Seminar 1 - Geometrie Euclidiana
Georgeta Cretu

1 Recapitulare

Vom nota cu X spatiul geometric (intuitiv) conceput ca o multime de puncte. Notiunile de punct, dreaptd, plan si spatiu
le consideram cunoscute cu sensul lor intuitiv din geometria elementara. Dreptele gi planele sunt submultimi ale lui X.

Definitia 1. Se numegte segment orientat ca fiind orice pereche orientata de puncte din spatiu.

Daca A, B sunt doud puncte date in spatiul X, atunci pentru segmentul orientat definit de perechea de puncte (A, B)
vom folosi notatia AB. Deci orice segment orientat este un element al produsului cartezian X x X. Punctul A4 se va numi
originea segmentului orientat iar B extremitatea sa. Daci A = B atunci AA este segmentul nul. Daci A # B atunci
dreapta determinatd de A si B se numeste dreapta suport a segmentului orientat AB.

Definitia 2. Doua segmente orientate nenule au aceasi directie daca dreptele lor suport sunt paralele sau coincid.

Definitia 3. Doui segmente orientate nenule se numesc coliniare daci au aceasi directie. In caz contrar ele se numesc
necoliniare.
Definitia 4. Doua segmente orientate nenule care au aceeasi directie, spunem ca au acelasi sens daca
(1) sunt necoliniare gi extremitatile lor se afla in acelagi semiplan in raport cu dreapta determinata de originile lor
sau daca
(#i) sunt coliniare si existd un segment orientat necoliniar cu ele care are acelagi sens cu amandoua.

Definitia 5. Se numeste marime (modul sau lungime) a unui segment orientat AB, distanta dintre punctele A
si B. Vom nota marimea cu ||AB]]|.

Definitia 6. Doui segmente orientate AB si CD au aceasi marime daca ||AB|| = ||CD]|.

Definitia 7. Doud segmente orientate se numesc echipolente daca au aceeasi directie, acelagi sens gi aceeagi marime; vom
nota aceasta cu AB ~ CD.

Definitia 8. Se numeste vector liber o clasa de echivalenta in raport cu relatia de echipolenta pe multimea segmentelor
orientate din spatiu.
Vom nota cu E = {CD :CD ~ E}, si in general, vectorii liberi cu w, v. In general vectorul liber este gandit printr-

un reprezentat al tau. Daca aplicim vectorul liber w intr-un punct A din spatiu atunci vom obtine u = ﬁ . Extremitatea
B este astfel unic determinata. Orice vector liber poate fi aplicat in orice punct din spatiu. Multimea tuturor segmentelor
nule orientate defineste un vector ce va fi numit vectorul liber nul, notat cu 0. Avem deci 0 = {ﬂ tAe X } . Definim

marimea, directia si sensul unui vector liber ca fiind marimea, directia si respectiv sensul unui reprezentant oarecare al
lui. Vectorul liber de marime egald cu unitatea se numeste versor.
Vom nota cu V3 multimea tuturor vectorilor liberi din spatiu.

Definitia 9. Suma a doi vectori liberi se obtine prin

e regula triunghiului: astfel fie @, 7 € V3 gi A un punct din spatiu. Aplic @ in punctul A gi vom obtine ﬁ ; aplic U in
punctul B gi obtin BC'. Se va forma astfel triunghiul ABC. Prin definitie 7 + v este segmentul orientat care da cea

de a treia latura a triunghiului,
G+v=AB+ BC = AC

sau

e regula paralelogramului: astfel fie @, 7 € V3 i A un punct din spatiu. Aplic @ in punctul A i vom obtine 1@ ; aplic
in punctul A si obtin zﬁ Pe segmentele orientate AB si AC' se poate forma paralelogramul ABDC'. Prin definitie
u + v este segmentul orientat care da diagonala mare a paralelogramului,

u+vi= E

Observatia 1. Regula de adunare a vectorilor este bine definita; astfel vectorul @ + v nu depinde de punctul de plecare A.



Propozitia 1. Au loc urmdtoarele proprietafi:

a) (@+v)+w=1u+ (T+w), Vu,v,w € V5.

b) Existd vectorul notat 0 € V3, numit vector nul, astfel incitu+0=0+u=1u, Vu € Vs.

¢) Pentru orice u € V3 existd vectorul —u € V3, numit opusul lui u, astfel tncat u+ (—u) = (—u) +u =0.
d)u+7=7+7, Vu,v € Vs.

Observatia 2. Astfel (V5,4) devine grup comutativ.

Definitia 10 (inmultirea cu scalari a vectorilor liberi). Fie @ € R, uw € V3 atunci « u este dat de:

a) dacd o = 0 sau @ = 0, atunci a u = 0,

b) daci a # 0 si u # 0, atunci a U este vectorul liber care are aceeasi directie cu %, acelasi sens cu u daci a > 0, sens
opus lui @ dacd a < 0, si marimea data de ||ozﬂ|| = |o| |[a]].

