ¢(eq) =1idx, unde eg noteaza elementul neutru al grupului G.

Actiunea se numeste tranzitivd daci, pentru orice z,y € G, exista g € G
astfel Incat g-x = y.

Actiunea se numeste simplu tranzitiva daca, pentru orice x,y € G, exista si
este unic g € G astfel incat g - = = y.

Actiunea se numeste fideld dacd Ker ¢ = {eg}.

Observatia 1.5

Daca G este un grup comutativ, atunci orice actiune fidela si tranzitiva este
simplu tranzitiva.

Teorema 1.6 (Caracterizarea spatiilor afine folosind actiuni de grupuri)

Fie & = (X, Y, ¢) un K-spatiu afin si G = (XZ, +) grupul comutativ obtinut
din structura de spatiu vectorial. Atunci exista o G-actiune fidela si tranzitiva
indusa de morfismul de structura ¢.

Reciproc, fie X un K-spatiu vectorial si ¢ : ? — S(X) o actiune fidela si
tranzitiva pe multimea nevida X. Atunci X poate fi Inzestrata cu o structura
de K-spatiu afin cu spatiul vectorial director Y si morfismul de structura indus
de aplicatia ¢.

Demonstratie
Se defineste

p: ? — S§(X),
ur— o(u), e@)(P)=P+u, PelX.

Se verifica faptul c& ¢ este bine definita, adica p(u) € S(X), pentru orice u € X
si faptul ca ¢ este o actiune fideld si tranzitiva (vezi Teorema 1.3).
Reciproc, dat ¢ se defineste

FiXxX - X,
(P, @) —s P +7 = p(@)(P)

si se verifica conditiile (i), (ii), (iii) din Teorema 1.3. O

Definitia 1.7

Se numeste dimensiunea unui K-spatiu afin o = (X,Y,@, dimensiunea
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spatiului vectorial director asociat,
dim & = dim X.

Un spatiu afin cu un singur punct are dimensiunea 0. Un spatiu afin de dimen-
siune 1 se numeste dreaptd afind, iar un spatiu afin de dimensiune 2 se numeste
plan afin.

Ezemple
1. Planul geometric este un spatiu afin de dimensiune 2.

2. Spatiul geometric este un spatiu afin de dimensiune 3.

Exemple de spatii afine

1. Structura afina canonica a unui spatiu vectorial. Fie V' un K-spatiu
vectorial si

¢: VXV -—V
(u,7) — T — .
Atunci (V,V, ¢) este un K-spatiu afin.
2. Spatiul afin produs (vezi Exercitiul 1.2). Dacd &' = (X’,Y’,qﬁ') si
" = (X", X" ¢") sunt doud K-spatii afine, atunci
o' x " = (X x X", X' x X", ¢)

este un K-spatiu afin, unde

p=¢' x¢" (X' x X")x (X' xX") — X' x X"

(P, P"),(Q, Q") — (¢'(P',Q"),¢"(P",Q")).

3. Spatiul afin cat (vezi Exercitiul 1.3). Fie & = (X,?,qﬁ) un K-spatiu
afin si V' un subspatiu vectorial al lui X. Definim pe X urmatoarea relatie
binara: pentru P,@Q € X, P ~ ) daca si numai daca PQ) € V.

Relatia ~ este o relatie de echivalentd pe X si notdm cu X,y multimea
cat. Aplicatia
¢EZX/V X X/V — ?/Va
(P.Q) — PG+V,

este bine definita si o)y = (X v, ?/V, QAS) este un K-spatiu afin.
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1.3 EXERCITII
Spatii afine. Exemple

Exercitiul 1.1
Fie o = (X, ?, ¢) un K-spatiu afin.

(1) S& se verifice ca& morfismul de structurd ¢ : X x X — Xk este o aplicatie
surjectiva.

(2) S& se arate cd, in general, morfismul de structurad nu este o aplicatie injec-
tiva?

Solutie. Pentru (1), prin definitie, pentru P € X, fixat, aplicatia ¢p : X — X
este bijectivad. De aici, pentru orice u € X existd @ € X astfel incat ¢p(Q) = u, adica
o(P,Q) = u, deci ¢ este surjectiva.

Pentru (2), daci exista cel putin doud puncte distincte P, Q € X, atunci ¢(P, P) =

¢(Q5Q) :67 dar (Pv P) # (Q:Q) g

Exercitiul 1.2 (Spatiul afin produs de spatii afine)
Fie &' = (X’,?(}’,gb’) si " = (X”,Y”,qﬁ”) doud K-spatii afine. Sa se arate
cd ' x " = (X" x X”,?' X }”,gb) este un K-spatiu afin, unde

G=¢' x " (X' x X") x (X' x X") — X' x X"
(P P).(Q.Q") — (6 (P Q).6/(P". Q"))

Solutie. Vom verifica mai Intdi axioma (Al) din Definitia 1.1. Fie (P’, P") €
X' x X", fixat arbitrar. Deoarece ¢p, : X' — X si ppn + X' — X" sunt bijective,
rezultd cd pentru orice (u',u”) € X' x X" existd unic (Q,Q") € X'x X", astfel incat
(@p (Q"), 5 (Q")) = (@', W"). Avem astfel ci (¢' X ¢")(pr pry : X' x X" — X'x X"
este bijectiva, pentru orice (P, P") € X' x X".

Pentru a verifica (A2), fie P = (P, P"), Q@ = (Q',Q") si R = (R',R") fixate
arbitrar in X’ x X”. Avem

o(P.Q)+o(R,Q) = (#'(P.Q"),¢"(P",Q")+(¢'(Q.R),¢"(Q",R"
= ('(P.Q)+¢(QR),¢"(P".Q") +¢"(Q",R"))
= (¢'(P,R),¢"(P",R")) = ¢(P,R),
sl putem concluziona. O

Exercitiul 1.3 (Spatiul afin cat)

Fie & = (X,},gb) un K-spatiu afin si V' un subspatiu vectorial al lui Y
Definim pe X urmaétoarea relatie binara: pentru P,Q € X, P ~ @ daca si
numai daca PQ € V.
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(1) S& se arate ca relatia ~ este o relatie de echivalentd pe X.

(2) Daca notam cu X, multimea cat indusa de relatia ~, sa se arate ca
aplicatia

gZS:X/V x Xy — ?/v,
(P,Q) — PG+,
este bine definita.
(3) Sa se verifice ca o)y = (X v, ?/V, ) este un spatiu afin.
Solutie. Pentru (1), vom verifica proprietatile din definitia notiunii de relatie de

echivalenta.

Reflexivitatea. Evident, ﬁ =0¢€V, deci P~ P, pentru orice P € X.
Simetria. Dacd P ~ @, atunci 1@ € V. De aici, cum V C X, avem —PQ € V.

Astfel, QP € V, deci Q ~ P.
Tranzitivitatea. Daca P ~ Q si Q ~ R, atunci @, Cﬁ €V, deci }% + Qﬁ eV.
Astfel, PR € V, adici P ~ R.

Pentru (2), vom ardta ca definitia lui qg nu depinde de reprezentant;i.
A A oA IS -
Fie !Ph Q1) = (P2,Q2). Trebuie si aratdm cd P1Q1 +V = P.Q2 + V, sau echivalent
oty
P1Q1 — PQQQ eV.
Din Py = P> §i Q1 = Q2, rezulta ca Py P2, Q1Q2 € V. De aici,

PiQ1— P2Q2 = PP+ PQ1— P2Q1 —Q1Q2
— ——
= PP—-Q:1Q2€ V.

Pentru (3), fie Pe X v, fixat arbirar. Vom ardta mai intéi ca (Z)p Xy — Xk/v
A A PPN A -4 —

este injectiva. Fie Q1,Q2 € Xy, astfel incat ¢ 5(Q1) = ¢5(Q2). Atunci PQ1—PQ2 =
RN Lo oA N
Q2071 € V, adica Q1 = Q2.
Pentru a arata ca ¢p este surjectiva fie w + V fixat arbitrar in )_(>/V. Cum ¢p :
X — 7 este surjectiva, rezulta ca existd @@ € X astfel incat PQQ = w. De aici,
dA)p(QA) = 1@ +V =u+1V, deci ¢?f> este surjectiva.
De asemenea, daca 15, Q, Re X v, atunci

H(P,Q)+ Q. R) = (PG+V)+ (QR+V)
= (PG+QR)+V =PR+V
= ¢(P,R).

Exercitiul 1.4

Fie multimile
X = {(z',2%) € R? / az' 4 ba® = ¢},
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V={(\ ) € R? Ja\! + bA\? = 0},
unde a,b,c € R, a? + b # 0.
(1) Sa se verifice cd V este un spatiu vectorial real de dimensiune 1.

(2) S& se arate cd X poate fi organizat ca spatiu afin cu spatiul vectorial
director V.

(3) S& se generalizeze problema, considerand X C R™, n > 3.
Solutie.
(1) Vom ariita c& V este un subspatiu vectorial real de dimensiune 1 in R?. In adevir,
0:R* =R, 0N =ar + b7,
este o forma liniara, iar V' = Ker6, deci VSCV RZ. Din a? 4+ b* # 0 rezultd ci

dimImé =1, deci dimV = dim Ker 6 = 1.
(2) Observiam ca daci (z',2?) € X si (A}, )\?) € V, atunci (z* + \', 22 + A%) € X.
Putem considera astfel aplicatia

+:XxV =X, (', 2%+ (A A% = (2 + A1 2%+ 07).

Se verifica imediat faptul ca aceasta definegte o actiune simplu tranzitiva a lui V'
pe X (vezi Teorema 1.3 si Teorema 1.6).
(3) Pentru a generaliza problema se considers

X:{(wl,...,x")G]R"/Zaé-xj:ci,izl,..,,m},
j=1

V={\,. A ER" /D aiN =0,i=1,...,m},

j=1

unde rang(a});,; = k. Cu un rationament similar celui de la (1) si (2) rezulta ca
X poate fi inzestratd cu o structurd de spatiu afin (n — k)-dimensional, avand ca
spatiu vectorial director pe V.

O
Exercitiul 1.5

Sa se arate ca, in fiecare caz, urmétoarele aplicatii induc o structura de spatiu
afin pe multimea X:

(1)
X xR? — X,
((z,y), (@, B)) — (z + o, y),

unde X = {(z,y) e R* /y > 0}.
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(2)
X xR? — X,
((z,y,2), (o, B)) — (x+az+ By + aB,y + a,z + B),
unde X = {(z,y,2) € R3 /z = yz}.
3)
X xR? — X,
((z,9,2), (@, B)) — (2,9, 2) + (1, =1,0) + (1,0, -1),
unde X = {(z,y,2) e R¥ Jox +y+2z=1}.
(4)
X xR? — X,
(2,9, 2), (@, B)) — (x + a,y + B, (z + a)* + (y + B)?),

unde X = {(z,y,2) € R3 /22 +y? — 2 = 0}.

Solutie. Se verificd mai inti ci definitiile sunt corecte. Este usor de verificat c&
fiecare dintre aceste aplicatii defineste o actiune simplu tranzitiva a lui R? pe X (vezi
Teorema 1.3 gi Teorema 1.6). O
Exercitiul 1.6

Fie T : V — W o aplicatie liniara surjectiva, unde V' gi W sunt doua K-spatii
vectoriale, iar W are dimensiune finita dim W = m > 0.

(1) S& se arate ca T admite o sectiune, adicd existd o aplicatie liniara
S : W — V astfel incat T o S = idy .

(2) S& se arate cd multimea sectiunilor surjectiei liniare T,
S ={SeL(W,V)/ToS=idw},

admite o structurda de K-spatiu afin avand spatiul vectorial director
L(W,KerT), spatiul aplicatiilor liniare de la W la Ker T

(3) S& se determine dim . atunci cand V este de dimensiune finita n.

Solutie. Pentru a verifica (1), vom construi efectiv o sectiune S pentru T. Fie
Bw ={f1,---sfm} 0 bazd in W. Cum T este surjectivd, rezulti ci existd e; € V
astfel incat T'(e;) = f;, « = 1,...,m. Consideram aplicatia liniard S : W — V

definitd de conditia S(f,) =€, i=1,...,m. Avem

(To 5)(2 y'f) = ZyiT(S(ﬁ)) = ZyiT(Ei) = Zyi?w
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adica T'o S = idw. Observam faptul ca aceasta constructie depinde de alegerea bazei
Bw, deci S nu este, in mod necesar, unic cu proprietatile cerute.

Pentru a verifica (2), pentru S € . si K € L(W,KerT), fie S+ K : W — V|
(S+K)(w) = S(w)+ K (w), pentru orice w € W. Vom observa mai intéi c& S+K € ..

In adevar, din K € L(W,KerT) avem T o K =0 gi, cum S € ., rezulta
To(S+K)=ToS+ToK=idw+0=1idw .
Putem deci considera aplicatia definita prin

+: x L(W,KerT) — .,
(S,K)— S+ K.
Vom verifica faptul cd aceasta induce o structura de spatiu afin pe . (vezi Teorema
1.3).

(i) Evident, S + (K1 + K2) = (S + K1) + K2, pentru orice S € ./, K1,K»> €
L(W,KerT).
(ii) De asemenea, S + 0 = S, pentru orice S € ..
(iii) Pentru S1,S2 € ., avem T 0 S1 = T 0 Sy = idw, deci T o (S1 — S2) = 0,
adicd S1 — S2 € L(W,KerT). De asemenea, K = S; — S2 este unic astfel incat
S1 =5 + K.
Pentru (3), tinand cont de faptul cd T este o aplicatie liniard surjectivd, avem
dimKer T' = n — m. Astfel, dim . = dim L(W,Ker T') = m(n — m). O

Exercitiul 1.7

Fie X un K-spatiu afin cu spatiul vectorial director V gi fie T : W — V un
izomorfism de spatii vectoriale. Sa se arate ca X poate fi inzestrat cu o structura
de spatiu afin cu spatiul vectorial director W, indusa de T'.

Solutie. Metoda I. Dacid ¢ : X x X — V noteazd morfismul de structurd al
spatiului afin X peste V, definim

VXXX oW, =T 'og

si aratam ca (X, W, 1) este un spatiu afin. Pentru P € X, fixat arbirar, avem ¢¥p =
T 10o¢p. Cum ¢p si T sunt bijectii, rezultd ci ¥p este bijectie.

Tinand cont de faptul ci T~ este o aplicatie liniari si aplicind relatia lui Chasles
pentru ¢, avem

Y(PQ) +¢(QR) = T H(H(PQ)+T (#(QR) =T "(6(P,Q) +¢(Q, R))

= T '(¢(P.R))
= ¢(PR),

pentru orice P,Q, R € X.

Metoda II. Presupunem ca spatiul afin X peste V este definit de actiunea

+v: X xV — X. Vom arata ca aplicatia definita prin

Fw: X XW — X,
(P,w)— P4+ww=P+,T(w),

determind o structurd de spatiu afin pe X cu spatiul vectorial director W (vezi Teo-
rema 1.3).
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(i) Folosind proprietétile actiunii +v si faptul ca T este o aplicatie liniard, avem

Ptw (i +w2) = P+yT (0 +w2)
= P+y(Tw1)+T(wz)) = (P +vT(w)) +vT(w2)
(P+ww1) +w wa,

pentru orice P € X si wy, w2 € W.

(ii) Evident, P +w0 =P +vT(0) = P +v0 = P, pentru orice P € X.

(iii) Trebuie s& mai aritdm cd pentru orice P,Q € X, exista si este unic w € W astfel
incat Q = P +w w.
Fie P,QQ € X, fixate arbitrar. Stim ca exista si este unic v € V astfel incét
Q = P +, 7. De aici rezultd cd w = T~ (7) satisface Q = P + w. Mai mult,
dacid P+ww = @, atunci P+, T(@') = Q. Din unicitatea lui ¥ avem v = T'(w'"),
adics W' =T (v) = w.

O

Exercitiul 1.8

Fie X un K-spatiu afin cu spatiul vectorial director V. Consideram o multime
Y astfel Incat exista o functie bijectiva g : X — Y. Sa se arate ca Y poate fi
inzestrat cu o structura de spatiu afin cu spatiul vectorial director V', indusa
de g.

Solutie. Metoda I. Dacid ¢ : X x X — V noteazd morfismul de structurd al
spatiului afin X peste V, definim

VY xY =V, $(PQ)=¢(g (P),g Q)

si ardtam cd (Y, V, ) este un spatiu afin.

Pentru P € Y, fixat arbirar, avem ¥p = ¢ -1(py © g~ Cum bg-1(py SL g~
bijectii, rezulta ca ¢ p este bijectie.

Tinand cont de relatia lui Chasles pentru ¢, avem

YP,Q) +Y(Q,R) = ¢(g " (P)g ' (Q)+ (g Q)9 '(R))

= ¢(g " (P),g '(R)
= "/)(Pv R)a

L sunt

pentru orice P,Q,R€ Y.
Metoda II. Daca spatiul afin X peste V este definit de actiunea + : X x V — X,
vom arata ca aplicatia
+4:Y XV —Y,
Q1) — Q+yu=g(g~(Q) + 1),

determind o structurd de spatiu afin pe Y cu spatiul vectorial director V' (vezi Teo-
rema 1.3).

(i) Tinadnd cont de faptul c&

9 Q+sm) =9 (Q)+u
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si folosind proprietatile actiunii + : X x V — X, avem

Qg (W +1) = g(g7 Q)+ (W + ) =g((g™ " (Q) +T) +U2)
= g(g7"(Q+g 1) + 1)
(Q+gﬂl)+gﬂ27

pentru orice Q € Y si i, u2 € V.
(ii) Evident,

Q+,0=9g(g Q) +0)=g(g” (@) =Q,

pentru orice Q € Y.

(iii) Trebuie sd mai ardtdm ci pentru orice P, Q € X, existd si este unic v € V' astfel
incat Q@ = P44 7.
Fie P,QQ € Y, fixate arbitrar. Stim ca exista si este unic v € V astfel incat
g Q) = g *(P)+7. De aici, aplicand g, rezultd cd Q = g(¢g~ *(P)+7) = P+,7.
Mai mult, dacad P +, 7 = Q, atunci g(lgfl(P) +7) = g(g”"(P) +7) si, cum g
este o bijectie, avem g ' (P) +% = g '(P) 4+ ¥ = Q. Dar ¥ era unic cu aceasta
proprietate, deci v = .

O

1.4 Subspatii afine. Calcul baricentric

Definitia 1.8
Fie o = (X, ?, ¢) un K-spatiu afin. O submultime nevida Y a lui X se numegte

subspatiu afin (varietate liniard) daca existd un subspatiu vectorial V' C Y

S.V.

astfel incat (Y, V, ¢,y xy) este un K-spatiu afin.

Teorema 1.9 (Caracterizarea subspatiilor afine)
Fie o = (X, Y, @) un K-spatiu afin.

