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GEOMETRIE DIFERENŢIALĂ - SEMINAR

Exerciţiul 16.03:01 Fie κ > 0 şi τ două numere reale fixate. Să se determine o curbă
parametrizată regulată ı̂n R3 care are curbura κ şi torsiunea τ .

Soluţie. Ştim din teorema fundamentală a curbelor ı̂n spaţiu că o astfel de curbă există.

Fie ρ : I → R3, ρ(s) = (x(s), y(s), z(s)) curba căutată parametrizată natural.

Scriem ecuaţiile Frenet:

T = ρ′, T ′ = κN, N ′ = −κT + τB, B′ = −τN.
Calculăm derivatele de ordin superior ale lui ρ până la ordinul 4:

ρ′′ = T ′ = κN ,

ρ′′′ = κN ′ = −κ2T + κτB = −κ2ρ′ + κτB,

ρ(4) = −κ2ρ′′ − κτ 2N = −(κ2 + τ 2)ρ′′.

Acum, dacă notăm f := ρ′′ şi µ :=
√
κ2 + τ 2 > 0 putem scrie ecuaţia

f ′′(s) + µ2f(s) = 0

care are soluţia generală
f(s) = cos(µs)v1 + sin(µs)v2,

unde v1 şi v2 sunt doi vectori constanţi ı̂n R3.

Ştim că |ρ′′(s)| = κ, aşadar

κ2 = |f(s)|2 = cos2(µs)|v1|2 + sin2(µs)|v2|2 + 2 sin(µs) cos(µs)〈v1, v2〉, ∀s ∈ I.

Rezultă că
1
2
(|v1|2 − |v2|2) cos(2µs) + 〈v1, v2〉 sin(2µs) + 1

2
(|v1|2 + |v2|2)− κ = 0, ∀s ∈ I.

Întrucât sistemul de funcţii {1, sin(2µs), cos(2µs)} este liniar independent, rezultă că

|v1| = |v2| = κ, 〈v1, v2〉 = 0,

prin urmare sistemul de vectori
{
ε1 := v1

κ
, ε2 := v2

κ

}
este ortonormat.

Integrând relaţia f(s) = cos(µs)v1 + sin(µs)v2, obţinută mai sus, obţinem

ρ′(s) = v0 +
1

µ
sin(µs)v1 −

1

µ
cos(µs)v2.

Însă acest vector este unitar (pentru orice s), prin urmare avem că

|v0|2 + sin2(µs)
µ2
|v1|2 + cos2(µs)

µ2
|v2|2 − sin(2µs)

µ2
〈v1, v2〉+ 2 sin(µs)

µ
〈v0, v1〉 − 2 cos(µs)

µ
〈v0, v2〉 = 1.

Date: 16 martie 2020.
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2 GEOMETRIE DIFERENŢIALĂ - SEMINAR

Scriind ı̂n funcţie de unghiul dublu 2µs şi folosind acelaşi raţionament de mai sus, deducem
că

|v0|2 +
κ2

µ2
= 1, 〈v0, v1〉 = 0, 〈v0, v2〉 = 0.

Rezultă că v0 este perpendicular pe vectorii v1 şi v2, prin urmare este coliniar cu v1 × v2.

Pe de altă parte, |v0|2 = µ2−κ2
κ2

= τ2

µ2
.

Dacă notăm ε3 = ε1 × ε2, obţinem că v0 = ± τ
µ
ε3.

Astfel, vectorul viteză ρ′(s) are expresia

ρ′(s) =
κ

µ
sin(µs)ε1 −

κ

µ
cos(µs)ε2 ±

τ

µ
ε3.

Integrând, de la 0 la s, se obţine

ρ(s)− ρ(0) =

(
κ

µ2
(1− cos(µs)),− κ

µ2
sin(µs),±τ

µ
s

)
.

