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Notaţii

∈,⊂,∪,∩ - notaţiile uzuale din teoria mulţimilor

charK - caracteristica corpului K

V - K-spaţiu liniar

Vn - K-spaţiu liniar n dimensional

span - ı̂nfăşurătoarea liniară

L(V,W ) - mulţimea aplicaţiilor liniare de la V la W

L2S(V ) - mulţimea formelor biliniare simetrice pe V

P(V ) - mulţimea formelor pătratice pe V

A = (X,
−→
X,φ) - spaţiu afin

An - spaţiu afin de dimensiune finită n

A,B,C, . . . - puncte

u, v, w, . . . -vectori

〈 〉af - ı̂nfăşurătoarea afină

R - reper afin, R - reper cartezian

AB - dreapta AB, ABC - planul ABC

〈A0, A1, . . . , Am〉 - m-simplexul cu vârfurile A0, A1, . . . , Am

(A0; a1, . . . , am) - m-paralelipipedul cu vârf A0 şi muchii a1, . . . , am

E = (E,
−→
E , φ) - spaţiu afin euclidian

En - spaţiu afin euclidian de dimensiune finită n

〈u, v〉 - produsul scalar al vectorilor u şi v

u× v - produsul vectorial al vectorilor u şi v

(u, v, w) - produsul mixt al vectorilor u, v şi w
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1. Spaţii afine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introducere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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Capitolul 1
Spaţii afine

1.1 Introducere

În acest capitol este introdusă noţiunea de spaţiu afin peste un corp comuta-

tiv, sunt prezentate proprietăţile fundamentale ale acestei noţiuni rezultate din

teoria spaţiilor liniare şi sunt enumerate unele exemple clasice.

Sunt studiate subspaţiile afine şi morfismele afine, cu atenţie deosebită pen-

tru translaţii, omotetii, proiecţii şi simetrii.

Este abordată problematica specifică cu privire la spaţii afine finit dimen-

sionale: repere carteziene şi afine, p-plane, morfisme afine.

Capitolul se incheie cu trei teoreme clasice de geometrie afină: Teorema lui

Thales, Teorema lui Pappus, Teorema lui Desargues, demonstrabile folosind

atât calculul baricentric cât şi dilatările afine.
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1.2 Definiţie. Proprietăţi. Exemple

Definiţia 1.1

Se numeşte spaţiu afin peste un câmp K un triplet A = (X,
−→
X,φ), unde X

este o mulţime nevidă,
−→
X este un K-spaţiu vectorial şi

φ : X ×X −→
−→
X,

(P,Q) 7−→ φ(P,Q) =
−−→
PQ,

este o aplicaţie pentru care sunt satisfăcute următoarele axiome:

(A1) există O ∈ X astfel ı̂ncât

φO : X −→
−→
X,

P 7−→ φO(P ) = φ(O,P )

este o aplicaţie bijectivă,

(A2) Relaţia lui Chasles

φ(P,Q) + φ(Q,R) = φ(P,R),

pentru orice P,Q,R ∈ X.

Elementele mulţimii X se numesc puncte, spaţiul vectorial
−→
X se numeşte spaţiul

vectorial director al spaţiului afin A , iar aplicaţia φ se numeşte morfismul de

structură al spaţiului afin A .

Propoziţia 1.2

Fie A = (X,
−→
X,φ) un K-spaţiu afin. Pentru fiecare punct P din X există o

structură de K-spaţiu vectorial pe X astfel ı̂ncât aplicaţia

φP : X −→
−→
X,

Q 7−→ φP (Q) = φ(P,Q)

este izomorfism de spaţii vectoriale.

Spaţiul vectorial obţinut se notează TP (X) şi se numeşte spaţiul vectorial

tangent la X ı̂n P . Această structură nu este canonică deoarece depinde de

alegerea punctului P .

Demonstraţie

Operaţiile de adunare şi ı̂nmulţire cu scalar sunt

A+B = φ−1P (φP (A) + φP (B)), A,B ∈ X,
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a ·A = φ−1P (a · φP (A)), A ∈ X, a ∈ K.

Atunci (X,+, ·) este un K-spaţiu vectorial notat TP (X).

Teorema 1.3 (Caracterizarea spaţiilor afine)

Fie A = (X,
−→
X,φ) un K-spaţiu afin. Aplicaţia definită prin

+ : X ×
−→
X −→ X,

(P, u) 7−→ P + u = φ−1P (u),

are următoarele proprietăţi:

(i) P + (u+ v) = (P + u) + v, pentru orice P ∈ X, u, v ∈
−→
X ,

(ii) P + u = P dacă şi numai dacă u = 0,

(iii) pentru orice P,Q ∈ X există şi este unic u ∈
−→
X astfel ı̂ncât Q = P + u.

Reciproc, dată o aplicaţie “+” cu proprietăţile (i), (ii), (iii), există o struc-

tură de K-spaţiu afin pe X cu spaţiul vectorial director
−→
X .

Demonstraţie

Proprietăţile (i), (ii), (iii) se verifică imediat, ţinând cont de Definiţia 1.1.

Reciproc, dată o aplicaţie “+” cu proprietăţile (i), (ii), (iii), se defineşte

φ : X ×X −→
−→
X,

(P,Q) 7−→ φ(P,Q) = u,

unde Q = P + u. Pentru tripletul (X,
−→
X,φ) astfel obţinut se verifică axiomele

din Definiţia 1.1.

Definiţia 1.4

Fie G un grup şi X o mulţime nevidă. Notăm cu S(X) grupul substituţiilor

mulţimii X, S(X) = {f : X → X /f bijecţie}.
Se numeşte G-acţiune pe X un homomorfism de grupuri

ϕ : G −→ S(X),

g 7−→ ϕ(g), ϕ(g)(x) = g · x, x ∈ X.

Astfel,

(i) ϕ(g1 · g2) = ϕ(g1) ◦ ϕ(g2), pentru orice g1, g2 ∈ G,
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(ii) ϕ(eG) = idX , unde eG notează elementul neutru al grupului G.

Acţiunea se numeşte tranzitivă dacă, pentru orice x, y ∈ G, există g ∈ G
astfel ı̂ncât g · x = y.

Acţiunea se numeşte simplu tranzitivă dacă, pentru orice x, y ∈ G, există şi

este unic g ∈ G astfel ı̂ncât g · x = y.

Acţiunea se numeşte fidelă dacă Kerϕ = {eG}.

Observaţia 1.5

Dacă G este un grup comutativ, atunci orice acţiune fidelă şi tranzitivă este

simplu tranzitivă.

Teorema 1.6 (Caracterizarea spaţiilor afine folosind acţiuni de grupuri)

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi G = (

−→
X,+) grupul comutativ obţinut

din structura de spaţiu vectorial. Atunci există o G-acţiune fidelă şi tranzitivă

indusă de morfismul de structură φ.

Reciproc, fie
−→
X un K-spaţiu vectorial şi ϕ :

−→
X → S(X) o acţiune fidelă şi

tranzitivă pe mulţimea nevidă X. Atunci X poate fi ı̂nzestrată cu o structură

de K-spaţiu afin cu spaţiul vectorial director
−→
X şi morfismul de structură indus

de aplicaţia ϕ.

Demonstraţie

Se defineşte

ϕ :
−→
X −→ S(X),

u 7−→ ϕ(u), ϕ(u)(P ) = P + u, P ∈ X.

Se verifică faptul că ϕ este bine definită, adică ϕ(u) ∈ S(X), pentru orice u ∈
−→
X

şi faptul că ϕ este o acţiune fidelă şi tranzitivă (vezi Teorema 1.3).

Reciproc, dat ϕ se defineşte

+ : X ×
−→
X −→ X,

(P, u) 7−→ P + u = ϕ(u)(P )

şi se verifică condiţiile (i), (ii), (iii) din Teorema 1.3.

Definiţia 1.7

Se numeşte dimensiunea unui K-spaţiu afin A = (X,
−→
X,φ), dimensiunea
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spaţiului vectorial director asociat,

dim A = dim
−→
X.

Un spaţiu afin cu un singur punct are dimensiunea 0. Un spaţiu afin de dimen-

siune 1 se numeşte dreaptă afină, iar un spaţiu afin de dimensiune 2 se numeşte

plan afin.

Exemple

1. Planul geometric este un spaţiu afin de dimensiune 2.

2. Spaţiul geometric este un spaţiu afin de dimensiune 3.

Exemple de spaţii afine

1. Structura afină canonică a unui spaţiu vectorial. Fie V un K-spaţiu

vectorial şi

φ : V × V −→ V

(u, v) 7−→ v − u.

Atunci (V, V, φ) este un K-spaţiu afin.

2. Spaţiul afin produs (vezi Exerciţiul 1.2). Dacă A ′ = (X ′,
−→
X ′, φ′) şi

A ′′ = (X ′′,
−→
X ′′, φ′′) sunt două K-spaţii afine, atunci

A ′ ×A ′′ = (X ′ ×X ′′,
−→
X ′ ×

−→
X ′′, φ)

este un K-spaţiu afin, unde

φ = φ′ × φ′′ : (X ′ ×X ′′)× (X ′ ×X ′′) −→
−→
X ′ ×

−→
X ′′

((P ′, P ′′), (Q′, Q′′)) 7−→ (φ′(P ′, Q′), φ′′(P ′′, Q′′)).

3. Spaţiul afin cât (vezi Exerciţiul 1.3). Fie A = (X,
−→
X,φ) un K-spaţiu

afin şi V un subspaţiu vectorial al lui
−→
X . Definim pe X următoarea relaţie

binară: pentru P,Q ∈ X, P ∼ Q dacă şi numai dacă
−−→
PQ ∈ V .

Relaţia ∼ este o relaţie de echivalenţă pe X şi notăm cu X/V mulţimea

cât. Aplicaţia

φ̂ : X/V ×X/V −→
−→
X /V ,

(P̂ , Q̂) 7−→
−−→
PQ+ V,

este bine definită şi A/V = (X/V ,
−→
X /V , φ̂) este un K-spaţiu afin.
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1.3 EXERCIŢII

Spaţii afine. Exemple

Exerciţiul 1.1

Fie A = (X,
−→
X,φ) un K-spaţiu afin.

(1) Să se verifice că morfismul de structură φ : X × X →
−→
X este o aplicaţie

surjectivă.

(2) Să se arate că, ı̂n general, morfismul de structură nu este o aplicaţie injec-

tivă?

Soluţie. Pentru (1), prin definiţie, pentru P ∈ X, fixat, aplicaţia φP : X →
−→
X

este bijectivă. De aici, pentru orice u ∈
−→
X există Q ∈ X astfel ı̂ncât φP (Q) = u, adică

φ(P,Q) = u, deci φ este surjectivă.

Pentru (2), dacă există cel puţin două puncte distincte P,Q ∈ X, atunci φ(P, P ) =

φ(Q,Q) = 0, dar (P, P ) 6= (Q,Q). �

Exerciţiul 1.2 (Spaţiul afin produs de spaţii afine)

Fie A ′ = (X ′,
−→
X ′, φ′) şi A ′′ = (X ′′,

−→
X ′′, φ′′) două K-spaţii afine. Să se arate

că A ′ ×A ′′ = (X ′ ×X ′′,
−→
X ′ ×

−→
X ′′, φ) este un K-spaţiu afin, unde

φ = φ′ × φ′′ : (X ′ ×X ′′)× (X ′ ×X ′′) −→
−→
X ′ ×

−→
X ′′

((P ′, P ′′), (Q′, Q′′)) 7−→ (φ′(P ′, Q′), φ′′(P ′′, Q′′)).

Soluţie. Vom verifica mai ı̂ntâi axioma (A1) din Definiţia 1.1. Fie (P ′, P ′′) ∈
X ′ ×X ′′, fixat arbitrar. Deoarece φ′P ′ : X ′ →

−→
X ′ şi φ′′P ′′ : X ′′ →

−→
X ′′ sunt bijective,

rezultă că pentru orice (u′, u′′) ∈
−→
X ′×

−→
X ′′ există unic (Q′, Q′′) ∈ X ′×X ′′, astfel ı̂ncât

(φ′P ′(Q
′), φ′′P ′′(Q

′′)) = (u′, u′′). Avem astfel că (φ′×φ′′)(P ′,P ′′) : X ′×X ′′ →
−→
X ′×

−→
X ′′

este bijectivă, pentru orice (P ′, P ′′) ∈ X ′ ×X ′′.
Pentru a verifica (A2), fie P = (P ′, P ′′), Q = (Q′, Q′′) şi R = (R′, R′′) fixate

arbitrar ı̂n X ′ ×X ′′. Avem

φ(P,Q) + φ(R,Q) = (φ′(P ′, Q′), φ′′(P ′′, Q′′)) + (φ′(Q′, R′), φ′′(Q′′, R′′))

= (φ′(P ′, Q′) + φ′(Q′, R′), φ′′(P ′′, Q′′) + φ′′(Q′′, R′′))

= (φ′(P ′, R′), φ′′(P ′′, R′′)) = φ(P,R),

şi putem concluziona. �

Exerciţiul 1.3 (Spaţiul afin cât)

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi V un subspaţiu vectorial al lui

−→
X .

Definim pe X următoarea relaţie binară: pentru P,Q ∈ X, P ∼ Q dacă şi

numai dacă
−−→
PQ ∈ V .
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(1) Să se arate că relaţia ∼ este o relaţie de echivalenţă pe X.

(2) Dacă notăm cu X/V mulţimea cât indusă de relaţia ∼, să se arate că

aplicaţia

φ̂ : X/V ×X/V −→
−→
X /V ,

(P̂ , Q̂) 7−→
−−→
PQ+ V,

este bine definită.

(3) Să se verifice că A/V = (X/V ,
−→
X /V , φ̂) este un spaţiu afin.

Soluţie. Pentru (1), vom verifica proprietăţile din definiţia noţiunii de relaţie de
echivalenţă.

Reflexivitatea. Evident,
−→
PP = 0 ∈ V , deci P ∼ P , pentru orice P ∈ X.

Simetria. Dacă P ∼ Q, atunci
−−→
PQ ∈ V . De aici, cum V ⊂

s.v.

−→
X , avem −

−−→
PQ ∈ V .

Astfel,
−−→
QP ∈ V , deci Q ∼ P .

Tranzitivitatea. Dacă P ∼ Q şi Q ∼ R, atunci
−−→
PQ,

−→
QR ∈ V , deci

−−→
PQ +

−→
QR ∈ V .

Astfel,
−→
PR ∈ V , adică P ∼ R.

Pentru (2), vom arăta că definiţia lui φ̂ nu depinde de reprezentanţi.

Fie (P̂1, Q̂1) = (P̂2, Q̂2). Trebuie să arătăm că
−−−→
P1Q1 + V =

−−−→
P2Q2 + V , sau echivalent

−−−→
P1Q1 −

−−−→
P2Q2 ∈ V .

Din P̂1 = P̂2 şi Q̂1 = Q̂2, rezultă că
−−−→
P1P2,

−−−→
Q1Q2 ∈ V . De aici,

−−−→
P1Q1 −

−−−→
P2Q2 =

−−−→
P1P2 +

−−−→
P2Q1 −

−−−→
P2Q1 −

−−−→
Q1Q2

=
−−−→
P1P2 −

−−−→
Q1Q2 ∈ V.

Pentru (3), fie P̂ ∈ X/V , fixat arbirar. Vom arăta mai ı̂ntâi că φ̂P̂ : X/V →
−→
X /V

este injectivă. Fie Q̂1, Q̂2 ∈ X/V , astfel ı̂ncât φ̂P̂ (Q̂1) = φ̂P̂ (Q̂2). Atunci
−−→
PQ1−

−−→
PQ2 =

−−−→
Q2Q1 ∈ V , adică Q̂1 = Q̂2.

Pentru a arăta că φ̂P̂ este surjectivă fie u + V fixat arbitrar ı̂n
−→
X /V . Cum φP :

X →
−→
X este surjectivă, rezultă că există Q ∈ X astfel ı̂ncât

−−→
PQ = u. De aici,

φ̂P̂ (Q̂) =
−−→
PQ+ V = u+ V , deci φ̂P̂ este surjectivă.

De asemenea, dacă P̂ , Q̂, R̂ ∈ X/V , atunci

φ̂(P̂ , Q̂) + φ̂(Q̂, R̂) = (
−−→
PQ+ V ) + (

−→
QR+ V )

= (
−−→
PQ+

−→
QR) + V =

−→
PR+ V

= φ̂(P̂ , R̂).

�

Exerciţiul 1.4

Fie mulţimile

X = {(x1, x2) ∈ R2 / ax1 + bx2 = c},
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V = {(λ1, λ2) ∈ R2 / aλ1 + bλ2 = 0},

unde a, b, c ∈ R, a2 + b2 6= 0.

(1) Să se verifice că V este un spaţiu vectorial real de dimensiune 1.

(2) Să se arate că X poate fi organizat ca spaţiu afin cu spaţiul vectorial

director V .

(3) Să se generalizeze problema, considerând X ⊂ Rn, n ≥ 3.

Soluţie.

(1) Vom arăta că V este un subspaţiu vectorial real de dimensiune 1 ı̂n R2. În adevăr,

θ : R2 → R, θ(λ1, λ2) = aλ1 + bλ2,

este o formă liniară, iar V = Ker θ, deci V ⊂
s.v.

R2. Din a2 + b2 6= 0 rezultă că

dim Im θ = 1, deci dimV = dim Ker θ = 1.
(2) Observăm că dacă (x1, x2) ∈ X şi (λ1, λ2) ∈ V , atunci (x1 + λ1, x2 + λ2) ∈ X.

Putem considera astfel aplicaţia

+ : X × V → X, (x1, x2) + (λ1, λ2) = (x1 + λ1, x2 + λ2).

Se verifică imediat faptul că aceasta defineşte o acţiune simplu tranzitivă a lui V
pe X (vezi Teorema 1.3 şi Teorema 1.6).

(3) Pentru a generaliza problema se consideră

X = {(x1, . . . , xn) ∈ Rn /
n∑
j=1

aijx
j = ci, i = 1, . . . ,m},

V = {(λ1, . . . , λn) ∈ Rn /
n∑
j=1

aijλ
j = 0, i = 1, . . . ,m},

unde rang(aij)i,j = k. Cu un raţionament similar celui de la (1) şi (2) rezultă că
X poate fi ı̂nzestrată cu o structură de spaţiu afin (n− k)-dimensional, având ca
spaţiu vectorial director pe V .

�

Exerciţiul 1.5

Să se arate că, ı̂n fiecare caz, următoarele aplicaţii induc o structură de spaţiu

afin pe mulţimea X:

(1)

X × R2 −→ X,

((x, y), (α, β)) 7−→ (x+ α, eβy),

unde X = {(x, y) ∈ R2 / y > 0}.
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(2)

X × R2 −→ X,

((x, y, z), (α, β)) 7−→ (x+ αz + βy + αβ, y + α, z + β),

unde X = {(x, y, z) ∈ R3 / x = yz}.

(3)

X × R2 −→ X,

((x, y, z), (α, β)) 7−→ (x, y, z) + α(1,−1, 0) + β(1, 0,−1),

unde X = {(x, y, z) ∈ R3 / x+ y + z = 1}.

(4)

X × R2 −→ X,

((x, y, z), (α, β)) 7−→ (x+ α, y + β, (x+ α)2 + (y + β)2),

unde X = {(x, y, z) ∈ R3 / x2 + y2 − z = 0}.

Soluţie. Se verifică mai ı̂ntâi că definiţiile sunt corecte. Este uşor de verificat că

fiecare dintre aceste aplicaţii defineşte o acţiune simplu tranzitivă a lui R2 pe X (vezi

Teorema 1.3 şi Teorema 1.6). �

Exerciţiul 1.6

Fie T : V → W o aplicaţie liniară surjectivă, unde V şi W sunt două K-spaţii

vectoriale, iar W are dimensiune finită dimW = m > 0.

(1) Să se arate că T admite o secţiune, adică există o aplicaţie liniară

S : W → V astfel ı̂ncât T ◦ S = idW .

(2) Să se arate că mulţimea secţiunilor surjecţiei liniare T ,

S = {S ∈ L(W,V ) / T ◦ S = idW },

admite o structură de K-spaţiu afin având spaţiul vectorial director

L(W,KerT ), spaţiul aplicaţiilor liniare de la W la KerT .

(3) Să se determine dim S atunci când V este de dimensiune finită n.

Soluţie. Pentru a verifica (1), vom construi efectiv o secţiune S pentru T . Fie

BW = {f1, . . . , fm} o bază ı̂n W . Cum T este surjectivă, rezultă că există ei ∈ V

astfel ı̂ncât T (ei) = f i, i = 1, . . . ,m. Considerăm aplicaţia liniară S : W → V

definită de condiţia S(f i) = ei, i = 1, . . . ,m. Avem

(T ◦ S)(

m∑
i=1

yif i) =

m∑
i=1

yiT (S(f i)) =

m∑
i=1

yiT (ei) =

m∑
i=1

yif i,
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adică T ◦S = idW . Observăm faptul că această construcţie depinde de alegerea bazei
BW , deci S nu este, ı̂n mod necesar, unic cu proprietăţile cerute.

Pentru a verifica (2), pentru S ∈ S şi K ∈ L(W,KerT ), fie S + K : W → V ,
(S+K)(w) = S(w)+K(w), pentru orice w ∈W . Vom observa mai ı̂ntâi că S+K ∈ S .

În adevăr, din K ∈ L(W,KerT ) avem T ◦K = 0 şi, cum S ∈ S , rezultă

T ◦ (S +K) = T ◦ S + T ◦K = idW +0 = idW .

Putem deci considera aplicaţia definită prin

+ : S × L(W,KerT ) −→ S ,

(S,K) 7−→ S +K.

Vom verifica faptul că aceasta induce o structură de spaţiu afin pe S (vezi Teorema
1.3).

(i) Evident, S + (K1 + K2) = (S + K1) + K2, pentru orice S ∈ S , K1,K2 ∈
L(W,KerT ).

(ii) De asemenea, S + 0 = S, pentru orice S ∈ S .
(iii) Pentru S1, S2 ∈ S , avem T ◦ S1 = T ◦ S2 = idW , deci T ◦ (S1 − S2) = 0,

adică S1 − S2 ∈ L(W,KerT ). De asemenea, K = S1 − S2 este unic astfel ı̂ncât
S1 = S2 +K.

Pentru (3), ţinând cont de faptul că T este o aplicaţie liniară surjectivă, avem

dim KerT = n−m. Astfel, dim S = dimL(W,KerT ) = m(n−m). �

Exerciţiul 1.7

Fie X un K-spaţiu afin cu spaţiul vectorial director V şi fie T : W → V un

izomorfism de spaţii vectoriale. Să se arate că X poate fi ı̂nzestrat cu o structură

de spaţiu afin cu spaţiul vectorial director W , indusă de T .

Soluţie. Metoda I. Dacă φ : X × X → V notează morfismul de structură al
spaţiului afin X peste V , definim

ψ : X ×X →W, ψ = T−1 ◦ φ

şi arătăm că (X,W,ψ) este un spaţiu afin. Pentru P ∈ X, fixat arbirar, avem ψP =
T−1 ◦ φP . Cum φP şi T sunt bijecţii, rezultă că ψP este bijecţie.

Ţinând cont de faptul că T−1 este o aplicaţie liniară şi aplicând relaţia lui Chasles
pentru φ, avem

ψ(P,Q) + ψ(Q,R) = T−1(φ(P,Q)) + T−1(φ(Q,R)) = T−1(φ(P,Q) + φ(Q,R))

= T−1(φ(P,R))

= ψ(P,R),

pentru orice P,Q,R ∈ X.
Metoda II. Presupunem că spaţiul afin X peste V este definit de acţiunea

+V : X × V → X. Vom arăta că aplicaţia definită prin

+W : X ×W −→ X,

(P,w) 7−→ P +W w = P +V T (w),

determină o structură de spaţiu afin pe X cu spaţiul vectorial director W (vezi Teo-
rema 1.3).
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(i) Folosind proprietăţile acţiunii +V şi faptul că T este o aplicaţie liniară, avem

P +W (w1 + w2) = P +V T (w1 + w2)

= P +V (T (w1) + T (w2)) = (P +V T (w1)) +V T (w2)

= (P +W w1) +W w2,

pentru orice P ∈ X şi w1, w2 ∈W .
(ii) Evident, P +W 0 = P +V T (0) = P +V 0 = P , pentru orice P ∈ X.
(iii) Trebuie să mai arătăm că pentru orice P,Q ∈ X, există şi este unic w ∈W astfel

ı̂ncât Q = P +W w.
Fie P,Q ∈ X, fixate arbitrar. Ştim că există şi este unic v ∈ V astfel ı̂ncât
Q = P +V v. De aici rezultă că w = T−1(v) satisface Q = P +W w. Mai mult,
dacă P +Ww

′ = Q, atunci P +V T (w′) = Q. Din unicitatea lui v avem v = T (w′),
adică w′ = T−1(v) = w.

