
Seminarul 5 - Geometrie euclidiană
Izometrii

Georgeta Creţu

1. Definiţia şi legătura cu morfismele afine

Definiţia 1. Fie E1 =
(
E1,
−→
E1,Φ1

)
şi E2 =

(
E2,
−→
E2,Φ2

)
două spaţii afine euclidiene şi d1 : E1×E1 → R, d2 : E2×E2 → R

funcţiile distanţe corespunzătoare. O aplicaţie f : E1 → E2 se numeşte izometrie dacă

d1 (A,B) = d2

(
f(A), f(B)

)
, ∀A,B ∈ E1.

Consecinţa1 Orice izometrie ı̂ntre două spaţii afine euclidiene este o aplicaţie injectivă.

Consecinţa2 Urma
−→
f :
−→
E1 →

−→
E2 a oricărei izometrii pastrează normele vectorilor: ‖ −→u ‖1=‖

−→
f (ū) ‖2, ∀ū ∈

−→
E1.

Ultima consecinţă ne sugerează să studiem legatura ı̂ntre izometrii şi morfismele afine cu aplicaţia liniară asociată
ortogonală.

Teorema 1. O aplicaţie f : E1 → E2 ı̂ntre două spaţii afine euclidiene este izometrie dacă şi numai dacă f este morfism

afin cu aplicaţia liniară asociată
−→
f :
−→
E1 →

−→
E2 ortogonală.

Propoziţia 1. Orice izometrie transformă subspaţii afine ı̂n subspaţii afine de aceeaşi dimensiune finită.

Corolar O izometrie pastrează relaţia “a fi ı̂ntre” şi raportul simplu a trei puncte. Prin urmare orice izometrie transformă
drepte afine ı̂n drepte afine, semidrepte ı̂n semidrepte, segmente ı̂n segmente, plane ı̂n plane, semiplane ı̂n semiplane, semispaţii ı̂n
semispaţii.

Definiţia 2. Numim figură a unui spaţiu afin orice submulţime nevidă F ⊂ E. Două figuri F1,F2 ⊂ E se numesc congruente
dacă există o izometrie f : E → E cu proprietatea f(F1) = f(F2). Notam F1 ≡ F2.

Relaţia de congruenţă pe multimea figurilor unui spatiu afin este o relaţie de echivalenţă.

2. Exemple

Teorema de caracterizare a izometriilor ne oferă o serie de exemple, pornind de la aplicaţiile ortogonale cunoscute.

Propoziţia 2. Orice translaţie tū : E → E este o izometrie, deoarece este morfism afin cu urma aplicaţia identitate
Id−→

E
care evident este aplicaţie ortogonală. Translaţiile nu au puncte fixe.

Definiţia 3. Fie En =
(
E,
−→
E ,Φ

)
un spaţiu afin euclidian şi E1 =

(
E1,
−→
E1,Φ|E1×E1

)
un subspaţiu a.e. al sau. Simetria

lui E faţă de E1, paralelă cu
(−→
E1

)⊥
se numeşte simetria ortogonală a lui E faţă de E1.

Simetria ortogonală a lui En faţă de E1 are ca urma simetria ortogonală a spaţiului liniar
−→
E faţă de

−→
E1. Ştim că

S−→
E1

:
−→
E1 →

−→
E1 este o aplicaţie ortogonală, deci obţinem o izometrie.

Notăm simetria ortogonală a spaţiului a.e. E faţă de E1 prin SE1
: E → E. Ea asociază fiecarui punct P ∈ E punctul

P ′, simetricul lui P faţă de E1, obţinut astfel. Se consideră E2 subspaţiul afin normal prin P la E1 şi {Q} = E2 ∩E1. Q
se numeşte proiecţia ortogonală a lui P pe E1.

Punctul P ′ ∈ E2 este unic determinat de condiţia ca punctul Q să fie mijlocul segmentului [PP ′].

