
Seminar 1 - Geometrie Euclidiană
Georgeta Creţu

1 Recapitulare

Vom nota cu X spaţiul geometric (intuitiv) conceput ca o mulţime de puncte. Noţiunile de punct, dreaptă, plan şi spaţiu
le considerăm cunoscute cu sensul lor intuitiv din geometria elementară. Dreptele şi planele sunt submulţimi ale lui X.

Definiţia 1. Se numeşte segment orientat ca fiind orice pereche orientată de puncte din spaţiu.

Dacă A,B sunt două puncte date ı̂n spaţiul X, atunci pentru segmentul orientat definit de perechea de puncte (A,B)
vom folosi notaţia AB. Deci orice segment orientat este un element al produsului cartezian X ×X. Punctul A se va numi
originea segmentului orientat iar B extremitatea sa. Dacă A = B atunci AA este segmentul nul. Dacă A 6= B atunci
dreapta determinată de A şi B se numeşte dreapta suport a segmentului orientat AB.

Definiţia 2. Două segmente orientate nenule au aceaşi direcţie dacă dreptele lor suport sunt paralele sau coincid.

Definiţia 3. Două segmente orientate nenule se numesc coliniare dacă au aceaşi direcţie. În caz contrar ele se numesc
necoliniare.

Definiţia 4. Două segmente orientate nenule care au aceeaşi direcţie, spunem că au acelaşi sens dacă

(i) sunt necoliniare şi extremităţile lor se află ı̂n acelaşi semiplan ı̂n raport cu dreapta determinată de originile lor

sau dacă

(ii) sunt coliniare şi există un segment orientat necoliniar cu ele care are acelaşi sens cu amândouă.

Definiţia 5. Se numeşte mărime (modul sau lungime) a unui segment orientat AB, distanţa dintre punctele A
şi B. Vom nota mărimea cu ||AB||.

Definiţia 6. Două segmente orientate AB şi CD au aceaşi mărime dacă ||AB|| = ||CD||.

Definiţia 7. Două segmente orientate se numesc echipolente dacă au aceeaşi direcţie, acelaşi sens şi aceeaşi mărime; vom
nota aceasta cu AB ∼ CD.

Definiţia 8. Se numeşte vector liber o clasă de echivalenţă ı̂n raport cu relaţia de echipolenţă pe mulţimea segmentelor
orientate din spaţiu.

Vom nota cu
−−→
AB =

{
CD : CD ∼ AB

}
, şi ı̂n general, vectorii liberi cu u, v. În general vectorul liber este gândit printr-

un reprezentat al tău. Dacă aplicăm vectorul liber u ı̂ntr-un punct A din spaţiu atunci vom obţine u =
−−→
AB. Extremitatea

B este astfel unic determinată. Orice vector liber poate fi aplicat ı̂n orice punct din spaţiu. Mulţimea tuturor segmentelor

nule orientate defineşte un vector ce va fi numit vectorul liber nul, notat cu 0. Avem deci 0 =
{
AA : A ∈ X

}
. Definim

mărimea, direcţia şi sensul unui vector liber ca fiind mărimea, direcţia şi respectiv sensul unui reprezentant oarecare al
lui. Vectorul liber de mărime egală cu unitatea se numeşte versor.

Vom nota cu V3 mulţimea tuturor vectorilor liberi din spaţiu.

Definiţia 9. Suma a doi vectori liberi se obţine prin

• regula triunghiului: astfel fie u, v ∈ V3 şi A un punct din spaţiu. Aplic u ı̂n punctul A şi vom obţine
−−→
AB; aplic v ı̂n

punctul B şi obţin
−−→
BC. Se va forma astfel triunghiul ABC. Prin definiţie u+ v este segmentul orientat care dă cea

de a treia latură a triunghiului,

u+ v =
−−→
AB +

−−→
BC :=

−→
AC

sau

• regula paralelogramului: astfel fie u, v ∈ V3 şi A un punct din spaţiu. Aplic u ı̂n punctul A şi vom obţine
−−→
AB; aplic v

ı̂n punctul A şi obţin
−→
AC. Pe segmentele orientate

−−→
AB şi

−→
AC se poate forma paralelogramul ABDC. Prin definiţie

u+ v este segmentul orientat care dă diagonala mare a paralelogramului,

u+ v :=
−−→
AD.

Observaţia 1. Regula de adunare a vectorilor este bine definită; astfel vectorul u+ v nu depinde de punctul de plecare A.



Propoziţia 1. Au loc următoarele proprietăţi:

a) (u+ v) + w = u+ (v + w) , ∀u, v, w ∈ V3.

b) Există vectorul notat 0 ∈ V3, numit vector nul, astfel ı̂ncât u+ 0 = 0 + u = u, ∀ u ∈ V3.

c) Pentru orice u ∈ V3 există vectorul −u ∈ V3, numit opusul lui u, astfel ı̂ncât u+ (−u) = (−u) + u = 0.

d) u+ v = v + u, ∀u, v ∈ V3.

Observaţia 2. Astfel (V3,+) devine grup comutativ.

Definiţia 10 (̂ınmulţirea cu scalari a vectorilor liberi). Fie α ∈ R, u ∈ V3 atunci α u este dat de:

a) dacă α = 0 sau u = 0, atunci α u = 0,

b) dacă α 6= 0 şi u 6= 0, atunci α u este vectorul liber care are aceeaşi direcţie cu u, acelaşi sens cu u dacă α > 0, sens
opus lui u dacă α < 0, şi mărimea dată de

∣∣|αu|∣∣ = |α|
∣∣|u|∣∣.