După o transformare rigidă a spaţiului R3 (de tipul F (q) = Aq + q0, A ∈ O(3), q0 ∈ R3),
putem duce baza ortonormată {ε1, ε2, ε3} ı̂n baza canonică {e1, e2, e3} (eventual permutată
şi având altă orientare) şi putem face o translaţie aşa ı̂ncât curba ρ să aibă expresia

ρ(s) = (a cos(s/c), a sin(s/c), bs/c),

unde a := κ
µ2

, b := τ
µ2

, iar c := 1
µ
.

Am obţinut astfel elicea circulară (pe care am studiat-o anterior).

Exerciţiul 16.03:02 (schimbări de parametru)

Următoarele exemple ne arată că o suprafaţă poate avea mai multe parametrizări.

(a)

 D1 = R2, r1(u, v)) = (u+ v, u− v, uv)

D2 = R2, r2(ū, v̄) =
(
ū, v̄, ū

2−v̄2
4

)
.

Avem r1(D1) = r2(D2) = {(x, y, z) : z = 1
4
(x2 − y2)} (paraboloidul hiperbolic).

(b)

 D1 =
(
−π

2
, π

2

)
× (0, 2π), r1(ϕ, ψ) = (cosϕ cosψ, cosϕ sinψ, sinϕ)

D2 = R2 \ {(u, 0) : u ≥ 0}, r2(u, v) =
(

2u
u2+v2+1

, 2v
u2+v2+1

, u
2+v2−1
u2+v2+1

)
.

Avem r1(D1) = r2(D2) = S2 \ {(x, 0, z) ∈ S2 : x ≥ 0}.

(c)

{
D1 = (0,∞)× (0, 2π), r1(t, ϕ) = (t cosϕ, t sinϕ, t2)

D2 = R2 \ {(u, 0) : u ≥ 0}, r2(u, v) =
(

u
u2+v2

, v
u2+v2

, 1
u2+v2

)
.

Avem r1(D1) = r2(D2) = PE \{(x, 0, x2) : x ≥ 0}, unde PE este paraboloidul de rotaţie,
adică PE = {(x, y, z) ∈ R3 : z = x2 + y2}.
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Soluţie. Vom reprezenta mai ı̂ntâi cele trei suprafeţe.

figura 1. (a) paraboloidul hiperbolic

figura 2. (b) sfera unitate fără un semicerc;
(c) paraboloidul de rotaţie fără o jumătate de parabolă

Să analizăm cazul (a): Transformarea (u, v)
Φ7→ (ū, v̄), Φ(u, v) = (u + v, u − v) este un

difeomorfism de la R2 la R2 cu inversul Φ−1(ū, v̄) = ( ū+v̄
2
, ū−v̄

2
). Apoi, r1 = r2 ◦ Φ.

Pentru (b) lucrurile sunt ceva mai complicate. Este evident că ambele parametrizări sunt
pe sfera S2 şi că r1(ϕ, ψ) = r2(u, v)
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Obţinem sistemul:

x = cosϕ cosψ =
2u

u2 + v2 + 1
(1a)

y = cosϕ sinψ =
2v

u2 + v2 + 1
(1b)

z = sinϕ =
u2 + v2 − 1

u2 + v2 + 1
(1c)

Din (1c) avem:

z = sinϕ = 1− 2

u2 + v2 + 1
⇐⇒ 1− z =

2

u2 + v2 + 1

Deci:
x

1− z
=

cosϕ cosψ

1− sinϕ
=

2u

u2 + v2 + 1
· u

2 + v2 + 1

2
= u

şi

y

1− z
=

cosϕ sinψ

1− sinϕ
=

2v

u2 + v2 + 1
· u

2 + v2 + 1

2
= v

Din (1a) şi (1b) avem:

y

x
=

2v

u2 + v2 + 1
2u

u2 + v2 + 1

=
v

u
=

cosϕ sinψ

cosϕ sinψ
= tanψ

Întrucât ψ trebuie să fie diferenţiabilă va trebui să asigurăm mai ı̂ntâi continuitatea. Punem
aşadar

ψ = ψ(u, v) =



arctan
(
v
u

)
, dacă u > 0 şi v > 0,

arctan
(
v
u

)
+ 2π, dacă u > 0 şi v < 0,

arctan
(
v
u

)
+ π, dacă u < 0,

3π
2

dacă u = 0 şi v < 0.
π
2

dacă u = 0 şi v > 0.

