|
|
Marian Ioan MUNTEANU Citations 2013 - 2018 [old list] |
[MN17] M.I.Munteanu,
A.I. Nistor: On some closed
magnetic curves on a 3-torus, Math. Phys. Analysis Geometry 20 (2017) 2,
art. 8.
1
Erjavec, Z; Inoguchi, J,
Magnetic curves in Sol(3), JOURNAL OF
NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI
citation)
2
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
[IM17] J. Inoguchi, M.I.Munteanu,
Periodic magnetic curves in Berger spheres,
Tohoku Mathematical Journal, 69 (2017) 1, 113-128.
(arXiv:1310.2899v1 [math.DG])
1
J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional
almost contact metric geometry, Int. Electronic J. Geometry, 8
(2015) 2, 106-146.
2
A. Kazan; H. B. Karadag,
Magnetic Curves According to Bishop Frame
and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer
Science 22(4): 1-18, 2017; Art. BJMCS.33330.
3
Ahmet Kazan, H. Bayram Karadag,
Magnetic Pseudo Null and Magnetic Null
Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12,
2017, no. 3, 119 - 132.
4
Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC.
INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI
citation)
[MM16] M. Moruz, M.I.Munteanu,
Minimal
translation hypersurfaces in E4, Journal
of Mathematical Analysis and Applications,
439 (2016), 798 - 812.
1.
Guler, E; Magid, M; Yayli,
Y, LAPLACE-BELTRAMI OPERATOR OF A HELICOIDAL HYPERSURFACE
IN FOUR-SPACE, J. GEOMETRY AND SYMMETRY IN
PHYSICS, 41 (2016) 77-95; (ISI citation)
2.
Aydin, ME; Ergut, M,
Affine Translation Surfaces in the
Isotropic 3-Space, INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 10
(1):21-30; APR 2017 (ISI citation)
[DRIMN16] S.L. Druta-Romaniuc, J.
Inoguchi, M.I.Munteanu, A.I. Nistor: Magnetic curves in cosymplectic manifolds, Reports on Math. Physics,
78 (2016) 1, 33 - 48.
1.
Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC.
INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI
citation)
2.
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
[MPGR16] M.I.Munteanu,
O. Palmas, G. Ruiz-Hernandez: Translation hypersurfaces in Euclidean spaces,
Mediterranean
J. Mathematics, 13 (2016) 5, 2659-2676.
1
M.E. Aydin, A.O. Ogrenmis, Homothetical and translation
hypersurfaces with constant curvature in the isotropic space, BSG
Proceedings Int. Conf. DGDS-2015, 23 (2016) 1-10.
2
Aydin, ME; Ergut, M,
Affine Translation Surfaces in the
Isotropic 3-Space, INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 10
(1):21-30; APR 2017 (ISI citation)
3
Aydin, ME, CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE,
J. KOREAN MATHEMATICAL SOCIETY, 55 (2018) 1, 59-71. (ISI
citation)
4
H. Al-Zoubi, S. Stamatakis, W. Al-Mashaleh,
M. Awadallah, TRANSLATION SURFACES
OF COORDINATE FINITE TYPE, INDIAN JOURNAL OF MATHEMATICS, 59 (2017) 2,
227-241.
[DRIMN15] S.L. Druta-Romaniuc, J. Inoguchi, M.I.Munteanu,
A.I. Nistor:
Magnetic curves in Sasakian manifolds, J. Nonlinear Math.
Physics, 22 (2015) 3, 428-447.
1
A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic
space, Prespacetime J., 7 (2016) 15, 2015-2022.
2
J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional
almost contat metric geometry, Int. El. J. Geometry, 8 (2015) 2,
106-146.
3
M.E. Aydin, Magnetic curves associated to Killing vector
fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1,
144-150.
4
Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI
MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI
citation)
5
Ahmet Kazan, H. Bayram Karadag,
Magnetic Pseudo Null and Magnetic Null
Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12,
2017, no. 3, 119 - 132.
6
A. Kazan; H. B. Karadag,
Magnetic Curves According to Bishop Frame
and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer
Science 22(4): 1-18, 2017; Art. BJMCS.33330.
7
Kazan, A; Karadag, HB,
MAGNETIC
NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE,
COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND
STATISTICS, 67 (2018) 1, 147-160. (ISI citation)
8
Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC.
INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI
citation)
9
Erjavec, Z; Inoguchi, J,
Magnetic curves in Sol(3), JOURNAL OF
NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI
citation)
10
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
[CMP15] G. Calvaruso, M.I.Munteanu,
A. Perrone, Killing magnetic curves in three dimensional paracontact
manifolds, Journal Math. Anal. Appl. 426 (2015) 1, 423 - 439.
1
C. Calin, M. Crasmareanu, Magnetic curves in
three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13
(2016) 4, 2087 - 2097. (ISI citation)
2
Calvaruso, Giovanni; Perrone, Antonella,
Ricci solitons in three-dimensional
paracontact geometry, JOURNAL OF GEOMETRY AND PHYSICS
Volume: 98 Pages: 1-12
Published: DEC 2015 (ISI citation)
3
A. Perrone, Some results on almost paracontact metric manifolds, Mediterr.
J Math., 13 (2016) 5, 3311 - 3326. (ISI citation)
4
A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic
space, Prespacetime J., 7 (2016) 15, 2015-2022.
5
M.E. Aydin, Magnetic curves associated to Killing vector
fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1,
144-150.
6
Venkatesha, Devaraja Mallesha Naik,
Certain results on K-paracontact and
paraSasakian manifolds, Journal of Geometry, 108 (2017) 3, 939-952. (ISI
citation)
7
Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC.
INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI
citation)
[JMN15] M. Jleli, M.I.Munteanu and A.I. Nistor, Magnetic
Trajectories in an Almost Contact Metric Manifold R2N+1, Results. Math., 67
(2015), 125- 134.
1.
Ahmet Kazan, H. Bayram Karadag,
Magnetic Pseudo Null and Magnetic Null
Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12,
2017, no. 3, 119 - 132.
2.
A. Kazan; H. B. Karadag,
Magnetic Curves According to Bishop Frame
and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer
Science 22(4): 1-18, 2017; Art. BJMCS.33330.
3.
Kazan, A; Karadag, HB,
MAGNETIC
NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE,
COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND
STATISTICS, 67 (2018) 1, 147-160. (ISI citation)
4.
Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC.
INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI
citation)
[JM15] M. Jleli, M.I.Munteanu:
Magnetic curves on flat para-Kaehler manifolds, Turkish
Journal Mathematics, 39 (2015) 6, 963 - 969.
1
A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic
space, Prespacetime J., 7 (2016) 15, 2015-2022.
2
M.E. Aydin, Magnetic curves associated to Killing vector
fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1,
144-150.
3
Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC.
INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI
citation)
[BM15] M. Babaarslan, M.I.Munteanu
: Time-like loxodromes on rotational surfaces in Minkowski 3-spaces,
An.St. ale Univ.`Al.I.Cuza` din Iasi, 61 (2015) 2, 471-484.
1
H. Simsek, M. Ozdemir, On Conformal Curves in 2-Dimensional de Sitter
Space, Advances in Applied Clifford Algebras, 26 (2016) 2, 757-770. (ISI
citation)
2
M. Babaarslan, Y. Yayli, Space-like loxodromes on
rotational surfaces in Minkowski 3-space, J. Math. Anal. Appl., 409 (2014)
1, 288 - 298. (ISI citation)
3
M. Babaarslan, M. Kayacik,
Time-like Loxodromes on Helicoidal
Surfaces in Minkowski 3-Space, Filomat 31:14 (2017), 4405-4414. . (ISI
citation)
4
M. Babaarslan, Y. Yayli,
On Space-Like Constant Slope Surfaces And
Bertrand Curves In Minkowski 3-Space, An. Stiint. Univ. Al. I. Cuza Ia
̧si. Mat. (N.S.) Tomul LXIII, 2017, f. 2, p. 323.
[FM14] Y. Fu, M.I.Munteanu
: Generalized constant ratio surfaces in E3, Bull. Braz. Math.
Soc. 45 (2016) 1, 73 - 90.
1
Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull.
Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
2
Aslan, S; Yayli, Y,
Generalized constant ratio surfaces and
quaternions, KUWAIT JOURNAL OF SCIENCE, 44 (1):42-47; JAN 2017. (ISI
citation)
3
Bang-Yen Chen, Euclidean Submanifolds via Tangential Components of Their Position
Vector Fields, Mathematics 2017, 5(4), 51; doi:10.3390/math5040051.
4
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China,
2017, Volume 12, Issue 2, pp 459-480. (ISI citation) SRI=0.758
5
A Kelleci, M Ergut, NC Turgay,
New Classification Results on Surfaces
with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19
(2017), 6023-6040. (ISI citation) SRI=0.423
6
B.-Y. Chen, Topics in differential geometry associated with position vector fields
on Euclidean submanifolds, Arab Journal of Mathematical Sciences, Volume 23,
Issue 1, January 2017, Pages 1-17. SRI=0
[MN14] M.I.Munteanu,
A.I. Nistor: A note on magnetic curves on S 2n+1,
Comptes Rendus Mathematiques, 352 (2014) 5, 447 - 449.
1.
Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC.
INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI
citation)
[LM14] R.
Lopez, M.I.Munteanu : Invariant surfaces
in homogeneous space Sol with constant curvature, Math. Nachr., 287 (2014)
8-9, 1013-1024.
1
R. Lopez, A.I. Nistor, Surfaces in Sol3 Space Foliated by
Circles, Results. Math. 64 (2013) 3-4, 319-330, DOI
10.1007/s00025-013-0316-8. (ISI citation)
2
R. Lopez, Invariant surfaces in Sol(3) with constant mean
curvature and their computer graphics, Advances in Geometry, 14 (2014) 1,
31-48. (ISI citation)
3
D.W. Yoon, Invariant surfaces with pointwise 1-type Gauss map in
Sol3, J. Geom., 106 (2015) 3, 503 - 512. (ISI citation)
4
C. Desmonts, Constructions of periodic minimal surfaces and
minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI
citation)
5
J. ARROYO, O. J. GARAY, A. PAMPANO, Extremal Curves of a Total
Curvature Type Energy, Nonlinear Systems, Nanotechnology, Proceedings of the
14th Int. Conf. NOLASC '15 and the 6th Int. Conf. on NANOTECHNOLOGY '15, (2015)
103-112.
6
Yoon, DW, COORDINATE FINITE TYPE INVARIANT SURFACES IN SOL SPACES, BULLETIN OF
THE IRANIAN MATHEMATICAL SOCIETY, 43 (3):649-658; JUN 2017. (ISI
citation)
[IM14] J. Inoguchi,
M.I.Munteanu : Magnetic Maps, Int. J Geom. Methods Modern
Physics, 11 (2014) 6, art. no. 1450058.