Propoziţia 2. Au loc următoarele proprietăţi:

a) α (u+ v) = αu+ αv, ∀ α ∈ R, ∀ u, v ∈ V3.

b) (α+ β)u = αu+ βu, ∀ α, β ∈ R, ∀ u ∈ V3.

c) α (βu) = (αβ)u, ∀ α, β ∈ R, ∀ u ∈ V3.

d) 1 u = u, ∀ u ∈ V3.

Observaţia 3. Din propoziţiile de mai sus deducem că spaţiul vectorilor liberi V3 este un spaţiu vectorial real ı̂n raport cu
adunarea vectorilor şi ı̂nmulţirea cu scalari a vectorilor.

Definiţia 11. Diferenţa a doi vectori liberi se obţine astfel: fie u, v ∈ V3 şi A un punct din spaţiu. Aplic u ı̂n punctul A

şi vom obţine
−−→
AB; aplic v ı̂n acelaşi punct A şi obţin

−→
AC. Vom obţine atunci

u− v =
−−→
AB −

−→
AC =

−−→
AB +

−→
CA =

−→
CA+

−−→
AB =

−−→
CB.

Prin definiţie avem că

u− v =
−−→
AB −

−→
AC :=

−−→
CB.

1.1 Dependenţa şi independenţa liniară a vectorilor liberi

Definiţia 12. Doi vectori liberi se numesc coliniari dacă au aceaşi direcţie.

Propoziţia 3. Doi vectori liberi sunt coliniari dacă şi numai dacă sunt liniari dependenţi.

Demonstraţie. Necesitatea (“⇒”).

Fie u, v cei doi vectori coliniari. Îi aplicăm ı̂n punctul A şi obţinem u =
−−→
AB, v =

−→
AC. Presupunem u, v 6= 0

şi fie λ = ± ||
−→
AC||
||
−−→
AB||

, luat cu semnul plus sau minus ı̂n funcţie dacă
−−→
AB şi

−→
AC au sau nu acelaşi sens. Vom obţine

v = λu⇔ λu− v = 0, ceea ce ı̂nseamnă că vectorii sunt liniar dependenţi.
Suficienţa (“⇐”).
Presupunem că avem relaţia αu + βv = 0, cu α, β 6= 0. Presupunem β 6= 0 şi obţinem v = −α

β u, adică u, v au aceaşi
direcţie deci sunt coliniari.

Definiţia 13. Un vector liber nenul este paralel cu un plan dacă dreapta suport a oricărui reprezentant al său este paralelă
cu planul (sau este conţinut ı̂n plan). Trei vectori se numesc coplanari dacă sunt paraleli cu acelaşi plan.

Propoziţia 4. Trei vectori liberi sunt coplanari dacă şi numai dacă sunt liniari dependenţi.

Demonstraţie. Demonstrăm doar suficienţa (“⇐”).

Presupunem că avem relaţia αu+ βv + γw = 0, cu α, β, γ nu toţi nuli. Presupunem γ 6= 0 şi obţinem w =
(
−αγ
)
u+(

−βγ
)
v. Dar α

γ u este coliniar cu u, iar β
γ v este coliniar cu v. Am obţinut deci că w este ı̂n acelaşi plan cu vectorii u şi

v.

Propoziţia 5. Oricare patru vectori liberi sunt liniar dependenţi.

Corolarul 1. a) Doi vectori liberi sunt liniari independenţi dacă şi numai dacă sunt necoliniari.

b) Trei vectori liberi sunt liniari independenţi dacă şi numai dacă sunt necoplanari.
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Prin urmare, oricare trei vectori liberi necoplanari sunt indepenţi şi constituie şi sistem de generatori pentru orice alt
vector liber, deci

Teorema 1. În spaţiul vectorial al vectorilor liberi V3 oricare trei vectori liberi necoplanari formează o bază. Deci
dimensiunea spaţiului V3 este 3.

Propoziţia 6. Fie planul π din spaţiul X şi notăm prin Vπ mulţimea tuturor vectorilor din V3 paraleli cu planul π. Atunci
Vπ este un subspaţiu vectorial de dimensiune 2.

Propoziţia 7. Fie dreapta d din spaţiul X şi notăm prin Vd mulţimea tuturor vectorilor din V3 paraleli cu dreapta d (adică
dreapta suport a oricărui reprezentant al lui u este paralelă sau coincide cu d). Atunci Vd este un subspaţiu vectorial de
dimensiune 1.

2 Produsul scalar a doi vectori liberi

Definiţia 14. Se numeşte produsul scalar a doi vectori liberi numărul real notat cu 〈u, v〉 sau (u, v) sau cu u · v, şi
dat de:

〈u, v〉 := ‖u‖ · ‖v‖ · cos (̂u, v), (1)

pentru u, v 6= 0, şi 〈u, v〉 = 0, pentru u = 0 sau v = 0.

Are loc următoarea caracterizare a ortogonalităţii:

Propoziţia 8. Doi vectori sunt ortogonali (perpendiculari) dacă şi numai dacă produsul lor scalar este nul.

Demonstraţie. Evident, 〈u, v〉 = 0 dacă şi numai dacă ‖u‖ = 0 sau ‖v‖ = 0 sau cos (̂u, v) = cos
(
π/2

)
= 0, ceea ce

ı̂nseamnă că cei doi vectori sunt ortogonali.

Luând v = u obţinem 〈u, u〉 = ‖u‖ ‖u‖ cos 0 = ‖u‖2. Deci are loc următoarea egalitate (legătura dintre normă şi
produs scalar)

‖u‖2 = u2 sau ‖u‖ =
√
u2, unde u2 := 〈u, u〉

(adică pătratul mărimii unui vector liber este egal cu pătratul scalar al vectorului).