În (1c), cum ϕ ∈ (−π
2
, π

2
), putem folosi arcsin:

ϕ = ϕ(u, v) = arcsin

(
u2 + v2 − 1

u2 + v2 + 1

)
Ar trebui să verificăm şi diferenţiabilitatea, ı̂nsă nu o mai facem aici.
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În concluzie avem aplicaţia

Φ : R2 \ {(u, 0) : u ≥ 0} →
(
−π

2
,
π

2

)
× (0, 2π)

Φ(u, v) = (ϕ(u, v), ψ(u, v))

Φ−1(ϕ, ψ) =

(
cosϕ cosψ

1− sinϕ
,
cosϕ sinψ

1− sinϕ

)
.

Diferenţiala sa este

DΦ(u, v) =

 −
v

u2 + v2

2u

(u2 + v2 + 1)
√
u2 + v2

u

u2 + v2

2v

(u2 + v2 + 1)
√
u2 + v2

 .

Determinantul acesteia este

detDΦ(u, v) = − 2

(u2 + v2 + 1)
√
u2 + v2

6= 0.

Deducem că Φ este un difeomorfism.

Relaţia dintre cele două parametrizări este r2 = r1 ◦ Φ.

Pentru (c) scriind r1(t, ϕ) = r2(u, v) se obţine:

t cosϕ =
u

u2 + v2
(2a)

t sinϕ =
v

u2 + v2
(2b)

t2 =
1

u2 + v2
(2c)

Din (2a) avem:

(3) t cosϕ =
t2 cosϕ

t
=

u

u2 + v2

(2c)⇐=⇒ 1

u2 + v2
· cosϕ

t
=

u

u2 + v2
⇐⇒ cosϕ

t
= u

Analog din (2b) deducem:

(4) t sinϕ =
t2 sinϕ

t
=

v

u2 + v2

(2c)⇐=⇒ sinϕ

t
= v

Din (2c) avem t =
1√

u2 + v2
∈ (0,∞).

Din (3) şi (4) avem unghiul ϕ ∈ [0, 2π) unic determinat de relaţiile:
cosϕ = ut =

u√
u2 + v2

sinϕ = vt =
v√

u2 + v2
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Presupunem prin reducere la absurd că ϕ = 0:

0 = sin 0 =
v√

u2 + v2
⇐⇒ v = 0

1 = cos 0 =
u√

u2 + v2
=⇒ u ≥ 0,

contradicţie cu ipoteza (u, v) /∈ {(u, 0) : u ≥ 0}.
Deci ϕ ∈ (0, 2π).

Acum (ţinând cont de continuitate) putem scrie funcţia ϕ astfel:

ϕ = ϕ(u, v) =


arccos

(
u√

u2 + v2

)
, dacă v > 0,

arccos

(
u√

u2 + v2

)
+ π, dacă v < 0,

π, dacă u < 0 şi v = 0.

În concluzie avem aplicaţia Φ : (0,∞)× (0, 2π)→ R2 \ {(u, 0) : u ≥ 0}

Φ(t, ϕ) =

(
cosϕ

t
,
sinϕ

t

)
Φ−1(u, v) =

(
1√

u2 + v2
, ϕ(u, v)

)
.

Avem

DΦ(t, ϕ) =

 −
sinϕ

t

cosϕ

t

−cosϕ

t2
−sinϕ

t2


care are determinantul detDΦ(t, ϕ) =

1

t3
6= 0, deci Φ este un difeomorfism.

Relaţia dintre cele două parametrizări este r2 = r1 ◦ Φ.