(i) Dacd ) #Y C X este subspatiu afin cu V = 7 ca spatiu vectorial director,
atunci Y = P 4 Y, pentru orice punct P € Y.

(ii) Daca Y este o submultime nevidd alui X §iY =P+ V,unde PeY i V
este un subspatiu vectorial in 7(), atunci Y este subspatiu afin in X.

Exemple de subspatii afine

1. Orice subspatiu vectorial al unui spatiu vectorial este subspatiu afin.
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2. Orice intersectie nevida de subspatii afine ale unui spatiu afin dat este un
subspatiu afin.

3. Fie K-spatiile afine & = (X, }, o), B = (Y, 7, ). Consideram o aplicatie
f: X — Y pentru care existd o aplicatie liniard f : Y — Y astfel incat

FPYF(Q) = 7(1@), VP,Q e X.

(i) Imaginea unui subspatiu afin al lui X prin aplicatia f este un subspatiu
afin in Y.

(ii) Contraimaginea unui subspatiu afin al lui Y prin aplicatia f (daca este
nevidi) este subspatiu afin in X.

(iii) Dacd f : X — K, atunci f se numeste formd afind. Nucleul Ker f =
f71(0) unei forme afine f : X — K este subspatiu afin in X si se
numeste hiperplan al lut X determinat de f.

Calcul baricentric

Definitia 1.10

Fie & = (X, ?, ¢) un K-spatiu afin 51 S C X o submultime nevida. Subspatiul
afin [S]a¢ definit prin

[S]af = ﬂ X'

SCX' C X

se numeste subspatiul afin generat de S.

Subspatiul afin [S].¢ este cel mai mic subspatiu afin din X, in sensul incluziunii,
care contine pe S.

Propozitia 1.11

Fie & = (X,7,¢) un K-spatiu afin si 5,S57,S2 € X submultimi nevide. Au
loc:

(i) S C [Sat, iar S = [S]ar daca gi numai dacd S C X.

(it) [[S]at],; = [Sar,
(111) daca S; C S5, atunci [Sl]af C [SQ]af.
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Propozitia 1.12
Fie & = (X, Xé, ¢) un K- spatiu afin, S = {4;}?_; o submultime de puncte din

n
X gi {A\"}7, C K astfel incat Z A = 1. Atunci existd unic P € X astfel inct
i=1

OB =3 N0,
i=1

pentru orice O € X.

Definitia 1.13

Punctul P € X se numegte baricentrul (combinatie afing de puncte ale) siste-
mului S cu ponderile {\*}7_; si se noteaza

P:i)\iAi, znjx' =1. (1.1)
i=1 i=1

Punctul P € X se numeste echibaricentrul sistemului S daca in (1.1) toate
ponderile sunt egale.

Observatia 1.14

Observam ca se au in vedere doar combinatii afine pentru sisteme finite de
puncte. Notiunea se poate extinde la un sistem oarecare de puncte S C X, P
fiind numit combinatie afind de puncte din S daca existda un subsistem finit al
lui S astfel incat P sa fie o combinatie afind de puncte ale acestuia.

Definitia 1.15

Un sistem oarecare de puncte S C X se numeste sistem de generatori pentru
K-spatiul afin o = (X, ?, ¢) daca orice punct din X este o combinatie afina
de puncte din S.

Propozitia 1.16

Fie § = {Ai1,...,4p,Aps1,..., A} un sistem de puncte in K-spatiul afin
n n p

o = (X, X,6) 5 P=3 XA, S A = 1. Dacii A= S N #0, atunci

i=1 i=1 j=1

P=)Q+ Zn: Ne Ay, A+ Xn: Ne=1,

k=p+1 k=p+1
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unde @ este baricentrul subsistemului {A44,..., A,} cu ponderile {’\Tl, ce %}
Reciproc, daca P € X,

P=)Q+ zn: Ne Ay, A+ zn: Ae=1,

k=p+1 k=p+1

P P
$iQ= Z w Aj, Zuj =1, atunci P este baricentrul sistemului de puncte
j=1 j=1

{A1, ..., Ay, Apia, ..., Ay}, cu ponderile {Apt, ..  ApP AP A"

Definitia 1.17

Fie o = (X, }, ¢) un K-spatiu afin gi S C X o submultime nevida. Multimea
tuturor baricentrelor, cu orice ponderi, care se pot forma cu submultimi finite
ale lui S,

(S)ar = {Z/\iPi: PiES,/\iEK,izl,...,m,Zx\izl,mEN},
i=1 i=1

se numeste infasurdtoarea afind a lui S (in X ).

Propozitia 1.18

Fie o = (X,?,(b) un K-spatiu afin i S € X o submultime nevida. Atunci
subspatiul afin generat de S coincide cu infaguratoarea afind a lui S, adica

[S]af = <S>af-

Caracterizarea subspatiilor afine folosind calcul baricentric

Propozitia 1.19

Fie &7 = (X,?,gzﬁ) un K-spatiu afin si Y € X o submultime nevida. Atunci
Y este subspatiu afin iIn X daca si numai daca orice combinatie afing finita de
puncte din Y apartine lui Y, adica Y = (Y) ..

Propozitia 1.20
Fie o = (X, Xk, @) un K-spatiu afin g1 Y C X o submultime nevida.
(i) Dacé charK # 2, atunci urmétoarele afirmatii sunt echivalente:

1. Y este subspatiu afin in X,



16 1. Spatii afine

2. dreapta afind determinata de orice doud puncte ale lui Y este continuta
nY ((P,Q)a CY, pentru orice P,Q € Y).

(ii) Daca char K = 2, atunci urméatoarele afirmatii sunt echivalente:
1. Y este subspatiu afin in X,

2. echibaricentrul oricarui sistem de trei puncte din Y apartine lui Y
(P+Q+ ReY, pentru orice P,Q,R€Y).

Dependenta si independenta afina

Definitia 1.21
Fie &7 = (X, ?, @) un K- spatiu afin.

(i) Un sistem de puncte {Pi,...,P,} C X se numeste afin dependent daca
exista i € {1,...,n} astfel incat P; este baricentrul cu anumite ponderi ale
celorlalte puncte din sistem.

(ii) Un sistem finit de puncte care contine un singur punct, sau care nu este
afin dependent se numeste afin independent.

Observatia 1.22

1. Orice doua puncte distincte sunt afin independente.

2. Orice sistem afin dependent contine cel putin trei puncte distincte.

Propozitia 1.23

Sistemul de puncte {Py,..., P,} este afin dependent (respectiv afin indepen-
. . . DD >3 .
dent) daca gi numai daci sistemul de n — 1 vectori {P,Ps,..., Py P,} este li-

niar dependent (respectiv liniar independent). In acest caz sistemul de vectori
{P,Py,...,P,P,_1,P;Pi}1,...,P;P,} este liniar dependent (respectiv liniar in-
dependent) pentrui=1,...,n.

Corolarul 1.24

1. Sistemul de puncte S = {P,...,P,} este afin dependent daci si numai
daca exista P; astfel incat (S)ar = (S \ {P}})at-

2. Fie doua submultimi finite de puncte 51,5, C X, astfel incat S; C S5.
Daca Sy este afin dependent, atunci S5 este afin dependent.
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Daca Sy este afin independent, atunci Sy este afin independent.

3. Daca sistemul de puncte {Py,..., P,} este afin independent si

n n n n
S aPi=)Y Bk, Y =Y Bi=1,
i=1 i=1 i=1 i=1

atunci o; = G, pentrui =1,...,n.

4. In planul geometric, trei puncte sunt afin independente daca si numai daca
sunt necoliniare.
In spatiul geometric, patru puncte sunt afin independente daca si numai
daca sunt necoplanare.

1.5 EXERCITII

Combinatii afine. Calcul baricentric

Exercitiul 1.9 (Raportul simplu)

Fie o = (X,Y,gb) un spatiu afin real si A, B,C € X trei puncte coliniare
distincte. Se numeste raport simplu® al punctelor A, B, C, unicul scalar notat
A= (4,B;C), A\ # —1,0, pentru care

AC = \CB.

1
(1) Sa se verifice ca (A, B; C') = A daci i numai dacd C = mA + H%B.
(2) S& se arate cd urmatoarele conditii sunt echivalente:
ECI (B.C; ) = — 2,
(A,C;B) = (1 + ), AB) = —— 1
(07 ) ) 1+>\7
1 A
: = — B' A = ———.
(B,4;:0) = 5, (C.B54) =~

Solutie. Pentru (1), folosind relatia lui Chasles, rezultd ci

(A,B;C)=X & AC=XCB & AC=XAB-A40) & ﬁ:%ﬁ

)

e C=1 T+

! Notiunea de raport simplu a trei puncte poate si difere de la autor la autor.
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Folosind (1), avem

(4,B:C)=A < CB—=-- AB
T+

& (A,C;B)=—(1+\).

Analog, se demonstreaza toate echivalentele cerute. O

Exercitiul 1.10 (Biraportul)

Fie & = (X, Y, ¢) un spatiu afin real i A, B, C, D € X patru puncte coliniare
distincte. Se numeste biraportul punctelor A, B, C, D scalarul notat

A, B;C
7= (A,B;C,D) = EA B,D;, v #0,1.

(1) S& se arate ca

(A,B;C,D)=(B,A;D,C)=(C,D;A,B) = (D,C; B, A).

(2) Sa se arate ca urmatoarele conditii sunt echivalente:

(A,B;C,D) =1, Acipp) -
-~y
! 1
(4.5:0,0) =2, (A,D;B,C)=1-—,
) 0
. _ Y
(A4,C;B,D) =1~7, (A,D5C.B) =1 - .

Solutie. Notdm (A, B;C) = «, (A, B; D) = B, a, 8 # —1,0. Folosind Exercitiul
1.9 rezulta ca

1 1 a(l+ B) 148

B,A;C)=—~, (B,A;D)=—, (C,D;A)=— C,D;B)=— .

( ? ) ) a7 ( ? ) ) 67 ( ) ’ ) (1 + a)ﬁ’ ( ? ) ) 1 +a
Cu acestea, se verificd imediat (1) si (2). O

Exercitiul 1.11

Fie o = (X,?,qﬁ) un spatiu afin real, A € R\ {£1} si 4, B,C,D € X astfel
incat (A,B;C) = A si (A, B;D) = —\. Dacd M este mijlocul segmentului
orientat (C, D), adica (C, D; M) = 1, sa se arate ca (A, B; M) = —)\2.
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. .. . 1 A 1 A .
Sollu,tle. 1Dln ipoteza avem C = mA + mB, D = T )\A T )\B si
— 1 1 A A
A = §ﬁ+§fﬁ_ mH)ﬁ_ 2(1%),@
)\2
_ *mﬁ'
Analog,
1 1 1 1
MB = -CB+-DB= AB A
308+ 3 20+ oo
1
= —= )\2E’
deci AM = —\2MB si concluziondm. O

Exercitiul 1.12
Fie o = (X, Y, ¢) un spatiu afin real si A, B, C € X, distincte doud cate doua.

(1) S& se arate ca daca M,N,P € X astfel incat (B,C;M) = (C,A;N) =
T BN 4 TP -0
(A, B; P) = A, atunci AM + BN +CP =0.

(2) Fie M,N,P € X\ {A, B,C} astfel incat M, N, respectiv P, sunt coliniare
cu Bgi C, Csi A, respectiv A si B. Daca A, B, C sunt afin independente
si AM + BN + CP =0, atunci (B,C; M) = (C, A; N) = (A, B; P).

(3) In conditiile de la (1), fie O un punct fixat in X si Q,R € X definite
prin conditiile (ﬁ = ZC? si O? = 2@. Sa se arate ca mijlocul S al
segmentului orientat (@, R) verifica relatia

1-A 1422
(ﬁfmc_/ﬂmc@, A1,

Solutie. Pentru a verifica (1), din (B,C; M) = (C, A; N) = (A, B; P) = A rezulta

1 A 1 A 1 A
M=——B+—— N=— — A P=——"A+-—"_B.
1+ +1+/\O’ 1+>\O+1+)\ ’ 1+ +1+)\
De aici

_— = 1 A
AM +BN+CDP = mﬁ+mﬁ

+ L By A BA

1+A 1+A

1 — A
a0t 5B

- %(zﬁ-f—ﬁ-‘ra)

1
= 0.
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Pentru (2), din conditiile de coliniaritate rezulta ci existd a, 8,7 € R\ {0, 1} astfel
incét

M=aB+(1-a)C, N=BC+(1-B)A, P=vA+(1—-7)B.
Avem

AM = 0AB + (1 - a)AC, BN =8BC+ (1—B)BA, CP=~CA+(1—-~)CB
si din AM + BN + CP = 0 obtinem

0 = (a+/371)1ﬁ+(7a77+1)1@+(5+77I)B?
= (a-— ’y)@ + (8- a)ﬁ.
De aici, cum A, B,C sunt afin independente, rezultd cd o = 8 = v si (B,C; M) =
(C,A;N) = (A, B;P) = 1=

1 1
Pentru (3), avem S = iQ + §R, deci

03 l(O@+(ﬁ):ﬁ+ﬁ§
- (1+)\671+—CTB)) < @+—B)

1+ A 14+ A

3 142\
= 1+/\E>1+ 1Jr)\C_B)

Exercitiul 1.13
Fie & = (X, Y, ¢) un spatiu afin real si A1, A2, A, A4 € X, distincte.

(1) Fie My, My, M3, My mijloacele segmentelor (A, As), (As, A3z), (A3, Ag),
] e T
respectiv (Ay, A1). S& se arate cad My My = My Ms.

(2) Fie P,Q € X astfel incét (Al,AQ, P) = (A37A4;Q) =X A # —1,0. Sa se

verifice ca }@ = mAlAg + )\A2A4

. 1 1 1 1
Solutie. Pentru (1) avem M; = §A1 + §A2, M = §A2 + §A3, deci

—my 1 1
M1M2 = §(A1M2 —|— AQMQ) = Z(AIAQ —|— A1A3 —|— A2A3)
= lAlAg.
2
1——

—_—
Analog se arata ca MyMs = §A1A3.
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N tfP;entru (2), din ipoteza avem P = H%Al + H%Ag, Q= H%AS + H%Am
stfel,
1 ? A w
Pq = [ @t oA
1
= m(A1A3 +AALAL + N Az + N2 A AL)
1 — A —
= mAlAg + mA2A4.
O

Exercitiul 1.14

Fie Py, Py, P3, Py, respectiv 1, Q2, @3, @4, puncte ale unui spatiu afin real
o = (X, X?, @), astfel incat Py Py = PyPs §1 Q1Q2 = Q4Qs, iar P; # Q;, pentru
it =1,...,4. Fie punctele R; € X astfel incat (P;, Q;; R;) = A\, A # —1,0, pentru
i=1,...,4.

—_— ——
(1) S& se arate cd RyRy = RyRs.

(2) S& se arate ca daca

1 1 1 1 1 1
O=_-P —P. o == — O'=Z-R —R
3 1+2 3, 2Q1+2Q3, 3 1+2 3,

atunci (0,0";0") = \.

Solutie. Pentru (1), avem PiR; = AR1Q1 si PoR> = AR2Q2. Ficand diferenta
celor doua relatii obtinem

PRy — PRy = AM(R1Q1 — R2Q2) & PiPo— RiRy=ARi1R2 — Q1Q2)
= (1+A)R1R2 = P1P2+)\Q1Q2.

Analog, (14+A)RsR3 = P1P3+ AQ4Q3 si, cum P1 P> = P1P3 51 Q1Q2 = Q4Q3, rezulti
L
ca RiRs = R4Rs.
Pentru (2), avem

— e
00" = %(PlO’—s-PgO') = i(P1R1 + PiR3s + PsR1 +P3R3)

1
= 1(P1R1 + PiR1 + R1Rs + P3Rs + R3Ri1 + P3R3)

1 1
= 5(13131 + P3R3) = 5/\(RlQl + R3Qs3).

Analog,

7" A7 1 / A 1
o0"'0" = §(R1O + R30") = Z(RlQl + R1Qs + RsQ1 + R3Q3)

= %(R1Q1 + R3Qs).
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Exercitiul 1.15
Fie o7 = (X,Xz,d)) un K-spatiu afin, A41,...,4, € X, A,...,A" € K cu

Z A =0 i aplicatia
i=1

fiX X, f(M):Zn:)\im, M e X.

i=1

Sa se arate ca aplicatia f este constanta.

Solutie. Fie O € X, fixat. Folosind relatia lui Chasles si Z A =0, avem

=1

ZAMA 7Z>\ (MO + OA;) = (ZA)?JFZAO&
— Y NOR = f(0),

f(M)

pentru orice M € X. Astfel f este constanta, adica vectorul Z)\ZMAZ- nu depinde
i=1
de alegerea punctului M. O

Exercitiul 1.16

Fie o/ = (X,},qb) un K-spatiu afin, A!,...,\" € K cu Z)\i = A #0 si sis-
i=1

temul de puncte § = {A;,...,A4,} C X. S& se arate ci P ebte baricentrul

sistemului S cu ponderile A=A, ..., A1 A" dacs si numai daca Z /\17 =0.

=1

Solutle Daca P este baricentrul 81stemulu1 S cu ponderlle ATIAL O XTI atunci

P_Z/\ M)A, deci 0= A 1ZAPA1,ad1caZ)\PA =0.

i=1 i=1 i=1

Reciproc, fie M € X, fixat arbitrar. Din Z N PA; =0 rezultd c&

=1
0=S_N(MA, - MP) = 3" N (MA;) - \MP.
i=1 i=1

De aici, Mﬁ = Z()ﬁlx\i)MAi, pentru orice M € X si, cum Z(/\fl)\i) =1, rezulta

1=1 =1

i P=>Y (A'\)A; O
=1
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Exercitiul 1.17
Fie o/ = (X, X,$) un K-spatiu afin, P, Q; € X, X € K, i = 1,...,n, astfel

incat P; # @y, pentru orice 4, Z N =1, iar
i=1

zn: NP, = Xn: \Q, = A.
=1 =1

Sa se arate ca daca R; € X astfel incat (P;, Q;; R;) = A, pentru i = 1,...,n,

atunci Z MNR; = A.

i=1
. — —
Solutie. Metoda 1. Din (P;,Q;; R;) = A avem P;R; = AR;(Q;, pentru orice i =
1,...,n. Pentru M € X fixat arbitrar avem

ixiﬁ = Ai)\im o
=1 =1

n n n

SONE, - SONIE = AS NG - AYNTE
=1 =1 1=1 1=1

1+ NS NMR = 1+ )MA &
i=1

N MR, = MA.

1

n

k3

De aici Z MR = A.
=1

! P+ %Qi, pentru ¢ = 1,...,n, deci,

Metoda 2. Din ipotezd avem R; = Tt T A

folosind Propozitia 1.16, obtinem

;ARZ- = ;A (—HAPﬁ—HAQi)

- 1+A;’\P"+1+A;’\Qi:’4'

Exercitiul 1.18
Fie o = (X, X, ¢) un K-spatiu afin, P, Q;, Ri € X, i = 1,...,n, astfel incat
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(P;, Qq; R;) = A, pentru orice i. Dacd N € K, i =1,...,n, cu Z)f =1si
i=1

P= zn:AiPi, Q= Zn:AiQi, R= zn:AiRi,
i=1 i=1 i=1

atunci (P, Q; R) = \.

i=1 =1 =1 7

. —
Solutie. Din ipotezd avem P;R; = AR;Q;, pentru orice i = 1,...,n, si
PR = S_NPR =3 N(PP+PR)=> NPR =Y (NNRQ:

1
n

AS N (i + RO =AY NG,
=1 =1

— ARO.

Exercitiul se poate rezolva si folosind combinatii afine (vezi Propozitia 1.16) [

Exercitiul 1.19
Fie o = (X,Xz,@ un spatiu afin real si Ap,...,4, € X. Fie By,..., By,
Ci,...,C, € X si a € R astfel incat

O[Bl + (1 - Oé)Cl = OzAl + (1 - Oé)AQ,

aBy + (1 — 04)02 =ady+(1— O()A3,

aB, +(1—-a)C, =ad, + (1 - a)A;.

"1 1 |
Daca G = —A;, G = —-B; si G" = —C;, sa te ca
aci ;:1 - ;,1 —Bi i ;:1 - si se arate ci
G=aG +(1-a)G".

Solutie. Fie M € X, fixat arbitrar. Din ipotezd avem

aMBl+(1—O[)MC1 MA1 (1—0[)MA2,
— —_—

e’ +
O[MBQ-‘F(l—Oé)MCQ Ot]\4142-|—(1—0¢)]\41437

aMB, + (1 —a)MCp =aMA, + (1 —a)MA;

g1 suméand aceste relatii obtinem

n n

oS NB 4 (1- )3 NC, = 3 WA,
i=1 i=1 i=1
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adica

Exercitiul 1.20
Fie ,527 = (X, Y ,¢) un spat;iu afin real gi Al,.. yAn,B1,...,B, € X. Daca

G = Z AZ, G = Z Bz,babearatecaZAB —nGG'.
1=1 =1
In partlcular, doua sisteme de puncte {A41,...,4,} si {B1,...,B,} din X au

. . < - =
acelagi baricentru daca si numai daca Z A;B; = 0.
i=1

Solutie. Fie M € X, fixat arbitrar. Din ipotezd avem
> MA; = nMC, > MB; =nMG'.
i=1 i=1

Astfel

3
sy
S

3

- — —
MB, — MA) = n(MG' — MG) = nGG'.

=1 =1

Exercitiul 1.21
Fie & = (X, Y, @) un spatiu afin real.

(1) Fie Py, P5, P; € X trei puncte distincte. Dacd Q1, @2, Q3 € X astfel incat
(P, P3; Q1) = (P3, P1;Q2) = (P, P2; Q3), atunci

1 1 1 1 1 1
Pl +-P+-Py=< = ~Qs.
it gh+ b 3Q1+3Q2+3Q3

(2) Reciproc, fie Py, P5, P5 afin independente, iar @1, Q2, respectiv Qs, colini-
are cu punctele P, si P53, P3 si Py, respectiv P si P». Daca

1 1 1 1 1 1
P+ =Py + -Py =~ - -
ghitgP+ 3P 3Q1+3Q2+3Q3,

atunci (P, P3; Q1) = (Ps, P1;Q2) = (Pr, P2;Q3).
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(3) Fie Py,...,P, € X i fie

Q1 = MNP+ NP+ .+ 2" P,_  +\"P,,
Qs = MNP+ XNPy+...+\" P, + )Py,
Qs = NP3+ XNPi+...+ X" IP 4+ )Py,
Qno1 = MNP, 14+ MNP, +...+\" 1P 5+ \"P,_o,
Qn = MNP, + NP +... 4\ P, 5+ \"P,_4,

unde Z AP = 1. Atunci
i=1

3

3=

P, =

Qi.

SEEe

>

=1 i=1

Solutie. Pentru (1), din (P2, P5; Q1) = (P3, P1;Q2) = (P1, P2;Q3) = A, rezulta

ca

oy A = —— A = ey A =
PQ1 = 1 +)\P2P3, P;Q2 = 1 +)\P3P1, PiQs = 1 +)\P1P2-
Astfel, pentru M € X fixat arbitrar, utilizand relatia lui Chasles, avem
1 1
g(MP1 +MP; + MP;) = g(MQg, +Q3Pr+MQ1+ Q1P+ MQ2 + Q2P3)
1
= 3(MQ1+MQ2+MQs)
A
—————(P1P; + PP+ P3P,
3(1_|_)\)( P>+ P, P + P3Py)
1
= 3(MQ1+MQ2+ MQs).

Pentru (2), fie M € X fixat arbitrar. Prin ipotezd avem,

MP, + MPy+ MP; = MQ1 + MQ2 + MQs,

deci P1Q1 + P2Q2 + P3Q3 = 0. Concluzia urmeaza analog cu Exercitiul 1.12 (2).

Pentru (3), fie M € X fixat arbitrar. Din ipotezi avem

SONG = ASIEE S W S B = A S WP
i=1 i=1 i=1 i=1 k=1 i=1

- Y WE
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Exercitiul 1.22 (Teorema lui Thales)

Fie & = (X, ?, ¢) un K-spatiu afin, dim &/ > 2, gi fie A, B, C € X trei puncte

afin independente.

(1) Sa se arate ca daca P,Q € X astfel incat (A, B; P) = (4,C;Q), atunci
vectorii ]@ si B? sunt coliniari.

(2) S& se arate cd dacd P,@Q € X \ {A, B,C} astfel incat P, respectiv @, este
coliniar cu A si B, respectiv A i C, iar vectorii }@ si BC' sunt coliniari,
atunci (A, B; P) = (A,C; Q).

Solutie. Pentru (1), daci (A, B; P) = (A,C;Q) = ), atunci

1 A 1 A
p=—Lt 41 2 p S R
AT @At T

deci

PG = AQ-AP= 2 (AC - AB)
- X B

1+A
Pentru (2), fie P=a1A+ (1 —a1)B, Q = a2 A+ (1 — a2)C, a1, a2 € R\ {0,1}.

Avem
PO =40 — AP = (1 — an)AC — (1 — a1)AB.

Dar @ = aB? = aﬁ — a@ gi, cum A, B,C sunt afin independente, rezulta ca

l—a1=1-asz=a. Astfel (A4,B;P)=(A,C;Q) = lfa

O

Exercitiul 1.23 (Teorema lui Menelaus)
Fie o, 1 = (X,?,(b) un K-spatiu afin de dimensiune n — 1, n > 2. Fie
Ay, As, ... A, € X puncte afin independente si By, Bo,...,B, € X astfel
incat

(A1, A2;B1) = M1, (A2, A3;B2) = Xo, ..., (An, A1 By) = M.

Sa se arate ca By, Bo, ..., B, sunt afin dependente daca si numai daca

Ada . An = (=1)".
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Solutie. Pentru a demonstra implicatia directd, din ipotezi avem

1 A1

B1 = A A
1 150 1—|—1_’_)\1 2,
1 A2
By = A A
2 1+ AQ 2 + 1+ AQ 3
1 An—l
B = —— A, T “4in
! 1+An71 1+1+)\n71
1 An
B, = A, A;.
(D W I W
Cum B, Bs, ..., B, sunt afin dependente, putem presupune, fara a restrange gene-
ralitatea, ca
B1 :a2B2+ang+...+aan, Zaj =1. (12)
j=2
Avem astfel
1 )\1 Qa2 a2)\2 (679 an>\n
A Ay = A As+... A, Aq. (1.3
S YRR S Ve I e L IS S TS W I W
Cum A, ..., A, sunt afin independente, folosind Corolarul 1.24 (3), rezulta ca
A1(1+)\2) )\1)\2(1+)\3) n)\1A2---)\n71(1+/\n)
— L2 = T an = (-1
BT 0 Tt e = T+ M
(1.4)
si
1+ A\,
n=——~. 1.5
R W G IV (1.5)
Egaland valorile lui o, din (1.4) si (1.5), obtinem
Ao A = (—1D)".
Reciproc, dacd A1Az...An = (—1)" si consideram scalarii asg,as,...,an ca In

relatia (1.4), atunci va rezulta ci acestia satisfac Zaj = 1. Cu acesti scalari, se
=2
obtine relatia (1.3), adica (1.2), deci punctele Bi, Ba, ..., B, sunt afin dependente.
O

Exercitiul 1.24 (Teorema lui Ceva)

Fie o, 1 = (X,?,(b) un spatiu afin real, dime/ = n — 1, n > 3. Fie
Ay, As, ..., A, € X puncte afin independente gi My, M, ..., M, € X astfel
incat M este diferit de Ao, ..., A,, M este diferit de A, As,...,A,, ..., res-
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pectiv M, este diferit de Ay,..., A1 si

AgMy = \IM Ag + NIMy Ay + ..+ XP3M A, + A2 M A,

— —
AsMy = NSMo Ay + NaMoAg + ...+ N33 My A, + N3 2 Mo Ay,

ALMy, =AM, Ay + N2 M Az + .+ N3 M Ay + A2 ML A,

(1) S& se arate ca daca dreptele Ay My, AsMs, ..., A, M, au un punct comun,
atunci au loc urmatoarele n(n — 3) 4 1 relatii

Mo =AM =0 A AT = A
A A= A5 A0 AT =L A AT =007

>\71171 ) )‘711 = )‘31717 >\71171 ) )‘31 = )\2717 ) >\71171 ) )‘2_3 = )‘Z:?»
PERD VIED D LD LD LANNID LR Vi L
MM A =1,

(2) Sa se arate ca daca dreptele Ay My, AsMs, ..., A, M, nu sunt paralele
doua cate doud si au loc relatiile de la (1), atunci cele n drepte au un
punct comun.

Solutie. Pentru (1), si presupunem ci dreptele A1 M1, AoMo, ..., A, M, au un
punct comun
M:OéiAi+(1—O¢i)Mi7 1= 1,...,’[’L. (16)
Din ipotezd avem ci a; ¢ {0,1}, ¢ = 1,...,n. Vom determina, in continuare, coor-
donatele baricentrice ale lui M 1n raport cu sistemul de puncte afin independente
{A1,..., A}
Din ipoteza avem ca
1 n—2 )\j
Mi=—Ait1+ ) A, (1.7)
i —1 M
J
n—2
unde p; =1+ Z )\?, iar An4n = Ap, pentru orice h = 1,...,n — 1. Deducem ca
k=1
1—a 21— )N
M:aiAi+ L ZAz‘-Q—I +Z+Ai+]’+1, = 1,...,77,. (18)
£ j:l 1

Tinand cont de unicitatea coordonatelor baricentrice ale lui M in raport cu sistemul
de puncte afin independente {Aq,..., A,}, vezi Corolarul 1.24 (3), obtinem

1— o ) L
Qi = N =Ly, j=1,...,n—2, (L9
i Qi1
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unde any; = o, pentru orice i = 1,...,n. De aici,
AN, =B o =1 3
i N1 — — N\ ) t=1...,n, J=4...,mn—
Qit1

De asemenea,
as Qy Q2

A As AL =
(6] a3 a1

Pentru (2), din ipoteza rezulta ci existd (a;)i=1, solutie unicd a sistemului (1.9).
Cu aceasta este verificatd (1.8) care, tinand cont de (1.7), este echivalentd cu (1.6).
Astfel, punctul M dat de (1.6) se gaseste la intersectia dreptelor A1 My, AsMo, ...,

AnM,. (]

Exercitiul 1.25 (Dreapta Newton-Gauss)

Fie o = (X,?,gb) un K-plan afin, charK # 2 gi fie A, B, C' € X, puncte
afin independente. Fie E, F' € X, astfel incat A, B, F' (respectiv A, C, E) sunt
coliniare distincte, iar dreptele afine BE si CF au un punct comun D. Sa
se arate cd mijloacele segmentelor orientate (A, D), (E, F) si (B,C) sunt afin
dependente.

Solutie. Fie F=(1—a)A+aBsgi E=(1-p8)A+8C, a,8 €K\ {0,1}. Cum
dreptele afine BE gi CF au un punct comun D, rezulta ca exista v, € K astfel incat

D=(1-v)B+~yE=(1-05)C+JF.

De aici AD = (1- 7)1@ + 751@ — 60 AB +(1 - 5)@ si, cum A, B, C sunt afin
independente, obtinem (1 —af)y=1—asi (1—aB)d =1—4. Cum «, 8 # 1, rezultd
ca 1l —af #0, deci

11—« 5= 1-p

T 1-ap’ T 1-—ap’

v

adied (1-a)(1-5) (1-«a) Bl —«a)
—a)(1l— ol —a —
D= 1—ap A+ 1—aﬂB+ 1—ap ¢

§ 1,1 1,1 1,1
NotamcuM—2A—|—2D,N—2E+2F,P—2B+2C. Avem

NB =B AN = L e

2

De asemenea,

B — 1 1 1—=  af(l—a) aB(l—p)
W—W*AM—§E+§F*§E_ 2(1_01[3),@4»2(1_043)1@-

Evident, Mﬁ - ]W, deci M, N, P sunt coliniare. O

1—ap
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1.6 Suma (uniunea) subspatiilor afine. Teorema
dimensiunii pentru subspatii afine

Definitia 1.25

Se numegte suma (uniunea) a doud subspatii afine X', X’ ale unui K-spatiu

afin & = (X, 7, ¢) cel mai mic subspatiu afin ce contine X’ U X", adica

X'+ X" = (X U X" .

Lema 1.26

Fie X', X" doua subspatii afine ale unui K-spatiu afin & = (X,7,¢) si
PeX', Qe X" Atunci X' N X" # ) daci i numai daci PO € X/ + X"

Lema 1.27

Fie X', X" doua subspatii afine ale unui K-spatiu afin & = (X,?,(b) si
Pe X', Qe X" Atunci

X'+ X" = ?/ + ?” + span{]D.é}.

Propozitia 1.28

Daca X', X" sunt doua subspatii afine ale unui K-spatiu afin & = (X, Y, ?),

atunci

X+ X daci X' N X" # 0

X +x"=
X}' + ?” + span{Pﬁ}, dacd X' N X" = (),

unde P € X' gi Q € X", fixa{i arbitrar.

Teorema 1.29 (Teorema dimensiunii)

Fie X', X doud subspatii afine de dimensiune finitd ale unui K-spatiu afin
o = (X, )_(>7 @). Atunci X’ + X" este un subspatiu afin de dimensiune finita si

dim X' + dim X" — dim(X’ N X"), daci X' N X" £ 0
dim(X'+X") =
dim X' + dim X — dim(X' N X") + 1, dack X' N X" = 0.
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Demonstratie

Demonstratia se bazeazia pe Teorema lui Grassmann pentru dimensiunea
spatiului vectorial suma a doua subspatii vectoriale. O

Consecinte

1. Fie X', X" doud subspatii afine ale unui K-spatiu afin & = (X, XZ, ¢) finit

"

dimensional. Dacs X = X' @ X", atunci X’ N X" constd dintr-un singur

punct.

2. Dacd dim X’ = ky, dim X" = ks i X' N X" = 0, atunci dim(X’ + X”) >
max{kl,kg}.

3. Daca dim X' =k, X" = {P} si P ¢ X', atunci dim(X’'+ X”) =k + 1. De
exemplu, spatiul afin suma dintre o dreapta si un punct exterior ei este un
plan afin.

1.7 EXERCITII

Subspatii afine. Teorema dimensiunii

Exercitiul 1.26

Fie o = (X,Y,qb) un K-spatiu afin i Y € X, Y # (. S& se arate ci
urmatoarele afirmatii sunt echivalente:

(1) Y C X.
s.a.

(2) Existd P € Y astfel incat ¢p(Y) C X.

S.v

(3) Pentru orice @ € Y are loc ¢g(Y) C X.
(4) Exista P € Y astfel incat Y C Tp(X).

(5) Pentru orice punct Q € Y are loc Ysg' To(X).

Solutie. Avem imediat (3) < (5), deoarece ¢ : To(X) — X este un izomorfism
de spatii vectoriale pentru orice @ € X. Cu aceeasi argumentare, (2) < (4).

Implicatiile (1) = (3) = (2) = (1) rezultd imediat aplicind Teorema 1.9. Pentru
(1) = (3), se aratd cd ¢ (V) = Y. Implicatia (3) = (2) este evidentd. Pentru (2) =
(1), se utilizeazd faptul c& Y = P + ¢p(Y). O
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Exercitiul 1.27

Fie X, X5 doua K-spatii afine si Y; C X, Yo C X5. Sa se arate ca
s.a. s.a.
Y1 xYs, C X; x Xo.
S.a.

Solutie. DacdY; C X;, atunci Y; = Pi—i—?i, P, ey, ? C XZ, 1 =1,2. Se verifici

imediat ca
Y1 x Yy = (P, P2) + ? ?

1ar? ?CX:[XXQ [l

Exercitiul 1.28

Fie X un K-spatiu afin si V' C Xk Notdm cu X,y spatiul afin cat determinat
de V. Sa se arate ca daca Y C X atunci Y’ VAT, C X/V .

Solutie. Daca Y c X, atunci Y = P—i—? Pey, 7 Y ArelocVNY c Y

V.
si se verifica imediat ca

Yoy =P+vnY.

Exercitiul 1.29

Sa se determine pozitia relativa a doua drepte intr-un spatiu afin n-dimensional.

Solutie. Fie di, d2 doud drepte intr-un spatiu afin n-dimensional X.
Avem:

(I) Daca di Nds 75 @, atunci di N ds C d1, deci dim(d1 M dz) <1.

(I.a) Daca dim(di Nd2) = 1, atunci di Nd2 = di = da, deci cele doud drepte
coincid.
(I.b) Daca dim(di Ndz) = 0, atunci dy Nda = {P}, deci cele doud drepte sunt
concurente.
(IT) Dac& di Nd2 = @, atunci consideram d1 N d2 C dl, deci d1m(d1 N dg) <1.

(I.a) Daca dim(d1 N d2) = 1, atunci d1 N dg = d1 = d2 si cele doud drepte sunt
paralele.

— — —

(IL.b) Daca dim(d; N dg) = 0, atunci dim(dy + d2) = dimd; + dimd2 + 1 = 3.

Astfel, dacd n = 2 acest caz nu apare. Dacid n > 3, in acest caz cele doua
drepte sunt oarecare.

O

Exercitiul 1.30
Fie d; si dy doud drepte ale unui K-spatiu afin 3-dimensional &/ = (X, Xk, 10)

(1) Care sunt posibilele valori ale dim(d; + d2)?
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%
(2) Sa se verifice ca dy Ndy = 0 si z # dg daca gi numai daca dy +do = X.

Solutie. Pentru (1),
(I) dinda #0.

(I.a) Daca dreptele coincid, adicd di = da, atunci
dim(di + d2) = dimd; 4+ dim ds — dim(dy1 Nd2) = 1.
(Ib) Daca dreptele sunt concurente, adica di1 N d2 = {P}, atunci
dim(d; + d2) = dimd; + dimdz — dim(d1 Ndz) = 2.

(1) dy Ndy = 0. oL
(Il.a) Daca dreptele sunt paralele, adicd di = d2, atunci

dim(dy + do) = dimdy + dimds — dim(d; N da) + 1 = 2.

(IL.b) Daca dreptele sunt oarecare (n > 3), atunci

dim(dy + do) = dimd; + dimdy — dim(d; N d3) + 1 = 3.

Pentru (2), conditia di + d2 = X este echivalentd cu dim(d; + d2) = dim X = 3.
Tinand cont de cazul (ILb), concluziondm. (]
Exercitiul 1.31

Sa se arate ca intr-un spatiu afin 3-dimensional dacd doua plane se intersec-
teaza, atunci fie coincid, fie intersectia lor este o dreapta.

Solutie. Fie 71,72 doud plane cu 1 N w2 # @ in spatiul afin X.

Daca 7 = me, atunci concluzionam.
Daca w1 # 2, atunci w1 Ny C 1, m1N7we # 71, deci dim(w1N72) < 1. S& presupunem
s.a.

prin absurd ca dim(71 N 72) =0. Atunci, din Teorema dimensiunilor,
dim (71 4 m2) = dimm1 + dim 72 — dim(m1 N 72) = 4,

dar m + m2 C X, iar dim X = 3, deci avem o contraditie. De aici, concluzionam ca
s.a.

dim(m 1) = 1. =

Exercitiul 1.32

Fie spatiul R* dotat cu structura afini canonics si submultimile in R* date de

ecuatiile:
z+y—2—-2t=0 —z+t=1
(1) Jr—y+z+4t=1 (2) 224+y+2—-t=0

2y — 2z — 5t =—-1/2, dr+2y+2z+t=3,
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20 —y+t=-1 (5) —r4+2y+2z—-2t=2
(3) 2 —y+t=—1 3x+ 2 =0,

—r+2 z—2t=2,
v+ 2 —y+t=—1

(6) —r+2y+z-2t=2
4) { 3z +2=0, 3x+z+t=4

S& se arate ci aceste submultimi definesc subspatii afine in R*, scriindu-le sub
forma P + 7, PcR*si 7 C R#, si furnizand explicit punctul P si o baza in
S.V.

Y.

Solutie. Punctul P reprezinti o solutie particulard a sistemului neomogen din
enunt, iar Y este reprezentat de multimea solutiilor sistemul omogen asociat acestuia.

(1) P(1/4, —1/4 0 0), Y = {(—p A+ 5m A, 2u) : A, u € R}, 0 bazi in Y fiind dati
de f, =(0,1,1,0), f, = (-1,5,0,2).

(2) P(1/2,0,0, ) 7 — {(\,—21,0,0) : A € R}, 0 bazii in ¥ fiind dats de f, =
(1,-2,0,0).

(3) P(0,1,0, 0)7? {(0,X,0,X) : A € R}, obazam?ﬁmddatadefl—(0,1,0 1).

4 P 0000),7: {(A g, =3\ v) : A\, v € R}, o bazi in Y fiind datd de fi=
(1,0,-3,0), F, = (0,1,0,0), f, = (0,0,0,1).
P(0,1,0, 0), é {22 + p, —=3X, 1) + A, u € R}, o bazd in Y fiind dati de

71 :( 3,0) f (0,1,0,1).

(6) P( 0, , (A, 22, =3X,0) : A € R}, o bazd in Y fiind dati de fi=

O
Exercitiul 1.33
Fie spatiul R* dotat cu structura afind canonic# si subspatiile afine date de
Xq: { —2x+3y+4z+t=25,

T—y+22-2t="7
3x+2z4+t=7
T—y+5z2+6t=0
—2x—-—y+2z—3t=0,

Xg:

Y. - —2x+3y+4z+t=>5
3 —x+4y+ 2z — 5t =8.

Sa se determine X7 N X5, X5 N X3. Sa se utilizeze teorema dimensiunii pentru
a determina X5 + X3.
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Solutie. Rangul matricei sistemului de ecuatii ce determini X» este 3 si

r—y+22-2t=7
Xo: 3r+z2z4+t=7
r—y+52+6t=0,

cele trei ecuatii fiind independente.
Avem
—2x+3y+4z+t=5
rT—y+2z—-20=7
3zr+z+t="7
r—y+52+6t=0,
iar rangul matricei sistemului este 4, deci intersectia este un punct. Analog, analizand

sistemul reprezentat de ecuatiile ce determind X5 si X3, deducem ca Xo N X5 = 0.
Notam ca dim X2 = 1 i dim X3 = 2. Avem

X1NXs:

r—y+22—2t=0
3r+24+1t=0
_>
Xon X & —y+5zt6t=0
—2x+3y+4z2+t=0
—x+4y+2z—5t =0,

= =
sistem care admite doar solutia banald. Astfel, dim(X2 N X3) =0, si

dim(Xz + X3) = dim(Xz2) + dim(X3) — dim(Xs N X3) + 1 = 4,
deci Xz + X3 = R O

Exercitiul 1.34

Fie, in spatiul afin R*, planul afin 7 dat de

J 22+y—2=2
| 4z +t=5.

Sa se determine toate dreptele d ce trec prin (0, 1,0, 1) si astfel incat 7+d = R*.

Solutie. Avem urmitoarele situatii:
(I) daca mNd # 0, atunci

dim(w + d) = dim 7 4+ dimd — dim(w N d) < 3.
(IT) dacd wNd =0, atunci
dim(r + d) = dim7 + dimd — dim(F N d) +1 =4 — dim(7 N d)

Astfel, 7 + d = R* daci si numai daci 7 Nd =0 i 7 N d = {0}.
Se obtine imediat c& 7 = span{(1,0,2, —4),(0,1,1,0)}, deci 7N 7 = {0} daci
si numai daca q C span{(0,0,1,0),(0,0,0,1)}. Deducem c&

d=(0,1,0,1) +span{(0,0,a,8)},  a,B€R,a*+p*#0.
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Acum conditia # Nd = @) devine B8 # —4a, deci solutia este

z=0
d: y=1
Bz —at = —a,
unde o, B € R, a? + 3% #£0, 8 # —4a. [l

Exercitiul 1.35
Fie X; si X, subspatiile afine ale spatiului afin R* date de

X1 ={(a+3N+2,1 =X —p, 4+ X\,6+5\+2u) /\, u € R},
Xo={2+a+28,1,1+a+p,3a)/a, 8 €R}.

Sa se determine a € R astfel incat X; N X5 # (). Pentru aceastd valoare a lui
a, sa se determine X; N Xo i X7 + Xo.

Solutie. Conditia X1 N X5 # () este echivalentd cu conditia de compatibilitate a
sistemului
AN+2u—a—2=2—a,
A4+p=0,
A—a—f=-3,
5\ + 2 — 3a = —6,

in necunoscutele A, u, @ si 5. Rangul matricei sistemului este 3, iar compatibilitatea
este echivalenta cu a = 6.
Rezolvand sistemul pentru a = 6, se obtine A= -2+ k,u=2—-k,a=k,5 =1, deci

XiNXo={(A4+k 1,24k 3k)/kcR}.

Avem
X1+ Xo :P+(Y1+Xz2),

unde P € X; + X5. Putem considera P(2,1,1,0) € X2 C X1 + X2. Tinand cont de
}1 = Span{(37 _17 1’ 5)7 (27 _17 07 2)}7

X2 = span{(1,0,1,3), (2,0,1,0)},
avem {(2,-1,0,2),(1,0,1,3),(2,0,1,0)} baza in 71 + )?2. Putem exprima astfel
X1+ Xe={2+2y+d+21,1—~,1+6+7,2v+38) /7,6, 7 € R}.

Exercitiul 1.36
Fie X; si X, subspatiile afine ale spatiului afin R* date de

Xy ={(z,y,2,t) eR* Jx+y=4,z2+t=a},
Xo={(34+X2—-2\2\, -1+ )) /X €R}.

Sa se determine a € R astfel incat X7 + X5 sa aiba dimensiunea minima.
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Solutie. Din ipoteze rezulti ci
X1 = {(c,~,8,—B) €R*: 0, B € R},
cu o bazi formati din f, = (1,—1,0,0), f, = (0,0,1, 1), iar
Xo = {(A\,—2),2)\,\) € R*: A € R},

cu o bazi formata din f; = (1,-2,2,1). Observam ci rang{f,, fo, fs} = 3, deci
dim(?l + Yg) = 3. Cum dim X1 = 2 gi dim X2 = 1, din Teorema lui Grassman

avem dim(X1 N X2) =0.
Dacd X1 N X2 = (), atunci

dim(X) + X) = dim X + dim X — dim(X; N X2) + 1 = 4.
Dacid X1 N X2 # (0, atunci
dim(X1 + X2) = dim X1 + dim Xs — dim(X1 N X3) = 3,

deci X7 + X5 are dimensiunea minimé daci si numai dacd X; N X2 # 0. Aceastd
conditie este echivalenta cu compatibilitatea sistemului

r+y=4
z+t=a
=3+ A
y=2—=2\
z =2\
t=—1+ A,
adica a = 2. O

1.8 Spatii afine de dimensiune finita. Repere
afine. Repere carteziene

Definitia 1.30

Se numeste reper cartezian pentru un K-spatiu afin &/ = (X X}, @) o pereche
de forma R = {O;B}, unde O este un punct fixat in X si B este o bazd in
spatiul vectorial director X.

Punctul O se numeste originea reperului cartezian R.

Observatia 1.31

Fie &, = (X, )?, ¢) un K-spatiu afin de dimensiune finita n. Atunci multimea
R ={0;ey,...,e,} este reper cartezian daca si numai daca sistemul de n + 1
puncte {O, Py, ..., P,}, cu P; unic definite de Oﬁ, =€, 1=1,...,n, este un
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sistem afin independent.
In acest caz, sistemul ordonat de puncte Z = {O, Py,..., P,} se numesgte re-
perul afin asociat reperului cartezian R.

n
Fiecarui punct P € X i se asociazi scalarii 2%, 2!, ..., 2", E x2' =1, astfel
i=0
mcat
1
P=20+2'P +...+2"P,,

iar (z')™_, se numesc coordonatele baricentrice ale punctului P in reperul afin
Z.
De asemenea,

O?:xlO—P;—l—...—i—a:"O—Pn),

iar (xj);-lzl se numesc coordonatele carteziene ale punctului P in reperul carte-
zian R.

Trecerea de la un reper afin la cel cartezian asociat se face considerand
primul punct al reperului afin ca origine a reperului cartezian.

Schimbarea reperelor afine

Fie reperele afine #Z = {Ao, A1,...,An} st Z' = {4}, A},..., A} intr-un

spatiu afin de dimensiune finita n, o, = (X, X, ¢). Schimbarea reperului afin

Z in AZ' este datd de matricele Sy € M,, 1(K), S € M,, ,(K), unde Sy este

matricea coordonatelor vectorului de pozitie al noii origini fata de reperul car-

tezian asociat reperului afin Z, iar S este matricea schimbérii de baza de la
— —

B={A0A;} la B' = {A A} . Astfel,

1

s
SO = ’
S'I’L
ﬁ n
unde ApAy = E s'AgA;, iar
i=1
1 1
51 Sn
S=1": ,
n n
51 Sn

n

—_— .
unde B' = S(B), adica AjA] = " s]AgAj, i=1,...,n.
j=1
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La o schimbare de repere afine, dacd P(z!,...,2™) in raport cu reperul
cartezian R si P(2'%,...,2") in raport cu reperul cartezian R’, atunci

n

. .. . )

xzzg six? + 8", i=1,....,n,
Jj=1

adica, in notatie matriceala,
X =8X"+ 5, (1.10)

unde X noteazi matricea coloana a coordonatelor lui P in R, iar X’ noteaza
matricea coloana a coordonatelor lui P in R'.
Ecuatia (1.10) este echivalenta cu

()-6 7)) )
S So

matricea M(R',R) = ( 0 1) fiind numitd matricea schimbarii de repere

afine de la Z la %'.

Propozitia 1.32 (Ecuatiile implicite ale unui subspatiu afin)

Fie &, = (X,Y,(b) un K-spatiu afin de dimensiune finita n raportat la un
reper afin al siu #Z = {Ap, A1,..., An}. Fie A € M,,_p, o (K), Ag € M,,_,1(K),
p <mn,rang A = n — p. Atunci locul geometric al punctelor P € X pentru care
matricea coordonatelor carteziene X € M,, 1(K) verifica ecuatia matriceala

AX + Ay =0,

este un subspatiu afin Y C X, dimY = p, cu subspatiul vectorial director ?
s.a.

de ecuatie matriceald AX =0.
Reciproc, orice subspatiu afin de dimensiune p din X,,, p < n, este dat in
raport cu un reper afin printr-o ecuatie matriceala

AX +Ag =0,
unde A € M,,_,, ,(K), Ay € My_p, 1 (K), rang A = n — p.

Corolarul 1.33

1. Orice hiperplan Y;,,_; C X, se exprima intr-un reper afin printr-o ecuatie
S.a.
azt + .. 4 apx™ +ag =0, (a1)® + ...+ (an)* #0.

2. Orice subspatiu afin de dimensiune p este intersectia a n — p hiperplane
liniar independente.
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Reprezentarile analitice ale unui p-plan (subspatiu afin p-
dimensional)

Fie o, = (X, ?n, ¢) un K-spatiu afin de dimensiune finitd n raportat la un
reper cartezian R = {O;ey,...,€,}.
Un subspatiu afin p-dimensional Y,, C X,, poate fi determinat:
S.a.

1. printr-un punct si spatiul vectorial director al siu (sau printr-un
reper cartezian al siu).
Daca My € Y i {u1,...,T,} reprezinta o baza in spatiul vectorial director
7, avem Y = P+ Y, deci

P
M=P+) thmy, t*eKk=1,...p,
k=1

pentru orice punct M € Y. Daca, in raport cu reperul R, avem

n
Mo(zd, ..., x0), M(xt,... ,a") si Uy = E ALEi, deducem ecuatiile para-
‘ ' i=1
metrice scalare ale lui 'Y,

P
2t =uxy+ E thAL, i=1,...,n.
k=1

% . . . v . % _ Z n _ 'L n .
Daca f01051m scrierea matriceald gi notdm X = (z"),, Xo = (xf)i; ¢
Uk = (A}, deducem ecuatia parametrica matriceald a luiY,

p
X =Xo+ ) t'U.
k=1

2. printr-un sistem de p+1 puncte afin independente {4, A1,...,4,} C
Y (sau printr-un reper afin al siu).
Avem Ap € Y §1 Y = span{u, = AgAx},_,, iar problema se reduce la (i).

Cazul p = 1 corespunde dreptelor afine.
1. Daci o dreapta afini trece prin Mo(z}, ..., z%) si are drept vector director
n

= E A'e;, atunci ecuafiile parametrice ale acesteia sunt
i=1

xi:xé—i—t)\i, i=1,...,n.

Acestea pot fi scrise sub forma canonica

ol -} 2% — 2k " —xy

a 2 R v
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2. Daci o dreapta afind este determinatd de un reper afin {4y, A1} al sdu,
Ao(x, .. xl), Ai(xl, ... 27), atunci ecuatiile parametrice ale acesteia
sunt

t=ah+tal —xp), i=1,...,n.

Acestea pot fi scrise sub forma canonica

1 1 2 2 n n
r—Ty TT—ITy )
1 1 .2 2 T T on n'
Ty — X Ty — Iy 1 — Xy

Cazul p = n — 1 corespunde hiperplanelor afine.
1. Dacid un hiperplan afin contine punctul My(xd,...,28) si are o bazi
n
ur = Xz 11 a spatiului vectorial director, atunci ecuatiile parame-
kCifk=1
i=1
trice ale acestuia sunt
! :xéthl)\’i o HTIN L i=1, .

Acestea pot fi scrise sub forma de determinant

1 1 31 1
=Ty A Ay
: : ; =0.
n n n n
=z AT ... ARy

Dezvoltarea determinantului dupa prima coloana conduce la ecuatia impli-

cita
arzl + ...+ apz™ +ag =0, (a1)2+...+(an)27é0.
2. Daca un hiperplan afin este determinat de un reper afin {Ag, A1,..., Ap_1}
al sau, Ay (zL,...,27), a =0,...,n — 1, atunci ecuatia sub formd de de-

terminant a acestuia este

1 1 1 1 1 1
T—xy T —XH .. Ty — T
f— ()7
n n n n n n
2" —xy 2V —xy ... xp_ —af
echivalenta cu
x! x(l) ... z}l_l
: = 0.
" xy Ty_y
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1.9 EXERCITII

Spatii afine de dimensiune finita. Repere afine. Repere carteziene

Exercitiul 1.37

Fie @, = (X, ?, ¢) un spatiu afin real 4-dimensional raportat la un reper

cartezian R = {O; B}.

(1) Fie punctele A1(07 0, -1, _1)7 AQ(]-» 1,0, _]-)7 A3(27 07 -1, 0)7 A4(]-7 -1,-2, ]-)7
A5(—3,2,3,—2) € X. S4 se verifice ca sistemul de puncte {Ay, As,..., A5}
este afin independent.

(2) Fie punctele B1(0,-2,2,3), B2(1,0,1,0), Bs(—2,—1,6,8), B4(—1,6,7,4) €
X. S& se verifice ca sistemul de puncte { By, B2, Bs, By} este afin dependent
si s& se determine ponderile lui By in raport cu {Bs, Bs, B4}.

(3) Fie C1(0,-2,2,1), Ca(1,0,—1,—1), C3(—1,—4,5,3), Cu(2,2,—4,—3). Si
se verifice ca {C1,C5,C3,Cy} este un sistem de puncte coliniare si s& se
determine raportul simplu (Cq, Cy; Cs).

SO/Utie. Pentru (1), avem A; Ay = (1,1,1,0), A1As = (2,0,07 1), A1Ay =
(1,-1,-1,2), A1 As = (=3,2,4, 1), si cum

12 1 -3
10 -1 2
1 0 -1 47470
01 2 -1

putem concluziona c& sistemul de vectori {41 Az, A1 A3z, A1As, A1 A5} este liniar in-
dependent, adica sistemul de puncte {A1, As, ..., As} este afin independent.
Pentru (2), avem B1 B2 = (1,2,—1,-3), B1B3 = (—2,1,4,5), B1Bs = (—1,8,5,1),

sl cum

1 -2 -1
1 8

rang | 4 4 5 =2,
-3 5 1

putem concluziona cd sistemul de vectori { B1 B2, B1Bs, B1Ba} este liniar dependent,
adica sistemul de puncte {B1, B2, Bz, Bs4} este afin dependent.
Pentru a determina ponderile lui By in raport cu Bz, B3, B4, determinam «, 3, €

R pentru care By = aB2+8B3+vBa4, a+ 5+ = 1. Se obtine By = §BQ+§Bg—7B4.

4
Pentru (3), avem C1C3 = —C1Cy §i C1Cy = 2C1C5. De asemenea, CoC3 =
~2GCL. O

Exercitiul 1.38

Fie o5 = (X,Xk,gb) un spatiu afin real 3-dimensional raportat la un reper
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cartezian Ry = {O;€1,€2,€3}. Se considerd punctele Ay(0,1,1), A1(—1,3,0),
45(0,2,2), A3(~2,1,0) € X.

(1) Sa se verifice ca sistemul de puncte Z = {Ag, A1, Az, A3} determind un
reper afin in 7 si s& se determine coordonatele baricentrice ale punctului
P(7,0,11) in raport cu Z.

(2) Sa se scrie, in raport cu reperul cartezian R asociat lui Z, ecuatia dreptei
determinate de punctele As si As.

(3) In raport cu reperul cartezian R, se considera planul de ecuatie 2z’ + 22 +
2’3 —3 = 0. S& se determine o bazé pentru subspatiul vectorial director al
acestui plan.

(4) Sa se descrie schimbarea de coordonate carteziene la inlocuirea lui Ry cu
R.

Solutie. Pentru (1), in raport cu baza By = {€1,€2,€3}, avem AgA; = (—1,2,—1),
AOA2 = (0, 1, 1), AOA3 = (—2,0, —1), §i cum

-1 0 -2
2 1  0/=-5%#0,
-1 1 -1

putem concluziona cd sistemul de vectori {AgA1, AgA2, AgAs} este liniar indepen-
dent, adicd sistemul de puncte {Ao, A1, A2, A3} este afin independent. De asemenea,

——

avem Aoﬁ = (7,-1,10). Exprimat in baza reperului R, adici Aoﬁ = adoA; +
— T i

BAyA2 4+ vApAs, conduce la sistemul

—a—=2y=7
20+ =—-1
7O5+/87’}/:10,

cu solutiile « = =3, 8 =5, v = —2. Astfel, P = Ag — 341 + 545 — 2As3.
Pentru (2), notim cu (z'*, 2'?, 2"3) coordonatele in raport cu reperul R. Dreapta
cdutatd trece prin As, care in reperul R are coordonatele (0,1, 0), si are drept vector

director AsAs = —AgAa + ApAs, deci ecuatiile parametrice ale sale in raport cu R
2t =0
sunt ¢ z2=1—1t
23 =t
m/1 — tl
Pentru (3), ecuatiile parametrice ale planului sunt z'? =2 , deci

=2 — > +3
spatiul vectorial director al acestuia este subspatiul vectorial generat de u; = AgA;1 —
—  —— —
2AOA3 Sl U2 = AOA2 — AOA3.
0

Pentru (4), matricea translatiei originii este So = | 1 |, iar matricea schimbarii
1



1.9 Exercitii 45

de baza de la Ro la R este

-1 0 -2 1 1 2 =2
s=( 2 1 o], cu St'==(-2 1 4
-1 1 -1 S\-3 -1 1
Astfel,
1
P R P 't = g(xl + 222 — 22%)
2?2 =22 + 2% +1 sau z'? = %(—23@1 + 22 4 42® — 5)
CE’3=—$/1+$/2_$/3+17 1”3:1(—3$1—$2+$3)-

Exercitiul 1.39

Fie spatiul R? dotat cu structura afini canonica si raportat la reperul cartezian
canonic. Se considera punctul My(1, —3,5), vectorii

f1=(1,2,0), f,=1(0,1,2), f3=(2,0,1)
si punctele
AO(la_27_2)’ A1(1717_5)7 AQ(_27_173)3 A3(671a2)

(1) Si se arate c& R = {My; f1, f2, f3} este un reper cartezian si si se deter-
mine reperul afin % asociat lui R.

(2) Sa se arate ca #' = {Ap, A1, Az, A3} este un reper afin si s se determine
reperul cartezian R’ cu originea in Ay asociat lui %’.

(3) Sa se determine schimbarea de coordonate la inlocuirea reperului R cu R’.

(4) S& se scrie ecuatiile dreptei determinate de My si Ag in raport cu reperul
R
(5) S4& se scrie ecuatia planului determinat de Ag, 41, As in raport cu reperul

R.

Solutie. Pentru (1) avem

9 £ 0,

SN =
N~ O
— oW
Il

deci {f,, fs, f5} este un sistem de vectori liniar independent, adici R este un reper
cartezian. Reperul afin asociat lui R este

X = {MO(17 7375)7 M1(25 7175)7M2(15 727 7)7M5(37 7356)}
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Pentru (2) avem

_— —_— -_—
gl = AoAl = (07 33 _3)3 §2 = A0A2 = (_33 la 5)7 = A0A3 = (57 334)3

Q|
)

iar

w w o
U= W

5
3| =153 £ 0,
4

deci #’' este un reper afin.
Reperul cartezian cu originea in Ag asociat lui Z’ este R' = {A0;71,72,73 -
Pentru (3), vom nota cu Sy matricea translatiei originii si cu S matricea schimbarii

de bazi, in trecerea de la reperul R la reperul R’. Avem My Ao = (0,1, —7). Exprimat
in baza reperului R, adicd MoAo = af, + Bf, + 7f3, conduce la sistemul

a+2y=0
20+ 8 =1
- o 2
cusolutia a = 2, § = —3, v = —1. Astfel, MoAo = 2f; —3f,— f5, adicd So = | —3
-1
Avem matricea schimbarii de baza de la bazi canonica la baza B a reperului R,
1 0 2
S1 =12 1 0], si matricea schimbarii de baza de la baza canonica la baza B a
0 2 1
0 -3 5
reperului R’, S2 = 3 1 3] . Atunci matricea schimbérii de baza de la B la
-3 5 4
B’ este
2 -1 1
S=87'%=-1 3 1
-1 -1 2

Notand cu z!, 22, 2, respectiv 2’1, 2’2, 2’3, coordonatele in raport cu R, respectiv R’,

si tinand cont de relatia matriceals X = SX’ + So, obtinem

CCl — 2$/1 _ $/2 +$/3 + 2
2= -2 4327 42" -3 (1.12)
2® =zt — 2?4227 1.

Pentru (4), este suficient, spre exemplu, sd determindm coordonatele punctului
My in reperul R’. Cum coordonatele lui My in R sunt (0,0,0), din (1.12) deducem
15 10 6

ci My are coordonatele (71—7, 17 ﬁ) in raport cu R'. Astfel, cam A, (0,0,0) in R’,
ecuatiile dreptei determinate de Ag si Mo sunt

:17/1 x/Q :1:13

“15 10 6

Pentru (5), folosind S, avem A¢gA1 = g, = 2f, — fo — f3 si Agd2 = G, =
—f1+3f, 7?3. De asemenea, MoAo = 2f,—3f, 7?3, deci ecuatia planului determinat
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de Ao, A1, Az fata de reperul R este

-2 2 -1
2 +3 -1 3| =0, sau 4" + 327 4+ 52 + 6 = 0.
24+1 -1 -1

Exercitiul 1.40

Fie o/ un spatiu afin real 3-dimensional raportat la un reper cartezian

R ={0;e1,e2,€3}.

(1) Sa se scrie ecuatia vectoriala gi sistemul ecuatiilor parametrice ale dreptei
ce trece prin Ag(1,—1,2) si are directia w = —€; + 2€2 + 2e3.

(2) S4& se scrie ecuatiile canonice ale dreptei ce trece prin punctul A;(3,0,—2)
si are parametrii directori (—1, —2,4).

(3) S& se scrie ecuatiile canonice ale dreptei ce trece prin punctele As(1,0,1)
§1 A3(O7 27 _2)

(4) S& se scrie ecuatiile dreptelor ce trec prin O si au ca vectori directori res-

pectiv pe €1, €5 si €s.

Solutie.

(1) Ecuatia vectoriala a dreptei este data de

T = Fo—i-tﬂ:él—ég+2€3+t(—€1+2€2+2€3)
(1—t)er + (—142t)ez + (2+ 2t)es, t€R.

Dacs (z',22, 2%) noteazd coordonatele in reperul R, ecuatiile parametrice ale
dreptei sunt

t=1—1¢

=142t

3 =2+ 2t
x1—3_m2_9€3—|—2
2) -1 -2 4
zt—1 z? -1

(3

2
(4) 2®=23=0,2"'=2*=0,2' =2 =0.

Exercitiul 1.41

Fie & un spatiu afin 3-dimensional real raportat la un reper cartezian
R ={0;e;1,¢e2,e3}. Sa se scrie ecuatiile parametrice, ecuatia sub form& de de-
terminant si ecuatia generala a planului afin in fiecare din urmatoarele cazuri:
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(12)

(13)

planul trece prin O si are subspatiul vectorial director generat de vectorii
Uy = —e; + 2es + €3 sl up = €; — 2es + €3;

planul trece prin Py(—1,2, —1) si are directia planard determinatd de vec-
torii v = 3@1 + 2@2 + €3 §1 Vg = 251 — €y — €3

planul trece prin Qo(2, —4,5) si este paralel cu planul z'Ox?;

planul trece prin Ry(2,—3,1) si este paralel cu dreptele afine
et +5  2?-7 23 +12 et —10 2?42 2 -5
3 2 =3 3 4 27

zt—2 2?41 x5 —2
planul contine dreapta afina = =

x1+107172747x371.

3 5 27
22422 -1=0,
2! — 22 -2=0,
xt —1 2 +1 x372_

dreapta afina = = ;
1 -1 2

si este paralel cu

dreapta afina

planul trece prin dreapta afina { si este paralel cu

planul este determinat de dreptele afine
xt =3 — 5t xl=—1+4s
2?=-5—t si 22 = —T7+2s
2} =—1+3t 23 =2+ 1s;

planul trece prin punctul Sy(2,1,0) si este paralel cu planul afin de ecuatii
rl =542t — 212

parametrice 22 =3 — ¢!+ 3¢2
23 = -2 -3t — 2t

planul este paralel cu planul afin 2! — 222 + 23 — 1 = 0 si contine dreapta

afind z' +3 :$2—2 :333—1.

1 1 17

planul trece prin punctele O, P;(2,1,-3), Py(1,—1,0);

planul trece prin mijlocul segmentului orientat (Q1, Q2), unde @Q1(1,3, —1),
. ) axt 22 —2 2342

Q2(3,—1,-5), si contine dreapta afina 3= 5 =1

planul trece prin punctul R;(—1,0,1) si prin intersectia planelor afine z! —

22+ 234 1=0sia' +22 -2 -3=0;

planul trece prin punctul Qo (2, —4,2) si prin axa Ox3.

Solutie.



(12

1.9 Exercitii 49
zl = —¢! + 2 b -1 1

(1) x? = 2t' — 22 z? 2 —2/=0, 2z +22=0
% =t' + 2, z® 1 1
b = —1+ 3t +2t2 2t4+1 3 2
22 =24 2tt —¢2 22—2 2 —-1|=0, —z'+522—-723-18=0.
2% = -1+ — 2 2+1 1 -1
ot =2+ ¢ r—2 1 0
22 =—4+1¢2 z22+4 0 1/=0, 2°-5=0
23 =5, 2—-5 0 0
b =24 3t + 3¢2 2t—2 3 3
22 = =3+ 21 + 442 2243 2 4|=0, 16z'—152%+62>—-83=0.
22 =1— 3¢ +2¢2, 2—-1 -3 2
xt =24 2t +3¢2 2t—2 2 3
2 =—1-—3t" +5¢2 22+1 -3 5/ =0, —-3lz'+112%2+192°+35=0.
2 =24 51 + 262, 2—-2 5 2
' =t + 2 z! 1 1
22 =242 —¢2 2242 2 —1]=0, z'-5z22-3z3—1=0.
2 =3 — 3¢t + 262, 22—-3 -3 2

) Punctul de intersectie al celor doud drepte este P;(3,—5,—1).

a:1:3—5t1+4t2 zt—3 -5 4
a;2 —tl 4+ 2t? 2245 -1 2|=0, —Tz'+172>—6234+100 = 0.
z° 1+3t1—|—1t2 2+1 3 1
at =24 2tt — 242 2r—2 2 =2
22 =1—1t! + 3¢2 22—-1 -1 3]=0, 1lz'4+10224+423-32=0
2 = —3t' — 2t2, 2 -3 =2
a2t =—-3+¢ x4+ 3 1 0
2 =242 z22—2 0 1|=0, z'—-2224+234+6=0
x> =1—1t' +2t% -1 -1 2
bt =2t 4 ¢2 xt 2 1
x—tl 2 x> 1 —1|=0, z'4+22+23=0
z® = -3¢, 22 =3 0

) Avem mijlocul My(2,1,—-3) si folosim Q3(0,2,—2), Q4(3,4,—1) care apartin

dreptel date.

a2t =2— 2t +¢2
22 =1+t 432
= 3+t +2t2,

zt—2
22 -1
x> +3

) Cele doua plane afine date se intersecteaza dupa dreapta afind

2 1
1 3|=0, —z'+52%>—72>—-24=0.
1 2

1

=1
2=t
3 _
= -2+t
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8
o
I
~
o
o
o
—_

=0, 3z'—222+223+1=0.

zt =242t -2 2 0
(13) ¢ z?=—4—4t' 2?44 —4
2% =24 2t + ¢, 2-2 2 1

o

=0, 2z'+2z%>=0.

Exercitiul 1.42

Fie & un spatiu afin 3-dimensional real raportat la un reper cartezian
R ={0;e1,¢es3,e3}. Pentru a € R, fie d, dreapta ce trece prin punctul
A(—1,2,1) si are directia data de vectorul

Uy = (200 + 1)E; + (2 — 3)&2 — (3o — 2)e3.

Sa se arate ca exista un plan afin, a carui ecuatie sa se determine, care contine
d«, pentru orice o € R.

Solutie. Scriind ecuatiile parametrice
= 14 a4+ 1)t

x
do : m2:2+(2a—3)t
23 =1— (3a - 2)t,

gi renotand t* = at, t? = ¢, deducem c& planul
ot = 14261 + 42
T 22 =24 2t — 3¢2 sau T 5x1+7m2+8:c3—17:0,
23 =13t + 2%,

contine dreapta d., pentru orice a € R. O

Exercitiul 1.43

Fie o un spatiu afin 3-dimensional real raportat la un reper cartezian
R ={0;e€;,€,,e3}. Se considera dreptele

& 2t =322 —22-2=0 Coxt—-1 2?—4 P41
o 3at + 22+ 23 +4=0, ’ 3 -2 1
(1) S& se scrie ecuatiile generale ale dreptei ce se sprijind pe d; si ds si are

directia data de vectorul ©w = 2e; — ey — €5.

(2) S& se scrie ecuatiile generale ale dreptei ce se sprijind pe d; si da si trece
prin punctul A(-2,3,—5).
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Solutie. Pentru (1), daci exista, dreapta ciutata d se afl la intersectia planelor
afine 7y gi 72, unde 7 este determinat de d; si @, iar 72 este determinat de ds si .
Astfel,

d:

Tel + 922 + 523 +16 =0
3zt + 522 + 22 —22=0.

Pentru (2), dreapta ciutatd d’ se afld la intersectia planelor afine 73 si 4, unde

73 este determinat de d; i A, iar 74 este determinat de d2 si A. Astfel,

) 5¢t + 522 +322+10=0
2+ 2 -2 —6=0.

Exercitiul 1.44

Fie &/ un spatiu afin real 4-dimensional raportat la un reper cartezian
R = {O;€,es,€3,€4}. Se considera punctele Ay(—2,0,1,—2), 4;(0,1,—1,0)
A2(07 _27 _17 0)7 A3(_17 07 _27 _]-)7 A4(07 _]-7 _27 _1)

(1) S& se determine ecuatiile dreptei d ce trece prin punctul As i este paralela
cu dreapta AzAy.

(2) Sa se determine ecuatiile planului 7 ce trece prin punctul A; si este paralel
cu planul As A3 A,.

(3) S& se determine ecuatia hiperplanului H” determinat de punctele A;, Ao,
Az, Ay

(4) S& se determine ecuatia hiperplanului H” ce trece prin Ag si este paralel
cu hiperplanul H'.

(5) S4 se determine ecuatia hiperplanului H"’ in raport cu reperul afin
{A07A17A23A3,A4}~

. -_—
Solutie. Pentru (1) avem AszAs = (1,—1,0,0), deci ecuatiile parametrice ale

!t =t
2
. Tt=-2-1
dreptei sunt d : B
zt =0

Pentru (2) avem AsAs = (—1,2,—-1,—1) si A2A4 = (0,1, —1,—1), deci ecuatiile
planului sunt

1 1
T =t
- 22 =142t" + 2 sau . 4t +2t—1=0
’ 2t =—1—t' —¢2 1 2 —zt+1=0.
ot =t — 2
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Pentru (3),

x! 0 0 -1 0
z2 1 -2 0 -1
H :|z2> -1 -1 —2 —2|=0, sau H :z®—z'+1=0.
220 0 -1 -1
11 1 1 1

Pentru (4) avem H” : z® — 2* + X = 0 si din A9 € H” obtinem \ = —3.
Pentru (5), avand in vedere faptul ci spatiul vectorial director al lui H este

generat de 1411427 A1A3 §1 1411447 iar AlAQ = —AOA1 + AoAQ, A1A3 = —AoAl +

ApAs, A1Ay = —AgA; + AgAs, deducem ci ecuatia lui H”' in raport cu reperul
{Ao, A, AQ, A3, A4} este
2t -1 -1 -1
2
H" i,g (1) (1) 8 =0, sau H" : 2+ 2?7 +2% +24 =0.
24 0 0 1

Exercitiul 1.45

Fie 7/ un spatiu afin real 4-dimensional raportat la un reper cartezian
R = {0;e;1,e2,€3,€4}. Se considera dreptele date de ecuatiile

b4+ 23 4+1=0
(d) 3zt — 22+ 23 —at+1=0, (d) a'=a22+1=2%-1=2"42,
ot — 2?2 223 - 327 —2=0

rl=—-2+2t
2
1 rt=—-44+2t
(d) =4t
= -5+t

(1) S&se verifice c& punctele A(0, —2,0, —2), B(0, 2,0, 2) si dreapta d determina
un hiperplan gi sa se scrie ecuatia acestuia.

(2) S& se determine ecuatiile subspatiul afin de dimensiune minima care le
contine pe d si d'.

(3) S& se determine ecuatiile dreptei ce se sprijina pe d, d’ si d”.
Solutie. Pentru (1) avem, spre exemplu, C'(0,0,—1,0) € dsiw = (2,3, —2,1) este

vectorul director al dreptei d. Cum AB = (0,4,0,4), ﬁ = (0,2,—1,2) si w sunt liniar

independenti, rezultd c& punctele A(0, —2,0,—2), B(0,2,0,2) si dreapta d determina
un hiperplan. Ecuatia hiperplanului este data de

zr 0 0 2
2
23 +I1 (1) 7? 73 =0, sau =2 +zt=0.
1 2 1
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Pentru (2), trebuie si determindm d+d’ = [dUd'|at. Avem D(0,—1,1,—2) € d’ i
u = (1,1,1,1) este vectorul director al dreptei d’. Observdm ca dNd’ = 0 si d nu este
paralel cu d’. Folosind Teorema dimensiunii, deducem c& d + d’ este un hiperplan.
Putem scrie ecuatia lui d+d’ avand in vedere faptul ci trece prin C(0,0, —1,0) si are

subspatiul vectorial director generat de CD = (0,—1,2,—2), @ si o/,

1
T 0 2 1
d+d - 2 -1 3 o sau  llz' —102° —32° +22* —3=0
o411 2 -2 1| 7 -
=2 1 1

Pentru (3), dacd existd, dreapta ciutati se giseste la intersectia subspatiilor afine
d+d,d +d’, d" +d,iar solutia este

2t =0
11zt — 1022 —32® +22* —3=0 2
62 —8z2 —2® + 32" —1=0 sau x3:t
30t — dz? — 42® — 22* — 4 =0, 24:2;1*%

1.10 Morfisme afine. Translatii. Omotetii

Fie o = (X, }, @) si B = (Y, ?, 1) doud K-spatii afine.

Definitia 1.34
O aplicatie f : X — Y se numeste morfism afin daca exista ? € L(?,?)

astfel incat
IPQ) =T (PQ),

pentru orice P,Q € X.

Propozitia 1.35

O aplicatie f : X — Y este un morfism afin daca si numai daca exista

7 € L(Y7 7) astfel Incat
F(P+7) = f(P)+ [ (@),

pentru orice P € X, u € 7

Propozi‘;ia 1.36 (Caracterizarea morfismelor afine folosind combinatii afine)

(i) Daca charK # 2, atunci urmatoarele afirmatii sunt echivalente:



54 1. Spatii afine

1. f: X — Y este un morfism afin,

2. fOOP+ (1 =XMQ) = Af(P) + (1 — V) f(Q), pentru orice P,Q € X,
ek

(ii) Daca char K = 2, atunci urméatoarele afirmatii sunt echivalente:
1. f: X — Y este un morfism afin,

2. f(P+Q+R)=f(P)+ f(Q) + f(R), pentru orice P,Q,R € X.

Proprietati

1. Fie f : X — Y un morfism afin cu aplicatia liniard asociata 7 Atunci f
este bijectie daca gi numai daca f este bijectie.

Un morfism afin bijectiv f : X — Y se numeste izomorfism afin.

2. Orice K-spatiu afin de dimensiune finita n este izomorf, prin fixarea unui
reper cartezian, cu K" cu structura afina canonica. Subliniem faptul ca
izomorfismul nu este canonic.

3. Fie o = (X, X, ¢) un K-spatiu afin. Multimea
GA(X)={f: X — X/ fizomorfism afin}

este grup relativ la compunerea morfismelor, deoarece
(i) compunerea a doua morfisme afine este morfism afin,
(ii) inversa unui morfism afin bijectiv este morfism afin.

Grupul GA(X) se numeste grupul afin al K-spatiului afin X, iar elementele
acestui grup se numesc afinitati ale lui X (sau automorfisme afine).

Exemple de morfisme afine
1. Aplicatia constantd ¢: X — Y, ¢(P) = Qq, pentru orice P € X, unde
Qo €Y fixat, este un morfism afin cu aplicatia liniara asociata nula 7 =0.

2. Aplicatia identitate idx : X — X, idx(P) = P, pentru orice P € X,
este un morfism afin cu aplicatia liniara asociatd Id<.

3. Translatia de vector u € }, tz : X — X, definita de una din urmatoarele
conditii echivalente:

(i) tz(P) = Q daca gi numai daca ]% =.
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(ii) tz(P) = P +w, pentru orice P € X.

(iii) Ptz(P) = u, pentru orice P € X.

Proprietati
3.1. Orice translatie este un izomorfism afin cu aplicatia liniara asociata

Id?.

Reciproc, orice morfism afin f: X — X cu 7 = Idy; este o translatie
tz, unde W este unic determinat de conditia

7= Pf(P),
pentru un P fixat in X.
3.2. Multimea translatiilor,
T(X)={ts: X = X /uc X},
este grup comutativ in raport cu compunerea functiilor, deoarece
tw oty = tuss, VT, € X,
(tz) ' =t_g, Vue X.
3.3. (T(X),o0) este izomorf cu (Y, +).
3.4. T(X) este divizor normal in GA(X).
3.5. GA(X) este produsul semidirect dintre 7(X) si GAp(X),

GAX)=T(X)-GAp(X), VPeX,

unde GAp(X) noteazd multimea izomorfismelor afine cu punct fix P,
numita mulfimea centro-afinitatilor de centru P. Astfel, orice morfism
afin bijectiv este compunerea dintre o translatie si o centro-afinitate.

4. Omotetia de centru P € X si raport A € K\ {0}, hp) : X — X,
definita de una din urmatoarele conditii echivalente:

(i) hpA(Q) = R daca si numai daca PL— )\1@.
(ii) hpA(Q) =P + )\]@7 pentru orice @ € X.

(iii) Phpa(Q) = APO, pentru orice Q € X.
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Proprietati
4.1. Orice omotetie hp ) : X — X este un izomorfism afin cu punct fix P
——
si aplicatie liniard asociata hpy = Alds.
Reciproc, orice morfism afin f: X — X cu ? = Aldg, A € K\ {0,1},
este o omotetie hp y, pentru P € X unic determinat de conditia
1
P=Q+ m@f( ;’
pentru un @ fixat in X.
4.2. Multimea omotetiilor de centru P,
HP(X) = {hp7,\ X = X/)\ € K\{O}}
este grup comutativ in raport cu compunerea functiilor, deoarece
hP,)\ © hP,,u = hP,)x,uv VPe X>>‘a/u’ € K\ {O}a
(hpr)~t =hpr1, VP E X, A €K\ {0}.
4.3. Hp(X) este subgrup in GAp(X).
4.4. Dacd X are cel putin doud puncte, atunci (Hp(X), o) este izomorf cu
(K*, ).
4.5. Compunerea a doua omotetii de centre diferite este o translatie sau o
omotetie,
tﬁ, )\/,L =1
hP,)\ o hQ# - hR-)\l“ )‘/J' 7& 1,
unde
u=Qhpi(Q) =(\— 1)PQ,
ar 1 1A A1-p)
- — K
R= h = P .
Q+17)\u62 P,)\(Q; T + T Q
Definitia 1.37

Fie o = (X, ?, @) un K-spatiu afin. Se numeste dilatare a spatiului X un auto-
morfism afin f € GA(X) care este o translatie sau o omotetie. Automorfismele
afine care nu sunt dilatari se numesc antidilatari.

Notam

Dil(X) = T(X) UH(X),
GA(X) = Dil(X) U Antidil (X).
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4.6 Multimea Dil(X) este subgrup in GA(X). Reamintim doar ca

1
tﬂo hp,)\ = hC?,)\7 unde Q =P + ﬁﬂ,

A
hpx oty = hgr, unde R =P + ﬁﬂ’

pentru oricePGX,ﬂ€Y§i)\€]K\{0,l}.

Morfisme afine in context finit dimensional

Fie o, = (X, )_(>, @) si B = (Y, 7, 1) doud K-spatii afine de dimensiune finita
n, respectiv m, si f : X — Y un morfism afin cu aplicatia liniard asociata ?
Consideram reperele carteziene

Rx ={Ap; By ={e}in1} si Ry ={Bo;By = {f;}]u1}-
Notam cu X matricea coordonatelor unui punct generic P € X in raport cu

Rx si cu Y matricea coordonatelor punctului f(P) € Y in raport cu Ry.
Ecuatia matriceald a morfismului f in raport cu Rx si Ry este data de

Y = AX + Ay, (1.13)

unde A = (af) € M, (K) este matricea transformarii liniare 7 in raport

i=1,n
j=1lm

cu perechea de baze B si By, iar

ap

Ag=1| : | e Mp1(K)
ag'
este matricea coordonatelor punctului f(Ap) in raport cu reperul Ry
Ecuatia (1.13) se mai scrie si sub forma

(-0 ) 0)

M(f,Rx,Ry) = (1(? Af)

fiind numita matricea asociata morfismului afin f In raport cu perechea de
repere Rx si Ry.
Pe componente, ecuatia matriceald (1.13) se scrie

matricea

Y =dzt + ... +ala" + a, j=1,...,m. (1.14)

Reciproc, daca o aplicatie f : X — Y are ecuatiile (1.13) (sau (1.14)) in
raport cu perechea de repere Rx si Ry, atunci f este un morfism afin.
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Ezemple

1. Aplicatia constantd ¢ : X — Y, ¢(P) = Qo, pentru orice P € X, are 7 =0.
Astfel, in raport cu perechea de repere Rx si Ry, ¢ are matricea asociata

Omn A
M(07RX7RY) = ( 07 10>7

unde Ag este matricea coordonatelor punctului ()¢ in in raport cu reperul
Ry . Ecuatia matriceala este

Y = Ao.

. Identitatea, idx : X — X are inraport cu perechea de repere R’y = {Aj; B}
si Rx = {Ao; B} matricea asociata

M(idy, R, Rx) = (‘g 5;0> — M(Ry,Roy),

unde S este matricea schimbarii de bazi de la B la B’, iar Sy este matricea
coordonatelor punctului A}, in raport cu reperul R x (vezi si ecuatia (1.11)).

. - o
. Translatia de vector u € XZ, tz : X = X are ty = Ildy. Astfel, in raport
cu reperul Rx are matricea asociata

M(tz,Rx) = (Ig Af’) , (1.15)

unde Ay este matricea coordonatelor vectorului Aotg(AO; =7 in baza B.
Ecuatia matriceala este
Y =X+ Ay,

iar pe componente

Y=z +u, i=1,...,n,

n
unde uw = E u'e;.
i=1

S
. Omotetia de centru P si raport A € K\ {0}, hpx : X — Y, are hp) =
Alds;. Astfel, in raport cu reperul Rx are matricea asociata
M, (1- /\)X0>

(1.16)

M(hpx,Rx) = ( 0 1

unde X este matricea coordonatelor punctului P. In adevar, Ag este matri-
cea coordonatelor vectorului thp)\(Ao; =(1- )\)Aoﬁ in baza B?, adica
Ay = (1 — M) Xy. Ecuatia matriceald este

Y = AX + (1 - \)Xo.
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5. O forma afina f : X — K are matricea asociata in raport cu reperul Ry,
A ao
M(f,Rx) =
(f7 X) (0 1 ) 5
unde A € My, (K) este matricea asociatd lui 7 in baza By, iar

ag = f(Ap). Ecuatia matriceald este

y:AX+ao.

Propozitia 1.38

(i) Matricea asociatd compunerii a doud morfisme afine este produsul matri-
celor asociate celor doua morfime. Concret, daca f: X - Y gig:Y — Z
sunt morfisme afine si fixam reperele carteziene Rx, Ry, Rz, atunci

M(gof7RX7RZ) = M(97RYaRZ> M(f7RXaRY)
(ii) Matricea asociata inversei unui morfism afin bijectiv este inversa matricei

asociate acelui morfism. Concret, daca f : X — Y este un morfism afin
bijectiv si fixam reperele carteziene R x, Ry, atunci

M(f™" Ry, Rx) = M(f,Rx,Ry)".
(iii) Dacd f : X — Y este un morfism afin si fixam reperele carteziene Rx,
R, Ry, R, atunci

M(f, Rx,Ry) = M(idy,Ry7Rly)_l ] M(f, R/X,Rly) o M(idx,Rx,RIX).

1.11 Paralelismul subspatiilor afine. Proiectii si
simetrii

Paralelismul subspatiilor afine se defineste prin analogie cu notiunea de para-
lelism din spatiile geometrice cu doua si trei dimensiuni.

Definitia 1.39
Fie &7 = (X, ?, @) un K-spatiu afin gi X', X" subspatii afine in X.

(1) S.p>unem ¢ subspatiile afine X' gi X" sunt paralele i notam X' || X daca
X' =X,
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" este paralel in sens larg cu X" si notdm X' < X” daci

Observatia 1.40

1. Relatia de paralelism pe multimea subspatiilor afine ale unui spatiu afin
dat este o relatie de echivalenta.

2. Relatia de paralelism in sens larg pe multimea subspatiilor afine ale unui
spatiu afin dat este o relatie de ordine partiala.

Propozitia 1.41

Fie o = (X, ?, @) un K-spatiu afin gi X', X" subspatii afine in X.
(i) Daca X' || X", atunci X’ = X" sau X' N X" = ().

(ii) Daca X’ <1 X", atunci X’ C X" sau X' N X" = 0.

(iii) Dacd P € X, atunci exista si este unic un subspatiu afin prin P paralel cu
X'

Observatia 1.42

Intr-un spatiu afin dat, un subspatiu afin si un hiperplan afin care nu se inter-
secteaza sunt paralele in sens larg.

Propozitia 1.43

Fie o = (X, ?, ¢) un K-spatiu afin gi f € Dil(X). Dacd Y este un subspatiu
afin in X, atunci f(Y) || Y.

Exemple de morfisme afine (continuare)

Fie A = (X7Y7¢) un K-spatiu afin, Y C X astfel Incat existd V C Y cu
X=vaY.

5. Proiectia afind a lui X pe Y paralela cu V, p: X — Y este definita
prin
{p(A)} =TaNY,
pentru orice A € X, unde T4 = A + V. Aplicatia liniard asociata este
? =mp: V@ ? — 7
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6. Simetria afind a lui X fatd de Y paralela cu V, s : X — X este
definita prin

s(A) = 2p(A) — A,

pentru orice A € X.

Propozitia 1.44
(i) Orice proiectie afind este un morfism afin idempotent, pop = p.

(ii) Orice simetrie afind este un automorfism afin involutiv, s o s = idx. Mai
mult, sop = p.

1.12 Teoreme fundamentale de geometrie afina

Fie & = (X, ?, ¢) un K-spatiu afin gi A, B € X. Pentru simplitate, vom folosi
notatia AB pentru a indica dreapta afind (A, B).¢.

Teorema 1.45 (Teorema lui Thales)

Fie &, = (X, }, #) un K-spatiu afin de dimensiune finita n > 1, {H;}3_, trei
hiperplane distincte, paralele si {d;};er, I # 0, o familie de drepte neparalele
cu H;,i=1,...,3. Atunci sunt bine definite punctele

T —
j € I, iar scalarii \; € K pentru care A;B; = A\;A;C; sunt toti egali (nu depind
de j).

Lema 1.46

Fie o = (X, X,$) un K-spatiu afin si fie f € Dil(X), f # idx, si A, B dous
puncte distincte in X.

(i) Daca f = tz, atunci punctul f(B) este intersectia dreptei prin f(A) paralela
la dreapta afind AB cu dreapta prin B paraleld la dreapta afind Af(A).

(ii) Daca f = hp,, atunci punctul f(B), B # P, este intersectia dreptei prin
f(A) paralela la dreapta afind AB cu dreapta afind PB.
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Teorema 1.47 (Teorema lui Pappus)

Fie o = (X,Xz,d)) un plan afin si d,d’ doud drepte distincte din plan. Fie
punctele A, B,C € d gi A’,B',C" € d’ astfel incat AB’ || A’B si BC' || B'C.
Atunci AC" || A'C

Teorema 1.48 (Teorema lui Desargues)

Fie o, = (X ,?,qﬁ) un K-spatiu afin de dimensiune finitd n > 2, in care
consideram triunghiurile (tripletele de puncte necoliniare) ABC si A’B'C’ ast-

fel incat varfurile lor sunt distincte, iar laturile lor sunt respectiv paralele:
AB || A’B’', BC || B'C’, CA || C'"A’. Atunci dreptele AA’, BB’, CC" sunt
concurente sau paralele.

Teorema 1.49 (Caracterizarea dilatarilor)

Fie o = (X, Xz, ¢) un K-spatiu afin de dimensiune finitain >2si f: X - X o
aplicatie bijectiva. Atunci f este o dilatare a lui X daca si numai daca, pentru
orice dreaptd afind d din X, f(d) este o dreapta afina in X paralela cu d.

1.13 EXERCITII
Morfisme afine. Generalitati

Fie o = (X, }, @) si B = (Y, ?, 1) doud K-spatii afine.
Exercitiul 1.46

Sa se arate ca urmatoarele afirmatii sunt echivalente:
(1) f: X — Y este un morfism afin,

(2) pentru un punct P € X, are loc fp € L(Tp(X),Typy(Y)), unde
12(Q) = £(Q), pentru orice Q € Tp(X).

(3) pentru orice punct P € X, are loc fp € L(Tp(X),Tfpy(Y)).
Solutie. Vom aridta ci (1) = (3) = (2) = (1).

Pentru (1) = (3), vezi si Teorema 1.2. Fie P € X, fixat arbitrar. Dacd Q €
Tp(X)=X,si fp: Tp(X) — TypY, atunci

p(Q) = £(Q) = F(P+ PQ) = f(P) + [ (PQ) = b;(e (F (6, (Q))),
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deci fp = w;&,) o 7 o¢p. Cum
Vil € LY, TymY), T eL(X,Y), ¢peL(TpX,X),
deducem ca fp € L(TpX,Ty(p)Y). Cum P era fixat arbitrar, rezultd ca (3) are loc.

Evident, (3) = (2).
Pentru ( ) = (1), dacd P € X astfel incat fp € L(TpX,Tj,)Y), atunci

FRF(S) = F(P)f(S)—f(P ) J(R) = ¥s(p)(
= Yy (fP(S) = fr(R)) = ¥yp)(
= Yy (fr(¢p (6 (S) — ¢r(R)))
= Ype(fr(5' (PS - PR))
= Urm (fr(65 (RS))),

pentru orice R, S € X. Cum

fp(8)) =¥y (fr(R))
fp(S—R))

Vi) € LTy Y, V), fr € LTeX, TypmY), ¢p' € L(X,TpX),

rezultd ca f este un morfism afin cu ? =spyo fpo qS;l. O

Exercitiul 1.47

Sa se arate ca daca f : X — Y este un morfism afin, atunci transformarea
liniara asociata este unica.

Solutie. Fixim 7 € X. Existd P,Q € X astfel incat @ = PQ. Daci S,T € L(X,Y)
sunt transformari liniare asociate lui f (vezi Definitia 1.34), atunci

S@ = S(PQ)=f(P)F(Q)=T(PG)
= T(u).

Cum uw € Y este fixat arbitrar deducem ca S =T. O

Exercitiul 1.48 (Unicitatea)
Fie f,g: X — Y doua morfisme afine. Sa se arate ca daca exista P € X astfel
incat f(P)=g(P) s ? = ¢, atunci f = g.

Solutie. Fie Q € X. Atunci

Q) = f(P+PG) =f(P)+ f(PB)
9(P) + 7 (PQ) —gP+1@)

g(Q)

Cum @ este fixat arbitrar, rezulta ca f = g. O
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Exercitiul 1.49 (Existenta)

Fie T € L(?, 7), Pe X g @Q €Y. Sa se arate ca exista un unic morfism afin
f:X =Y astfel incat f(P)=Qsi f =T.

Solutie. Unicitatea rezulta din Exercitiul 1.48.
Pentru existenta, definim f: X — Y prin

F(A)=Q+T(PA),vAeX. (1.17)

Evident, f(P) = Q. Mai mult, cum T € L(Xk7 7), avem

(A (B} = QJ(B) - Qf(A) = T(PB) - T(PA) = T(AB),
pentru orice A, B € X.

Astfel aplicatia f : X — Y definitd in (1.17) este unicul morfism afin cu f(P) = @
sif=T. O

Exercitiul 1.50
Fie Pi,..., P, puncte afin independente in spatiul afin X §i Q1,...,Q, €Y.

(1) Sa se arate cd existd un morfism afin f : X — Y astfel incat f(P;) = Q;,
i=1,...,n.

(2) Sa se arate c& daca dim X = n — 1, atunci morfismul de la (1) este unic. In
particular, dacd un morfism afin f : X,,_; — X, _1 are n puncte fixe afin
independente, atunci f = idx.

Solutie. Pentru (1), cum punctele Pi,..., P, sunt afin independente, vectorii

PP, ..., PP, sunt liniar independenti. Rezulta ca exista o aplicatie liniara T €
L(?7 ) astfel Incat

T(PP)=Q:Q;, VYi=1,...,n.

Facem observatia ca nu este necesar ca punctele Q1,...,Q, sa fie afin independente
sau distincte. De asemenea, in general, aplicatia liniara 7" nu este unica cu aceasta
proprietate.

Tindnd cont de Exercitiul 1.49, considerdm morfismul afin f : X — Y cu f(P1) = Q1

si ? =T. Avem
F(P) = f(P+ PiP) = f(P1) + F(PiP) = Qi + 1@ = Qs,

pentru orice i = 1,... n.
o 1 - (D 55 c s o
Pentru (2), dacd dim X = n—1, atunci { P\ P, ..., P1 P, } reprezintd o baza pentru
. In acest caz exist’ o unici aplicatie liniara T' cu

T(BP)=0iQ,, Yi=1,...,n.

Evident, orice morfism afin care transforma P; in Q;,7 = 1,...,n, are pe T ca aplicatie
liniara asociata, deci din Exercitiul 1.48 rezulta unicitatea. O
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Exercitiul 1.51

Sa se arate ca daca Xp,Xs sunt doua K-spatii afine, atunci proiectiile
p;i : X1 X Xo — X, i = 1,2, sunt morfisme afine.

SO/U;'I'G. Fie (.P1,]32)7 (Q1,Q2) € X1 x Xo. Avem

pi(P17P2)pi(Ql7Q2j = P,Qi = mi(P1Q1, P2Q2) = mi((P1, P2)(Q1,Q2)),

deci p; este un morfism afin, avand drept aplicatie liniarda asociatd proiectia
= = =
7TiIX1><X2—>X~;,’L=1,2. O
Exercitiul 1.52
Fie X un K-spatiu afin, V C ?, X,y spatiul afin cat corespunzator si
S.V.

p: X — X,y proiectia canonica, p(P) = P, pentru orice P € X. Si se arate

ca:

(1) proiectia p este un morfism afin, avind drept aplicatie liniard asociatd
proiectia 7 : X — X )y, 7(u) = w4+ V, pentru orice u €

(2) structura afina pe X,y este unica in raport cu care p este un morfism afin
cu aplicatia liniara asociata .

Solutie. Pentru (1), fie P,Q € X. Avem
p(P)p( —PQ @+V—W@
deci p este un morfism afin cu ? =.

Pentru (2), fie ¢ o alta structurd afind pe X,y pentru care p este un morfism afin
cu aplicatia liniara asociata w. Fie P,Q € X. Avem

B(P,Q) = v(p(P).p(Q) = T(FO) = n(PQ) = PO + V = PO = $(P.Q),

(vezi si Exercitiul 1.3). Cum P, Q sunt fixati arbitrar, putem concluziona. O

Exercitiul 1.53

Fie o = (X, X}, @) un K-spatiu afin. Un morfism afin p : X — X idempotent
(»?
proiectie afina.

= p) se numeste proiector afin. S& se arate cd orice proiector afin este o

Solutie. Se verifica imediat ci dacs p? = p, atunci 72 = 7 De aici,
? = Ker ? @ Im ?,

orice u € Y scriindu-se in mod unic sub forma

= (a7 @)+ 7 @. (1.18)
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Fie Y =Imp si V = Ker ? Folosind Exercitiul 1.48, vom arata ca p este proiectia
lui X pe Y, paralela cu V, notata py : X — Y.

Fie B € Y = Imp, fixat. Atunci existd A € X astfel incat B = p(A). De aici, cum
p este idempotent, p(B) = p*(A) = p(A) = B, deci p(B) = py(B).

S# ardtim ci P = py. Fiew € Y, fixat arbitrar. Din (1.18) avem

@ =p (- 7)) +7T@)=7@,

si concluzionim. O

Exercitiul 1.54

Fie o = (X, Y, @) un K-spatiu afin, char K # 2. Sa se arate ca daca s : X — X
este un endomorfism afin involutiv (s? = idx), atunci s este o simetrie afina.

Solutie. Consideram

Se verifica imediat ca

PPI@) = (7 +1d3) (PG),

pentru orice P, @ € X, deci p este un morfism afin cu?:%(?JrId?).
De asemenea, folosind s? = idx, obtinem
2 1/1 1 1 /1 1 1 1 15
P) = Z(=zP+=s(P ~s|=zP+=s(P)) =~-P+ =s(P)+ -s"(P
2P = 5 (574 50) + 35 (574 35(P)) = 1P+ alP) + 15°(P)

1 1
= §P+§S(P)ZP(P)7

pentru orice P € X. De aici, folosind Exercitiul 1.53, deducem ca p este proiectia
afind a lui X pe Y = Imp paralels cu V = Ker . Cum Pp(Pj = p(P)s(Pj, pentru
orice P € X, deducem ca s este simetria afinad a lui X fata de Y paraleld cu V.
Reamintim ca

Y={PeX:p(P)=P}={P e X :s(P)= P},
V={meX:F@=0}={we X : F@=-u}

Exercitiul 1.55 (Puncte fixe)
Fie f: X — X un endomorfism afin.

(1) Sa se arate ci multimea Fiz(f) a punctelor fixe ale lui f este fie un
subspatiu afin cu spatiul vectorial director Ker( f — Idxz), fie multimea
vida.
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(2) Si se arate ca un endomorfism afin are un singur punct fix daci gi numai
daca f nu are ca autovaloare pe 1.

In particular, fie X un spatiu afin n-dimensional raportat la un reper car-
tezian R = {O; B}. Daca ecuatia matriceald a lui f in raport cu R este

Y = AX + Ao,
si se arate cd f are un singur punct fix daca si numai daca det(A—1,,) # 0.

Solutie. Pentru (1), s presupunem ci Fiz(f) # 0, deci existd P € X astfel incat
f(P) = P. Vom ariita ci

Fiz(f) = P+ Ker(f — Id3). (1.19)
Dacd w € Ker(? —Id3), atunci
fP+m) = f(P)+ f@)=P+u,

deci P + Ker(? —1Idg) C Fiz(f).
Dacad Q € Fiz(f), atunci f(Q) = @, deci

PG = F(P)F(Q) = T(PQ),

adica PQ € Ker(f —1d) §i Q € P+Ker(f —lds), deci Fiz(f) C P+Ker(f —Idz).
Pentru (2), sd presupunem c& f admite un singur punct fix P, i.e. Fiz(f) = {P}.

Tinand cont de (1), rezultd ca Ker(f —Idy) = {0}, adicd 1 nu este autovaloare
pentru ?

Reciproc, daca 1 nu este autovaloare pentru ?, atunci Ker(? —Idg) = {0}. Astfel,
dacd f admite un punct fix, atunci din (1.19) rezulta cé acesta este unic. Mai raméne

s% determinim P € X astfel incat f(P) = P. Fixim Q € X i ciutdm @ € X astfel
incdt P = @ +@. Din f(P) = P deducem

QF(Q) = —(T —1dp)(@). (1.20)

Cum Ker(? —Idy) = {0}, avem c4 7 —Ids; este inversabild, deci exista si este unic
u care verificd (1.20). In concluzie, P = Q + @ este unicul punct fix pentru f.
In cazul finit dimensional, ecuatia multimii punctelor fixe este data de

(A —1,)X = —Ao,

sistem ce are solutie unica dacd si numai daca det(A —I,,) # 0.

Exercitiul 1.56

Fie o = (X, 7, ¢) un spatiu afin real si f : X — X un endomorfism afin. S&
se arate ca daca exista n € N* astfel incat f™ are un punct fix, atunci f are un
punct fix.
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Solutie. Fie P € X astfel incat f"(P) = P. Vom ardta ca echibaricentrul sistemului
de puncte {P, f(P),..., f""'(P)} este punct fix pentru f. In adevir,
1 1 1., 1 1 1.,
f<fP+ff(P)+...+ff 1(P)) = Zf(P)+=f*(P)+...+=f"(P)
n n n n n n

1 1 1 s
= Pt f(B) . [THP)

O

EXERCITII (Morfisme afine in context finit dimensional)

Exercitiul 1.57

Sa se verifice daca urmaétoarele aplicatii sunt sau nu morfisme afine:

(1)

(2) [:R* = R? f(z',2%) = (¢!, —2?),

(3) f:R3 = R2 f(al, 22 23) = (1 + 2, e).

In primul caz, se vor considera atat structura de spatiu afin a lui C peste C,

cat si cea peste R. Structurile afine considerate pe spatiile R? si R? sunt cele
canonice.

Solutie. Pentru (1), dacd A, 21, 22 € C, atunci
fOa+(1=Nz) =X+ (1-Nz  si Af(21) + (1= N f(22) = Xz + (1 - Nz

Astfel, f(Az1 + (1 — X)z2) = Af(z1) + (1 — X) f(22), pentru orice z1,22 € C, daca si
numai dacid A € R, deci f nu este un endomorfism afin al lui C peste C, dar este un
endomorfism afin al lui C peste R.

Pentru (2), ecuatiile lui f in raport cu reperul canonic pot fi scrise sub forma

v\ (1 0\ [z
y2 - 0 —1 {E2 )
deci f este un morfism afin.

Pentru (3), ecuatiile lui f in raport cu reperele canonice pot fi scrise sub forma

()-8 ) (5) (),

deci f este un morfism afin. O

Exercitiul 1.58
In spatiul afin real A5 = (X, Xz, @) raportat la reperul cartezian R = {O; €y, €3,€3}
se considera punctele
P1(07_170)a P2(07 _270)7 P3(_1707_1)7 P4(07071)a
Q1(27_17_2)7 Q2(27 _27_3)7 Q3(3717_5)7 Q4(27_171)
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conditiile f(P;) =Q;, i =1,...,4.

Sa se determine punctele fixe ale lui f.

Sa se arate ca existd un unic morfism afin f : X — X determinat de

Sa se verifice, fara a stabili ecuatiile morfismului f, ca f este bijectiva.
Sa se determine ? si coordonatele lui f(O) in reperul R.

Sa se determine matricea asociata lui f in raport cu reperul R.

Solutie. Pentru (1), tindnd cont de Exercitiul 1.50, este suficient s& verificdm ca
punctele Py, Ps, Ps, P, sunt afin independente. In adevar,

-2

=1+40.

Pentru (2) este suficient si verificdim c& punctele Q1,Q2, @3, Q4 sunt afin inde-

pendente. In adevir,

2 2 3 2
1 -2 1 -1
2 3 —5 1= 3#0
11 1 1
Pentru (3), avem ?(Pl 131) =Q1Qi, 1 = 2,3,4, adica
F0,-1,00 =(0,-1,-1)
(-1,1,-1) =(1,2,-3) (1.21)
70,1,1)  =(0,0,3).

gi deducem ca matricea asociata lui ? in raport cu baza B = {€1,€2,€3} este

-1 0 0
A= 0 1 -1
2 1 2

— —
Pentru a determina f(O), folosim relatia 7(OP1) f(O)@Q1 si obtinem f(O) =
2
0
-1
Pentru (4), folosind A si Ao, obtinem ci matricea asociatd morfismului f in raport
cu R este

0'(2,0,—1), deci Ag =

-1 0 0 2

0o 1 -1 0

M(va) = 2 1 2 1
0 0 0 1

Pentru (5), reamintim cd punctele fixe ale morfismului afin f sunt solutiile siste-
mului (A —I3)X = —Ap. Obtinem un singur punct fix M(1,—1,0).

d
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Exercitiul 1.59

In spatiul afin real o = (X, Y, ¢) raportat la un reper afin #Z = {Ey, F1, E2, E5}
se considera morfismul afin f : X — X definit prin

Sa se arate ca f este un izomorfism afin.

)
2) Sa se scrie ecuatia matriceald a lui f in raport cu reperul cartezian R.
) S& se determine punctele fixe ale lui f.

)

Sa se determine f(d) si f(mwy), A € R, unde

1_1 2 3 1
:c -2 :x+ , et 22+ a2 =0.

di——=7 1

Sa& se verifice ca f(d) este paraleld cu f(my) dacd si numai dacd d este
paralela cu 7).

(5) S& se determine translatia ¢z si centro-afinitatea gp de centru P(—1,0,1)
pentru care f =tz o gp.

Solutie. Pentru (1), este suficient si verifichm c& {Ao, A1, A2, A3} sunt afin in-
dependente. In adevar,

2 1 2 2
4 4 3 2
2 4 0 1| 370
1 1 1 1
Pentru (2), din f(Eo) = A0(2,4,2) si
— —
F(EoEy) = AoA; = (~1,0,2)
F(BoBs) = AAs = (0,—1,-2) (1.22)

deducem ca ecuatiile lui f in raport cu R sunt

Yt -1 0 0\ [z
(f) = ( 0 -1 2) (x2> + ( ) . (1.23)
3 2 -2 —1) \48

Pentru (3), avem Fiz(f) = {P € X / f(P) = P} si, folosind (1.23), deducem c&
Fix(f) este dreapta de ecuatii
' —=1=0
? + 2% —2=0.

N DN
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Pentru (4), cum f este un izomorfism afin, avem ca daci {A;u} este un reper afin

pentru d, atunci {f(A), f (@)} este un reper afin pentru f(d). Avem A(1,0,—1) € d
siw = (1,—1,1) si, folosind ecuatiile (1.23) si (1.22), obtinem f(A) = M(1,6,5) si

() = (=1, -1, 3), deci ecuatiile lui f(d) in raport cu reperul Ry sunt

x1—17x2—67x3—5
-1 -1 = 3

f(d):
Analog, consideram reperul cartezian
{EO(Oa 0, 0)§ﬂl = (17 0, _)‘)7ﬂ2 = (07 1, _1)}
pentru 7y gi avem
{f(Fo) = A0(2,4,2); F (1) = (—1,20,2+ ), F (@) = (0,1,-1)},
reper cartezian pentru f(7y). Obtinem ecuatia lui f(7x) in raport cu reperul R,
fm): BA+2)z' +2° 4+ 2° — (6A+10) = 0.

Reamintim si faptul ca ecuatiile pentru f(d) si f(mwx) pot fi obtinute folosind
ecuatiile inversei f~1 a lui f.

Dreapta d este paralela cu my daca si numai daca w, u1, u2 sunt liniar dependentj,
adicd dacd si numai dacd A = 0. Analog, se verificd faptul ca f(d) este paraleld cu

f(my) daca si numai daca A = 0.
Pentru (5), din g(P) = P si f = tw o gp, avem

= Pf(P) = (4,2,-2).

De aici, cum gp = t_5 o f, deducem ca ecuatiile lui gp in raport cu reperul Ro sunt

Yt -1 0 0 x! -2
vl=1 0 -1 =2 (z2]+]| 2
v 2 —2 -1/ \z3 4

Exercitiul 1.60

In spatiul afin real @3 = (X,?,d)) raportat la reperul cartezian R =
{O;€1,€3,€3} se considera
3 1

0'(2,-1,2), B(2.-45), C(6,-81), A= B+C

sim=(1,-1,2).

(1) S& se determine ecuatiile translatiei de vector @, tz : X — X, in raport cu
reperul R.

5
(2) S& se determine ecuatiile omotetiei de centru O’ si raport > ho,’g X = X,

in raport cu reperul R.
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(3) Sa se determine ecuatiile simetriei fatd de O, sor : X — X, in raport cu
reperul R.

(4) S& se determine ecuatiile centro-afinitatii de centru O', for : X — X,
pentru care

(5) Sa se stabileasca coordonatele punctelor tz(A), hor 3 (A), sor(A) si for(A)
in raport cu R. Sa se indice doua moduri diferite in care se pot determina
aceste coordonate.

(6) Fie dreapta d C X de ecuatii

Sa se determine tz(d), hor 5 (d), sor(d) si for(d).

(7) Fie planul 7 C X de ecuatie
miat+at+2® —1=0
Sa se determine tw(7), hor 5 (m),50 () si for(m).

Solutie. Pentru (1), folosind (1.15), ecuatiile translatiei ¢tz sunt date de
Yt 1 0 z! 1
] =10 1 2l +(-1].
3 0 0 3 2
y x
Pentru (2), folosind (1.16), ecuatiile omotetiei in raport cu reperul dat sunt

z! -3
22| + §
2 3

sor(P)=20'—P, VPeX,

deci so/(0) = 0" (4, —2,4), iar ecuatiile simetriei in raport cu reperul dat sunt

Pentru (3), avem

Yt 1 0 O z! 4
y2 =—1[0 1 O 2|+ (-2
y? 0 0 1 23 4

—
Pentru (4), avem fo:(0) = O’ — 7(00') = 0"'(1,-2,3), iar ecuatiile centro-
afinitatii in raport cu reperul dat sunt

Yt 1 3 1\ [«' 1
vl=1 2 1 1) [2*]|+]|-2
y? -1 1 1) \z8 3
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Pentru (5), A(3,-5,4) si, folosind ecuatiile determinate la (1), (2), (3) si (4),
obtinem
taw(A) = A1(4,—6,6), ho/%(A) = A2(9/2,—-11,7),
sor(A) = As(1,3,0), for(A) = As(—=7,-5,-1).

