Marian Ioan MUNTEANU - webpage (Scientific Activity)
University "Al.I.Cuza" of Iasi Faculty of Mathematics Marian Ioan MUNTEANU


Marian Ioan MUNTEANU
Citations
(505 without self-citations)
My home page in Iasi

 

 

[IM17] J. Inoguchi, M.I.Munteanu, Periodic magnetic curves in Berger spheres, Tohoku Mathematical Journal, 69 (2017) 1, xx-xx.

    1. J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional almost contat metric geometry, Int. Electronic J. Geometry, 8 (2015) 2, 106-146.

[MPGR16] M.I.Munteanu, O. Palmas, G. Ruiz-Hernandez: Translation hypersurfaces in Euclidean spaces, Mediterranean J. Mathematics, 13 (2016) 5, 2659-2676.

    1. M.E. Aydin, A.O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG Proceedings Int. Conf. DGDS-2015, 23 (2016) 1-10.
    2. M.E. Aydin, M. Ergut, Affine translation surfaces in the isotropic 3-space, arXiv:1611.02595v2 [math.DG].
    3. M.E. Aydin, Constant Gauss-Kronocker curvature affine translation hypersurfaces, arXiv: 1611.05608v2 [math.DG].
    4. M.E. Aydin, Complete description of isotropic Scherk surfaces generated by planar curves, arXiv:1612.09061 [math.DG]

[MM16] M. Moruz, M.I.Munteanu, Minimal translation hypersurfaces in E4, Journal of Mathematical Analysis and Applications, 439 (2016), 798 - 812.

    1. M.E. Aydin, M. Ergut, Affine translation surfaces in the isotropic 3-space, arXiv:1611.02595v2 [math.DG].
    2. M.E. Aydin, Constant Gauss-Kronocker curvature affine translation hypersurfaces, arXiv: 1611.05608v2 [math.DG].
    3. M.E. Aydin, Complete description of isotropic Scherk surfaces generated by planar curves, arXiv:1612.09061 [math.DG]

[DRIMN15] S.L. Druta-Romaniuc, J. Inoguchi, M.I.Munteanu, A.I. Nistor: Magnetic curves in Sasakian manifolds, J. Nonlinear Math. Physics, 22 (2015) 3, 428-447.

    1. A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.
    2. A.I. Nistor, New developments on constant angle property in S2 x R, Annali Mat. Pura Appl. (in press). (ISI citation)
    3. J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional almost contat metric geometry, Int. El. J. Geometry, 8 (2015) 2, 106-146.
    4. M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

[CMP15] G. Calvaruso, M.I.Munteanu, A. Perrone, Killing magnetic curves in three dimensional paracontact manifolds, Journal Math. Anal. Appl. 426 (2015) 1, 423 - 439.

    1. C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)
    2. A. Perrone, Some results on almost paracontact metric manifolds, Mediterr. J Math., 13 (2016) 5, 3311 - 3326. (ISI citation)
    3. A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.
    4. M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

[JM15] M. Jleli, M.I.Munteanu: Magnetic curves on flat para-Kaehler manifolds,Turkish Journal of Mathematics, 39 (2015) 6, 963 - 969.

    1. A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.
    2. M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

[BM15] M. Babaarslan, M.I.Munteanu : Time-like loxodromes on rotational surfaces in Minkowski 3-spaces, An.St. ale Univ.`Al.I.Cuza` din Iasi, 61 (2015) 2, 471-484.

    1. D.W. Yoon, Loxodromes and geodesics on rotational surfaces in a simply isotropic space, J. Geometry, (in press) doi:10.1007/s00022-016-0349-8. (ISI citation)
    2. H. Simsek, M. Ozdemir, On Conformal Curves in 2-Dimensional de Sitter Space, Advances in Applied Clifford Algebras, 26 (2016) 2, 757–770. (ISI citation)
    3. M. Babaarslan, Y. Yayli, Space-like loxodromes on rotational surfaces in Minkowski 3-space, J. Math. Anal. Appl., 409 (2014) 1, 288 - 298. (ISI citation)
    4. M. Babaarslan, M. Kayacik, Differential Equations of the Space-Like Loxodromes on the Helicoidal Surfaces in Minkowski 3-Space, Diff. Eqs. Dynamical Syst., DOI: 10.1007/s12591-016-0343-5. (ISI citation)

[FM14] Y. Fu , M.I.Munteanu : Generalized constant ratio surfaces in E3, Bull. Braz. Math. Soc. 45 (2016) 1, 73 - 90.

    1. Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
    2. B.Y. Chen, Topics in differential geometry associated with position vector fields on Euclidean submanifolds, Arab J. Math. Sci. 23 (2017), 1-17.
    3. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)
    4. M. Ergut, A. Kelleci, N.C. Turgay, On space-like generalized constant ratio hypersurfaces in Minkowski spaces, https://arxiv.org/pdf/1603.08415.pdf

[LM14] R. Lopez, M.I.Munteanu : Invariant surfaces in homogeneous space Sol with constant curvature, Math. Nachr., 287 (2014) 8-9, 1013-1024.

    1. R. Lopez, A.I. Nistor, Surfaces in Sol3 Space Foliated by Circles, Results. Math. 64 (2013) 3-4, 319-330, DOI 10.1007/s00025-013-0316-8. (ISI citation)
    2. R. Lopez, Invariant surfaces in Sol(3) with constant mean curvature and their computer graphics, Advances in Geometry, 14 (2014) 1, 31-48. (ISI citation)
    3. D.W. Yoon, Invariant surfaces with pointwise 1-type Gauss map in Sol3, J. Geom., 106 (2015) 3, 503 - 512.
    4. C. Desmonts, Constructions of periodic minimal surfaces and minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI citation)
    5. J. ARROYO, O. J. GARAY, A. PAMPANO, Extremal Curves of a Total Curvature Type Energy, Non-linear Systems, Nanotechnology, Proceedings of the 14th Int. Conf. NOLASC '15 and
      the 6th Int. Conf. on NANOTECHNOLOGY '15, (2015) 103-112.
    6. M. Vrzina, Cylinders as invariant CMC surfaces in simply connected homogeneous 3-manifolds, http://arxiv.org/abs/1412.6820.

[IM14] J. Inoguchi, M.I.Munteanu : Magnetic Maps, Int. J Geom. Methods Modern Physics, 11 (2014) 6, art. no. 1450058.

    1. G. Calvaruso, A. Perrone, Natural almost contact structures and their 3D homogeneous models, Math. Nachr. 289 (2016) 11-12, 1370 - 1385. (ISI citation)

[MV14] M.I.Munteanu, L. Vrancken, Mnimal contact CR submanifolds in S2n+1 satisfying the δ(2) Chen equality, J. Geometry Physics, 75 (2014) 92 - 97.

    1. B.Y. Chen, Y. Fu, δ(3)-ideal null 2-type hypersurfaces in Euclidean spaces, Diff. Geom. Appl. 40 (2015) 43-56. (ISI citation)
    2. T. Sasahara , Ideal CR-submanifolds, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 289-310.

[CM13] B. Y. Chen, M.I.Munteanu: Biharmonic ideal hypersurfaces in Euclidean spaces, Differential Geometry and Its Applications 31 (2013) 1, 1 - 16.

    1. B.Y. Chen, Recent developments of biharmonic conjecture and modified biharmonic conjectures,Proceedings PADGE 2012 - in memory of F. Dillen, Shaker Verlag 2013, 81-90, ISBN: 978-3-8440-2363-3.
    2. B.Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent developments, Tamkang J. Math. 45 (2014) 1, 87-108.
    3. Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean 5-space, Journal of Geometry and Physics, 75 (2014) 1, 113-119. (ISI citation)
    4. B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Series in Pure Mathematics 27, ISBN: 978-981-4616-68-3.
    5. Y. Fu, Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces, Mathematical Physics Analysis and Geometry, 16 (2013) 4, 331-344. (ISI citation)
    6. Z.P. Wang, Y.L. Ou, H.C. Yang, Biharmonic maps from a 2-sphere, Journal of Geometry and Physics, 77 (2014) 86-96. (ISI citation)
    7. M. Aminian, S. M. B. Kashani, Lk-biharmonic hypersurfaces in the Euclidean space, Taiwanese J. Math., 19 (2015) 3, 861-874. (ISI citation)
    8. Y. Fu, Explicit classification of biconservative surfaces in Lorentz 3-space forms, Annali di Matematica Pura ed Applicata, 194 (2015) 3 805-822. (ISI citation)
    9. B.Y. Chen, Y. Fu, δ(3)-ideal null 2-type hypersurfaces in Euclidean spaces, Diff. Geom. Appl. 40 (2015) 43-56. (ISI citation)
    10. R.S. Gupta, Biharmonic hypersurfaces in space forms with three distinct principal curvatures, arXiv:1412.5479v1 [math.DG]
    11. Y.L. Ou, On f-biharmonic maps and f-biharmonic submanifolds, Pacific J. Mathematics, 271 (2014) 2, 461-477. (ISI citation)
    12. N. C.Turgay, H-hypersurfaces with three distinct principal curvatures in the Euclidean spaces, Annali di Matematica Pura ed Applicata, 194 (2015) 6, 1795 - 1807. (ISI citation)
    13. Liu Jian-cheng, Tian Xiao-qiang, Biharmonic Lorentz hypersurfaces with three distinct principal curvatures in E51, Journal of Lanzhou University (Natural Sciences), 51 (2015) 1, 124-128 (in Chinese).
    14. B.Y. Chen, H. Yildirim, Classification of ideal submanifolds of real space forms with type number ≤ 2 , J. Geom.Phys. 92 (2015) 167-180. (ISI citation)
    15. G. Kaimakamis, Recent progress in Chen's conjecture, Theoretical Math Appl. 5 (2015) 2, 115-122.
    16. R.S. Gupta, On bi-harmonic hypersurfaces in Euclidean space of arbitrary dimension, Glasgow Mathematical Journal, 57 (2015) 3, 633-642. (ISI citation)
    17. Yu Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math. J., 67 (2015) 3, 465-479. (ISI citation)
    18. Deepika, R.S. Gupta, Biharmonic hypersurfaces in E5 with zero scalar curvature, African Diaspora J. Math., 18 (2015) 1, 12-26.
    19. Y.L. Ou, Some recent progress of biharmonic submanifolds, Contemp. Math. 674 (2016), Recent Advances in the Geometry of Submanifolds,
      Eds. B. Suceava, A. Carriazo, Yun Myung Oh, J. van der Veken (dedicated to the memory of Franki Dillen), 127 - 140. (ISI citation)
    20. Youn Luo, The maximal principle for properly immersed submanifolds and its applications, Geom. Dedicata, 181 (2016) 1, 103 - 112. (ISI citation)
    21. S. Montaldo, C. Oniciuc, A. Ratto, Proper biconservative immersions into the Euclidean space, Annali Mat. Pura Appl., 195 (2016) 2, 403 - 422. (ISI citation)
    22. A. Upadhiay, N.C. Turgay, A classification of biconservative hypersurfaces in a pseudo-Euclidean space, J. Math. Anal. Appl., 444 (2016) 2, 1703 - 1722. (ISI citation)
    23. N.C. Turgay, A classification of biharmonic hypersurfaces in the Minkowski spaces of arbitrary dimension, Hacettepe J. Math Statistics, 45 (2016) 4, 1125 - 1134. (ISI citation)
    24. Y. Fu, N.C. Turgay, Complete classification of biconservative hypersurfaces with diagonalizable shape operator in the Minkowski 4-space, Int. J. Math., 27 (2016) 5, art. no. 1650041. (ISI citation)
    25. R.S. Gupta, A. Sharfuddin, Biharmonic hypersurfaces in Euclidean space E-5, JOURNAL OF GEOMETRY, 107 (2016) 3, 685-705. (ISI citation)
    26. F. Pashaie, A. Mohammadpouri, Lk-biharmonic hypersurfaces of Lorentz-Minkowski spaces, An. Univ. Oradea, XXIII (2016) 1, 171-176.
    27. T. Sasahara , Ideal CR-submanifolds, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 289-310.
    28. X. Cao, Y. Luo, On p-biharmonic submanifolds in nonpositively curved manifolds, Kodai Math. J., 39 (2016) 3, 567-578. (ISI citation)
    29. R.S. Gupta, Biharmonic hypersurfaces in E6 with constant scalar curvature, Int. J. Geometry, 5 (2016) 2, 39-50.
    30. Deepika, R.H. Gupta, A. Sharfuddin, Biharmonic hypersurfaces with constant scalar curvature in E5s, Kyungpook J Math. 56 (2016) 1,273-293.
    31. B.Y. Chen, Topics in differential geometry associated with position vector fields on Euclidean submanifolds, Arab J. Math. Sci. 23 (2017), 1-17.
    32. M. Aminian, S.M.B. Kashani, Lk-biharmonic hypersurfaces in space forms, Acta Math. Vietnamica (in press) DOI: 10.1007/s40306-016-0195-7. (ISI citation)
    33. Y. Fu, M-C. Hong, Biharmonic hypersurfaces with constant scalar curvature in space forms, arXiv:1606.03187v1 [math.DG].
    34. Deepika, On biconservative Lorentz hypersurface with non diagonal shape operator, arXiv: 1610.03005v2 [math.DG].