�

Exerciţiul 1.8

Fie X un K-spaţiu afin cu spaţiul vectorial director V . Considerăm o mulţime

Y astfel ı̂ncât există o funcţie bijectivă g : X → Y . Să se arate că Y poate fi

ı̂nzestrat cu o structură de spaţiu afin cu spaţiul vectorial director V , indusă

de g.

Soluţie. Metoda I. Dacă φ : X × X → V notează morfismul de structură al
spaţiului afin X peste V , definim

ψ : Y × Y → V, ψ(P,Q) = φ(g−1(P ), g−1(Q))

şi arătăm că (Y, V, ψ) este un spaţiu afin.
Pentru P ∈ Y , fixat arbirar, avem ψP = φg−1(P ) ◦ g−1. Cum φg−1(P ) şi g−1 sunt
bijecţii, rezultă că ψP este bijecţie.
Ţinând cont de relaţia lui Chasles pentru φ, avem

ψ(P,Q) + ψ(Q,R) = φ(g−1(P ), g−1(Q)) + φ(g−1(Q), g−1(R))

= φ(g−1(P ), g−1(R))

= ψ(P,R),

pentru orice P,Q,R ∈ Y .
Metoda II. Dacă spaţiul afin X peste V este definit de acţiunea + : X × V → X,

vom arăta că aplicaţia

+g : Y × V −→ Y,

(Q, u) 7−→ Q+g u = g(g−1(Q) + u),

determină o structură de spaţiu afin pe Y cu spaţiul vectorial director V (vezi Teo-
rema 1.3).

(i) Ţinând cont de faptul că

g−1(Q+g u) = g−1(Q) + u
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şi folosind proprietăţile acţiunii + : X × V → X, avem

Q+g (u1 + u2) = g(g−1(Q) + (u1 + u2)) = g((g−1(Q) + u1) + u2)

= g(g−1(Q+g u1) + u2)

= (Q+g u1) +g u2,

pentru orice Q ∈ Y şi u1, u2 ∈ V .
(ii) Evident,

Q+g 0 = g(g−1(Q) + 0) = g(g−1(Q) = Q,

pentru orice Q ∈ Y .
(iii) Trebuie să mai arătăm că pentru orice P,Q ∈ X, există şi este unic v ∈ V astfel

ı̂ncât Q = P +g v.
Fie P,Q ∈ Y , fixate arbitrar. Ştim că există şi este unic v ∈ V astfel ı̂ncât
g−1(Q) = g−1(P )+v. De aici, aplicând g, rezultă că Q = g(g−1(P )+v) = P+g v.
Mai mult, dacă P +g v

′ = Q, atunci g(g−1(P ) + v′) = g(g−1(P ) + v) şi, cum g
este o bijecţie, avem g−1(P ) + v′ = g−1(P ) + v = Q. Dar v era unic cu această
proprietate, deci v′ = v.

�

1.4 Subspaţii afine. Calcul baricentric

Definiţia 1.8

Fie A = (X,
−→
X,φ) un K-spaţiu afin. O submulţime nevidă Y a lui X se numeşte

subspaţiu afin (varietate liniară) dacă există un subspaţiu vectorial V ⊂
s.v.

−→
X

astfel ı̂ncât (Y, V, φ/Y×Y ) este un K-spaţiu afin.

Teorema 1.9 (Caracterizarea subspaţiilor afine)

Fie A = (X,
−→
X,φ) un K-spaţiu afin.

(i) Dacă ∅ 6= Y ⊂ X este subspaţiu afin cu V =
−→
Y ca spaţiu vectorial director,

atunci Y = P +
−→
Y , pentru orice punct P ∈ Y .

(ii) Dacă Y este o submulţime nevidă a lui X şi Y = P + V , unde P ∈ Y şi V

este un subspaţiu vectorial ı̂n
−→
X , atunci Y este subspaţiu afin ı̂n X.

Exemple de subspaţii afine

1. Orice subspaţiu vectorial al unui spaţiu vectorial este subspaţiu afin.
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2. Orice intersecţie nevidă de subspaţii afine ale unui spaţiu afin dat este un

subspaţiu afin.

3. Fie K-spaţiile afine A = (X,
−→
X,φ), B = (Y,

−→
Y , ψ). Considerăm o aplicaţie

f : X → Y pentru care există o aplicaţie liniară
−→
f :
−→
X →

−→
Y astfel ı̂ncât

−−−−−−→
f(P )f(Q) =

−→
f (
−−→
PQ), ∀P,Q ∈ X.

(i) Imaginea unui subspaţiu afin al lui X prin aplicaţia f este un subspaţiu

afin ı̂n Y .

(ii) Contraimaginea unui subspaţiu afin al lui Y prin aplicaţia f (dacă este

nevidă) este subspaţiu afin ı̂n X.

(iii) Dacă f : X → K, atunci f se numeşte formă afină. Nucleul Ker f =

f−1(0) unei forme afine f : X → K este subspaţiu afin ı̂n X şi se

numeşte hiperplan al lui X determinat de f .

Calcul baricentric

Definiţia 1.10

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi S ⊂ X o submulţime nevidă. Subspaţiul

afin [S]af definit prin

[S]af =
⋂

S⊂X′ ⊂
s.a.

X

X ′

se numeşte subspaţiul afin generat de S.

Subspaţiul afin [S]af este cel mai mic subspaţiu afin din X, ı̂n sensul incluziunii,

care conţine pe S.

Propoziţia 1.11

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi S, S1, S2 ⊂ X submulţimi nevide. Au

loc:

(i) S ⊆ [S]af , iar S = [S]af dacă şi numai dacă S ⊂
s.a.

X.

(ii)
[
[S]af

]
af

= [S]af ,

(iii) dacă S1 ⊂ S2, atunci [S1]af ⊂
s.a.

[S2]af .
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Propoziţia 1.12

Fie A = (X,
−→
X,φ) un K- spaţiu afin, S = {Ai}ni=1 o submulţime de puncte din

X şi {λi}ni=1 ⊂ K astfel ı̂ncât

n∑
i=1

λi = 1. Atunci există unic P ∈ X astfel ı̂ncât

−−→
OP =

n∑
i=1

λi
−−→
OAi,

pentru orice O ∈ X.

Definiţia 1.13

Punctul P ∈ X se numeşte baricentrul (combinaţie afină de puncte ale) siste-

mului S cu ponderile {λi}ni=1 şi se notează

P =

n∑
i=1

λiAi,

n∑
i=1

λi = 1. (1.1)

Punctul P ∈ X se numeşte echibaricentrul sistemului S dacă ı̂n (1.1) toate

ponderile sunt egale.

Observaţia 1.14

Observăm că se au ı̂n vedere doar combinaţii afine pentru sisteme finite de

puncte. Noţiunea se poate extinde la un sistem oarecare de puncte S ⊂ X, P

fiind numit combinaţie afină de puncte din S dacă există un subsistem finit al

lui S astfel ı̂ncât P să fie o combinaţie afină de puncte ale acestuia.

Definiţia 1.15

Un sistem oarecare de puncte S ⊂ X se numeşte sistem de generatori pentru

K-spaţiul afin A = (X,
−→
X,φ) dacă orice punct din X este o combinaţie afină

de puncte din S.

Propoziţia 1.16

Fie S = {A1, . . . , Ap, Ap+1, . . . , An} un sistem de puncte ı̂n K-spaţiul afin

A = (X,
−→
X,φ) şi P =

n∑
i=1

λiAi,

n∑
i=1

λi = 1. Dacă λ =

p∑
j=1

λj 6= 0, atunci

P = λQ+

n∑
k=p+1

λkAk, λ+

n∑
k=p+1

λk = 1,
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unde Q este baricentrul subsistemului {A1, . . . , Ap} cu ponderile {λ
1

λ , . . . ,
λp

λ }.
Reciproc, dacă P ∈ X,

P = λQ+

n∑
k=p+1

λkAk, λ+

n∑
k=p+1

λk = 1,

şi Q =

p∑
j=1

µjAj ,

p∑
j=1

µj = 1, atunci P este baricentrul sistemului de puncte

{A1, . . . , Ap, Ap+1, . . . , An}, cu ponderile {λµ1, . . . , λµp, λp+1, . . . , λn}.

Definiţia 1.17

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi S ⊂ X o submulţime nevidă. Mulţimea

tuturor baricentrelor, cu orice ponderi, care se pot forma cu submulţimi finite

ale lui S,

〈S〉af =

{
m∑
i=1

λiPi : Pi ∈ S, λi ∈ K, i = 1, . . . ,m,

m∑
i=1

λi = 1, m ∈ N

}
,

se numeşte ı̂nfăşurătoarea afină a lui S (̂ın X).

Propoziţia 1.18

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi S ⊂ X o submulţime nevidă. Atunci

subspaţiul afin generat de S coincide cu ı̂nfăşurătoarea afină a lui S, adică

[S]af = 〈S〉af .

Caracterizarea subspaţiilor afine folosind calcul baricentric

Propoziţia 1.19

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi Y ⊂ X o submulţime nevidă. Atunci

Y este subspaţiu afin ı̂n X dacă şi numai dacă orice combinaţie afină finită de

puncte din Y aparţine lui Y , adică Y = 〈Y 〉af .

Propoziţia 1.20

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi Y ⊂ X o submulţime nevidă.

(i) Dacă charK 6= 2, atunci următoarele afirmaţii sunt echivalente:

1. Y este subspaţiu afin ı̂n X,
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2. dreapta afină determinată de orice două puncte ale lui Y este conţinută

ı̂n Y (〈P,Q〉af ⊂ Y , pentru orice P,Q ∈ Y ).

(ii) Dacă charK = 2, atunci următoarele afirmaţii sunt echivalente:

1. Y este subspaţiu afin ı̂n X,

2. echibaricentrul oricărui sistem de trei puncte din Y aparţine lui Y

(P +Q+R ∈ Y , pentru orice P,Q,R ∈ Y ).

Dependenţă şi independenţă afină

Definiţia 1.21

Fie A = (X,
−→
X,φ) un K- spaţiu afin.

(i) Un sistem de puncte {P1, . . . , Pn} ⊂ X se numeşte afin dependent dacă

există i ∈ {1, . . . , n} astfel ı̂ncât Pi este baricentrul cu anumite ponderi ale

celorlalte puncte din sistem.

(ii) Un sistem finit de puncte care conţine un singur punct, sau care nu este

afin dependent se numeşte afin independent.

Observaţia 1.22

1. Orice două puncte distincte sunt afin independente.

2. Orice sistem afin dependent conţine cel puţin trei puncte distincte.

Propoziţia 1.23

Sistemul de puncte {P1, . . . , Pn} este afin dependent (respectiv afin indepen-

dent) dacă şi numai dacă sistemul de n − 1 vectori {
−−−→
P1P2, . . . ,

−−−→
P1Pn} este li-

niar dependent (respectiv liniar independent). În acest caz sistemul de vectori

{
−−→
PiP1, . . . ,

−−→
PiP i−1,

−−→
PiP i+1, . . . ,

−−−→
PiPn} este liniar dependent (respectiv liniar in-

dependent) pentru i = 1, . . . , n.

Corolarul 1.24

1. Sistemul de puncte S = {P1, . . . , Pn} este afin dependent dacă şi numai

dacă există Pj astfel ı̂ncât 〈S〉af = 〈S \ {Pj}〉af .

2. Fie două submulţimi finite de puncte S1, S2 ⊂ X, astfel ı̂ncât S1 ⊆ S2.

Dacă S1 este afin dependent, atunci S2 este afin dependent.
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Dacă S2 este afin independent, atunci S1 este afin independent.

3. Dacă sistemul de puncte {P1, . . . , Pn} este afin independent şi

n∑
i=1

αiPi =

n∑
i=1

βiPi,

n∑
i=1

αi =

n∑
i=1

βi = 1,

atunci αi = βi, pentru i = 1, . . . , n.

4. În planul geometric, trei puncte sunt afin independente dacă şi numai dacă

sunt necoliniare.

În spaţiul geometric, patru puncte sunt afin independente dacă şi numai

dacă sunt necoplanare.

1.5 EXERCIŢII

Combinaţii afine. Calcul baricentric

Exerciţiul 1.9 (Raportul simplu)

Fie A = (X,
−→
X,φ) un spaţiu afin real şi A,B,C ∈ X trei puncte coliniare

distincte. Se numeşte raport simplu1 al punctelor A,B,C, unicul scalar notat

λ = (A,B;C), λ 6= −1, 0, pentru care

−→
AC = λ

−−→
CB.

(1) Să se verifice că (A,B;C) = λ dacă şi numai dacă C =
1

1 + λ
A+

λ

1 + λ
B.

(2) Să se arate că următoarele condiţii sunt echivalente:

(A,B;C) = λ,

(A,C;B) = −(1 + λ),

(B,A;C) =
1

λ
,

(B,C;A) = −1 + λ

λ
,

(C,A;B) = − 1

1 + λ
,

(C,B;A) = − λ

1 + λ
.

Soluţie. Pentru (1), folosind relaţia lui Chasles, rezultă că

(A,B;C) = λ ⇔
−→
AC = λ

−−→
CB ⇔

−→
AC = λ(

−→
AB −

−→
AC) ⇔

−→
AC =

λ

1 + λ

−→
AB

⇔ C =
1

1 + λ
A+

λ

1 + λ
B.

1 Noţiunea de raport simplu a trei puncte poate să difere de la autor la autor.
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Folosind (1), avem

(A,B;C) = λ ⇔
−−→
CB =

1

1 + λ

−→
AB

⇔ (A,C;B) = −(1 + λ).

Analog, se demonstrează toate echivalenţele cerute. �

Exerciţiul 1.10 (Biraportul)

Fie A = (X,
−→
X,φ) un spaţiu afin real şi A,B,C,D ∈ X patru puncte coliniare

distincte. Se numeşte biraportul punctelor A,B,C,D scalarul notat

γ = (A,B;C,D) =
(A,B;C)

(A,B;D)
, γ 6= 0, 1.

(1) Să se arate că

(A,B;C,D) = (B,A;D,C) = (C,D;A,B) = (D,C;B,A).

(2) Să se arate că următoarele condiţii sunt echivalente:

(A,B;C,D) = γ,

(A,B;D,C) =
1

γ
,

(A,C;B,D) = 1− γ,

(A,C;D,B) =
1

1− γ
,

(A,D;B,C) = 1− 1

γ
,

(A,D;C,B) = 1− γ

1− γ
.

Soluţie. Notăm (A,B;C) = α, (A,B;D) = β, α, β 6= −1, 0. Folosind Exerciţiul
1.9 rezultă că

(B,A;C) =
1

α
, (B,A;D) =

1

β
, (C,D;A) = −α(1 + β)

(1 + α)β
, (C,D;B) = −1 + β

1 + α
.

Cu acestea, se verifică imediat (1) şi (2). �

Exerciţiul 1.11

Fie A = (X,
−→
X,φ) un spaţiu afin real, λ ∈ R \ {±1} şi A,B,C,D ∈ X astfel

ı̂ncât (A,B;C) = λ şi (A,B;D) = −λ. Dacă M este mijlocul segmentului

orientat (C,D), adică (C,D;M) = 1, să se arate că (A,B;M) = −λ2.



1.5 Exerciţii 19

Soluţie. Din ipoteză avem C =
1

1 + λ
A +

λ

1 + λ
B, D =

1

1− λA −
λ

1− λB şi

M =
1

2
C +

1

2
D. Astfel

−−→
AM =

1

2

−→
AC +

1

2

−−→
AD =

λ

2(1 + λ)

−→
AB − λ

2(1− λ)

−→
AB

= − λ2

1− λ2

−→
AB.

Analog,

−−→
MB =

1

2

−−→
CB +

1

2

−−→
DB =

1

2(1 + λ)

−→
AB +

1

2(1− λ)

−→
AB

=
1

1− λ2

−→
AB,

deci
−−→
AM = −λ2−−→MB şi concluzionăm. �

Exerciţiul 1.12

Fie A = (X,
−→
X,φ) un spaţiu afin real şi A,B,C ∈ X, distincte două câte două.

(1) Să se arate că dacă M,N,P ∈ X astfel ı̂ncât (B,C;M) = (C,A;N) =

(A,B;P ) = λ, atunci
−−→
AM +

−−→
BN +

−−→
CP = 0.

(2) Fie M,N,P ∈ X \ {A,B,C} astfel ı̂ncât M , N , respectiv P , sunt coliniare

cu B şi C, C şi A, respectiv A şi B. Dacă A,B,C sunt afin independente

şi
−−→
AM +

−−→
BN +

−−→
CP = 0, atunci (B,C;M) = (C,A;N) = (A,B;P ).

(3) În condiţiile de la (1), fie O un punct fixat ı̂n X şi Q,R ∈ X definite

prin condiţiile
−−→
OQ = 2

−−→
CP şi

−−→
OR = 2

−−→
NB. Să se arate că mijlocul S al

segmentului orientat (Q,R) verifică relaţia

−→
OS =

1− λ
1 + λ

−→
CA+

1 + 2λ

1 + λ

−−→
CB, λ 6= −1.

Soluţie. Pentru a verifica (1), din (B,C;M) = (C,A;N) = (A,B;P ) = λ rezultă

M =
1

1 + λ
B +

λ

1 + λ
C, N =

1

1 + λ
C +

λ

1 + λ
A, P =

1

1 + λ
A+

λ

1 + λ
B.

De aici

−−→
AM +

−−→
BN +

−−→
CP =

1

1 + λ

−→
AB +

λ

1 + λ

−→
AC

+
1

1 + λ

−−→
BC +

λ

1 + λ

−→
BA

+
1

1 + λ

−→
CA+

λ

1 + λ

−−→
CB

=
1− λ
1 + λ

(
−→
AB +

−−→
BC +

−→
CA)

= 0.
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Pentru (2), din condiţiile de coliniaritate rezultă că există α, β, γ ∈ R\{0, 1} astfel
ı̂ncât

M = αB + (1− α)C, N = βC + (1− β)A, P = γA+ (1− γ)B.

Avem

−−→
AM = α

−→
AB + (1− α)

−→
AC,

−−→
BN = β

−−→
BC + (1− β)

−→
BA, CP = γ

−→
CA+ (1− γ)

−−→
CB

şi din
−−→
AM +

−−→
BN +

−−→
CP = 0 obţinem

0 = (α+ β − 1)
−→
AB + (−α− γ + 1)

−→
AC + (β + γ − 1)

−−→
BC

= (α− γ)
−→
AB + (β − α)

−→
AC.

De aici, cum A,B,C sunt afin independente, rezultă că α = β = γ şi (B,C;M) =

(C,A;N) = (A,B;P ) =
1− α
α

.

Pentru (3), avem S =
1

2
Q+

1

2
R, deci

−→
OS =

1

2
(
−−→
OQ+

−→
OR) =

−−→
CP +

−−→
NB

=

(
1

1 + λ

−→
CA+

λ

1 + λ

−−→
CB

)
+

(
1

1 + λ

−−→
CB +

λ

1 + λ

−→
AB

)
=

1− λ
1 + λ

−→
CA+

1 + 2λ

1 + λ

−−→
CB.

�

Exerciţiul 1.13

Fie A = (X,
−→
X,φ) un spaţiu afin real şi A1, A2, A3, A4 ∈ X, distincte.

(1) Fie M1, M2, M3, M4 mijloacele segmentelor (A1, A2), (A2, A3), (A3, A4),

respectiv (A4, A1). Să se arate că
−−−−→
M1M2 =

−−−−→
M4M3.

(2) Fie P,Q ∈ X astfel ı̂ncât (A1, A2;P ) = (A3, A4;Q) = λ, λ 6= −1, 0. Să se

verifice că
−−→
PQ =

1

1 + λ

−−−→
A1A3 +

λ

1 + λ

−−−→
A2A4.

Soluţie. Pentru (1) avem M1 =
1

2
A1 +

1

2
A2, M2 =

1

2
A2 +

1

2
A3, deci

−−−−→
M1M2 =

1

2
(
−−−→
A1M2 +

−−−→
A2M2) =

1

4
(
−−−→
A1A2 +

−−−→
A1A3 +

−−−→
A2A3)

=
1

2

−−−→
A1A3.

Analog se arată că
−−−−→
M4M3 =

1

2

−−−→
A1A3.
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Pentru (2), din ipoteză avem P =
1

1 + λ
A1 +

λ

1 + λ
A2, Q =

1

1 + λ
A3 +

λ

1 + λ
A4.

Astfel,

−−→
PQ =

1

1 + λ

−−→
A1Q+

λ

1 + λ

−−→
A2Q

=
1

(1 + λ)2
(
−−−→
A1A3 + λ

−−−→
A1A4 + λ

−−−→
A2A3 + λ2−−−→A2A4)

=
1

1 + λ

−−−→
A1A3 +

λ

1 + λ

−−−→
A2A4.

�

Exerciţiul 1.14

Fie P1, P2, P3, P4, respectiv Q1, Q2, Q3, Q4, puncte ale unui spaţiu afin real

A = (X,
−→
X,φ), astfel ı̂ncât

−−−→
P1P2 =

−−−→
P4P3 şi

−−−→
Q1Q2 =

−−−→
Q4Q3, iar Pi 6= Qi, pentru

i = 1, . . . , 4. Fie punctele Ri ∈ X astfel ı̂ncât (Pi, Qi;Ri) = λ, λ 6= −1, 0, pentru

i = 1, . . . , 4.

(1) Să se arate că
−−−→
R1R2 =

−−−→
R4R3.

(2) Să se arate că dacă

O =
1

2
P1 +

1

2
P3, O′ =

1

2
Q1 +

1

2
Q3, O′′ =

1

2
R1 +

1

2
R3,

atunci (O,O′;O′′) = λ.

Soluţie. Pentru (1), avem
−−−→
P1R1 = λ

−−−→
R1Q1 şi

−−−→
P2R2 = λ

−−−→
R2Q2. Făcând diferenţa

celor două relaţii obţinem

−−−→
P1R1 −

−−−→
P2R2 = λ(

−−−→
R1Q1 −

−−−→
R2Q2) ⇔

−−−→
P1P2 −

−−−→
R1R2 = λ(

−−−→
R1R2 −

−−−→
Q1Q2)

⇔ (1 + λ)
−−−→
R1R2 =

−−−→
P1P2 + λ

−−−→
Q1Q2.

Analog, (1+λ)
−−−→
R4R3 =

−−−→
P4P3 +λ

−−−→
Q4Q3 şi, cum

−−−→
P1P2 =

−−−→
P4P3 şi

−−−→
Q1Q2 =

−−−→
Q4Q3, rezultă

că
−−−→
R1R2 =

−−−→
R4R3.

Pentru (2), avem

−−→
OO′′ =

1

2
(
−−−→
P1O

′′ +
−−−→
P3O

′′) =
1

4
(
−−−→
P1R1 +

−−−→
P1R3 +

−−−→
P3R1 +

−−−→
P3R3)

=
1

4
(
−−−→
P1R1 +

−−−→
P1R1 +

−−−→
R1R3 +

−−−→
P3R3 +

−−−→
R3R1 +

−−−→
P3R3)

=
1

2
(
−−−→
P1R1 +

−−−→
P3R3) =

1

2
λ(
−−−→
R1Q1 +

−−−→
R3Q3).