Propoziţia 9. Au loc următoarele proprietăţi:

a) 〈v, u〉 = 〈u, v〉, ∀ u, v ∈ V3.

b) 〈λu, v〉 = 〈u, λv〉 = λ 〈u, v〉, ∀ u, v ∈ V3.

c) 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉, ∀ u, v, w ∈ V3.

d) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉, ∀ u, v, w ∈ V3.

Observaţia 4. Spaţiul vectorial al vectorilor liberi V3 este spaţiu euclidian.

Fie B = {i, j, k} o bază ortonormată a lui R3, adică B este bază, iar vectorii bazei sunt versori şi sunt ortogonali
doi câte doi, i.e. verifică condiţiile  ||i|| = ||j|| = ||k|| = 1,

i⊥j, i⊥k, j⊥k

sau echivalent
|i|2 = |j|2 = |k|2 = 1 şi 〈i, j〉 = 〈i, k〉 = 〈j, k〉 = 0.

Reamintim că existenţa bazelor ortonormate este asigurată de procedeul de ortonormalizare al lui Gram–Schmidt.
Dacă u = u1i+u2j+u3k ∈ V3 şi v = v1i+v2j+v3k ∈ V3, atunci are loc următoarea expresie analitică a produsului

scalar
〈u, v〉 = u1v1 + u2v2 + u3v3. (2)

În particular
u2 = 〈u, u〉 = (u1)

2
+ (u2)

2
+ (u3)

2
,

adică

‖u‖ =

√
(u1)

2
+ (u2)

2
+ (u3)

2
(3)

Din definiţia (1) deducem

cos (u, v) =
〈u, v〉
‖u‖ · ‖v‖

=
u1v1 + u2v2 + u3v3√

(u1)
2

+ (u2)
2

+ (u3)
2 ·
√

(v1)
2

+ (v2)
2

+ (v3)
2

(4)

Formulele (2), (3) şi (4) reprezintă expresiile analitice ale produsului scalar, ale normei şi respectiv ale
cosinusului unghiului dintre doi vectori liberi.
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3 Produsul vectorial a doi vectori liberi

Definiţia 15. Fie u, v ∈ V3. Produsul vectorial a celor doi vectori este notat cu u× v şi este dat de:

a) dacă u, v sunt coliniari atunci u× v = 0,

b) dacă u, v sunt necoliniari atunci u× v este un nou vector liber astfel ı̂ncât:

b1) direcţia lui este perpendiculară pe planul determinat de vectorii u şi v,

b2) sensul lui este dat de regula burghiului (sau echivalent {u, v, u× v} formează o bază orientată pozitiv),

b3) mărimea lui este aria paralelogramului format cu cei doi vectori.

Propoziţia 10. Au loc următoarele proprietăţi:

a) Având ı̂n vedere că, din definiţie, produsul vectorial u× v este un vector ortogonal pe ambii vectori u şi pe v obţinem
că

〈u, u× v〉 = 0 = 〈v, u× v〉 , ∀u, v ∈ V3.

b) Folosind formula ariei unui paralelogram deducem că

‖u× v‖ = ‖u‖ · ‖v‖ · sin (̂u, v), ∀u, v ∈ V3.

c) Are loc şi următoarea formulă de legătură dintre produsul vectorial şi produsul scalar, numit şi identitatea lui Lagrange:

(u× v)
2

= ‖u× v‖2 = ‖u‖2 ‖v‖2 sin2 (u, v) = ‖u‖2 ‖v‖2
(

1− cos2 (̂u, v)
)

= ‖u‖2 ‖v‖2 − 〈u, v〉2 , ∀u, v ∈ V3.

Propoziţia 11. Doi vectori sunt coliniari dacă şi numai dacă produsul lor vecorial este nul.

Demonstraţie. Necesitatea (“⇒”).
Fie u, v cei doi vectori coliniari. Atunci

‖u× v‖ = ‖u‖ · ‖v‖ · sin (̂u, v) = ‖u‖ · ‖v‖ · sin (α) = 0,

unde α = 0 sau π.
Suficienţa (“⇐”).
Presupunem că u × v = 0. Conform definiţiei produsului vectorial avem că u sau v sunt coliniari sau 0 = ‖u× v‖ =

‖u‖ ‖v‖ sin (̂u, v) , ceea ce ı̂nseamnă că u = 0 sau v = 0 sau (̂u, v) = 0 sau π, deci vectorii daţi sunt coliniari.

Propoziţia 12. Au loc următoarele proprietăţi:

a) Produsul vectorial este anticomutativ, i.e. u× v = −v × u, ∀ u, v ∈ V3.

b) (λu)× v = u× (λv) = λ (u× v) , ∀ u, v ∈ V3.

c) u× (v + w) = u× v + u× w, ∀ u, v, w ∈ V3.

Fie B = {i, j, k} o bază ortonormată a lui R3. Evident, folosind definiţia produsului vectorial avem că

i× j = k, j × k = i şi k × i = j.

Dacă u = u1i+ u2j + u3k ∈ V3 şi v = v1i+ v2j + v3k ∈ V3, atunci are loc următoarea expresie analitică a produsului
vectorial

u× v =

∣∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣ . (5)

Propoziţia 13. Aria unui triunghi format de doi vectori liberi u şi v este jumătate din aria paralelogramului format cu
cei doi vectori, adică

A∆=
1

2
‖u× v‖ .
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4 Produsul a trei vectori liberi

Prezentăm ı̂n continuare produsul mixt şi produsul dublu vectorial a trei vectori liberi, noţiuni care folosesc produsul
scalar şi produsul vectorial a doi vectori liberi şi care prezintă un interes geometric.

Definiţia 16. Fie u, v, w ∈ V3. Produsul mixt a celor trei vectori este numărul real notat cu 〈u, v, w〉 şi dat de:

(u, v, w) := 〈u, v × w〉 .