     

[CCMS12] C. Calin, M. Crasmareanu, M.I.Munteanu, V. Saltarelli, Semi-invariant ξ¦ -submanifolds of generalized quasi-Sasakian manifolds, Taiw. J. Math. 16 (2012) 6, 2053-2062.

    1. M. Faghfouri, N. Ghaffarzadeh, Chen's inequality for invariant submanifolds in a generalized (κ,μ)-space forms, Global J Adv. Research Classical Modern Geom. 4 (2015) 2, 86-101.

[MN13] M.I.Munteanu, A.I. Nistor: Magnetic trajectories in a non-flat R5 have order 5, Proc. of the international conference PADGE 2012, Leuven, Berichte aus der Mathematik (2013) 224 - 231.

    1. C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)
    2. A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.
    3. M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

[Mun13] M.I.Munteanu : Magnetic curves in the Euclidean space: one example, several approaches, Publications de l'Institut Mathematique (Beograd) , 94 (108) (2013) 2, 141-150.

    1. M. Babaarslan, Y.Yayli, Differential Equation of the Loxodrome on a Helicoidal Surface, JOURNAL OF NAVIGATION, 68  (2015) 5, 962-970. (ISI citation)
    2. C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)

 

[D-RM13] S. L. Druta-Romaniuc, M.I.Munteanu: Killing magnetic curves in a Minkowski 3-space, Nonlinear Analysis-Real World Appl. 14 (2013) 1, 383-396.

    1. C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian flows on manifolds, J. Math. Phys., 54 (2013) 12, 121505. (ISI citation)
    2. C.L. Bejan, S.L. Druta Romaniuc, Walker manifolds and Killing magnetic curves, Differential Geometry and its Applications, 35 (2014) 106-116. (ISI citation)
    3. N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)
    4. Z. Ozdemir, I. Gok, Y. Yayli, F.N. Ekmekci, Notes on magnetic curves in 3D semi-Riemannian manifolds, Turk. J. Math. 39 (2015) 412 – 426. (ISI citation)
    5. C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)
    6. A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.
    7. M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

 

[CHM13] M. Crasmareanu, C.E. Hretcanu, M.I.Munteanu : Golden and Product shaped hypersurfaces in real space forms, International Journal of Geometric Methods in Modern Physics 10 (2013) 4, art. 1320006

    1. D. Yang, Y. Fu, The classification of golden shaped hypersurfaces in Lorentz space forms, J. Math. Analysis applications 412 (2014) 2, 1135-1139. (ISI citation)
    2. C. Ozgur, N. Yilmaz Ozgur, Classification of metallic shaped hypersurfaces in real space forms, Turk. J. Math. 39 (2015) 5, 784-794. (ISI citation)
    3. Y. Zhao, X.M. Liu, A class of special surfaces in real space forms, J. Function Space, (2016) art. ID. 8796938. (ISI citation)
    4. X. Liu, Y. Zhao, Generalized golden shaped hypersurfaces in Lorentz space forms, Commun. Korean Math. Soc. 31 (2016) 3, 647-656.
    5. D. Yang, L. Hao, B. Chen, The classification of product shaped hypersurfaces in Lorentz space forms, Publ. Inst. Mahematique (in press). (ISI citation)

     

[LM12] R. Lopez, M.I.Munteanu : Minimal translation surfaces in Sol3, J. Math. Soc. Japan, 64 (2012) 3, 985 - 1003.

    1. D.W. Yoon, Minimal translation surfaces in H2 x R, Taiwan. Journal of Math. 17 (2013) 5, 1545-1556, DOI: 10.11650/tjm.17.2013.2425. (ISI citation)
    2. R. Lopez, A.I. Nistor, Surfaces in Sol3 Space Foliated by Circles, Results. Math. 64 (2013) 3-4, 319-330, DOI 10.1007/s00025-013-0316-8. (ISI citation)
    3. D.W. Yoon, C.W. Lee, M.K. Karacan, Some translation surfaces in the 3-dimensional Heisenberg group, Bull. Korean Math. Soc, 50 (2013) 4, 1329–1343. (ISI citation)
    4. R. Lopez, Invariant surfaces in Sol(3) with constant mean curvature and their computer graphics, Advances in Geometry, 14 (2014) 1, 31-48. (ISI citation)
    5. M. Faghfouri, T. Kasbi, Minimal translation surfaces in Sol3 with the Lorentz metric, Proc. 7th seminar on Geometry and Topology, Iran 2014, paper n. 1.63.
    6. D.W. Yoon, On translation surfaces with zero Gaussian curvature in H2 x R, International Journal of Pure and Applied Mathematics, 99 (2015) 3, 289 - 297.
    7. C. Desmonts, Constructions of periodic minimal surfaces and minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI citation)
    8. M. Bekkar, Ruled surfaces of finite type in 3-dimensional Heisenberg group , arXiv:1605.05076v1 [math.DG].
    9. M.E. Aydin, Constant Gauss-Kronocker curvature affine translation hypersurfaces, arXiv: 1611.05608v2 [math.DG].
    10. W.H. Meeks III, P. Mira, J. Perez, The geometry of stable minimal surfaces in metric Lie groups, arXiv: 1610.07317v1 [math.DG].
    11. M.E. Aydin, Complete description of isotropic Scherk surfaces generated by planar curves, arXiv:1612.09061 [math.DG]

 

[MN12ijm] M.I.Munteanu, A.I. Nistor: Surfaces in E3 making constant angle with Killing vector fields, Int. J. Math., 23 (2012) 6, art. 1250023.

    1. M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473–495. (ISI citation)
    2. A.I. Nistor, New developments on constant angle property in S2 x R, Annali Mat. Pura Appl. (in press). (ISI citation)

 

[ACM12] P. Alegre, B. Y. Chen, M.I.Munteanu : Riemannian submersions, delta-invariants and optimal inequality, Annals of Global Analysis and Geometry, 42 (2012) 3, 317 - 331.

    1. V. Slesar, B. Sahin, G.E. Vilcu, Inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms, J. Inequalities Applications, 2014:123 (March 2014) 10pp. (ISI citation)
    2. B.Y. Chen, H. Yildirim, Classification of ideal submanifolds of real space forms with type number ≤ 2 , J. Geom. Phys. 92 (2015) 167-180. (ISI citation)
    3. J. Lee, G.E.Vilcu, Inequalities for generalized normalized delta-Casorati curvatures of slant submanifolds in quaternionic space forms, TAIWANESE J. MATH. 19 (2015) 3, 691-702. (ISI citation)
    4. E. Kilic, M. Gulbahar, On the sectional curvature of lightlike submanifolds, J. Inequalities Appl. 2016 (December 2016), 2016:57, 16pp. (ISI citation)
    5. B. Sahin, Chen’s first inequality for Riemannian maps, Annales Polonici Mathematici 117 (2016) 3, 249-258. (ISI citation)
    6. B-Y. Chen, CR-submanifolds and delta invariants, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 27-55.
    7. K.S. Park, Inequalities for the Casorati curvatures of real hypersurfaces in some Grassmannians, arXiv:1612.01754v1 [math.DG].


[ILM12] J. Inoguchi, R. Lopez, M.I.Munteanu : Minimal translation surfaces in the Heisenberg group Nil3, Geometriae Dedicata 161 (2012), 221 - 231.

    1. D.W. Yoon, Minimal translation surfaces in H2 x R, Taiwan. Journal of Math. 17 (2013) 5, 1545-1556, DOI: 10.11650/tjm.17.2013.2425. (ISI citation)
    2. J.F. Dorfmeister, J. Inoguchi, S. Kobayashi, A loop group method for minimal surfaces in the three-dimensional Heisenberg group, Asian J. Math., 20 (2016) 3, 409-448. (ISI citation)
    3. D.W. Yoon, C.W. Lee, M.K. Karacan, Some translation surfaces in the 3-dimensional Heisenberg group, Bull. Korean Math. Soc, 50 (2013) 4, 1329–1343. (ISI citation)
    4. M. Faghfouri, T. Kasbi, Minimal translation surfaces in Sol3 with the Lorentz metric, Proc. 7th seminar on Geometry and Topology, Iran 2014, paper n. 1.63.
    5. D.W. Yoon, On translation surfaces with zero Gaussian curvature in H2 x R, International Journal of Pure and Applied Mathematics, 99 (2015) 3, 289 - 297.
    6. G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1, January 2015, pp.28-34.
    7. M. Bekkar, Ruled surfaces of finite type in 3-dimensional Heisenberg group , arXiv:1605.05076v1 [math.DG].
    8. M.E. Aydin, Constant Gauss-Kronocker curvature affine translation hypersurfaces, arXiv: 1611.05608v2 [math.DG].
    9. M.E. Aydin, Complete description of isotropic Scherk surfaces generated by planar curves, arXiv:1612.09061 [math.DG]

[CCM12] C. Calin, M. Crasmareanu, M.I. Munteanu,Slant curves in 3-dimensional f-Kenmotsu manifolds, J. Math. Anal. Appl., 394 (2012) 1, 400-407.

    1. C. Calin, M. Crasmareanu, Slant curves and particles in 3-dimensional warped products and their Lancret invariants, Bull. Austr. Math. Soc. 88 (2013) 1, 128-142. (ISI citation)
    2. C. Calin, M. Crasmareanu, Slant Curves in 3-dimensional Normal Almost Contact Geometry, Mediterranean Journal of Mathematics, 10 (2013) 2, 1067-1077. (ISI citation)
    3. Z.H. Hou, L. Sun , Slant curves in the unit tangent bundles of surfaces, Int. Scholarly Res. Notices (2013) art. 821429, 5pp.
    4. J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric manifolds, Mediterranean Journal of Mathematics, 11 (2014) 3, 965-978.. (ISI citation)
    5. S. Guvenc, C. Ozgur, On slant curves in trans-Sasakian manifolds, Revista de la Union Matematica Argentina, 55 (2014) 2, 81-100. (ISI citation)
    6. C. Calin, M. Crasmareanu, Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry, Czech. Math. J, 64 (2014) 4, 945-960. (ISI citation)
    7. J. Inoguchi, J-E. Lee, On slant curves in normal almost contact metric 3-manifolds, Beitr. Algebra Geom. 55 (2014) 603 - 620.
    8. M. Crasmareanu, C. Frigioiu, Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves, Int. J. Geom. Methods Modern Phys., 12 (2015) 10  Art. 1550111. (ISI citation)
    9. C. Calin, M. Crasmareanu, Slant and Legendre curves in Berger su(2): The Lancret invariant and quantum spherical curves, Taiwanese Journal Math. 19 (2015) 4, 1203 - 1214. (ISI citation)
    10. J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional almost contat metric geometry, Int. El. J. Geometry, 8 (2015) 2, 106-146.
    11. A. Akram, L.I. Piscoran, Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions, J. Geom. Phys. (in press). (ISI citation)

[MN12jgp] M.I.Munteanu, A.I. Nistor: The classification of Killing magnetic curves in S2 x R, J. Geom. Phys. 62 (2012) 2, 170–182.