În cazul ı̂n care E1 este un hiperplan observăm că E1 este hiperplanul mediator al segmentului [PP ′].
Aplicaţia PrE1

: E → E1 ⊂ E ce asociază fiecărui P proiecţia sa ortogonală pe E1 se numeşte proiecţia ortogonală a
lui E pe E1.

Observăm că SE1 = 2PrE1 − IdE şi că toate punctele lui E1 sunt fixe pentru SE1 .
Fie A ∈ E1 fixat arbitrar. Atunci

SE1(P ) = A+ S−→
E1

(
−→
AP ), ∀P ∈ E ⇔

−−−−−−−−−−→
SE1(P )SE1(R) = S−→

E1
(
−→
PR), ∀P,R ∈ E.

Fie planul afin euclidian orientat E2, Ω un punct din E şi α ∈ (−π, π].

Definiţia 4. Se numeşte rotaţie de centru Ω şi unghi α aplicaţia RΩ,α : E → E definita astfel: RΩ,α(Ω) = Ω şi pentru orice punct

P ∈ E, P 6= Ω, RΩ,α(P ) = P ′, unde P ′ este unic determinat de condiţiile


d(Ω, P ) = d(Ω, P ′),

∠o

(
−→
ΩP ,
−−→
ΩP ′

)
= α.
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Observăm că urma lui RΩ,α este rotaţia geometrică de unghi α ı̂n planul vectorial
−→
E , Rα :

−→
E →

−→
E şi aceasta este o aplicaţie

ortogonală.
Singurul punct fix al unei rotaţii este centrul sau (atunci când α 6= 0).

RΩ,α(P ) = Ω +Rα(
−→
ΩP ), ∀P ∈ E ⇔

−−−−−−−−−−−−→
RΩ,α(P )RΩ,α(S) = Rα(

−→
PS), ∀P, S ∈ E.

Într-un spaţiu a.e. trei dimensional orientat E3 se consideră o dreaptă afină orientată d şi α ∈ (−π, π]. Considerăm ā ∈
−→
d

orientat pozitiv, nenul. Definim rotaţia ı̂n jurul dreptei d de unghi α aplicaţia Rd,α : E → E definită prin

Rd,α(A) = A, ∀A ∈ d, Rd,α(P ) = P ′, P /∈ d,

unde P ′ e unic determinat astfel: se consideră π planul prin P normal dreptei d şi {Ω} = d ∩ π; fie b̄ =
−→
ΩP ∈ −→π şi c̄ = ā× b̄ ∈ −→π ;

se orientează planul π astfel ı̂ncât {b̄, c̄} este o bază pozitivă ı̂n −→π ; ı̂n π se aplică lui P rotaţia de centru Ω şi unghi orientat α,
obţinându-se astfel punctul P ′.

Urma rotaţiei Rd,α este rotaţia geometrică a lui
−→
E ı̂n jurul lui ā, de unghi orientat α, studiata ı̂n primul semestru Rā,α :

−→
E →

−→
E .

RΩ,α(P ) = Ω +Rā,α(
−→
ΩP ), ∀P ∈ E ⇔

−−−−−−−−−−−−→
RΩ,α(P )RΩ,α(S) = Rā,α(

−→
PS), ∀P, S ∈ E.

Se observă că toate punctele fixe ale acestei izometrii sunt punctele dreptei d, numită şi axa de rotaţie.

3. Grupul izometriilor şi subgrupurile sale importante

Propoziţia 3. O izometrie ı̂ntre două spaţii afine de aceeaşi dimensiune finită este o bijecţie.

Deoarece mulţimea morfismelor afine bijective ale unui spaţiu afin are structură de grup, numit grupul afin GA(E), şi mulţimea

aplicaţiilor ortogonale ale spaţiului liniar director
−→
E are tot structura de grup, O(

−→
E ), se obţine:

Teorema 2. Mulţimea izometriilor unui spaţiu afin euclidian finit dimensional En are structura de grup ı̂n raport cu compunerea
functiilor. Notăm acest grup cu GI(En) sau Izo(En).