Analog,

−−−→
O′′O′ =

1

2
(
−−−→
R1O

′ +
−−−→
R3O

′) =
1

4
(
−−−→
R1Q1 +

−−−→
R1Q3 +

−−−→
R3Q1 +

−−−→
R3Q3)

=
1

2
(
−−−→
R1Q1 +

−−−→
R3Q3).

�
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Exerciţiul 1.15

Fie A = (X,
−→
X,φ) un K-spaţiu afin, A1, . . . , An ∈ X, λ1, . . . , λn ∈ K cu

n∑
i=1

λi = 0 şi aplicaţia

f : X →
−→
X, f(M) =

n∑
i=1

λi
−−−→
MAi, M ∈ X.

Să se arate că aplicaţia f este constantă.

Soluţie. Fie O ∈ X, fixat. Folosind relaţia lui Chasles şi

n∑
i=1

λi = 0, avem

f(M) =

n∑
i=1

λi
−−−→
MAi =

n∑
i=1

λi(
−−→
MO +

−−→
OAi) =

(
n∑
i=1

λi
)
−−→
MO +

n∑
i=1

λi
−−→
OAi

=

n∑
i=1

λi
−−→
OAi = f(O),

pentru orice M ∈ X. Astfel f este constantă, adică vectorul

n∑
i=1

λi
−−−→
MAi nu depinde

de alegerea punctului M . �

Exerciţiul 1.16

Fie A = (X,
−→
X,φ) un K-spaţiu afin, λ1, . . . , λn ∈ K cu

n∑
i=1

λi = λ 6= 0 şi sis-

temul de puncte S = {A1, . . . , An} ⊂ X. Să se arate că P este baricentrul

sistemului S cu ponderile λ−1λ1, . . . , λ−1λn dacă şi numai dacă

n∑
i=1

λi
−−→
PAi = 0.

Soluţie. Dacă P este baricentrul sistemului S cu ponderile λ−1λ1, . . . , λ−1λn, atunci

P =

n∑
i=1

(λ−1λi)Ai, deci 0 = λ−1
n∑
i=1

λi
−−→
PAi, adică

n∑
i=1

λi
−−→
PAi = 0.

Reciproc, fie M ∈ X, fixat arbitrar. Din

n∑
i=1

λi
−−→
PAi = 0 rezultă că

0 =

n∑
i=1

λi(
−−−→
MAi −

−−→
MP ) =

n∑
i=1

λi(
−−−→
MAi)− λ

−−→
MP.

De aici,
−−→
MP =

n∑
i=1

(λ−1λi)
−−−→
MAi, pentru orice M ∈ X şi, cum

n∑
i=1

(λ−1λi) = 1, rezultă

că P =

n∑
i=1

(λ−1λi)Ai. �
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Exerciţiul 1.17

Fie A = (X,
−→
X,φ) un K-spaţiu afin, Pi, Qi ∈ X, λi ∈ K, i = 1, . . . , n, astfel

ı̂ncât Pi 6= Qi, pentru orice i,

n∑
i=1

λi = 1, iar

n∑
i=1

λiPi =

n∑
i=1

λiQi = A.

Să se arate că dacă Ri ∈ X astfel ı̂ncât (Pi, Qi;Ri) = λ, pentru i = 1, . . . , n,

atunci

n∑
i=1

λiRi = A.

Soluţie. Metoda 1. Din (Pi, Qi;Ri) = λ avem
−−→
PiRi = λ

−−−→
RiQi, pentru orice i =

1, . . . , n. Pentru M ∈ X fixat arbitrar avem

n∑
i=1

λi
−−→
PiRi = λ

n∑
i=1

λi
−−−→
RiQi ⇔

n∑
i=1

λi
−−−→
MRi −

n∑
i=1

λi
−−→
MPi = λ

n∑
i=1

λi
−−−→
MQi − λ

n∑
i=1

λi
−−−→
MRi ⇔

(1 + λ)

n∑
i=1

λi
−−−→
MRi = (1 + λ)

−−→
MA ⇔

n∑
i=1

λi
−−−→
MRi =

−−→
MA.

De aici

n∑
i=1

λiRi = A.

Metoda 2. Din ipoteză avem Ri =
1

1 + λ
Pi +

λ

1 + λ
Qi, pentru i = 1, . . . , n, deci,

folosind Propoziţia 1.16, obţinem

n∑
i=1

λiRi =

n∑
i=1

λi
(

1

1 + λ
Pi +

λ

1 + λ
Qi

)

=
1

1 + λ

n∑
i=1

λiPi +
λ

1 + λ

n∑
i=1

λiQi = A.

�

Exerciţiul 1.18

Fie A = (X,
−→
X,φ) un K-spaţiu afin, Pi, Qi, Ri ∈ X, i = 1, . . . , n, astfel ı̂ncât
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(Pi, Qi;Ri) = λ, pentru orice i. Dacă λi ∈ K, i = 1, . . . , n, cu

n∑
i=1

λi = 1 şi

P =

n∑
i=1

λiPi, Q =

n∑
i=1

λiQi, R =

n∑
i=1

λiRi,

atunci (P,Q;R) = λ.

Soluţie. Din ipoteză avem
−−→
PiRi = λ

−−−→
RiQi, pentru orice i = 1, . . . , n, şi

−→
PR =

n∑
i=1

λi
−−→
PRi =

n∑
i=1

λi(
−−→
PPi +

−−→
PiRi) =

n∑
i=1

λi
−−→
PiRi =

n∑
i=1

(λiλ)
−−−→
RiQi

= λ

n∑
i=1

λi(
−−→
RiR+

−−→
RQi) = λ

n∑
i=1

λi
−−→
RQi

= λ
−→
RQ.

Exerciţiul se poate rezolva şi folosind combinaţii afine (vezi Propoziţia 1.16) �

Exerciţiul 1.19

Fie A = (X,
−→
X,φ) un spaţiu afin real şi A1, . . . , An ∈ X. Fie B1, . . . , Bn,

C1, . . . , Cn ∈ X şi α ∈ R astfel ı̂ncât

αB1 + (1− α)C1 = αA1 + (1− α)A2,

αB2 + (1− α)C2 = αA2 + (1− α)A3,

...

αBn + (1− α)Cn = αAn + (1− α)A1.

Dacă G =

n∑
i=1

1

n
Ai, G′ =

n∑
i=1

1

n
Bi şi G′′ =

n∑
i=1

1

n
Ci, să se arate că

G = αG′ + (1− α)G′′.

Soluţie. Fie M ∈ X, fixat arbitrar. Din ipoteză avem

α
−−−→
MB1 + (1− α)

−−−→
MC1 = α

−−−→
MA1 + (1− α)

−−−→
MA2,

α
−−−→
MB2 + (1− α)

−−−→
MC2 = α

−−−→
MA2 + (1− α)

−−−→
MA3,

...

α
−−−→
MBn + (1− α)

−−−→
MCn = α

−−−→
MAn + (1− α)

−−−→
MA1

şi sumând aceste relaţii obţinem

α

n∑
i=1

−−−→
MBi + (1− α)

n∑
i=1

−−−→
MCi =

n∑
i=1

−−−→
MAi,
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adică

α
−−−→
MG′ + (1− α)

−−−→
MG′′ =

−−→
MG.

�

Exerciţiul 1.20

Fie A = (X,
−→
X,φ) un spaţiu afin real şi A1, . . . , An, B1, . . . , Bn ∈ X. Dacă

G =

n∑
i=1

1

n
Ai, G

′ =

n∑
i=1

1

n
Bi, să se arate că

n∑
i=1

−−−→
AiBi = n

−−→
GG′.

În particular, două sisteme de puncte {A1, . . . , An} şi {B1, . . . , Bn} din X au

acelaşi baricentru dacă şi numai dacă

n∑
i=1

−−−→
AiBi = 0.

Soluţie. Fie M ∈ X, fixat arbitrar. Din ipoteză avem

n∑
i=1

−−−→
MAi = n

−−→
MG,

n∑
i=1

−−−→
MBi = n

−−−→
MG′.

Astfel
n∑
i=1

−−−→
AiBi =

n∑
i=1

(
−−−→
MBi −

−−−→
MAi) = n(

−−−→
MG′ −

−−→
MG) = n

−−→
GG′.

�

Exerciţiul 1.21

Fie A = (X,
−→
X,φ) un spaţiu afin real.

(1) Fie P1, P2, P3 ∈ X trei puncte distincte. Dacă Q1, Q2, Q3 ∈ X astfel ı̂ncât

(P2, P3;Q1) = (P3, P1;Q2) = (P1, P2;Q3), atunci

1

3
P1 +

1

3
P2 +

1

3
P3 =

1

3
Q1 +

1

3
Q2 +

1

3
Q3.

(2) Reciproc, fie P1, P2, P3 afin independente, iar Q1, Q2, respectiv Q3, colini-

are cu punctele P2 şi P3, P3 şi P1, respectiv P1 şi P2. Dacă

1

3
P1 +

1

3
P2 +

1

3
P3 =

1

3
Q1 +

1

3
Q2 +

1

3
Q3,

atunci (P2, P3;Q1) = (P3, P1;Q2) = (P1, P2;Q3).
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(3) Fie P1, . . . , Pn ∈ X şi fie

Q1 = λ1P1 + λ2P2 + . . .+ λn−1Pn−1 + λnPn,

Q2 = λ1P2 + λ2P3 + . . .+ λn−1Pn + λnP1,

Q3 = λ1P3 + λ2P4 + . . .+ λn−1P1 + λnP2,

...

Qn−1 = λ1Pn−1 + λ2Pn + . . .+ λn−1Pn−3 + λnPn−2,

Qn = λ1Pn + λ2P1 + . . .+ λn−1Pn−2 + λnPn−1,

unde

n∑
i=1

λi = 1. Atunci

n∑
i=1

1

n
Pi =

n∑
i=1

1

n
Qi.

Soluţie. Pentru (1), din (P2, P3;Q1) = (P3, P1;Q2) = (P1, P2;Q3) = λ, rezultă
că

−−−→
P2Q1 =

λ

1 + λ

−−−→
P2P3,

−−−→
P3Q2 =

λ

1 + λ

−−−→
P3P1,

−−−→
P1Q3 =

λ

1 + λ

−−−→
P1P2.

Astfel, pentru M ∈ X fixat arbitrar, utilizând relaţia lui Chasles, avem

1

3
(
−−−→
MP1 +

−−−→
MP2 +

−−−→
MP3) =

1

3
(
−−−→
MQ3 +

−−−→
Q3P1 +

−−−→
MQ1 +

−−−→
Q1P2 +

−−−→
MQ2 +

−−−→
Q2P3)

=
1

3
(
−−−→
MQ1 +

−−−→
MQ2 +

−−−→
MQ3)

− λ

3(1 + λ)
(
−−−→
P1P2 +

−−−→
P2P3 +

−−−→
P3P1)

=
1

3
(
−−−→
MQ1 +

−−−→
MQ2 +

−−−→
MQ3).

Pentru (2), fie M ∈ X fixat arbitrar. Prin ipoteză avem,

−−−→
MP1 +

−−−→
MP2 +

−−−→
MP3 =

−−−→
MQ1 +

−−−→
MQ2 +

−−−→
MQ3,

deci
−−−→
P1Q1 +

−−−→
P2Q2 +

−−−→
P3Q3 = 0. Concluzia urmează analog cu Exerciţiul 1.12 (2).

Pentru (3), fie M ∈ X fixat arbitrar. Din ipoteză avem

n∑
i=1

−−−→
MQi = λ1

n∑
i=1

−−→
MPi + λ2

n∑
i=1

−−→
MPi + . . .+ λn

n∑
i=1

−−→
MPi =

n∑
k=1

λk
n∑
i=1

−−→
MPi

=

n∑
i=1

−−→
MPi.

�
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Exerciţiul 1.22 (Teorema lui Thales)

Fie A = (X,
−→
X,φ) un K-spaţiu afin, dim A ≥ 2, şi fie A,B,C ∈ X trei puncte

afin independente.

(1) Să se arate că dacă P,Q ∈ X astfel ı̂ncât (A,B;P ) = (A,C;Q), atunci

vectorii
−−→
PQ şi

−−→
BC sunt coliniari.

(2) Să se arate că dacă P,Q ∈ X \ {A,B,C} astfel ı̂ncât P , respectiv Q, este

coliniar cu A şi B, respectiv A şi C, iar vectorii
−−→
PQ şi

−−→
BC sunt coliniari,

atunci (A,B;P ) = (A,C;Q).

Soluţie. Pentru (1), dacă (A,B;P ) = (A,C;Q) = λ, atunci

P =
1

1 + λ
A+

λ

1 + λ
B, Q =

1

1 + λ
A+

λ

1 + λ
C,

deci

−−→
PQ =

−→
AQ−

−→
AP =

λ

1 + λ
(
−→
AC −

−→
AB)

=
λ

1 + λ

−−→
BC.

Pentru (2), fie P = α1A+ (1− α1)B, Q = α2A+ (1− α2)C, α1, α2 ∈ R \ {0, 1}.
Avem

−−→
PQ =

−→
AQ−

−→
AP = (1− α2)

−→
AC − (1− α1)

−→
AB.

Dar
−−→
PQ = α

−−→
BC = α

−→
AC − α

−→
AB şi, cum A,B,C sunt afin independente, rezultă că

1− α1 = 1− α2 = α. Astfel (A,B;P ) = (A,C;Q) =
α

1− α . �

Exerciţiul 1.23 (Teorema lui Menelaus)

Fie An−1 = (X,
−→
X,φ) un K-spaţiu afin de dimensiune n − 1, n ≥ 2. Fie

A1, A2, . . . , An ∈ X puncte afin independente şi B1, B2, . . . , Bn ∈ X astfel

ı̂ncât

(A1, A2;B1) = λ1, (A2, A3;B2) = λ2, . . . , (An, A1;Bn) = λn.

Să se arate că B1, B2, . . . , Bn sunt afin dependente dacă şi numai dacă

λ1λ2 . . . λn = (−1)n.
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Soluţie. Pentru a demonstra implicaţia directă, din ipoteză avem

B1 =
1

1 + λ1
A1 +

λ1

1 + λ1
A2,

B2 =
1

1 + λ2
A2 +

λ2

1 + λ2
A3,

...

Bn−1 =
1

1 + λn−1
An−1 +

λn−1

1 + λn−1
An,

Bn =
1

1 + λn
An +

λn
1 + λn

A1.

Cum B1, B2, . . . , Bn sunt afin dependente, putem presupune, fără a restrânge gene-
ralitatea, că

B1 = α2B2 + α3B3 + . . .+ αnBn,

n∑
j=2

αj = 1. (1.2)

Avem astfel

1

1 + λ1
A1 +

λ1

1 + λ1
A2 =

α2

1 + λ2
A2 +

α2λ2

1 + λ2
A3 + . . .+

αn
1 + λn

An +
αnλn
1 + λn

A1. (1.3)

Cum A1, . . . , An sunt afin independente, folosind Corolarul 1.24 (3), rezultă că

α2 =
λ1(1 + λ2)

1 + λ1
, α3 = −λ1λ2(1 + λ3)

1 + λ1
, . . . , αn = (−1)n

λ1λ2 . . . λn−1(1 + λn)

1 + λ1

(1.4)
şi

αn =
1 + λn

λn(1 + λ1)
. (1.5)

Egalând valorile lui αn din (1.4) şi (1.5), obţinem

λ1λ2 . . . λn = (−1)n.

Reciproc, dacă λ1λ2 . . . λn = (−1)n şi considerăm scalarii α2, α3, . . . , αn ca ı̂n

relaţia (1.4), atunci va rezulta că aceştia satisfac

n∑
j=2

αj = 1. Cu aceşti scalari, se

obţine relaţia (1.3), adică (1.2), deci punctele B1, B2, . . . , Bn sunt afin dependente.

�

Exerciţiul 1.24 (Teorema lui Ceva)

Fie An−1 = (X,
−→
X,φ) un spaţiu afin real, dim A = n − 1, n ≥ 3. Fie

A1, A2, . . . , An ∈ X puncte afin independente şi M1,M2, . . . ,Mn ∈ X astfel

ı̂ncât M1 este diferit de A2, . . . , An, M2 este diferit de A1, A3, . . . , An, . . ., res-
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pectiv Mn este diferit de A1, . . . , An−1 şi

−−−→
A2M1 = λ11

−−−→
M1A3 + λ21

−−−→
M1A4 + . . .+ λn−31

−−−−−→
M1An−1 + λn−21

−−−−→
M1An,

−−−→
A3M2 = λ12

−−−→
M2A4 + λ22

−−−→
M2A5 + . . .+ λn−32

−−−−→
M2An + λn−22

−−−→
M2A1,

...
−−−−→
A1Mn = λ1n

−−−−→
MnA2 + λ2n

−−−−→
MnA3 + . . .+ λn−3n

−−−−−−→
MnAn−2 + λn−2n

−−−−−−→
MnAn−1.

(1) Să se arate că dacă dreptele A1M1, A2M2, . . . , AnMn au un punct comun,

atunci au loc următoarele n(n− 3) + 1 relaţii

λ11 · λ12 = λ21, λ
1
1 · λ22 = λ31, . . . , λ

1
1 · λn−32 = λn−21 ,

λ12 · λ13 = λ22, λ
1
2 · λ23 = λ32, . . . , λ

1
2 · λn−33 = λn−22 ,

...

λ1n−1 · λ1n = λ2n−1, λ
1
n−1 · λ2n = λ3n−1, . . . , λ

1
n−1 · λn−3n = λn−2n−1,

λ1n · λ11 = λ2n, λ
1
n · λ21 = λ3n, . . . , λ

1
n · λn−31 = λn−2n ,

λ11 · λ12 · . . . · λ1n = 1.

(2) Să se arate că dacă dreptele A1M1, A2M2, . . . , AnMn nu sunt paralele

două câte două şi au loc relaţiile de la (1), atunci cele n drepte au un

punct comun.

Soluţie. Pentru (1), să presupunem că dreptele A1M1, A2M2, . . . , AnMn au un
punct comun

M = αiAi + (1− αi)Mi, i = 1, . . . , n. (1.6)

Din ipoteză avem că αi 6∈ {0, 1}, i = 1, . . . , n. Vom determina, ı̂n continuare, coor-
donatele baricentrice ale lui M ı̂n raport cu sistemul de puncte afin independente
{A1, . . . , An}.
Din ipoteză avem că

Mi =
1

µi
Ai+1 +

n−2∑
j=1

λji
µi
Ai+j+1, (1.7)

unde µi = 1 +

n−2∑
k=1

λki , iar An+h = Ah, pentru orice h = 1, . . . , n− 1. Deducem că

M = αiAi +
1− αi
µi

Ai+1 +

n−2∑
j=1

(1− αi)λji
µi

Ai+j+1, i = 1, . . . , n. (1.8)

Ţinând cont de unicitatea coordonatelor baricentrice ale lui M ı̂n raport cu sistemul
de puncte afin independente {A1, . . . , An}, vezi Corolarul 1.24 (3), obţinem

αi+1 =
1− αi
µi

, λji =
αi+j+1

αi+1
, i = 1, . . . , n, j = 1, . . . , n− 2, (1.9)



30 1. Spaţii afine

unde αn+i = αi, pentru orice i = 1, . . . , n. De aici,

λ1
i · λji+1 =

αi+j+2

αi+1
= λj+1

i , i = 1, . . . , n, j = 1, . . . , n− 3.

De asemenea,

λ1
1 · λ1

2 · . . . · λ1
n =

α3

α2
· α4

α3
· . . . · α2

α1
= 1.

Pentru (2), din ipoteză rezultă că există (αi)
n
i=1, soluţie unică a sistemului (1.9).

Cu aceasta este verificată (1.8) care, ţinând cont de (1.7), este echivalentă cu (1.6).

Astfel, punctul M dat de (1.6) se găseşte la intersecţia dreptelor A1M1, A2M2, . . . ,

AnMn. �

Exerciţiul 1.25 (Dreapta Newton-Gauss)

Fie A2 = (X,
−→
X,φ) un K-plan afin, charK 6= 2 şi fie A, B, C ∈ X, puncte

afin independente. Fie E,F ∈ X, astfel ı̂ncât A,B, F (respectiv A,C,E) sunt

coliniare distincte, iar dreptele afine BE şi CF au un punct comun D. Să

se arate că mijloacele segmentelor orientate (A,D), (E,F ) şi (B,C) sunt afin

dependente.

Soluţie. Fie F = (1 − α)A + αB şi E = (1 − β)A + βC, α, β ∈ K \ {0, 1}. Cum
dreptele afine BE şi CF au un punct comun D, rezultă că există γ, δ ∈ K astfel ı̂ncât

D = (1− γ)B + γE = (1− δ)C + δF.

De aici
−−→
AD = (1 − γ)

−→
AB + γβ

−→
AC = δα

−→
AB + (1 − δ)

−→
AC şi, cum A, B, C sunt afin

independente, obţinem (1−αβ)γ = 1−α şi (1−αβ)δ = 1−β. Cum α, β 6= 1, rezultă
că 1− αβ 6= 0, deci

γ =
1− α

1− αβ , δ =
1− β

1− αβ ,

adică

D =
(1− α)(1− β)

1− αβ A+
α(1− α)

1− αβ B +
β(1− α)

1− αβ C.

Notăm cu M =
1

2
A+

1

2
D, N =

1

2
E +

1

2
F , P =

1

2
B +

1

2
C. Avem

−−→
NP =

−→
AP −

−−→
AN =

1− α
2

−→
AB +

1− β
2

−→
AC.

De asemenea,

−−→
MN =

−−→
AN −

−−→
AM =

1

2

−→
AE +

1

2

−→
AF − 1

2

−−→
AD =

αβ(1− α)

2(1− αβ)

−→
AB +

αβ(1− β)

2(1− αβ)

−→
AC.

Evident,
−−→
MN =

αβ

1− αβ
−−→
NP , deci M , N , P sunt coliniare. �
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1.6 Suma (uniunea) subspaţiilor afine. Teorema
dimensiunii pentru subspaţii afine

Definiţia 1.25

Se numeşte suma (uniunea) a două subspaţii afine X ′, X ′′ ale unui K-spaţiu

afin A = (X,
−→
X,φ) cel mai mic subspaţiu afin ce conţine X ′ ∪X ′′, adică

X ′ +X ′′ = [X ′ ∪X ′′]af .

Lema 1.26

Fie X ′, X ′′ două subspaţii afine ale unui K-spaţiu afin A = (X,
−→
X,φ) şi

P ∈ X ′, Q ∈ X ′′. Atunci X ′ ∩X ′′ 6= ∅ dacă şi numai dacă
−−→
PQ ∈

−→
X ′ +

−→
X ′′.

Lema 1.27

Fie X ′, X ′′ două subspaţii afine ale unui K-spaţiu afin A = (X,
−→
X,φ) şi

P ∈ X ′, Q ∈ X ′′. Atunci

−−−−−−→
X ′ +X ′′ =

−→
X ′ +

−→
X ′′ + span{

−−→
PQ}.

Propoziţia 1.28

Dacă X ′, X ′′ sunt două subspaţii afine ale unui K-spaţiu afin A = (X,
−→
X,φ),

atunci

−−−−−−→
X ′ +X ′′ =


−→
X ′ +

−→
X ′′, dacă X ′ ∩X ′′ 6= ∅

−→
X ′ +

−→
X ′′ + span{

−−→
PQ}, dacă X ′ ∩X ′′ = ∅,

unde P ∈ X ′ şi Q ∈ X ′′, fixaţi arbitrar.

Teorema 1.29 (Teorema dimensiunii)

Fie X ′, X ′′ două subspaţii afine de dimensiune finită ale unui K-spaţiu afin

A = (X,
−→
X,φ). Atunci X ′ +X ′′ este un subspaţiu afin de dimensiune finită şi

dim(X ′+X ′′) =


dimX ′ + dimX ′′ − dim(X ′ ∩X ′′), dacă X ′ ∩X ′′ 6= ∅

dimX ′ + dimX ′′ − dim(
−→
X ′ ∩

−→
X ′′) + 1, dacă X ′ ∩X ′′ = ∅.
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Demonstraţie

Demonstraţia se bazează pe Teorema lui Grassmann pentru dimensiunea

spaţiului vectorial sumă a două subspaţii vectoriale.