    1. C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian flows on manifolds, J. Math. Phys., 54 (2013) 12, 121505. (ISI citation)
    2. C.L. Bejan, S.L. Druta Romaniuc, Walker manifolds and Killing magnetic curves, Differential Geometry and its Applications, 35 (2014) 106-116. (ISI citation)
    3. N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)
    4. C.L. Bejan, S.L. Druta Romaniuc, F-geodesics on Manifolds, Filomat 29 (2015) 10, 2367–2379. (ISI citation)
    5. C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)
    6. A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.
    7. M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

[CM12] B. Y. Chen, M.I.Munteanu : Geometry of PR−warped products in para-Kaehler manifolds, Taiwan. J. Math., 16 (2012) 4, 1293-1327.

    1. S.K. Srivastava, A. Sharma, Geometry of PR-semi-invariant warped product submanifolds in paracosymplectic manifold, J. Geometry, doi:10.1007/s00022-016-0325-3. (ISI citation)
    2. T. Q. Binh, A. De, On contact CR-warped product submanifolds of a quasi-Sasakian manifold, Publicationes Mathematicae Debrecen, 84 (2014) 1-2 (9), 123-137. (ISI citation)
    3. A. Mustafa, S. Uddin, V.A. Khan, B.R. Wong, Contact CR-warped product submanifolds of nearly trans-Sasakian manifolds, Taiwanese J. Mathematics, 17 (2013) 4, 1473-1486. (ISI citation)
    4. Pan Zhang, Remarks on Chen's inequalities for submanifolds of a Riemannian manifold of nearly quasi-constant curvature, Vietnam J. Math , 43 (2015) 3, 557-569.
    5. H.M. Tastan, Biwarped product submanifolds of a Kaehler manifold, arXiv: 1611.08469v1 [math.DG].
    6. S.K. Srivastava, A. Sharma, Pointwise pseudo-slant submanifold of a para-Kaehler manifold, arXiv: 1601.01714v1 [math.DG]

[D-RM11] S. L. Druta-Romaniuc, M.I.Munteanu, Magnetic curves corresponding to Killing magnetic fields in E3, J. Math. Phys. 52 (2011) 11, 113506.

    1. C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian flows on manifolds, J. Math. Phys., 54 (2013) 12, 121505. (ISI citation)
    2. Z. Bozkurt, I. Gok, Y. Yayli, F.N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds, J. Math. Phys. 55 (2014) 5, art. 053501. (ISI citation)
    3. N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)
    4. C.L. Bejan, S.L. Druta Romaniuc, F-geodesics on Manifolds, Filomat 29 (2015) 10, 2367–2379. (ISI citation)
    5. C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)
    6. A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.
    7. M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

 

[Mun11] M.I.Munteanu, A survey on constant angle surfaces in homogeneous 3-dimensional spaces, Proceedings of the Workshop on Differential Geometry and its Applications Iasi, Romania,
September 2-4, 2009, Eds. D. Andrica and S.Moroianu, Cluj University Press, 2011, 109–123.

    1. A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849, (ISI citation)

     

[LM11a] R. Lopez, M.I.Munteanu, On the geometry of constant angle surfaces in Sol3 , Kyushu J. Math. 65 (2011) 2, 271 - 286.

    1. A.I. Nistor, On a class of surfaces in H +xR, ROMAI J., 7 (2011) 2, 141 – 154.
    2. Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c) x R1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
    3. S. Montaldo, I.I. Onnis, Helix surfaces in the Berger sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966. (ISI citation)
    4. S. Montaldo, I.I. Onnis, A. Passos Passamani, Helix surfaces in the special linear group, Annali di Matematica Pura ed Applicata , 195 (2016) 1, 59-77. (ISI citation)
    5. R. Lopez, Invariant surfaces in Sol(3) with constant mean curvature and their computer graphics, Advances in Geometry, 14 (2014) 1, 31-48. (ISI citation)
    6. A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation)
    7. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)
    8. A.I. Nistor, New developments on constant angle property in S2 x R, Annali Mat. Pura Appl. (in press). (ISI citation)

 

[LM11b] R. Lopez, M.I.Munteanu : Constant Angle Surfaces in Minkowski space, Bull. Belg. Math. Soc. - Simon Stevin, 18 (2011) 2, 271 - 286.

    1. J. S. Chung; W. S. L'Yi, J. H. Chung, The Geometry of Minkowski Space in Terms of Hyperbolic Angle, J. Korean Physical Society, 55 (2009) 6, 2323 – 2327. (ISI citation)
    2. F. Guler, G. Saffak, E. Kasap, Timelike Constant Angle Surfaces in Minkowski space R31, Int. J Contemp. Math. Sciences, 6 (2011) 44, 2189 – 2200.
    3. A.I. Nistor, On a class of surfaces in H +xR, ROMAI J., 7 (2011) 2, 141 – 154.
    4. G.S. Atalay, F. Guler, E. Kasap, Spacelike constant angle surfaces in Minkowski 3-space, J. Math. Comput. Sci., 2 (2012) 3, 451-461.
    5. D. Chen, G. Chen, H. Chen, F. Dillen, Constant Angle Surfaces in S3(1)x R, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012) 2, 289-304. (ISI citation)
    6. Y. Fu, D. Yang, On constant slope space-like surfaces in 3-dimensional Minkowski space, J. Math. Analysis Appl., 385 (2012) 1, 208 - 220. (ISI citation)
    7. Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr.J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
    8. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Classification of constant angle hypersurfaces in warped products via eikonal functions, Bol. Soc. Mat. Mexicana, 18 (2012) 1, 29 - 42.
    9. E. Ziplar, A. Senol, Y. Yayli, On weak r-helix submanifolds, J. Dynam. Systems Geom. Theories, 10 (2012) 2, 139-148.
    10. M. Babaarslan, Y. Yayli, Split Quaternions and Timelike Constant Slope Surfaces in Minkowski 3-Space, Int. J. Geom. 2 (2013) 1, 23-33.
    11. Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation)
    12. R.A. Abdel-Baky, Slant ruled surface in the Euclidean 3-space E3, Scientia Magna, 9 (2013) 4, 107-112.
    13. A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849, (ISI citation)
    14. E. Ziplar, A. Senol, Y. Yayli, On strong r-helix submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36.
    15. T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.
    16. M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473–495. (ISI citation)
    17. T. Mert, B. Karliga, Timelike surfaces with constant angle in de-Sitter space S31, Cumhuryiet Science J (CJS) 37 (2016) 1, 1-11.
    18. T. Mert, B. Karliga, On the timelike surface with constant angle in hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.
    19. R.R. Montes, Flat contact angle surfaces in the Heisenberg group H3, Palestine J Math. 5 (2016) 1, 30-34.
    20. T. Mert, B. Karliga, Constant angle spacelike surfaces in de-Sitter space S31, Bol. Soc. Paran. Mat. 35 (2017) 3, 79-93.
    21. J. Jost, Y. L. Xin, Ling Yang, Submanifolds with constant Jordan angles, arxiv.org/abs/1502.02797

 

[LM11c] R. Lopez,M.I.Munteanu Surfaces with constant mean curvature in Sol geometry, Differential Geometry and Its Applications 29 (2011), S238 -S245.

    1. C. Desmonts, Constructions of periodic minimal surfaces and minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI citation)

[MN11a] M.I.Munteanu, A.I. Nistor, Complete classification of surfaces with a canonical principal direction in the Euclidean space E3, Central European Journal of Mathematics, 9 (2011) 2, 378 – 389;
also as: arXiv:1004.4255[math.DG]

    1. A.I. Nistor, On a class of surfaces in H +xR, ROMAI J., 7 (2011) 2, 141 – 154.
    2. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Hypersurfaces with a canonical principal direction, Differ. Geom. Appl., 30 (2012) 5, 382-391. (ISI citation)
    3. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Classification of constant angle hypersurfaces in warped products via eikonal functions, Bol. Soc. Mat. Mexicana, 18 (2012) 1, 29 - 42.
    4. Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c) x R1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
    5. A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849, (ISI citation)
    6. Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
    7. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)
    8. A.J. di Scala, G. Ruiz-Hernandez, CMC hypersurfaces with canonical principal direction in space forms, Math. Nachr. (in press) DOI: 10.1002/mana.201500242 . (ISI citation)
    9. M. Ergut, A. Kelleci, N.C. Turgay, On space-like generalized constant ratio hypersurfaces in Minkowski spaces, https://arxiv.org/pdf/1603.08415.pdf

[MN11b] M.I.Munteanu, A.I. Nistor : On the Geometry of the Second Fundamental Form of Translation Surfaces in E3, Houston J. Math., 37 (2011) 4, 1087 – 1102.

    1. D.Y. Yoon, Polynomial translation surfaces of Weingarten types in Euclidean 3-space, Cent. Eur. J. Math., 8 (2010) 3, 430 – 436. (ISI citation)
    2. H.S. Abdel-Aziz, M. Khalifa Sadd, Weingarten time-like tube surfaces around a space-like curve, Int. J. Math. Analysis, 5 (2011) 25-28, 1225 – 1236.
    3. M. Cetin, Y. Tuncer, N. Ekmekci, Translation surfaces in Euclidean 3-space, Int. J. Phys. Math. Sciences, 2 (2011) 1, 49-56.
    4. H.S. Abdelaziz, M. Khalifa Saad, S. Kiziltug, Parallel Surfaces of Weingarten Type in Minkowski 3-Space , International Mathematical Forum, 7 (2012) 46, 2293-2302.
    5. G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1, January 2015, pp.28-34.
    6. M.E. Aydin, A.O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG Proceedings Int. Conf. DGDS-2015, 23 (2016) 1-10.
    7. K. Arslan, B. Bayram, B. Bulca, G. Ozturk, On translation surfaces in 4-dimensional Euclidean space, Acta Commentationes Univ. Tartuensis Mathematica, 20 (2016) 2, 123-133.

[FMV11] J. Fastenakels, M.I.Munteanu, J. Van der Veken, Constant angle surfaces in the Heisenberg group, Acta Math. Sinica (English Series), 27 (2011) 4, 747 - 756.