Reformulând, am obţinut că mulţimea izometriilor unui spaţiu afin euclidian finit dimensional En este un subgrup al grupului
afin GA(En).

Putem enunţa un rezultat mai general, când nu impunem că dimensiunea spaţiului afin să fie finită. Mulţimea izometriilor
bijective ale unui spaţiu afin este un subgrup al grupului afin.

Amintim că mulţimea aplicaţiilor liniare ortogonale ale unui spaţiu liniar de dimensiune n, de exemplu
−→
E , formează un grup ı̂n

raport cu compunerea funcţiilor, grup pe care ı̂l vom nota O(
−→
E ).

Acest grup este izomorf cu grupul matricilor ortogonale de ordin n, cu elemente reale, numit grupul ortogonal de ordin n.

O(n) =
{
A ∈Mn(R) | AAt = AtA = In

}
.

Izomorfismul este funçtia ce asociază fiecărei aplicaţii ortogonale matricea sa ı̂n raport cu o bază ortonormată fixată ı̂n
−→
E .

Grupul O(
−→
E ) are ca subgrup mulţimea rotaţiilor SO(

−→
E ) (a aplicaţiilor ortogonale de specia I), subgrup izomorf cu grupul

ortogonal special SO(n), unde

SO(n) =
{
A ∈ O(n) | detA = 1

}
.

Definiţia 5. O izometrie f : E → E ce admite un punct fix Ω ∈ E ( f(Ω) = Ω) se numeşte centro-izometrie de centru Ω. Mulţimea
centro-izometriilor cu centrul Ω se notează cu GI(En,Ω).

De exemplu rotaţia ı̂n plan este o centro-izometrie.

Propoziţia 4. Mulţimea centro-izometriilor GI(En,Ω) este un subgrup al lui GI(En), grup izomorf cu O(n).

Izomorfismul căutat este ξ : GI(En,Ω)→ O(
−→
E ), ξ(f) =

−→
f , deci funcţia ce asociază fiecărei izometrii urma sa.

Aceasta funçtie ne oferă un morfism de grupuri ı̂ntre GI(En) şi O(
−→
E ), mai exact, pentru orice izometrii f, g are loc

−−→
f ◦ g =

−→
f ◦−→g .

În plus compunerea a doua aplicaţii ortogonale este ortogonală. Dacă dorim să obţinem un izomorfism de grupuri, avem nevoie de
condiţia suplimentara f(Ω) = Ω.

Propoziţia 5. Pentru fiecare Ω ∈ E, orice izometrie a lui E se descompune ı̂n mod unic ı̂n produsul dintre o centro-izometrie de
centru Ω şi o translatie.

Definiţia 6. Se numeşte deplasare (mişcare) o izometrie cu aplicaţia liniară asociată o aplicaţie ortogonală de specia I:
−→
f ∈ SO(

−→
E ).

Se numeşte antideplasare o izometrie cu aplicaţia liniară asociată o aplicaţie ortogonală de specia a II-a.
Notam mulţimea deplasărilor cu D(En).

Translaţiile si rotaţiile (̂ın planul E2 şi spaţiul E3) sunt deplasari, cât şi simetria ortogonală faţă de o dreaptă afină ı̂n E3. Simetria
ortogonală faţă de un hiperplan este o antideplasare.

Propoziţia 6. Mulţimea deplasărilor unui spaţiu afin este un subgrup al grupului izometriilor.