Consecinţe

1. Fie X ′, X ′′ două subspaţii afine ale unui K-spaţiu afin A = (X,
−→
X,φ) finit

dimensional. Dacă
−→
X =

−→
X ′ ⊕

−→
X ′′, atunci X ′ ∩X ′′ constă dintr-un singur

punct.

2. Dacă dimX ′ = k1, dimX ′′ = k2 şi X ′ ∩X ′′ = ∅, atunci dim(X ′ + X ′′) >

max{k1, k2}.

3. Dacă dimX ′ = k, X ′′ = {P} şi P 6∈ X ′, atunci dim(X ′ +X ′′) = k + 1. De

exemplu, spaţiul afin sumă dintre o dreaptă şi un punct exterior ei este un

plan afin.

1.7 EXERCIŢII

Subspaţii afine. Teorema dimensiunii

Exerciţiul 1.26

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi Y ⊂ X, Y 6= ∅. Să se arate că

următoarele afirmaţii sunt echivalente:

(1) Y ⊂
s.a.

X.

(2) Există P ∈ Y astfel ı̂ncât φP (Y ) ⊂
s.v.

−→
X .

(3) Pentru orice Q ∈ Y are loc φQ(Y ) ⊂
s.v.

−→
X .

(4) Există P ∈ Y astfel ı̂ncât Y ⊂
s.v.

TP (X).

(5) Pentru orice punct Q ∈ Y are loc Y ⊂
s.v.

TQ(X).

Soluţie. Avem imediat (3) ⇔ (5), deoarece φQ : TQ(X)→
−→
X este un izomorfism

de spaţii vectoriale pentru orice Q ∈ X. Cu aceeaşi argumentare, (2) ⇔ (4).

Implicaţiile (1)⇒ (3)⇒ (2)⇒ (1) rezultă imediat aplicând Teorema 1.9. Pentru

(1) ⇒ (3), se arată că φQ(Y ) =
−→
Y . Implicaţia (3) ⇒ (2) este evidentă. Pentru (2) ⇒

(1), se utilizează faptul că Y = P + φP (Y ). �
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Exerciţiul 1.27

Fie X1, X2 două K-spaţii afine şi Y1 ⊂
s.a.

X1, Y2 ⊂
s.a.

X2. Să se arate că

Y1 × Y2 ⊂
s.a.

X1 ×X2.

Soluţie. Dacă Yi ⊂
s.a.

Xi, atunci Yi = Pi+
−→
Yi , Pi ∈ Yi,

−→
Yi ⊂

s.v.

−→
Xi, i = 1, 2. Se verifică

imediat că
Y1 × Y2 = (P1, P2) + (

−→
Y1 ×

−→
Y2),

iar
−→
Y1 ×

−→
Y2 ⊂

s.v.

−→
X1 ×

−→
X2. �

Exerciţiul 1.28

Fie X un K-spaţiu afin şi V ⊂
s.v.

−→
X . Notăm cu X/V spaţiul afin cât determinat

de V . Să se arate că dacă Y ⊂
s.a.

X, atunci Y
/V ∩
−→
Y
⊂
s.a.

X/V .

Soluţie. Dacă Y ⊂
s.a.

X, atunci Y = P +
−→
Y , P ∈ Y ,

−→
Y ⊂

s.v.

−→
X . Are loc V ∩

−→
Y ⊂

s.v.

−→
Y

şi se verifică imediat că

Y
/V ∩

−→
Y

= P̂ + V ∩
−→
Y .

�

Exerciţiul 1.29

Să se determine poziţia relativă a două drepte ı̂ntr-un spaţiu afin n-dimensional.

Soluţie. Fie d1, d2 două drepte ı̂ntr-un spaţiu afin n-dimensional X.
Avem:

(I) Dacă d1 ∩ d2 6= ∅, atunci d1 ∩ d2 ⊂
s.a.

d1, deci dim(d1 ∩ d2) ≤ 1.

(I.a) Dacă dim(d1 ∩ d2) = 1, atunci d1 ∩ d2 = d1 = d2, deci cele două drepte
coincid.

(I.b) Dacă dim(d1 ∩ d2) = 0, atunci d1 ∩ d2 = {P}, deci cele două drepte sunt
concurente.

(II) Dacă d1 ∩ d2 = ∅, atunci considerăm
−→
d1 ∩

−→
d2 ⊂

s.v.

−→
d1, deci dim(

−→
d1 ∩

−→
d2) ≤ 1.

(II.a) Dacă dim(
−→
d1 ∩

−→
d2) = 1, atunci

−→
d1 ∩

−→
d2 =

−→
d1 =

−→
d2 şi cele două drepte sunt

paralele.

(II.b) Dacă dim(
−→
d1 ∩

−→
d2) = 0, atunci dim(d1 + d2) = dim

−→
d1 + dim

−→
d2 + 1 = 3.

Astfel, dacă n = 2 acest caz nu apare. Dacă n ≥ 3, ı̂n acest caz cele două
drepte sunt oarecare.

�

Exerciţiul 1.30

Fie d1 şi d2 două drepte ale unui K-spaţiu afin 3-dimensional A = (X,
−→
X,φ).

(1) Care sunt posibilele valori ale dim(d1 + d2)?
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(2) Să se verifice că d1 ∩ d2 = ∅ şi
−→
d1 6=

−→
d2 dacă şi numai dacă d1 + d2 = X.

Soluţie. Pentru (1),

(I) d1 ∩ d2 6= ∅.
(I.a) Dacă dreptele coincid, adică d1 = d2, atunci

dim(d1 + d2) = dim d1 + dim d2 − dim(d1 ∩ d2) = 1.

(I.b) Dacă dreptele sunt concurente, adică d1 ∩ d2 = {P}, atunci

dim(d1 + d2) = dim d1 + dim d2 − dim(d1 ∩ d2) = 2.

(II) d1 ∩ d2 = ∅.
(II.a) Dacă dreptele sunt paralele, adică

−→
d1 =

−→
d2, atunci

dim(d1 + d2) = dim d1 + dim d2 − dim(
−→
d1 ∩

−→
d2) + 1 = 2.

(II.b) Dacă dreptele sunt oarecare (n ≥ 3), atunci

dim(d1 + d2) = dim
−→
d1 + dim

−→
d2 − dim(

−→
d1 ∩

−→
d2) + 1 = 3.

Pentru (2), condiţia d1 + d2 = X este echivalentă cu dim(d1 + d2) = dimX = 3.

Ţinând cont de cazul (II.b), concluzionăm. �

Exerciţiul 1.31

Să se arate că ı̂ntr-un spaţiu afin 3-dimensional dacă două plane se intersec-

tează, atunci fie coincid, fie intersecţia lor este o dreaptă.

Soluţie. Fie π1, π2 două plane cu π1 ∩ π2 6= ∅ ı̂n spaţiul afin X.
Dacă π1 = π2, atunci concluzionăm.
Dacă π1 6= π2, atunci π1∩π2 ⊂

s.a.
π1, π1∩π2 6= π1, deci dim(π1∩π2) ≤ 1. Să presupunem

prin absurd că dim(π1 ∩ π2) = 0. Atunci, din Teorema dimensiunilor,

dim(π1 + π2) = dimπ1 + dimπ2 − dim(π1 ∩ π2) = 4,

dar π1 + π2 ⊂
s.a.

X, iar dimX = 3, deci avem o contradiţie. De aici, concluzionăm că

dim(π1 ∩ π2) = 1. �

Exerciţiul 1.32

Fie spaţiul R4 dotat cu structura afină canonică şi submulţimile ı̂n R4 date de

ecuaţiile:

(1)


x+ y − z − 2t = 0

3x− y + z + 4t = 1

2y − 2z − 5t = −1/2,

(2)


−z + t = 1

2x+ y + z − t = 0

4x+ 2y + 2z + t = 3,
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(3)


2x− y + t = −1

2x− y + t = −1

−x+ 2y + z − 2t = 2,

(4)
{

3x+ z = 0,

(5)

{
−x+ 2y + z − 2t = 2

3x+ z = 0,

(6)


2x− y + t = −1

−x+ 2y + z − 2t = 2

3x+ z + t = 4.

Să se arate că aceste submulţimi definesc subspaţii afine ı̂n R4, scriindu-le sub

forma P +
−→
Y , P ∈ R4 şi

−→
Y ⊂

s.v.
R4, şi furnizând explicit punctul P şi o bază ı̂n

−→
Y .

Soluţie. Punctul P reprezintă o soluţie particulară a sistemului neomogen din

enunţ, iar
−→
Y este reprezentat de mulţimea soluţiilor sistemul omogen asociat acestuia.

(1) P (1/4,−1/4, 0, 0),
−→
Y = {(−µ, λ + 5µ, λ, 2µ) : λ, µ ∈ R}, o bază ı̂n

−→
Y fiind dată

de f1 = (0, 1, 1, 0), f2 = (−1, 5, 0, 2).

(2) P (1/2, 0, 0, 1),
−→
Y = {(λ,−2λ, 0, 0) : λ ∈ R}, o bază ı̂n

−→
Y fiind dată de f1 =

(1,−2, 0, 0).

(3) P (0, 1, 0, 0),
−→
Y = {(0, λ, 0, λ) : λ ∈ R}, o bază ı̂n

−→
Y fiind dată de f1 = (0, 1, 0, 1).

(4) P (0, 0, 0, 0),
−→
Y = {(λ, µ,−3λ, ν) : λ, µ, ν ∈ R}, o bază ı̂n

−→
Y fiind dată de f1 =

(1, 0,−3, 0), f2 = (0, 1, 0, 0), f1 = (0, 0, 0, 1).

(5) P (0, 1, 0, 0),
−→
Y = {(λ, 2λ + µ,−3λ, µ) : λ, µ ∈ R}, o bază ı̂n

−→
Y fiind dată de

f1 = (1, 2,−3, 0), f2 = (0, 1, 0, 1).

(6) P (0, 5, 0, 4),
−→
Y = {(λ, 2λ,−3λ, 0) : λ ∈ R}, o bază ı̂n

−→
Y fiind dată de f1 =

(1, 2,−3, 0).

�

Exerciţiul 1.33

Fie spaţiul R4 dotat cu structura afină canonică şi subspaţiile afine date de

X1 :
{
−2x+ 3y + 4z + t = 5,

X2 :


x− y + 2z − 2t = 7

3x+ z + t = 7

x− y + 5z + 6t = 0

−2x− y + z − 3t = 0,

X3 :

{
−2x+ 3y + 4z + t = 5

−x+ 4y + z − 5t = 8.

Să se determine X1 ∩X2, X2 ∩X3. Să se utilizeze teorema dimensiunii pentru

a determina X2 +X3.
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Soluţie. Rangul matricei sistemului de ecuaţii ce determină X2 este 3 şi

X2 :

 x− y + 2z − 2t = 7
3x+ z + t = 7
x− y + 5z + 6t = 0,

cele trei ecuaţii fiind independente.
Avem

X1 ∩X2 :


−2x+ 3y + 4z + t = 5
x− y + 2z − 2t = 7
3x+ z + t = 7
x− y + 5z + 6t = 0,

iar rangul matricei sistemului este 4, deci intersecţia este un punct. Analog, analizând
sistemul reprezentat de ecuaţiile ce determină X2 şi X3, deducem că X2 ∩X3 = ∅.

Notăm că dimX2 = 1 şi dimX3 = 2. Avem

−→
X2 ∩

−→
X3 :


x− y + 2z − 2t = 0
3x+ z + t = 0
x− y + 5z + 6t = 0
−2x+ 3y + 4z + t = 0
−x+ 4y + z − 5t = 0,

sistem care admite doar soluţia banală. Astfel, dim(
−→
X2 ∩

−→
X3) = 0, şi

dim(X2 +X3) = dim(X2) + dim(X3)− dim(
−→
X2 ∩

−→
X3) + 1 = 4,

deci X2 +X3 = R4. �

Exerciţiul 1.34

Fie, ı̂n spaţiul afin R4, planul afin π dat de

π :

{
2x+ y − z = 2

4x+ t = 5.

Să se determine toate dreptele d ce trec prin (0, 1, 0, 1) şi astfel ı̂ncât π+d = R4.

Soluţie. Avem următoarele situaţii:

(I) dacă π ∩ d 6= ∅, atunci

dim(π + d) = dimπ + dim d− dim(π ∩ d) ≤ 3.

(II) dacă π ∩ d = ∅, atunci

dim(π + d) = dimπ + dim d− dim(−→π ∩
−→
d ) + 1 = 4− dim(−→π ∩

−→
d )

Astfel, π + d = R4 dacă şi numai dacă π ∩ d = ∅ şi −→π ∩
−→
d = {0}.

Se obţine imediat că −→π = span{(1, 0, 2,−4), (0, 1, 1, 0)}, deci −→π ∩
−→
d = {0} dacă

şi numai dacă
−→
d ⊂ span{(0, 0, 1, 0), (0, 0, 0, 1)}. Deducem că

d = (0, 1, 0, 1) + span{(0, 0, α, β)}, α, β ∈ R, α2 + β2 6= 0.
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Acum condiţia π ∩ d = ∅ devine β 6= −4α, deci soluţia este

d :

 x = 0
y = 1
βz − αt = −α,

unde α, β ∈ R, α2 + β2 6= 0, β 6= −4α. �

Exerciţiul 1.35

Fie X1 şi X2 subspaţiile afine ale spaţiului afin R4 date de

X1 = {(a+ 3λ+ 2µ, 1− λ− µ, 4 + λ, 6 + 5λ+ 2µ) / λ, µ ∈ R},
X2 = {(2 + α+ 2β, 1, 1 + α+ β, 3α) /α, β ∈ R}.

Să se determine a ∈ R astfel ı̂ncât X1 ∩X2 6= ∅. Pentru această valoare a lui

a, să se determine X1 ∩X2 şi X1 +X2.

Soluţie. Condiţia X1 ∩X2 6= ∅ este echivalentă cu condiţia de compatibilitate a
sistemului 

3λ+ 2µ− α− 2β = 2− a,
λ+ µ = 0,
λ− α− β = −3,
5λ+ 2µ− 3α = −6,

in necunoscutele λ, µ, α şi β. Rangul matricei sistemului este 3, iar compatibilitatea
este echivalentă cu a = 6.
Rezolvând sistemul pentru a = 6, se obţine λ = −2 + k, µ = 2− k, α = k, β = 1, deci

X1 ∩X2 = {(4 + k, 1, 2 + k, 3k) / k ∈ R}.

Avem
X1 +X2 = P + (

−→
X 1 +

−→
X 2),

unde P ∈ X1 +X2. Putem considera P (2, 1, 1, 0) ∈ X2 ⊂ X1 +X2. Ţinând cont de

−→
X 1 = span{(3,−1, 1, 5), (2,−1, 0, 2)},
−→
X 2 = span{(1, 0, 1, 3), (2, 0, 1, 0)},

avem {(2,−1, 0, 2), (1, 0, 1, 3), (2, 0, 1, 0)} bază ı̂n
−→
X 1 +

−→
X 2. Putem exprima astfel

X1 +X2 = {(2 + 2γ + δ + 2τ, 1− γ, 1 + δ + τ, 2γ + 3δ) / γ, δ, τ ∈ R}.

�

Exerciţiul 1.36

Fie X1 şi X2 subspaţiile afine ale spaţiului afin R4 date de

X1 = {(x, y, z, t) ∈ R4 / x+ y = 4, z + t = a},
X2 = {(3 + λ, 2− 2λ, 2λ,−1 + λ) / λ ∈ R}.

Să se determine a ∈ R astfel ı̂ncât X1 +X2 să aibă dimensiunea minimă.
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Soluţie. Din ipoteze rezultă că

−→
X1 = {(α,−α, β,−β) ∈ R4 : α, β ∈ R},

cu o bază formată din f1 = (1,−1, 0, 0), f2 = (0, 0, 1,−1), iar

−→
X2 = {(λ,−2λ, 2λ, λ) ∈ R4 : λ ∈ R},

cu o bază formată din f3 = (1,−2, 2, 1). Observăm că rang{f1, f2, f3} = 3, deci

dim(
−→
X 1 +

−→
X 2) = 3. Cum dim

−→
X 1 = 2 şi dim

−→
X 2 = 1, din Teorema lui Grassman

avem dim(
−→
X 1 ∩

−→
X 2) = 0.

Dacă X1 ∩X2 = ∅, atunci

dim(X1 +X2) = dimX1 + dimX2 − dim(
−→
X 1 ∩

−→
X 2) + 1 = 4.

Dacă X1 ∩X2 6= ∅, atunci

dim(X1 +X2) = dimX1 + dimX2 − dim(
−→
X 1 ∩

−→
X 2) = 3,

deci X1 + X2 are dimensiunea minimă dacă şi numai dacă X1 ∩ X2 6= ∅. Această
condiţie este echivalentă cu compatibilitatea sistemului

x+ y = 4
z + t = a
x = 3 + λ
y = 2− 2λ
z = 2λ
t = −1 + λ,

adică a = 2. �

1.8 Spaţii afine de dimensiune finită. Repere
afine. Repere carteziene

Definiţia 1.30

Se numeşte reper cartezian pentru un K-spaţiu afin A = (X,
−→
X,φ) o pereche

de forma R = {O;B}, unde O este un punct fixat ı̂n X şi B este o bază ı̂n

spaţiul vectorial director
−→
X .

Punctul O se numeşte originea reperului cartezian R.

Observaţia 1.31

Fie An = (X,
−→
X,φ) un K-spaţiu afin de dimensiune finită n. Atunci mulţimea

R = {O; e1, . . . , en} este reper cartezian dacă şi numai dacă sistemul de n+ 1

puncte {O,P1, . . . , Pn}, cu Pi unic definite de
−−→
OPi = ei, i = 1, . . . , n, este un
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sistem afin independent.

În acest caz, sistemul ordonat de puncte R = {O,P1, . . . , Pn} se numeşte re-

perul afin asociat reperului cartezian R.

Fiecărui punct P ∈ X i se asociază scalarii x0, x1, . . . , xn,

n∑
i=0

xi = 1, astfel

ı̂ncât

P = x0O + x1P1 + . . .+ xnPn,

iar (xi)ni=0 se numesc coordonatele baricentrice ale punctului P ı̂n reperul afin

R.

De asemenea, −−→
OP = x1

−−→
OP1 + . . .+ xn

−−→
OPn,

iar (xj)nj=1 se numesc coordonatele carteziene ale punctului P ı̂n reperul carte-

zian R.

Trecerea de la un reper afin la cel cartezian asociat se face considerând

primul punct al reperului afin ca origine a reperului cartezian.

Schimbarea reperelor afine

Fie reperele afine R = {A0, A1, . . . , An} şi R′ = {A′0, A′1, . . . , A′n} ı̂ntr-un

spaţiu afin de dimensiune finită n, An = (X,
−→
X,φ). Schimbarea reperului afin

R ı̂n R′ este dată de matricele S0 ∈ Mn,1(K), S ∈ Mn,n(K), unde S0 este

matricea coordonatelor vectorului de poziţie al noii origini faţă de reperul car-

tezian asociat reperului afin R, iar S este matricea schimbării de bază de la

B = {
−−−→
A0Ai}ni=1 la B′ = {

−−−→
A′0A

′
i}ni=1. Astfel,

S0 =

s
1

...

sn

 ,

unde
−−−→
A0A

′
0 =

n∑
i=1

si
−−−→
A0Ai, iar

S =

s
1
1 . . . s1n
...

sn1 . . . snn

 ,

unde B′ = S(B), adică
−−−→
A′0A

′
i =

n∑
j=1

sji
−−−→
A0Aj , i = 1, . . . , n.
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La o schimbare de repere afine, dacă P (x1, . . . , xn) ı̂n raport cu reperul

cartezian R şi P (x′1, . . . , x′n) ı̂n raport cu reperul cartezian R′, atunci

xi =

n∑
j=1

sijx
′j + si, i = 1, . . . , n,

adică, ı̂n notaţie matriceală,

X = SX ′ + S0, (1.10)

unde X notează matricea coloană a coordonatelor lui P ı̂n R, iar X ′ notează

matricea coloană a coordonatelor lui P ı̂n R′.
Ecuaţia (1.10) este echivalentă cu(

X

1

)
=

(
S S0

0 1

)(
X ′

1

)
, (1.11)

matricea M(R′,R) =

(
S S0

0 1

)
fiind numită matricea schimbării de repere

afine de la R la R′.

Propoziţia 1.32 (Ecuaţiile implicite ale unui subspaţiu afin)

Fie An = (X,
−→
X,φ) un K-spaţiu afin de dimensiune finită n raportat la un

reper afin al său R = {A0, A1, . . . , An}. Fie A ∈Mn−p,n(K), A0 ∈Mn−p,1(K),

p ≤ n, rangA = n− p. Atunci locul geometric al punctelor P ∈ X pentru care

matricea coordonatelor carteziene X ∈Mn,1(K) verifică ecuaţia matriceală

AX + A0 = 0,

este un subspaţiu afin Y ⊂
s.a.

X, dimY = p, cu subspaţiul vectorial director
−→
Y

de ecuaţie matriceală AX = 0.

Reciproc, orice subspaţiu afin de dimensiune p din Xn, p ≤ n, este dat ı̂n

raport cu un reper afin printr-o ecuaţie matriceală

AX + A0 = 0,

unde A ∈Mn−p,n(K), A0 ∈Mn−p,1(K), rangA = n− p.

Corolarul 1.33

1. Orice hiperplan Yn−1 ⊂
s.a.

Xn se exprimă ı̂ntr-un reper afin printr-o ecuaţie

a1x
1 + . . .+ anx

n + a0 = 0, (a1)2 + . . .+ (an)2 6= 0.

2. Orice subspaţiu afin de dimensiune p este intersecţia a n − p hiperplane

liniar independente.
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Reprezentările analitice ale unui p-plan (subspaţiu afin p-
dimensional)

Fie An = (Xn,
−→
Xn, φ) un K-spaţiu afin de dimensiune finită n raportat la un

reper cartezian R = {O; e1, . . . , en}.
Un subspaţiu afin p-dimensional Yp ⊂

s.a.
Xn poate fi determinat:

1. printr-un punct şi spaţiul vectorial director al său (sau printr-un

reper cartezian al său).

Dacă M0 ∈ Y şi {u1, . . . , up} reprezintă o bază ı̂n spaţiul vectorial director
−→
Y , avem Y = P +

−→
Y , deci

M = P +

p∑
k=1

tkuk, tk ∈ K, k = 1, . . . , p,

pentru orice punct M ∈ Y . Dacă, ı̂n raport cu reperul R, avem

M0(x10, . . . , x
n
0 ), M(x1, . . . , xn) şi uk =

n∑
i=1

λikei, deducem ecuaţiile para-

metrice scalare ale lui Y ,

xi = xi0 +

p∑
k=1

tkλik, i = 1, . . . , n.

Dacă folosim scrierea matriceală şi notăm X = (xi)ni=1, X0 = (xi0)ni=1 şi

Uk = (λik)ni=1, deducem ecuaţia parametrică matriceală a lui Y ,

X = X0 +

p∑
k=1

tkUk.

2. printr-un sistem de p+1 puncte afin independente {A0, A1, . . . , Ap} ⊂
Y (sau printr-un reper afin al său).

Avem A0 ∈ Y şi
−→
Y = span{uk =

−−−→
A0Ak}pk=1, iar problema se reduce la (i).

Cazul p = 1 corespunde dreptelor afine.

1. Dacă o dreaptă afină trece prin M0(x10, . . . , x
n
0 ) şi are drept vector director

u =

n∑
i=1

λiei, atunci ecuaţiile parametrice ale acesteia sunt

xi = xi0 + tλi, i = 1, . . . , n.

Acestea pot fi scrise sub forma canonică

x1 − x10
λ1

=
x2 − x20
λ2

= . . . =
xn − xn0
λn

.
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2. Dacă o dreaptă afină este determinată de un reper afin {A0, A1} al său,

A0(x10, . . . , x
n
0 ), A1(x11, . . . , x

n
1 ), atunci ecuaţiile parametrice ale acesteia

sunt

xi = xi0 + t(xi1 − xi0), i = 1, . . . , n.