    1. D. Chen, G. Chen, H. Chen, F. Dillen, Constant Angle Surfaces in S3(1)x R, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012) 2, 289-304. (ISI citation)
    2. Y. Fu, D. Yang, On constant slope space-like surfaces in 3-dimensional Minkowski space, J. Math. Analysis Appl. 385 (2012) 1, 208 - 220. (ISI citation)
    3. A.I. Nistor, On a class of surfaces in H +xR, ROMAI J., 7 (2011) 2, 141 – 154.
    4. Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
    5. Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation)
    6. S. Montaldo, I.I. Onnis, Helix surfaces in the Berger sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966. (ISI citation)
    7. S. Verpoort, Hypersurfaces with a parallel higher fundamental form, J. Geom. 105 (2014) 2, 223-242.
    8. S. Montaldo, I.I. Onnis, A. Passos Passamani, Helix surfaces in the special linear group, Annali di Matematica Pura ed Applicata, 195 (2016) 1, 59-77. (ISI citation)
    9. M. Crasmareanu, Adapted metrics and Webster curvature on three classes of 3-dimensional geometries, International Electronic Journal of Geometry, 7 (2014) 2, 37-46.
    10. S. Kilicoglu, On the explicit parametric equation of a general helix with first and second curvature in Nil 3-space, Pure Appl. Math. J., 4 (2015) 1-2, 19-23.
    11. A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation)
    12. C. Calin, M. Crasmareanu, Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry, Czech. Math. J, 64 (2014) 4, 945-960. (ISI citation)
    13. T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.
    14. R.R. Montes, Flat contact angle surfaces in the Heisenberg group H3, Palestine J Math. 5 (2016) 1, 30-34.
    15. J. Jost, Y. L. Xin, Ling Yang, Submanifolds with constant Jordan angles, arxiv.org/abs/1502.02797
    16. A.J di Scala, G. Ruiz-Hernandez, Minimal helix submanifolds and minimal Riemannian foliations, Boletin de la Sociedad Matematica Mexicana, 22 (2016) 1, 229 - 250. (ISI citation)
    17. P. Lucas, J.A. Ortega-Yagues, Slant helices in teh Euclidean 3-space revisited, Bull. Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI citation)
    18. T. Mert, B. Karliga, Timelike surfaces with constant angle in de-Sitter space S31, Cumhuryiet Science J (CJS) 37 (2016) 1, 1-11.
    19. T. Mert, B. Karliga, On the timelike surface with constant angle in hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.
    20. A.I. Nistor, New developments on constant angle property in S2 x R, Annali Mat. Pura Appl. (in press). (ISI citation)
    21. T. Mert, B. Karliga, Constant angle spacelike surfaces in de-Sitter space S31, Bol. Soc. Paran. Mat. 35 (2017) 3, 79-93.
    22. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)

[DMVV11] F. Dillen, M.I.Munteanu, J. van der Veken, L. Vrancken, Constant angle surfaces in a warped product, Balkan Journal of Geometry and Its Applications, 16 (2011) 2, 35-47.

    1. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Hypersurfaces with a canonical principal direction, Differ. Geom. Appl., 30 (2012) 5, 382-391. (ISI citation)
    2. C. Calin, M. Crasmareanu, Slant curves and particles in 3-dimensional warped products and their Lancret invariants, Bull. Austr. Math. Soc. 88 (2013) 1, 128-142. (ISI citation)
    3. Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
    4. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Classification of constant angle hypersurfaces in warped products via eikonal functions, Bol. Soc. Mat. Mexicana, 18 (2012) 1, 29 - 42.
    5. A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation)
    6. J.A. Aledo, A. Romero, R.M. Rubio,, The existence and uniqueness of standard static splitting, CLASS. QUANTUM GRAVITY 32  (2015) 10, Art.. 105004. (ISI citation)
    7. B. Foreman, Vertex-type curves in constant angle surfaces of Hyp2 x R, Contemp. Math. 674 (2016), Recent Advances in the Geometry of Submanifolds,
      Eds. B. Suceava, A. Carriazo, Yun Myung Oh, J. van der Veken (dedicated to the memory of Franki Dillen), 49 - 57. (ISI citation)
    8. P. Lucas, J.A. Ortega-Yagues, Slant helices in teh Euclidean 3-space revisited, Bull. Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI citation)
    9. M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473–495. (ISI citation)
    10. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)
    11. A.I. Nistor, New developments on constant angle property in S2 x R, Annali Mat. Pura Appl. (in press). (ISI citation)

[DMN11] F. Dillen, M.I.Munteanu, A.I. Nistor, Canonical coordinates and principal directions for surfaces in H 2 x R, Taiwanese Journal of Mathematics, 15 (2011) 5, 2265 - 2289. (arXiv[math.DG]:0910.2135)

    1. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Hypersurfaces with a canonical principal direction, Differ. Geom. Appl., 30 (2012) 5, 382-391. (ISI citation)
    2. R. Tojeiro, On a class of hypersurfaces in Sn x R and H nx R, Bull. Braz. Math. Soc., 41 (2010) 2, 199 - 209 . (ISI citation)
    3. Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
    4. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Classification of constant angle hypersurfaces in warped products via eikonal functions, Bol. Soc. Mat. Mexicana, 18 (2012) 1, 29 - 42.
    5. A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849, (ISI citation)
    6. F. Gao, X.B. Zhang, J.L. Fu, Applications of canonical coordinates forsolving single freedom constraint mechanical systems, Applied Mathematics and Mechanics, 35 (2014) 8, 1029-1038. (ISI citation)
    7. Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
    8. Z.H. Hou, W.H. Qiu, A classification theorem for complete PMC surfaces with non-negative Gaussian curvature in Mn(c) x R, Taiwanese J. Math, 20 (2016) 1, 205 -226. (ISI citation)
    9. M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473–495. (ISI citation)
    10. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)
    11. A.J. di Scala, G. Ruiz-Hernandez, CMC hypersurfaces with canonical principal direction in space forms, Math. Nachr. (in press) DOI: 10.1002/mana.201500242 . (ISI citation)
    12. M. Ergut, A. Kelleci, N.C. Turgay, On space-like generalized constant ratio hypersurfaces in Minkowski spaces, https://arxiv.org/pdf/1603.08415.pdf

 

[Mun10] M.I.Munteanu, From Golden Spirals to Constant Slope Surfaces, Journal of Mathematical Physics, 51 (2010) 7, 073507.

    1. A.I. Nistor, Certain constant angle surfaces constructed on curves, International Electronic J. of Geometry, 4 (2011) 1, 79 - 87.
    2. M. Babaarslan, Y. Yayli, The characterization of constant slope surfaces and Bertrand curves , Int. J. Phys. Sciences, 6 (2011) 8, 1868 – 1875. (ISI citation)
    3. Y. Fu, D. Yang, On constant slope space-like surfaces in 3-dimensional Minkowski space, J. Math. Analysis Appl., 385 (2012) 1, 208 - 220. (ISI citation)
    4. M. Babaarlsan, Y. A. Tandogan, Y. Yayli , A note on Bertrand curves and constant slope surfaces according to Darboux frame, J. Adv. Math. Stud., 5 (2012) 1, 87 – 96.
    5. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Hypersurfaces with a canonical principal direction, Differ. Geom. Appl., 30 (2012) 5, 382-391. (ISI citation)
    6. M. Babaarslan, Y. Yayli, A New Approach to Constant Slope Surfaces with Quaternions , ISRN Geometry, Vol. 2012 (2012), Article ID 126358, 8 pages, doi:10.5402/2012/126358.
    7. Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation)
    8. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Classification of constant angle hypersurfaces in warped products via eikonal functions, Bol. Soc. Mat. Mexicana, 18 (2012) 1, 29 - 42.
    9. E. Ziplar, A. Senol, Y. Yayli, On weak r-helix submanifolds, J. Dynam. Systems Geom. Theories, 10 (2012) 2, 139-148.
    10. S. Haesen, A.I. Nistor, L. Verstraelen, On growth and form and geometry, Kragujevac J. Math 36 (2012) 1, 5-25.
    11. M. Babaarslan, Y. Yayli, A note on Bertrand curves and constant slope surfaces according to Darboux frame, J. Adv. Math. Stud., 5 (2012) 1, 87-96.
    12. E. Ziplar, A. Senol, Y. Yayli, On strong r-helix submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36.
    13. M. Babaarslan, Y. Yayli, Timelike constant slope surfaces and Spacelike Bertrand curves in Minkowski 3-space, Proc. National Academy Sci., India Section A: Physical Sciences, 84 (2014) 4, 535-540. (ISI citation)
    14. M.S. Lehnert, E. Brown, M.P. Lehnert, P.D. Gerard, H. Yan, C. Kim, The Golden Ratio: Reveals Geometric Differences in Proboscis Coiling Among Butterflies of Different Feeding Habits, American Entomologist, 61 (2015) 1, 18-26.
    15. M. Babaarslan, Y.Yayli, Differential Equation of the Loxodrome on a Helicoidal Surface, JOURNAL OF NAVIGATION, 68  (2015) 5, 962-970. (ISI citation)
    16. Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
    17. B.Y. Chen, Topics in differential geometry associated with position vector fields on Euclidean submanifolds, Arab J. Math. Sci. 23 (2017), 1-17.
    18. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)
    19. M. Ergut, A. Kelleci, N.C. Turgay, On space-like generalized constant ratio hypersurfaces in Minkowski spaces, https://arxiv.org/pdf/1603.08415.pdf

 

[MN10] M.I.Munteanu, A.I. Nistor, New results on the geometry of translation surfaces, Tenth International Conference on Geometry, Integrality and Quantization. June 6–11, 2008, Varna, Bulgaria.
reprinted from Journal of Geometry and Symmetry in Physics (JGSP) 18 (2010) 49 - 62.

    1. S.N. Krivoshapko, V.N. Ivanov, Translation Surfaces, chapter in book: Encyclopedia of Analytical Surfaces, 2015, 159-183. (book)
    2. G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1, January 2015, pp.28-34.

[MM10] R.Mocanu, M.I.Munteanu, Gray identities for almost contact metric manifolds,J. of the Korean Math. Society, 47 (2010) 3, 505-521. arXiv:0706.2570v1 [math DG].

    1. R. Mocanu, Gray curvature conditions and the Tanaka – Webster connection, Proc. of the VIII International Colloquium on Differential Geometry, (E. Vidal Abascal centennial congress) and satellite of the 5 th European Congress of Mathematics, World Scientific 2009, 291-295, Eds. J.A.Alvarez Lopez and E. Garcia Rio. (ISI citation)
    2. S. Ianus, A.M. Ionescu, R. Mocanu, G.E. Valcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hamburg, 81 (2011) 1, 101 - 114. (ISI citation)
    3. M. Falcitelli , A class of almost contact metric manifolds and double twisted products, Math. Sciences Appl. E-Notes, 1 (2013) 1, 36 - 57.
    4. J. Welyczko, On basic curvature identities for almost (para)contact metric manifolds, arXiv:1209.4731v1.

[MN09] M.I.Munteanu, A.I. Nistor, A new approach on constant angle surfaces in E3 , Turkish J. Mathematics 33 (2009) 2, 169–178.