Propoziţia 14. Trei vectori sunt coplanari dacă şi numai dacă produsul lor mixt este nul.

Demonstraţie. Avem

(u, v, w) = 0⇔ ‖u‖ ‖v × w‖ cos ̂(u, v × w) = 0.

Dacă ‖u‖ = 0 atunci u = 0 care este evident coplanar cu v, w. Dacă ‖v × w‖ = 0, atunci v × w = 0 şi deci v, w sunt

coliniari. Deci u, v, w sunt coplanari. Dacă cos ̂(u, v × w) = 0, adică unghiul ̂(u, v × w) = π/2, atunci u şi v × w sunt
vectori ortogonali. Dar v × w este prin definiţie perpendicular pe v şi pe w. deci u, v, w aparţin aceluiaşi plan, planul
ortogonal pe v × w.

Observaţia 5. Trei vectori liberi formează o bază ı̂n spaţiul V3 dacă şi numai dacă sunt necoplanari adică dacă şi numai
dacă produsul lor mixt este nenul.

Propoziţia 15. Valoarea absolută a produsului mixt a trei vectori liberi necoplanari reprezintă volumul paralelipipedului
construit pe cu cei trei vectori ca muchii, adică

V =
∣∣(u, v, w)

∣∣ .
Propoziţia 16. Au loc următoarele proprietăţi:

a) Permutările circulare nu afectează semnul produsului mixt, adică

(u, v, w) = (v, w, u) = (w, u, v) ,∀ u, v, w ∈ V3.

b) (u, v, w) = − (v, u, w), ∀ u, v, w ∈ V3.

Fie B = {i, j, k} o bază ortonormată a lui R3. Dacă u = u1i + u2j + u3k ∈ V3, v = v1i + v2j + v3k ∈ V3 şi
w = w1i+ w2j + w3k ∈ V3, atunci are loc următoarea expresie analitică a produsului mixt

(u, v, w) =

∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣ . (6)

Într-adevăr, v×w =

∣∣∣∣∣∣∣∣∣
i j k

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣⇒ (u, v, w) = (u, v × w) = u1 (v2w3 − v3w2) +u2 (v3w1 − v1w3) +u3 (v1w2 − v2w1).

Pe de altă parte, calculând determinantul obţinem (dezvoltăm după prima linie)

∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣ = u1 (v2w3 − v3w2)+

u2 (v3w1 − v1w3) + u3 (v1w2 − v2w1), adică are loc egalitatea (6).
Prezentăm, ı̂n final, produsul dublu vectorial a trei vectori liberi.

Definiţia 17. Fie u, v, w ∈ V3. Produsul dublu vectorial a celor trei vectori este vectorul u× (v × w) .

Propoziţia 17. Are loc următoarea proprietate:

u× (v × w) = 〈u,w〉 v − 〈u, v〉w.

Observaţia 6. Produsul dublu vectorial este un vector coplanar cu vectorii din paranteză, i.e. cu v şi w. Într-adevăr,
u × (v × w) este, din definiţia prodului vectorial, un vector ortogonal pe u şi pe v × w, iar v × w este, tot din definiţia
prodului vectorial, un vector ortogonal pe v şi pe w, deci vectorul u × (v × w) este ı̂n acelaşi plan cu vectorii v şi w.
Evident are loc şi caracterizarea cu produsul mixt a coplanarităţii a trei vectori:〈

u× (v × w) , v, w
〉

:=
〈
u× (v × w) , v × w

〉
= 0.
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Observaţia 7. Produsul dublu vectorial nu este asociativ. Într-adevăr, u× (v × w) 6= (u× v)× w, deoarece

u× (v × w) = 〈u,w〉 v − 〈u, v〉w

iar, pe de altă parte,
(u× v)× w = −w × (u× v) = −〈w, v〉u+ 〈w, u〉 v.

5 Exerciţii propuse spre rezolvare:

Liniară dependenţă. Liniară independenţă

Exerciţiul 1. Studiaţi dacă următorul sistem de vectori din spaţiul vectorial R3 este liniar dependent sau nu:

S =
{
v1 = (1, 1, 1) , v2 = (1,−1, 1) , v3 = (−1, 3,−1)

}
.

Exerciţiul 2. Să se studieze dependenţa liniară a următorilor vectori:
(a) v1 = (1, 2,−1, 1,−2) , v2 = (1, 3, 2,−1,−1) , v3 = (0, 1, 4, 2, 0), v4 = (2, 4,−3,−2,−3) din R5;
(b) v1 = (1,−1, 2) , v2 = (1, 0, 3) , v3 = (2, 1, 1) din R3;

Exerciţiul 3. Să se stabilească dacă următorii vectori sunt liniar independenţi: v1 = (1,−1, 0), v2 = (−1, 2, 1), v3 = (1, 1, 1)

Exerciţiul 4. Studiaţi liniara dependenţă ( independenţă) a sistemelor de vectori.

1. S1 = {u = (1, 2,−4); v = (0, 1, 1);w = (1, 4,−2)} ⊂ R3.

2. S2 = {u = (2, 1, 3, 1); v = (1, 2, 0, 1);w = (−1, 1,−3, 0)} ⊂ R4.

3. S3 = {u = (1, 1, 1); v = (1,−1, 1);w = (−1, 3,−1)} ⊂ R3.

4. S4 = {u = (2, 9, 1, 3,−1); v = (1, 1, 0,−1, 1);w = (0,−2, 1, 5,−3);x = (1,−3, 2, 9,−5)} ⊂ R5.

5. S5 = {u = (2, 1,−3); v = (3, 2,−5);w = (1,−1, 1)} ⊂ R3.

Exerciţiul 5. Să se arate că următorii vectori sunt liniar dependenţi şi să se afle relaţia de dependenţă: v1 = (0, 1, 1),
v2 = (1, 2, 3), v3 = (2,−1, 1) din R3.