Propozitia 2. Au loc urmadatoarele proprietati:

a)a(@+7v)=au+aov, VaeR, VTu,veVs.

b) (a+B)u=au+pPu, Vao,feR, VueVs.

¢) a(fu)=(af)u, Vo, R, VueVs.

dlu=u,VueVs.

Observatia 3. Din propozitiile de mai sus deducem ca spatiul vectorilor liberi V3 este un spatiu vectorial real in raport cu
adunarea vectorilor gi inmultirea cu scalari a vectorilor.

Definitia 11. Diferenta a doi vectori liberi se obtine astfel: fie w,7 € V3 si A un punct din spatiu. Aplic @ in punctul A
si vom obtine AB; aplic T in acelagi punct A si obtin AC'. Vom obtine atunci

W-v=AB - AC = AB+ CA=CA + AB = CB.

Prin definitie avem ca

W—7=AB— AC = CB.

1.1 Dependenta si independenta liniara a vectorilor liberi
Definitia 12. Doi vectori liberi se numesc coliniari daca au aceagi directie.
Propozitia 3. Doi vectori liberi sunt coliniari dacd si numai dacd sunt liniari dependenti.

Demonstratie. Necesitatea (“=").
Fie w,v cei doi vectori coliniari. Ii aplicim in punctul A si obtinem uw = E, T = ﬁ Presupunem @,7 # 0

si fie A = :I:H?H, luat cu semnul plus sau minus in functie daca /@ si 1@ au sau nu acelasi sens. Vom obtine

U= Au < A\u—7v =0, ceea ce iInseamna ca vectorii sunt liniar dependenti.

Suficienta (“<").

Presupunem ca avem relatia au + v = 0, cu o, § # 0. Presupunem 3 # 0 si obtinem 7 = %ﬂ, adica u,v au aceasi
directie deci sunt coliniari. O

Definitia 13. Un vector liber nenul este paralel cu un plan daca dreapta suport a oricarui reprezentant al sau este paralela
cu planul (sau este continut in plan). Trei vectori se numesc coplanari dacd sunt paraleli cu acelasi plan.

Propozitia 4. Trei vectori liberi sunt coplanari daca st numai daca sunt liniari dependenti.

Demonstratie. Demonstram doar suficienta (“<”).

Presupunem ci avem relatia o + v +~w = 0, cu «a, 8,7 nu toti nuli. Presupunem ~ # 0 si obtinem w = (f%) u+

(,g) v. Dar %ﬂ este coliniar cu w, iar %@ este coliniar cu . Am obtinut deci ca W este in acelasi plan cu vectorii T si
v O

Propozitia 5. Oricare patru vectori liberi sunt liniar dependenti.

Corolarul 1. a) Doi vectori liberi sunt liniari independenti dacd $i numai dacd sunt necoliniari.

b) Trei vectori liberi sunt liniari independenti dacd $i numai dacd sunt necoplanari.



Prin urmare, oricare trei vectori liberi necoplanari sunt indepenti si constituie si sistem de generatori pentru orice alt
vector liber, deci

Teorema 1. In spatiul vectorial al vectorilor liberi V3 oricare trei vectori liberi necoplanari formeazda o bazda. Deci
dimensiunea spatiuvlui Vs este 3.

Propozitia 6. Fie planul © din spatiul X si notam prin Vi multimea tuturor vectorilor din V3 paraleli cu planul 7. Atunci
Vi este un subspatiu vectorial de dimensiune 2.

Propozitia 7. Fie dreapta d din spatiul X si notam prin Vi multimea tuturor vectorilor din Vs paraleli cu dreapta d (adicd
dreapta suport a oricarui reprezentant al lui @ este paraleld sau coincide cu d). Atunci Vg este un subspatiu vectorial de
dimensiune 1.

2 Produsul scalar a doi vectori liberi

Definitia 14. Se numeste produsul scalar a doi vectori liberi numérul real notat cu (w,v) sau (u,7) sau cu @ - 7, si
dat de: o
(@, v) := |[ul| - |[7] - cos (w, ), (1)
pentru w,v # 0, si (u,v) = 0, pentru u = 0 sau v = 0.
Are loc urmitoarea caracterizare a ortogonalitatii:

Propozitia 8. Doi vectori sunt ortogonali (perpendiculari) dacd si numai dacd produsul lor scalar este nul.

Demonstratie. Evident, (w,7) = 0 daca si numai daca ||z| = 0 sau |[v]| = 0 sau cos(%,-\i) = cos (m/2) = 0, ceea ce
inseamna ca cei doi vectori sunt ortogonali.