Exerciţiul 16.03:03 Să se descrie planul tangent la suprafaţa (π), ı̂ntr-un punct arbitrar
p, unde (π) este planul dat prin ecuaţie generală: Ax+By+Cz+D = 0, A2 +B2 +C2 6= 0.

Soluţie. Dacă C 6= 0, atunci S = (π) admite parametrizarea globală (adică o singură
hartă de coordonate)

r : R2 → R3, r(u, v) =

(
u, v,−A

C
u− B

C
v − D

C

)
.

Planul tangent TpS este generat de ru = (1, 0,−A/C) şi rv = (0, 1,−B/C). Direcţia
normală este dată de ru × rv = (A/C,B/C, 1).

Prin urmare, TpS este planul care trece prin p şi are direcţia normală (A/C,B/C, 1), adică
este planul (π) ı̂nsuşi, oricare ar fi punctul p ∈ (π).
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Exerciţiul 16.03:04 Să se descrie planul tangent ı̂ntr-un punct arbitrar p la sfera unitate
S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
Soluţie. Fie o parametrizare pe sferă dată de

r : D → R3, r(ϕ, ψ) = (cosϕ cosψ, cosϕ sinψ, sinϕ),

unde D =
(
−π

2
, π

2

)
× (0, 2π). Avem r(D) = S2 \ {(x, y, z) ∈ S2 : x ≥ 0}.

Calculăm

rϕ = (− sinϕ cosψ,− sinϕ sinψ, cosϕ)

rψ = (− cosϕ sinψ, cosϕ cosψ, 0).

Astfel, direcţia normală (̂ıntr-un punct arbitrar) este dată de

rϕ × rψ = (− cos2 ϕ cosψ,− cos2 ϕ sinψ,− sinϕ cosϕ).

Avem |rϕ × rψ|2 = cos2 ϕ 6= 0.

Remarcăm că direcţia normală dată de rϕ × rψ este aceeaşi cu cea dată de vectorul de
poziţie r(ϕ, ψ). Prin urmare, planul tangent ı̂n p la S2 este planul care trece prin p şi este

perpendicular pe vectorul de poziţie
−→
Op.

Întrebare:

Cum se scrie planul tangent ı̂n p dacă folosim altă parametrizare? De exemplu să con-
siderăm una din cele 6 parametrizări (care acoperă o semisferă):

r : D(1)→ R3, r(u, v) = (u,
√

1− u2 − v2, v),

unde D(1) este discul unitate deschis ı̂n R2.
Evident avem r(D(1)) = U+

2 := {(x, y, z) ∈ S2 : y > 0}.
Calculăm derivatele parţiale (care ne dau direcţia planară a planului tangent):

ru =
(

1, −u√
1−u2−v2 , 0

)
şi rv =

(
0, −v√

1−u2−v2 , 1
)

.

Direcţia normală este dată de: ru × rv =
(

−u√
1−u2−v2 ,−1, −v√

1−u2−v2

)
care este, din nou,

aceeaşi cu cea dată de vectorul de poziţie r(u, v); mai precis avem

ru × rv = − 1√
1− u2 − v2

· r(u, v).

Prin urmare, se obţine acelaşi plan exprimat printr-o altă parametrizare.

Observaţie. Să scriem ecuaţia planului tangent la sferă ı̂ntr-un punct al ei p0 = (x0, y0, z0).
Am văzut, pentru două parametrizări diferite, că planul tangent ı̂ntr-un punct la sfera
unitate este planul perpendicular pe vectorul de poziţie (̂ın acel punct). Prin urmare,

vectorul de poziţie
−−→
Op0 defineşte normala la planul tangent ı̂n p0. Mai precis, direcţia

normală este dată de (x0, y0, z0.
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Acum putem scrie ecuaţia planului prin p0 şi de direcţie normală (x0, y0, z0):

Tp0S2 : x0(x− x0) + y0(y − y0) + z0(z − z0) = 0,

ceea ce este echivalent cu

Tp0S2 : x0x+ y0y + z0z + 1 = 0,

care reprezintă ecuaţia planului tangent la sferă exprimat prin ”dedublare”.