Exerciţiul 6. Să se studieze dependenţa liniară a următorilor vectori: v1 = (1,−1, 2), v2 = (−1, 3,−2), v3 = (5,−11, 10) .

Exerciţiul 7. Să se studieze după valorile parametrului m ∈ R dependenţa liniară a sistemului de vectori:{
v1 = (1, 2, 3) , v2 = (4, 5, 6) , v3 = (7, 8,m)

}
.

Exerciţiul 8. Să se arate că următorii vectori sunt liniar dependenţi şi să se afle relaţia de dependenţă:
(a) v1 = (1, 1, 1) , v2 = (1,−1, 1) , v3 = (−1, 3,−1) din R3;
(b) v1 = (1, 2, 5) , v2 = (5, 3, 1) , v3 = (−15,−2, 21) din R3;

Exerciţiul 9. Să se afle numărul maxim de vectori liniar independenţi din sistemul S = {v1, v2, v3, v4}, unde v1 = (1,−1, 1) ,
v2 = (2,−1, 3) , v3 = (1, 3, 5), v4 = (3, 1, 7) . Să se găsească, ı̂n plus, relaţia de dependenţă dintre primii trei vectori.

Exerciţiul 10. În R4 se consideră vectorii v1 = (1, 0, 2,−1), v2 = (3, 1,−1, 0) şi v3 = (2,−2, 3, 1). Să se precizeze care este
subspaţiul vectorial generat de v1, v2 şi v3.

Exerciţiul 11. Să se determine λ astfel ı̂ncât vectorii v1 = (1, λ, 0), v2 = (λ, 1, 1), v3 = (1, 0, λ) din R3 să formeze o bază
ı̂n R3.

Exerciţiul 12. Se dau vectorii a = e1 + e2, b = 2e1 − e2 + e3 şi c = e2 − e3 dintr-un spaţiu vectorial cu baza {e1, e2, e3}.
Să se arate că {a, b, c} formează o nouă bază şi să se afle coordonatele ı̂n această bază ale vectorului d = e1 + 8e2 − 5e3.
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Operaţii cu vectori. Produse vectoriale

Exerciţiul 13. 1. Fie ABCD un paralelogram şi M ∈ CD. Calculaţi următoarele sume de vectori:

(a)
−−→
AB +

−−→
AD

(b)
−−→
AB +

−−→
CD

(c)
−−→
MA+

−−→
DM

(d)
−−→
DA+

−−→
BM

(e)
−−→
CM +

−−→
AB +

−−→
AD

(f)
−−→
MA+

−−→
AD +

−−→
AB +

−−→
CM

2. Fie ABCD un paralelogram de centru O. Calculaţi următoarele diferenţe de vectori.

(a)
−−→
AB −

−→
AO

(b)
−−→
DO −

−−→
CB

(c)
−−→
CO −

−−→
OB

(d) (
−→
AC −

−−→
AD)−

−−→
DO

(e) (
−−→
AD −

−→
AO)−

−−→
OB

3. Fie ABCD un paralelogram de centru O. Să se determine x ∈ R astfel ı̂ncât:

(a)
−−→
AB = x

−−→
CD

(b)
−→
AC = x

−→
OA

(c)
−−→
OC = x

−→
CA

(d)
−−→
DB = x

−−→
OB

Exerciţiul 14. Se dă tetraedrul ABCD. Să se afle sumele de vectori:
−−→
AB+

−−→
BD+

−−→
DC,

−−→
AD+

−−→
CB+

−−→
DC,

−−→
AB+

−−→
CD+

−−→
BC+

−−→
DA.

Exerciţiul 15. Se dau punctele A,B şi C prin vectorii lor de poziţie
−→
OA = 14i − 7j + 2k,

−−→
OB = 2i + 2j − 7k,

−−→
OC =

−2i+ 7j + 2k. Să se arate că triunghiul AOB este dreptunghic şi că triunghiul BOC este isoscel.
Se cere deasemenea să se determine perimetrul triunghiului ABC, aria sa şi lungimea ı̂nălţimii din A, precum şi

vectorul bisectoarei unghiului BAC.

Teorema 2. Bisectoarea unui unghi al unui triunghi determină pe latura opusă segmente proporţionale cu lungimile
laturilor ce formează unghiul.

(AD bisectoare ⇔ BD

DC
=
AB

AC
(7)

Teorema 3. (AD este bisectoarea unghiului B̂AC dacă şi numai dacă
−−→
AD = b

−−→
AB+c

−→
AC

b+c , unde b = |
−→
AC|, c = |

−−→
AB|.

Demonstraţie. Observăm că punctul D ı̂mparte segmentul BC ı̂n raportul BD
DC = k ∈ R. Obţinem de aici

−−→
BD = k

−−→
DC.