Luénd 7 = @ obtinem (u,7) = |[@|| |@] cos0 = |[@]|®. Deci are loc urmitoarea egalitate (legitura dintre normi si
produs scalar)

[w)® = u? sau ||u|| = \/ﬂj, unde %? = (u,u)

(adica patratul marimii unui vector liber este egal cu patratul scalar al vectorului).
Propozitia 9. Au loc urmdtoarele proprietafi:
a) (v,u) = (u,v), V4,7 € V.
b) (M\u,v) = (u, \v) = A (u,v), ¥V u,v € Vs.
c) (u,v+w) = (u,v) + (u,w), vV u,v,w € V.
d) (u+v,w) = (u,w) + (v,w), ¥V u,v,w € V.
Observatia 4. Spatiul vectorial al vectorilor liberi V3 este spatiu euclidian.

Fie B = {i,j,k} o bazi ortonormata a lui R*, adici B este baza, iar vectorii bazei sunt versori si sunt ortogonali
doi cate doi, i.e. verificad conditiile
[ll] =I5l = [Ik[| = 1,
AR AN AN
sau echivalent - B 7 o L o
i? =i =[k7=1 s (i,j) =k =k =0
Reamintim ca existenta bazelor ortonormate este asigurata de procedeul de ortonormalizare al lui Gram-Schmidst.
Daca w = ujt+usj+usk € V3 817 = v1i+vej+vsk € V3, atunci are loc urmatoarea expresie analitica a produsului
scalar
<ﬂ7 5> = U1V + UgV2 + uzvs. (2)
In particular
W = (1,7) = (u1)” + (uz)” + (uz)”,

adica

Jal = /(1) + (u2)? + (us)? 3)
Din definitia (1) deducem

cos (7, 7) = (u,v) _ UV1 + UV2 + U3V3 (4)

T ) + (a)? + (wa)? - 00)? + (0% + (0)?

Formulele (2), (3) si (4) reprezintd expresiile analitice ale produsului scalar, ale normei si respectiv ale
cosinusului unghiului dintre doi vectori liberi.




3 Produsul vectorial a doi vectori liberi

Definitia 15. Fie w,v € V5. Produsul vectorial a celor doi vectori este notat cu u x U si este dat de:
a) dacd W, sunt coliniari atunci @ x v = 0,
b) daca u, v sunt necoliniari atunci @ X T este un nou vector liber astfel incét:
b1) directia lui este perpendiculara pe planul determinat de vectorii u si v,
by) sensul lui este dat de regula burghiului (sau echivalent {u,7,u x 7} formeazi o baza orientata pozitiv),

bs) marimea lui este aria paralelogramului format cu cei doi vectori.

Propozitia 10. Au loc urmatoarele proprietdfi:
a) Avdnd in vedere cd, din definitie, produsul vectorial W X T este un vector ortogonal pe ambii vectori W gi pe T obfinem

9

ca
(w,uxv)y=0=(v,ux0), Yu,v € Vs.

b) Folosind formula ariei unui paralelogram deducem cd

—

@ x| = [[u] - | - sin (u, ), VU, € Vs.
¢) Are loc gi urmatoarea formuld de legaturd dintre produsul vectorial i produsul scalar, numit si identitatea lui Lagrange:
@x v = J@xal® = @l o) sin? (@) = |[al]* [5]* (1 - cos® (@ 7))
= al*|9l* - (@,7)*, vu,7 € Vi.
Propozitia 11. Dot vectori sunt coliniari daca st numai dacd produsul lor vecorial este nul.

Demonstratie. Necesitatea (“=").
Fie w, v cei doi vectori coliniari. Atunci

- S e ST
@ x| = [ - 2] - sin (,v) = [[] - [7] - sin (a) =0,
unde o = 0 sau 7.
Suficienta (“<”).
Presupunem ci @ x o = 0. Conform definitiei produsului vectorial avem ¢ @ sau T sunt coliniari sau 0 = ||z X 7|| =
— _ _ —
|[@|| |7]| sin (@, D) , ceea ce inseamna cad @ = 0 sau ¥ = 0 sau (u,v) = 0 sau 7, deci vectorii dati sunt coliniari. O

Propozitia 12. Au loc urmatoarele proprietdafi:
a) Produsul vectorial este anticomutativ, i.e. U XU = -0 X @, V u,0 € V3.
b) (A\u) xT=ux (\0) =A(ux0),Vu1veVs.
O)TUX (T4+W)=uxT+uXw, Y U0, e Vs.

Fie B = {i,7,k} o bazi ortonormata a lui R?. Evident, folosind definitia produsului vectorial avem ca

ixj=k, jxk=1i si kxi=j.