1
G. Calvaruso, A. Perrone, Natural almost contact structures
and their 3D homogeneous models, Math. Nachr. 289 (2016)
11-12, 1370 - 1385. (ISI citation)
[MV14] M.I.Munteanu,
L. Vrancken,
Mnimal contact CR submanifolds in S2n+1 satisfying the δ(2) Chen
equality, J. Geometry Physics, 75 (2014) 92 - 97.
1
B.Y. Chen, Y. Fu, δ(3)-ideal null 2-type hypersurfaces in Euclidean
spaces, Diff. Geom. Appl. 40 (2015) 43-56. (ISI
citation)
2
T. Sasahara, Ideal CR-submanifolds, Chapter
in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R.
Al-Solamy, Springer 2016, 289-310.
[CM13] B. Y. Chen, M.I.Munteanu:
Biharmonic ideal hypersurfaces in Euclidean spaces, Differential Geometry
and Its Applications 31 (2013) 1, 1 - 16.
1
B.Y. Chen, Some open problems and conjectures on submanifolds
of finite type: recent developments, Tamkang J. Math. 45 (2014) 1, 87-108.
2
Y. Fu, Biharmonic hypersurfaces with three distinct principal
curvatures in Euclidean 5-space, Journal of Geometry and Physics, 75 (2014)
1, 113-119. (ISI citation)
3
B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite
Type, World Scientific, 2014,
Series in Pure Mathematics 27, ISBN: 978-981-4616-68-3. (book)
4
Y. Fu, Biharmonic Submanifolds with Parallel Mean Curvature
Vector in Pseudo-Euclidean Spaces, Math. Physics Analysis Geometry, 16
(2013) 4, 331-344. (ISI citation)
5
Z.P. Wang, Y.L. Ou, H.C. Yang, Biharmonic maps from a
2-sphere, Journal of Geometry and Physics, 77 (2014) 86-96. (ISI
citation)
6
M. Aminian, S. M. B. Kashani, Lk-biharmonic hypersurfaces
in the Euclidean space, Taiwanese J. Math., 19 (2015) 3, 861-874. (ISI
citation)
7
Y. Fu, Explicit classification of biconservative surfaces in
Lorentz 3-space forms, Annali di Matematica Pura ed Applicata, 194 (2015) 3
805-822. (ISI citation)
8
B.Y. Chen, Y. Fu, δ(3)-ideal null 2-type hypersurfaces in Euclidean
spaces, Diff. Geom. Appl. 40 (2015) 43-56. (ISI
citation)
9
Y.L. Ou, On f-biharmonic maps and f-biharmonic submanifolds,
Pacific J. Mathematics, 271 (2014) 2, 461-477. (ISI
citation)
10
N. C.Turgay, H-hypersurfaces with three distinct principal
curvatures in the Euclidean spaces, Annali di Matematica Pura Appl., 194
(2015) 6, 1795 - 1807. (ISI citation)
11
Liu Jian-cheng, Tian Xiao-qiang, Biharmonic Lorentz
hypersurfaces with three distinct principal curvatures in E51,
Journal of Lanzhou University (Natural Sciences), 51 (2015) 1, 124-128 (in
Chinese).
12
B.Y. Chen, H. Yildirim, Classification of ideal
submanifolds of real space forms with type number ≤ 2 , J. Geom. Phys.
92 (2015) 167-180. (ISI citation)
13
G. Kaimakamis, Recent progress in Chen's conjecture, Theoretical
Math Appl. 5 (2015) 2, 115-122.
14
R.S. Gupta, On bi-harmonic hypersurfaces in Euclidean space
of arbitrary dimension, Glasgow Mathematical Journal, 57 (2015) 3, 633-642. (ISI
citation)
15
Yu Fu, Biharmonic hypersurfaces with three distinct principal
curvatures in Euclidean space, Tohoku Math. J., 67 (2015) 3, 465-479. (ISI
citation)
16
Deepika, R.S. Gupta, Biharmonic hypersurfaces in E5
with zero scalar curvature, African Diaspora J. Math., 18
(2015) 1, 12-26.
17
Y.L. Ou, Some recent progress of biharmonic submanifolds, Contemp.
Math. 674 (2016), Recent Advances in the Geometry of Submanifolds, Eds. B.
Suceava, A. Carriazo, Yun Myung Oh, J. van der Veken (dedicated to the memory of
Franki Dillen), 127 - 140. (ISI citation)
18
Youn Luo, The maximal principle for properly immersed
submanifolds and its applications, Geom. Dedicata, 181 (2016) 1, 103
- 112. (ISI citation)
19
S. Montaldo, C. Oniciuc, A. Ratto, Proper biconservative
immersions into the Euclidean space, Annali Mat. Pura Appl., 195
(2016) 2, 403 - 422. (ISI citation)
20
A. Upadhiay, N.C. Turgay, A classification of
biconservative hypersurfaces in a pseudo-Euclidean space, J.
Math. Anal. Appl., 444 (2016) 2, 1703 - 1722. (ISI citation)
21
N.C. Turgay, A classification of biharmonic hypersurfaces in the
Minkowski spaces of arbitrary dimension, Hacettepe J. Math
Statistics, 45 (2016) 4, 1125 - 1134. (ISI citation)
22
Y. Fu, N.C. Turgay, Complete classification of
biconservative hypersurfaces with diagonalizable shape operator in the Minkowski
4-space, Int. J. Math., 27 (2016) 5, 1650041. (ISI
citation)
23
R.S. Gupta, A. Sharfuddin, Biharmonic hypersurfaces in
Euclidean space E-5, JOURNAL OF GEOMETRY, 107 (2016) 3, 685-705. (ISI
citation)
24
F. Pashaie, A. Mohammadpouri, Lk-biharmonic hypersurfaces
of Lorentz-Minkowski spaces, An. Univ. Oradea, XXIII (2016) 1, 171-176.
25
T. Sasahara, Ideal CR-submanifolds, Chapter
in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R.
Al-Solamy, Springer 2016, 289-310.
26
X. Cao, Y. Luo, On p-biharmonic submanifolds in nonpositively curved
manifolds, Kodai Math. J., 39 (2016) 3, 567-578. (ISI
citation)
27
R.S. Gupta, Biharmonic hypersurfaces in E6 with constant
scalar curvature, Int. J. Geometry, 5 (2016) 2, 39-50.
28
Deepika, R.H. Gupta, A. Sharfuddin, Biharmonic hypersurfaces
with constant scalar curvature in E5s, Kyungpook J Math. 56
(2016) 1,273-293.
29
Deepika, On Biconservative Lorentz Hypersurface with Non-diagonalizable Shape
Operator, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (3):2017. (ISI
citation)
30
Aminian, M; Kashani, SMB,
Lk-Biharmonic Hypersurfaces in Space Forms,
ACTA MATHEMATICA VIETNAMICA, 42 (3) 2017: 471-490. (ISI
citation)
31
Hamdy N. Abd-Ellah, Abdelrahim Khalifa Omran,
Study on BCN and BAN Ruled Surfaces in E3,
Korean J. Math. 25 (2017), No. 4, pp. 513-535.
32
FIROOZ PASHAIE,
ON L1-BIHARMONIC SPACELIKE HYPERSURFACES
IN PSEUDO-EUCLIDEAN SPACE E(5,1), Analele Universitatii Oradea Fasc.
Matematica, Tom XXIV (2017), Issue No. 2, 53-61.
33
B.-Y. Chen, Topics in differential geometry associated with position vector fields
on Euclidean submanifolds, Arab Journal of Mathematical Sciences, Volume 23,
Issue 1, January 2017, Pages 1-17.
34
Ram Shankar Gupta,
Biharmonic hypersurfaces in Es5, An.
Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.), Tomul LXII, 2016, f. 2, vol. 2, p.
585.
35
Deepika; Arvanitoyeorgos, A,
Biconservative ideal hypersurfaces in
Euclidean spaces, J. OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 458 (2018)
2, 1147-1165. (ISI citation)
36
Fu, Y; Hong, MC,
BIHARMONIC HYPERSURFACES WITH CONSTANT
SCALAR CURVATURE IN SPACE FORMS, PACIFIC JOURNAL OF MATHEMATICS, 294 (2)
2018, 329-350. (ISI citation)
37
Sen, RY; Turgay, NC,
On biconservative surfaces in
4-dimensional Euclidean space, JOURNAL OF MATHEMATICAL ANALYSIS AND
APPLICATIONS, 460 (2) 2018, 565-581. (ISI citation)
38
Sevinc, S; Sekerci, GA; Coken, AC, On Biharmonic Hypersurfaces
in Semi-Euclidean Spaces, 6TH INTERNATIONAL EURASIAN CONFERENCE ON
MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 1926 10.1063/1.5020490
2018 (AIP Conference Proceedings). (ISI citation)
[CCMS12] C. Calin, M. Crasmareanu,
M.I.Munteanu,
V.
Saltarelli,
Semi-invariant ξ⊥submanifolds
of generalized quasi-Sasakian manifolds, Taiw. J. Math. 16
(2012) 6, 2053-2062.
1
M. Faghfouri, N. Ghaffarzadeh,
Chen's inequality for invariant submanifolds in a generalized (κ,μ)-space
forms, Global J Adv. Research Classical Modern Geom. 4 (2015) 2, 86-101.
2
Mohd. Danish Siddiqi,
Semi-invariant ξ⊥
Submanifolds in Metric Geometry of Affinors, ASIAN JOURNAL OF
MATHEMATICS AND PHYSICS VOLUME 1, ISSUE 1, 2017, 9-14.
[MN13] M.I.Munteanu,
A.I. Nistor:
Magnetic trajectories in a non-flat R5 have order 5, Proc. International
conference PADGE 2012, Leuven, Berichte aus der Mathematik (2013) 224 - 231.
1
C. Calin, M. Crasmareanu, Magnetic curves in
three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13
(2016) 4, 2087 - 2097. (ISI citation)
2
A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic
space, Prespacetime J., 7 (2016) 15, 2015-2022.
3
M.E. Aydin, Magnetic curves associated to Killing vector
fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1,
144-150.
[Mun13] M.I.Munteanu:
Magnetic curves in the Euclidean space: one example, several approaches,
Publications de l'Institut Mathematique (Beograd) , 94 (108) (2013) 2, 141-150.
1
M. Babaarslan, Y.Yayli, Differential Equation of the
Loxodrome on a Helicoidal Surface, JOURNAL OF NAVIGATION, 68 (2015) 5,
962-970. (ISI citation)
2
C. Calin, M. Crasmareanu, Magnetic curves in
three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4,
2087 - 2097. (ISI citation)
3
Ahmet Kazan, H. Bayram Karadag,
Magnetic Pseudo Null and Magnetic Null
Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12,
2017, no. 3, 119 - 132.
4
Kazan, A; Karadag, HB,
MAGNETIC
NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE,
COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND
STATISTICS, 67 (2018) 1, 147-160. (ISI citation)
5
A. Kazan; H. B. Karadag,
Magnetic Curves According to Bishop Frame
and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer
Science 22(4): 1-18, 2017; Art. BJMCS.33330.