Intercalând un A ı̂n relaţia precedentă obţinem:

−−→
BA+

−−→
AD = k(

−−→
DA+

−→
AC)⇔

−−→
AD(1 + k) =

−−→
AB + k

−→
AC ⇔

−−→
AD =

1

1 + k

−−→
AB +

k

1 + k

−→
AC. (8)

Înlocuind k ı̂n (8) obţinem:

−−→
AD =

1

1 + BD
DC

−−→
AB +

BD
DC

1 + BD
DC

−→
AC. (9)

Uilizând teorema bisectoarei ı̂n (9) obţinem:

−−→
AD =

1

1 + AB
AC

−−→
AB +

AB
AC

1 + AB
AC

−→
AC ⇔

−−→
AD =

AC

AB +AC

−−→
AB +

AB

AB +AC

−→
AC. (10)
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Exerciţiul 16. Fie ‖ · ‖ : V → [0,∞) norma indusă de un produs scalar 〈, 〉 : V × V → R pe spaţiul liniar real V .
Demonstraţi:

1. (inegalitatea Cauchy-Buniakowski-Schwartz - CBS) |〈u, v〉| ≤ ‖u‖‖v‖, ∀u, v ∈ V . Egalitatea are loc dacă şi numai
dacă u, v sunt liniar dependenţi (coliniari);

2. (inegalitatea Minkowski) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, ∀u, v ∈ V . Egalitatea are loc dacă şi numai dacă ∃λ ∈ [0,∞) astfel
ı̂ncât u = λv sau v = λu (u, v sunt coliniari de acelaşi sens);

3. (egalitatea paralelogramului) ‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2

)
;

4. (Pitagora) u ⊥ v ⇔ ‖u+ v‖2 = ‖u‖2 + ‖v‖2;

5. Dacă S = {u1, . . . , uk} este un sistem ortogonal de vectori din V , atunci∥∥∥∥∥∥
k∑
i=1

ui

∥∥∥∥∥∥
2

=

k∑
i=1

‖ui‖2;

6. u ⊥ v ⇔ ‖u+ v‖ = ‖u− v‖;

7. ‖u‖ = ‖v‖ ⇔ (u+ v) ⊥ (u− v).

Demonstraţie. 1. Demonstraţia inegalităţii: Fie u, v ∈ V . Dacă unul din vectori este nul, atunci relaţia de demon-
strat are loc, fiind chiar egalitate.
Dacă ambii vectori sunt nenuli, fie λ ∈ R arbitrar. Se obţine:

〈u− λv, u− λv〉 ≥ 0,∀λ ∈ R (10)
==⇒

〈u, u− λv〉 − λ〈v, u− v〉 ≥ 0,∀λ ∈ R (9)
=⇒

〈u, u〉 − λ〈u, v〉 − λ〈v, u〉+ λ2〈v, v〉 ≥ 0,∀λ ∈ R (8)
=⇒

〈u, u〉 − 2λ〈u, v〉+ λ2〈v, v〉 ≥ 0,∀λ ∈ R⇒

‖u‖2 − 2λ〈u, v〉+ λ2‖v‖2 ≥ 0,∀λ ∈ R.

Privind ca o inegalitate ce conţiune un polinom de gradul al doilea ı̂n λ, obţinem că discriminatul este negativ,
deci:

〈u, v〉2 ≤ ‖u‖2‖v‖2 ⇒

|〈u, v〉| ≤ ‖u‖‖v‖,

ceea ce ı̂ncheie demonstraţia inegalităţii.

Cazul de egalitate: ”⇐” Fie u, v ∈ V coliniari. Rezultă că ∃λ ∈ R astfel ı̂ncât v = λu. Atunci |〈u, v〉| =
|〈u, λu〉| = |λ| · ‖u‖2 = ‖u‖‖v‖.
”⇒” Fie acum u, v ∈ V astfel ı̂ncât

|〈u, v〉| = ‖u‖‖v‖. (11)

Dacă unul din vectori este nul, celălalt este coliniar cu acesta, oricare ar fi el. Putem presupune aşadar că
u, v 6= 0. Fie

λ = (sgn(〈u, v〉))‖u‖
‖v‖

(12)

Evident λ ∈ R. Au loc următoarele egalităţi:

〈u− λv, u− λv〉 = 〈u, u〉 − 2λ〈u, v〉+ λ2〈v, v〉 = ‖u‖2 − 2λ〈u, v〉+ λ2‖v‖2 = ‖u‖2 − 2
‖u‖
‖v‖
|〈u, v〉|+ ‖u‖

2

‖v‖2
‖v‖2

⇔ ‖u‖2 − 2
‖u‖
‖v‖
‖u‖‖v‖+

‖u‖2

‖v‖2
‖v‖2 = 0.

Rezultă că u = λv, i.e. vectorii sunt coliniari.
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2. Demonstraţia inegalităţii: Fie u, v ∈ V . Din inegalitatea CBS, rezultă că:

〈u, v〉 ≤ ‖u‖‖v‖ ⇔

〈u, v〉 ≤
√
〈u, u〉

√
〈v, v〉 ⇔

2〈u, v〉 ≤ 2
√
〈u, u〉

√
〈v, v〉 (8)⇐=⇒

〈u, v〉+ 〈v, u〉 ≤ 2
√
〈u, u〉〈v, v〉 ⇔

〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉 ≤ 〈u, u〉+ 2
√
〈u, u〉〈v, v〉+ 〈v, v〉 (9),(10)⇐====⇒

〈u+ v, u+ v〉 ≤ (
√
〈u, u〉+

√
〈v, v〉)2 ⇔

‖u+ v‖ ≤ ‖u‖+ ‖v‖,

ceea ce ı̂ncheie demonstraţia inegalităţii.

Cazul de egalitate: ”⇐” Fie u, v ∈ V coliniari de acelaşi sens. Atunci ∃λ ≥ 0 astfel ı̂ncât v = λu. Au loc
egalităţile:

‖u+ v‖ = ‖(λ+ 1)u‖ = (λ+ 1)‖u‖ = ‖u‖+ λ‖v‖ = ‖u‖+ ‖λu‖ = ‖u‖+ ‖v‖.

”⇒” Fie u, v ∈ V astfel ı̂ncât ‖u+ v‖ = ‖u‖+ ‖v‖. Din demonstraţia inegalităţii, obţinem că: 〈u, v〉 = ‖u‖‖v‖,

deci

{
|〈u, v〉| = ‖u‖‖v‖
|〈u, v〉| = 〈u, v〉

CBS
==⇒

{
∃λ ∈ R : v = λu

|〈u, v〉| = 〈u, v〉
⇒ ∃λ ≥ 0 : v = λu.