S

Daci T = uyi + usj +usk € V3 §1 T = v1i + voj + vk € V3, atunci are loc urmatoarea expresie analiticd a produsului
vectorial
i 5k

UXV=| u U2 U3 |. (5)

Propozitia 13. Aria unui triunghi format de doi vectori liberi w si v este jumdtate din aria paralelogramului format cu
cei dot vectori, adica

1



4 Produsul a trei vectori liberi

Prezentam in continuare produsul mixt gi produsul dublu vectorial a trei vectori liberi, notiuni care folosesc produsul
scalar gi produsul vectorial a doi vectori liberi gi care prezinta un interes geometric.

Definitia 16. Fie u,v,w € V5. Produsul mixt a celor trei vectori este numaérul real notat cu (w,v,w) si dat de:

(u,v,w) := (U, X w).
Propozitia 14. Trei vectori sunt coplanari dacda si numai daca produsul lor mixt este nul.

Demonstratie. Avem
—_—
(u,7,w) =0 < ||Tl| |v x Wl cos (@, x w) = 0.
Daca ||u|| = 0 atunci u = 0 care este evident coplanar cu v,w. Dacd ||v x w| = 0, atunci ¥ x w = 0 i deci v,w sunt
L . < o s u . o e

coliniari. Deci @, 7, w sunt coplanari. Daca cos (4,7 x W) = 0, adicd unghiul (u,7 X W) = 7/2, atunci ¥ $i T X W sunt
vectori ortogonali. Dar ¥ x w este prin definitie perpendicular pe v si pe w. deci u,v,w apartin aceluiagi plan, planul
ortogonal pe 7 X w. O

Observatia 5. Trei vectori liberi formeaza o baza in spatiul V3 daca si numai daca sunt necoplanari adica daca si numai
daca produsul lor mixt este nenul.

Propozitia 15. Valoarea absolutd a produsului mizt a trei vectori liberi necoplanari reprezinta volumul paralelipipedului
construit pe cu cei trei vectori ca muchii, adicd

V =|(u,v,w)|.
Propozitia 16. Au loc urmatoarele proprietdfi:
a) Permutarile circulare nu afecteaza semnul produsului mizt, adicd
(w,v,w) = (v,w,u) = (w,u,v),vV u,v,w € Vi.
b) (uw,v,w) =— (v,u,w), Vu,v,we Vs.

Fie B = {i,j,k} o bazd ortonormatd a lui R®. Dacd U = wi + ugj + usk € Vi, U = v1i + v2j + vsk € V3 si
w = w1 + waj + wsk € V3, atunci are loc urmatoarea expresie analitica a produsului mixt

U7 (5 us
(ﬂ, U, E) =| vy V2 V3 |. (6)
w; Wy wWs

Intr-adevir, TXwW=| v; vy w3 |= (@, 7,w) = (U, 7 X W) = uy (vows — v3wa) +ug (V3w; — vViws) +ug (Viws — Vawy).
w; Wy w3
(VA1 U us
Pe de altd parte, calculand determinantul obtinem (dezvoltidm dupa prima linie) | v1 vy w3 | = uy (vows — vaws)+

w; w2 w3
ug (Vswy — v1ws) + ug (Viwe — vown ), adica are loc egalitatea (6).
Prezentam, in final, produsul dublu vectorial a trei vectori liberi.

Definitia 17. Fie u,v,w € V5. Produsul dublu vectorial a celor trei vectori este vectorul @ x (T x @) .
Propozitia 17. Are loc urmatoarea proprietate:
u X (0xw) = (u,w)v — (a,7) .

Observatia 6. Produsul dublu vectorial este un vector coplanar cu vectorii din paranteza, i.e. cu v si w. intr—adevér7
u X (U x w) este, din definitia prodului vectorial, un vector ortogonal pe T i pe T X W, iar T x W este, tot din definitia
prodului vectorial, un vector ortogonal pe U i pe w, deci vectorul @ x (T X w) este in acelagi plan cu vectorii 7 gi w.
Evident are loc §i caracterizarea cu produsul mixt a coplanaritatii a trei vectori:

(ux (vxw),v,w):=(ux [vxw),vxw)=0.



Observatia 7. Produsul dublu vectorial nu este asociativ. Intr-adeviir, @ x (T X W) # (7 X T) X W, deoarece
U x (U xw) = (u,w) v — (u,0) W
iar, pe de alta parte,
(uxv)xw=-wx (uxv) =—(w,v)u+ (w,u)v.
5 Exercitii propuse spre rezolvare:

Liniara dependenta. Liniara independenta

Exercitiul 1. Studiati dacd urmatorul sistem de vectori din spatiul vectorial R? este liniar dependent sau nu:
S={v1=(1,1,1),02 = (1,-1,1),73 = (—=1,3,-1) } .