Acestea pot fi scrise sub forma canonică

x1 − x10
x11 − x10

=
x2 − x20
x21 − x20

= . . . =
xn − xn0
xn1 − xn0

.

Cazul p = n− 1 corespunde hiperplanelor afine.

1. Dacă un hiperplan afin conţine punctul M0(x10, . . . , x
n
0 ) şi are o bază

{uk =

n∑
i=1

λikei}n−1k=1 a spaţiului vectorial director, atunci ecuaţiile parame-

trice ale acestuia sunt

xi = xi0 + t1λi1 + . . .+ tn−1λin−1, i = 1, . . . , n.

Acestea pot fi scrise sub formă de determinant∣∣∣∣∣∣∣
x1 − x10 λ11 . . . λ1n−1

...
...

...

xn − xn0 λn1 . . . λnn−1

∣∣∣∣∣∣∣ = 0.

Dezvoltarea determinantului după prima coloană conduce la ecuaţia impli-

cită

a1x
1 + . . .+ anx

n + a0 = 0, (a1)2 + . . .+ (an)2 6= 0.

2. Dacă un hiperplan afin este determinat de un reper afin {A0, A1, . . . , An−1}
al său, Aα(x1α, . . . , x

n
α), α = 0, . . . , n − 1, atunci ecuaţia sub formă de de-

terminant a acestuia este∣∣∣∣∣∣∣
x1 − x10 x11 − x10 . . . x1n−1 − x10

...
...

...

xn − xn0 xn1 − xn0 . . . xnn−1 − xn0

∣∣∣∣∣∣∣ = 0,

echivalentă cu ∣∣∣∣∣∣∣∣∣
x1 x10 . . . x1n−1
...

...
...

xn xn0 . . . xnn−1
1 1 . . . 1

∣∣∣∣∣∣∣∣∣ = 0.
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1.9 EXERCIŢII

Spaţii afine de dimensiune finită. Repere afine. Repere carteziene

Exerciţiul 1.37

Fie A4 = (X,
−→
X,φ) un spaţiu afin real 4-dimensional raportat la un reper

cartezian R = {O;B}.

(1) Fie puncteleA1(0, 0,−1,−1),A2(1, 1, 0,−1),A3(2, 0,−1, 0),A4(1,−1,−2, 1),

A5(−3, 2, 3,−2) ∈ X. Să se verifice că sistemul de puncte {A1, A2, . . . , A5}
este afin independent.

(2) Fie punctele B1(0,−2, 2, 3), B2(1, 0, 1, 0), B3(−2,−1, 6, 8), B4(−1, 6, 7, 4) ∈
X. Să se verifice că sistemul de puncte {B1, B2, B3, B4} este afin dependent

şi să se determine ponderile lui B1 ı̂n raport cu {B2, B3, B4}.

(3) Fie C1(0,−2, 2, 1), C2(1, 0,−1,−1), C3(−1,−4, 5, 3), C4(2, 2,−4,−3). Să

se verifice că {C1, C2, C3, C4} este un sistem de puncte coliniare şi să se

determine raportul simplu (C2, C4;C3).

Soluţie. Pentru (1), avem
−−−→
A1A2 = (1, 1, 1, 0),

−−−→
A1A3 = (2, 0, 0, 1),

−−−→
A1A4 =

(1,−1,−1, 2),
−−−→
A1A5 = (−3, 2, 4,−1), şi cum∣∣∣∣∣∣∣

1 2 1 −3
1 0 −1 2
1 0 −1 4
0 1 2 −1

∣∣∣∣∣∣∣ = 4 6= 0,

putem concluziona că sistemul de vectori {
−−−→
A1A2,

−−−→
A1A3,

−−−→
A1A4,

−−−→
A1A5} este liniar in-

dependent, adică sistemul de puncte {A1, A2, . . . , A5} este afin independent.

Pentru (2), avem
−−−→
B1B2 = (1, 2,−1,−3),

−−−→
B1B3 = (−2, 1, 4, 5),

−−−→
B1B4 = (−1, 8, 5, 1),

şi cum

rang

 1 −2 −1
2 1 8
−1 4 5
−3 5 1

 = 2,

putem concluziona că sistemul de vectori {
−−−→
B1B2,

−−−→
B1B3,

−−−→
B1B4} este liniar dependent,

adică sistemul de puncte {B1, B2, B3, B4} este afin dependent.
Pentru a determina ponderile lui B1 ı̂n raport cu B2, B3, B4, determinăm α, β, γ ∈

R pentru care B1 = αB2+βB3+γB4, α+β+γ = 1. Se obţine B1 =
3

4
B2+

1

2
B3−

1

4
B4.

Pentru (3), avem
−−−→
C1C3 = −

−−−→
C1C2 şi

−−−→
C1C4 = 2

−−−→
C1C2. De asemenea,

−−−→
C2C3 =

−2

3

−−−→
C3C4. �

Exerciţiul 1.38

Fie A3 = (X,
−→
X,φ) un spaţiu afin real 3-dimensional raportat la un reper
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cartezian R0 = {O; e1, e2, e3}. Se consideră punctele A0(0, 1, 1), A1(−1, 3, 0),

A2(0, 2, 2), A3(−2, 1, 0) ∈ X.

(1) Să se verifice că sistemul de puncte R = {A0, A1, A2, A3} determină un

reper afin ı̂n A3 şi să se determine coordonatele baricentrice ale punctului

P (7, 0, 11) ı̂n raport cu R.

(2) Să se scrie, ı̂n raport cu reperul cartezian R asociat lui R, ecuaţia dreptei

determinate de punctele A2 şi A3.

(3) În raport cu reperul cartezian R, se consideră planul de ecuaţie 2x′1+x′2+

x′3 − 3 = 0. Să se determine o bază pentru subspaţiul vectorial director al

acestui plan.

(4) Să se descrie schimbarea de coordonate carteziene la ı̂nlocuirea lui R0 cu

R.

Soluţie. Pentru (1), ı̂n raport cu baza B0 = {e1, e2, e3}, avem
−−−→
A0A1 = (−1, 2,−1),

−−−→
A0A2 = (0, 1, 1),

−−−→
A0A3 = (−2, 0,−1), şi cum∣∣∣∣∣∣

−1 0 −2
2 1 0
−1 1 −1

∣∣∣∣∣∣ = −5 6= 0,

putem concluziona că sistemul de vectori {
−−−→
A0A1,

−−−→
A0A2,

−−−→
A0A3} este liniar indepen-

dent, adică sistemul de puncte {A0, A1, A2, A3} este afin independent. De asemenea,

avem
−−→
A0P = (7,−1, 10). Exprimat ı̂n baza reperului R, adică

−−→
A0P = α

−−−→
A0A1 +

β
−−−→
A0A2 + γ

−−−→
A0A3, conduce la sistemul −α− 2γ = 7

2α+ β = −1
−α+ β − γ = 10,

cu soluţiile α = −3, β = 5, γ = −2. Astfel, P = A0 − 3A1 + 5A2 − 2A3.
Pentru (2), notăm cu (x′1, x′2, x′3) coordonatele ı̂n raport cu reperul R. Dreapta

căutată trece prin A2, care ı̂n reperul R are coordonatele (0, 1, 0), şi are drept vector

director
−−−→
A2A3 = −

−−−→
A0A2 +

−−−→
A0A3, deci ecuaţiile parametrice ale sale ı̂n raport cu R

sunt

 x′1 = 0
x′2 = 1− t
x′3 = t.

Pentru (3), ecuaţiile parametrice ale planului sunt

 x′1 = t1

x′2 = t2

x′3 = −2t1 − t2 + 3
, deci

spaţiul vectorial director al acestuia este subspaţiul vectorial generat de u1 =
−−−→
A0A1−

2
−−−→
A0A3 şi u2 =

−−−→
A0A2 −

−−−→
A0A3.

Pentru (4), matricea translaţiei originii este S0 =

0
1
1

, iar matricea schimbării
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de bază de la R0 la R este

S =

−1 0 −2
2 1 0
−1 1 −1

 , cu S−1 =
1

5

 1 2 −2
−2 1 4
−3 −1 1

 .

Astfel,


x1 = −x′1 − 2x′3

x2 = 2x′1 + x′2 + 1

x3 = −x′1 + x′2 − x′3 + 1,

sau



x′1 =
1

5
(x1 + 2x2 − 2x3)

x′2 =
1

5
(−2x1 + x2 + 4x3 − 5)

x′3 =
1

5
(−3x1 − x2 + x3).

�

Exerciţiul 1.39

Fie spaţiul R3 dotat cu structura afină canonică şi raportat la reperul cartezian

canonic. Se consideră punctul M0(1,−3, 5), vectorii

f1 = (1, 2, 0), f2 = (0, 1, 2), f3 = (2, 0, 1)

şi punctele

A0(1,−2,−2), A1(1, 1,−5), A2(−2,−1, 3), A3(6, 1, 2).

(1) Să se arate că R = {M0; f1, f2, f3} este un reper cartezian şi să se deter-

mine reperul afin R asociat lui R.

(2) Să se arate că R′ = {A0, A1, A2, A3} este un reper afin şi să se determine

reperul cartezian R′ cu originea ı̂n A0 asociat lui R′.

(3) Să se determine schimbarea de coordonate la ı̂nlocuirea reperului R cu R′.

(4) Să se scrie ecuaţiile dreptei determinate de M0 şi A0 ı̂n raport cu reperul

R′.

(5) Să se scrie ecuaţia planului determinat de A0, A1, A2 ı̂n raport cu reperul

R.

Soluţie. Pentru (1) avem ∣∣∣∣∣∣
1 0 2
2 1 0
0 2 1

∣∣∣∣∣∣ = 9 6= 0,

deci {f1, f2, f3} este un sistem de vectori liniar independent, adică R este un reper
cartezian. Reperul afin asociat lui R este

R = {M0(1,−3, 5),M1(2,−1, 5),M2(1,−2, 7),M3(3,−3, 6)}.
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Pentru (2) avem

g1 =
−−−→
A0A1 = (0, 3,−3), g2 =

−−−→
A0A2 = (−3, 1, 5), g3 =

−−−→
A0A3 = (5, 3, 4),

iar ∣∣∣∣∣∣
0 −3 5
3 1 3
−3 5 4

∣∣∣∣∣∣ = 153 6= 0,

deci R′ este un reper afin.
Reperul cartezian cu originea ı̂n A0 asociat lui R′ este R′ = {A0; g1, g2, g3}.

Pentru (3), vom nota cu S0 matricea translaţiei originii şi cu S matricea schimbării

de bază, ı̂n trecerea de la reperul R la reperul R′. Avem
−−−→
M0A0 = (0, 1,−7). Exprimat

ı̂n baza reperului R, adică
−−−→
M0A0 = αf1 + βf2 + γf3, conduce la sistemul α+ 2γ = 0

2α+ β = 1
2β + γ = −7,

cu soluţia α = 2, β = −3, γ = −1. Astfel,
−−−→
M0A0 = 2f1−3f2−f3, adică S0 =

 2
−3
−1

.

Avem matricea schimbării de bază de la bază canonică la baza B a reperului R,

S1 =

1 0 2
2 1 0
0 2 1

, şi matricea schimbării de bază de la baza canonică la baza B′ a

reperului R′, S2 =

 0 −3 5
3 1 3
−3 5 4

 . Atunci matricea schimbării de bază de la B la

B′ este

S = S−1
1 S2 =

 2 −1 1
−1 3 1
−1 −1 2

 .

Notând cu x1, x2, x3, respectiv x′1, x′2, x′3, coordonatele ı̂n raport cu R, respectiv R′,
şi ţinând cont de relaţia matriceală X = SX ′ + S0, obţinem x1 = 2x′1 − x′2 + x′3 + 2

x2 = −x′1 + 3x′2 + x′3 − 3
x3 = −x′1 − x′2 + 2x′3 − 1.

(1.12)

Pentru (4), este suficient, spre exemplu, să determinăm coordonatele punctului
M0 ı̂n reperul R′. Cum coordonatele lui M0 ı̂n R sunt (0, 0, 0), din (1.12) deducem

că M0 are coordonatele (−15

17
,

10

17
,

6

17
) ı̂n raport cu R′. Astfel, cum A0(0, 0, 0) ı̂n R′,

ecuaţiile dreptei determinate de A0 şi M0 sunt

x′1

−15
=
x′2

10
=
x′3

6
.

Pentru (5), folosind S, avem
−−−→
A0A1 = g1 = 2f1 − f2 − f3 şi

−−−→
A0A2 = g2 =

−f1+3f2−f3. De asemenea,
−−−→
M0A0 = 2f1−3f2−f3, deci ecuaţia planului determinat
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de A0, A1, A2 faţă de reperul R este∣∣∣∣∣∣
x1 − 2 2 −1
x2 + 3 −1 3
x3 + 1 −1 −1

∣∣∣∣∣∣ = 0, sau 4x1 + 3x2 + 5x3 + 6 = 0.

�

Exerciţiul 1.40

Fie A3 un spaţiu afin real 3-dimensional raportat la un reper cartezian

R = {O; e1, e2, e3}.

(1) Să se scrie ecuaţia vectorială şi sistemul ecuaţiilor parametrice ale dreptei

ce trece prin A0(1,−1, 2) şi are direcţia u = −e1 + 2e2 + 2e3.

(2) Să se scrie ecuaţiile canonice ale dreptei ce trece prin punctul A1(3, 0,−2)

şi are parametrii directori (−1,−2, 4).

(3) Să se scrie ecuaţiile canonice ale dreptei ce trece prin punctele A2(1, 0, 1)

şi A3(0, 2,−2).

(4) Să se scrie ecuaţiile dreptelor ce trec prin O şi au ca vectori directori res-

pectiv pe e1, e2 şi e3.

Soluţie.

(1) Ecuaţia vectorială a dreptei este dată de

r = r0 + tu = e1 − e2 + 2e3 + t(−e1 + 2e2 + 2e3)

= (1− t)e1 + (−1 + 2t)e2 + (2 + 2t)e3, t ∈ R.

Dacă (x1, x2, x3) notează coordonatele ı̂n reperul R, ecuaţiile parametrice ale
dreptei sunt  x1 = 1− t

x2 = −1 + 2t
x3 = 2 + 2t.

(2)
x1 − 3

−1
=

x2

−2
=
x3 + 2

4
.

(3)
x1 − 1

−1
=
x2

2
=
x3 − 1

−3
.

(4) x2 = x3 = 0, x1 = x3 = 0, x1 = x2 = 0.

�

Exerciţiul 1.41

Fie A3 un spaţiu afin 3-dimensional real raportat la un reper cartezian

R = {O; e1, e2, e3}. Să se scrie ecuaţiile parametrice, ecuaţia sub formă de de-

terminant şi ecuaţia generală a planului afin ı̂n fiecare din următoarele cazuri:
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(1) planul trece prin O şi are subspaţiul vectorial director generat de vectorii

u1 = −e1 + 2e2 + e3 şi u2 = e1 − 2e2 + e3;

(2) planul trece prin P0(−1, 2,−1) şi are direcţia planară determinată de vec-

torii v1 = 3e1 + 2e2 + e3 şi v2 = 2e1 − e2 − e3

(3) planul trece prin Q0(2,−4, 5) şi este paralel cu planul x1Ox2;

(4) planul trece prin R0(2,−3, 1) şi este paralel cu dreptele afine

x1 + 5

3
=
x2 − 7

2
=
x3 + 12

−3
,

x1 − 10

3
=
x2 + 2

4
=
x3 − 5

2
;

(5) planul conţine dreapta afină
x1 − 2

2
=
x2 + 1

−3
=
x3 − 2

5
şi este paralel cu

dreapta afină
x1 + 10

3
=
x2 − 4

5
=
x3 − 1

2
;

(6) planul trece prin dreapta afină

{
x1 + x2 + x3 − 1 = 0,

2x1 − x2 − 2 = 0,
şi este paralel cu

dreapta afină
x1 − 1

1
=
x2 + 1

−1
=
x3 − 2

2
;

(7) planul este determinat de dreptele afine
x1 = 3− 5t

x2 = −5− t
x3 = −1 + 3t

şi


x1 = −1 + 4s

x2 = −7 + 2s

x3 = −2 + 1s;

(8) planul trece prin punctul S0(2, 1, 0) şi este paralel cu planul afin de ecuaţii

parametrice


x1 = 5 + 2t1 − 2t2

x2 = 3− t1 + 3t2

x3 = −2− 3t1 − 2t2;

(9) planul este paralel cu planul afin x1 − 2x2 + x3 − 1 = 0 şi conţine dreapta

afină
x1 + 3

1
=
x2 − 2

1
=
x3 − 1

1
;

(10) planul trece prin punctele O, P1(2, 1,−3), P2(1,−1, 0);

(11) planul trece prin mijlocul segmentului orientat (Q1, Q2), unde Q1(1, 3,−1),

Q2(3,−1,−5), şi conţine dreapta afină
x1

3
=
x2 − 2

2
=
x3 + 2

1
;

(12) planul trece prin punctul R1(−1, 0, 1) şi prin intersecţia planelor afine x1−
x2 + x3 + 1 = 0 şi x1 + x2 − x3 − 3 = 0;

(13) planul trece prin punctul Q0(2,−4, 2) şi prin axa Ox3.

Soluţie.
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(1)

 x1 = −t1 + t2

x2 = 2t1 − 2t2

x3 = t1 + t2,

∣∣∣∣∣∣
x1 −1 1
x2 2 −2
x3 1 1

∣∣∣∣∣∣ = 0, 2x1 + x2 = 0.

(2)

 x1 = −1 + 3t1 + 2t2

x2 = 2 + 2t1 − t2
x3 = −1 + t1 − t2,

∣∣∣∣∣∣
x1 + 1 3 2
x2 − 2 2 −1
x3 + 1 1 −1

∣∣∣∣∣∣ = 0, −x1 + 5x2 − 7x3 − 18 = 0.

(3)

 x1 = 2 + t1

x2 = −4 + t2

x3 = 5,

∣∣∣∣∣∣
x1 − 2 1 0
x2 + 4 0 1
x3 − 5 0 0

∣∣∣∣∣∣ = 0, x3 − 5 = 0.

(4)

 x1 = 2 + 3t1 + 3t2

x2 = −3 + 2t1 + 4t2

x3 = 1− 3t1 + 2t2,

∣∣∣∣∣∣
x1 − 2 3 3
x2 + 3 2 4
x3 − 1 −3 2

∣∣∣∣∣∣ = 0, 16x1 − 15x2 + 6x3 − 83 = 0.

(5)

 x1 = 2 + 2t1 + 3t2

x2 = −1− 3t1 + 5t2

x3 = 2 + 5t1 + 2t2,

∣∣∣∣∣∣
x1 − 2 2 3
x2 + 1 −3 5
x3 − 2 5 2

∣∣∣∣∣∣ = 0, −31x1+11x2+19x3+35 = 0.

(6)

 x1 = t1 + t2

x2 = −2 + 2t1 − t2
x3 = 3− 3t1 + 2t2,

∣∣∣∣∣∣
x1 1 1

x2 + 2 2 −1
x3 − 3 −3 2

∣∣∣∣∣∣ = 0, x1 − 5x2 − 3x3 − 1 = 0.

(7) Punctul de intersecţie al celor două drepte este P1(3,−5,−1). x1 = 3− 5t1 + 4t2

x2 = −5− t1 + 2t2

x3 = −1 + 3t1 + 1t2,

∣∣∣∣∣∣
x1 − 3 −5 4
x2 + 5 −1 2
x3 + 1 3 1

∣∣∣∣∣∣ = 0, −7x1+17x2−6x3+100 = 0.

(8)

 x1 = 2 + 2t1 − 2t2

x2 = 1− 1t1 + 3t2

x3 = −3t1 − 2t2,

∣∣∣∣∣∣
x1 − 2 2 −2
x2 − 1 −1 3

x3 −3 −2

∣∣∣∣∣∣ = 0, 11x1 + 10x2 + 4x3 − 32 = 0.

(9)

 x1 = −3 + t1

x2 = 2 + t2

x3 = 1− t1 + 2t2,

∣∣∣∣∣∣
x1 + 3 1 0
x2 − 2 0 1
x3 − 1 −1 2

∣∣∣∣∣∣ = 0, x1 − 2x2 + x3 + 6 = 0.

(10)

 x1 = 2t1 + t2

x2 = t1 − t2
x3 = −3t1,

∣∣∣∣∣∣
x1 2 1
x2 1 −1
x3 −3 0

∣∣∣∣∣∣ = 0, x1 + x2 + x3 = 0.

(11) Avem mijlocul M0(2, 1,−3) şi folosim Q3(0, 2,−2), Q4(3, 4,−1) care aparţin
dreptei date. x1 = 2− 2t1 + t2

x2 = 1 + t1 + 3t2

x3 = −3 + t1 + 2t2,

∣∣∣∣∣∣
x1 − 2 −2 1
x2 − 1 1 3
x3 + 3 1 2

∣∣∣∣∣∣ = 0, −x1 + 5x2 − 7x3 − 24 = 0.

(12) Cele două plane afine date se intersectează după dreapta afină

 x1 = 1
x2 = t
x3 = −2 + t.
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 x1 = −1 + 2t1

x2 = t2

x3 = 1− 3t1 + t2,

∣∣∣∣∣∣
x1 + 1 2 0

x2 0 1
x3 − 1 −3 1

∣∣∣∣∣∣ = 0, 3x1 − 2x2 + 2x3 + 1 = 0.

(13)

 x1 = 2 + 2t1

x2 = −4− 4t1

x3 = 2 + 2t1 + t2,

∣∣∣∣∣∣
x1 − 2 2 0
x2 + 4 −4 0
x3 − 2 2 1

∣∣∣∣∣∣ = 0, 2x1 + x2 = 0.

�

Exerciţiul 1.42

Fie A3 un spaţiu afin 3-dimensional real raportat la un reper cartezian

R = {O; e1, e2, e3}. Pentru α ∈ R, fie dα dreapta ce trece prin punctul

A(−1, 2, 1) şi are direcţia dată de vectorul

uα = (2α+ 1)e1 + (2α− 3)e2 − (3α− 2)e3.

Să se arate că există un plan afin, a cărui ecuaţie să se determine, care conţine

dα, pentru orice α ∈ R.

Soluţie. Scriind ecuaţiile parametrice

dα :

 x1 = −1 + (2α+ 1)t
x2 = 2 + (2α− 3)t
x3 = 1− (3α− 2)t,

şi renotând t1 = αt, t2 = t, deducem că planul

π :

 x1 = −1 + 2t1 + t2

x2 = 2 + 2t1 − 3t2

x3 = 1− 3t1 + 2t2,
sau π : 5x1 + 7x2 + 8x3 − 17 = 0,

conţine dreapta dα, pentru orice α ∈ R. �

Exerciţiul 1.43

Fie A3 un spaţiu afin 3-dimensional real raportat la un reper cartezian

R = {O; e1, e2, e3}. Se consideră dreptele

d1 :

{
x1 − 3x2 − x3 − 2 = 0

3x1 + x2 + x3 + 4 = 0,
d2 :

x1 − 1

3
=
x2 − 4

−2
=
x3 + 1

1
.

(1) Să se scrie ecuaţiile generale ale dreptei ce se sprijină pe d1 şi d2 şi are

direcţia dată de vectorul u = 2e1 − e2 − e3.

(2) Să se scrie ecuaţiile generale ale dreptei ce se sprijină pe d1 şi d2 şi trece

prin punctul A(−2, 3,−5).
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Soluţie. Pentru (1), dacă există, dreapta căutată d se află la intersecţia planelor
afine π1 şi π2, unde π1 este determinat de d1 şi u, iar π2 este determinat de d2 şi u.
Astfel,

d :

{
7x1 + 9x2 + 5x3 + 16 = 0
3x1 + 5x2 + x3 − 22 = 0.

Pentru (2), dreapta căutată d′ se află la intersecţia planelor afine π3 şi π4, unde
π3 este determinat de d1 şi A, iar π4 este determinat de d2 şi A. Astfel,

(d′)

{
5x1 + 5x2 + 3x3 + 10 = 0
x1 + x2 − x3 − 6 = 0.