6
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
[D-RM13] S. L. Druta-Romaniuc, M.I.Munteanu:
Killing magnetic curves in a Minkowski 3-space, Nonlinear Analysis-Real
World Appl. 14 (2013) 1, 383-396.
1
C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian
flows on manifolds, J. Math. Phys., 54 (2013) 12,
121505. (ISI citation)
2
C.L. Bejan, S.L. Druta Romaniuc, Walker manifolds and
Killing magnetic curves, Differential Geometry and its
Applications, 35 (2014) 106-116. (ISI citation)
3
N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc,
Special types of metrics, Editura Stef 2014, 201pp. (book)
4
Z. Ozdemir, I. Gok, Y. Yayli, F.N. Ekmekci, Notes
on magnetic curves in 3D semi-Riemannian manifolds, Turk.
J. Math. 39 (2015) 412 - 426. (ISI citation)
5
C. Calin, M. Crasmareanu, Magnetic curves in
three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4,
2087 - 2097. (ISI citation)
6
A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic
space, Prespacetime J., 7 (2016) 15, 2015-2022.
7
M.E. Aydin, Magnetic curves associated to Killing vector
fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1,
144-150.
8
A. Kazan, H. Bayram Karadag,
Magnetic Pseudo Null and Magnetic Null
Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12,
2017, no. 3, 119 - 132.
9
A. Kazan; H. B. Karadag,
Magnetic Curves According to Bishop Frame
and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer
Science 22(4): 1-18, 2017; Art. BJMCS.33330.
10
A. Kazan; H.B. Karadag, MAGNETIC NON-NULL CURVES
ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE,
COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND
STATISTICS, 67 (2018) 1, 147-160. (ISI citation)
11
Korpinar, T; Demirkol, RC,
Frictional magnetic curves in 3D
Riemannian manifolds, INT. J. GEOMETRIC METHODS IN MODERN PHYSICS, 15 (2)
art. 1850020, 2018. (ISI citation)
12
T. Korpinar, On T-Magnetic Biharmonic Particles with Energy and Angle in the Three
Dimensional Heisenberg Group H, ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 28
(2018) 1, art.9. (ISI citation)
13
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
[CHM13] M. Crasmareanu, C.E. Hretcanu, M.I.Munteanu
: Golden and Product shaped
hypersurfaces in real space forms, International J.
Geometric Methods Modern Phys.10 (2013) 4, 1320006.
1
D. Yang, Y. Fu, The classification of golden shaped hypersurfaces
in Lorentz space forms, J. Math. Analysis applications 412 (2014) 2,
1135-1139. (ISI citation)
2
C. Ozgur, N. Yilmaz Ozgur, Classification of metallic
shaped hypersurfaces in real space forms, Turk. J. Math. 39 (2015) 5,
784-794. (ISI citation)
3
Y. Zhao, X.M. Liu, A class of special surfaces in
real space forms, J. Function Space, (2016) art. ID. 8796938. (ISI
citation)
4
X. Liu, Y. Zhao, Generalized golden shaped hypersurfaces in Lorentz
space forms, Commun. Korean Math. Soc. 31 (2016) 3, 647-656.
5
Yang, D; Hao, L; Chen, BR,
CLASSIFICATION OF PRODUCT SHAPED
HYPERSURFACES IN LORENTZ SPACE FORMS, PUBLICATIONS DE L INSTITUT
MATHEMATIQUE-BEOGRAD, 101 (115) 2017:223-230. (ISI citation)
6
Ozgur, C; Ozgur, NY,
METALLIC SHAPED HYPERSURFACES IN
LORENTZIAN SPACE FORMS, REVISTA DE LA UNION MATEMATICA ARGENTINA, 58
(2):215-226; 2017. (ISI citation)
[LM12] R. Lopez, M.I.Munteanu
: Minimal translation surfaces in Sol3, J. Math. Soc. Japan,
64 (2012) 3, 985 - 1003.
1
D.W. Yoon, Minimal translation surfaces in H2
x R, Taiwan. Journal of Math. 17 (2013) 5, 1545-1556, DOI:
10.11650/tjm.17.2013.2425. (ISI citation)
2
R. Lopez, A.I. Nistor, Surfaces in Sol3 Space Foliated by
Circles, Results. Math. 64 (2013) 3-4, 319-330, DOI
10.1007/s00025-013-0316-8. (ISI citation)
3
D.W. Yoon, C.W. Lee, M.K. Karacan, Some translation surfaces in
the 3-dimensional Heisenberg group, Bull. Korean Math. Soc, 50 (2013) 4,
1329-1343. (ISI citation)
4
R. Lopez, Invariant surfaces in Sol(3) with constant mean
curvature and their computer graphics, Advances in Geometry, 14 (2014) 1,
31-48. (ISI citation)
5
M. Faghfouri, T. Kasbi, Minimal translation surfaces in
Sol3 with the Lorentz metric, Proc. 7th seminar on Geometry and
Topology, Iran 2014, paper n. 1.63.
6
D.W. Yoon, On translation surfaces with zero Gaussian
curvature in H2 x R, International Journal of Pure and Applied Mathematics,
99 (2015) 3, 289 - 297.
7
C. Desmonts, Constructions of periodic minimal surfaces and
minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI
citation)
8
Lopez, R; Perdomo, O,
Minimal Translation Surfaces in Euclidean
Space, JOURNAL OF GEOMETRIC ANALYSIS, 27 (4) 2017: 2926-2937. (ISI
citation)
9
Newton L. Santos,
From geometric analysis to classical
geometry: 15 years talking about geometry with Professor Pessoa Lima,
Lecture Notes on Geometric Analysis, Editora da Universidade Federal do Piauí -
EDUFPI, p.109-132, 2017. (book)
10
J. P. Silva and P. A. Sousa,
Translation Hypersurfaces with Constant
Scalar Curvature into the Euclidean Space, Lecture Notes on Geometric
Analysis, Editora da Universidade Federal do Piauí - EDUFPI, p.49-72, 2017. (book)
11
Lima, Barnabe P.; Santos, Newton L.; Silva,
Juscelino P., Translation
Hypersurfaces with Constant S-r Curvature in the Euclidean Space, ANAIS DA
ACADEMIA BRASILEIRA DE CIENCIAS Volume:
88 Issue: 4
Pages: 2039-2052. (ISI
citation)
12
BENDEHIBA SENOUSSI AND MOHAMMED BEKKAR,
AFFINE TRANSLATION SURFACES IN
3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING ∆ri = λiri, Konuralp
Journal of Mathematics Volume 5 No. 2 pp. 47-53 (2017).
13
Aydin, ME, CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE,
J. KOREAN MATHEMATICAL SOCIETY, 55 (2018) 1, 59-71. (ISI
citation)
14
Erjavec, Z; Inoguchi, J,
Magnetic curves in Sol(3), JOURNAL OF
NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI
citation)
15
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
[MN12ijm] M.I.Munteanu,
A.I. Nistor:
Surfaces
in E3 making constant angle with Killing vector fields, Int.
J. Math., 23 (2012) 6, art. 1250023.
1
M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature
hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom.
Appl., 49 (2016) 473-495. (ISI citation)
2
Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN
JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)
3
Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI
MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI
citation)
[ACM12] P. Alegre, B. Y. Chen,
M.I.Munteanu
: Riemannian submersions, delta-invariants and optimal inequality, Annals
of Global Analysis and Geometry, 42 (2012) 3, 317 - 331.
1
V. Slesar, B. Sahin, G.E. Vilcu, Inequalities for the
Casorati curvatures of slant submanifolds in quaternionic space forms, J.
Inequalities Applications, 2014:123 (March 2014) 10pp. (ISI
citation)
2
B.Y. Chen, H. Yildirim, Classification of ideal
submanifolds of real space forms with type number ≤ 2 , J. Geom. Phys.
92 (2015) 167-180. (ISI citation)
3
J. Lee, G.E.Vilcu, Inequalities for generalized normalized delta-Casorati
curvatures of slant submanifolds in quaternionic space forms, TAIWANESE J.
MATH. 19 (2015) 3, 691-702. (ISI citation)
4
E. Kilic, M. Gulbahar, On the sectional curvature of lightlike
submanifolds, J. Inequalities Appl. 2016 (December 2016), 2016:57, 16pp. (ISI
citation)
5
B. Sahin, Chen’s first inequality for Riemannian maps,
Annales Polonici Mathematici 117 (2016) 3, 249-258. (ISI citation)
6
B-Y. Chen, CR-submanifolds and delta invariants, Chapter
in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R.
Al-Solamy, Springer 2016, 27-55.
7
Yildirim, H; Vrancken, L,
delta(2;2)-Ideal Centroaffine
Hypersurfaces of Dimension 5, TAIWANESE J. OF MATHEMATICS, 21 (2) 2017:
283-304. (ISI
citation)
8
Meric, SE; Kilic, E; Sagiroglu, Y,
Scalar curvature of Lagrangian Riemannian
submersions and their harmonicity, INTERNATIONAL JOURNAL OF GEOMETRIC
METHODS IN MODERN PHYSICS, 14 (12) 2017. (ISI citation)
9
M. GÜLBAHAR, Ş. EKEN MERIÇ,
AND E. KILIÇ,
SHARP INEQUALITIES INVOLVING THE RICCI
CURVATURE FOR RIEMANNIAN SUBMERSIONS, Kragujevac Journal of Mathematics
Volume 41(2) (2017), Pages 279-293. (ISI citation)
10
B Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their
Applications, Academic Press, 2017. (book)
11
B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds,
World Scientific, 2017 (book).
12
Gulbahar, M; Meric, SE; Kilic, E,
SHARP INEQUALITIES INVOLVING THE RICCI
CURVATURE FOR RIEMANNIAN SUBMERSIONS, KRAGUJEVAC JOURNAL OF MATHEMATICS, 41
(2): 2017, 279-293. (ISI citation)
13
Park, KS, Inequalities for the Casorati Curvatures of Real Hypersurfaces in Some
Grassmannians, TAIWANESE JOURNAL OF MATHEMATICS, 22 (1) 2018, 63-77. (ISI
citation)
[ILM12] J. Inoguchi, R. Lopez,
M.I.Munteanu
: Minimal translation surfaces in the Heisenberg group Nil3,
Geometriae Dedicata 161 (2012), 221 - 231.
1
D.W. Yoon, Minimal translation surfaces in H2
x R, Taiwan. Journal of Math. 17 (2013) 5, 1545-1556, DOI:
10.11650/tjm.17.2013.2425. (ISI citation)
2
J.F. Dorfmeister, J. Inoguchi, S. Kobayashi,
A loop group method for minimal surfaces in the three-dimensional Heisenberg
group, Asian J. Math., 20 (2016) 3, 409-448. (ISI citation)
3
D.W. Yoon, C.W. Lee, M.K. Karacan, Some translation surfaces in
the 3-dimensional Heisenberg group, Bull. Korean Math. Soc, 50 (2013) 4,
1329-1343. (ISI citation)
4
M. Faghfouri, T. Kasbi, Minimal translation surfaces in
Sol3 with the Lorentz metric, Proc. 7th seminar on Geometry and
Topology, Iran 2014, paper n. 1.63.
5
D.W. Yoon, On translation surfaces with zero Gaussian
curvature in H2 x R, International Journal of Pure and Applied Mathematics,
99 (2015) 3, 289 - 297.
6
G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves
in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1,
January 2015, pp.28-34.
7
Lopez, R; Perdomo, O,
Minimal Translation Surfaces in Euclidean
Space, JOURNAL OF GEOMETRIC ANALYSIS, 27 (4) 2017: 2926-2937. (ISI
citation)
8
Newton L. Santos,
From geometric analysis to classical
geometry: 15 years talking about geometry with Professor Pessoa Lima,
Lecture Notes on Geometric Analysis, Editora da Universidade Federal do Piauí -
EDUFPI, p.109-132, 2017. (book)
9
J. P. Silva and P. A. Sousa,
Translation Hypersurfaces with Constant
Scalar Curvature into the Euclidean Space, Lecture Notes on Geometric
Analysis, Editora da Universidade Federal do Piauí - EDUFPI, p.49-72, 2017. (book)
10
Lima, Barnabe P.; Santos, Newton L.; Silva,
Juscelino P., Translation
Hypersurfaces with Constant S-r Curvature in the Euclidean Space, ANAIS DA
ACADEMIA BRASILEIRA DE CIENCIAS Volume:
88 Issue: 4
Pages: 2039-2052. (ISI
citation)
[CCM12] C. Calin, M. Crasmareanu, M.I.
Munteanu, Slant curves in 3-dimensional f-Kenmotsu
manifolds, J. Math. Anal. Appl., 394 (2012) 1, 400-407.
1
C. Calin, M. Crasmareanu, Slant curves and particles in
3-dimensional warped products and their Lancret invariants, Bull. Austr.
Math. Soc. 88 (2013) 1, 128-142. (ISI citation)
2
C. Calin, M. Crasmareanu, Slant Curves in
3-dimensional Normal Almost Contact Geometry, Mediterranean Journal of
Mathematics, 10 (2013) 2, 1067-1077. (ISI citation)
3
Z.H. Hou, L. Sun , Slant curves in the unit tangent bundles of
surfaces, Int. Scholarly Res. Notices (2013) art. 821429, 5pp.
4
J. Welyczko, Slant curves in 3-dimensional normal almost
paracontact metric manifolds, Mediterranean Journal of Mathematics, 11
(2014) 3, 965-978.. (ISI citation)
5
S. Guvenc, C. Ozgur, On slant curves in trans-Sasakian
manifolds, Revista de la Union Matematica Argentina, 55 (2014)
2, 81-100. (ISI citation)
6
C. Calin, M. Crasmareanu, Slant and Legendre curves in
Bianchi-Cartan-Vranceanu geometry, Czech. Math. J, 64 (2014) 4,
945-960. (ISI citation)
7
J. Inoguchi, J-E. Lee, On slant curves in normal almost
contact metric 3-manifolds, Beitr. Algebra Geom. 55 (2014)
603 - 620.
8
M. Crasmareanu, C. Frigioiu, Unitary vector fields are
Fermi-Walker transported along Rytov-Legendre curves, Int. J. Geom. Methods
Modern Phys., 12 (2015) 10 1550111. (ISI citation)
9
C. Calin, M. Crasmareanu, Slant and Legendre curves in
Berger su(2): The Lancret invariant and quantum spherical curves,
Taiwanese Journal Math. 19 (2015) 4, 1203 - 1214. (ISI
citation)
10
J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional
almost contact metric geometry, Int. El. J. Geometry, 8 (2015) 2,
106-146.
11
Ali, A; Piscoran, LI,
Geometry of warped product immersions of
Kenmotsu space forms and its applications to slant immersions, J. GEOMETRY
AND PHYSICS, 114 (2017) 276-290. (ISI citation)
12
Inoguchi, JI; Lee, JE,
SLANT CURVES IN 3-DIMENSIONAL ALMOST f-KENMOTSU
MANIFOLDS, COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 32 (2) 2017:
417-424. (ISI citation)
13
Crasmareanu, M; Frigioiu, C,
Space-Like Slant Curves in
Three-Dimensional Normal Almost Paracontact Geometry, IRANIAN JOURNAL OF
SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 41 (A4) 2017: 1123-1129. (ISI
citation)
14
Oğuzhan Çelik, Zeki Kasap,
Mechanical Equations on Slant Curves in
3-dimensional Normal Almost Paracontact Metric Manifolds, International
Journal of Scientific and Innovative Mathematical Research (IJSIMR), 5 (2017),
9, 22-33.
15
Siddiqi, MD; Haseeb, A; Ahmad, M,
SKEW SEMI-INVARIANT SUBMANIFOLDS OF GENERALIZED QUASI-SASAKIAN MANIFOLDS,
CARPATHIAN MATHEMATICAL PUBLICATIONS, 9 (2):188-197; 10.15330/cmp.9.2.188-197
2017. (ISI citation)
[MN12jgp] M.I.Munteanu,
A.I. Nistor:
The
classification of Killing magnetic curves in S2 x R,
J. Geom. Phys. 62 (2012) 2, 170-182.
1
C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian
flows on manifolds, J. Math. Phys., 54 (2013) 12,
121505. (ISI citation)
2
C.L. Bejan, S.L. Druta Romaniuc, Walker manifolds and
Killing magnetic curves, Differential Geometry and its
Applications, 35 (2014) 106-116. (ISI citation)
3
N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc,
Special types of metrics, Editura Stef 2014, 201pp. (book)
4
C.L. Bejan, S.L. Druta Romaniuc, F-geodesics on Manifolds,
Filomat 29 (2015) 10, 2367-2379. (ISI citation)
5
C. Calin, M. Crasmareanu, Magnetic curves in
three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4,
2087 - 2097. (ISI citation)
6
A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic
space, Prespacetime J., 7 (2016) 15, 2015-2022.
7
M.E. Aydin, Magnetic curves associated to Killing vector
fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1,
144-150.
8
Emre Öztürk, Yusuf Yaylı,
W-Curves in Lorentz-Minkowski Space,
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES 5 (2) 76-88 (2017).
9
Ahmet Kazan, H. Bayram Karadag,
Magnetic Pseudo Null and Magnetic Null
Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12,
2017, no. 3, 119 - 132.
10
Kazan, A; Karadag, HB,
MAGNETIC
NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE,
COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND
STATISTICS, 67 (2018) 1, 147-160. (ISI citation)
11
Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC.
INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI
citation)
12
A. Kazan; H. B. Karadag,
Magnetic Curves According to Bishop Frame
and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer
Science 22(4): 1-18, 2017; Art. BJMCS.33330.
13
Korpinar, T; Demirkol, RC,
Frictional magnetic curves in 3D
Riemannian manifolds, INT. J. GEOMETRIC METHODS IN MODERN PHYSICS, 15 (2)
art. 1850020, 2018. (ISI citation)
14
T. Korpinar, On T-Magnetic Biharmonic Particles with Energy and Angle in the Three
Dimensional Heisenberg Group H, ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 28
(2018) 1, art.9. (ISI citation)
15
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
16
Abdel-Aziz, HS; Saad, MK; Ali, HA, SOME PROPERTIES OF SPECIAL
MAGNETIC CURVES, INTERNATIONAL J ANALYSIS AND APPLICATIONS, 16 (2) 2018:
193-208. (ISI citation)
[CM12] B. Y. Chen, M.I.Munteanu
: Geometry of PR−warped products in para-Kaehler manifolds, Taiwan.
J. Math., 16 (2012) 4, 1293-1327.
1
T. Q. Binh, A. De, On contact CR-warped product submanifolds of a
quasi-Sasakian manifold, Publicationes Math. Debrecen, 84 (2014) 1-2 (9),
123-137. (ISI citation)
2
A. Mustafa, S. Uddin, V.A. Khan, B.R. Wong, Contact CR-warped
product submanifolds of nearly trans-Sasakian manifolds, Taiw. J. Math., 17
(2013) 4, 1473-1486. (ISI citation)
3
Pan Zhang, Remarks on Chen's inequalities for submanifolds of
a Riemannian manifold of nearly quasi-constant curvature, Vietnam J. Math ,
43 (2015) 3, 557-569. (ISI citation)
4
Srivastava, S. K.; Sharma, A,
Geometry of PR-semi-invariant warped
product submanifolds in paracosymplectic manifold, JOURNAL OF GEOMETRY
Volume: 108 Issue: 1 Pages:
61-74 Published: APR 2017. (ISI
citation)
5
B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds,
World Scientific, 2017 (book).
6
S. K. Srivastava, A. Sharma,
A general optimal inequality for warped
product submanifolds in paracosymplectic manifolds, Note Mat. 37 (2017) no.
2, 45–60.
[D-RM11] S. L. Druta-Romaniuc, M.I.Munteanu,
Magnetic curves corresponding to Killing magnetic fields in E3, J.
Math. Phys. 52 (2011) 11, 113506.
1
C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian
flows on manifolds, J. Math. Phys., 54 (2013) 12,
121505. (ISI citation)
2
Z. Bozkurt, I. Gok, Y. Yayli, F.N. Ekmekci, A
new approach for magnetic curves in 3D Riemannian manifolds, J.
Math. Phys. 55 (2014) 5, art. 053501. (ISI citation)
3
N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc,
Special types of metrics, Editura Stef 2014, 201pp. (book)
4
C.L. Bejan, S.L. Druta Romaniuc, F-geodesics on Manifolds,
Filomat 29 (2015) 10, 2367-2379. (ISI citation)
5
C. Calin, M. Crasmareanu, Magnetic curves in
three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13
(2016) 4, 2087 - 2097. (ISI citation)
6
A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic
space, Prespacetime J., 7 (2016) 15, 2015-2022.
7
M.E. Aydin, Magnetic curves associated to Killing vector
fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1,
144-150.
8
D. Perrone, Un'introduzione alla Geometria Differenziale di curve e superfici,
Univ. del Salento (2017) (book).
9
Korpinar, T; Demirkol, RC,
Frictional magnetic curves in 3D
Riemannian manifolds, INT. J. GEOMETRIC METHODS IN MODERN PHYSICS, 15 (2)
art. 1850020, 2018. (ISI citation)
10
M. Barros, Angel Ferrandez, Ó.J.Garay,
Dynamics of charges and solitons, J.
Geometry and Physics, 125 (2018) 12-22. (ISI citation)
11
T. Korpinar, On T-Magnetic Biharmonic Particles with Energy and Angle in the Three
Dimensional Heisenberg Group H, ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 28
(2018) 1, art.9. (ISI citation)
12
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
13
Abdel-Aziz, HS; Saad, MK; Ali, HA, SOME PROPERTIES OF SPECIAL
MAGNETIC CURVES, INTERNATIONAL J ANALYSIS AND APPLICATIONS, 16 (2) 2018:
193-208. (ISI citation)
[Mun11] M.I.Munteanu,
A survey on constant angle surfaces in homogeneous 3-dimensional spaces,
Proceedings of the Workshop on Differential Geometry and its Applications Iasi,
Romania, September 2-4, 2009, Eds. D. Andrica and S.Moroianu, Cluj University
Press, 2011, 109-123.
1
A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space,
Filomat, 27 (2013) 5, 843-849, (ISI citation)
[LM11a] R. Lopez, M.I.Munteanu,
On the geometry of constant angle surfaces in Sol3 , Kyushu J.
Math. 65 (2011) 2, 237 - 249.
1
Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal
Directions for Surfaces in M2(c) x R1, Mediterr.
J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
2
S. Montaldo, I.I. Onnis, Helix surfaces in the Berger
sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966.
(ISI citation)
3
S. Montaldo, I.I. Onnis, A. Passos Passamani,
Helix surfaces in the special linear group, Annali di Matematica Pura ed
Applicata , 195 (2016) 1, 59-77. (ISI citation)
4
R. Lopez, Invariant surfaces in Sol(3) with constant mean
curvature and their computer graphics, Advances in Geometry, 14 (2014) 1,
31-48. (ISI citation)
5
A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu
J. Math. 68 (2014) 2, 315-332. (ISI citation)
6
Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN
JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)
7
Onnis, II; Piu, P,
Constant angle surfaces in the Lorentzian
Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI
citation)
8
Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI
MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI
citation)
9
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China,
2017, Volume 12, Issue 2, pp 459-480. (ISI citation)
10
Aydin, ME, CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE,
J. KOREAN MATHEMATICAL SOCIETY, 55 (2018) 1, 59-71. (ISI
citation)
11
Erjavec, Z; Inoguchi, J,
Magnetic curves in Sol(3), JOURNAL OF
NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI
citation)
12
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
[LM11b] R. Lopez, M.I.Munteanu
: Constant Angle Surfaces in Minkowski space, Bull. Belg. Math. Soc. -
Simon Stevin, 18 (2011) 2, 271 - 286.
1
Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal
Directions for Surfaces in M2(c)xR1, Mediterr.J.
Math., 10 (2013) 2, 1035-1049. (ISI citation)
2
M. Babaarslan, Y. Yayli, Split Quaternions and
Timelike Constant Slope Surfaces in Minkowski 3-Space, Int. J. Geom. 2
(2013) 1, 23-33.
3
Y. Fu, X. Wang, Classification of Timelike Constant Slope
Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013)
3-4, 1095-1108. (ISI citation)
4
R.A. Abdel-Baky, Slant ruled surface in the Euclidean 3-space E3,
Scientia Magna, 9 (2013) 4, 107-112.
5
A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space,
Filomat, 27 (2013) 5, 843-849, (ISI citation)
6
E. Ziplar, A. Senol, Y. Yayli, On strong r-helix
submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36.
7
T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic
space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.
8
M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature
hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom.
Appl., 49 (2016) 473-495. (ISI citation)
9
T. Mert, B. Karliga, Timelike surfaces with constant angle in
de-Sitter space S31, Cumhuryiet Science J (CJS) 37
(2016) 1, 1-11.
10
T. Mert, B. Karliga, On the timelike surface with constant angle in
hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.
11
R.R. Montes, Flat contact angle surfaces in the Heisenberg group
H3, Palestine J Math. 5 (2016) 1, 30-34.
12
Mert, T; Karliga, B,
Constant Angle Spacelike Surface in de
Sitter Space S-1(3), BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 35 (3)
2017:79-93; (ISI citation)
13
Onnis, II; Piu, P,
Constant angle surfaces in the Lorentzian
Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI
citation)
14
Xiao-Liu Wang, Xiaoli Chao,
Constant angle surfaces constructed on
curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472, DOI
10.3969/j.issn.1003-7985.2013.04.022.
15
A Kelleci, M Ergut, NC Turgay,
New Classification Results on Surfaces
with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19
(2017), 6023-6040. (ISI citation)
16
Karakus, SO, Certain Constant Angle Surfaces Constructed on
Curves in Minkowski 3-Space, INTERNATIONAL ELECTRONIC J. OF GEOMETRY, 11 (1)
2018: 37-47. (ISI
citation)
17
Jost, J; Xin, YL; Yang, L, SUBMANIFOLDS WITH CONSTANT
JORDAN ANGLES AND RIGIDITY OF THE LAWSON-OSSERMAN CONE, ASIAN J MATH., 22
(1) 2018: 75-110. (ISI citation)
18
Verstraelen, L, On Angles and Pseudo-Angles in Minkowskian Planes,
MATHEMATICS, 6 (4) 2018. (ISI citation)
[LM11c] R. Lopez, M.I.Munteanu
Surfaces with constant mean curvature in Sol geometry, Differential
Geometry and Its Applications 29 (2011), S238 -S245.
1
C. Desmonts, Constructions of periodic minimal surfaces and
minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI
citation)
2
Erjavec, Z; Inoguchi, J,
Magnetic curves in Sol(3), JOURNAL OF
NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI
citation)
3
Erjavec, Z; Inoguchi, J, Killing Magnetic Curves in
Sol Space, MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 21 (2) 15, 2018. (ISI
citation)
[MN11a] M.I.Munteanu,
A.I. Nistor,
Complete classification of surfaces with a canonical principal direction in
the Euclidean space E3, Cent. European J. Math, 9 (2011) 2,
378-389; also as: arXiv:1004.4255[math.DG]
1
Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal
Directions for Surfaces in M2(c) x R1, Mediterr.
J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
2
A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space,
Filomat, 27 (2013) 5, 843-849, (ISI citation)
3
Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull.
Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
4
Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN
JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)
5
Di Scala, AJ; Ruiz-Hernandez, G,
CMC hypersurfaces with canonical principal
direction in space forms, MATHEMATISCHE NACHRICHTEN, 290 (2-3) 2017:
248-261. (ISI citation)
6
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China,
2017, Volume 12, Issue 2, pp 459-480. (ISI citation)
7
A Kelleci, M Ergut, NC Turgay,
New Classification Results on Surfaces
with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19
(2017), 6023-6040. (ISI citation)
[MN11b] M.I.Munteanu,
A.I. Nistor
: On the Geometry of the Second Fundamental Form of Translation Surfaces in
E3, Houston J. Math., 37 (2011) 4, 1087 - 1102.
1
Andrzej Trzesowski, On the isothermal geometry of corrugated graphene
sheets, Journal of Geometry and Symmetry in Physics 36 (2014):
1-45
2
ÇETIN, MUHAMMED; TUNÇER, YILMAZ,
Parallel surfaces to translation surfaces
in Euclidean 3-space, Communications Fac. Sci. Univ. Ank. Series, Series A1
Mathematics & Statistics (2015),
64 (2), 47-54.
3
G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves
in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1,
January 2015, pp.28-34.
4
AT Ali, HSA Aziz, AH Sorour,
On curvatures and points of the
translation surfaces in Euclidean 3-space, Journal of the Egyptian
Mathematical Society, 23, (2015) 1, 167-172.
5
M.E. Aydin, A.O. Ogrenmis, Homothetical and translation
hypersurfaces with constant curvature in the isotropic space, BSG
Proceedings Int. Conf. DGDS-2015, 23 (2016) 1-10.
6
K. Arslan, B. Bayram, B. Bulca, G. Ozturk, On translation
surfaces in 4-dimensional Euclidean space, Acta Commentationes Univ.
Tartuensis Mathematica, 20 (2016) 2, 123-133. (ISI citation)
7
H.G. Bozok, M. Ergut,
Minimal Afne Translation
Surfaces in Hyperbolic Space, Palestine Journal of Mathematics, Vol.
7(1)(2018) , 257-261.
8
Wang, HH; Goldman, R, Syzygies for translational surfaces, J
SYMBOLIC COMPUTATION, 89, 2018, 73-93. (ISI citation)
[FMV11] J. Fastenakels, M.I.Munteanu,
J. Van der Veken, Constant angle surfaces in the Heisenberg group, Acta
Math. Sinica (English Series), 27 (2011) 4, 747 - 756.
1
Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal
Directions for Surfaces in M2(c)xR1, Mediterr.
J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
2
Y. Fu, X. Wang, Classification of Timelike Constant Slope
Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013)
3-4, 1095-1108. (ISI citation)
3
S. Montaldo, I.I. Onnis, Helix surfaces in the Berger
sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966.
(ISI citation)
4
S. Verpoort, Hypersurfaces with a parallel higher fundamental form,
J. Geom. 105 (2014) 2, 223-242.
5
S. Montaldo, I.I. Onnis, A. Passos Passamani,
Helix surfaces in the special linear group, Annali di Matematica Pura ed
Applicata, 195 (2016) 1, 59-77. (ISI citation)
6
M. Crasmareanu, Adapted metrics and Webster curvature on three
classes of 3-dimensional geometries, International Electronic Journal of
Geometry, 7 (2014) 2, 37-46.
7
S. Kilicoglu, On the explicit parametric equation of a general helix
with first and second curvature in Nil 3-space, Pure
Appl. Math. J., 4 (2015) 1-2, 19-23.
8
A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu
J. Math. 68 (2014) 2, 315-332. (ISI citation)
9
C. Calin, M. Crasmareanu, Slant and Legendre curves in
Bianchi-Cartan-Vranceanu geometry, Czech. Math. J, 64 (2014) 4,
945-960. (ISI citation)
10
T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic
space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.
11
R.R. Montes, Flat contact angle surfaces in the Heisenberg group
H3, Palestine J Math. 5 (2016) 1, 30-34.
12
A.J di Scala, G. Ruiz-Hernandez, Minimal helix
submanifolds and minimal Riemannian foliations, Boletin
de la Sociedad Matematica Mexicana, 22 (2016) 1, 229 - 250. (ISI
citation)
13
P. Lucas, J.A. Ortega-Yagues, Slant helices in the Euclidean 3-space revisited, Bull.
Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI
citation)
14
T. Mert, B. Karliga, Timelike surfaces with constant angle in
de-Sitter space S31, Cumhuryiet Science J (CJS) 37
(2016) 1, 1-11.
15
T. Mert, B. Karliga, On the timelike surface with constant angle in
hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.
16
Mert, T; Karliga, B,
Constant Angle Spacelike Surface in de
Sitter Space S-1(3), BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 35 (3)
2017:79-93; (ISI citation)
17
Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN
JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)
18
Onnis, II; Piu, P,
Constant angle surfaces in the Lorentzian
Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI
citation)
19
Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI
MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI citation)
20
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China,
2017, Volume 12, Issue 2, pp 459-480. (ISI citation)
21
Jost, J; Xin, YL; Yang, L, SUBMANIFOLDS WITH CONSTANT
JORDAN ANGLES AND RIGIDITY OF THE LAWSON-OSSERMAN CONE, ASIAN J MATH., 22
(1) 2018: 75-110. (ISI citation)
[DMVV11] F. Dillen, M.I.Munteanu,
J. van der Veken, L. Vrancken, Constant angle surfaces in a
warped product, Balkan Journal of Geometry and Its Applications, 16 (2011)
2, 35-47.
1
C. Calin, M. Crasmareanu, Slant curves and particles in
3-dimensional warped products and their Lancret invariants, Bull. Austr.
Math. Soc. 88 (2013) 1, 128-142. (ISI citation)
2
Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal
Directions for Surfaces in M2(c)xR1, Mediterr.
J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
3
A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu
J. Math. 68 (2014) 2, 315-332. (ISI citation)
4
J.A. Aledo, A. Romero, R.M. Rubio,, The existence and uniqueness
of standard static splitting, CLASS. QUANTUM GRAVITY 32 (2015) 10,
Art.. 105004. (ISI citation)
5
B. Foreman, Vertex-type curves in constant angle surfaces of Hyp2
x R, Contemp. Math. 674 (2016), Recent Advances in
the Geometry of Submanifolds, Eds. B. Suceava, A. Carriazo, Yun Myung Oh, J. van
der Veken (dedicated to the memory of Franki Dillen), 49 - 57. (ISI
citation)
6
P. Lucas, J.A. Ortega-Yagues, Slant helices in the Euclidean 3-space revisited, Bull.
Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI
citation)
13
M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature
hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom.
Appl., 49 (2016) 473-495. (ISI citation)
14
Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN
JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)
15
Onnis, II; Piu, P,
Constant angle surfaces in the Lorentzian
Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI
citation)
16
Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI
MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI
citation)
17
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China,
2017, Volume 12, Issue 2, pp 459-480. (ISI citation)
[DMN11] F. Dillen, M.I.Munteanu,
A.I. Nistor, Canonical coordinates and principal directions for
surfaces in H 2 x R, Taiwanese J. Math., 15 (2011) 5, 2265 - 2289. (arXiv[math.DG]:0910.2135)
1
Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal
Directions for Surfaces in M2(c)xR1, Mediterr.
J. Math., 10 (2013) 2, 1035-1049. (ISI citation)
2
A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space,
Filomat, 27 (2013) 5, 843-849, (ISI citation)
3
F. Gao, X.B. Zhang, J.L. Fu, Applications of canonical
coordinates for solving single freedom constraint mechanical systems, Applied
Mathematics and Mechanics, 35 (2014) 8, 1029-1038. (ISI
citation)
4
Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull.
Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
5
Z.H. Hou, W.H. Qiu, A classification theorem for
complete PMC surfaces with non-negative Gaussian curvature in Mn(c) x
R, Taiwanese J. Mathematics, 20(2016)1, 205 -226. (ISI
citation)
6
M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature
hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom.
Appl., 49 (2016) 473-495. (ISI citation)
7
Di Scala, AJ; Ruiz-Hernandez, G,
CMC hypersurfaces with canonical principal
direction in space forms, MATHEMATISCHE NACHRICHTEN, 290 (2-3) 2017:
248-261. (ISI citation)
8
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China,
2017, Volume 12, Issue 2, pp 459-480. (ISI citation)
9
LI Jianxiang, A Class of Fourth Order Willmore Hypersurfaces in R5, Journal of
Tianjin Normal University (Natural Science Edition), (2017), 37 (1).
10
A Kelleci, M Ergut, NC Turgay,
New Classification Results on Surfaces
with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19
(2017), 6023-6040. (ISI citation)
11
Rafael Novais, João Paulo dos Santos,
Intrinsic and extrinsic geometry of
hypersurfaces in SnxR and
HnxR, Journal of Geometry, 108, (2017) 3, pp 1115-1127. (ISI citation)
[Mun10] M.I.Munteanu,
From
Golden Spirals to Constant Slope Surfaces, Journal of Mathematical
Physics, 51 (2010) 7, 073507.
1
Y. Fu, X. Wang, Classification of Timelike Constant Slope
Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013)
3-4, 1095-1108. (ISI citation)
2
E. Ziplar, A. Senol, Y. Yayli, On strong r-helix
submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36.
3
M. Babaarslan, Y. Yayli, Timelike constant slope
surfaces and Spacelike Bertrand curves in Minkowski 3-space, Proc. National
Academy Sci., India Section A: Physical Sciences, 84 (2014) 4, 535-540. (ISI
citation)
4
Michael A. Sherbon,
Fundamental Nature of the Fine-Structure
Constant, International Journal of Physical Research 03/2014; 2(1):1-9.
5
M.S. Lehnert, E. Brown, M.P. Lehnert, P.D. Gerard, H. Yan, C. Kim,
The Golden Ratio: Reveals Geometric Differences in Proboscis Coiling Among
Butterflies of Different Feeding Habits, American Entomologist, 61 (2015) 1,
18-26.
6
M. Babaarslan, Y.Yayli, Differential Equation of the
Loxodrome on a Helicoidal Surface, JOURNAL OF NAVIGATION, 68 (2015) 5,
962-970. (ISI citation)
7
Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull.
Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
8
Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN
JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)
9
Aslan, S; Yayli, Y,
Generalized constant ratio surfaces and
quaternions, KUWAIT JOURNAL OF SCIENCE, 44 (1):42-47; JAN 2017. (ISI
citation)
10
Xiao-Liu Wang, Xiaoli Chao,
Constant angle surfaces constructed on
curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472, DOI
10.3969/j.issn.1003-7985.2013.04.022
11
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China,
2017, Volume 12, Issue 2, pp 459-480. (ISI citation)
12
A Kelleci, M Ergut, NC Turgay,
New Classification Results on Surfaces
with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19
(2017), 6023-6040. (ISI citation)
13
M. Babaarslan, Y. Yayli,
On Space-Like Constant Slope Surfaces And
Bertrand Curves In Minkowski 3-Space, An. Stiint. Univ. Al. I. Cuza Iasi.
Mat. (N.S.) Tomul LXIII, 2017, f. 2, p. 323.
14
B.-Y. Chen, Topics in differential geometry associated with position vector fields
on Euclidean submanifolds, Arab Journal of Mathematical Sciences, Volume 23,
Issue 1, January 2017, Pages 1-17.
15
Verstraelen, L, On Angles and Pseudo-Angles in Minkowskian Planes,
MATHEMATICS, 6 (4) 2018. (ISI citation)
[MN10] M.I.Munteanu,
A.I. Nistor,
New results on the geometry of translation surfaces, Tenth International
Conference on Geometry, Integrality and Quantization. June 6-11, 2008, Varna,
Bulgaria. reprinted from Journal of Geometry and Symmetry in Physics (JGSP) 18
(2010) 49 - 62.
1
S.N. Krivoshapko, V.N. Ivanov, Translation Surfaces,
chapter in book: Encyclopedia of Analytical Surfaces, 2015, 159-183.
2
G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves
in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1,
January 2015, pp.28-34.
[MM10] R.Mocanu, M.I.Munteanu,
Gray identities for almost contact metric manifolds,J. of the Korean
Math. Society, 47 (2010) 3, 505-521. arXiv:0706.2570v1 [math DG].
1
M. Falcitelli , A class of almost contact metric manifolds and
double twisted products, Math. Sciences Appl. E-Notes, 1 (2013) 1, 36 - 57.
2
Dokuzova, I, ALMOST EINSTEIN MANIFOLDS WITH CIRCULANT STRUCTURES, JOURNAL OF THE
KOREAN MATHEMATICAL SOCIETY, 54 (5) 2017: 1441-1456. (ISI
citation)
[MN09a] M.I.Munteanu,
A.I. Nistor,
A new approach on constant angle surfaces in E3, Turkish J.
Mathematics 33
(2009) 2, 169-178.
1
P. Bayard, A.J. Di Scala, O.O. Castro, G. Ruiz-Hernandez, Surfaces
in R4 with constant principal angles with respect to a plane, Geom.
Dedic. 162 (2013) 1, 153-176.(ISI citation)
2
Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal
Directions for Surfaces in M2(c) x R1,
Mediterr.J. Math.,10 (2013) 2, 1035-1049. (ISI citation)
3
Y. Fu, X. Wang, Classification of Timelike Constant Slope
Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013)
3-4, 1095-1108. (ISI citation)
4
A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space,
Filomat, 27 (2013) 5, 843-849. (ISI citation)
5
R.A. Abdel-Baky, Slant ruled surface in the Euclidean 3-space E3,
Scientia Magna, 9 (2013) 4, 107-112.
6
A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu
J. Math. 68 (2014) 2, 315-332. (ISI citation)
7
T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic
space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.
8
Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull.
Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
9
P. Lucas, J.A. Ortega-Yagues, Slant helices in the Euclidean 3-space revisited, Bull.
Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI
citation)
10
T. Mert, B. Karliga, Timelike surfaces with constant angle in
de-Sitter space S31, Cumhuryiet Science J (CJS) 37
(2016) 1, 1-11.
11
T. Mert, B. Karliga, On the timelike surface with constant angle in
hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.
12
Lucas, P; Ortega-Yagues, JA,
SLANT HELICES IN THE THREE-DIMENSIONAL
SPHERE, JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 54 (4) 2017: 1331-1343. (ISI
citation)
13
Izumiya, S; Saji, K;
Takeuchi, N, FLAT SURFACES
ALONG CUSPIDAL EDGES, JOURNAL OF SINGULARITIES, 16 (2017) 73-100; (ISI
citation)
14
Mert, T; Karliga, B,
Constant Angle Spacelike Surface in de
Sitter Space S-1(3), BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 35 (3)
2017:79-93; (ISI citation)
15
Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI
MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI
citation)
16
Aslan, S; Yayli, Y,
Generalized constant ratio surfaces and
quaternions, KUWAIT JOURNAL OF SCIENCE, 44 (1):42-47; JAN 2017. (ISI
citation)
17
Xiao-Liu Wang, Xiaoli Chao,
Constant angle surfaces constructed on
curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472, DOI
10.3969/j.issn.1003-7985.2013.04.022
18
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers Math. China, 2017, Volume 12,
Issue 2, pp 459-480. (ISI citation)
19
A Kelleci, M Ergut, NC Turgay,
New Classification Results on Surfaces
with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19
(2017), 6023-6040. (ISI citation)
20
Fatih Dogan, Isophote curves on timelike surfaces in Minkowski 3-space, An.
Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LXIII, 2017, f. 1, p. 133.
21
Karakus, SO, Certain Constant Angle Surfaces Constructed on
Curves in Minkowski 3-Space, INTERNATIONAL ELECTRONIC J. OF GEOMETRY, 11 (1)
2018: 37-47. (ISI
citation)
[DM09] F. Dillen, M.I.Munteanu, Constant
Angle Surfaces in H2 x R , Bull. Braz. Math.
Soc. 40 (2009) 1, 85-97; arXiv:0705.3744.
1
P. Bayard, A.J. Di Scala, O.O. Castro, G. Ruiz-Hernandez, Surfaces
in R4 with constant principal angles with respect to a plane, Geom.
Dedic. 162 (2013) 1, 153-176.(ISI citation)
2
Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal
Directions for Surfaces in M2(c)xR1, Mediterr.J.