Ezercitiul 2. Sa se studieze dependenta liniard a urmatorilor vectori:
(a) o1 = (1,2,-1,1,-2), 02 = (1,3,2,—1,-1), 13 = (0,1,4,2,0), 4 = (2,4, -3, -2, —3) din R5;
(b) vy = (17 _172) , Vg = (17073)a U3 = (27 1, 1) din RS;

Ezercitiul 3. S& se stabileascd daci urmétorii vectori sunt liniar independenti: 77 = (1,—1,0), 72 = (—1,2,1), 75 = (1,1,1)

Ezercifiul 4. Studiati liniara dependenta ( independenta) a sistemelor de vectori.

1. 8 ={u=(1,2,-4);v=(0,1,1);w = (1,4, -2)} C R3.

2. S ={u=1(21,3,1);0=(1,2,0,1);w = (-1,1,-3,0)} C R%.

3. 83 ={u=(1,1,1);0=(1,-1,1);w = (—1,3,-1)} C R3.

4. Sy ={u=(2,9,1,3-1);v=(1,1,0,-1,1);w = (0,—2,1,5,—3); % = (1,-3,2,9,—5)} C R5.
5 85 ={u=(2,1,-3);v= (3,2 -5);w=(1,-1,1)} C R3.

Ezercitiul 5. S& se arate cd urmatorii vectori sunt liniar dependenti si s& se afle relatia de dependentd: 7; = (0,1,1),
V2 = (17233)7 U3 = (2, *1, 1) din R‘s

Ezercitiul 6. S& se studieze dependenta liniara a urmatorilor vectori: v = (1, —1,2), T = (—1,3,—2), 73 = (5, —11,10).
Exercitiul 7. Sa se studieze dupa valorile parametrului m € R dependenta liniara a sistemului de vectori:

{61 - (1a273)7 Vg = (43576)7 U3z = (7,8,7”)} .

Ezercitiul 8. Sa se arate ca urmatorii vectori sunt liniar dependent;i si sa se afle relatia de dependenta:

(a) U1 = (13 1, 1) ; U = (la -1, 1)3 U3 = (71337 71) din RS?

(b) vy = (17 21 5) , U2 = (53 3, 1) , U3 = (_157 _27 21) din RS;

Ezercitiul 9. Sa se afle numéarul maxim de vectori liniar independenti din sistemul S = {71, 72,73,7T4}, unde 77 = (1, -1, 1),

vs = (2,-1,3), 73 = (1,3,5), 14 = (3,1,7) . S& se giseasca, in plus, relatia de dependentd dintre primii trei vectori.

Ezercitiul 10. In R* se consider vectorii 77 = (1,0,2,—-1), 72 = (3,1,—1,0) si 73 = (2,—2,3,1). Sa se precizeze care este
subspatiul vectorial generat de vy, T §i Us3.

Exercitiul 11. Sa se determine \ astfel incat vectorii 71 = (1, \,0), v = (), 1,1), U3 = (1,0, ) din R3 s formeze o bazi
in R3.

Ezercitiul 12. Se dau vectorii @ = €; + €3, b = 21 — €3 + €3 §i ¢ = €3 — €3 dintr-un spatiu vectorial cu baza {€;,es,€3}.
S4 se arate cd {@,b,¢} formeazd o noud bazi gi si se afle coordonatele in aceasta baza ale vectorului d = €; + 8e3 — 5es.



Operatii cu vectori. Produse vectoriale

Ezercitiul 13. 1. Fie ABCD un paralelogram i M € C'D. Calculati urmatoarele sume de vectori:

(a) AB + AD

(b) AB + CD

(c) MA + DM

(d) DA + BM

(e) CM + AB + AD

(f) MA+ AD + AB + CM

2. Fie ABCD un paralelogram de centru O. Calculati urmétoarele diferente de vectori.

a) AB — A0

(AC — AD) — DO
(AD — 40) — OB

3. Fie ABCD un paralelogram de centru O. Sa se determine z € R astfel incat:
(a) AB = 20D
(b) AC = 204
(c) OC = 2CA
d) DB =208

Exercitiul 14. Se da tetraedrul ABC'D. Sa se afle sumele de vectori: 14_B>+ﬁ+[ﬁ, E—i—@—&—m, /@—i—@—i—@—}—m.

)

)
C)C@O?

) (

) (

Exercitiul 15. Se dau punctele A, B gi C prin vectorii lor de pozitie O_1>4 = 14i — Tj + 2k, O? = 2+ 25 — Tk, O?’ =
—2i + 7j + 2k. S se arate ci triunghiul AOB este dreptunghic si ca triunghiul BOC este isoscel.

Se cere deasemenea sa se determine perimetrul triunghiului ABC, aria sa si lungimea naltimii din A, precum si
vectorul bisectoarei unghiului BAC.

Teorema 2. Bisectoarea unui unght al unui triunghi determinag pe latura opusa segmente proportionale cu lungimile

laturilor ce formeaza unghiul.