Exerciţiul 17. Într-un plan afin euclidian se consideră punctele afin independente A,B,C. Fie M mijlocul segmentului
[BC]. Demonstraţi:

(a) (T. Cosinusului) (d(B,C))2 = (d(A,B))2 + (d(A,C))2 − 2d(A,B)d(A,C) cosA ;

(b) (T. Medianei) 4(d(A,M))2 = 2
(
(d(A,B))2 + (d(A,C))2

)
− (d(B,C))2.

Exerciţiul 18. Într-un spaţiu afin euclidian 3-dimensional se consideră un paralelipiped oarecare şi a, b, c vectorii asociaţi
muchiilor ce pleacă din acelaşi vârf. Calculaţi ı̂n funcţie de normele acestor vectori suma pătratelor lungimilor diagonalelor
paralelipipedului.

Exerciţiul 19. Într-un spaţiu afin euclidian 3-dimensional se dă un cub ABCDA′B′C ′D′ de muchie a, M un punct pe
segmentul [AB′] şi N un punct pe segmentul [BD] astfel ı̂ncât d(B′,M) = d(B,N).

(a) Demonstraţi că dreapta afină MN este paralelă cu una dintre feţele cubului.

(b) Calculaţi minimul distanţei dintre punctele M şi N şi unghiul neorientat dintre dreapta MN şi dreapta BD, pentru
poziţia punctelor M,N când se realizează acest minim.

(c) Arătaţi că dreapta MN nu poate fi perpendiculara comună dreptelor AB′ şi BD.

Exerciţiul 20. Fie E = (E,
−→
E ,Φ) un spaţiu afin euclidian şi G mijlocul segmentului [A,B], A,B ∈ E distincte. Demonstraţi

că

〈
−−→
MA,

−−→
MB〉 = ‖

−−→
GM‖2 − 1

4
‖
−−→
AB‖2,∀M ∈ E. (13)

Determinaţi apoi natura mulţimii {M ∈ E|〈
−−→
MA,

−−→
MB〉 = k} ı̂n funcţie de constanta k ∈ R.

Exerciţiul 21. Se consideră punctele A(1, 0, 0), B(1, 2, 3) şi C(1, 1, 1).

1. Să se determine coordonatele vectorilor
−−→
AB,

−→
AC,

−−→
BC.

2. Determinaţi coordonatele punctului D astfel ı̂ncât ABCD să fie paralelogram.

3. Calculaţi: 〈
−−→
AB,

−→
AC〉,

−−→
AB ×

−−→
BC,

(−−→
AB,

−→
AC,
−−→
BC

)
.

Exerciţiul 22. • Fie B = {i, j, k} o bază ortonormată ı̂n V3.

– Să se determine α ∈ R astfel ı̂ncât vectorii a = αi− 3j + 2k şi b = i+ 2j − αk să fie ortogonali.
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– Să se determine unghiul format de vectorii a = 2i− 4j + 4k şi b = −3i+ 2j + 6k.

– Să se determine vectorul u ∈ V3, ştiind că |u| = 14,∠(u, j) > π
2 şi că u este ortogonal pe vectorii a = 3i+2j+2k

şi b = 18i− 22j − 5k.

• Să se determine cosinusul unghiului format de vectorii a şi b ştiind că vectorul a+ 3b este perpendicular pe vectorul
7a− 5b iar vectorul a− 4b este perpendicular pe vectorul 7a− 2b.

• Să se arate că ∀u, v ∈ V3 au loc relaţiile:

||u+ v||2 + ||u− v||2 = 2(||u||2 + ||v||2);

||u+ v||2 − ||u− v||2 = 4〈u, v〉.

• Să se arate că oricare ar fi punctele A,B,C,M ∈ E3 are loc relaţia:

〈
−−→
AM,

−−→
BC〉+ 〈

−−→
BM,

−→
CA〉+ 〈

−−→
CM,

−−→
AB〉 = 0 (14)

• Utilizaţi relaţia (14) pentru a demonstra că ı̂nălţimile unui triunghi sunt concurente.

• Daţi trei vectori a, b şi c astfel ı̂ncât a+ b+ c = 0, să se arate că:

|a|2 = |b|2 + |c|2 + 2〈b, c〉.

Exerciţiul 23. Se dau doi vectori u şi v astfel ı̂ncât ‖u‖ = 11, ‖v‖ = 23 şi ‖u− v‖ = 30. Să se determine ‖u+ v‖ .

Exerciţiul 24. Să se calculeze produsul scalar 〈5u+ 3v, 2u− v〉, dacă se dau ‖u‖ = 2, ‖v‖ = 3 şi u ⊥ v (u este ortogonal
pe v).

Exerciţiul 25. Să se calculeze 〈u, v〉, (u+ v)
2

şi 〈2u− v, 3u+ 4v〉, dacă se dau ‖u‖ = 2, ‖v‖ = 5 şi (̂u, v) = π/3.

Exerciţiul 26. Să se determine parametrul λ astfel ı̂ncât vectorii u = i + 2λj − (λ− 1) k şi v = (3− λ) i + j + 3k să fie
perpendiculari.

Exerciţiul 27. Să se calculeze produsul mixt (u− v, v − w,w − u).

Exerciţiul 28. Să se calculeze aria paralelogramului construit cu vectorii u = i+ 2j − k şi v = 2i− j + 3k.

Exerciţiul 29. Să se calculeze produsul vectorial (u+ v)×(u− v) şi să se dea o interpretare geometrică rezultatului obţinut.

Exerciţiul 30. Să se arate că dacă u× v = v × w = w × u, atunci u+ v + w = 0.