Math., 10 (2013) 2, 1035-1049. (ISI citation)
3
Y. Fu, X. Wang, Classification of Timelike Constant Slope
Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013)
3-4, 1095-1108. (ISI citation)
4
H. Chen, G. Chen, H. Li, Some pinching theorems for
minimal submanifolds in Sm(1)xR, Science China Math. 56 (2013) 8,
1679-1688. (ISI citation)
5
E. Ziplar, A. Senol, Y. Yayli, On strong r-helix
submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36.
6
M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature
hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom.
Appl., 49 (2016) 473-495. (ISI citation)
7
M. Babaarslan, Y. Yayli, Split Quaternions and
Timelike Constant Slope Surfaces in Minkowski 3-Space, Int. J. Geom. 2
(2013) 1, 23-33.
8
S. Montaldo, I.I. Onnis, Helix surfaces in the Berger
sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966.
(ISI citation)
9
C.P. Aquino, H.F. de Lima, E.A. Lima, On the angle of complete
CMC hypersurfaces in Riemannian product spaces, Differ.
Geom. Applications, 33 (2014), 139-148. (ISI citation)
10
B. Daniel, Minimal isometric immersions into S2 x
R and H2 x R, Indiana Univ. Math. J, 64 (2015) 5, 1425-1445. (ISI
citation)
11
A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu
J. Math. 68 (2014) 2, 315-332. (ISI citation)
12
T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic
space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.
13
B. Foreman, Vertex-type curves in constant angle surfaces of Hyp2
x R, Contemp. Math. 674 (2016), Recent Advances in
the Geometry of Submanifolds, Eds. B. Suceava, A. Carriazo, Yun Myung Oh, J. van
der Veken (dedicated to the memory of Franki Dillen), 49 - 57. (ISI
citation)
14
Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull.
Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)
15
Z.H. Hou, W.H. Qiu, A classification theorem for
complete PMC surfaces with non-negative Gaussian curvature in Mn(c) x
R, Taiwanese J. Math, 20 (2016) 1, 205 -226. (ISI citation)
16
P. Lucas, J.A. Ortega-Yagues, Slant helices in the Euclidean 3-space revisited, Bull.
Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI
citation)
17
S. Montaldo, I.I. Onnis, A. Passos Passamani,
Helix surfaces in the special linear group, Annali di Matematica Pura ed
Applicata, 195 (2016) 1, 59-77. (ISI citation)
18
T. Mert, B. Karliga, Timelike surfaces with constant angle in
de-Sitter space S31, Cumhuryiet Science J (CJS) 37
(2016) 1, 1-11.
19
T. Mert, B. Karliga, On the timelike surface with constant angle in
hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.
20
R. Montes, Flat contact angle surfaces in the Heisenberg group
H3, Palestine J Math. 5 (2016) 1, 30-34.
21
Folha, A; Penafiel, C,
Weingarten Type Surfaces in H-2 x R and
S-2 x R, CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES,
69 (6) (2017): 1292-1311; (ISI citation)
22
Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN
JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)
23
Onnis, II; Piu, P,
Constant angle surfaces in the Lorentzian
Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI
citation)
24
Mert, T; Karliga, B,
Constant Angle Spacelike Surface in de
Sitter Space S-1(3), BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 35 (3)
2017:79-93; (ISI citation)
25
Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI
MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI
citation)
26
Aslan, S; Yayli, Y,
Generalized constant ratio surfaces and
quaternions, KUWAIT JOURNAL OF SCIENCE, 44 (1):42-47; JAN 2017. (ISI
citation)
27
Xiao-Liu Wang, Xiaoli Chao,
Constant angle surfaces constructed on
curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472, DOI
10.3969/j.issn.1003-7985.2013.04.022
28
Dan Yang, Yu Fu, Lan Li,
Geometry of spacelike generalized constant
ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China,
2017, Volume 12, Issue 2, pp 459-480. (ISI citation)
29
A Kelleci, M Ergut, NC Turgay,
New Classification Results on Surfaces
with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19
(2017), 6023-6040. (ISI citation)
30
Rafael Novais, João Paulo dos Santos,
Intrinsic and extrinsic geometry of
hypersurfaces in SnxR and
HnxR, Journal of Geometry, 108, (2017) 3, pp 1115-1127.
31
Fatih Dogan, Isophote curves on timelike surfaces in Minkowski 3-space, An.
Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LXIII, 2017, f. 1, p. 133.
32
Karakus, SO, Certain Constant Angle Surfaces Constructed on
Curves in Minkowski 3-Space, INTERNATIONAL ELECTRONIC J. OF GEOMETRY, 11 (1)
2018: 37-47. (ISI
citation)
33
Jost, J; Xin, YL; Yang, L, SUBMANIFOLDS WITH CONSTANT
JORDAN ANGLES AND RIGIDITY OF THE LAWSON-OSSERMAN CONE, ASIAN J MATH., 22
(1) 2018: 75-110. (ISI citation)
[MN09b] M.I.Munteanu, A.I. Nistor, Polynomial Translation Weingarten Surfaces in 3-dimensional
Euclidean Space, Proceedings of the VIII International Colloquium
on Differential Geometry, (E. Vidal Abascal centennial congress) and
satellite of the 5 th European Congress of Mathematics, World Scientific 2009,
316-320, Eds. J.A.Alvarez Lopez and E. Garcia Rio, ISBN
978-981-4261166
. arXiv:0809.4745v1 [math.DG]
1
D.Y. Yoon, Y. Tuncer, M.K. Karacan, Non-degenerate quadric
surfaces of Weingarten type, Ann. Polon. Mathematici, 117 (2013) 1, 59 - 69.
(ISI citation)
2
AT Ali, HSA Aziz, AH Sorour,
On curvatures and points of the
translation surfaces in Euclidean 3-space, Journal of the Egyptian
Mathematical Society, 23, (2015) 1, 167-172.
3
Azak, Ayşe Zeynep; Tosun, Murat,
Weingarten and Linear Weingarten Type
Tubes with Darboux Frame in E3, General Mathematics Notes . May2016, Vol. 34
Issue 1, p7-16. 10p.
4
Ahmad T. Ali, H. S. Abdel Aziz and Adel H.
Sorour, ON SOME GEOMETRIC
PROPERTIES OF QUADRIC SURFACES IN EUCLIDEAN SPACE, Honam Mathematical J. 38
(2016), No. 3, pp. 593-611.
5
Abdel-Aziz, Hossam S.,
A study of tube-like surfaces according to
type 2 Bishop frame in Euclidean space, Studia Universitatis Babes-Bolyai,
Mathematica. 2017, Vol. 62 Issue 2, 249-259. 11p. (ISI
citation)
6
BENDEHIBA SENOUSSI AND MOHAMMED BEKKAR,
AFFINE TRANSLATION SURFACES IN
3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING ∆ri = λiri, Konuralp
Journal of Mathematics Volume 5 No. 2 pp. 47-53 (2017).
7
Dan Yang, Wei Dan, Yu Fu,
A classification of minimal translation
surfaces in Minkowski space, J. Nonlinear Sci. Appl., 11 (2018), 437–443.
[Mun08] M.I.Munteanu, Some
aspects on the geometry of the tangent bundle and tangent sphere bundles of a
Riemannian manifold, Mediterranean J. Mathematics, 5
(2008), 1, 43-60.
1
S. L. Druţă-Romaniuc, Riemannian almost product and para-Hermitian
cotangent bundles of general natural lift type, Acta Mathematica Hungarica,
139 (2013) 3, 228 - 244. (ISI citation)
2
F. Agca, g-natural metrics on the cotangent bundles,
International Electronic Journal of Geometry, 6 (2013) 1, 129-146.
3
A. Gezer, On the tangent bundle with deformed Sasaki
metric, Int. Electronic J. Geom., 6 (2013) 2, 19-31.
4
F. Agca, A.A. Salimov, Some notes concerning
Cheeger-Gromoll metrics, Hacettepe J. Math Statistics, 42 (2013) 5, 533-549. (ISI
citation)
5
C.L. Bejan, S.L. Druta-Romaniuc, Harmonic Almost Complex
Structures with Respect to General Natural Metrics, Mediter. J. Math. 11
(2014) 1, 123 - 136. (ISI citation)
6
N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc,
Special types of metrics, Editura Stef 2014, 201pp. (book)
7
Z.H. Hou, L. Sun, Geometry of tangent bundle with Cheeger-Gromoll
type metric, Journal Math. Anal. Appl., 402 (2013) 2, 493-504. (ISI
citation)
8
L. Sun, Z.H. Hou, Normal bundle of surfaces in Riemannian manifolds,
Mediterr. J. Math. 12 (2015) 1, 173-185. (ISI
citation)
9
X. Qi , L. Cao, X. Li, New hyper-Kaehler structures on
tangent bundles, Communications in Math. 22 (2014) 13-30.
10
Z.H. Hou, L. Sun, On the Tangent Bundle of a Hypersurface in a
Riemannian Manifold, CHINESE Ann. Math. SERIES B, 36 (2015) 4,
579-602. (ISI citation)
11
A. Kazan; H.B. Karadag, Paracontact Tangent Bundles
with Cheeger-Gromoll Metric, Mediterr. J. Math. 12 (2015) 2, 497-523. (ISI
citation)
12
A. Baghban, E. Abedi, On the harmonic vector fields, Proc. 8th
seminar on geometry and topology, Amirkabir Univ. Technology, Iran, December
15-17, 2015, 10pp.
13
S.V. Galaev, Admissible hypercomplex structures on distributions of
Sasakian manifolds, (in Russian) Izv. Saratov University (New Series) Ser.
Math. Mech. Inform. 16 (2016) 3, 263-272.
14
A. Kazan; H.B. Karadag, Locally decomposable golden
Riemannian tangent bundles with Cheeger Gromoll metric, Miskolc Math. J., 17
(2016) 1, 399-411.
15
Peyghan, E; Nourmohammadifar, L; Tayebi, A,
(1,1)-Tensor sphere bundle of
Cheeger-Gromoll type, ARABIAN JOURNAL OF MATHEMATICS, 6 (4) 2017: 315-327; (ISI
citation)
16
Albuquerque, R,
On vector bundle manifolds with
spherically symmetric metrics, ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 51
(2) 2017: 129-154. (ISI citation)
17
B Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their
Applications, Academic Press, 2017. (book)
18
Bejan, CL; Gul, I, SASAKI METRIC ON THE TANGENT BUNDLE OF A WEYL
MANIFOLD, PUBL. INSTITUT MATHEMATIQUE-BEOGRAD, 103 (117) 2018: 25-32. (ISI
citation)
[Mun07a] M.I.Munteanu,
Doubly Warped Products CR-Submanifolds in Locally Conformal Kaehler Manifolds,
Monatshefte fur Mathematik, 150 (2007) 4, 333-342.
1
M.B. Banaru, Geometry of 6-dimensional hermitian manifolds of the
octave algebra, J. Math. Sciences, 207 (2015) 3, 354-388.
2
A. Olteanu, CR-doubly warped product submanifolds, Chapter
in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R.
Al-Solamy, Springer 2016, 267-288.
3
B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds,
World Scientific, 2017 (book).