BD AB
(AD bisectoare < DC = AC (7)

Teorema 3. (AD este bisectoarea unghiului BAC daci §t numai dacd AD = M, unde b = |ﬁ\ c= |ﬁ|

Demonstratie. Observam ca punctul D imparte segmentul BC' in raportul % = k € R. Obtinem de aici ﬁ = kD?
Intercaland un A in relatia precedenta obtinem:

E’H,ﬁ:k(ﬁJrﬁ)@ﬁ(Hk):BH@ﬁ@E:1ikﬁ+ ulyvs) (8)

1+k

Inlocuind % in (8) obtinem:

Uilizand teorema bisectoarei in (9) obtinem:

ﬁ:l ~AD + AC ﬁ@/ﬁ) AB + AC. (10)

48 1+ AB AC’ AB + AC




Ezercitiul 16. Fie || - || : V — [0,00) norma indusd de un produs scalar (,) : V x V — R pe spatiul liniar real V.
Demonstrati:

1. (inegalitatea Cauchy-Buniakowski-Schwartz - CBS) |(u,v)| < |[u||||v]|, Yu,v € V. Egalitatea are loc dacd si numai
daci u, v sunt liniar dependenti (coliniari);

2. (inegalitatea Minkowski) ||z + 9| < ||| + ||7||, Yu,v € V. Egalitatea are loc daci si numai daca 3\ € [0, c0) astfel
incit @ = AU sau ¥ = \u (@, 0 sunt coliniari de acelasi sens);

3. (egalitatea paralelogramului) || +o|* + [|[u —v|? = 2 (J[ul|* + ||7]?);
4. (Pitagora) u L v & |[u+7v|]? = ||ul)? + ||v]|%

5. Daca S = {@y,..., U} este un sistem ortogonal de vectori din V, atunci

2
k k
Sow| o=l
=1 i=1

6. u Ll v |[uto]=|u—7];
7. |zl = ||| & (@+7v) L (uw—"1).

Demonstratie. 1. Demonstratia inegalitatii: Fie w,v € V. Daca unul din vectori este nul, atunci relatia de demon-
strat are loc, fiind chiar egalitate.
Daca ambii vectori sunt nenuli, fie A € R arbitrar. Se obtine:

(w— \v,u — A\v) zo,v/\eR“:OL

(W, u — \v) — M, u —v) >0,V € R

(@, u) — Mu,v) — \©,7) + \*(7,7) > 0,YA € R B8
(@, @) — 2\ (W, v) + \*(9,7) > 0,YA ER =
l@l|? — 2\ (@, D) + A?|[7]|* > 0,V\ € R.
Privind ca o inegalitate ce contiune un polinom de gradul al doilea in A, obtinem ca discriminatul este negativ,
deci:
(@,0)? < a)*|v]* =
|, 5)| < llull[lv]l,
ceea ce Incheie demonstratia inegalitatii.

Cazul de egalitate: "<” Fie u,7 € V coliniari. Rezultd cd I\ € R astfel incdt © = Au. Atunci |[(w,7)| =
(@, A)| = |A] - [la]|* = |[al|[7].
=" Fie acum u,v € V astfel incat

|(u, 0)| = [[a]l[[]|. (11)
Daca unul din vectori este nul, celalalt este coliniar cu acesta, oricare ar fi el. Putem presupune asadar ca
w,v # 0. Fie
o u
A= Gsn((m. 7)) 1] (12
Evident A € R. Au loc urmatoarele egalitati:

o _ S _ _ _ @l lEl?,
<U - )‘Ua u—= )\’U> - <U,U> - 2)\<U,1}> + )\2<’U,’U> = Hu”2 - 2/\(u,v> + )\2”’0”2 = ||UH2 - 2W|<uvv>‘ + “5”2 ||UH2
_ 1@l o 22 e
& [[a)? - 2= a7l + == I[o)* = 0.

]l 12|

Rezulta ca uw = A\v, i.e. vectorii sunt coliniari.



2. Demonstratia inegalitatii: Fie u,v € V. Din inegalitatea CBS, rezulta ca:
(@) < |[ulllv]| <
(@) < V/(@,m)/(0,7) &
2(0,7) < 2/@ W) VT <>
(W, ) + (v,7) < 2/(u,u)(v,7) &
(w,u) + (u,v) + (0,7) + (v,7) < (W, ) + 2+/(w,w)(0,7) + (V,7) FOICON
@+7.7+7) < (VD + VT e
[+l < [[ull + [v]],

ceea ce Incheie demonstratia inegalitatii.

Cazul de egalitate: ”<” Fie w,v € V coliniari de acelagi sens. Atunci 3A > 0 astfel incat v = Au. Au loc
egalitatile:
[z + 2] = [[(A+ D)all = (A + Dl[all = [[all + Aol = [fzll + |zl = ([l + (2]

"=” Fie u,v € V astfel incat |[u+7|| = ||u|| + ||7]]. Din demonstratia inegalitdtii, obtinem c&: (w,v) = ||@l|||[7|],

0,9 = |al[o INER:T= T

deci /@O =PI cpg JIAER:m=Au o 0\
[(@,v)| = (u,v) |(@,v)| = (u, )

0

Ezercitiul 17. Intr-un plan afin euclidian se considera punctele afin independente A, B,C. Fie M mijlocul segmentului
[BC]. Demonstrati:

(a) (T. Cosinusului) (d(B,C))? = (d(A, B))? + (d(A,C))? — 2d(A, B)d(A,C) cos A ;
(b) (T. Medianei) 4(d(A4, M))? =2 ((d(A, B))* + (d(A,C))?) — (d(B,C))>.

Ezercitiul 18. Intr-un spatiu afin euclidian 3-dimensional se considers un paralelipiped oarecare si @, b, € vectorii asociati
muchiilor ce pleaca din acelasi varf. Calculati in functie de normele acestor vectori suma péatratelor lungimilor diagonalelor
paralelipipedului.

Ezercitiul 19. Intr-un spatiu afin euclidian 3-dimensional se d& un cub ABCDA’B'C'D’ de muchie a, M un punct pe
segmentul [AB'] si N un punct pe segmentul [BD] astfel incat d(B’, M) = d(B, N).

(a) Demonstrati ca dreapta afind M N este paraleld cu una dintre fetele cubului.

(b) Calculati minimul distantei dintre punctele M si N si unghiul neorientat dintre dreapta M N si dreapta BD, pentru
pozitia punctelor M, N cand se realizeaza acest minim.

(c) Aratati cd dreapta M N nu poate fi perpendiculara comun dreptelor AB’ gi BD.

Ezercitiul 20. Fie & = (E, E, ®) un spatiu afin euclidian gi G mijlocul segmentului [A, B], A, B € E distincte. Demonstrati
ca
1
(MA,MB) = |GM|? - 7| AB|%,vM € E. (13)

—
Determinati apoi natura multimii {M € E|(M A, ﬁ> = k} in functie de constanta k € R.
Ezercitiul 21. Se considera punctele A(1,0,0), B(1,2,3) si C(1,1,1).
1. Sa se determine coordonatele vectorilor 1@, E, B_(j”

2. Determinati coordonatele punctului D astfel incat ABCD sa fie paralelogram.
3. Calculati: (ﬁ,/@), 1@ X B?, (E,/@,B?)

Ezercitiul 22. e Fie B = {i,j,k} o bazi ortonormats in V.

— Sa se determine o € R astfel incat vectorii @ = ai — 35 + 2k si b =i + 2j — ak si fie ortogonali.



— Sa se determine unghiul format de vectorii @ = 2i — 45 + 4k si b = —3i + 27 + 6k.
— S se determine vectorul T € V3, stiind ¢& [u| = 14, Z(w,j) > % si cd U este ortogonal pe vectorii @ = 3i+2j + 2k
i b =18 — 225 — bk.

Sa se determine cosinusul unghiului format de vectorii @ si b stiind ca vectorul @ + 3b este perpendicular pe vectorul
7a — 5b iar vectorul @ — 4b este perpendicular pe vectorul 7a — 2b.

Sa se arate ca Vu,v € V3 au loc relatiile:
[z +7o11* + |[a — 9| |* = 2(|[ul| + [[2]]*);

17+ [z - ol* = 4(z, 7).

Sa se arate ca oricare ar fi punctele A, B,C, M € &3 are loc relatia:

(AM,BC) + (BM,CA) + (CM,AB) = 0 (14)

Utilizati relatia (14) pentru a demonstra ca inaltimile unui triunghi sunt concurente.

Dati trei vectori @, b si ¢ astfel incat @ + b+ ¢ = 0, s se arate ca:

a”> = [b]* + [2]* + 2(b, ©).

Ezercitiul 23. Se dau doi vectori @ si ¥ astfel incat |[u]| = 11, ||T]] = 23 si ||u — v]| = 30. S& se determine || + 7] .
Ezercitiul 24. S se calculeze produsul scalar (5u 4 3, 2u — v), daci se dau ||[u|| = 2, ||7]| = 3 si © L T (u este ortogonal
pe 7).

Ezercitiul 25. S& se calculeze (@,7), (u+71)° si (20 — T, 3u + 47), daci se dau |[7]| = 2, |[7] = 5 s @ =m/3.

Erercitiul 26. Sa se determine parametrul A astfel incat vectorii @ =i +2\j — (A — 1)k si 0 = (3 — \)i + J + 3k sa fie
perpendiculari.

Ezercitiul 27. Sa se calculeze produsul mixt (@ — 7,7 — W, W — 0).

Exercitiul 28. Sa se calculeze aria paralelogramului construit cu vectorii @ =14 +2j — k si 7 = 2 — j + 3k.

Ezercitiul 29. Sa se calculeze produsul vectorial (@ + U) x (u — v) si sa se dea o interpretare geometrica rezultatului obtinut.
Ezercitiul 30. Sa se arate cA dacA U X V=T X W =W X W, atunci u +v +w = 0.

Exercitiul 31. Sa se arate cd vectorii @ =i + 2j + 3k, U = 2i + 3j + 4k si W = 3i + 45 + 5k sunt coplanari.

Ezercitiul 32. S& se calculeze mirimea indltimii paralelipipedului construit pe vectorii @ = 2i+j — k, 7 = 3i + 2j + 1k si
w = —j + 2k, considerandu-se ca baza paralelipipedului este formata cu primii doi vectori.

Ezercitiul 33. Se dau punctele A = (3,0,0), B = (2,4,0), C = (-3,-1,0) si D = (0,0,5). S& se afle punctele M, N, P si
Q@ care impart muchiile AB, AC, DB si respectiv DC' in acelasi raport k. Sa se arate si ca M N = PQ.

Ezercitiul 34. Aratati ca trei vectori sunt coplanari daca si numai daca produsul lor mixt este nul.

Ezercitiul 35. Demonstrati reciproca teoremei lui Pitagora (daci in triunghiul ABC are loc relatia AB2 + AC? = BC2
atunci triunghiul este dreptunghic).

Ezercitiul 36. Demonstrati ca in orice spatiu euclidian £ au loc:
1. DacAT L (§+2%)sig L (Z—7T), atunci z L (T + 7).
2. ||zl =yl & (-7 L Z+7)
3. Daca ||Z|| = ||y|| = 1 i (z,7) = 0, atunci
lloz + (1 —a)yl| = 1.

Exercitiul 37. Se dau vectorii T = %(2, 1,2)sig= %(1, 2,—2). S& se determine versorul zZ € £ astfel incat T L z iy L Z.
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Exercitiul 38. Fie B = {e1,ea,e3} 0 baza in R? gi () : R® x R® — R o forma biliniard a cirei matrice in raport cu B este
1 -1 0
-1 6 3
0o 3 3
(a) Verificati ca (,) defineste pe R? o structura de spatiu liniar euclidian.
(b) Féra a calcula lungimile vectorilor w; = €;+ex+e3, Wy = —2€;1+€3, W3 = —€1 +€2+2€3, aratati ca|[ws| < |[w:1]|+]|ws],
unde ||-|| este norma indusad de produsul scalar g.
Solutie:
(a) Trebuie sa demonstram ca (,) este o forma simetrica, pozitiv definita.

(b) S& observdm c& w3 = w; + Ws. Inegalitatea de demonstrat devine |[wy + ws|| < |[w1| + |[w2]|-

Ezercitiul 39. In raport cu produsul scalar canonic pe R? ortonormati urmitoarele sisteme de vectori, folosind procedeul
Gram-Schmidt:

(a) v = (1727 1); Vg = (13071)7 U3 = (1’070);

(b) Ty = (2,1,2), Ts = (1,1,2), T3 = (2, -2, 1);
(¢) 71 =(1,2,2), 02 = (1,1,-5), v3 = (3,2,8).
)

(a) Sa demonstram mai intai ca vectorii dati formeaza o baza. . Sa aplicam acum procedeul Gram-Schmidt. Construim
baza ortonormata F' = {f,, fy, f3}. Acestia sunt dati de:

?1 =71

- <z1’§2>7

e %“flifl (F2.73)

T = _ 71733 r _ 72723 r
fa=vs— gyl

Se ortonormeaza baza F si se obtine baza ortonormata B’ = {€;},_75. Au loc formulele:

=/ 1

a= @H{l

S

2= ||?12\|f2

o

%=l
Exemplu: v; = (13 1, 1)7 Uy = (0> 1, 1)3 U3 = (0703 1)a

1. Se construieste F' = {f;, fo, f3} ortogonali:

fi=mi=(111)

7 o (EmF _ -

Fo =0 =27 fi = 0L ) = 5(L LY = (=5, 5,5)

T o= (0 F _ (Fals)F 1 B

fa=ts =iy =i e = 00D =501 = 3 (=5,5.5) = (0,-3.3)

—/ 1 7 1 1 1

e = —— = e
1 Hfll\f1 37 V3’ 3)
o= 1 F _(_2 1 1
277’2 V6 V6 /6

- _ 1 _ 1 1
%= mils = (0’ ﬁﬂ)

Ezercitiul 40. De o parte si de alta a unui rdu (ale carui maluri sunt reprezentate de doud drepte paralele) se afla doud
localitati A, B. Determinati pozitia in care trebuie s se construiasca un pod perpendicular pe malurile raului, astfel incat
distanta parcursa de un om care pleaca din A si ajunge in B sa fie minima.
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