    1. J.T. Cho, J.Inoguchi, J.E. Lee, Affine biharmonic submanifolds in 3-dimensional pseudo-Hermitian geometry, Abh. Math. Sem. Univ. Hambg., 79 (2009) 1, 113-133. (ISI citation)
    2. R. Tojeiro, On a class of hypersurfaces in Sn x R and H nx R, Bull. Braz. Math. Soc., 41 (2010) 2, 199 - 209 . (ISI citation)
    3. S. Ozkaldi, Y. Yayli, Constant Angle Surfaces, The 8th Geometry Symposium, April 29 – May 2, 2010, Akdeniz University, Antalya, 91 – 92.
    4. F. Manfio, R. Tojeiro, Hypersurfaces with constant sectional curvature of Sn x R and H nx R, Illinois J. Math. 55 (2011) 1, 397 - 415. (ISI citation)
    5. A.I. Nistor, Certain constant angle surfaces constructed on curves, International Electronic J. of Geometry, 2011, 4 (2011) 1, 79 - 87.
    6. F. Guler, G. Saffak, E. Kasap, Timelike Constant Angle Surfaces in Minkowski space R31, Int. J Contemp. Math. Sciences, 6 (2011) 44, 2189 – 2200.
    7. Y. Yayli, E. Ziplar, Frenet-Seret motionand ruled surfaces with constant slope, Int. J. Phys. Sci., 6 (2011) 29, 6727 - 6734.
    8. S. Ozkaldi, Y. Yayli, Constant Angle Surfaces and curves in E3, International Electr. J. of Geometry, 4 (2011) 1, 70 -78.
    9. A.I. Nistor, On a class of surfaces in H +xR, ROMAI J., 7 (2011) 2, 141 – 154.
    10. G.S. Atalay, F. Guler, E. Kasap, Spacelike constant angle surfaces in Minkowski 3-space, J. Math. Comput. Sci., 2 (2012) 3, 451-461.
    11. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Hypersurfaces with a canonical principal direction, Differ. Geom. Appl., 30 (2012) 5, 382-391. (ISI citation)
    12. D. Chen, G. Chen, H. Chen, F. Dillen, Constant Angle Surfaces in S3(1)x R, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012) 2, 289-304. (ISI citation)
    13. Y. Fu, D. Yang, On constant slope space-like surfaces in 3-dimensional Minkowski space, J. Math. Analysis Appl., 385 (2012) 1, 208 - 220. (ISI citation)
    14. P. Bayard, A.J. Di Scala, O.O. Castro, G. Ruiz-Hernandez, Surfaces in R4 with constant principal angles with respect to a plane, Geom. Dedic. 162 (2013) 1, 153-176. (ISI citation)
    15. Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c) x R1, Mediterr.J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
    16. Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation)
    17. A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849. (ISI citation)
    18. R.A. Abdel-Baky, Slant ruled surface in the Euclidean 3-space E3, Scientia Magna, 9 (2013) 4, 107-112.
    19. A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation)
    20. T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.
    21. Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
    22. P. Lucas, J.A. Ortega-Yagues, Slant helices in teh Euclidean 3-space revisited, Bull. Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI citation)
    23. T. Mert, B. Karliga, Timelike surfaces with constant angle in de-Sitter space S31, Cumhuryiet Science J (CJS) 37 (2016) 1, 1-11.
    24. T. Mert, B. Karliga, On the timelike surface with constant angle in hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.
    25. A.I. Nistor, New developments on constant angle property in S2 x R, Annali Mat. Pura Appl. (in press). (ISI citation)
    26. T. Mert, B. Karliga, Constant angle spacelike surfaces in de-Sitter space S31, Bol. Soc. Paran. Mat. 35 (2017) 3, 79-93.
    27. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)
    28. F. Dogan, Isophote curves on timelike surfaces in Minkowski 3-space, An. St. Univ. Al.I. Cuza Iasi (in press) DOI: 10.2478/aicu-2014-0020.

     

[DM09] F. Dillen, M.I.Munteanu, Constant Angle Surfaces in H2 x R , Bull. Braz. Math. Soc. 40 (2009) 1, 85-97; arXiv:0705.3744.

    1. G. Ruiz-Hernandez, Helix, shadows boundary and minimal submanifolds, Illinois J. Math., 52 (2008) 4, 1385 - 1397 (ISI citation)
    2. A. J. di Scala, G. Ruiz-Hernandez, Helix submanifolds of Euclidean spaces, Monatsh. Math. 157 (2009) 3, 205-215. (ISI citation)
    3. A. J. di Scala, Weak helix submanifolds of Euclidean spaces, Abh. Math. Sem. Univ. Hambg., 79 (2009) 1, 37-46 (ISI citation)
    4. R. Tojeiro, On a class of hypersurfaces in S n x R and H nx R, Bull. Braz. Math. Soc., 41 (2010) 2, 199 - 209 . (ISI citation)
    5. A.J. di Scala, G. Ruiz-Hernandez, Higher codimensional Euclidean helix submanifolds, Kodai Math. J, 33 (2010) 2, 192 – 210. (ISI citation)
    6. S. Oskaldi, Y. Yayli, Constant Angle Surfaces, The 8th Geometry Symposium, April 29 – May 2, 2010, Akdeniz University, Antalya, 91 – 92.
    7. F. Manfio, R. Tojeiro, Hypersurfaces with constant sectional curvature of Sn x R and H n x R, Illinois J. Math. 55 (2011) 1, 397 - 415. (ISI citation)
    8. A.I. Nistor, Certain constant angle surfaces constructed on curves, International Electronic J. of Geometry, 4 (2011) 1, 79 - 87.
    9. G. Ruiz-Hernandez, Minimal helix surfaces in N n x R, Abh. Math. Semin. Univ. Hamburg, 81 (2011) 1, 55 - 67. (ISI citation)
    10. S. Ozkaldi, Y. Yayli, Constant Angle Surfaces and curves in E3, International Electr. J. of Geometry, 4 (2011) 1, 70 – 78.
    11. D. Chen, G. Chen, H. Chen, F. Dillen,Constant Angle Surfaces in S3(1)x R, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012) 2, 289-304. (ISI citation)
    12. Y. Fu, D. Yang, On constant slope space-like surfaces in 3-dimensional Minkowski space, J. Math. Analysis Appl., 385 (2012) 1, 208 - 220.(ISI citation)
    13. A.I. Nistor, On a class of surfaces in H +xR, ROMAI J., 7 (2011) 2, 141 – 154.
    14. E. Ziplar, A. Senol, Y. Yayli, On r -Helix Hypersurfaces, International Mathematical Forum, 7 ( 2012) 34, 1689 – 1698.
    15. E. Ziplar, A. Senol, Y. Yayli , Helix Hypersurfaces and Special Curves, Int. J. Contemp. Math. Sciences, 7 (2012) 25, 1233–1245.
    16. M. Babaarslan, Y. Yayli, A New Approach to Constant Slope Surfaces with Quaternions , ISRN Geometry, Vol. 2012 (2012), Article ID 126358, 8 pages, doi:10.5402/2012/126358.
    17. F. Dillen, D. Kowalczyk, Constant angle surfaces in product spaces, J. Geom. Phys. 62 (2012) 6, 1414 – 1432. (ISI citation)
    18. E. Ziplar, A. Senol, Y. Yayli, On weak r-helix submanifolds, J. Dynam. Systems Geom. Theories, 10 (2012) 2, 139-148.
    19. P. Bayard, A.J. Di Scala, O.O. Castro, G. Ruiz-Hernandez, Surfaces in R4 with constant principal angles with respect to a plane, Geom. Dedic. 162 (2013) 1, 153-176.(ISI citation)
    20. Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr.J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
    21. E. Garnica, O. Palmas, G. Ruiz-Hernandez, Classification of constant angle hypersurfaces in warped products via eikonal functions, Bol. Soc. Mat. Mexicana, 18 (2012) 1, 29 - 42.
    22. Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation)
    23. H. Chen, G. Chen, H. Li, Some pinching theorems for minimal submanifolds in Sm(1)xR, Science China Math. 56 (2013) 8, 1679-1688. (ISI citation)
    24. E. Ziplar, A. Senol, Y. Yayli, On strong r-helix submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36.
    25. M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473–495. (ISI citation)
    26. M. Babaarslan, Y. Yayli, Split Quaternions and Timelike Constant Slope Surfaces in Minkowski 3-Space, Int. J. Geom. 2 (2013) 1, 23-33.
    27. S. Montaldo, I.I. Onnis, Helix surfaces in the Berger sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966. (ISI citation)
    28. C.P. Aquino, H.F. de Lima, E.A. Lima, On the angle of complete CMC hypersurfaces in Riemannian product spaces, Differ. Geom. Applications, 33 (2014), 139-148. (ISI citation)
    29. B. Daniel, Minimal isometric immersions into S2 x R and H2 x R, Indiana Univ. Math. J, 64 (2015) 5, 1425-1445. (ISI citation)
    30. A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation)
    31. T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.
    32. B. Foreman, Vertex-type curves in constant angle surfaces of Hyp2 x R, Contemp. Math. 674 (2016), Recent Advances in the Geometry of Submanifolds,
      Eds. B. Suceava, A. Carriazo, Yun Myung Oh, J. van der Veken (dedicated to the memory of Franki Dillen), 49 - 57. (ISI citation)
    33. Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
    34. Z.H. Hou, W.H. Qiu, A classification theorem for complete PMC surfaces with non-negative Gaussian curvature in Mn(c) x R, Taiwanese J. Math, 20 (2016) 1, 205 -226. (ISI citation)
    35. P. Lucas, J.A. Ortega-Yagues, Slant helices in teh Euclidean 3-space revisited, Bull. Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI citation)
    36. S. Montaldo, I.I. Onnis, A. Passos Passamani, Helix surfaces in the special linear group, Annali di Matematica Pura ed Applicata, 195 (2016) 1, 59-77. (ISI citation)
    37. T. Mert, B. Karliga, Timelike surfaces with constant angle in de-Sitter space S31, Cumhuryiet Science J (CJS) 37 (2016) 1, 1-11.
    38. T. Mert, B. Karliga, On the timelike surface with constant angle in hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.
    39. R.R. Montes, Flat contact angle surfaces in the Heisenberg group H3, Palestine J Math. 5 (2016) 1, 30-34.
    40. X. Li, M, Qi, Complete surfaces in the product spaces Q2 x S1 with constant Gaussian curvature, Bull. Braz. Math. Soc. 47 (2016) 4, 1007-1035. (ISI citation)
    41. A.I. Nistor, New developments on constant angle property in S2 x R, Annali Mat. Pura Appl. (in press). (ISI citation)
    42. T. Mert, B. Karliga, Constant angle spacelike surfaces in de-Sitter space S31, Bol. Soc. Paran. Mat. 35 (2017) 3, 79-93.
    43. D. Yang, Y. Fu, L. Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers Math. China, 12 (2017) 2, 459-480. (ISI citation)
    44. F. Dogan, Isophote curves on timelike surfaces in Minkowski 3-space, An. St. Univ. Al.I. Cuza Iasi (in press) DOI: 10.2478/aicu-2014-0020.
    45. A. Folha, C. Penafiel, Weingarten type surfaces in H2xR and S2xR, arXiv: 1511.08146v2 [math.DG].
    46. A. Heydari, S. Amiri-Sharifi, Semi-helices of Euclidean spaces, arXiv: 1505.04165v1 [math.DG].
    47. J. Jost, Y. L. Xin, Ling Yang, Submanifolds with constant Jordan angles, arxiv.org/abs/1502.02797
    48. E. Ziplar, A. Senol, Y. Yayli, f-Eikonal helix submanifolds and f-Eikonal helix curves, arXiv:1206.0395v6 .

[MN09] M.I.Munteanu, A.I. Nistor, Polynomial Translation Weingarten Surfaces in 3-dimensional Euclidean Space,
Proceedings of the VIII International Colloquium on Differential Geometry, (E. Vidal Abascal centennial congress) and satellite of the 5 th European Congress of Mathematics, World Scientific 2009, 316-320, Eds. J.A.Alvarez Lopez and E. Garcia Rio, ISBN 978-981-4261166 . Also arXiv:0809.4745v1 [math.DG]

    1. D.Y. Yoon, Polynomial translation surfaces of Weingarten types in Euclidean 3-space, Cent. Eur. J. Math., 8 (2010) 3, 430 – 436. (ISI citation)
    2. M.H. Kim, D.W. Yoon, Weingarten quadric surfaces in a Euclidean 3-space, Turkish J. Math., 35 (2011) 3, 479-485. (ISI citation)
    3. R. Lopez, Minimal Translation Surfaces in Hyperbolic Spaces, Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), 52 (2011) 1, 105 – 112.
    4. Z.M. Sipus, On a Certain Class of Translation Surfaces in a Pseudo-Galilean Spaces, International Mathematical Forum, 23 (2011) 6, 1113 – 1125.
    5. H.S. Abdel-Aziz, M. Khalifa Sadd, Weingarten time-like tube surfaces around a space-like curve, Int. J. Math. Analysis, 5 (2011) 25-28, 1225 – 1236.
    6. Z.M. Sipus, B. Divjak, Translation surfaces in Galilean space, Glasnik Matematicki, 46 (2011) 2, 455 – 469. (ISI citation)
    7. H.S. Abdelaziz, M. Khalifa Saad, S. Kiziltug, Parallel Surfaces of Weingarten Type in Minkowski 3-Space , International Mathematical Forum, 7 (2012) 46, 2293-2302.
    8. D.Y. Yoon, Y. Tuncer, M.K. Karacan, Non-degenerate quadric surfaces of Weingarten type, Ann. Polon. Mathematici, 117 (2013) 1, 59 - 69. (ISI citation)
    9. G. Ozturk, B. Bulca, B. K. Bayram, K. Arslan, Meridian Surface of Weingarten Type in 4-dimensional Euclidean Space E4, http://arxiv.org/abs/1305.3155
    10. A Bueno, R Lopez, Translation surfaces of linear Weingarten type, http://arxiv.org/pdf/1410.2510.pdf

.

[Mun08] M.I.Munteanu, Some aspects on the geometry of the tangent bundle and tangent sphere bundles of a Riemannian manifold, Mediterranean J. Mathematics, 5 (2008), 1, 43–60.

    1. W. Kozlowski, On the geometry of the normal bundle with a metric of Cheeger – Gromoll type , preprint 2008, arXiv : 0809.3884v1
    2. D. Chen, Z.S. Hu, When arbitrary constant radius tangent sphere bundle is Einstein, Journal of Mathematical Study, 42 (2009) 3, 244-250.
    3. S.L. Druta; Other Class of Tangent Bundles with General Natural Almost anti-Hermitian Structure, BSG Proceedings 17. The International Conference 'Differential Geometry-Dynamical Systems 2009' (DGDS-2009), October 8-11, 2009, Bucharest-Romania, 84-98.
    4. S. Druta, The holomorphic sectional curvature of general natural Kaehler structures on cotangent bundles, An. St. Univ Al.I. Cuza Iasi, Mat. 56 (2010) 1, 113 – 130. (ISI citation)
    5. S.L. Druta, V. Oproiu, Tangent sphere bundles of natural diagonal lift type, Balkan J. of Geometry and Its Applications, 15 (2010) 1, 53 – 67. (ISI citation)

    6. S.L. Druta Romaniuc, V. Oproiu, Some natural diagonal structures on the tangent bundle and on the tangent spheres bundles, ROMAI J., 6 (2010) 2, 121 – 130.
    7. S.L. Druta Romaniuc, V. Oproiu, Tangent sphere bundles which are eta Einstein, Balkan J. Geom. Appl., 16 (2011) 2, 48 - 61. (ISI citation)
    8. E. Peyghan, A. Ahmadi, A. Tayebi, Regarding the Kaehler-Einstein structure on Cartan spaces with Berwald connection, Iranian J Sci. Tech. 35 (2011) A2, 89 – 99. (ISI citation)
    9. R. Albuquerque, Curvature of weighted metrics of tangent sphere bundles, Riv. Mat. Univ. Parma, 2 (2011) 2, 299 – 313.
    10. S.L. Druta Romaniuc, V. Oproiu, The holomorphic phi-sectional curvature of tangent sphere bundles with Sasakian structures, An. St. Univ. Al. I. Cuza Iasi, Mat. 57 (2011) Suppl. 75-86. (ISI citation)
    11. S.L. Druta, Classes of General Natural Almost Anti-Hermitian Structures on the Cotangent Bundles, Mediterr. J. Math., 8 (2011) 2, 161–179. (ISI citation)
    12. R. Albuquerque, Weighted metrics on tangent sphere bundles, Quart. J. Math., 63 (2012) 2, 259–273. (ISI citation)
    13. S.L. Druta, P.M. Piu, Geodesicity and Isoclinity Properties for the Tangent Bundle of the Heisenberg Manifold with Sasaki Metric, Turkish J. Math., 36 (2012) 2, 331-343. (ISI citation)
    14. A. Salimov, A. Gezer, M. Iscan, On Para-Kaehler-Norden Structures on The Tangent Budles, Ann. Polon. Math., 103 (2012) 3, 247 – 261. (ISI citation)
    15. W. Kozłowski, K. Niedziałomski, Conformality of a differential with respect to Cheeger-Gromoll type metrics, Geom. Dedicata, 157 (2012) 1, 227-237. (ISI citation)
    16. S.L. Druta-Romaniuc, General natural Riemannian almost product and para-Hermitian structures on tangent bundles , Taiwanese J. Math., 16 (2012) 2, 497-510. (ISI citation)
    17. C.L. Bejan, S.L. Druţă-Romaniuc, Connections which are harmonic with respect to general natural metrics , Differ. Geom. Appl., 30 (2012) 4, 306–317. (ISI citation)
    18. A. Gezer, L. Bilen, On infinitesimal conformal transformations with respect to the Cheeger-Gromoll metric, An. St. Univ. Ovidius Constanta, 20 (2012) 1, 113-128. (ISI citation)
    19. S.L. Druta-Romaniuc, Quasi-Constant holomorphic sectional curvatures of tangent bundles with general natural Kaehler structures , An. St. Univ Al.I. Cuza Iasi, Mat. 58, (2012) 1, 181 – 193. (ISI citation)
    20. E. Peyghan, A. Heydari, L.N. Far, On the geometry of tangent bundles with a class of metrics, Ann. Polon. Math., 103 (2012) 3, 229-246. (ISI citation)
    21. A. Gezer, M. Altunbas, Some notes concerning Riemannian metrics of Cheeger Gromoll type, J. Math. Anal. Appl., 396 (2012) 1, 119-132. (ISI citation)
    22. E. Peyghan, A. Heydari, A. Razavi, The 0-homogeneous complete lift metric, Mediterr.J. Math., 9 (2012) 4, 693 - 707. (ISI citation)
    23. S.L. Druta-Romaniuc, Para-Kaehler tangent bundles of constant para-holomorphic sectional curvature, Bull. Iran. Math. Soc. 38 (2012) 4, 955 - 972. (ISI citation)
    24. S. L. Druţă-Romaniuc, Riemannian almost product and para-Hermitian cotangent bundles of general natural lift type, Acta Mathematica Hungarica, 139 (2013) 3, 228 - 244. (ISI citation)
    25. F. Agca, g-natural metrics on the cotangent bundles, International Electronic Journal of Geometry, 6 (2013) 1, 129-146.
    26. A. Gezer, On the tangent bundle with deformed Sasaki metric, Int. Electronic J. Geom., 6 (2013) 2, 19-31.
    27. E. Peyghan, L. Nourmohammadi Far, A. Tayebi, (1,1)-Tensor sphere bundle of Cheeger-Gromoll type, http://arxiv.org/abs/1306.2555v1
    28. F. Agca, A.A. Salimov, Some notes concerning Cheeger-Gromoll metrics, Hacettepe J. Math Statistics, 42 (2013) 5, 533-549. (ISI citation)
    29. C.L. Bejan, S.L. Druta-Romaniuc, Harmonic Almost Complex Structures with Respect to General Natural Metrics, Mediterranean J. Math. 11 (2014) 1, 123 - 136. (ISI citation)
    30. N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)
    31. Z.H. Hou, L. Sun, Geometry of tangent bundle with Cheeger–Gromoll type metric, Journal Math. Anal. Appl., 402 (2013) 2, 493-504. (ISI citation)
    32. L. Sun, Z.H. Hou, Normal bundle of surfaces in Riemannian manifolds, Mediterr. J. Math. 12 (2015) 1, 173-185. (ISI citation)
    33. X. Qi , L. Cao, X. Li, New hyper-Kaehler structures on tangent bundles, Communications in Math. 22 (2014) 13-30.
    34. Z.H. Hou, L. Sun, On the Tangent Bundle of a Hypersurface in a Riemannian Manifold, CHINESE Ann. Math. SERIES B, 36  (2015) 4, 579-602.  (ISI citation)
    35. A. Kazan; H.B. Karadag, Paracontact Tangent Bundles with Cheeger-Gromoll Metric, Mediterr. J. Math. 12 (2015) 2, 497-523. (ISI citation)
    36. A. Baghban, E. Abedi, On the harmonic vector fields, Proc. 8th seminar on geometry and topology, Amirkabir Univ. Technology, Iran, December 15-17, 2015, 10pp.
    37. S.V. Galaev, Admissible hypercomplex structures on distributions of Sasakian manifolds, (in Russian) Izv. Saratov University (New Series) Ser. Math. Mech. Inform. 16 (2016) 3, 263-272.
    38. A. Kazan; H.B. Karadag, Locally decomposable golden Riemannian tangent bundles with Cheeger Gromoll metric, Miskolc Math. J., 17 (2016) 1, 399-411.
    39. R. Albuquerque, On vector bundle manifolds with spherically symetric metrics, Ann. Global Anal. Geom. (in press). DOI 10.1007/s10455-016-9528-y. (ISI citation)

     

[Mun07a] M.I.Munteanu, Doubly Warped Products CR-Submanifolds in Locally Conformal Kaehler Manifolds, Monatshefte fur Mathematik, 150 (2007) 4, 333-342.

    1. B. Sahin, Notes on doubly warped and doubly twisted product CR-submanifolds of Kaehler manifolds, Mathematicki Vesnik, 59 (2007), 205-210.
    2. B. Sahin, Warped product submanifolds of Kaehler manifolds with a slant factor, Ann. Matematici Polonici, 95 (2009) 3, 207-226. (ISI citation)
    3. A. Olteanu, Contact CR-doubly warped product submanifolds in Kenmotsu space forms, J. of inequalities in pure and applied mathematics, 10 (2009) 4, art. 119.
    4. L. Ma, J. Zhou, Chern–Simons invariants and isometric immersions of warped products, Monatsh. Math., 159 (2010) 4, 361 - 378.(ISI citation)
    5. S. Uddin, On doubly warped product and twisted product submanifolds, International Electronic J. of Geom., 3 (2010) 1, 35 – 39.
    6. B.Y. Chen, Pseudo-Riemannian geometry, d-invariants and Applications, World Scientific Publishing Co., (2011); ISBN-13: 9789814329637 ISBN-10: 9814329630.
    7. G.E. Vilcu, Ruled CR-submanifolds of locally conformal Kaehler manifolds, J. Geom. Phys. 62 (2012) 6, 1366 – 1372. (ISI citation)
    8. E. Peyghan, A. Tayebi, B. Najafi, Doubly warped product Finsler manifolds with some non-Riemannian curvature properties , Ann. Polon. Math., 105 (2012) 3, 293-311. (ISI citation)
    9. M.B. Banaru, Geometry of 6-dimensional hermitian manifolds of the octave algebra, J. Math. Sciences, 207 (2015) 3, 354-388.
    10. A. Olteanu, CR-doubly warped product submanifolds, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 267-288.
    11. K. Singh, S. Uddin, An inequality for warped product CR-submanifolds in an LCK-space form, arXiv:1404.3468v2 [math.DG]
    12. K. Singh, An inequality for warped product CR-submanifolds in an LCK-space form, http://arxiv.org/abs/1404.3468v3

.

[Mun07b] M.I.Munteanu, A Note on doubly warped product ontact CR-submanifoldsin trans Sasakian manifolds, Acta Matematica Hungarica, 116 (1-2) (2007), 121-126 arXiv : 0604008v2 [math.DG] .

    1. S.K. Srivastava, A. Sharma, Geometry of PR-semi-invariant warped product submanifolds in paracosymplectic manifold, J. Geometry, doi:10.1007/s00022-016-0325-3. (ISI citation)
    2. S.K. Hui, M. Atceken, S. Nandy, Contact CR warped product submanifolds of (LCS)n-manifolds, Acta Math. Univ. Comenianae (in press).
    3. A. Ali, W.A.M. Othman, C. Ozel, Characterizations of contact CR-warped product submanifolds of nearly Sasakian manifolds, Balkan J Geom. Appl. 21 (2016) 2, 9-20.
    4. V.A. Khan, M. Shuaib, Some warped product submanifolds of a Kenmotsu manifold, Bulletin Korean Math. Soc. 51 (2014) 3, 863-881. (ISI citation)
    5. E. Peyghan, A. Tayebi, B. Najafi, Doubly warped product Finsler manifolds with some non-Riemannian curvature properties , Ann. Polon. Math., 105 (2012) 3, 293-311. (ISI citation)
    6. S.K. Hui, S. Uddin, C. Ozel, A.A. Mustafa, Warped product submanifolds of LP-Sasakian manifolds , Discrete Dynamics in Nature and Society, (2012), Article ID 868549, 11 pages. (ISI citation)
    7. S. Uddin, C.Ozel, V.A. Khan, Warped product CR-submanifolds of Lorentzian β-Kenmotsu manifolds, Publ. Inst. Mathematique, 92 (2012) 106, 157-163. (ISI citation)
    8. V.A. Khan, K.A. Khan, S. Uddin, A Note on Warped Product Submanifolds of Kenmotsu Manifold, Mathematica Slovaca, 61 (2011) 1, 79 – 92. (ISI citation)
    9. S. Uddin, V.A. Khan, H.H. Khan, Some results on Warped product Submanifolds of Sasakian Manifolds, IJMMS (International Journal of Mathematics and Mathematical Sciences) art.no.743074 (2010) 9 pages.
    10. S. Uddin, K.A. Khan, Warped product semi-slant submanifolds of trans-Sasakian manifolds, Diff. Geom. And Dynamical Systems, 12 (2010) 260 – 270.
    11. V.A. Khan, K.A. Khan, Generic warped product submanifolds in nearly Kaehler manifolds; Beitrage zur Algebra und Geometrie, 50 (2009) 2, 337 – 352.
    12. V.A. Khan, K.A. Khan, S. Uddin, Contact CR-warped product Submanifolds of Kenmotsu manifolds, Thai J. Math., 6 (2008) 2, 309 – 316.
    13. M.A. Khan, K.S. Chahal, Warped product pseudo-slant submanifolds of trans-Sasakian manifolds, Thai J. Math., 8 (2010) 2, 263– 273.
    14. H. Attarchi, M.M. Rezaii, Warped Product Conformal Kahler Manifolds and Kenmotsu Structures, arXiv:1206.2766v1.
    15. S.K. Srivastava, On warped product submanifolds of Kenmotsu manifolds, arXiv:1206.4416v1

 

[DM07] F. Dillen, M.I.Munteanu, Surfaces in H + x R, Proceedings of the conference Pure and Applied Differential Geometry, PADGE 2007, Eds. Franki Dillen, Ignace Van de Woestyne, 185-193,
ISBN 978-3-8322-6759-9.

    1. A.I. Nistor, Certain constant angle surfaces constructed on curves, International Electronic J. of Geometry, 4 (2011) 1, 79 - 87.
    2. D. Chen, G. Chen, H. Chen, F. Dillen, Constant Angle Surfaces in S3(1)x R, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012) 2, 289-304. (ISI citation)
    3. A.I. Nistor, On a class of surfaces in H +xR, ROMAI J., 7 (2011) 2, 141 – 154.
    4. M. Babaarslan, Y. Yayli, A New Approach to Constant Slope Surfaces with Quaternions , ISRN Geometry, Vol. 2012 (2012), Article ID 126358, 8 pages, doi:10.5402/2012/126358.

.

[Mun07c] M.I.Munteanu, Old and New Structures on the Tangent Bundle, Proceedings of the Eighth International Conference on Geometry, Integrability and Quantization, June 9-14, 2006,
Varna, Bulgaria, Ed. I. M. Mladenov and M. De Leon, Sofia 2007, 264-278.

    1. S. Druta, V. Oproiu , General Natural Kaehler Structures of Constant Holomorphic Sectional Curvature on Tangent Bundle, An. St. Univ. Al.I.Cuza Iasi, LIII, 2007, f1, 149 – 166.
    2. S. Druta, Conformally flat tangent bundles with general natural lifted metrics, Contemporary Geometry and Topology and Related Topics, Cluj-Napoca, August 19-25, 2007, 153-166.
    3. S. Druta, The Sectional Curvature of the Tangent Bundles with General Natural Lifted Metrics , Ninth International Conference on Geometry, Integrability and Quantization, June 8-13, 2007, Varna, Bulgaria, Ivalo M. Mladenov, Editor, SOFTEX, Sofia 2008, 198–209.
    4. S.L. Druta; Other Class of Tangent Bundles with General Natural Almost anti-Hermitian Structure, BSG Proceedings 17. The International Conference 'Differential Geometry-Dynamical Systems 2009' (DGDS-2009), October 8-11, 2009, Bucharest-Romania, 84-98.
    5. E.Peygan, A. Tayebi, A Kaeler structure on Finsler spaces with non-zero constant flag curvature, J. Math. Physics, 51 (2010) 022904. (ISI citation)
    6. S. Druta, The holomorphic sectional curvature of general natural Kaehler structures on cotangent bundles, An. St. Univ Al.I. Cuza Iasi, Mat. 56 (2010) 1, 113 – 130. (ISI citation)
    7. S.L. Druta; Classes of General Natural Almost Anti-Hermitian Structures on the Cotangent Bundles, Mediterr. J. Math. 8 (2011) 2, 161 – 179. (ISI citation)
    8. E. Peyghan, A. Ahmadi, A. Tayebi, Regarding the Kaehler-Einstein structure on Cartan spaces with Berwald connection, Iranian J Sci. Tech. 42 (2011) 89 – 99. (ISI citation)
    9. S.L. Druta Romaniuc, General natural Riemannian almost product and para-Hermitian structures on tangent bundles , Taiwanese J. Math., 16 (2012) 2, 497-510. (ISI citation)
    10. S.L. Druta, P.M. Piu, Geodesicity and Isoclinity Properties for the Tangent Bundle of the Heisenberg Manifold with Sasaki Metric, Turkish J. Math., 36 (2012) 2, 331-343. (ISI citation)
    11. S.L. Druta-Romaniuc, Quasi-Constant holomorphic sectional curvatures of tangent bundles with general natural Kaehler structures , An. St. Univ Al.I. Cuza Iasi, Mat. 58 (2012) 1, 181 – 193. (ISI citation)
    12. E. Peyghan, A. Heydari, L.N. Far, On the geometry of tangent bundles with a class of metrics, Ann. Polon. Math., 103 (2012) 3, 229-246. (ISI citation)
    13. E. Peyghan, A. Heydari, A. Razavi, The 0-homogeneous complete lift metric, Mediterr.J. Math., 9 (2012) 4, 693 - 707. (ISI citation)
    14. S.L. Druta-Romaniuc, Para-Kaehler tangent bundles of constant para-holomorphic sectional curvature, Bull. Iran. Math. Soc. 38 (2012) 4, 955 - 972. (ISI citation)
    15. N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)
    16. C.L. Bejan, S.L. Druta-Romaniuc, The projective curvature of the tangent bundle with natural diagonal metric, Filomat 29 (2015) 3, 401-410. (ISI citation)
    17. R.K. Srivastava, Para Kaehler and Kaehler structures on Finsler spaces with non zero constant flag curvature, Int. J Res. Eng. Management Tech. (IJREMT) 2 (2016) 7, 27-34.

     

    [Mun06a] M.I.Munteanu, Cheeger Gromoll type metrics on the tangent bundle, Proceedings of the fifth international symposium BioMathsPhys, Iasi, June 16-17, 2006,
    U.A.S.V.M. Ion Ionescu de la Brad, 49 (2006) 2, 257–268. arxiv: math.DG/0610028.

      1. S. Druta, V. Oproiu, General Natural Kaehler Structures of Constant Holomorphic Sectional Curvature on Tangent Bundle, An. St. Univ. Al.I.Cuza Iasi, LIII, 2007, f1, 149 – 166.
      2. S. Druta, Conformally flat tangent bundles with general natural lifted metrics , Contemporary Geometry and Topology and Related Topics, Cluj-Napoca, August 19-25, 2007, 153-166.
      3. S. Druta, The Sectional Curvature of the Tangent Bundles with General Natural Lifted Metrics , Ninth International Conference on Geometry, Integrability and Quantization, June 8-13, 2007, Varna, Bulgaria, Ivalo M. Mladenov, Editor, SOFTEX, Sofia 2008, 198–209.
      4. S.L. Druta, Other Class of Tangent Bundles with General Natural Almost anti-Hermitian Structure, BSG Proceedings 17. The International Conference 'Differential Geometry-Dynamical Systems 2009, (DGDS-2009), October 8-11, 2009, Bucharest-Romania, 84-98.
      5. W. Kozlowski, K. Niedzialomski, Differential as a harmonic morphisms with respect to Cheeger Gromoll type metrics; Annals of Global Analysis and Geometry, 37 (2010) 4, 327-337. (ISI citation)
      6. S. Druta, The holomorphic sectional curvature of general natural Kaehler structures on cotangent bundles, An. St. Univ Al.I. Cuza Iasi, Mat. 56 (2010) 1, 113 – 130. (ISI citation)
      7. S.L. Druta Romaniuc, General natural Riemannian almost product and para-Hermitian structures on tangent bundles , Taiwanese J. Math., 16 (2012) 2, 497-510. (ISI citation)
      8. S.L. Druta, P.M. Piu, Geodesicity and Isoclinity Properties for the Tangent Bundle of the Heisenberg Manifold with Sasaki Metric, Turkish J. Math., 36 (2012) 2, 331-343. (ISI citation)
      9. S.L. Druta-Romaniuc, Quasi-Constant holomorphic sectional curvatures of tangent bundles with general natural Kaehler structures , An. St. Univ Al.I. Cuza Iasi, Mat. 58 (2012) 1, 181 – 193. (ISI citation)
      10. A. Yampolsky, On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kaehlerian Manifold, J. Math. Phys. Anal. Geom., 8 (2012) 2, 177-189. (ISI citation)
      11. A. Gezer, M. Altunbas, Some notes concerning Riemannian metrics of Cheeger Gromoll type, J. Math. Anal. Appl., 396 (2012) 1, 119-132. (ISI citation)
      12. S.L. Druta-Romaniuc, Para-Kaehler tangent bundles of constant para-holomorphic sectional curvature, Bull. Iran. Math. Soc. 38 (2012) 4, 955 - 972. (ISI citation)
      13. F. Agca, g-natural metrics on the cotangent bundles, International Electronic Journal of Geometry, 6 (2013) 1, 129-146.
      14. Z.H. Hou, L. Sun, Geometry of tangent bundle with Cheeger–Gromoll type metric, Journal Math. Anal. Appl., 402 (2013) 2, 493-504. (ISI citation)
      15. F. Agca, A.A. Salimov, Some notes concerning Cheeger-Gromoll metrics, Hacettepe J. Math Statistics, 42 (2013) 5, 533-549 (ISI citation)
      16. N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book
      17. Z.H. Hou, L. Sun, On the Tangent Bundle of a Hypersurface in a Riemannian Manifold, CHINESE Ann. Math. SERIES B, 36  (2015) 4, 579-602.  (ISI citation)
      18. A. Kazan; H.B. Karadag, Paracontact Tangent Bundles with Cheeger-Gromoll Metric, Mediterr. J. Math. 12 (2015) 2, 497-523. (ISI citation)
      19. A. Kazan; H.B. Karadag, Locally decomposable golden Riemannian tangent bundles with Cheeger Gromoll metric, Miskolc Math. J., 17 (2016) 1, 399-411.

    [Mun06b] M.I.Munteanu, New aspects on CR-structures of codimension 2 on hypersurfaces of Sasakian manifolds, Archivum Mathematicum , 42 (2006) (1) 69-84.

      1. F. Massamba, Killing and geodesic lightlike hypersurfaces of indefinite Sasakian manifolds, Turkish Journal of Mathematics , 32 (3) (2008), 325-347. (ISI citation)
      2. F.R. Al-Solamy, R. Al-Ghefari, Hypersurfaces of a Sasakian manifold, Far East Journal of Mathematical Sciences (FJMS), 38 (2010) 2, 217 – 223.
      3. R.S. Gupta, Geometry of Lightlike Hypersurfaces of an Indefinite Cosymplectic Manifolds, International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), Kos, Greece (Sep. 19-25, 2012), NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), A/B, Book Series: AIP Conference Proceedings, 1479 (2012), 1651-1654. (ISI citation)
      4. M. Crasmareanu, L.I. Piscoran, CR-structures of codimension 2 on tangent bundles in Riemann-Finsler geometry, Periodica Math. Hungarica 73 (2016) 2, 240-250. (ISI citation)

     

    [Mun05a] M.I.Munteanu, Warped product contact CR submanifolds in Sasakian space forms, Publicationes Matematicae Debrecen, 66 (2005), 1-2, 75-120 .

      1. B. Sahin, Notes on doubly warped and doubly twisted product CR-submanifolds of Kaehler manifolds, Mathematicki Vesnik, 59 (2007), 205-210.
      2. B. Sahin, R. Gunes, CR-warped product submanifolds of nearly Kaehler manifolds, Beitrage Algebra Geom., 49 (2008) 2, 383 – 397.
      3. B. Sahin, Warped product semi-slant submanifolds of a locally product Riemannian manifold, Studia Scientiarum Mathematicarum Hungarica, 46 (2009) 2, 169-184. (ISI citation)
      4. M. Atceken, Warped Product Semi-Invariant Submanifolds in Almost Paracontact Riemannian Manifolds, Mathematical Problems in Engineering, 2009, Article ID 621625, 16pp. doi:10.1155/2009/621625. (ISI citation)
      5. B. Sahin, Warped product submanifolds of Kaehler manifolds with a slant factor, Ann. Matematici Polonici, 95 (2009) 3, 207-226 (ISI citation)
      6. B. Sahin, Skew CR-warped products of Kaehler manifolds, Mathematical Communications, 15 (2010) 1, 189-204 (ISI citation)
      7. C. Calin, Foliations and complemented frames structures, Bull. Belg. Math. Soc. Simon Stevin, 17 (2010) 3, 499-512 (ISI citation)
      8. K.L. Duggal, B. Sahin, Differential geometry of lightlike submanifolds, Springer (2010) ISBN: 978-3-0346-0250-1 (book)
      9. B.Y. Chen, Pseudo-Riemannian geometry, d-invariants and Applications, World Scientific Publishing Co., (2011); ISBN-13: 9789814329637 ISBN-10: 9814329630. (book)
      10. S. Uddin, V.A. Khan, K.A. Khan, Warped product submanifolds of a Kenmotsu manifold, Turkish J. Math., 36 (2012) 2, 319-330. (ISI citation)
      11. Y. Perktas, E. Kilic, S. Keles, Warped product submanifolds of Lorentzian paracosymplectic manifolds, Arab. J. Math., 1 (2012) 3, 377–393.
      12. M. Jamali, M. Hasan Shahid, Multiply warped product submanifolds of a generalized Sasakian space form, International Electronic Journal of Geometry, 7 (2014) 2, 72-83.
      13. T.Q. Binh, A. De, On contact CR-warped product submanifolds of a quasi-Sasakian manifold, Publicationes Mathematicae-Debrecen, 84 (2014) 1-2, 123-137. (ISI citation)
      14. V.A. Khan, M. Shuaib, Some warped product submanifolds of a Kenmotsu manifold, Bulletin Korean Math. Soc. 51 (2014) 3, 863-881. (ISI citation)
      15. K. Singh, S. Uddin, An inequality for warped product CR-submanifolds in an LCK-space form, arXiv:1404.3468v2 [math.DG]
      16. B. Laha, A. Bhattacharyya, On generalized quasi-Kenmotsu manifolds, Inter. J. Math. Combin. 4 (2014) 39-46.
      17. A. Mustafa, S. Uddin, B.R. Wong, Generalized inequalities on warped product submanifolds in nearly trans-Sasakian manifolds, J. Inequalities Applications, (2014) art. ID 346, (ISI citation)
      18. K. Singh, An inequality for warped product CR-submanifolds in an LCK-space form, http://arxiv.org/abs/1404.3468v3
      19. A. Mustafa, A.De, S. Uddin, Characterization of warped product submanifolds in Kenmotsu manifolds, Balkan J Geom Appl. 20 (2015) 1, 86-97. (ISI citation)
      20. A. Ali, W.A.M. Othman, C. Ozel, Characterizations of contact CR-warped product submanifolds of nearly Sasakian manifolds, Balkan J Geom. Appl. 21 (2016) 2, 9-20.
      21. A. Olteanu, CR-doubly warped product submanifolds, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 267-288.
      22. A. Akram, L.I. Piscoran, Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions, J. Geom. Phys. 114 (2017) 276-290. (ISI citation)

     

    [Mun05b] M.I.Munteanu, CR-structures of CR-codimension 2 on hypersurfaces in Sasakian manifolds, in Differential geometry and its applications, 157-163, Matfyzpress, Prague, 2005.

      1. M. Crasmareanu, L.I. Piscoran, CR-structures of codimension 2 on tangent bundles in Riemann-Finsler geometry, Periodica Math. Hungarica 73 (2016) 2, 240-250. (ISI citation)

       

    [Mun03] M.I.Munteanu, Invarianti geometrici asociati CR structurilor pseudoconvexe (in Romanian) Ph.D thesis, 2003.

      1. R. Mocanu, Gray curvature conditions and the Tanaka – Webster connection, Proc. of the VIII International Colloquium on Differential Geometry,
        (E. Vidal Abascal centennial congress) and satellite of the 5 th European Congress of Mathematics, World Scientific 2009, 291-295, Eds. J.A.Alvarez Lopez and E. Garcia Rio (ISI citation)

    [MM02] P.Matzeu, M.I.Munteanu, Vector Cross Products and Almost Contact Structure, Rendiconti di Matematica, Serie VII, vol. 22, Roma (2002), 359-376.

      1. J.L. Cabrerizo, M. Fernandez, J.S. Gomez, The contact magnetic flow in 3D Sasakian manifolds, J. of Physics A: Mathematical and Theoretical, 42 (2009) 19, Article n. 195201. (ISI citation)
      2. J.L. Cabrerizo, M. Fernandez, J.S. Gomez, On the existence of almost contact structure and the contact magnetic field, Acta Math. Hungar., 125 (2009) 1-2, 191 – 199. (ISI citation)
      3. N. Ozdemir, M. Solgun, S. Aktay, Almost contact metric structures induced by G_2 structures (in press) Turk J Math, DOI: 10.3906/mat-1601-14. (ISI citation)
      4. M.B. Banaru, Geometry of 6-dimensional hermitian manifolds of the octave algebra, J. Math. Sciences, 207 (2015) 3, 354-388.
      5. M.B. Banaru, V.F. Kirichenko, Almost contact metric structures on the hypersurface of almost hermitian manifolds, J. Math. Sciences, 207 (2015) 4, 513-537.

    [Mun00] M.I.Munteanu, New CR-structures on the Unit Tangent Bundle, Ann. Univ. Timisoara, vol.38, Fasc. 1, 2000, Seria Mat. Inf., 99-110.

      1. S.L. Druta, V. Oproiu, Tangent sphere bundles of natural diagonal lift type, Balkan J. of Geometry and Its Applications, 15 (2010) 1, 53 – 67. (ISI citation)
      2. S.L. Druta Romaniuc, V. Oproiu, The holomorphic phi-sectional curvature of tangent sphere bundles with Sasakian structures, An. St. Univ. Al. I. Cuza Iasi, Mat. 57 (2011) Suppl. 75-86. (ISI citation)
      3. E. Peyghan, L. Nourmohammadi Far, A. Tayebi, (1,1)-Tensor sphere bundle of Cheeger-Gromoll type, http://arxiv.org/abs/1306.2555v1
     

    [Mun98a] M.I.Munteanu, CR-structures on the Unit Cotangent Bundle, An. St. Univ. Al.I. Cuza Iasi, Math., 44 (1998), sI, f1, 125-136.

      1. S. Druta, Cotangent Bundles with General Natural Kahler Structures , Rev. Roumaine Math. Pures Appl., 54 (2009) 1, 13 – 23.
      2. S. Druta, Cotangent Bundles with General Natural Kahler Structures of quasi-constant holomorphic sectional curvatures, in Proceedings of the VIII International Colloquium on Differential Geometry (E. Vidal Abascal centennial congress) and satellite of the 5 th European Congress of Mathematics, World Scientific 2009, 311-315, Eds. J.A.Alvarez Lopez and E. Garcia Rio, (ISI citation)
      3. S. Druta, Kaehler Einstein structures of general natural lifted typeon the cotangent bundles, Balkan Journal of Geometry and Its Applications, 14 (2009) 1, 30 – 39 (ISI citation)
      4. S. Druta, The holomorphic sectional curvature of general natural Kaehler structures on cotangent bundles, An. St. Univ Al.I. Cuza Iasi, Mat. 56 (2010) 1, 113 – 130. (ISI citation)
      5. S.L. Druta,Classes of General Natural Almost Anti-Hermitian Structures on the Cotangent Bundles, Mediterr. J. Math., 8 (2011) 2, 161 – 179. (ISI citation)
      6. S.L. Druta-Romaniuc, Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles, Czech. Math. J. 62 (2012) 4, 937-949. (ISI citation)
      7. S. L. Druţă-Romaniuc, Riemannian almost product and para-Hermitian cotangent bundles of general natural lift type, Acta Mathematica Hungarica, 139 (2013) 3, 228 - 244. (ISI citation)
      8. S. L. Druta-Romaniuc, A Study on the Para-Holomorphic Sectional Curvature of Para-Kaehler Cotangent Bundles, Ann. Alexandru Ioan Cuza University, 61 (2015) 1, 253-262, DOI: 10.2478/aicu-2014-0033. (ISI citation)

    [Mun98b] M.I.Munteanu, CR-structures on the Unit Tangent Bundle and Bochner Type Tensor, Ann.Univ. Bucuresti, Matematica, An XLVII (1998), 1, 55-64.

      1. P. Matzeu, V. Oproiu, The Bochner type curvature tensor of pseudoconvex CR structures on real hypersurfaces in complex space forms, J. of Geometry 63 (1998), 134-146.
      2. V.Oproiu, CR structures on the unit tangent bundle of S2, An.St. Univ. Al.I.Cuza Iasi, 41 s.Ia (1995) f2, 385-399.

     

    [Mun97] M.I.Munteanu, CR-structures on the Translated Sphere Bundle , Proceedings of the Third International Workshop on Differential Geometry and Its Applications, Sibiu-Romania, September 18-23, 1997, 277-280.

      1. S.L. Druta, V. Oproiu, Tangent sphere bundles of natural diagonal lift type, Balkan J. of Geometry and Its Applications, 15 (2010) 1, 53 – 67. (ISI citation)
      2. S.L. Druta Romaniuc, V. Oproiu, The holomorphic phi-sectional curvature of tangent sphere bundles with Sasakian structures, An. St. Univ. Al. I. Cuza Iasi, Mat. 57 (2011) Suppl. 75-86. (ISI citation)