Multimea deplasarilor cu un punct fix este un subgrup al lui D(En), izomorf cu SO(
−→
E ).
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Teorema 3. Fie En un spaţiu afin euclidian n dimensional şi o aplicaţie f : E → E. O condiţie necesară şi suficientă pentru ca
f să fie o izometrie este existenţa unui reper ortonormat R = {O; ē1, ē2, · · · , ēn} astfel ı̂ncât pentru un punct P cu coordonatele
(x1, x2, · · · , xn) ı̂n reperul R, coordonatele (y1, y2, · · · , yn) ale lui f(P ) ı̂n acelaşi reper să fie de forma:

(1) yi =

n∑
j=1

aijx
j + bi, i ∈ 1, n, si

n∑
k=1

aki a
k
j = δij .

Reformulăm (1) ı̂n scriere matricială:
Y = AX +B, A ∈ O(n),

unde X =


x1

x2

· · ·
xn

 , Y =


y1

y2

· · ·
yn

 , B =


b1

b2

· · ·
bn

 , A =
(
aij

)
∈ O(n).

3.1. Translaţii. Fie A = (X,
−→
X,Φ) un K-spaţiu afin şi ū ∈

−→
X . Translaţia de vector ū este aplicaţia definită prin:

tū : X → X, tū(P ) = P + ū, ∀P ∈ X.

Are loc: tū(P ) = Q ⇐⇒
−−→
PQ = ū.

Teorema 4. Orice translaţie a spaţiului afin A = (X,
−→
X,Φ) este un morfism afin cu urma egală cu aplicaţia identitate.

Reciproc, orice morfism afin cu urma egală cu aplicaţia identitate pe
−→
X este o translaţie.

3.2. Simetrii. Fie spaţiul afin A = (X,
−→
X,Φ) peste K şi Y 6= ∅ un subspaţiu afin al lui A. Fie V ⊂

−→
X astfel ı̂ncât

−→
X =

−→
Y ⊕ V .

Deci V este suplementul lui
−→
Y ı̂n

−→
X . Atunci, ∀A ∈ X ∃!YA subspaţiu afin al lui X ce trece prin X şi are spaţiul liniar director V :

YA = A+ V . Deoarece |Y ∩ YA)| = 1, definim proiecţia afină a spaţiului afin X pe subspaţiul afin Y , paralelă cu V , prin:

p : X → Y ⊂ X, p(A) = punctul dat de Y ∩ YA, ∀A ∈ X.

Teorema 5. Proiecţia afină p : X → X a lui X pe Y , paralelă cu V , este un morfism afin idempotent (p2 = p ◦ p = IdX), urma

acestuia fiind proiecţia vectorială a spaţiului liniar
−→
X pe

−→
Y paralelă cu V .

Orice morfism afin idempotent f : X → X este proiecţia afină a lui X pe Imgf , paralelă cu ker
−→
f .

Fie spaţiul afin A = (X,
−→
X,Φ) peste K şi Y 6= ∅ un subspaţiu afin al lui A. Fie V ⊂

−→
X astfel ı̂ncât

−→
X =

−→
Y ⊕ V .

Pentru fiecare A ∈ X, considerăm p(A) ∈ Y proiecţia afină a lui A pe Y , paralelă cu V . Deoarece
−−−−→
Ap(A) ∈ V şi A ∈ YA = A+ V ,

rezultă că există un unic punct notat s(A) ∈ YA astfel ı̂ncât
−−−−→
Ap(A) =

−−−−−−→
p(A)s(A).

Simetria spaţiului afin X faţă de subspaţiul afin Y , paralelă cu V este aplicaţia s : X → X care asociază fiecărui punct A ∈ X
punctul s(A) unic determinat ca mai sus (s = 2p− IdX).

Teorema 6. Simetria afină a lui X faţă de Y , paralelă cu V este un morfism afin involutiv (s2 = IdX), având urma egal̆a cu

simetria vectoriala a lui
−→
X faţă de

−→
Y paralelă cu V .

Reciproc, orice morfism afin involutiv f : X → X este simetria afină a lui X faţă de subspaţiul afin format din toate punctele fixe

ale lui f , paralelă cu ker(
−→
f + Id−→

X
).