�

Exerciţiul 1.44

Fie A4 un spaţiu afin real 4-dimensional raportat la un reper cartezian

R = {O; e1, e2, e3, e4}. Se consideră punctele A0(−2, 0, 1,−2), A1(0, 1,−1, 0)

A2(0,−2,−1, 0), A3(−1, 0,−2,−1), A4(0,−1,−2,−1).

(1) Să se determine ecuaţiile dreptei d ce trece prin punctul A2 şi este paralelă

cu dreapta A3A4.

(2) Să se determine ecuaţiile planului π ce trece prin punctul A1 şi este paralel

cu planul A2A3A4.

(3) Să se determine ecuaţia hiperplanului H ′ determinat de punctele A1, A2,

A3, A4.

(4) Să se determine ecuaţia hiperplanului H ′′ ce trece prin A0 şi este paralel

cu hiperplanul H ′.

(5) Să se determine ecuaţia hiperplanului H ′′′ ı̂n raport cu reperul afin

{A0, A1, A2, A3, A4}.

Soluţie. Pentru (1) avem
−−−→
A3A4 = (1,−1, 0, 0), deci ecuaţiile parametrice ale

dreptei sunt d :


x1 = t
x2 = −2− t
x3 = −1
x4 = 0

.

Pentru (2) avem
−−−→
A2A3 = (−1, 2,−1,−1) şi

−−−→
A2A4 = (0, 1,−1,−1), deci ecuaţiile

planului sunt

π :


x1 = −t1
x2 = 1 + 2t1 + t2

x3 = −1− t1 − t2
x4 = −t1 − t2,

sau π :

{
x1 + x2 + x4 − 1 = 0
x3 − x4 + 1 = 0.
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Pentru (3),

H ′ :

∣∣∣∣∣∣∣∣∣
x1 0 0 −1 0
x2 1 −2 0 −1
x3 −1 −1 −2 −2
x4 0 0 −1 −1
1 1 1 1 1

∣∣∣∣∣∣∣∣∣ = 0, sau H ′ : x3 − x4 + 1 = 0.

Pentru (4) avem H ′′ : x3 − x4 + λ = 0 şi din A0 ∈ H ′′ obţinem λ = −3.
Pentru (5), având ı̂n vedere faptul că spaţiul vectorial director al lui H ′′′ este

generat de
−−−→
A1A2,

−−−→
A1A3 şi

−−−→
A1A4, iar

−−−→
A1A2 = −

−−−→
A0A1 +

−−−→
A0A2,

−−−→
A1A3 = −

−−−→
A0A1 +−−−→

A0A3,
−−−→
A1A4 = −

−−−→
A0A1 +

−−−→
A0A4, deducem că ecuaţia lui H ′′′ ı̂n raport cu reperul

{A0, A1, A2, A3, A4} este

H ′′′ :

∣∣∣∣∣∣∣∣
x′1 −1 −1 −1
x′2 1 0 0
x′3 0 1 0
x′4 0 0 1

∣∣∣∣∣∣∣∣ = 0, sau H ′′′ : x′1 + x′2 + x′3 + x′4 = 0.

�

Exerciţiul 1.45

Fie A4 un spaţiu afin real 4-dimensional raportat la un reper cartezian

R = {O; e1, e2, e3, e4}. Se consideră dreptele date de ecuaţiile

(d)


x1 + x3 + 1 = 0

3x1 − x2 + x3 − x4 + 1 = 0,

x1 − x2 − 2x3 − 3x4 − 2 = 0

(d′) x1 = x2 + 1 = x3 − 1 = x4 + 2,

(d′′)


x1 = −2 + 2t

x2 = −4 + 2t

x3 = 4− t
x4 = −5 + t.

(1) Să se verifice că punctele A(0,−2, 0,−2),B(0, 2, 0, 2) şi dreapta d determină

un hiperplan şi să se scrie ecuaţia acestuia.

(2) Să se determine ecuaţiile subspaţiul afin de dimensiune minimă care le

conţine pe d şi d′.

(3) Să se determine ecuaţiile dreptei ce se sprijină pe d, d′ şi d′′.

Soluţie. Pentru (1) avem, spre exemplu, C(0, 0,−1, 0) ∈ d şi u = (2, 3,−2, 1) este

vectorul director al dreptei d. Cum
−→
AB = (0, 4, 0, 4),

−→
AC = (0, 2,−1, 2) şi u sunt liniar

independenţi, rezultă că punctele A(0,−2, 0,−2), B(0, 2, 0, 2) şi dreapta d determină
un hiperplan. Ecuaţia hiperplanului este dată de∣∣∣∣∣∣∣∣

x1 0 0 2
x2 1 2 3

x3 + 1 0 −1 −2
x4 1 2 1

∣∣∣∣∣∣∣∣ = 0, sau x1 − x2 + x4 = 0.
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Pentru (2), trebuie să determinăm d+d′ = [d∪d′]af . Avem D(0,−1, 1,−2) ∈ d′ şi
u′ = (1, 1, 1, 1) este vectorul director al dreptei d′. Observăm că d∩d′ = ∅ şi d nu este
paralelă cu d′. Folosind Teorema dimensiunii, deducem că d + d′ este un hiperplan.
Putem scrie ecuaţia lui d+d′ având ı̂n vedere faptul că trece prin C(0, 0,−1, 0) şi are

subspaţiul vectorial director generat de
−−→
CD = (0,−1, 2,−2), u şi u′,

d+ d′ :

∣∣∣∣∣∣∣∣
x1 0 2 1
x2 −1 3 1

x3 + 1 2 −2 1
x4 −2 1 1

∣∣∣∣∣∣∣∣ = 0, sau 11x1 − 10x2 − 3x3 + 2x4 − 3 = 0.

Pentru (3), dacă există, dreapta căutată se găseşte la intersecţia subspaţiilor afine
d+ d′, d′ + d′′, d′′ + d, iar soluţia este 11x1 − 10x2 − 3x3 + 2x4 − 3 = 0

6x1 − 8x2 − x3 + 3x4 − 1 = 0
3x1 − 4x2 − 4x3 − 2x4 − 4 = 0,

sau


x1 = 0
x2 = t
x3 = −1− 2t
x4 = 2t.

�
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Fie A = (X,
−→
X,φ) şi B = (Y,

−→
Y , ψ) două K-spaţii afine.

Definiţia 1.34

O aplicaţie f : X → Y se numeşte morfism afin dacă există
−→
f ∈ L(

−→
X,
−→
Y )

astfel ı̂ncât −−−−−−→
f(P )f(Q) =

−→
f (
−−→
PQ),

pentru orice P,Q ∈ X.

Propoziţia 1.35

O aplicaţie f : X → Y este un morfism afin dacă şi numai dacă există
−→
f ∈ L(

−→
X,
−→
Y ) astfel ı̂ncât

f(P + u) = f(P ) +
−→
f (u),

pentru orice P ∈ X, u ∈
−→
X .

Propoziţia 1.36 (Caracterizarea morfismelor afine folosind combinaţii afine)

(i) Dacă charK 6= 2, atunci următoarele afirmaţii sunt echivalente:
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1. f : X → Y este un morfism afin,

2. f(λP + (1 − λ)Q) = λf(P ) + (1 − λ)f(Q), pentru orice P,Q ∈ X,

λ ∈ K.

(ii) Dacă charK = 2, atunci următoarele afirmaţii sunt echivalente:

1. f : X → Y este un morfism afin,

2. f(P +Q+R) = f(P ) + f(Q) + f(R), pentru orice P,Q,R ∈ X.

Proprietăţi

1. Fie f : X → Y un morfism afin cu aplicaţia liniară asociată
−→
f . Atunci f

este bijecţie dacă şi numai dacă
−→
f este bijecţie.

Un morfism afin bijectiv f : X → Y se numeşte izomorfism afin.

2. Orice K-spaţiu afin de dimensiune finită n este izomorf, prin fixarea unui

reper cartezian, cu Kn cu structura afină canonică. Subliniem faptul că

izomorfismul nu este canonic.

3. Fie A = (X,
−→
X,φ) un K-spaţiu afin. Mulţimea

GA(X) = {f : X → X /f izomorfism afin}

este grup relativ la compunerea morfismelor, deoarece

(i) compunerea a două morfisme afine este morfism afin,

(ii) inversa unui morfism afin bijectiv este morfism afin.

Grupul GA(X) se numeşte grupul afin al K-spaţiului afin X, iar elementele

acestui grup se numesc afinităţi ale lui X (sau automorfisme afine).

Exemple de morfisme afine

1. Aplicaţia constantă c : X → Y , c(P ) = Q0, pentru orice P ∈ X, unde

Q0 ∈ Y fixat, este un morfism afin cu aplicaţia liniară asociată nulă −→c = 0.

2. Aplicaţia identitate idX : X → X, idX(P ) = P , pentru orice P ∈ X,

este un morfism afin cu aplicaţia liniară asociată Id−→
X

.

3. Translaţia de vector u ∈
−→
X , tu : X → X, definită de una din următoarele

condiţii echivalente:

(i) tu(P ) = Q dacă şi numai dacă
−−→
PQ = u.
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(ii) tu(P ) = P + u, pentru orice P ∈ X.

(iii)
−−−−−→
Ptu(P ) = u, pentru orice P ∈ X.

Proprietăţi

3.1. Orice translaţie este un izomorfism afin cu aplicaţia liniară asociată

Id−→
X

.

Reciproc, orice morfism afin f : X → X cu
−→
f = Id−→

X
este o translaţie

tu, unde u este unic determinat de condiţia

u =
−−−−→
Pf(P ),

pentru un P fixat ı̂n X.

3.2. Mulţimea translaţiilor,

T (X) = {tu : X → X /u ∈
−→
X},

este grup comutativ ı̂n raport cu compunerea funcţiilor, deoarece

tu ◦ tv = tu+v, ∀u, v ∈
−→
X ,

(tu)−1 = t−u, ∀u ∈
−→
X .

3.3. (T (X), ◦) este izomorf cu (
−→
X,+).

3.4. T (X) este divizor normal ı̂n GA(X).

3.5. GA(X) este produsul semidirect dintre T (X) şi GAP (X),

GA(X) = T (X) · GAP (X), ∀P ∈ X,

unde GAP (X) notează mulţimea izomorfismelor afine cu punct fix P ,

numită mulţimea centro-afinităţilor de centru P . Astfel, orice morfism

afin bijectiv este compunerea dintre o translaţie şi o centro-afinitate.

4. Omotetia de centru P ∈ X şi raport λ ∈ K \ {0}, hP,λ : X → X,

definită de una din următoarele condiţii echivalente:

(i) hP,λ(Q) = R dacă şi numai dacă
−→
PR = λ

−−→
PQ.

(ii) hP,λ(Q) = P + λ
−−→
PQ, pentru orice Q ∈ X.

(iii)
−−−−−−→
PhP,λ(Q) = λ

−−→
PQ, pentru orice Q ∈ X.
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Proprietăţi

4.1. Orice omotetie hP,λ : X → X este un izomorfism afin cu punct fix P

şi aplicaţie liniară asociată
−−→
hP,λ = λ Id−→

X
.

Reciproc, orice morfism afin f : X → X cu
−→
f = λ Id−→

X
, λ ∈ K \ {0, 1},

este o omotetie hP,λ, pentru P ∈ X unic determinat de condiţia

P = Q+
1

1− λ
−−−−→
Qf(Q),

pentru un Q fixat ı̂n X.

4.2. Mulţimea omotetiilor de centru P ,

HP (X) = {hP,λ : X → X /λ ∈ K \ {0}}

este grup comutativ ı̂n raport cu compunerea funcţiilor, deoarece

hP,λ ◦ hP,µ = hP,λµ, ∀P ∈ X,λ, µ ∈ K \ {0},

(hP,λ)−1 = hP,λ−1 , ∀P ∈ X,λ ∈ K \ {0}.

4.3. HP (X) este subgrup ı̂n GAP (X).

4.4. Dacă X are cel puţin două puncte, atunci (HP (X), ◦) este izomorf cu

(K∗, ·).

4.5. Compunerea a două omotetii de centre diferite este o translaţie sau o

omotetie,

hP,λ ◦ hQ,µ =

{
tu, λµ = 1

hR,λµ, λµ 6= 1,

unde

u =
−−−−−−→
QhP,λ(Q) = (λ− 1)

−−→
PQ,

iar

R = Q+
1

1− λµ
−−−−−−→
QhP,λ(Q) =

1− λ
1− λµ

P +
λ(1− µ)

1− λµ
Q.

Definiţia 1.37

Fie A = (X,
−→
X,φ) un K-spaţiu afin. Se numeşte dilatare a spaţiului X un auto-

morfism afin f ∈ GA(X) care este o translaţie sau o omotetie. Automorfismele

afine care nu sunt dilatări se numesc antidilatări.

Notăm

Dil(X) = T (X) ∪H(X),

GA(X) = Dil(X) ∪ Antidil(X).
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4.6 Mulţimea Dil(X) este subgrup ı̂n GA(X). Reamintim doar că

tu ◦ hP,λ = hQ,λ, unde Q = P +
1

1− λ
u,

hP,λ ◦ tu = hR,λ, unde R = P +
λ

1− λ
u,

pentru orice P ∈ X, u ∈
−→
X şi λ ∈ K \ {0, 1}.

Morfisme afine ı̂n context finit dimensional

Fie An = (X,
−→
X,φ) şi Bm = (Y,

−→
Y , ψ) două K-spaţii afine de dimensiune finită

n, respectiv m, şi f : X → Y un morfism afin cu aplicaţia liniară asociată
−→
f .

Considerăm reperele carteziene

RX = {A0;B−→
X

= {ei}ni=1} şi RY = {B0;B−→
Y

= {f j}mj=1}.

Notăm cu X matricea coordonatelor unui punct generic P ∈ X ı̂n raport cu

RX şi cu Y matricea coordonatelor punctului f(P ) ∈ Y ı̂n raport cu RY .

Ecuaţia matriceală a morfismului f ı̂n raport cu RX şi RY este dată de

Y = AX + A0, (1.13)

unde A = (aji ) i=1,n
j=1,m

∈Mm,n(K) este matricea transformării liniare
−→
f ı̂n raport

cu perechea de baze B−→
X

şi B−→
Y

, iar

A0 =

a10
...

am0

 ∈Mm,1(K)

este matricea coordonatelor punctului f(A0) ı̂n raport cu reperul RY .

Ecuaţia (1.13) se mai scrie şi sub forma(
Y

1

)
=

(
A A0

0 1

)(
X

1

)
,

matricea

M(f,RX ,RY ) =

(
A A0

0 1

)
fiind numită matricea asociată morfismului afin f ı̂n raport cu perechea de

repere RX şi RY .

Pe componente, ecuaţia matriceală (1.13) se scrie

yj = aj1x
1 + . . .+ ajnx

n + aj0, j = 1, . . . ,m. (1.14)

Reciproc, dacă o aplicaţie f : X → Y are ecuaţiile (1.13) (sau (1.14)) ı̂n

raport cu perechea de repere RX şi RY , atunci f este un morfism afin.
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Exemple

1. Aplicaţia constantă c : X → Y , c(P ) = Q0, pentru orice P ∈ X, are −→c = 0.

Astfel, ı̂n raport cu perechea de repere RX şi RY , c are matricea asociată

M(c,RX ,RY ) =

(
0m,n A0

0 1

)
,

unde A0 este matricea coordonatelor punctului Q0 ı̂n ı̂n raport cu reperul

RY . Ecuaţia matriceală este

Y = A0.

2. Identitatea, idX : X → X are ı̂n raport cu perechea de repereR′X = {A′0;B′}
şi RX = {A0;B} matricea asociată

M(idX ,R′X ,RX) =

(
S S0

0 1

)
= M(R′X ,RX),

unde S este matricea schimbării de bază de la B la B′, iar S0 este matricea

coordonatelor punctului A′0 ı̂n raport cu reperulRX (vezi şi ecuaţia (1.11)).

3. Translaţia de vector u ∈
−→
X , tu : X → X are

−→
tu = Id−→

X
. Astfel, ı̂n raport

cu reperul RX are matricea asociată

M(tu,RX) =

(
In A0

0 1

)
, (1.15)

unde A0 este matricea coordonatelor vectorului
−−−−−−→
A0tu(A0) = u ı̂n baza B−→

X
.

Ecuaţia matriceală este
Y = X + A0,

iar pe componente

yi = xi + ui, i = 1, . . . , n,

unde u =

n∑
i=1

uiei.

4. Omotetia de centru P şi raport λ ∈ K \ {0}, hP,λ : X → Y , are
−−→
hP,λ =

λ Id−→
X

. Astfel, ı̂n raport cu reperul RX are matricea asociată

M(hP,λ,RX) =

(
λIn (1− λ)X0

0 1

)
, (1.16)

unde X0 este matricea coordonatelor punctului P . În adevăr, A0 este matri-

cea coordonatelor vectorului
−−−−−−−−→
A0hP,λ(A0) = (1− λ)

−−→
A0P ı̂n baza B−→

X
, adică

A0 = (1− λ)X0. Ecuaţia matriceală este

Y = λX + (1− λ)X0.
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5. O formă afină f : X → K are matricea asociată ı̂n raport cu reperul RX ,

M(f,RX) =

(
A a0
0 1

)
,

unde A ∈ M1,n(K) este matricea asociată lui
−→
f ı̂n baza B−→

X
, iar

a0 = f(A0). Ecuaţia matriceală este

y = AX + a0.

Propoziţia 1.38

(i) Matricea asociată compunerii a două morfisme afine este produsul matri-

celor asociate celor două morfime. Concret, dacă f : X → Y şi g : Y → Z

sunt morfisme afine şi fixăm reperele carteziene RX , RY , RZ , atunci

M(g ◦ f,RX ,RZ) = M(g,RY ,RZ) ·M(f,RX ,RY ).

(ii) Matricea asociată inversei unui morfism afin bijectiv este inversa matricei

asociate acelui morfism. Concret, dacă f : X → Y este un morfism afin

bijectiv şi fixăm reperele carteziene RX , RY , atunci

M(f−1,RY ,RX) = M(f,RX ,RY )−1.

(iii) Dacă f : X → Y este un morfism afin şi fixăm reperele carteziene RX ,

R′X , RY , R′Y , atunci

M(f,RX ,RY ) = M(idY ,RY ,R′Y )−1 ◦M(f,R′X ,R′Y ) ◦M(idX ,RX ,R′X).

1.11 Paralelismul subspaţiilor afine. Proiecţii şi
simetrii

Paralelismul subspaţiilor afine se defineşte prin analogie cu noţiunea de para-

lelism din spaţiile geometrice cu două şi trei dimensiuni.

Definiţia 1.39

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi X ′, X ′′ subspaţii afine ı̂n X.

(i) Spunem că subspaţiile afine X ′ şi X ′′ sunt paralele şi notăm X ′ ‖ X ′′ dacă
−→
X ′ =

−→
X ′′.
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(ii) Spunem că X ′ este paralel ı̂n sens larg cu X ′′ şi notăm X ′ C X ′′ dacă
−→
X ′ ⊂

s.v.

−→
X ′′.

Observaţia 1.40

1. Relaţia de paralelism pe mulţimea subspaţiilor afine ale unui spaţiu afin

dat este o relaţie de echivalenţă.

2. Relaţia de paralelism ı̂n sens larg pe mulţimea subspaţiilor afine ale unui

spaţiu afin dat este o relaţie de ordine parţială.

Propoziţia 1.41

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi X ′, X ′′ subspaţii afine ı̂n X.

(i) Dacă X ′ ‖ X ′′, atunci X ′ = X ′′ sau X ′ ∩X ′′ = ∅.

(ii) Dacă X ′ CX ′′, atunci X ′ ⊂ X ′′ sau X ′ ∩X ′′ = ∅.

(iii) Dacă P ∈ X, atunci există şi este unic un subspaţiu afin prin P paralel cu

X ′.

Observaţia 1.42

Într-un spaţiu afin dat, un subspaţiu afin şi un hiperplan afin care nu se inter-

sectează sunt paralele ı̂n sens larg.

Propoziţia 1.43

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi f ∈ Dil(X). Dacă Y este un subspaţiu

afin ı̂n X, atunci f(Y ) ‖ Y .

Exemple de morfisme afine (continuare)

Fie A = (X,
−→
X,φ) un K-spaţiu afin, Y ⊂

s.a.
X astfel ı̂ncât există V ⊂

s.v.

−→
X cu

−→
X = V ⊕

−→
Y .

5. Proiecţia afină a lui X pe Y paralelă cu V , p : X → Y este definită

prin
{p(A)} = TA ∩ Y,

pentru orice A ∈ X, unde TA = A + V . Aplicaţia liniară asociată este
−→p = π−→

Y
: V ⊕

−→
Y →

−→
Y .



1.12 Teoreme fundamentale de geometrie afină 61

6. Simetria afină a lui X faţă de Y paralelă cu V , s : X → X este

definită prin

s(A) = 2p(A)−A,

pentru orice A ∈ X.

Propoziţia 1.44

(i) Orice proiecţie afină este un morfism afin idempotent, p ◦ p = p.

(ii) Orice simetrie afină este un automorfism afin involutiv, s ◦ s = idX . Mai

mult, s ◦ p = p.

1.12 Teoreme fundamentale de geometrie afină

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi A,B ∈ X. Pentru simplitate, vom folosi

notaţia AB pentru a indica dreapta afină 〈A,B〉af .

Teorema 1.45 (Teorema lui Thales)

Fie An = (X,
−→
X,φ) un K-spaţiu afin de dimensiune finită n ≥ 1, {Hi}3i=1 trei

hiperplane distincte, paralele şi {dj}j∈I , I 6= ∅, o familie de drepte neparalele

cu Hi, i = 1, . . . , 3. Atunci sunt bine definite punctele

{Aj} = H1 ∩ dj , {Bj} = H2 ∩ dj , {Cj} = H3 ∩ dj ,

j ∈ I, iar scalarii λj ∈ K pentru care
−−−→
AjBj = λj

−−−→
AjCj sunt toţi egali (nu depind

de j).

Lema 1.46

Fie A = (X,
−→
X,φ) un K-spaţiu afin şi fie f ∈ Dil(X), f 6= idX , şi A,B două

puncte distincte ı̂n X.

(i) Dacă f = tu, atunci punctul f(B) este intersecţia dreptei prin f(A) paralelă

la dreapta afină AB cu dreapta prin B paralelă la dreapta afină Af(A).

(ii) Dacă f = hP,λ, atunci punctul f(B), B 6= P , este intersecţia dreptei prin

f(A) paralelă la dreapta afină AB cu dreapta afină PB.
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Teorema 1.47 (Teorema lui Pappus)

Fie A2 = (X,
−→
X,φ) un plan afin şi d, d′ două drepte distincte din plan. Fie

punctele A,B,C ∈ d şi A′, B′, C ′ ∈ d′ astfel ı̂ncât AB′ ‖ A′B şi BC ′ ‖ B′C.

Atunci AC ′ ‖ A′C.

Teorema 1.48 (Teorema lui Desargues)

Fie An = (X,
−→
X,φ) un K-spaţiu afin de dimensiune finită n ≥ 2, ı̂n care

considerăm triunghiurile (tripletele de puncte necoliniare) ABC şi A′B′C ′ ast-

fel ı̂ncât vârfurile lor sunt distincte, iar laturile lor sunt respectiv paralele:

AB ‖ A′B′, BC ‖ B′C ′, CA ‖ C ′A′. Atunci dreptele AA′, BB′, CC ′ sunt

concurente sau paralele.

Teorema 1.49 (Caracterizarea dilatărilor)

Fie A = (X,
−→
X,φ) un K-spaţiu afin de dimensiune finită n ≥ 2 şi f : X → X o

aplicaţie bijectivă. Atunci f este o dilatare a lui X dacă şi numai dacă, pentru

orice dreaptă afină d din X, f(d) este o dreaptă afină ı̂n X paralelă cu d.

1.13 EXERCIŢII

Morfisme afine. Generalităţi

Fie A = (X,
−→
X,φ) şi B = (Y,

−→
Y , ψ) două K-spaţii afine.

Exerciţiul 1.46

Să se arate că următoarele afirmaţii sunt echivalente:

(1) f : X → Y este un morfism afin,

(2) pentru un punct P ∈ X, are loc fP ∈ L(TP (X), Tf(P )(Y )), unde

fP (Q) = f(Q), pentru orice Q ∈ TP (X).