[Mun07b] M.I.Munteanu,
A Note on doubly warped product contact CR-submanifoldsin trans Sasakian
manifolds, Acta Matematica Hungarica, 116 (1-2) (2007), 121-126 arXiv :
0604008v2 [math.DG] .
1
A. Ali, W.A.M. Othman, C. Ozel, Characterizations of contact
CR-warped product submanifolds of nearly Sasakian manifolds, Balkan
J Geom. Appl. 21 (2016) 2, 9-20.
2
V.A. Khan, M. Shuaib, Some warped product submanifolds
of a Kenmotsu manifold, Bulletin Korean Math. Soc. 51 (2014) 3, 863-881. (ISI
citation)
3
Beldjilali, G., Belkhelfa, M.,
Kählerian structures and D-homothetic
Bi-warping, Journal of Geometry and Symmetry in Physics, 42 (2016), 1 - 13. (ISI
citation)
4
Hui, S.K., Atçeken, M., Nandy, S.,
Contact CR-warped product submanifolds of
(LCS)(n)-manifolds, Acta Mathematica Universitatis Comenianae, 86 (1) 2017,
101 - 109. (ISI citation)
5
Khan, VA; Khan, K,
HEMI-SLANT SUBMANIFOLDS AS WARPED PRODUCTS
IN A NEARLY KAEHLER MANIFOLD, MATHEMATICA SLOVACA, 67 (3):759-772; JUN 2017 (ISI
citation)
6
Srivastava, S. K.; Sharma, A,
Geometry of PR-semi-invariant warped
product submanifolds in paracosymplectic manifold, JOURNAL OF GEOMETRY
Volume: 108 Issue: 1 Pages:
61-74 Published: APR 2017. (ISI
citation)
7
B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds,
World Scientific, 2017 (book).
8
Hui, S.K., Mandal, P.,
Pseudo parallel contact CR-submanifolds of
kenmotsu manifolds, Indian Journal of Mathematics, 59(3) (2017) 385-402.
[DM07] F. Dillen, M.I.Munteanu,
Surfaces in H + x R,
Proceedings of the conference Pure and Applied Differential Geometry, PADGE
2007, Eds. Franki Dillen, Ignace Van de Woestyne, 185-193,
ISBN 978-3-8322-6759-9.
1 Xiao-Liu Wang, Xiaoli Chao,
Constant angle surfaces constructed on
curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472.
[Mun07c] M.I.Munteanu,
Old and New Structures on the Tangent Bundle, Proceedings of the
Eighth International Conference on Geometry, Integrability and Quantization,
June 9-14, 2006, Varna, Bulgaria, Ed. I. M. Mladenov and M. De Leon, Sofia 2007,
264-278.
1
N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc,
Special types of metrics, Editura Stef 2014, 201pp. (book)
2
C.L. Bejan, S.L. Druta-Romaniuc, The projective curvature of
the tangent bundle with natural diagonal metric, Filomat 29 (2015) 3,
401-410. (ISI citation)
3
R.K. Srivastava, Para Kaehler and Kaehler structures on Finsler spaces
with non zero constant flag curvature, Int. J Res. Eng.
Management Tech. (IJREMT) 2 (2016) 7, 27-34.
4
B Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their
Applications, Academic Press, 2017. (book)
[Mun06a]
M.I.Munteanu, Cheeger Gromoll type metrics on the tangent bundle,
Proceedings of the fifth international symposium BioMathsPhys, Iasi, June
16-17, 2006, U.A.S.V.M. Ion Ionescu de la Brad, 49 (2006) 2, 257-268. arxiv:
math.DG/0610028.
1.
F. Agca, g-natural metrics on the cotangent bundles,
International Electronic Journal of Geometry, 6 (2013) 1, 129-146.
2.
Z.H. Hou, L. Sun, Geometry of tangent bundle with Cheeger-Gromoll
type metric, Journal Math. Anal. Appl., 402 (2013) 2, 493-504. (ISI
citation)
3.
F. Agca, A.A. Salimov, Some notes concerning
Cheeger-Gromoll metrics, Hacettepe J. Math Statistics, 42 (2013) 5, 533-549 (ISI
citation)
4.
N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc,
Special types of metrics, Editura Stef 2014, 201pp. (book)
5.
Z.H. Hou, L. Sun, On the Tangent Bundle of a Hypersurface in a
Riemannian Manifold, CHINESE Ann. Math. SERIES B, 36 (2015) 4,
579-602. (ISI citation)
6.
A. Kazan; H.B. Karadag, Paracontact Tangent Bundles
with Cheeger-Gromoll Metric, Mediterr. J. Math. 12 (2015) 2, 497-523. (ISI
citation)
7.
A. Kazan; H.B. Karadag, Locally decomposable golden
Riemannian tangent bundles with Cheeger Gromoll metric, Miskolc Math. J., 17
(2016) 1, 399-411.
[Mun06b]
M.I.Munteanu, New aspects on CR-structures of codimension 2 on
hypersurfaces of Sasakian manifolds, Archivum Mathematicum , 42
(2006) (1) 69-84.
1
M. Crasmareanu, L.I. Piscoran, CR-structures of codimension
2 on tangent bundles in Riemann-Finsler geometry, Periodica Math. Hungarica
73 (2016) 2, 240-250. (ISI citation)
[Mun05a]
M.I.Munteanu,
Warped product contact CR submanifolds in Sasakian space forms, Publicationes
Matematicae Debrecen, 66
(2005), 1-2, 75-120.
1
M. Jamali, M. Hasan Shahid, Multiply warped product
submanifolds of a generalized Sasakian space form, International Electronic
Journal of Geometry, 7 (2014) 2, 72-83.
2
T.Q. Binh, A. De, On contact CR-warped product submanifolds of a
quasi-Sasakian manifold, Publicationes Mathematicae-Debrecen, 84 (2014) 1-2,
123-137. (ISI citation)
3
V.A. Khan, M. Shuaib, Some warped product submanifolds
of a Kenmotsu manifold, Bulletin Korean Math. Soc. 51 (2014) 3, 863-881. (ISI
citation)
4
B. Laha, A. Bhattacharyya, On generalized quasi-Kenmotsu
manifolds, Inter. J. Math. Combin. 4 (2014) 39-46.
5
A. Mustafa, S. Uddin, B.R. Wong, Generalized inequalities
on warped product submanifolds in nearly trans-Sasakian manifolds, J.
Inequalities Applications, (2014) art. ID 346, (ISI citation)
6
A. Mustafa, A. De, S. Uddin, Characterization of warped
product submanifolds in Kenmotsu manifolds, Balkan J Geom Appl. 20 (2015) 1,
86-97.
7
A. Ali, W.A.M. Othman, C. Ozel, Characterizations of contact
CR-warped product submanifolds of nearly Sasakian manifolds, Balkan
J Geom. Appl. 21 (2016) 2, 9-20.
8
A. Olteanu, CR-doubly warped product submanifolds, Chapter
in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R.
Al-Solamy, Springer 2016, 267-288.
9
Ali, A; Piscoran, LI,
Geometry of warped product immersions of
Kenmotsu space forms and its applications to slant immersions, J. GEOMETRY
AND PHYSICS, 114 (2017) 276-290. (ISI citation)
10
A. Ali, C. Ozel,
Geometry of warped product pointwise
semi-slant submanifolds of cosymplectic manifolds and its applications,
International Journal of Geometric Methods in Modern Physics, Vol. 14, No. 3
(2017) 1750042. (ISI citation)
11
Falleh R.Al-Solamy, Siraj Uddin,
A General Inequality for Contact CR‑warped Product Submanifolds in Cosymplectic Space
Forms, Comptes rendus de l’Acade'mie bulgare des Sciences, Vol
70, (2017) 9, 1195-1206.
12
Khan, V.A., Shuaib, M.,
Pointwise pseudo-slant submanifolds of a
Kenmotsu manifold, Filomat, 31(18), 2017, 5833-5853. (ISI
citation)
13
B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds,
World Scientific, 2017 (book).
14
B.-Y. Chen, S. Uddin,
Warped product pointwise bi-slant
submanifolds of Kaehler manifolds, 92
(2018) 1-2, (art. 11) (17 pp) (ISI citation)
15
S. K. Srivastava, A. Sharma,
A general optimal inequality for warped
product submanifolds in paracosymplectic manifolds, Note Mat. 37 (2017) no.
2, 45–60.
[Mun05b]
M.I.Munteanu, CR-structures of CR-codimension 2 on hypersurfaces in
Sasakian manifolds, in Differential geometry and its applications, 157-163,
Matfyzpress, Prague, 2005.
1
M. Crasmareanu, L.I. Piscoran, CR-structures of codimension
2 on tangent bundles in Riemann-Finsler geometry, Periodica Math. Hungarica
73 (2016) 2, 240-250. (ISI citation)
[MM02] P.Matzeu, M.I.Munteanu,
Vector Cross Products and Almost Contact Structure, Rendiconti
di Matematica, Serie VII, vol. 22, Roma (2002), 359-376.
1
M.B. Banaru, Geometry of 6-dimensional hermitian manifolds of the
octave algebra, J. Math. Sciences, 207 (2015) 3, 354-388.
2
M.B. Banaru, V.F. Kirichenko, Almost contact metric structures on the
hypersurface of almost hermitian manifolds, J. Math. Sciences, 207 (2015) 4,
513-537.
3
Sirin Aktay, On deformations of parallel G2 structures and almost contact metric
structures, Advances in Geometry, 17 (2017) 3, 293-302.
[MM00]
P.Matzeu,
M.I.Munteanu,
VeClassification of almost contact structures associated with a strongly
pseudo-convex CR-structure. Riv.
Mat. Univ. Parma (6) 3 (2000), 127-142.
1
Elena POPOVICI, Classification
of contact structures associated with the CR-structure of the complex indicatrix,
An. St. Univ. Ovidius Constanta, Vol. 25(1), 2017, 163-176. (ISI
citation)
[Mun00]
M.I.Munteanu
: New CR-structures on the Unit Tangent Bundle, Ann. Univ. Timisoara , vol.38,
Fasc. 1, 2000, Seria Mat. Inf., 99-110
1
Peyghan, E; Nourmohammadifar, L; Tayebi, A,
(1,1)-Tensor sphere bundle of
Cheeger-Gromoll type, ARABIAN JOURNAL OF MATHEMATICS, 6 (4) 2017: 315-327; (ISI
citation)
[Mun98a]
M.I.Munteanu, CR-structures on the Unit
Cotangent Bundle, An. St. Univ. Al.I. Cuza Iasi, Math., 44 (1998), sI,
f1, 125-136.
1
S. L. Druţă-Romaniuc, Riemannian almost product and para-Hermitian
cotangent bundles of general natural lift type, Acta Math. Hung., 139 (2013)
3, 228 - 244. (ISI citation)
2
S. L. Druta-Romaniuc, A Study on the Para-Holomorphic Sectional
Curvature of Para-Kaehler Cotangent Bundles, Ann. Alexandru Ioan Cuza
University, 61 (2015) 1, 253-262.