Exerciţiul 16.03:05 Să se scrie planul tangent ı̂ntr-un punct arbitrar pentru suprafaţa
parametrizată r : D = R2 → R3, r(u, v) = (u+ v, u− v, uv).

Cazuri particulare: (i) p = (2, 0, 1); (ii) p = (0, 2,−1); (iii) p = (0, 0, 0).

Soluţie. Planul tangent TpS este generat de ru si rv, unde ru = (1, 1, v), iar rv = (1,−1, u).

Direcţia normală este dată de ru × rv = (u+ v,−u+ v,−2)

Prin urmare, TpS este planul care trece prin p şi are direcţia normală (u+ v,−u+ v,−2).

Dacă (x, y, z) sunt coordonatele unui punct arbitrar pe S ⊂ R3, atunci direcţia normală
la S ı̂ntr-un punct arbitrar al său (x0, y0, z0), este (x0,−y0,−2). Astfel, planul tangent se
scrie

Tp0S : x0(x− x0)− y0(y − y0)− 2(z − z0) = 0.

Echivalent, putem scrie

(5) Tp0S : x0x− y0y − 2(z + z0) = 0,

deoarece x2
0 − y2

0 = 4z0.

Să remarcăm faptul că ecuaţia dată prin formula (5) este aceeaşi cu cea obţinută prin
dedublare când scriem ecuaţia planului tangent ı̂ntr-un punct la cuadrica S (paraboloid
hiperbolic).

În ceea ce priveşte cazurile particulare, avem

(i) p0 = (2, 0, 1): Acest punct corespunde valorilor u = 2 şi v = 0.

Ecuaţia planului tangent este Tp0S : x− z − 1 = 0.

ii) p0 = (0, 2,−1): Acest punct corespunde valorilor u = 0 şi v = 2.

Ecuaţia planului tangent este Tp0S : y + z − 1 = 0.

iii) p0 = (0, 0, 0): Acest punct corespunde valorilor u = 0 şi v = 0.

Ecuaţia planului tangent este Tp0S : z = 0.
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Exerciţiul 16.03:06 Să se scrie planul tangent ı̂ntr-un punct arbitrar pentru suprafaţa
PE dată prin ecuaţia z = x2 + y2. (Vezi şi exerciţiul 16.03:02 (c).)

Cazuri particulare: (i) p = (1, 1, 2); (ii) p = (0, 0, 0).

Soluţie.

Considerăm parametrizarea (vezi exerciţiul 16.03:02):

r : D → R3 , r(u, v) =

(
u

u2 + v2
,

v

u2 + v2
,

1

u2 + v2

)
,

unde D = R2 \ {(u, 0) : u ≥ 0}, iar S = r(D) = PE \ {(x, 0, x2) : x ≥ 0}, PE fiind
paraboloidul de rotaţie, adică mulţimea

PE = {(x, y, z) ∈ R3 : z = x2 + y2}

Planul tangent TpS este generat de

ru =

(
v2 − u2

(u2 + v2)2 ,−
2uv

(u2 + v2)2 ,−
2u

(u2 + v2)2

)
şi

rv =

(
− 2uv

(u2 + v2)2 ,
u2 − v2

(u2 + v2)2 ,−
2v

(u2 + v2)2

)
,

iar direcţia normală este dată de

ru × rv =

(
2u

(u2 + v2)3 ,
2v

(u2 + v2)3 ,−
1

(u2 + v2)2

)
Să observăm că dacă p0 = (x0, y0, z0) ∈ S = r(D), atunci direcţia normală este dată de
(2x0z

2
0 , 2y0z

2
0 ,−z2

0). Prin urmare, Tp0S este planul care trece prin p şi are direcţia normală
(2x0, 2y0,−1). Rezultă că planul tangent Tp0S are ecuaţia

Tp0S : 2x0(x− x0) + 2y0(y − y0)− (z − z0) = 0,

echivalent cu

Tp0S : x0x+ y0y −
z + z0

2
= 0.