(3) pentru orice punct P ∈ X, are loc fP ∈ L(TP (X), Tf(P )(Y )).

Soluţie. Vom arăta că (1)⇒ (3)⇒ (2)⇒ (1).
Pentru (1) ⇒ (3), vezi şi Teorema 1.2. Fie P ∈ X, fixat arbitrar. Dacă Q ∈

TP (X) = X, şi fP : TP (X)→ Tf(P )Y , atunci

fP (Q) = f(Q) = f(P +
−−→
PQ) = f(P ) +

−→
f (
−−→
PQ) = ψ−1

f(P )(
−→
f (φP (Q))),
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deci fP = ψ−1
f(P ) ◦

−→
f ◦ φP . Cum

ψ−1
f(P ) ∈ L(

−→
Y , Tf(P )Y ),

−→
f ∈ L(

−→
X,
−→
Y ), φP ∈ L(TPX,

−→
X ),

deducem că fP ∈ L(TPX,Tf(P )Y ). Cum P era fixat arbitrar, rezultă că (3) are loc.
Evident, (3)⇒ (2).
Pentru (2)⇒ (1), dacă P ∈ X astfel ı̂ncât fP ∈ L(TPX,Tf(p)Y ), atunci

−−−−−−→
f(R)f(S) =

−−−−−−→
f(P )f(S)−

−−−−−−→
f(P )f(R) = ψf(P )(fP (S))− ψf(P )(fP (R))

= ψf(P )(fP (S)− fP (R)) = ψf(P )(fP (S −R))

= ψf(P )(fP (φ−1
P (φP (S)− φP (R)))

= ψf(P )(fP (φ−1
P (
−→
PS −

−→
PR)))

= ψf(P )(fP (φ−1
P (
−→
RS))),

pentru orice R,S ∈ X. Cum

ψf(P ) ∈ L(Tf(P )Y,
−→
Y ), fP ∈ L(TPX,Tf(P )Y ), φ−1

P ∈ L(
−→
X,TPX),

rezultă că f este un morfism afin cu
−→
f = ψf(P ) ◦ fP ◦ φ−1

P . �

Exerciţiul 1.47

Să se arate că dacă f : X → Y este un morfism afin, atunci transformarea

liniară asociată este unică.

Soluţie. Fixăm u ∈
−→
X . Există P,Q ∈ X astfel ı̂ncât u =

−−→
PQ. Dacă S, T ∈ L(

−→
X,
−→
Y )

sunt transformări liniare asociate lui f (vezi Definiţia 1.34), atunci

S(u) = S(
−−→
PQ) =

−−−−−−→
f(P )f(Q) = T (

−−→
PQ)

= T (u).

Cum u ∈
−→
X este fixat arbitrar deducem că S = T . �

Exerciţiul 1.48 (Unicitatea)

Fie f, g : X → Y două morfisme afine. Să se arate că dacă există P ∈ X astfel

ı̂ncât f(P ) = g(P ) şi
−→
f = −→g , atunci f = g.

Soluţie. Fie Q ∈ X. Atunci

f(Q) = f(P +
−−→
PQ) = f(P ) +

−→
f (
−−→
PQ)

= g(P ) +−→g (
−−→
PQ) = g(P +

−−→
PQ)

= g(Q).

Cum Q este fixat arbitrar, rezultă că f = g. �
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Exerciţiul 1.49 (Existenţa)

Fie T ∈ L(
−→
X,
−→
Y ), P ∈ X şi Q ∈ Y . Să se arate că există un unic morfism afin

f : X → Y astfel ı̂ncât f(P ) = Q şi
−→
f = T .

Soluţie. Unicitatea rezultă din Exerciţiul 1.48.
Pentru existenţă, definim f : X → Y prin

f(A) = Q+ T (
−→
PA), ∀A ∈ X. (1.17)

Evident, f(P ) = Q. Mai mult, cum T ∈ L(
−→
X,
−→
Y ), avem

−−−−−−→
f(A)f(B) =

−−−−→
Qf(B)−

−−−−→
Qf(A) = T (

−−→
PB)− T (

−→
PA) = T (

−→
AB),

pentru orice A,B ∈ X.

Astfel aplicaţia f : X → Y definită ı̂n (1.17) este unicul morfism afin cu f(P ) = Q

şi
−→
f = T . �

Exerciţiul 1.50

Fie P1, . . . , Pn puncte afin independente ı̂n spaţiul afin X şi Q1, . . . , Qn ∈ Y .

(1) Să se arate că există un morfism afin f : X → Y astfel ı̂ncât f(Pi) = Qi,

i = 1, . . . , n.

(2) Să se arate că dacă dimX = n− 1, atunci morfismul de la (1) este unic. În

particular, dacă un morfism afin f : Xn−1 → Xn−1 are n puncte fixe afin

independente, atunci f = idX .

Soluţie. Pentru (1), cum punctele P1, . . . , Pn sunt afin independente, vectorii
−−−→
P1P2, . . . ,

−−−→
P1Pn sunt liniar independenţi. Rezultă că există o aplicaţie liniară T ∈

L(
−→
X,
−→
Y ) astfel ı̂ncât

T (
−−→
P1Pi) =

−−−→
Q1Qi, ∀ i = 1, . . . , n.

Facem observaţia că nu este necesar ca punctele Q1, . . . , Qn să fie afin independente
sau distincte. De asemenea, ı̂n general, aplicaţia liniară T nu este unică cu această
proprietate.
Ţinând cont de Exerciţiul 1.49, considerăm morfismul afin f : X → Y cu f(P1) = Q1

şi
−→
f = T . Avem

f(Pi) = f(P1 +
−−→
P1Pi) = f(P1) +

−→
f (
−−→
P1Pi) = Q1 +

−−−→
Q1Qi = Qi,

pentru orice i = 1, . . . , n.

Pentru (2), dacă dimX = n−1, atunci {
−−−→
P1P2, . . . ,

−−−→
P1Pn} reprezintă o bază pentru

−→
X . În acest caz există o unică aplicaţie liniară T cu

T (
−−→
P1Pi) =

−−−→
Q1Qi, ∀ i = 1, . . . , n.

Evident, orice morfism afin care transformă Pi ı̂n Qi, i = 1, . . . , n, are pe T ca aplicaţie

liniară asociată, deci din Exerciţiul 1.48 rezultă unicitatea. �
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Exerciţiul 1.51

Să se arate că dacă X1, X2 sunt două K-spaţii afine, atunci proiecţiile

pi : X1 ×X2 → Xi, i = 1, 2, sunt morfisme afine.

Soluţie. Fie (P1, P2), (Q1, Q2) ∈ X1 ×X2. Avem

−−−−−−−−−−−−−−−→
pi(P1, P2)pi(Q1, Q2) =

−−−→
PiQi = πi(

−−−→
P1Q1,

−−−→
P2Q2) = πi(

−−−−−−−−−−−→
(P1, P2)(Q1, Q2)),

deci pi este un morfism afin, având drept aplicaţie liniară asociată proiecţia

πi :
−→
X1 ×

−→
X2 →

−→
Xi, i = 1, 2. �

Exerciţiul 1.52

Fie X un K-spaţiu afin, V ⊂
s.v.

−→
X , X/V spaţiul afin cât corespunzător şi

p : X → X/V proiecţia canonică, p(P ) = P̂ , pentru orice P ∈ X. Să se arate

că:

(1) proiecţia p este un morfism afin, având drept aplicaţie liniară asociată

proiecţia π :
−→
X →

−→
X /V , π(u) = u+ V , pentru orice u ∈

−→
X .

(2) structura afină pe X/V este unica ı̂n raport cu care p este un morfism afin

cu aplicaţia liniară asociată π.

Soluţie. Pentru (1), fie P,Q ∈ X. Avem

−−−−−−→
p(P )p(Q) =

−−→
P̂ Q̂ =

−−→
PQ+ V = π(

−−→
PQ),

deci p este un morfism afin cu −→p = π.
Pentru (2), fie ψ o altă structură afină pe X/V pentru care p este un morfism afin

cu aplicaţia liniară asociată π. Fie P,Q ∈ X. Avem

ψ(P̂ , Q̂) = ψ(p(P ), p(Q)) = −→p (
−−→
PQ) = π(

−−→
PQ) =

−−→
PQ+ V =

−−→
P̂ Q̂ = φ̂(P̂ , Q̂),

(vezi şi Exerciţiul 1.3). Cum P,Q sunt fixaţi arbitrar, putem concluziona. �

Exerciţiul 1.53

Fie A = (X,
−→
X,φ) un K-spaţiu afin. Un morfism afin p : X → X idempotent

(p2 = p) se numeşte proiector afin. Să se arate că orice proiector afin este o

proiecţie afină.

Soluţie. Se verifică imediat că dacă p2 = p, atunci −→p 2 = −→p . De aici,

−→
X = Ker−→p ⊕ Im−→p ,

orice u ∈
−→
X scriindu-se ı̂n mod unic sub forma

u = (u−−→p (u)) +−→p (u). (1.18)
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Fie Y = Im p şi V = Ker−→p . Folosind Exerciţiul 1.48, vom arăta că p este proiecţia
lui X pe Y , paralelă cu V , notată pY : X → Y .

Fie B ∈ Y = Im p, fixat. Atunci există A ∈ X astfel ı̂ncât B = p(A). De aici, cum
p este idempotent, p(B) = p2(A) = p(A) = B, deci p(B) = pY (B).

Să arătăm că −→p = −→pY . Fie u ∈
−→
X , fixat arbitrar. Din (1.18) avem

−→pY (u) = −→pY ((u−−→p (u)) +−→p (u)) = −→p (u),

şi concluzionăm. �

Exerciţiul 1.54

Fie A = (X,
−→
X,φ) un K-spaţiu afin, charK 6= 2. Să se arate că dacă s : X → X

este un endomorfism afin involutiv (s2 = idX), atunci s este o simetrie afină.

Soluţie. Considerăm

p : X −→ X,

P −→ p(P ) =
1

2
P +

1

2
s(P ).

Se verifică imediat că −−−−−−→
p(P )p(Q) =

1

2
(−→s + Id−→

X
)(
−−→
PQ),

pentru orice P,Q ∈ X, deci p este un morfism afin cu −→p =
1

2
(−→s + Id−→

X
).

De asemenea, folosind s2 = idX , obţinem

p2(P ) =
1

2

(
1

2
P +

1

2
s(P )

)
+

1

2
s

(
1

2
P +

1

2
s(P )

)
=

1

4
P +

1

2
s(P ) +

1

4
s2(P )

=
1

2
P +

1

2
s(P ) = p(P ),

pentru orice P ∈ X. De aici, folosind Exerciţiul 1.53, deducem că p este proiecţia

afină a lui X pe Y = Im p paralelă cu V = Ker−→p . Cum
−−−−→
Pp(P ) =

−−−−−−→
p(P )s(P ), pentru

orice P ∈ X, deducem că s este simetria afină a lui X faţă de Y paralelă cu V .
Reamintim că

Y = {P ∈ X : p(P ) = P} = {P ∈ X : s(P ) = P},

V = {u ∈
−→
X : −→p (u) = 0} = {u ∈

−→
X : −→s (u) = −u}.

�

Exerciţiul 1.55 (Puncte fixe)

Fie f : X → X un endomorfism afin.

(1) Să se arate că mulţimea Fix(f) a punctelor fixe ale lui f este fie un

subspaţiu afin cu spaţiul vectorial director Ker(
−→
f − Id−→

X
), fie mulţimea

vidă.
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(2) Să se arate că un endomorfism afin are un singur punct fix dacă şi numai

dacă
−→
f nu are ca autovaloare pe 1.

In particular, fie X un spaţiu afin n-dimensional raportat la un reper car-

tezian R = {O;B}. Dacă ecuaţia matriceală a lui f ı̂n raport cu R este

Y = AX + A0,

să se arate că f are un singur punct fix dacă şi numai dacă det(A−In) 6= 0.

Soluţie. Pentru (1), să presupunem că Fix(f) 6= ∅, deci există P ∈ X astfel ı̂ncât
f(P ) = P . Vom arăta că

Fix(f) = P + Ker(
−→
f − Id−→

X
). (1.19)

Dacă u ∈ Ker(
−→
f − Id−→

X
), atunci

f(P + u) = f(P ) +
−→
f (u) = P + u,

deci P + Ker(
−→
f − Id−→

X
) ⊂ Fix(f).

Dacă Q ∈ Fix(f), atunci f(Q) = Q, deci

−−→
PQ =

−−−−−−→
f(P )f(Q) =

−→
f (
−−→
PQ),

adică
−−→
PQ ∈ Ker(

−→
f −Id−→

X
) şi Q ∈ P+Ker(

−→
f −Id−→

X
), deci Fix(f) ⊂ P+Ker(

−→
f −Id−→

X
).

Pentru (2), să presupunem că f admite un singur punct fix P , i.e. Fix(f) = {P}.
Ţinând cont de (1), rezultă că Ker(

−→
f − Id−→

X
) = {0}, adică 1 nu este autovaloare

pentru
−→
f .

Reciproc, dacă 1 nu este autovaloare pentru
−→
f , atunci Ker(

−→
f − Id−→

X
) = {0}. Astfel,

dacă f admite un punct fix, atunci din (1.19) rezultă că acesta este unic. Mai rămâne

să determinăm P ∈ X astfel ı̂ncât f(P ) = P . Fixăm Q ∈ X şi căutăm u ∈
−→
X astfel

ı̂ncât P = Q+ u. Din f(P ) = P deducem

−−−−→
Qf(Q) = −(

−→
f − Id−→

X
)(u). (1.20)

Cum Ker(
−→
f − Id−→

X
) = {0}, avem că

−→
f − Id−→

X
este inversabilă, deci există şi este unic

u care verifică (1.20). În concluzie, P = Q+ u este unicul punct fix pentru f .

În cazul finit dimensional, ecuaţia mulţimii punctelor fixe este dată de

(A− In)X = −A0,

sistem ce are soluţie unică dacă şi numai dacă det(A− In) 6= 0.

�

Exerciţiul 1.56

Fie A = (X,
−→
X,φ) un spaţiu afin real şi f : X → X un endomorfism afin. Să

se arate că dacă există n ∈ N∗ astfel ı̂ncât fn are un punct fix, atunci f are un

punct fix.
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Soluţie. Fie P ∈ X astfel ı̂ncât fn(P ) = P . Vom arăta că echibaricentrul sistemului

de puncte {P, f(P ), . . . , fn−1(P )} este punct fix pentru f . În adevăr,

f

(
1

n
P +

1

n
f(P ) + . . .+

1

n
fn−1(P )

)
=

1

n
f(P ) +

1

n
f2(P ) + . . .+

1

n
fn(P )

=
1

n
P +

1

n
f(P ) + . . .+

1

n
fn−1(P ).

�

EXERCIŢII (Morfisme afine ı̂n context finit dimensional)

Exerciţiul 1.57

Să se verifice dacă următoarele aplicaţii sunt sau nu morfisme afine:

(1) f : C→ C, f(z) = z,

(2) f : R2 → R2, f(x1, x2) = (x1,−x2),

(3) f : R3 → R2, f(x1, x2, x3) = (1 + x1,
√
e).

În primul caz, se vor considera atât structura de spaţiu afin a lui C peste C,

cât şi cea peste R. Structurile afine considerate pe spaţiile R2 şi R3 sunt cele

canonice.

Soluţie. Pentru (1), dacă λ, z1, z2 ∈ C, atunci

f(λz1 + (1− λ)z2) = λz1 + (1− λ)z2 şi λf(z1) + (1− λ)f(z2) = λz1 + (1− λ)z2.

Astfel, f(λz1 + (1 − λ)z2) = λf(z1) + (1 − λ)f(z2), pentru orice z1, z2 ∈ C, dacă şi
numai dacă λ ∈ R, deci f nu este un endomorfism afin al lui C peste C, dar este un
endomorfism afin al lui C peste R.

Pentru (2), ecuaţiile lui f ı̂n raport cu reperul canonic pot fi scrise sub forma(
y1

y2

)
=

(
1 0
0 −1

)(
x1

x2

)
,

deci f este un morfism afin.
Pentru (3), ecuaţiile lui f ı̂n raport cu reperele canonice pot fi scrise sub forma(

y1

y2

)
=

(
1 0 0
0 0 0

)x1x2
x3

+

(
1√
e

)
,

deci f este un morfism afin. �

Exerciţiul 1.58

În spaţiul afin realA3 = (X,
−→
X,φ) raportat la reperul cartezianR = {O; e1, e2, e3}

se consideră punctele

P1(0,−1, 0), P2(0,−2, 0), P3(−1, 0,−1), P4(0, 0, 1),

Q1(2,−1,−2), Q2(2,−2,−3), Q3(3, 1,−5), Q4(2,−1, 1).



1.13 Exerciţii 69

(1) Să se arate că există un unic morfism afin f : X → X determinat de

condiţiile f(Pi) = Qi, i = 1, . . . , 4.

(2) Să se verifice, fără a stabili ecuaţiile morfismului f , că f este bijectivă.

(3) Să se determine
−→
f şi coordonatele lui f(O) ı̂n reperul R.

(4) Să se determine matricea asociată lui f ı̂n raport cu reperul R.

(5) Să se determine punctele fixe ale lui f .

Soluţie. Pentru (1), ţinând cont de Exerciţiul 1.50, este suficient să verificăm că

punctele P1, P2, P3, P4 sunt afin independente. În adevăr,∣∣∣∣∣∣∣
0 0 −1 0
−1 −2 0 0

0 0 −1 1
1 1 1 1

∣∣∣∣∣∣∣ = 1 6= 0.

Pentru (2) este suficient să verificăm că punctele Q1, Q2, Q3, Q4 sunt afin inde-

pendente. În adevăr, ∣∣∣∣∣∣∣
2 2 3 2
−1 −2 1 −1
−2 −3 −5 1

1 1 1 1

∣∣∣∣∣∣∣ = −3 6= 0.

Pentru (3), avem
−→
f (
−−→
P1Pi) =

−−−→
Q1Qi, i = 2, 3, 4, adică

−→
f (0,−1, 0) = (0,−1,−1)
−→
f (−1, 1,−1) = (1, 2,−3)
−→
f (0, 1, 1) = (0, 0, 3).

(1.21)

şi deducem că matricea asociată lui
−→
f ı̂n raport cu baza B = {e1, e2, e3} este

A =

−1 0 0
0 1 −1
2 1 2

 .

Pentru a determina f(O), folosim relaţia
−→
f (
−−→
OP1) =

−−−−−→
f(O)Q1 şi obţinem f(O) =

O′(2, 0,−1), deci A0 =

 2
0
−1

.

Pentru (4), folosind A şi A0, obţinem că matricea asociată morfismului f ı̂n raport
cu R este

M(f,R) =

−1 0 0 2
0 1 −1 0
2 1 2 −1
0 0 0 1

 .

Pentru (5), reamintim că punctele fixe ale morfismului afin f sunt soluţiile siste-
mului (A− I3)X = −A0. Obţinem un singur punct fix M(1,−1, 0).

�
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Exerciţiul 1.59

În spaţiul afin real A3 = (X,
−→
X,φ) raportat la un reper afin R = {E0, E1, E2, E3}

se consideră morfismul afin f : X → X definit prin

f(E0) = A0(2, 4, 2),

f(E1) = A1(1, 4, 4),

f(E2) = A2(2, 3, 0),

f(E3) = A3(2, 2, 1).

(1) Să se arate că f este un izomorfism afin.

(2) Să se scrie ecuaţia matriceală a lui f ı̂n raport cu reperul cartezian R.

(3) Să se determine punctele fixe ale lui f .

(4) Să se determine f(d) şi f(πλ), λ ∈ R, unde

d :
x1 − 1

1
=

x2

−1
=
x3 + 1

1
, πλ : λx1 + x2 + x3 = 0.

Să se verifice că f(d) este paralelă cu f(πλ) dacă şi numai dacă d este

paralelă cu πλ.

(5) Să se determine translaţia tu şi centro-afinitatea gP de centru P (−1, 0, 1)

pentru care f = tu ◦ gP .

Soluţie. Pentru (1), este suficient să verificăm că {A0, A1, A2, A3} sunt afin in-

dependente. În adevăr, ∣∣∣∣∣∣∣
2 1 2 2
4 4 3 2
2 4 0 1
1 1 1 1

∣∣∣∣∣∣∣ = −3 6= 0.

Pentru (2), din f(E0) = A0(2, 4, 2) şi
−→
f (
−−−→
E0E1) =

−−−→
A0A1 = (−1, 0, 2)

−→
f (
−−−→
E0E2) =

−−−→
A0A2 = (0,−1,−2)

−→
f (
−−−→
E0E3) =

−−−→
A0A3 = (0,−2,−1),

(1.22)

deducem că ecuaţiile lui f ı̂n raport cu R sunty1y2
y3

 =

−1 0 0
0 −1 −2
2 −2 −1

x1x2
x3

+

2
4
2

 . (1.23)

Pentru (3), avem Fix(f) = {P ∈ X /f(P ) = P} şi, folosind (1.23), deducem că
Fix(f) este dreapta de ecuaţii {

x1 − 1 = 0
x2 + x3 − 2 = 0.
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Pentru (4), cum f este un izomorfism afin, avem că dacă {A;u} este un reper afin

pentru d, atunci {f(A),
−→
f (u)} este un reper afin pentru f(d). Avem A(1, 0,−1) ∈ d

şi u = (1,−1, 1) şi, folosind ecuaţiile (1.23) şi (1.22), obţinem f(A) = M(1, 6, 5) şi
−→
f (u) = (−1,−1, 3), deci ecuaţiile lui f(d) ı̂n raport cu reperul R0 sunt

f(d) :
x1 − 1

−1
=
x2 − 6

−1
=
x3 − 5

3
.

Analog, considerăm reperul cartezian

{E0(0, 0, 0);u1 = (1, 0,−λ), u2 = (0, 1,−1)}

pentru πλ şi avem

{f(E0) = A0(2, 4, 2);
−→
f (u1) = (−1, 2λ, 2 + λ),

−→
f (u2) = (0, 1,−1)},

reper cartezian pentru f(πλ). Obţinem ecuaţia lui f(πλ) ı̂n raport cu reperul R,

f(πλ) : (3λ+ 2)x1 + x2 + x3 − (6λ+ 10) = 0.

Reamintim şi faptul că ecuaţiile pentru f(d) şi f(πλ) pot fi obţinute folosind
ecuaţiile inversei f−1 a lui f .

Dreapta d este paralelă cu πλ dacă şi numai dacă u, u1, u2 sunt liniar dependenţi,
adică dacă şi numai dacă λ = 0. Analog, se verifică faptul că f(d) este paralelă cu
f(πλ) dacă şi numai dacă λ = 0.

Pentru (5), din g(P ) = P şi f = tu ◦ gP , avem

u =
−−−−→
Pf(P ) = (4, 2,−2).

De aici, cum gP = t−u ◦ f , deducem că ecuaţiile lui gP ı̂n raport cu reperul R0 sunty1y2
y3

 =

−1 0 0
0 −1 −2
2 −2 −1

x1x2
x3

+

−2
2
4

 .

�

Exerciţiul 1.60

În spaţiul afin real A3 = (X,
−→
X,φ) raportat la reperul cartezian R =

{O; e1, e2, e3} se consideră

O′(2,−1, 2), B(2,−4, 5), C(6,−8, 1), A =
3

4
B +

1

4
C

şi u = (1,−1, 2).

(1) Să se determine ecuaţiile translaţiei de vector u, tu : X → X, ı̂n raport cu

reperul R.

(2) Să se determine ecuaţiile omotetiei de centruO′ şi raport
5

2
, hO′, 52 : X → X,

ı̂n raport cu reperul R.
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(3) Să se determine ecuaţiile simetriei faţă de O′, sO′ : X → X, ı̂n raport cu

reperul R.

(4) Să se determine ecuaţiile centro-afinităţii de centru O′, fO′ : X → X,

pentru care −→
fO′(e1) = e1 + 2e2 − e3−→
fO′(e2) = 3e1 + e2 + e3−→
fO′(e3) = e1 − e2 + e3.