Exerciţiul 31. Să se arate că vectorii u = i+ 2j + 3k, v = 2i+ 3j + 4k şi w = 3i+ 4j + 5k sunt coplanari.

Exerciţiul 32. Să se calculeze mărimea ı̂nălţimii paralelipipedului construit pe vectorii u = 2i+ j − k, v = 3i+ 2j + 1k şi
w = −j + 2k, considerându-se că baza paralelipipedului este formată cu primii doi vectori.

Exerciţiul 33. Se dau punctele A = (3, 0, 0), B = (2, 4, 0), C = (−3,−1, 0) şi D = (0, 0, 5). Să se afle punctele M,N,P şi

Q care ı̂mpart muchiile AB,AC,DB şi respectiv DC ı̂n acelaşi raport k. Să se arate şi că
−−→
MN =

−−→
PQ.

Exerciţiul 34. Arătaţi că trei vectori sunt coplanari dacă şi numai dacă produsul lor mixt este nul.

Exerciţiul 35. Demonstraţi reciproca teoremei lui Pitagora (dacă ı̂n triunghiul ABC are loc relaţia
−−→
AB2 +

−→
AC2 =

−−→
BC2

atunci triunghiul este dreptunghic).

Exerciţiul 36. Demonstraţi că ı̂n orice spaţiu euclidian E au loc:

1. Dacă x ⊥ (y + z) şi y ⊥ (z − x) , atunci z ⊥ (x+ y).

2. ||x|| = ||y|| ⇔ (x− y) ⊥ (x+ y)

3. Dacă ||x|| = ||y|| = 1 şi 〈x, y〉 = 0, atunci
||αx+ (1− α)y|| = 1.

Exerciţiul 37. Se dau vectorii x = 1
3 (2, 1, 2) şi y = 1

3 (1, 2,−2). Să se determine versorul z ∈ E astfel ı̂ncât x ⊥ z şi y ⊥ z.
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Exerciţiul 38. Fie B = {e1, e2, e3} o bază ı̂n R3 şi 〈, 〉 : R3 ×R3 → R o formă biliniară a cărei matrice ı̂n raport cu B este 1 −1 0
−1 6 3
0 3 3

 .

(a) Verificaţi că 〈, 〉 defineşte pe R3 o structură de spaţiu liniar euclidian.

(b) Fără a calcula lungimile vectorilor w1 = e1+e2+e3, w2 = −2e1+e3, w3 = −e1+e2+2e3, arătaţi că‖w3‖ <‖w1‖+‖w2‖,
unde ‖·‖ este norma indusă de produsul scalar g.

Soluţie:

(a) Trebuie să demonstrăm că 〈, 〉 este o formă simetrică, pozitiv definită.

(b) Să observăm că w3 = w1 + w2. Inegalitatea de demonstrat devine ‖w1 + w2‖ < ‖w1‖+ ‖w2‖.

Exerciţiul 39. În raport cu produsul scalar canonic pe R3 ortonormaţi următoarele sisteme de vectori, folosind procedeul
Gram-Schmidt:

(a) v1 = (1, 2, 1), v2 = (1, 0, 1), v3 = (1, 0, 0);

(b) v1 = (2, 1, 2), v2 = (1, 1,−2), v3 = (2,−2, 1);

(c) v1 = (1, 2, 2), v2 = (1, 1,−5), v3 = (3, 2, 8).

(a) Să demonstrăm mai ı̂ntâi că vectorii daţi formează o bază. . Să aplicăm acum procedeul Gram-Schmidt. Construim
baza ortonormată F = {f1, f2, f3}. Aceştia sunt daţi de:

f1 = v1

f2 = v2 − 〈f1,v2〉
〈f1,f1〉

f1

f3 = v3 − 〈f1,v3〉
〈f1,f1〉

f1 −
〈f2,v3〉
〈f2,f2〉

f2

.

Se ortonormează baza F şi se obţine baza ortonormată B′ = {e′i}i=1,3. Au loc formulele:
e′1 = 1

‖f1‖
f1

e′2 = 1
‖f2‖

f2

e′3 = 1
‖f3‖

f3,

Exemplu: v1 = (1, 1, 1), v2 = (0, 1, 1), v3 = (0, 0, 1);

1. Se construieşte F = {f1, f2, f3} ortogonală:
f1 = v1 = (1, 1, 1)

f2 = v2 − 〈f1,v2〉
〈f1,f1〉

f1 = (0, 1, 1)− 2
3 (1, 1, 1) =

(
− 2

3 ,
1
3 ,

1
3

)
f3 = v3 − 〈f1,v3〉

〈f1,f1〉
f1 −

〈f2,v3〉
〈f2,f2〉

f2 = (0, 0, 1)− 1
3 (1, 1, 1)−

1
3
2
3

(
− 2

3 ,
1
3 ,

1
3

)
=
(
0,− 1

2 ,
1
2

) .

2. Se ortonormează baza F şi se obţine baza ortonormată B′ = {e′i}i=1,3. Au loc formulele:
e′1 = 1

‖f1‖
f1 =

(
1√
3
, 1√

3
, 1√

3

)
e′2 = 1

‖f2‖
f2 =

(
− 2√

6
, 1√

6
, 1√

6

)
e′3 = 1

‖f3‖
f3 = −

(
0,− 1√

2
, 1√

2

)
,

Exerciţiul 40. De o parte şi de alta a unui râu (ale cărui maluri sunt reprezentate de două drepte paralele) se afla două
localităţi A, B. Determinaţi poziţia ı̂n care trebuie să se construiască un pod perpendicular pe malurile râului, astfel ı̂ncât
distanţa parcursă de un om care pleacă din A şi ajunge ı̂n B să fie minimă.
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