Această ecuaţie reprezintă ecuaţia planului tangent prin dedublare la cuadrica PE.

Pentru p = (1, 1, 2) avem

u = 1
2
, v = 1

2
, ru = (0,−2,−4), rv = (−2, 0,−4), ru × rv = (8, 8,−4).

Planul tangent are aşadar ecuaţia

2(x− 1) + 2(y − 1)− (z − 2) = 0⇐⇒ 2x+ 2y − z − 2 = 0.

Ce putem spune pentru p = (0, 0, 0)? Facem observaţia că acest punct NU se află ı̂n r(D),
prin urmare calculul de mai sus nu se aplică. Va trebui să considerăm altă parametrizare.
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În jurul lui p = (0, 0, 0) putem considera, de exemplu,

r : D = R2 → R3 , r(u, v) = (u, v, u2 + v2).

În urma unui calcul analog, se obţine că planul tangent ı̂n p = (0, 0, 0) la PE este z = 0,
adică planul xOy.

figura 3. cele două plane tangente la PE

Exerciţiul 16.03:07 Să se scrie planul tangent ı̂ntr-un punct arbitrar al suprafeţei para-
metrizate

r : D → R3, r(θ, t) = ((2 + cos t) cos θ, (2 + cos t) sin θ, sin t),

unde D este un domeniu ”cât mai amplu” din R2 (care să se determine).

Soluţie. Calculăm:

rt = (− sin t cos θ,− sin t sin θ, cos t)

rθ = (− (2 + cos t) sin θ, (2 + cos t) cos θ, 0)

rθ × rt = ((2 + cos t) cos θ cos t, (2 + cos t) sin θ cos t, (2 + cos t) sin t).

Prin urmare, planul tangent la S ı̂n p este planul care trece prin P si are direcţia normală

(cos θ cos t, sin θ cos t, sin t) .

Domeniul D poate fi ales, de exemplu, (0, 2π) × (−π/2, π/2); evident, r(D) nu acoperă
ı̂ntreaga suprafaţă, ı̂nsă considerând alte domenii D putem acoperi S. Suprafaţa descrisă
de ecuaţia din enunţ se numeşte tor şi poate fi obţinută prin rotirea unui cerc din planul
yOz (care nu intersectează axa Oz) ı̂n jurul axei Oz.
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figura 4. planele tangente la tor in punctele (2, 0, 1), (0,−2,−1), (3, 0, 0),

respectiv
(√

2 + 1
2
,
√

2 + 1
2
, 1√

2

)
Exerciţiul 16.03:08 Fie suprafaţa S parametrizată prin r : (0,∞) × R −→ R3,
r(u, v) = (uev, ue−v, uv). Se cer ecuaţiile planului tangent şi ale normalei la S ı̂n punctul
p = (1, 1, 0).

Soluţie. Punctul p aparţine ı̂ntr-adevăr suprafeţei S şi corespunde valorilor u = 1 şi v = 0.

Calculăm ru = (ev, e−v, v) şi rv(ue
v,−ue−v, u). Produsul lor vectorial este

ru × rv = (u(1 + v)ev,−u(1− v)e−v,−2u) 6= 0, ∀(u, v) ∈ (0,∞)× R.

În p avem

ru = (1, 1, 0) şi rv = (1,−1, 1) care ne dau direcţia planară a lui TpS

ru × rv = (1,−1,−2) care ne dă direcţia dreptei normale ı̂n p la S.

Aşadar ecuaţiile se scriu:

TpS:

∣∣∣∣∣∣
x− 1 y − 1 z

1 1 0
1 −1 1

∣∣∣∣∣∣ = 0 ⇐⇒ x− y − 2z = 0;

dreapta normală:
x− 1

1
=
y − 1

−1
=

z

−2
.