(5) Să se stabilească coordonatele punctelor tu(A), hO′, 52 (A), sO′(A) şi fO′(A)

ı̂n raport cu R. Să se indice două moduri diferite ı̂n care se pot determina

aceste coordonate.

(6) Fie dreapta d ⊂ X de ecuaţii

d :
x1 − 2

2
=
x2

3
=
x3 + 1

−1
.

Să se determine tu(d), hO′, 52 (d), sO′(d) şi fO′(d).

(7) Fie planul π ⊂ X de ecuaţie

π : x1 + x2 + x3 − 1 = 0

Să se determine tu(π), hO′, 52 (π),sO′(π) şi fO′(π).

Soluţie. Pentru (1), folosind (1.15), ecuaţiile translaţiei tu sunt date dey1y2
y3

 =

1 0 0
0 1 0
0 0 1

x1x2
x3

+

 1
−1

2

 .

Pentru (2), folosind (1.16), ecuaţiile omotetiei ı̂n raport cu reperul dat sunty1y2
y3

 =
5

2

1 0 0
0 1 0
0 0 1

x1x2
x3

+

−3
3

2
−3

 .

Pentru (3), avem
sO′(P ) = 2O′ − P, ∀P ∈ X,

deci sO′(O) = O′′(4,−2, 4), iar ecuaţiile simetriei ı̂n raport cu reperul dat sunty1y2
y3

 = −

1 0 0
0 1 0
0 0 1

x1x2
x3

+

 4
−2

4

 .

Pentru (4), avem fO′(O) = O′ −
−→
f (
−−→
OO′) = O′′′(1,−2, 3), iar ecuaţiile centro-

afinităţii ı̂n raport cu reperul dat sunty1y2
y3

 =

 1 3 1
2 1 −1
−1 1 1

x1x2
x3

+

 1
−2

3

 .
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Pentru (5), A(3,-5,4) şi, folosind ecuaţiile determinate la (1), (2), (3) şi (4),
obţinem

tu(A) = A1(4,−6, 6), hO′, 5
2
(A) = A2(9/2,−11, 7),

sO′(A) = A3(1, 3, 0), fO′(A) = A4(−7,−5,−1).

Calculul se poate face şi considerând

tu(A) = tu

(
3

4
B +

1

4
C

)
=

3

4
tu(B) +

1

4
tu(C).

Pentru (6), considerăm {M(2, 0,−1); v = (2, 3,−1)} un reper cartezian pentru d.
Avem

tu(M)(3,−1, 1), hO′, 5
2
(M)(2,

3

2
,−11

2
), sO′(M)(2,−2, 5), fO′(M)(2, 3, 0)

şi
−→
tu(v) = v,

−−−→
hO′, 5

2
(v) =

5

2
v, −→sO′(v) = −v,

−→
fO′(v) = (10, 8, 0),

deci

tu(d) :
x1 − 3

2
=
x2 + 1

3
=
x3 − 1

−1
,

hO′, 5
2
(d) :

x1 − 2

2
=
x2 − 3

2
3

=
x3 +

11

2
−1

,

sO′(d) :
x1 − 2

2
=
x2 + 2

3
=
x3 − 5

−1
,

fO′(d) :
x1 − 2

5
=
x2 − 3

4
=
x3

0
.

Notăm că exerciţiul se poate rezolva şi folosind ecuaţiile parametrice ale dreptei
d şi ecuaţiile transformărilor date.

Pentru (7), se procedează analog cu (6), considerându-se reperul cartezian
{N(0, 0, 1);u1 = (1, 0,−1), u2 = (0, 1,−1)} pentru π.

Notăm că exerciţiul se poate rezolva şi folosind ecuaţiile parametrice ale planului

π şi ecuaţiile transformărilor date. �

Exerciţiul 1.61

În spaţiul afin real A3 = (X,
−→
X,φ) raportat la reperul cartezian R =

{O; e1, e2, e3} se consideră punctele A(1, 0, 0), B(0, 2, 0), C(0, 0, 3) şi vectorul

u = e1 + 2e2 + 2e3. Pentru M ∈ X notăm M ′ = tu(M) şi M ′′ = hC,−1/2(M).

(1) Să se determine coordonatele punctelor A′, B′, A′′, B′′ şi să se verifice că

A′B′A′′B′′ este un trapez.

(2) Să se compare rezultatele compunerilor tu ◦ hC,−1/2 şi hC,−1/2 ◦ tu şi să se

arate că tu ◦ hC,λ = hC,λ ◦ tu dacă şi numai dacă u = 0 sau λ = 1.

(3) Să se determine hA,−1 ◦ hB,2 ◦ hC,−1/2.
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Soluţie. Pentru (1), M ′ = M + u şi M ′′ = C − 1

2

−−→
CM , pentru orice M ∈ X, deci

A′(2, 2, 2), B′(1, 4, 2), A′′(−1/2, 0, 9/2), B′′(0,−1, 9/2). Din Propoziţia 1.43 rezultă

că A′B′ ‖ AB şi A′′B′′ ‖ AB, deci A′B′ ‖ A′′B′′. În adevăr,
−−−→
A′B′ = (−1, 2, 0) şi

−−−→
A′′B′′ = (1/2,−1, 0), deci A′B′A′′B′′ este un trapez.

Pentru (2), avem

M(tu ◦ hC,−1/2) = M(tu) ·M(hC,−1/2) =

1 0 0 1
0 1 0 2
0 0 1 2
0 0 0 1



−1

2
0 0 0

0 −1

2
0 0

0 0 −1

2

9

2
0 0 0 1



=


−1

2
0 0 1

0 −1

2
0 2

0 0 −1

2

13

2
0 0 0 1


şi

M(hC,−1/2 ◦ tu) = M(hC,−1/2) ·M(tu) =


−1

2
0 0 0

0 −1

2
0 0

0 0 −1

2

9

2
0 0 0 1


1 0 0 1

0 1 0 2
0 0 1 2
0 0 0 1



=


−1

2
0 0 −1

2

0 −1

2
0 −1

0 0 −1

2

7

2
0 0 0 1

 ,

deci tu ◦ hC,−1/2 6= hC,−1/2 ◦ tu.
Cu o altă abordare,

tu ◦ hC,λ(M) = C + (λ
−−→
CM + u),

iar
hC,λ ◦ tu(M) = C + λ(

−−→
CM + u),

pentru orice M ∈ X, deci tu ◦ hC,λ = hC,λ ◦ tu dacă şi numai dacă (1− λ)u = 0.
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Pentru (3),

M(hA,−1 ◦ hB,2 ◦ hC,−1/2) = M(hA,−1)M(hB,2)M(hC,−1/2)

=

−1 0 0 2
0 −1 0 0
0 0 −1 0
0 0 0 1


2 0 0 0

0 2 0 −2
0 0 2 0
0 0 0 1



−1

2
0 0 0

0 −1

2
0 0

0 0 −1

2

9

2
0 0 0 1



=

1 0 0 2
0 1 0 2
0 0 1 −9
0 0 0 1

 ,

deci hA,−1 ◦ hB,2 ◦ hC,−1/2 = tv, unde v = 2e1 + 2e2 − 9e3. �

Exerciţiul 1.62

În planul afin real A2 = (X,
−→
X,φ) raportat la reperul cartezianR0 = {O; e1, e2}

se consideră dreptele concurente d1 şi d2. Notăm cu p1 : X → d2 proiecţia lui

X pe d2 paralelă cu d1 şi cu p2 : X → d1 proiecţia lui X pe d1 paralelă cu d2.

Să se determine expresiile analitice ale acestor proiecţii ı̂n următoarele situaţii:

(1) d1 : x1 − x2 − 1 = 0 şi d2 : x1 − 2x2 + 3 = 0.

(2) d1 : 2x1 − x2 + 1 = 0 şi {M2(0, 2);u2 = (1, 1)} este un reper cartezian al

dreptei d2.

(3) dreapta d1 este dată de reperul său cartezian {M1(1, 1);u1 = (2,−3)} şi

dreapta d2 de reperul său cartezian {M2(2,−2);u2 = (1,−1)}

Soluţie. Vom rezolva exerciţiul folosind Propoziţia 1.38 (iii). Dacă d1 ∩ d2 = {A}
şi u1, u2 reprezintă vectorii directori ai dreptelor d1 şi, respectiv d2, putem considera

reperul R = {A;u1, u2}. În raport cu acesta avem

M(p1,R) =

0 0 0
0 1 0
0 0 1

 şi M(p2,R) =

1 0 0
0 0 0
0 0 1

 .

Din Propoziţia 1.38 (iii) avem

M(p1,R0) = M(idX ,R,R0) ◦M(p1,R) ◦M(idX ,R0,R).

Mai mult, M(idX ,R,R0) = M(R,R0) este matricea schimbării de reper de la R0 la
R (vezi şi (1.11)).

Pentru (1), avem A(5, 4), u1 = (1, 1), u2 = (2, 1), deci

M(R,R0) =

1 2 5
1 1 4
0 0 1

 şi M(R0,R) = M(R,R0)−1 =

−1 2 −3
1 −1 −1
0 0 1

 .
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Astfel,

M(p1,R0) =

2 −2 3
1 −1 3
0 0 1

 şi M(p2,R0) =

−1 2 2
−1 2 1

0 0 1


Pentru (3), avem A(5,−5), u1 = (2,−3), u2 = (1,−1) şi

M(p1,R0) =

 3 2 0
−3 −2 0

0 0 1

 şi M(p2,R0) =

−2 −2 5
3 3 −5
0 0 1

 .

Notăm că ecuaţiile proiecţiei p1 se pot obţine şi determinând efectiv punctul de

intersecţie dintre d2 şi paralela printr-un punct generic din plan la d1. �

Exerciţiul 1.63

Într-un spaţiu afin real A3 = (X,
−→
X,φ) raportat la reperul cartezian R =

{O; e1, e2, e3} se consideră dreapta d şi planul π, d ∩ π = {A}. Notăm cu

pd : X → π proiecţia lui X pe π paralelă cu d şi cu pπ : X → d proiecţia lui X

pe d paralelă cu π.

(1) Să se determine expresiile analitice ale proiecţiei pd ı̂n următoarele situaţii:

(i) π : x1 − 2x2 − 4x3 + 5 = 0, iar vectorul director al dreptei d este

u = −e1 + 2e2 − e3.

(ii) {M(−1, 1,−2);u1 = (−1, 0, 1), u2 = (1,−1, 0)} reprezintă un reper

cartezian pentru π, iar vectorul director al dreptei d este u = (−1, 1, 1).

(2) Să se determine expresiile analitice ale proiecţiei pπ ı̂n următoarele situaţii:

(i) d :


x1 = 1 + t

x2 = −1− t
x3 = 2− t

şi spaţiul vectorial director al lui π este generat de

u1 = (1, 0, 1), u2 = (1,−1, 0).

(ii) {M(0, 0, 0);u = (1, 3, 1)} reprezintă un reper cartezian pentru d şi

spaţiul vectorial director al lui π este generat de u1 = (−1,−1, 0),

u2 = (1, 0,−1)

Soluţie. Notăm că exerciţiul poate fi rezolvat intr-o manieră analoagă cu
Exerciţiul 1.62, prin calcul matriceal. Vom prezenta aici o abordare diferită.

Pentru (1)(i), fie P (x10, x
2
0, x

3
0) un punct fixat arbitrar ı̂n X. Notăm cu P ′ = pd(P ),

intersecţia dintre planul π şi paralela d′ prin P la d. Ecuaţiile parametrice ale dreptei
d′ ı̂n raport cu reperul R sunt

d′ :

 x1 = x10 − t
x2 = x20 + 2t
x3 = x30 − t.

Introducând acestea ı̂n ecuaţia lui π obţinem t = x10 − 2x20 − 4x30 + 5, deci

P ′(2x20 + 4x30 − 5, 2x10 − 3x20 − 8x30 + 10,−x10 + 2x20 + 5x30 − 5).
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Astfel, ecuaţiile proiecţiei pd ı̂n raport cu reperul R sunty1y2
y3

 =

 0 2 4
2 −3 −8
−1 2 5

x1x2
x3

+

−5
10
−5

 .

Pentru (1)(ii), ecuaţia planului π este

π : x1 + x2 + x3 + 2 = 0

şi, procedând analog, se obţin ecuaţiile proiecţiei pd,y1y2
y3

 =

 2 1 1
−2 −1 −2

1 1 2

x1x2
x3

+

 2
−4

2

 .

Pentru (2)(i), fie P (x10, x
2
0, x

3
0) un punct fixat arbitrar ı̂n X. Notăm cu P ′ = pπ(P ),

intersecţia dintre dreapta d şi planul paralel π′ prin P la π. Ecuaţia planului π′ este

π′ : x1 + x2 − x3 − x10 − x20 + x30 = 0,

Substituind ecuaţiile parametrice ale dreptei d ı̂n ecuaţia planului π′ se obţine t =
−x10 − x20 + x30 − 2, deci

P ′(−x10 − x20 + x30 − 1, x10 + x20 − x30 + 1,−x10 − x20 + x30).

Astfel ecuaţiile proiecţiei pπ sunt date dey1y2
y3

 =

−1 −1 1
1 1 −1
−1 −1 1

x1x2
x3

+

−1
1
0

 .

Pentru (2)(ii), procedând analog, se obţin ecuaţiile proiecţiei pπ,y1y2
y3

 =

−1 1 −1
−3 3 −3
−1 1 −1

x1x2
x3

 .

�

Exerciţiul 1.64

Într-un plan afin real A2 = (X,
−→
X,φ) raportat la un reper cartezianR = {O; e1, e2}

se consideră aplicaţia f : X → X, definită prin ecuaţiile{
y1 = 12x1 − 4x2 − 7

y2 = −9x1 + 3x2 + 7.

(1) Să se arate că aplicaţia f este un morfism afin.

(2) Să se arate că f are un unic punct fix. Să se determine acesta.

(3) Să se determine imaginea lui f .
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Soluţie. Pentru (1), ecuaţiile lui f ı̂n raport cu reperul R pot fi scrise sub forma
Y = AX + A0, unde

A =

(
12 −4
−9 3

)
şi A0 =

(
−7

7

)
,

deci f este un morfism afin.
Pentru (2), avem det(A− I2) = −14 6= 0, deci f admite un unic punct fix. Acesta

este dat de soluţia sistemului (A− I2)X = −A0, adică{
11x1 − 4x2 = 7
−9x1 + 2x2 = −7,

deci A(1, 1) este unicul punct fix al morfismului afin f .
Pentru (3), notăm că rangA = 1, deci imaginea lui f este o dreptă. Cum A este

punct fix pentru f şi
−→
f (e1) = (12,−9), deducem că imaginea lui f este dreapta de

ecuaţie canonică
x1 − 1

4
=
x2 − 1

−3
.

�

Exerciţiul 1.65

Într-un plan afin real A2 = (X,
−→
X,φ) raportat la un reper cartezian R =

{O; e1, e2} se consideră morfismul afin f : X → X de ecuaţii{
y1 = 3x1 + x2 − 6

y2 = x1 + 3x2 + 9.

(1) Să se arate că f are un unic punct fix şi să se determine acesta.

(2) Să se scrie ecuaţiile dreptelor care rămân invariate prin morfismul f .

Soluţie. Pentru (1), avem

A =

(
3 1
1 3

)
şi A0 =

(
−6

9

)
.

Cum det(A− I2) = 3 6= 0, rezultă că f admite un unic punct fix. Acesta este dat de
soluţia sistemului (A− I2)X = −A0, adică{

2x1 + x2 = 6
x1 + 2x2 = −9,

deci A(7,−8) este unicul punct fix al morfismului afin f .
Pentru (2), notăm că o dreaptă invariată de f trebuie să conţină A şi trebuie să

aibă spaţiul vectorial director generat de un vector propriu al aplicaţiei liniare
−→
f .

Folosind matricea A obţinem vectorii u1 = (1,−1) şi u2 = (1, 1). Astfel există două
drepte invariate de f , iar ecuaţiile acestora sunt

d1 : x1 + x2 + 1 = 0, d2 : x1 − x2 − 15 = 0.

�
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Exerciţiul 1.66

Într-un plan afin real A2 = (X,
−→
X,φ) raportat la un reper cartezian R =

{O; e1, e2} se consideră morfismul afin f : X → X de ecuaţii{
y1 = 3x1 − 2x2 + 10

y2 = −x1 + x2 − 6.

(1) Fie dreapta afină de ecuaţie d : x1− x2 + 10 = 0. Să se determine punctele

dreptei d a căror imagine prin f aparţine tot dreptei d.

(2) Să se determine dreapta afină d′ ce conţine punctul P (−1, 1) şi a cărei

imagine prin f conţine punctul P .

Soluţie. Pentru (1), punctele căutate sunt soluţii ale sistemului{
x1 − x2 + 10 = 0
3x1 − 2x2 + 10− (−x1 + x2 − 6) + 10 = 0.

Există o singură soluţie M(4, 14).
Pentru (2), notăm că f este un morfism afin bijectiv, iar ecuaţiile inversei ı̂n raport

cu reperul R sunt {
y1 = x1 + 2x2 + 2
y2 = x1 + 3x2 + 8

şi f−1(P ) = P ′(3, 10).
Dreapta d′ este determinată de punctele P şi P ′ = f−1(P ), deci ecuaţia sa ı̂n

raport cu reperul R este
d′ : 9x1 − 4x2 + 13 = 0.

�

Exerciţiul 1.67

Fie A3 = (X,
−→
X,φ) un spaţiu afin real 3-dimensional raportat la reperul car-

tezian R = {O; e1, e2, e3} şi fie f : X → X definită de ecuaţiile
y1 = 5x1 + 2x2 + 2x3 − 2

y2 = −4x1 − x2 − 2x3 + 2

y3 = 8x1 + 4x2 + 5x3 − 4.

(1) Să se arate că aplicaţia f este un morfism afin.

(2) Să se verifice că f este bijectivă şi să se determine f−1.

(3) Să arate că mulţimea punctelor fixe ale lui f este un plan πf .

(4) Să se arate că
−−−−→
Pf(P ) este coliniar cu

−−−−→
Qf(Q), pentru orice P,Q ∈ X.

(5) Să se arate că raportul simplu (P ′, f(P );P ) este constant, unde P ∈ X cu

f(P ) 6= P , iar P ′ reprezintă intersecţia dreptei Pf(P ) cu πf .
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Soluţie. Pentru (1), ecuaţiile lui f ı̂n raport cu reperul R pot fi scrise sub forma
Y = AX + A0, unde

A =

 5 2 2
−4 −1 −2

8 4 5

 şi A0 =

−2
2
−4

 ,

deci f este un morfism afin.
Pentru (2), detA = 7 6= 0, deci f este bijectiv. Ecuaţiile inversei f−1 ı̂n raport cu

reperul R sunt 

y1 =
3

7
x1 − 2

7
x2 − 2

7
x3 +

2

7

y2 =
4

7
x1 +

9

7
x2 +

2

7
x3 − 2

7

y3 = −8

7
x1 − 4

7
x2 +

3

7
x3 +

4

7
.

Pentru (3), rang(A− I3) = 1, deci mulţimea punctelor fixe ale lui f este un plan.
Acesta este dat de soluţia sistemului (A− I3)X = −A0, adică

πf : 2x1 + x2 + x3 − 1 = 0.

Pentru (4), fie P ∈ X fixat arbitrar. Dacă P (x1, x2, x3) ı̂n raport cu reperul R,
atunci −−−−→

Pf(P ) = 2(2x1 + x2 + x3 − 1)(1,−1, 2).

În concluzie,
−−−−→
Pf(P ) este paralel cu vectorul constant u = (1,−1, 2), pentru orice

P ∈ X.
Pentru (5), dacă P (x10, x

2
0, x

3
0) ı̂n raport cu reperul R, atunci ecuaţiile parametrice

ale dreptei Pf(P ) sunt  x1 = x10 + t
x2 = x20 − t
x3 = x30 + 2t.

iar P ′ se obţine pentru t =
−2x10 − x20 − x30 + 1

3
. Astfel,

−−→
P ′P =

2x10 + x20 + x30 − 1

3
(1,−1, 2).

Din (4) avem
−−−−→
Pf(P ) = 2(2x10 + x20 + x30 − 1)(1,−1, 2), deci (P ′, f(P );P ) =

1

6
.

�

Exerciţiul 1.68

Fie A3 = (X,
−→
X,φ) un spaţiu afin real 3-dimensional, A ∈ X fixat şi f : X → X

un endomorfism afin cu proprietatea că f3(P ) = A, pentru orice P ∈ X.

(1) Să se determine mulţimea punctelor fixe ale lui f .

(2) Dacă B ∈ X astfel ı̂ncât f2(B) 6= A, să se arate că {A,B, f(B), f2(B)}
este un reper afin. Să se scrie ecuaţiile lui f ı̂n reperul cartezian asociat.
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(3) Să se arate că imaginea lui f este planul 〈A, f(B), f2(B)〉af şi f−1(A) este

dreapta 〈A, f2(B)〉af .

Soluţie. Pentru (1), avem
Fix(f) = {A}.

În adevăr, f(A) = f(f3(A)) = f3(f(A)) = A. Invers, dacă f(P ) = P , atunci f3(P ) =
P , deci P = A.

Pentru (2), observăm mai ı̂ntâi că dacă f2(B) 6= A, atunci punctele sistemului
{A,B, f(B), f2(B)} sunt distincte două câte două. Folosind (1) avem

−−−−→
Af(B) =

−−−−−−→
f(A)f(B) =

−→
f (
−→
AB),

−−−−−→
Af2(B) =

−−−−−−−−→
f2(A)f2(B) =

−→
f 2(
−→
AB).

Astfel, condiţia

α
−→
AB + β

−−−−→
Af(B)) + γ

−−−−−→
Af2(B)) = 0

este echivalentă cu
α
−→
AB + β

−→
f (
−→
AB) + γ

−→
f 2(
−→
AB) = 0, (1.24)

Cum f3 = A, rezultă că
−→
f 3 = 0. Aplicând

−→
f 2 ı̂n (1.24), obţinem α

−→
f 2(
−→
AB) = 0, deci

α = 0. Cu raţionamente asemănătoare obţinem β = γ = 0 şi rezultă că sistemul de

vectori {
−→
AB,
−−−−→
Af(B),

−−−−−→
Af2(B)} este liniar independent, deci R = {A,B, f(B), f2(B)}

este un reper afin ı̂n X.

Reperul cartezian asociat lui R este R = {A;
−→
AB,
−→
f (
−→
AB),

−→
f 2(
−→
AB)}. Astfel,

ecuaţia matriceală a morfismului f ı̂n raport cu R este

Y =

0 0 0
1 0 0
0 1 0

X,

iar ecuaţiile carteziene sunt  y1 = 0
y2 = x1

y3 = x2.

Pentru (3), cum R = {A,B, f(B), f2(B)} este un reper afin, pentru orice P ∈ X,
există λi ∈ R, i = 1, . . . , 4 astfel ı̂ncât

P = λ1A+ λ2B + λ3f(B) + λ4f2(B),

4∑
i=1

λi = 1.

Astfel,

f(P ) = (λ1 + λ4)A+ λ2f(B) + λ3f2(B),
4∑
i=1

λi = 1,

adică Im f ⊂ 〈A, f(B), f2(B)〉af . Reciproc, dacă Q ∈ 〈A, f(B), f2(B)〉af , atunci există
µj ∈ R, j = 1, 2, 3, astfel ı̂ncât

Q = µ1A+ µ2f(B) + µ3f2(B),
3∑
i=1

µi = 1,
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şi dacă considerăm

P = µ1A+ µ2B + µ3f(B),

3∑
i=1

µi = 1,

atunci f(P ) = Q, deci 〈A, f(B), f2(B)〉af ⊂ Im f .
Avem

f−1(A) = {P ∈ X /f(P ) = A}
= {P = λ1A+ λ2B + λ3f(B) + λ4f2(B) /

(λ1 + λ4)A+ λ2f(B) + λ3f2(B) = A,

4∑
i=1

λi = 1, λi ∈ R, i = 1, . . . , 4}

= {P ∈ X /P = λA+ (1− λ)f2(B), λ ∈ R}
= 〈A, f2(B)〉af .

�


