University "Al.I.Cuza" of Iasi Faculty of Mathematics Marian Ioan MUNTEANU


Marian Ioan MUNTEANU
Citations 2013 - 2018
[old list]
My home page in Iasi

 

[MN17] M.I.Munteanu, A.I. Nistor: On some closed magnetic curves on a 3-torus, Math. Phys. Analysis Geometry 20 (2017) 2, art. 8.

1                            Erjavec, Z; Inoguchi, J, Magnetic curves in Sol(3), JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI citation)

   

[IM17] J. Inoguchi, M.I.Munteanu, Periodic magnetic curves in Berger spheres, Tohoku Mathematical Journal, 69 (2017) 1,  113-128. (arXiv:1310.2899v1 [math.DG])                        

2                            J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional almost contact metric geometry, Int. Electronic J. Geometry, 8 (2015) 2, 106-146.

3                            A. Kazan; H. B. Karadag, Magnetic Curves According to Bishop Frame and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer Science 22(4): 1-18, 2017; Art. BJMCS.33330.

4                            Ahmet Kazan, H. Bayram Karadag, Magnetic Pseudo Null and Magnetic Null Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12, 2017, no. 3, 119 - 132.

5                            Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC. INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI citation)

 

 

[MM16] M. Moruz, M.I.Munteanu, Minimal translation hypersurfaces in E4, Journal of Mathematical Analysis and Applications, 439 (2016), 798 - 812.                                          

1.        Guler, E; Magid, M; Yayli, Y, LAPLACE-BELTRAMI OPERATOR OF A HELICOIDAL HYPERSURFACE IN FOUR-SPACE, J. GEOMETRY AND SYMMETRY IN PHYSICS, 41 (2016) 77-95; (ISI citation)

2.       Aydin, ME; Ergut, M, Affine Translation Surfaces in the Isotropic 3-Space, INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 10 (1):21-30; APR 2017 (ISI citation)

 

[DRIMN16] S.L. Druta-Romaniuc, J. Inoguchi, M.I.Munteanu, A.I. Nistor: Magnetic curves in cosymplectic manifolds, Reports on Math. Physics, 78 (2016) 1, 33 - 48.

1.       Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC. INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI citation)

 

[MPGR16] M.I.Munteanu, O. Palmas, G. Ruiz-Hernandez: Translation hypersurfaces in Euclidean spaces, Mediterranean J. Mathematics, 13 (2016) 5, 2659-2676.       

1                            M.E. Aydin, A.O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG Proceedings Int. Conf. DGDS-2015, 23 (2016) 1-10.

2                            Aydin, ME; Ergut, M, Affine Translation Surfaces in the Isotropic 3-Space, INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 10 (1):21-30; APR 2017 (ISI citation)

3                            Aydin, ME, CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE, J. KOREAN MATHEMATICAL SOCIETY, 55 (2018) 1, 59-71. (ISI citation)

4                            H. Al-Zoubi, S. Stamatakis, W. Al-Mashaleh, M. Awadallah, TRANSLATION SURFACES OF COORDINATE FINITE TYPE, INDIAN JOURNAL OF MATHEMATICS, 59 (2017) 2, 227-241.

 

 

[DRIMN15] S.L. Druta-Romaniuc, J. Inoguchi, M.I.Munteanu, A.I. Nistor: Magnetic curves in Sasakian manifolds, J. Nonlinear Math. Physics, 22 (2015) 3, 428-447.                                                            

1                            A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.

2                            J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional almost contat metric geometry, Int. El. J. Geometry, 8 (2015) 2, 106-146.

3                            M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

4                            Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI citation)

5                            Ahmet Kazan, H. Bayram Karadag, Magnetic Pseudo Null and Magnetic Null Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12, 2017, no. 3, 119 - 132. 

6                            A. Kazan; H. B. Karadag, Magnetic Curves According to Bishop Frame and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer Science 22(4): 1-18, 2017; Art. BJMCS.33330.

7                            Kazan, A; Karadag, HB, MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE, COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 67 (2018) 1, 147-160. (ISI citation)

8                            Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC. INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI citation)

9                            Erjavec, Z; Inoguchi, J, Magnetic curves in Sol(3), JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI citation)

 

[CMP15] G. Calvaruso, M.I.Munteanu, A. Perrone, Killing magnetic curves in three dimensional paracontact manifolds, Journal Math. Anal. Appl. 426 (2015) 1, 423 - 439.                      

1                            C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)

2                            Calvaruso, Giovanni; Perrone, Antonella, Ricci solitons in three-dimensional paracontact geometry, JOURNAL OF GEOMETRY AND PHYSICS   Volume: 98   Pages: 1-12   Published: DEC 2015 (ISI citation)

3                            A. Perrone, Some results on almost paracontact metric manifolds, Mediterr. J Math., 13 (2016) 5, 3311 - 3326. (ISI citation)

4                            A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.

5                            M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

6                            Venkatesha, Devaraja Mallesha Naik, Certain results on K-paracontact and paraSasakian manifolds, Journal of Geometry, 108 (2017) 3, 939-952. (ISI citation)

7                            Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC. INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI citation)

 

[JMN15] M. Jleli, M.I.Munteanu and A.I. Nistor, Magnetic Trajectories in an Almost Contact Metric Manifold R2N+1, Results. Math., 67 (2015), 125- 134.                                                           

1.       Ahmet Kazan, H. Bayram Karadag, Magnetic Pseudo Null and Magnetic Null Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12, 2017, no. 3, 119 - 132.          

2.       A. Kazan; H. B. Karadag, Magnetic Curves According to Bishop Frame and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer Science 22(4): 1-18, 2017; Art. BJMCS.33330.

3.       Kazan, A; Karadag, HB, MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE, COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 67 (2018) 1, 147-160. (ISI citation)   

4.       Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC. INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI citation)

 

[JM15] M. Jleli, M.I.Munteanu: Magnetic curves on flat para-Kaehler manifolds, Turkish Journal Mathematics, 39 (2015) 6, 963 - 969.                                                                          

1                            A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.

2                            M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

3                            Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC. INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI citation)

 

[BM15] M. Babaarslan, M.I.Munteanu : Time-like loxodromes on rotational surfaces in Minkowski 3-spaces, An.St. ale Univ.`Al.I.Cuza` din Iasi, 61 (2015) 2, 471-484.                      

1                            H. Simsek, M. Ozdemir, On Conformal Curves in 2-Dimensional de Sitter Space, Advances in Applied Clifford Algebras, 26 (2016) 2, 757-770. (ISI citation)

2                            M. Babaarslan, Y. Yayli, Space-like loxodromes on rotational surfaces in Minkowski 3-space, J. Math. Anal. Appl., 409 (2014) 1, 288 - 298. (ISI citation)

3                            M. Babaarslan, M. Kayacik, Time-like Loxodromes on Helicoidal Surfaces in Minkowski 3-Space, Filomat 31:14 (2017), 4405-4414. . (ISI citation)

4                            M. Babaarslan, Y. Yayli, On Space-Like Constant Slope Surfaces And Bertrand Curves In Minkowski 3-Space, An. Stiint. Univ. Al. I. Cuza Ia ̧si. Mat. (N.S.) Tomul LXIII, 2017, f. 2, p. 323.

 

[FM14] Y. Fu, M.I.Munteanu : Generalized constant ratio surfaces in E3, Bull. Braz. Math. Soc. 45 (2016) 1, 73 - 90.                                                                                                         

1                            Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)

2                            Aslan, S; Yayli, Y, Generalized constant ratio surfaces and quaternions, KUWAIT JOURNAL OF SCIENCE, 44 (1):42-47; JAN 2017. (ISI citation)

3                            Bang-Yen Chen, Euclidean Submanifolds via Tangential Components of Their Position Vector Fields, Mathematics 2017, 5(4), 51; doi:10.3390/math5040051.

4                            Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation)

5                            A Kelleci, M Ergut, NC Turgay, New Classification Results on Surfaces with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19 (2017), 6023-6040. (ISI citation)

6                            B.-Y. Chen, Topics in differential geometry associated with position vector fields on Euclidean submanifolds, Arab Journal of Mathematical Sciences, Volume 23, Issue 1, January 2017, Pages 1-17.

 

[MN14] M.I.Munteanu, A.I. Nistor: A note on magnetic curves on S 2n+1, Comptes Rendus Mathematiques, 352 (2014) 5, 447 - 449.

1.      Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC. INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI citation)

 

 [LM14] R. Lopez, M.I.Munteanu : Invariant surfaces in homogeneous space Sol with constant curvature, Math. Nachr., 287 (2014) 8-9, 1013-1024.                                                                                  

1                            R. Lopez, A.I. Nistor, Surfaces in Sol3 Space Foliated by Circles, Results. Math. 64 (2013) 3-4, 319-330, DOI 10.1007/s00025-013-0316-8. (ISI citation)

2                            R. Lopez, Invariant surfaces in Sol(3) with constant mean curvature and their computer graphics, Advances in Geometry, 14 (2014) 1, 31-48. (ISI citation)

3                            D.W. Yoon, Invariant surfaces with pointwise 1-type Gauss map in Sol3, J. Geom., 106 (2015) 3, 503 - 512. (ISI citation)

4                            C. Desmonts, Constructions of periodic minimal surfaces and minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI citation)

5                            J. ARROYO, O. J. GARAY, A. PAMPANO, Extremal Curves of a Total Curvature Type Energy, Nonlinear Systems, Nanotechnology, Proceedings of the 14th Int. Conf. NOLASC '15 and the 6th Int. Conf. on NANOTECHNOLOGY '15, (2015) 103-112.

6                            Yoon, DW, COORDINATE FINITE TYPE INVARIANT SURFACES IN SOL SPACES, BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 43 (3):649-658; JUN 2017. (ISI citation)

 

[IM14] J. Inoguchi, M.I.Munteanu : Magnetic Maps, Int. J Geom. Methods Modern Physics, 11 (2014) 6, art. no. 1450058.                                                                                    

1                            G. Calvaruso, A. Perrone, Natural almost contact structures and their 3D homogeneous models, Math. Nachr. 289 (2016) 11-12, 1370 - 1385. (ISI citation)

 

[MV14] M.I.Munteanu, L. Vrancken, Mnimal contact CR submanifolds in S2n+1 satisfying the δ(2) Chen equality, J. Geometry Physics, 75 (2014) 92 - 97.                                

1                            B.Y. Chen, Y. Fu, δ(3)-ideal null 2-type hypersurfaces in Euclidean spaces, Diff. Geom. Appl. 40 (2015) 43-56. (ISI citation)

2                            T. Sasahara, Ideal CR-submanifolds, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 289-310.

 

 

[CM13] B. Y. Chen, M.I.Munteanu: Biharmonic ideal hypersurfaces in Euclidean spaces, Differential Geometry and Its Applications 31 (2013) 1, 1 - 16.                                                                         

1                            B.Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent developments, Tamkang J. Math. 45 (2014) 1, 87-108.

2                            Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean 5-space, Journal of Geometry and Physics, 75 (2014) 1, 113-119. (ISI citation)

3                            B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific,  2014, Series in Pure Mathematics 27, ISBN: 978-981-4616-68-3. (book)

4                            Y. Fu, Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces, Math. Physics Analysis Geometry, 16 (2013) 4, 331-344. (ISI citation)

5                            Z.P. Wang, Y.L. Ou, H.C. Yang, Biharmonic maps from a 2-sphere, Journal of Geometry and Physics, 77 (2014) 86-96. (ISI citation)

6                            M. Aminian, S. M. B. Kashani, Lk-biharmonic hypersurfaces in the Euclidean space, Taiwanese J. Math., 19 (2015) 3, 861-874. (ISI citation)

7                            Y. Fu, Explicit classification of biconservative surfaces in Lorentz 3-space forms, Annali di Matematica Pura ed Applicata, 194 (2015) 3 805-822. (ISI citation)

8                            B.Y. Chen, Y. Fu, δ(3)-ideal null 2-type hypersurfaces in Euclidean spaces, Diff. Geom. Appl. 40 (2015) 43-56. (ISI citation)

9                            Y.L. Ou, On f-biharmonic maps and f-biharmonic submanifolds, Pacific J. Mathematics, 271 (2014) 2, 461-477. (ISI citation)

10                        N. C.Turgay, H-hypersurfaces with three distinct principal curvatures in the Euclidean spaces, Annali di Matematica Pura Appl., 194 (2015) 6, 1795 - 1807. (ISI citation)

11                        Liu Jian-cheng, Tian Xiao-qiang, Biharmonic Lorentz hypersurfaces with three distinct principal curvatures in E51, Journal of Lanzhou University (Natural Sciences), 51 (2015) 1, 124-128 (in Chinese).

12                        B.Y. Chen, H. Yildirim, Classification of ideal submanifolds of real space forms with type number ≤ 2 , J. Geom. Phys. 92 (2015) 167-180. (ISI citation)

13                        G. Kaimakamis, Recent progress in Chen's conjecture, Theoretical Math Appl. 5 (2015) 2, 115-122.

14                        R.S. Gupta, On bi-harmonic hypersurfaces in Euclidean space of arbitrary dimension, Glasgow Mathematical Journal, 57 (2015) 3, 633-642. (ISI citation)

15                        Yu Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math. J., 67 (2015) 3, 465-479. (ISI citation)

16                        Deepika, R.S. Gupta, Biharmonic hypersurfaces in E5 with zero scalar curvature, African Diaspora J. Math., 18 (2015) 1, 12-26.

17                        Y.L. Ou, Some recent progress of biharmonic submanifolds, Contemp. Math. 674 (2016), Recent Advances in the Geometry of Submanifolds, Eds. B. Suceava, A. Carriazo, Yun Myung Oh, J. van der Veken (dedicated to the memory of Franki Dillen), 127 - 140. (ISI citation)

18                        Youn Luo, The maximal principle for properly immersed submanifolds and its applications, Geom. Dedicata, 181 (2016) 1, 103 - 112. (ISI citation)

19                        S. Montaldo, C. Oniciuc, A. Ratto, Proper biconservative immersions into the Euclidean space, Annali Mat. Pura Appl., 195 (2016) 2, 403 - 422. (ISI citation)

20                        A. Upadhiay, N.C. Turgay, A classification of biconservative hypersurfaces in a pseudo-Euclidean space, J. Math. Anal. Appl., 444 (2016) 2, 1703 - 1722. (ISI citation)

21                        N.C. Turgay, A classification of biharmonic hypersurfaces in the Minkowski spaces of arbitrary dimension, Hacettepe J. Math Statistics, 45 (2016) 4, 1125 - 1134. (ISI citation)

22                        Y. Fu, N.C. Turgay, Complete classification of biconservative hypersurfaces with diagonalizable shape operator in the Minkowski 4-space, Int. J. Math., 27 (2016) 5, 1650041. (ISI citation)

23                        R.S. Gupta, A. Sharfuddin, Biharmonic hypersurfaces in Euclidean space E-5, JOURNAL OF GEOMETRY, 107 (2016) 3, 685-705. (ISI citation)

24                        F. Pashaie, A. Mohammadpouri, Lk-biharmonic hypersurfaces of Lorentz-Minkowski spaces, An. Univ. Oradea, XXIII (2016) 1, 171-176.

25                        T. Sasahara, Ideal CR-submanifolds, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 289-310.

26                        X. Cao, Y. Luo, On p-biharmonic submanifolds in nonpositively curved manifolds, Kodai Math. J., 39 (2016) 3, 567-578. (ISI citation)

27                        R.S. Gupta, Biharmonic hypersurfaces in E6 with constant scalar curvature, Int. J. Geometry, 5 (2016) 2, 39-50.

28                        Deepika, R.H. Gupta, A. Sharfuddin, Biharmonic hypersurfaces with constant scalar curvature in E5s, Kyungpook J Math. 56 (2016) 1,273-293.

29                        Deepika, On Biconservative Lorentz Hypersurface with Non-diagonalizable Shape Operator, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (3):2017. (ISI citation) 

30                        Aminian, M; Kashani, SMB, Lk-Biharmonic Hypersurfaces in Space Forms, ACTA MATHEMATICA VIETNAMICA, 42 (3) 2017: 471-490. (ISI citation)

31                        Hamdy N. Abd-Ellah, Abdelrahim Khalifa Omran, Study on BCN and BAN Ruled Surfaces in E3, Korean J. Math. 25 (2017), No. 4, pp. 513-535.

32                        FIROOZ PASHAIE, ON L1-BIHARMONIC SPACELIKE HYPERSURFACES IN PSEUDO-EUCLIDEAN SPACE E(5,1), Analele Universitatii Oradea Fasc. Matematica, Tom XXIV (2017), Issue No. 2, 53-61.

33                        B.-Y. Chen, Topics in differential geometry associated with position vector fields on Euclidean submanifolds, Arab Journal of Mathematical Sciences, Volume 23, Issue 1, January 2017, Pages 1-17.

34                        Ram Shankar Gupta, Biharmonic hypersurfaces in Es5, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.), Tomul LXII, 2016, f. 2, vol. 2, p. 585.

35                        Deepika; Arvanitoyeorgos, A, Biconservative ideal hypersurfaces in Euclidean spaces, J. OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 458 (2018) 2, 1147-1165. (ISI citation)

36                        Fu, Y; Hong, MC, BIHARMONIC HYPERSURFACES WITH CONSTANT SCALAR CURVATURE IN SPACE FORMS, PACIFIC JOURNAL OF MATHEMATICS, 294 (2) 2018, 329-350. (ISI citation)

37                        Sen, RY; Turgay, NC, On biconservative surfaces in 4-dimensional Euclidean space, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 460 (2) 2018, 565-581. (ISI citation)

 

[CCMS12] C. Calin, M. Crasmareanu, M.I.Munteanu, V. Saltarelli, Semi-invariant ξsubmanifolds of generalized quasi-Sasakian manifolds, Taiw. J. Math. 16 (2012) 6, 2053-2062.       

1                            M. Faghfouri, N. Ghaffarzadeh, Chen's inequality for invariant submanifolds in a generalized (κ,μ)-space forms, Global J Adv. Research Classical Modern Geom. 4 (2015) 2, 86-101.

2                            Mohd. Danish Siddiqi, Semi-invariant ξ Submanifolds in Metric Geometry of Affinors, ASIAN JOURNAL OF MATHEMATICS AND PHYSICS VOLUME 1, ISSUE 1, 2017, 9-14.

 

[MN13] M.I.Munteanu, A.I. Nistor: Magnetic trajectories in a non-flat R5 have order 5, Proc. International conference PADGE 2012, Leuven, Berichte aus der Mathematik (2013) 224 - 231.      

1                            C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)

2                            A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.

3                            M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

 

[Mun13] M.I.Munteanu: Magnetic curves in the Euclidean space: one example, several approaches, Publications de l'Institut Mathematique (Beograd) , 94 (108) (2013) 2, 141-150.        

1                            M. Babaarslan, Y.Yayli, Differential Equation of the Loxodrome on a Helicoidal Surface, JOURNAL OF NAVIGATION, 68  (2015) 5, 962-970. (ISI citation)

2                            C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)

3                            Ahmet Kazan, H. Bayram Karadag, Magnetic Pseudo Null and Magnetic Null Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12, 2017, no. 3, 119 - 132. 

4                            Kazan, A; Karadag, HB, MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE, COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 67 (2018) 1, 147-160. (ISI citation)

5                            A. Kazan; H. B. Karadag, Magnetic Curves According to Bishop Frame and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer Science 22(4): 1-18, 2017; Art. BJMCS.33330.

 

[D-RM13] S. L. Druta-Romaniuc, M.I.Munteanu: Killing magnetic curves in a Minkowski 3-space, Nonlinear Analysis-Real World Appl. 14 (2013) 1, 383-396.                      

1                            C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian flows on manifolds, J. Math. Phys., 54 (2013) 12, 121505. (ISI citation)

2                            C.L. Bejan, S.L. Druta Romaniuc, Walker manifolds and Killing magnetic curves, Differential Geometry and its Applications, 35 (2014) 106-116. (ISI citation)

3                            N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)

4                            Z. Ozdemir, I. Gok, Y. Yayli, F.N. Ekmekci, Notes on magnetic curves in 3D semi-Riemannian manifolds, Turk. J. Math. 39 (2015) 412 - 426. (ISI citation)

5                            C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)

6                            A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.

7                            M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

8                            A. Kazan, H. Bayram Karadag, Magnetic Pseudo Null and Magnetic Null Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12, 2017, no. 3, 119 - 132.

9                            A. Kazan; H. B. Karadag, Magnetic Curves According to Bishop Frame and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer Science 22(4): 1-18, 2017; Art. BJMCS.33330.

10                        A. Kazan; H.B. Karadag, MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE, COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 67 (2018) 1, 147-160. (ISI citation)

11                        Korpinar, T; Demirkol, RC, Frictional magnetic curves in 3D Riemannian manifolds, INT. J. GEOMETRIC METHODS IN MODERN PHYSICS, 15 (2) art. 1850020, 2018. (ISI citation)

12                        T. Korpinar, On T-Magnetic Biharmonic Particles with Energy and Angle in the Three Dimensional Heisenberg Group H, ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 28 (2018) 1, art.9. (ISI citation)

 

 

[CHM13] M. Crasmareanu, C.E. Hretcanu, M.I.Munteanu : Golden and Product shaped hypersurfaces in real space forms, International J. Geometric Methods Modern Phys.10 (2013) 4, 1320006.     

1                            D. Yang, Y. Fu, The classification of golden shaped hypersurfaces in Lorentz space forms, J. Math. Analysis applications 412 (2014) 2, 1135-1139. (ISI citation)

2                            C. Ozgur, N. Yilmaz Ozgur, Classification of metallic shaped hypersurfaces in real space forms, Turk. J. Math. 39 (2015) 5, 784-794. (ISI citation)

3                            Y. Zhao, X.M. Liu, A class of special surfaces in real space forms, J. Function Space, (2016) art. ID. 8796938. (ISI citation)

4                            X. Liu, Y. Zhao, Generalized golden shaped hypersurfaces in Lorentz space forms, Commun. Korean Math. Soc. 31 (2016) 3, 647-656.

5                            Yang, D; Hao, L; Chen, BR, CLASSIFICATION OF PRODUCT SHAPED HYPERSURFACES IN LORENTZ SPACE FORMS, PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 101 (115) 2017:223-230. (ISI citation)  

6                            Ozgur, C; Ozgur, NY, METALLIC SHAPED HYPERSURFACES IN LORENTZIAN SPACE FORMS, REVISTA DE LA UNION MATEMATICA ARGENTINA, 58 (2):215-226; 2017. (ISI citation)

 

[LM12] R. Lopez, M.I.Munteanu : Minimal translation surfaces in Sol3, J. Math. Soc. Japan, 64 (2012) 3, 985 - 1003.                                                                                                                   

1                            D.W. Yoon, Minimal translation surfaces in H2 x R, Taiwan. Journal of Math. 17 (2013) 5, 1545-1556, DOI: 10.11650/tjm.17.2013.2425. (ISI citation)

2                            R. Lopez, A.I. Nistor, Surfaces in Sol3 Space Foliated by Circles, Results. Math. 64 (2013) 3-4, 319-330, DOI 10.1007/s00025-013-0316-8. (ISI citation)

3                            D.W. Yoon, C.W. Lee, M.K. Karacan, Some translation surfaces in the 3-dimensional Heisenberg group, Bull. Korean Math. Soc, 50 (2013) 4, 1329-1343. (ISI citation)

4                            R. Lopez, Invariant surfaces in Sol(3) with constant mean curvature and their computer graphics, Advances in Geometry, 14 (2014) 1, 31-48. (ISI citation)

5                            M. Faghfouri, T. Kasbi, Minimal translation surfaces in Sol3 with the Lorentz metric, Proc. 7th seminar on Geometry and Topology, Iran 2014, paper n. 1.63.

6                            D.W. Yoon, On translation surfaces with zero Gaussian curvature in H2 x R, International Journal of Pure and Applied Mathematics, 99 (2015) 3, 289 - 297.

7                            C. Desmonts, Constructions of periodic minimal surfaces and minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI citation)

8                            Lopez, R; Perdomo, O, Minimal Translation Surfaces in Euclidean Space, JOURNAL OF GEOMETRIC ANALYSIS, 27 (4) 2017: 2926-2937. (ISI citation)  

9                            Newton L. Santos, From geometric analysis to classical geometry: 15 years talking about geometry with Professor Pessoa Lima, Lecture Notes on Geometric Analysis, Editora da Universidade Federal do Piauí - EDUFPI, p.109-132, 2017. (book)

10                        J. P. Silva and P. A. Sousa, Translation Hypersurfaces with Constant Scalar Curvature into the Euclidean Space, Lecture Notes on Geometric Analysis, Editora da Universidade Federal do Piauí - EDUFPI, p.49-72, 2017. (book)

11                        Lima, Barnabe P.; Santos, Newton L.; Silva, Juscelino P., Translation Hypersurfaces with Constant S-r Curvature in the Euclidean Space, ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS   Volume: 88   Issue: 4   Pages: 2039-2052. (ISI citation)

12                        BENDEHIBA SENOUSSI AND MOHAMMED BEKKAR, AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING ∆ri = λiri, Konuralp Journal of Mathematics Volume 5 No. 2 pp. 47-53 (2017).

13                        Aydin, ME, CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE, J. KOREAN MATHEMATICAL SOCIETY, 55 (2018) 1, 59-71. (ISI citation)

14                        Erjavec, Z; Inoguchi, J, Magnetic curves in Sol(3), JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI citation)

 

 

[MN12ijm] M.I.Munteanu, A.I. Nistor: Surfaces in E3 making constant angle with Killing vector fields, Int. J. Math., 23 (2012) 6, art. 1250023.                           

1                            M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473-495. (ISI citation)

2                            Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)    

3                            Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI citation)  

 

[ACM12] P. Alegre, B. Y. Chen, M.I.Munteanu : Riemannian submersions, delta-invariants and optimal inequality, Annals of Global Analysis and Geometry, 42 (2012) 3, 317 - 331.                          

1                            V. Slesar, B. Sahin, G.E. Vilcu, Inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms, J. Inequalities Applications, 2014:123 (March 2014) 10pp. (ISI citation)

2                            B.Y. Chen, H. Yildirim, Classification of ideal submanifolds of real space forms with type number ≤ 2 , J. Geom. Phys. 92 (2015) 167-180. (ISI citation)

3                            J. Lee, G.E.Vilcu, Inequalities for generalized normalized delta-Casorati curvatures of slant submanifolds in quaternionic space forms, TAIWANESE J. MATH. 19 (2015) 3, 691-702. (ISI citation)

4                            E. Kilic, M. Gulbahar, On the sectional curvature of lightlike submanifolds, J. Inequalities Appl. 2016 (December 2016), 2016:57, 16pp. (ISI citation)

5                            B. Sahin, Chen’s first inequality for Riemannian maps, Annales Polonici Mathematici 117 (2016) 3, 249-258. (ISI citation)

6                            B-Y. Chen, CR-submanifolds and delta invariants, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 27-55. 

7                            Yildirim, H; Vrancken, L, delta(2;2)-Ideal Centroaffine Hypersurfaces of Dimension 5, TAIWANESE J. OF MATHEMATICS, 21 (2) 2017: 283-304. (ISI citation)

8                            Meric, SE; Kilic, E; Sagiroglu, Y, Scalar curvature of Lagrangian Riemannian submersions and their harmonicity, INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 14 (12) 2017. (ISI citation)

9                            M. GÜLBAHAR, Ş. EKEN MERIÇ, AND E. KILIÇ, SHARP INEQUALITIES INVOLVING THE RICCI CURVATURE FOR RIEMANNIAN SUBMERSIONS, Kragujevac Journal of Mathematics Volume 41(2) (2017), Pages 279-293. (ISI citation)

10                        B Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications, Academic Press, 2017. (book)

11                        B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds, World Scientific, 2017 (book).

12                        Gulbahar, M; Meric, SE; Kilic, E, SHARP INEQUALITIES INVOLVING THE RICCI CURVATURE FOR RIEMANNIAN SUBMERSIONS, KRAGUJEVAC JOURNAL OF MATHEMATICS, 41 (2): 2017, 279-293. (ISI citation)

13                        Park, KS, Inequalities for the Casorati Curvatures of Real Hypersurfaces in Some Grassmannians, TAIWANESE JOURNAL OF MATHEMATICS, 22 (1) 2018, 63-77. (ISI citation)

 

 

[ILM12] J. Inoguchi, R. Lopez, M.I.Munteanu : Minimal translation surfaces in the Heisenberg group Nil3, Geometriae Dedicata 161 (2012), 221 - 231.                                                                      

1                            D.W. Yoon, Minimal translation surfaces in H2 x R, Taiwan. Journal of Math. 17 (2013) 5, 1545-1556, DOI: 10.11650/tjm.17.2013.2425. (ISI citation)

2                            J.F. Dorfmeister, J. Inoguchi, S. Kobayashi, A loop group method for minimal surfaces in the three-dimensional Heisenberg group, Asian J. Math., 20 (2016) 3, 409-448. (ISI citation)

3                            D.W. Yoon, C.W. Lee, M.K. Karacan, Some translation surfaces in the 3-dimensional Heisenberg group, Bull. Korean Math. Soc, 50 (2013) 4, 1329-1343. (ISI citation)

4                            M. Faghfouri, T. Kasbi, Minimal translation surfaces in Sol3 with the Lorentz metric, Proc. 7th seminar on Geometry and Topology, Iran 2014, paper n. 1.63.

5                            D.W. Yoon, On translation surfaces with zero Gaussian curvature in H2 x R, International Journal of Pure and Applied Mathematics, 99 (2015) 3, 289 - 297.

6                            G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1, January 2015, pp.28-34.

7                            Lopez, R; Perdomo, O, Minimal Translation Surfaces in Euclidean Space, JOURNAL OF GEOMETRIC ANALYSIS, 27 (4) 2017: 2926-2937. (ISI citation)

8                            Newton L. Santos, From geometric analysis to classical geometry: 15 years talking about geometry with Professor Pessoa Lima, Lecture Notes on Geometric Analysis, Editora da Universidade Federal do Piauí - EDUFPI, p.109-132, 2017. (book)

9                            J. P. Silva and P. A. Sousa, Translation Hypersurfaces with Constant Scalar Curvature into the Euclidean Space, Lecture Notes on Geometric Analysis, Editora da Universidade Federal do Piauí - EDUFPI, p.49-72, 2017. (book)

10                        Lima, Barnabe P.; Santos, Newton L.; Silva, Juscelino P., Translation Hypersurfaces with Constant S-r Curvature in the Euclidean Space, ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS   Volume: 88   Issue: 4   Pages: 2039-2052. (ISI citation)

 

[CCM12] C. Calin, M. Crasmareanu, M.I. Munteanu, Slant curves in 3-dimensional f-Kenmotsu manifolds, J. Math. Anal. Appl., 394 (2012) 1, 400-407.                                                      

1                            C. Calin, M. Crasmareanu, Slant curves and particles in 3-dimensional warped products and their Lancret invariants, Bull. Austr. Math. Soc. 88 (2013) 1, 128-142. (ISI citation)

2                            C. Calin, M. Crasmareanu, Slant Curves in 3-dimensional Normal Almost Contact Geometry, Mediterranean Journal of Mathematics, 10 (2013) 2, 1067-1077. (ISI citation)

3                            Z.H. Hou, L. Sun , Slant curves in the unit tangent bundles of surfaces, Int. Scholarly Res. Notices (2013) art. 821429, 5pp.

4                            J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric manifolds, Mediterranean Journal of Mathematics, 11 (2014) 3, 965-978.. (ISI citation)

5                            S. Guvenc, C. Ozgur, On slant curves in trans-Sasakian manifolds, Revista de la Union Matematica Argentina, 55 (2014) 2, 81-100. (ISI citation)

6                            C. Calin, M. Crasmareanu, Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry, Czech. Math. J, 64 (2014) 4, 945-960. (ISI citation)

7                            J. Inoguchi, J-E. Lee, On slant curves in normal almost contact metric 3-manifolds, Beitr. Algebra Geom. 55 (2014) 603 - 620.

8                            M. Crasmareanu, C. Frigioiu, Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves, Int. J. Geom. Methods Modern Phys., 12 (2015) 10  1550111. (ISI citation)

9                            C. Calin, M. Crasmareanu, Slant and Legendre curves in Berger su(2): The Lancret invariant and quantum spherical curves, Taiwanese Journal Math. 19 (2015) 4, 1203 - 1214. (ISI citation)

10                        J. Inoguchi, J-E. Lee, Slant curves in 3-dimensional almost contact metric geometry, Int. El. J. Geometry, 8 (2015) 2, 106-146.

11                        Ali, A; Piscoran, LI, Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions, J. GEOMETRY AND PHYSICS, 114 (2017) 276-290. (ISI citation)

12                        Inoguchi, JI; Lee, JE, SLANT CURVES IN 3-DIMENSIONAL ALMOST f-KENMOTSU MANIFOLDS, COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 32 (2) 2017: 417-424. (ISI citation)

13                        Crasmareanu, M; Frigioiu, C, Space-Like Slant Curves in Three-Dimensional Normal Almost Paracontact Geometry, IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 41 (A4) 2017: 1123-1129. (ISI citation)

14                        Oğuzhan Çelik, Zeki Kasap, Mechanical Equations on Slant Curves in 3-dimensional Normal Almost Paracontact Metric Manifolds, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 5 (2017), 9, 22-33.   

15                        Siddiqi, MD; Haseeb, A; Ahmad, M, SKEW SEMI-INVARIANT SUBMANIFOLDS OF GENERALIZED QUASI-SASAKIAN MANIFOLDS, CARPATHIAN MATHEMATICAL PUBLICATIONS, 9 (2):188-197; 10.15330/cmp.9.2.188-197 2017. (ISI citation)

 

[MN12jgp] M.I.Munteanu, A.I. Nistor: The classification of Killing magnetic curves in S2 x R, J. Geom. Phys. 62 (2012) 2, 170-182.                                                                                                                            

1                            C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian flows on manifolds, J. Math. Phys., 54 (2013) 12, 121505. (ISI citation)

2                            C.L. Bejan, S.L. Druta Romaniuc, Walker manifolds and Killing magnetic curves, Differential Geometry and its Applications, 35 (2014) 106-116. (ISI citation)

3                            N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)

4                            C.L. Bejan, S.L. Druta Romaniuc, F-geodesics on Manifolds, Filomat 29 (2015) 10, 2367-2379. (ISI citation)

5                            C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)

6                            A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.

7                            M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

8                            Emre Öztürk, Yusuf Yaylı, W-Curves in Lorentz-Minkowski Space, MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES 5 (2) 76-88 (2017). 

9                            Ahmet Kazan, H. Bayram Karadag, Magnetic Pseudo Null and Magnetic Null Curves in Minkowski 3-Space, International Mathematical Forum, Vol. 12, 2017, no. 3, 119 - 132.

10                        Kazan, A; Karadag, HB, MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE, COMM. FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 67 (2018) 1, 147-160. (ISI citation)

11                        Ozgur, C, ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP, PROC. INSTITUTE OF MATHEMATICS AND MECHANICS, 43 (2):278-286; 2017. (ISI citation)

12                        A. Kazan; H. B. Karadag, Magnetic Curves According to Bishop Frame and Type-2 Bishop Frame in Euclidean 3-Space, British J Math & Computer Science 22(4): 1-18, 2017; Art. BJMCS.33330.

13                        Korpinar, T; Demirkol, RC, Frictional magnetic curves in 3D Riemannian manifolds, INT. J. GEOMETRIC METHODS IN MODERN PHYSICS, 15 (2) art. 1850020, 2018. (ISI citation)

14                        T. Korpinar, On T-Magnetic Biharmonic Particles with Energy and Angle in the Three Dimensional Heisenberg Group H, ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 28 (2018) 1, art.9. (ISI citation)

 

 

[CM12] B. Y. Chen, M.I.Munteanu : Geometry of PR−warped products in para-Kaehler manifolds, Taiwan. J. Math., 16 (2012) 4, 1293-1327.                                                       

1                            T. Q. Binh, A. De, On contact CR-warped product submanifolds of a quasi-Sasakian manifold, Publicationes Math. Debrecen, 84 (2014) 1-2 (9), 123-137. (ISI citation)

2                            A. Mustafa, S. Uddin, V.A. Khan, B.R. Wong, Contact CR-warped product submanifolds of nearly trans-Sasakian manifolds, Taiw. J. Math., 17 (2013) 4, 1473-1486. (ISI citation)

3                            Pan Zhang, Remarks on Chen's inequalities for submanifolds of a Riemannian manifold of nearly quasi-constant curvature, Vietnam J. Math , 43 (2015) 3, 557-569. (ISI citation)

4                            Srivastava, S. K.; Sharma, A, Geometry of PR-semi-invariant warped product submanifolds in paracosymplectic manifold, JOURNAL OF GEOMETRY   Volume: 108   Issue: 1   Pages: 61-74   Published: APR 2017. (ISI citation)

5                            B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds, World Scientific, 2017 (book).

6                            S. K. Srivastava, A. Sharma, A general optimal inequality for warped product submanifolds in paracosymplectic manifolds, Note Mat. 37 (2017) no. 2, 45–60.

 

[D-RM11] S. L. Druta-Romaniuc, M.I.Munteanu, Magnetic curves corresponding to Killing magnetic fields in E3, J. Math. Phys. 52 (2011) 11, 113506.                                                                              

1                            C. Song, X. Sun, Y. Wang, Geometric solitons of Hamiltonian flows on manifolds, J. Math. Phys., 54 (2013) 12, 121505. (ISI citation)

2                            Z. Bozkurt, I. Gok, Y. Yayli, F.N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds, J. Math. Phys. 55 (2014) 5, art. 053501. (ISI citation)

3                            N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)

4                            C.L. Bejan, S.L. Druta Romaniuc, F-geodesics on Manifolds, Filomat 29 (2015) 10, 2367-2379. (ISI citation)

5                            C. Calin, M. Crasmareanu, Magnetic curves in three-dimensional quasi-para-Sasakian geometry, Mediterr. J. Math., 13 (2016) 4, 2087 - 2097. (ISI citation)

6                            A.O. Ogrenmis, Killing magnetic curves in three dimensional isotropic space, Prespacetime J., 7 (2016) 15, 2015-2022.

7                            M.E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sciences Appl. e-notes, 4 (2016) 1, 144-150.

8                            D. Perrone, Un'introduzione alla Geometria Differenziale di curve e superfici, Univ. del Salento (2017) (book).

9                            Korpinar, T; Demirkol, RC, Frictional magnetic curves in 3D Riemannian manifolds, INT. J. GEOMETRIC METHODS IN MODERN PHYSICS, 15 (2) art. 1850020, 2018. (ISI citation)

10                        M. Barros, Angel Ferrandez, Ó.J.Garay, Dynamics of charges and solitons, J. Geometry and Physics, 125 (2018) 12-22. (ISI citation)

11                        T. Korpinar, On T-Magnetic Biharmonic Particles with Energy and Angle in the Three Dimensional Heisenberg Group H, ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 28 (2018) 1, art.9. (ISI citation)

 

[Mun11] M.I.Munteanu, A survey on constant angle surfaces in homogeneous 3-dimensional spaces, Proceedings of the Workshop on Differential Geometry and its Applications Iasi, Romania, September 2-4, 2009, Eds. D. Andrica and S.Moroianu, Cluj University Press, 2011, 109-123.                            

1                            A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849, (ISI citation)

 

[LM11a] R. Lopez, M.I.Munteanu, On the geometry of constant angle surfaces in Sol3 , Kyushu J. Math. 65 (2011) 2, 237 - 249.                                                                                                                                      

1                            Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c) x R1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)

2                            S. Montaldo, I.I. Onnis, Helix surfaces in the Berger sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966. (ISI citation)

3                            S. Montaldo, I.I. Onnis, A. Passos Passamani, Helix surfaces in the special linear group, Annali di Matematica Pura ed Applicata , 195 (2016) 1, 59-77. (ISI citation)

4                            R. Lopez, Invariant surfaces in Sol(3) with constant mean curvature and their computer graphics, Advances in Geometry, 14 (2014) 1, 31-48. (ISI citation)

5                            A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation)

6                            Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)

7                            Onnis, II; Piu, P, Constant angle surfaces in the Lorentzian Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI citation)

8                            Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI citation)

9                            Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation)

10                        Aydin, ME, CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE, J. KOREAN MATHEMATICAL SOCIETY, 55 (2018) 1, 59-71. (ISI citation)

11                        Erjavec, Z; Inoguchi, J, Magnetic curves in Sol(3), JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI citation)

 

 

[LM11b] R. Lopez, M.I.Munteanu : Constant Angle Surfaces in Minkowski space, Bull. Belg. Math. Soc. - Simon Stevin, 18 (2011) 2, 271 - 286.                                                                                          

1                            Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr.J. Math., 10 (2013) 2, 1035-1049. (ISI citation)

2                            M. Babaarslan, Y. Yayli, Split Quaternions and Timelike Constant Slope Surfaces in Minkowski 3-Space, Int. J. Geom. 2 (2013) 1, 23-33.

3                            Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation)

4                            R.A. Abdel-Baky, Slant ruled surface in the Euclidean 3-space E3, Scientia Magna, 9 (2013) 4, 107-112.

5                            A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849, (ISI citation)

6                            E. Ziplar, A. Senol, Y. Yayli, On strong r-helix submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36.

7                            T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.

8                            M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473-495. (ISI citation)

9                            T. Mert, B. Karliga, Timelike surfaces with constant angle in de-Sitter space S31, Cumhuryiet Science J (CJS) 37 (2016) 1, 1-11.

10                        T. Mert, B. Karliga, On the timelike surface with constant angle in hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.

11                        R.R. Montes, Flat contact angle surfaces in the Heisenberg group H3, Palestine J Math. 5 (2016) 1, 30-34.

12                        Mert, T; Karliga, B, Constant Angle Spacelike Surface in de Sitter Space S-1(3), BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 35 (3) 2017:79-93; (ISI citation)

13                        Onnis, II; Piu, P, Constant angle surfaces in the Lorentzian Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI citation)

14                        Xiao-Liu Wang, Xiaoli Chao, Constant angle surfaces constructed on curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472, DOI 10.3969/j.issn.1003-7985.2013.04.022.

15                        A Kelleci, M Ergut, NC Turgay, New Classification Results on Surfaces with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19 (2017), 6023-6040. (ISI citation)

 

[LM11c] R. Lopez, M.I.Munteanu Surfaces with constant mean curvature in Sol geometry, Differential Geometry and Its Applications 29 (2011), S238 -S245.                                       

1                            C. Desmonts, Constructions of periodic minimal surfaces and minimal annuli in Sol3, Pacific J. Math. 276 (2015) 1, 143-166. (ISI citation)

2                            Erjavec, Z; Inoguchi, J, Magnetic curves in Sol(3), JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 25 (2018) 2, 198-210. (ISI citation)

 

 

[MN11a] M.I.Munteanu, A.I. Nistor, Complete classification of surfaces with a canonical principal direction in the Euclidean space E3, Cent. European J. Math, 9 (2011) 2, 378-389; also as: arXiv:1004.4255[math.DG]    

1                            Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c) x R1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)

2                            A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849, (ISI citation)

3                            Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)

4                            Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)

5                            Di Scala, AJ; Ruiz-Hernandez, G, CMC hypersurfaces with canonical principal direction in space forms, MATHEMATISCHE NACHRICHTEN, 290 (2-3) 2017: 248-261. (ISI citation)

6                            Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation)

7                            A Kelleci, M Ergut, NC Turgay, New Classification Results on Surfaces with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19 (2017), 6023-6040. (ISI citation)

 

 

[MN11b] M.I.Munteanu, A.I. Nistor : On the Geometry of the Second Fundamental Form of Translation Surfaces in E3, Houston J. Math., 37 (2011) 4, 1087 - 1102.

1                            Andrzej Trzesowski, On the isothermal geometry of corrugated graphene sheets, Journal of Geometry and Symmetry in Physics 36 (2014): 1-45

2                            ÇETIN, MUHAMMED; TUNÇER, YILMAZ, Parallel surfaces to translation surfaces in Euclidean 3-space, Communications Fac. Sci. Univ. Ank. Series, Series A1 Mathematics & Statistics  (2015), 64 (2), 47-54.

3                            G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1, January 2015, pp.28-34.

4                            AT Ali, HSA Aziz, AH Sorour, On curvatures and points of the translation surfaces in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 23, (2015) 1, 167-172.

5                            M.E. Aydin, A.O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG Proceedings Int. Conf. DGDS-2015, 23 (2016) 1-10.

6                            K. Arslan, B. Bayram, B. Bulca, G. Ozturk, On translation surfaces in 4-dimensional Euclidean space, Acta Commentationes Univ. Tartuensis Mathematica, 20 (2016) 2, 123-133. (ISI citation)

7                            H.G. Bozok, M. Ergut, Minimal Af��ne Translation Surfaces in Hyperbolic Space, Palestine Journal of Mathematics, Vol. 7(1)(2018) , 257-261.

 

[FMV11] J. Fastenakels, M.I.Munteanu, J. Van der Veken, Constant angle surfaces in the Heisenberg group, Acta Math. Sinica (English Series), 27 (2011) 4, 747 - 756.                                                      

1                            Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)

2                            Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation)

3                            S. Montaldo, I.I. Onnis, Helix surfaces in the Berger sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966. (ISI citation)

4                            S. Verpoort, Hypersurfaces with a parallel higher fundamental form, J. Geom. 105 (2014) 2, 223-242.

5                            S. Montaldo, I.I. Onnis, A. Passos Passamani, Helix surfaces in the special linear group, Annali di Matematica Pura ed Applicata, 195 (2016) 1, 59-77. (ISI citation)

6                            M. Crasmareanu, Adapted metrics and Webster curvature on three classes of 3-dimensional geometries, International Electronic Journal of Geometry, 7 (2014) 2, 37-46.

7                            S. Kilicoglu, On the explicit parametric equation of a general helix with first and second curvature in Nil 3-space, Pure Appl. Math. J., 4 (2015) 1-2, 19-23.

8                            A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation)

9                            C. Calin, M. Crasmareanu, Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry, Czech. Math. J, 64 (2014) 4, 945-960. (ISI citation)

10                        T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102.

11                        R.R. Montes, Flat contact angle surfaces in the Heisenberg group H3, Palestine J Math. 5 (2016) 1, 30-34.

12                        A.J di Scala, G. Ruiz-Hernandez, Minimal helix submanifolds and minimal Riemannian foliations, Boletin de la Sociedad Matematica Mexicana, 22 (2016) 1, 229 - 250. (ISI citation)

13                        P. Lucas, J.A. Ortega-Yagues, Slant helices in the Euclidean 3-space revisited, Bull. Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI citation)

14                        T. Mert, B. Karliga, Timelike surfaces with constant angle in de-Sitter space S31, Cumhuryiet Science J (CJS) 37 (2016) 1, 1-11.

15                        T. Mert, B. Karliga, On the timelike surface with constant angle in hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9.

16                        Mert, T; Karliga, B, Constant Angle Spacelike Surface in de Sitter Space S-1(3), BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 35 (3) 2017:79-93; (ISI citation)

17                        Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)

18                        Onnis, II; Piu, P, Constant angle surfaces in the Lorentzian Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI citation)

19                        Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI citation)

20                        Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation)

 

[DMVV11] F. Dillen, M.I.Munteanu, J. van der Veken, L. Vrancken, Constant angle surfaces in a warped product, Balkan Journal of Geometry and Its Applications, 16 (2011) 2, 35-47.  

1                            C. Calin, M. Crasmareanu, Slant curves and particles in 3-dimensional warped products and their Lancret invariants, Bull. Austr. Math. Soc. 88 (2013) 1, 128-142. (ISI citation)  

2                            Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)

3                            A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation)

4                            J.A. Aledo, A. Romero, R.M. Rubio,, The existence and uniqueness of standard static splitting, CLASS. QUANTUM GRAVITY 32  (2015) 10, Art.. 105004. (ISI citation)

5                            B. Foreman, Vertex-type curves in constant angle surfaces of Hyp2 x R, Contemp. Math. 674 (2016), Recent Advances in the Geometry of Submanifolds, Eds. B. Suceava, A. Carriazo, Yun Myung Oh, J. van der Veken (dedicated to the memory of Franki Dillen), 49 - 57. (ISI citation)

6                            P. Lucas, J.A. Ortega-Yagues, Slant helices in the Euclidean 3-space revisited, Bull. Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI citation)

12                        M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473-495. (ISI citation)

13                        Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)

14                        Onnis, II; Piu, P, Constant angle surfaces in the Lorentzian Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI citation)

15                        Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI citation)

16                        Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation)

 

[DMN11] F. Dillen, M.I.Munteanu, A.I. Nistor, Canonical coordinates and principal directions for surfaces in H 2 x R, Taiwanese J. Math., 15 (2011) 5, 2265 - 2289. (arXiv[math.DG]:0910.2135)       

1                            Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr. J. Math., 10 (2013) 2, 1035-1049. (ISI citation)

2                            A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849, (ISI citation)

3                            F. Gao, X.B. Zhang, J.L. Fu, Applications of canonical coordinates for solving single freedom constraint mechanical systems, Applied Mathematics and Mechanics, 35 (2014) 8, 1029-1038. (ISI citation)

4                            Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)

5                            Z.H. Hou, W.H. Qiu, A classification theorem for complete PMC surfaces with non-negative Gaussian curvature in Mn(c) x R, Taiwanese J. Mathematics, 20(2016)1, 205 -226. (ISI citation)

6                            M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473-495. (ISI citation)

7                            Di Scala, AJ; Ruiz-Hernandez, G, CMC hypersurfaces with canonical principal direction in space forms, MATHEMATISCHE NACHRICHTEN, 290 (2-3) 2017: 248-261. (ISI citation)

8                            Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation)

9                            LI Jianxiang, A Class of Fourth Order Willmore Hypersurfaces in R5, Journal of Tianjin Normal University (Natural Science Edition), (2017), 37 (1). 

10                        A Kelleci, M Ergut, NC Turgay, New Classification Results on Surfaces with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19 (2017), 6023-6040. (ISI citation) 

11                        Rafael Novais, João Paulo dos Santos, Intrinsic and extrinsic geometry of hypersurfaces in   SnxR and HnxR, Journal of Geometry, 108, (2017) 3, pp 1115-1127.  (ISI citation)

 

 [Mun10] M.I.Munteanu, From Golden Spirals to Constant Slope Surfaces, Journal of Mathematical Physics, 51 (2010) 7, 073507.                                                                                              

1                            Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation)

2                            E. Ziplar, A. Senol, Y. Yayli, On strong r-helix submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36.  

3                            M. Babaarslan, Y. Yayli, Timelike constant slope surfaces and Spacelike Bertrand curves in Minkowski 3-space, Proc. National Academy Sci., India Section A: Physical Sciences, 84 (2014) 4, 535-540. (ISI citation) 

4                            Michael A. Sherbon, Fundamental Nature of the Fine-Structure Constant, International Journal of Physical Research 03/2014; 2(1):1-9.

5                            M.S. Lehnert, E. Brown, M.P. Lehnert, P.D. Gerard, H. Yan, C. Kim, The Golden Ratio: Reveals Geometric Differences in Proboscis Coiling Among Butterflies of Different Feeding Habits, American Entomologist, 61 (2015) 1, 18-26.  

6                            M. Babaarslan, Y.Yayli, Differential Equation of the Loxodrome on a Helicoidal Surface, JOURNAL OF NAVIGATION, 68  (2015) 5, 962-970. (ISI citation)

7                            Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation)

8                            Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)

9                            Aslan, S; Yayli, Y, Generalized constant ratio surfaces and quaternions, KUWAIT JOURNAL OF SCIENCE, 44 (1):42-47; JAN 2017. (ISI citation)

10                        Xiao-Liu Wang, Xiaoli Chao, Constant angle surfaces constructed on curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472, DOI 10.3969/j.issn.1003-7985.2013.04.022  

11                        Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation) 

12                        A Kelleci, M Ergut, NC Turgay, New Classification Results on Surfaces with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19 (2017), 6023-6040. (ISI citation)

13                        M. Babaarslan, Y. Yayli, On Space-Like Constant Slope Surfaces And Bertrand Curves In Minkowski 3-Space, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) Tomul LXIII, 2017, f. 2, p. 323.

14                        B.-Y. Chen, Topics in differential geometry associated with position vector fields on Euclidean submanifolds, Arab Journal of Mathematical Sciences, Volume 23, Issue 1, January 2017, Pages 1-17. 

 

 [MN10] M.I.Munteanu, A.I. Nistor, New results on the geometry of translation surfaces, Tenth International Conference on Geometry, Integrality and Quantization. June 6-11, 2008, Varna, Bulgaria. reprinted from Journal of Geometry and Symmetry in Physics (JGSP) 18 (2010) 49 - 62.                                         

1                            S.N. Krivoshapko, V.N. Ivanov, Translation Surfaces, chapter in book: Encyclopedia of Analytical Surfaces, 2015, 159-183.

2                            G. Altay, H. Oztekin, Translation Surfaces Generated by Mannheim Curves in Three Dimensional Euclidean Space, Gen. Math. Notes, Vol. 26, No. 1, January 2015, pp.28-34.

 

[MM10] R.Mocanu, M.I.Munteanu, Gray identities for almost contact metric manifolds,J. of the Korean Math. Society, 47 (2010) 3, 505-521. arXiv:0706.2570v1 [math DG].                                                       15.72 puncte

1                            M. Falcitelli , A class of almost contact metric manifolds and double twisted products, Math. Sciences Appl. E-Notes, 1 (2013) 1, 36 - 57. SRI=0

2                            Dokuzova, I, ALMOST EINSTEIN MANIFOLDS WITH CIRCULANT STRUCTURES, JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 54 (5) 2017: 1441-1456. (ISI citation) SRI=0.572

 

[MN09a] M.I.Munteanu, A.I. Nistor, A new approach on constant angle surfaces in E3, Turkish J. Mathematics 33 (2009) 2, 169-178.                                                                                             173.74 puncte

1                            P. Bayard, A.J. Di Scala, O.O. Castro, G. Ruiz-Hernandez, Surfaces in R4 with constant principal angles with respect to a plane, Geom. Dedic. 162 (2013) 1, 153-176.(ISI citation) SRI=1.143

2                            Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c) x R1, Mediterr.J. Math.,10 (2013) 2, 1035-1049. (ISI citation) SRI=0.563

3                            Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation) SRI=0.667

4                            A.I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat, 27 (2013) 5, 843-849. (ISI citation) SRI=0.423

5                            R.A. Abdel-Baky, Slant ruled surface in the Euclidean 3-space E3, Scientia Magna, 9 (2013) 4, 107-112. SRI=0

6                            A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation) SRI=0.729

7                            T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102. SRI=0

8                            Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation) SRI=0.313

9                            P. Lucas, J.A. Ortega-Yagues, Slant helices in the Euclidean 3-space revisited, Bull. Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI citation)  SRI=0.452

10                        T. Mert, B. Karliga, Timelike surfaces with constant angle in de-Sitter space S31, Cumhuryiet Science J (CJS) 37 (2016) 1, 1-11. SRI=0

11                        T. Mert, B. Karliga, On the timelike surface with constant angle in hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9. SRI=0

12                        Lucas, P; Ortega-Yagues, JA, SLANT HELICES IN THE THREE-DIMENSIONAL SPHERE, JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 54 (4) 2017: 1331-1343. (ISI citation)   SRI=0.572

13                        Izumiya, S; Saji, K; Takeuchi, N, FLAT SURFACES ALONG CUSPIDAL EDGES, JOURNAL OF SINGULARITIES, 16 (2017) 73-100; (ISI citation)   SRI=0

14                        Mert, T; Karliga, B, Constant Angle Spacelike Surface in de Sitter Space S-1(3), BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 35 (3) 2017:79-93; (ISI citation) SRI=0

15                        Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI citation) SRI=1.421

16                        Aslan, S; Yayli, Y, Generalized constant ratio surfaces and quaternions, KUWAIT JOURNAL OF SCIENCE, 44 (1):42-47; JAN 2017. (ISI citation)  SRI=0.160

17                        Xiao-Liu Wang, Xiaoli Chao, Constant angle surfaces constructed on curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472, DOI 10.3969/j.issn.1003-7985.2013.04.022  SRI=0

18                        Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation)  SRI=0.758

19                        A Kelleci, M Ergut, NC Turgay, New Classification Results on Surfaces with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19 (2017), 6023-6040. (ISI citation)  SRI=0.423

20                        Fatih Dogan, Isophote curves on timelike surfaces in Minkowski 3-space, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LXIII, 2017, f. 1, p. 133. SRI=0

 

[DM09] F. Dillen, M.I.Munteanu, Constant Angle Surfaces in H2 x R , Bull. Braz. Math. Soc. 40 (2009) 1, 85-97; arXiv:0705.3744.                                                                                                                          318.07 puncte

1                            P. Bayard, A.J. Di Scala, O.O. Castro, G. Ruiz-Hernandez, Surfaces in R4 with constant principal angles with respect to a plane, Geom. Dedic. 162 (2013) 1, 153-176.(ISI citation) SRI=1.143

2                            Y. Fu, A.I. Nistor, Constant Angle Property and Canonical Principal Directions for Surfaces in M2(c)xR1, Mediterr.J. Math., 10 (2013) 2, 1035-1049. (ISI citation) SRI=0.563

3                            Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in 3-Dimensional Minkowski Space, Results in Mathematics, 63 (2013) 3-4, 1095-1108. (ISI citation) SRI=0.667

4                            H. Chen, G. Chen, H. Li, Some pinching theorems for minimal submanifolds in Sm(1)xR, Science China Math. 56 (2013) 8, 1679-1688. (ISI citation) SRI=0.974

5                            E. Ziplar, A. Senol, Y. Yayli, On strong r-helix submanifolds and special curves, Int. J. Geometry, 2 (2013) 2, 31-36. SRI=0

6                            M. Navarro, G. Ruiz-Hernandez, D.A. Solis, Constant mean curvature hypersurfaces with constant angle in semi-Riemannian space forms, Differ. Geom. Appl., 49 (2016) 473-495. (ISI citation) SRI=0.947

7                            M. Babaarslan, Y. Yayli, Split Quaternions and Timelike Constant Slope Surfaces in Minkowski 3-Space, Int. J. Geom. 2 (2013) 1, 23-33. SRI=0

8                            S. Montaldo, I.I. Onnis, Helix surfaces in the Berger sphere, Israel Journal of Mathematics, 201 (2014) 2, 949-966. (ISI citation) SRI=1.739

9                            C.P. Aquino, H.F. de Lima, E.A. Lima, On the angle of complete CMC hypersurfaces in Riemannian product spaces, Differ. Geom. Applications, 33 (2014), 139-148. (ISI citation) SRI=0.947

10                        B. Daniel, Minimal isometric immersions into S2 x R and H2 x R, Indiana Univ. Math. J, 64 (2015) 5, 1425-1445. (ISI citation) SRI=2.026

11                        A.I. Nistor, Constant angle surfaces in solvable Lie groups, Kyushu J. Math. 68 (2014) 2, 315-332. (ISI citation) SRI=0.729

12                        T. Mert, B. Karliga, Constant angle spacelike surfaces in hyperbolic space H3, J. Adv. Research Appl. Math. 7 (2015) 2, 89-102. SRI=0

13                        B. Foreman, Vertex-type curves in constant angle surfaces of Hyp2 x R, Contemp. Math. 674 (2016), Recent Advances in the Geometry of Submanifolds, Eds. B. Suceava, A. Carriazo, Yun Myung Oh, J. van der Veken (dedicated to the memory of Franki Dillen), 49 - 57. (ISI citation) SRI=0

14                        Y. Fu, D. Yang, On Lorentz GCR surfaces in Minkovski 3-space, Bull. Korean Math. Soc., 53 (2016) 1, 227 - 245. (ISI citation) SRI=0.313

15                        Z.H. Hou, W.H. Qiu, A classification theorem for complete PMC surfaces with non-negative Gaussian curvature in Mn(c) x R, Taiwanese J. Math, 20 (2016) 1, 205 -226. (ISI citation) SRI=0.590

16                        P. Lucas, J.A. Ortega-Yagues, Slant helices in the Euclidean 3-space revisited, Bull. Belgian Math. Soc. Simon Steivin, 23 (2016) 1, 133-150. (ISI citation) SRI=0.452

17                        S. Montaldo, I.I. Onnis, A. Passos Passamani, Helix surfaces in the special linear group, Annali di Matematica Pura ed Applicata, 195 (2016) 1, 59-77. (ISI citation) SRI=1.421

18                        T. Mert, B. Karliga, Timelike surfaces with constant angle in de-Sitter space S31, Cumhuryiet Science J (CJS) 37 (2016) 1, 1-11. SRI=0

19                        T. Mert, B. Karliga, On the timelike surface with constant angle in hyperbolic space H3, CBU J. Sci 12 (2016) 1, 1-9. SRI=0.

20                        R. Montes, Flat contact angle surfaces in the Heisenberg group H3, Palestine J Math. 5 (2016) 1, 30-34. SRI=0

21                        Folha, A; Penafiel, C, Weingarten Type Surfaces in H-2 x R and S-2 x R, CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 69 (6) (2017): 1292-1311; (ISI citation)  SRI=0

22                        Yampolsky, A, Eikonal Hypersurfaces in the Euclidean n-Space, MEDITERRANEAN JOURNAL OF MATHEMATICS, 14 (4) 2017. (ISI citation)  SRI=0.563

23                        Onnis, II; Piu, P, Constant angle surfaces in the Lorentzian Heisenberg group, ARCHIV DER MATHEMATIK, 109 (6) 2017: 575-589. (ISI citation)  SRI=0.721

24                        Mert, T; Karliga, B, Constant Angle Spacelike Surface in de Sitter Space S-1(3), BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 35 (3) 2017:79-93; (ISI citation) SRI=0

25                        Nistor, AI, New developments on constant angle property in S-2 x R, ANNALI DI MATEMATICA PURA ED APPLICATA, 196 (3) 2017: 863-875. (ISI citation)  SRI=1.421

26                        Aslan, S; Yayli, Y, Generalized constant ratio surfaces and quaternions, KUWAIT JOURNAL OF SCIENCE, 44 (1):42-47; JAN 2017. (ISI citation)  SRI=0.160

27                        Xiao-Liu Wang, Xiaoli Chao, Constant angle surfaces constructed on curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472, DOI 10.3969/j.issn.1003-7985.2013.04.022  SRI=0

28                        Dan Yang, Yu Fu, Lan Li, Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space, Frontiers of Mathematics in China, 2017, Volume 12, Issue 2, pp 459-480. (ISI citation)   SRI=0.758

29                        A Kelleci, M Ergut, NC Turgay, New Classification Results on Surfaces with a Canonical Principal Direction in the Minkowski 3-space, Filomat 31:19 (2017), 6023-6040. (ISI citation)  SRI=0.423

30                        Rafael Novais, João Paulo dos Santos, Intrinsic and extrinsic geometry of hypersurfaces in   SnxR and HnxR, Journal of Geometry, 108, (2017) 3, pp 1115-1127.  SRI=0

31                        Fatih Dogan, Isophote curves on timelike surfaces in Minkowski 3-space, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LXIII, 2017, f. 1, p. 133.  SRI=0

 

 

[MN09b] M.I.Munteanu, A.I. Nistor, Polynomial Translation Weingarten Surfaces in 3-dimensional Euclidean Space, Proceedings of the VIII International Colloquium on Differential Geometry, (E. Vidal Abascal centennial congress) and satellite of the 5 th European Congress of Mathematics, World Scientific 2009, 316-320, Eds. J.A.Alvarez Lopez and E. Garcia Rio, ISBN 978-981-4261166 . arXiv:0809.4745v1 [math.DG]          

 

1                            D.Y. Yoon, Y. Tuncer, M.K. Karacan, Non-degenerate quadric surfaces of Weingarten type, Ann. Polon. Mathematici, 117 (2013) 1, 59 - 69. (ISI citation)

2                            AT Ali, HSA Aziz, AH Sorour, On curvatures and points of the translation surfaces in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 23, (2015) 1, 167-172. 

3                            Azak, Ayşe Zeynep; Tosun, Murat, Weingarten and Linear Weingarten Type Tubes with Darboux Frame in E3, General Mathematics Notes . May2016, Vol. 34 Issue 1, p7-16. 10p. 

4                            Ahmad T. Ali, H. S. Abdel Aziz and Adel H. Sorour, ON SOME GEOMETRIC PROPERTIES OF QUADRIC SURFACES IN EUCLIDEAN SPACE, Honam Mathematical J. 38 (2016), No. 3, pp. 593-611. 

5                            Abdel-Aziz, Hossam S., A study of tube-like surfaces according to type 2 Bishop frame in Euclidean space, Studia Universitatis Babes-Bolyai, Mathematica. 2017, Vol. 62 Issue 2, 249-259. 11p. (ISI citation)

6                            BENDEHIBA SENOUSSI AND MOHAMMED BEKKAR, AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING ∆ri = λiri, Konuralp Journal of Mathematics Volume 5 No. 2 pp. 47-53 (2017). 

7                            Dan Yang, Wei Dan, Yu Fu, A classification of minimal translation surfaces in Minkowski space, J. Nonlinear Sci. Appl., 11 (2018), 437–443.

 

 

[Mun08] M.I.Munteanu, Some aspects on the geometry of the tangent bundle and tangent sphere bundles of a Riemannian manifold, Mediterranean J. Mathematics, 5 (2008), 1, 43-60.                  

1                            S. L. Druţă-Romaniuc, Riemannian almost product and para-Hermitian cotangent bundles of general natural lift type, Acta Mathematica Hungarica, 139 (2013) 3, 228 - 244. (ISI citation)

2                            F. Agca, g-natural metrics on the cotangent bundles, International Electronic Journal of Geometry, 6 (2013) 1, 129-146.

3                            A. Gezer, On the tangent bundle with deformed Sasaki metric, Int. Electronic J. Geom., 6 (2013) 2, 19-31.

4                            F. Agca, A.A. Salimov, Some notes concerning Cheeger-Gromoll metrics, Hacettepe J. Math Statistics, 42 (2013) 5, 533-549. (ISI citation)

5                            C.L. Bejan, S.L. Druta-Romaniuc, Harmonic Almost Complex Structures with Respect to General Natural Metrics, Mediter. J. Math. 11 (2014) 1, 123 - 136. (ISI citation)

6                            N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)

7                            Z.H. Hou, L. Sun, Geometry of tangent bundle with Cheeger-Gromoll type metric, Journal Math. Anal. Appl., 402 (2013) 2, 493-504. (ISI citation)

8                            L. Sun, Z.H. Hou, Normal bundle of surfaces in Riemannian manifolds, Mediterr. J. Math. 12 (2015) 1, 173-185. (ISI citation)

9                            X. Qi , L. Cao, X. Li, New hyper-Kaehler structures on tangent bundles, Communications in Math. 22 (2014) 13-30.

10                        Z.H. Hou, L. Sun, On the Tangent Bundle of a Hypersurface in a Riemannian Manifold, CHINESE Ann. Math. SERIES B, 36  (2015) 4, 579-602.  (ISI citation)

11                        A. Kazan; H.B. Karadag, Paracontact Tangent Bundles with Cheeger-Gromoll Metric, Mediterr. J. Math. 12 (2015) 2, 497-523. (ISI citation)

12                        A. Baghban, E. Abedi, On the harmonic vector fields, Proc. 8th seminar on geometry and topology, Amirkabir Univ. Technology, Iran, December 15-17, 2015, 10pp.

13                        S.V. Galaev, Admissible hypercomplex structures on distributions of Sasakian manifolds, (in Russian) Izv. Saratov University (New Series) Ser. Math. Mech. Inform. 16 (2016) 3, 263-272.

14                        A. Kazan; H.B. Karadag, Locally decomposable golden Riemannian tangent bundles with Cheeger Gromoll metric, Miskolc Math. J., 17 (2016) 1, 399-411.

15                        Peyghan, E; Nourmohammadifar, L; Tayebi, A, (1,1)-Tensor sphere bundle of Cheeger-Gromoll type, ARABIAN JOURNAL OF MATHEMATICS, 6 (4) 2017: 315-327; (ISI citation)

16                        Albuquerque, R, On vector bundle manifolds with spherically symmetric metrics, ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 51 (2) 2017: 129-154. (ISI citation)

17                        B Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications, Academic Press, 2017. (book)

 

 

[Mun07a] M.I.Munteanu, Doubly Warped Products CR-Submanifolds in Locally Conformal Kaehler Manifolds, Monatshefte fur Mathematik, 150 (2007) 4, 333-342.                                                            

1                            M.B. Banaru, Geometry of 6-dimensional hermitian manifolds of the octave algebra, J. Math. Sciences, 207 (2015) 3, 354-388.

2                            A. Olteanu, CR-doubly warped product submanifolds, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 267-288.

3                            B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds, World Scientific, 2017 (book).

 

[Mun07b] M.I.Munteanu, A Note on doubly warped product contact CR-submanifoldsin trans Sasakian manifolds, Acta Matematica Hungarica, 116 (1-2) (2007), 121-126 arXiv : 0604008v2 [math.DG] .                                                                                                                                                                                        

1                            A. Ali, W.A.M. Othman, C. Ozel, Characterizations of contact CR-warped product submanifolds of nearly Sasakian manifolds, Balkan J Geom. Appl. 21 (2016) 2, 9-20.

2                            V.A. Khan, M. Shuaib, Some warped product submanifolds of a Kenmotsu manifold, Bulletin Korean Math. Soc. 51 (2014) 3, 863-881. (ISI citation)  

3                            Beldjilali, G., Belkhelfa, M., Kählerian structures and D-homothetic Bi-warping, Journal of Geometry and Symmetry in Physics, 42 (2016), 1 - 13. (ISI citation)

4                            Hui, S.K., Atçeken, M., Nandy, S., Contact CR-warped product submanifolds of (LCS)(n)-manifolds, Acta Mathematica Universitatis Comenianae, 86 (1) 2017, 101 - 109. (ISI citation)

5                            Khan, VA; Khan, K, HEMI-SLANT SUBMANIFOLDS AS WARPED PRODUCTS IN A NEARLY KAEHLER MANIFOLD, MATHEMATICA SLOVACA, 67 (3):759-772; JUN 2017 (ISI citation)

6                            Srivastava, S. K.; Sharma, A, Geometry of PR-semi-invariant warped product submanifolds in paracosymplectic manifold, JOURNAL OF GEOMETRY   Volume: 108   Issue: 1   Pages: 61-74   Published: APR 2017. (ISI citation)

7                            B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds, World Scientific, 2017 (book).

8                            Hui, S.K., Mandal, P., Pseudo parallel contact CR-submanifolds of kenmotsu manifolds, Indian Journal of Mathematics, 59(3) (2017) 385-402.

 

[DM07] F. Dillen, M.I.Munteanu, Surfaces in H + x R, Proceedings of the conference Pure and Applied Differential Geometry, PADGE 2007, Eds. Franki Dillen, Ignace Van de Woestyne, 185-193,

ISBN 978-3-8322-6759-9.                                                                                   

 

1 Xiao-Liu Wang, Xiaoli Chao, Constant angle surfaces constructed on curves, J. Southeast University (English Edition) 29 (4) 2013: 470-472.

 

[Mun07c] M.I.Munteanu, Old and New Structures on the Tangent Bundle, Proceedings of the Eighth International Conference on Geometry, Integrability and Quantization, June 9-14, 2006, Varna, Bulgaria, Ed. I. M. Mladenov and M. De Leon, Sofia 2007, 264-278.                                                                

1                            N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)

2                            C.L. Bejan, S.L. Druta-Romaniuc, The projective curvature of the tangent bundle with natural diagonal metric, Filomat 29 (2015) 3, 401-410. (ISI citation)

3                            R.K. Srivastava, Para Kaehler and Kaehler structures on Finsler spaces with non zero constant flag curvature, Int. J Res. Eng. Management Tech. (IJREMT) 2 (2016) 7, 27-34.

4                            B Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications, Academic Press, 2017. (book)

 

[Mun06a] M.I.Munteanu, Cheeger Gromoll type metrics on the tangent bundle, Proceedings of the fifth international symposium BioMathsPhys, Iasi, June 16-17, 2006, U.A.S.V.M. Ion Ionescu de la Brad, 49 (2006) 2, 257-268. arxiv: math.DG/0610028.                                      

               

1.                                          F. Agca, g-natural metrics on the cotangent bundles, International Electronic Journal of Geometry, 6 (2013) 1, 129-146.    

2.                                          Z.H. Hou, L. Sun, Geometry of tangent bundle with Cheeger-Gromoll type metric, Journal Math. Anal. Appl., 402 (2013) 2, 493-504. (ISI citation)   

3.                                          F. Agca, A.A. Salimov, Some notes concerning Cheeger-Gromoll metrics, Hacettepe J. Math Statistics, 42 (2013) 5, 533-549 (ISI citation)   

4.                                          N.N. Negoescu, C.L. Bejan, S.L. Druta Romaniuc, Special types of metrics, Editura Stef 2014, 201pp. (book)

5.                                          Z.H. Hou, L. Sun, On the Tangent Bundle of a Hypersurface in a Riemannian Manifold, CHINESE Ann. Math. SERIES B, 36  (2015) 4, 579-602.  (ISI citation)

6.                                          A. Kazan; H.B. Karadag, Paracontact Tangent Bundles with Cheeger-Gromoll Metric, Mediterr. J. Math. 12 (2015) 2, 497-523. (ISI citation)   

7.                                          A. Kazan; H.B. Karadag, Locally decomposable golden Riemannian tangent bundles with Cheeger Gromoll metric, Miskolc Math. J., 17 (2016) 1, 399-411.    

 

[Mun06b] M.I.Munteanu, New aspects on CR-structures of codimension 2 on hypersurfaces of Sasakian manifolds, Archivum Mathematicum , 42 (2006) (1) 69-84.                       

    

1                                            M. Crasmareanu, L.I. Piscoran, CR-structures of codimension 2 on tangent bundles in Riemann-Finsler geometry, Periodica Math. Hungarica 73 (2016) 2, 240-250. (ISI citation)

 

[Mun05a] M.I.Munteanu, Warped product contact CR submanifolds in Sasakian space forms, Publicationes Matematicae Debrecen, 66 (2005), 1-2, 75-120.                                                    

1                                            M. Jamali, M. Hasan Shahid, Multiply warped product submanifolds of a generalized Sasakian space form, International Electronic Journal of Geometry, 7 (2014) 2, 72-83.         

2                                            T.Q. Binh, A. De, On contact CR-warped product submanifolds of a quasi-Sasakian manifold, Publicationes Mathematicae-Debrecen, 84 (2014) 1-2, 123-137. (ISI citation)   

3                                            V.A. Khan, M. Shuaib, Some warped product submanifolds of a Kenmotsu manifold, Bulletin Korean Math. Soc. 51 (2014) 3, 863-881. (ISI citation)   

4                                            B. Laha, A. Bhattacharyya, On generalized quasi-Kenmotsu manifolds, Inter. J. Math. Combin. 4 (2014) 39-46.                

5                                            A. Mustafa, S. Uddin, B.R. Wong, Generalized inequalities on warped product submanifolds in nearly trans-Sasakian manifolds, J. Inequalities Applications, (2014) art. ID 346, (ISI citation)   

6                                            A. Mustafa, A. De, S. Uddin, Characterization of warped product submanifolds in Kenmotsu manifolds, Balkan J Geom Appl. 20 (2015) 1, 86-97.     

7                                            A. Ali, W.A.M. Othman, C. Ozel, Characterizations of contact CR-warped product submanifolds of nearly Sasakian manifolds, Balkan J Geom. Appl. 21 (2016) 2, 9-20.            

8                                            A. Olteanu, CR-doubly warped product submanifolds, Chapter in Geometry of Cauchy-Riemann Submanifolds, Eds. S. Dragomir, M.H. Shahid, F.R. Al-Solamy, Springer 2016, 267-288.              

9                                            Ali, A; Piscoran, LI, Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions, J. GEOMETRY AND PHYSICS, 114 (2017) 276-290. (ISI citation)

10                                        A. Ali, C. Ozel, Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications, International Journal of Geometric Methods in Modern Physics, Vol. 14, No. 3 (2017) 1750042. (ISI citation)  

11                                        Falleh R.Al-Solamy, Siraj Uddin, A General Inequality for Contact CRwarped Product Submanifolds in Cosymplectic Space Forms, Comptes rendus de l’Acade'mie bulgare des Sciences, Vol 70, (2017) 9, 1195-1206.

12                                        Khan, V.A., Shuaib, M., Pointwise pseudo-slant submanifolds of a Kenmotsu manifold, Filomat, 31(18), 2017, 5833-5853. (ISI citation) 

13                                        B.-Y. Chen, Differential Geometry Of Warped Product Manifolds And Submanifolds, World Scientific, 2017 (book).

14                                        B.-Y. Chen, S. Uddin, Warped product pointwise bi-slant submanifolds of Kaehler manifolds,  92 (2018) 1-2, (art. 11) (17 pp) (ISI citation)

15                                        S. K. Srivastava, A. Sharma, A general optimal inequality for warped product submanifolds in paracosymplectic manifolds, Note Mat. 37 (2017) no. 2, 45–60.

 

[Mun05b] M.I.Munteanu, CR-structures of CR-codimension 2 on hypersurfaces in Sasakian manifolds, in Differential geometry and its applications, 157-163, Matfyzpress, Prague, 2005.        

 

1                                            M. Crasmareanu, L.I. Piscoran, CR-structures of codimension 2 on tangent bundles in Riemann-Finsler geometry, Periodica Math. Hungarica 73 (2016) 2, 240-250. (ISI citation) 

 

 [MM02] P.Matzeu, M.I.Munteanu, Vector Cross Products and Almost Contact Structure, Rendiconti di Matematica, Serie VII, vol. 22, Roma (2002), 359-376.                                                           

1                                            M.B. Banaru, Geometry of 6-dimensional hermitian manifolds of the octave algebra, J. Math. Sciences, 207 (2015) 3, 354-388.

2                                            M.B. Banaru, V.F. Kirichenko, Almost contact metric structures on the hypersurface of almost hermitian manifolds, J. Math. Sciences, 207 (2015) 4, 513-537.                        

3                                            Sirin Aktay, On deformations of parallel G2 structures and almost contact metric structures, Advances in Geometry, 17 (2017) 3, 293-302.

 

[MM00] P.Matzeu, M.I.Munteanu, VeClassification of almost contact structures associated with a strongly pseudo-convex CR-structure. Riv. Mat. Univ. Parma (6) 3 (2000), 127-142.                           

1          Elena POPOVICI, Classification of contact structures associated with the CR-structure of the complex indicatrix, An. St. Univ. Ovidius Constanta, Vol. 25(1), 2017, 163-176. (ISI citation)  

 

[Mun00] M.I.Munteanu : New CR-structures on the Unit Tangent Bundle, Ann. Univ. Timisoara , vol.38, Fasc. 1, 2000, Seria Mat. Inf., 99-110                                                                                       

1                            Peyghan, E; Nourmohammadifar, L; Tayebi, A, (1,1)-Tensor sphere bundle of Cheeger-Gromoll type, ARABIAN JOURNAL OF MATHEMATICS, 6 (4) 2017: 315-327; (ISI citation)     

 

 

[Mun98a] M.I.Munteanu, CR-structures on the Unit Cotangent Bundle, An. St. Univ. Al.I. Cuza Iasi, Math., 44 (1998), sI, f1, 125-136.                                                                            

1                                S. L. Druţă-Romaniuc, Riemannian almost product and para-Hermitian cotangent bundles of general natural lift type, Acta Math. Hung., 139 (2013) 3, 228 - 244. (ISI citation)          

2                                S. L. Druta-Romaniuc, A Study on the Para-Holomorphic Sectional Curvature of Para-Kaehler Cotangent Bundles, Ann. Alexandru Ioan Cuza University, 61 (2015) 1, 253-262.