Calculul se poate face si considerand

tu(A) = tw (%B + iC> = Zm(B) + itﬁ((}).

Pentru (6), consider8m {M(2,0,—1);7 = (2,3,—1)} un reper cartezian pentru d.
Avem

3 11
tﬂ(M)(37_171)7 hO/,%(M)(27§7_?)7 SO'(M)(27 _275)> fO/(M)(27370)
i
— . 5_ _ -
ta(0) =7, hoi3(0) =57, 50/(0) =-v, for(v)=(10,8,0),
deci
zt—3 2 +1 22 —1
tu(d) : 2 3 0 -1
5 3 3 11
1_o9 " —3 + =
h’O’ é(d) : z = 2 - 2 )
2 2 3 -1
zt—2 242 -5
Sol(d) . 2 — 3 - _1 )
zt—2 22—-3 8
for(d): -1 T o

Notam ca exercitiul se poate rezolva si folosind ecuatiile parametrice ale dreptei
d §i ecuatiile transformarilor date.

Pentru (7), se procedeazi analog cu (6), considerandu-se reperul cartezian
{N(0,0,1);T: = (1,0,-1),u2 = (0,1,—1)} pentru .

Notam ca exercitiul se poate rezolva si folosind ecuatiile parametrice ale planului

7 gi ecuatiile transformarilor date. O

Exercitiul 1.61

In spatiul afin real o5 = (X,},qb) raportat la reperul cartezian R =
{O;e€1,€5,€3} se considerd punctele A(1,0,0), B(0,2,0), C(0,0,3) si vectorul
U = €1 + 2€2 + 2e3. Pentru M € X notam M’ = tz(M) si M" = h¢ _1/2(M).

(1) S& se determine coordonatele punctelor A’, B', A" B" si sa se verifice ca
A'B’A” B” este un trapez.

(2) Sa se compare rezultatele compunerilor tz o he —q/2 §iihc,—1/2 oty sl sa se
arate cd ty o hox = he,x oty dacd si numai daca # = 0 sau A = 1.

(3) Sa se determine ha,_10hp20he _1/2.
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Solutie. Pentru (1), M' =M +usi M" =C — %CT/[, pentru orice M € X, deci
A'(2,2,2), B'(1,4,2), A”"(-1/2,0,9/2), B”(0,—1,9/2). Din Propozitia 1.43 rezulta
ci A'B' | AB si A”B" || AB, deci A’B' || A”B". In adevir, A'B’ = (—1,2,0) si

-
A"B" =(1/2,-1,0), deci A’B’A” B" este un trapez.
Pentru (2), avem

1 0 O
0 1 0
M(tgo hcyfl/g) = M(tﬁ) 'M(hcy,l/g) = 0 0 1
0 0 0

si

M(he,—1j20tw) =

—_ N

NN |

>
&
L
~
(V)
N
=
=
L
Il
;// ~
|
o o o Nl=
|
o o NI= o

deci tz o hc,71/2 #* hc7,1/2 o tx.
Cu o alta abordare,

tr o hoa(M) = C + (A\CM + 1),

iar

|

hexotz(M) =C + ANCM + 1),

pentru orice M € X, deci t 0 ho,x = hc,x o tz daci si numai dacd (1 — \)u = 0.

=N N

o O o NI

=N O o o

oo o+

oo~ O

oNl— o

o= OO

=IO o o

=N DN



1.13 Exercitii 75

Pentru (3),

M(ha,—10hB2ohe,_1/2) = M(ha,—1)M(hp,2)M(hc,—1/2)
1

—= 0 0 0
-1 0 0 2\ /2 0 0 0 2 1
B 0 -1 0 0)[0 2 0 -2 0 —= 0 0
= 0 0 -1 0]{o o0 2 o0 21 9
0 0 o0 1 0 0 0 1 0 0 —- =
2 2
0 0 0 1
1 00 2
o1 0 2
00 1 —-9]°
000 1
deci ha,—10hpg2o0 hC,—1/2 = tz, unde v = 2e; + 2e3 — 9es. O

Exercitiul 1.62

In planul afin real o% = (X, X?, @) raportat la reperul cartezian Ry = {O;€1,e2}
se considera dreptele concurente d; gi dy. Notam cu p; : X — dy proiectia lui
X pe do paralela cu dy si cu po : X — dp proiectia lui X pe dy paralela cu ds.
Sa se determine expresiile analitice ale acestor proiectii in urmatoarele situatii:

(1) dy 2t —2®> —1=0sidy:at —222 +3=0.
(2) dy : 22t — 22+ 1 =0 i {M(0,2);u2 = (1,1)} este un reper cartezian al
dreptei ds.

(3) dreapta d; este datd de reperul siu cartezian {M;(1,1);7; = (2,-3)} i
dreapta ds de reperul sau cartezian {Mz(2, —2);uz = (1,-1)}
Solutie. Vom rezolva exercitiul folosind Propozitia 1.38 (iii). Dacd d1 Nds = {A}

§i w1, U2 reprezinta vectorii directori ai dreptelor d; si, respectiv dz, putem considera
reperul R = {A;U1,uz2}. In raport cu acesta avem

00 0 1 00
Mmp,R)=[0 1 0 si M@p,R)={0 0 0].
00 1 00 1

Din Propozitia 1.38 (iii) avem
M (p1,Ro) = M(idx, R, Ro) o M(p1,R) o M(idx, Ro, R).
Mai mult, M (idx,R,Ro) = M (R, Ro) este matricea schimbdrii de reper de la Ro la

R (vezi si (1.11)).
Pentru (1), avem A(5,4), w1 = (1,1), u2 = (2,1), deci

1 2 5 -1 2 -3
MMR,Ro)= |1 1 4| s MRo,R)=MR,Ro) '=| 1 -1 -1
0 0 1 0 0 1
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Astfel,

2 -2 3 -1 2 2
1 -1 3| si M@psRo)=|[-1 2 1
0 0 1 0 0 1

M(thO) =

N

Pentru (3), avem A(5, —5), w1 = (2, -3), uz = (1,-1) si
3 20 -2 -2 5
M(p1,R0) = -3 -2 0 §l M(pQ,Ro) = 3 3 -5
0 01 0 0 1

Notam ca ecuatiile proiectiei p1 se pot obtine gi determinand efectiv punctul de

intersectie dintre da si paralela printr-un punct generic din plan la d;. O

Exercitiul 1.63

Intr-un spatiu afin real o = (X ,?,qﬁ) raportat la reperul cartezian R =
{0;e1,e2,e3} se considerd dreapta d si planul 7, d N7 = {A}. Notdm cu
pq : X — m proiectia lui X pe m paralela cu d si cu p, : X — d proiectia lui X
pe d paralela cu 7.

(1) S& se determine expresiile analitice ale proiectiei pg in urmatoarele situatii:

(i) m : o' — 222 — 423 + 5 = 0, iar vectorul director al dreptei d este
U= —e; + 2e, — 5.

(ii) {M(-1,1,-2);u; = (-1,0,1),uy = (1,—1,0)} reprezintd un reper
cartezian pentru 7, iar vectorul director al dreptei d este w = (—1,1,1).

(2) S& se determine expresiile analitice ale proiectiei p, in urmatoarele situatii:

zt=1+1¢
(i) d: { z?>=—1—1t sispatiul vectorial director al lui 7 este generat de
3
=21

uy = (1707 ]-)aEQ = (1a _170)‘

(if) {M(0,0,0);7 = (1,3,1)} reprezintd un reper cartezian pentru d si
spatiul vectorial director al lui 7 este generat de w3 = (—1,—1,0),
Ug = (1, 0, —1)

Solutie. Notim ci exercitiul poate fi rezolvat intr-o manierd analoagi cu
Exercitiul 1.62, prin calcul matriceal. Vom prezenta aici o abordare diferita.

Pentru (1)(i), fie P(x§, 23, 23) un punct fixat arbitrar in X. Notdm cu P’ = pa(P),
intersectia dintre planul 7 si paralela d’ prin P la d. Ecuatiile parametrice ale dreptei
d' in raport cu reperul R sunt

xlzxé—t
d : z? =3+ 2
x ngt.

Introducénd acestea in ecuatia lui 7 obtinem t = xf — 223 — 4z5 + 5, deci

P'(2z3 + 4z — 5, 2xh — 3xf — 8z + 10, —xp + 225 + 5xh — 5).
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Astfel, ecuatiile proiectiei pg in raport cu reperul R sunt

Yt 0 2 4\ [z! -5
vl= 2 -3 -8 [22]+][ 10
43 -1 2 5/ \z -5

Pentru (1)(ii), ecuatia planului 7 este
m: 42’ +2°+2=0

gi, procedand analog, se obtin ecuatiile proiectiei pgq,

Yt 2 1 1\ [z 2
v)l=[-2 -1 2| (22 +|—-4
v 11 2/ \a8 2

Pentru (2)(i), fie P(z, 22, #3) un punct fixat arbitrar in X. Notim cu P’ = p(P),
intersectia dintre dreapta d si planul paralel 7’ prin P la 7. Ecuatia planului 7" este

’

1 2 3
T T +x—x

1 2, 3
—xp — x5+ 25 =0,

Substituind ecuatiile parametrice ale dreptei d in ecuatia planului 7’ se obtine ¢t =
—xs — z3 + xd — 2, deci

/ 1 2 3 1 2 3 1 2 3
P(_.'L‘O—.'L‘O—FCL'O—1,x0+x0—x0+1,—$0—x0+x0).

Astfel ecuatiile proiectiei p. sunt date de

y! -1 -1 1\ [zt -1
vl=1 1 1 =1 (22]+] 1
y? -1 -1 1) \g8 0

Pentru (2)(ii), procedand analog, se obtin ecuatiile proiectiei pr,

Yt -1 1 -1\ [z!
] =1-3 3 =3]|[2?
y3 -1 1 -1/ \z8

Exercitiul 1.64

Intr-un plan afin real % = (X, }, ¢) raportat la un reper cartezian R = {O;e;,ex}
se considera aplicatia f : X — X, definita prin ecuatiile

yt = 1221 — 422 -7
y? = -9zt + 322 + 7.

(1) S& se arate ca aplicatia f este un morfism afin.

(2) S& se arate cd f are un unic punct fix. S& se determine acesta.

(3) Sa se determine imaginea lui f.
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Solutie. Pentru (1), ecuatiile lui f in raport cu reperul R pot fi scrise sub forma
Y = AX + Ao, unde

12 —4 : —7
(5 s w ()

deci f este un morfism afin.
Pentru (2), avem det(A —I2) = —14 # 0, deci f admite un unic punct fix. Acesta
este dat de solutia sistemului (A — I3)X = —Ay, adica

11zt — 422 =7
—9zt +22% = -7,

deci A(1,1) este unicul punct fix al morfismului afin f.
Pentru (3), notdm ci rang A = 1, deci imaginea lui f este o dreptd. Cum A este

punct fix pentru f si f (€1) = (12, —9), deducem c& imaginea lui f este dreapta de
ecuatie canonica

Exercitiul 1.65

Intr-un plan afin real o% = (X ,?,qﬁ) raportat la un reper cartezian R =
{0;e1,e2} se considerd morfismul afin f: X — X de ecuatii

yt =32t +2%2 -6
y? =z' +3224+09.

(1) S& se arate cd f are un unic punct fix si si se determine acesta.
(2) SA& se scrie ecuatiile dreptelor care ramén invariate prin morfismul f.

Solutie. Pentru (1), avem

(Y e ()

Cum det(A —I3) = 3 # 0, rezultd ci f admite un unic punct fix. Acesta este dat de
solutia sistemului (A — I3)X = —Ay, adicd

20t + 22 =6
x4 222 = -9,
deci A(7,—8) este unicul punct fix al morfismului afin f.
Pentru (2), notdm ci o dreaptd invariatd de f trebuie si contind A i trebuie s&

aiba spatiul vectorial director generat de un vector propriu al aplicatiei liniare
Folosind matricea A obtinem vectorii w1 = (1,—1) si w2 = (1,1). Astfel existd doud
drepte invariate de f, iar ecuatiile acestora sunt

di:zt+2°+1=0, dy:xt — 2?2 —15=0.
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Exercitiul 1.66

Intr-un plan afin real o% = (X ,?,qﬁ) raportat la un reper cartezian R =
{0;e1,e2} se considerd morfismul afin f: X — X de ecuatii

yt =3z — 222 + 10
y? = —zt + 22 - 6.

(1) Fie dreapta afind de ecuatie d : #1 — 2% 4+ 10 = 0. S se determine punctele
dreptei d a caror imagine prin f apartine tot dreptei d.

(2) S& se determine dreapta afind d’ ce contine punctul P(—1,1) si a cirei
imagine prin f contine punctul P.

Solutie. Pentru (1), punctele ciutate sunt solutii ale sistemului

2t —2*4+10=0
3zt —222 +10 — (-2 +2%2 —6) +10=0.
Existd o singura solutie M (4, 14).
Pentru (2), notdm cd f este un morfism afin bijectiv, iar ecuatiile inversei in raport
cu reperul R sunt
y1 =g' + 222 +2
v=a'+322+8
si f7H(P) = P'(3,10).
Dreapta d’ este determinats de punctele P si P’ = fﬁl(P)7 deci ecuatia sa in

raport cu reperul R este
d :9z' —42® +13 =0.

Exercitiul 1.67

Fie o5 = (X, XZ, ¢) un spatiu afin real 3-dimensional raportat la reperul car-
tezian R = {O;e€1,¢eq,e3} si fie f: X — X definitd de ecuatiile

y1:5x1+2x2+2x3—2
y? = —dat — 2% — 223 + 2
Y3 = 8z + 422 + 523 — 4.

a se arate ca aplicatia f este un morfism afin.

4 se verifice ci f este bijectiva si si se determine f~1.

(1) s

(2) 8

(3) S& arate ca multimea punctelor fixe ale lui f este un plan 7.

(4) S& se arate ca Pf(P) este coliniar cu CWS7 pentru orice P,Q € X.
(5) 8

& se arate c& raportul simplu (P’, f(P); P) este constant, unde P € X cu
f(P) # P, iar P’ reprezinta intersectia dreptei Pf(P) cu 7y.
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Solutie. Pentru (1), ecuatiile lui f in raport cu reperul R pot fi scrise sub forma
Y = AX + Ao, unde

5 2 2 -2
A=|-4 -1 -2 i Ao=| 2],
8 4 5 —4

deci f este un morfism afin.
Pentru (2), det A = 7 # 0, deci f este bijectiv. Ecuatiile inversei f~! in raport cu
reperul R sunt

2
9 2
2 % 1, 9 2 3 <
A S S
4 4
y3=—§m1—7a:2+§x3—|—7.

7 7 7 7

Pentru (3), rang(A — I3) = 1, deci multimea punctelor fixe ale lui f este un plan.
Acesta este dat de solutia sistemului (A —I3)X = —Ay, adicd

L 20" +2° +2° —1=0.

Pentru (4), fie P € X fixat arbitrar. Dacd P(z',z2,2%) in raport cu reperul R,
atunci )
Pf(P) =22z + 2% +2° — 1)(1,—1,2).

In concluzie, Pf(P) este paralel cu vectorul constant © = (1,—1,2), pentru orice
Pe X.
Pentru (5), dacd P(zf, 23, 23) in raport cu reperul R, atunci ecuatiile parametrice

ale dreptei Pf(P) sunt
! = a:(l) +t
z? = :cg -t

z3 = a3 + 2t.

1 2
2z —at—axp +1

iar P’ se obtine pentru t = . Astfel,

3
— 1 2 3 _
P'pP= 23304_330—;_3301(17_172).
1
Din (4) avem Pf(P3 =2(22¢ + x5+ — 1)(1,-1,2), deci (P', f(P); P) = 5

O

Exercitiul 1.68

Fie o3 = (X, ?, ¢) un spatiu afin real 3-dimensional, A € X fixatsi f: X — X
un endomorfism afin cu proprietatea ca f3(P) = A, pentru orice P € X.

(1) S& se determine multimea punctelor fixe ale lui f.

(2) Dacd B € X astfel incat f2(B) # A, sa se arate cid {4, B, f(B), f2(B)}
este un reper afin. Sa se scrie ecuatiile lui f in reperul cartezian asociat.
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(3) S& se arate ci imaginea lui f este planul (A, f(B), f2(B))ar si f~1(A) este
dreapta (A, f2(B))at.

Solutie. Pentru (1), avem
Fiz(f) = {A}.
In adevir, f(A) = f(f3(A)) = f3(f(A4)) = A. Invers, daci f(P) = P, atunci f3(P) =
P, deci P = A.
Pentru (2), observiim mai intii ci dacd f2(B) # A, atunci punctele sistemului
{A, B, f(B), f*(B)} sunt distincte dou# cate dous. Folosind (1) avem

AF(B) = F(A)f(B) = T (AB), Af*(B) = f*(A)f*(B) = F*(AB).

Astfel, conditia
oAB + BAJ(B)) +1Af*(B) =0

oAB + 81 (AB) +~ *(AB) =0, (1.24)

Cum f3 = A, rezulti ci ?3 = 0. Aplicand ?2 in (1.24), obtinem oz?2 (E) =0, deci

a = 0. Cu rationamente asemanatoare obtinem § = v = 0 gi rezulta ca sistemul de
—

vectori {zﬁ7Af(B ,Af%(B)} este liniar independent, deci Z = {A, B, f(B), f*(B)}

este un reper afin in X.

Reperul cartezian asociat lui Z este R = {A,@,?(@),?Q(@)} Astfel,
ecuatia matriceala a morfismului f in raport cu R este

este echivalenta cu

iar ecuatiile carteziene sunt

y' =0
y2:xl
y3 :.1'2.

Pentru (3), cum #Z = {4, B, f(B), f?(B)} este un reper afin, pentru orice P € X,
existd X' € R, i =1,...,4 astfel incat

4
P=XNA+NB+XNf(B)+X'f(B), > XN=1
=1

Astfel,

FP) =\ +AYA+ N F(B)+ A f2(B), Y AN =1,

adicad Im f C (A, f(B), f*(B))ar. Reciproc, daci Q € (A, f(B), f2(B))at, atunci exist#
w eR, j=1,2,3, astfel incat

Q=p'A+p’f(B)+ 1’ f*(B), ZMEL
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si daca consideram
3 .
P=p'A+p’B+p°f(B), > p'=1,
i=1

Ztunci f(P) =@, deci (A, f(B), f2(B))at C Im f.
F7HA) = {PeXx/f(P)=4}
= {P=XNA+NB+N[(B)+ ' (B)/

4
AW XA B+ X (B =AY N =1LXN€eR,i=1,...,4}

= {PeX/P:,\A+(1—A)f2(B),Aeﬂ%}
= (A, f*(B))ar.