Fie En = (E,
−→
E ,Φ) un spaţiu afin euclidian şi E1 = (E1,

−→
E 1; Φ|E1×E1

) un subspaţiu a.e. al său.

Simetria lui E faţă de E1, paralelă cu (
−→
E 1)⊥ se numeşte simetria ortogonala a lui E faţă de E1. Simetria ortogonala a lui En

faţă de E1 are ca urmă simetria ortogonala a spaţiului liniar
−→
E faţă de

−→
E 1.

Dacă {b̄1, . . . , b̄p} este o bază ortogonală a lui
−→
E 1, atunci

(2) SĒ1
(v̄) = 2Pr−→

E1(v̄)− v̄, P r−→
E 1

(v̄) =

p∑
i=1

〈v̄, b̄i〉
‖b̄i‖2

b̄i.

3.3. Rotaţii. Fie planul afin euclidian orientat E2, Ω un punct din E şi α ∈ (−π, π].
Se numeşte rotaţie de centru Ω şi unghi orientat α aplicaţia RΩ,α : E → E definită astfel: RΩ,α(Ω) = Ω şi ∀P ∈ E, P 6= Ω,
RΩ,α(P ) = P ′, unde P ′ este unic determinat de condiţiiled(Ω, P ) = d(Ω, P ′),

∠o(
−→
ΩP ,
−−→
ΩP ′) = α.

Observăm că urma lui RΩ,α este rotaţia geometrică de unghi α ı̂n planul vectorial
−→
E , Rα :

−→
E →

−→
E şi aceasta este o aplicaţie

ortogonală.
Singurul punct fix al unei rotaţii este centrul său (atunci cand α 6= 0).

RΩ,α(P ) = Ω +Rα(
−→
ΩP ), ∀ ∈ E ⇐⇒

−−−−−−−−−−−−→
RΩ,α(P )RΩ,α(S) = Rα(

−→
PS), ∀P, S ∈ E.

Dacă {ē1, ē2} este o bază ortonormata pozitivă ı̂n
−→
E şi ū = u1ē1 + u2ē2, atunci

Rα(ū) = v̄ = v1ē1 + v2ē2,
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unde (
v1

v2

)
=

(
cosα − sinα
sinα cosα

)(
u1

u2

)

4. Exerciţii

Exerciţiul 1. În E2 se consideră un reper ortonormat pozitiv R =
{
O; ī, j̄

}
şi ı̂n raport cu acesta se dau punctele A(1, 3), Ω(2,−1),

vectorul ū = 2̄i+ j̄, dreapta δ : x− 2y + 1 = 0. Scrieţi ecuaţiile următoarelor izometrii: RΩ,−π
3
, Sδ, RΩ,π

4
◦ tū, Sδ ◦ tū.

Soluţie:

(1) Rotaţia de centru Ω: Vom introduce următoarele notaţii:

(3) X =

(
x
y

)
, cu P (x, y) coordonatele unui punct oarecare, Y =

(
x′

y′

)
, cu P (x′, y′) coordonatele punctului rotit

Determinarea coordonatelor punctului rotit se realizează după formula:

(4) Y =

(
cos θ − sin θ
sin θ cos θ

)
(X −X0) +X0, unde matricea X0 este o matrice coloană alcătuită din coordonatele centrului Ω

Cu alte cuvinte:

(5) RΩ,θ(P ) = Ω +R0(
−→
ΩP )

Pentru cazul de faţă se obţine:

(6) Y =

(
cos
(
−π

3

)
− sin

(
−π

3

)
sin
(
−π

3

)
cos
(
−π

3

) ) ·(x− 2
y + 1

)
+

(
2
−1

)
După ı̂nlocuirea valorilor funcţiilor trigonometrice se obţine:

(7)

(
x′

y′

)
=

(
1
2

√
3

2

−
√

3
2

1
2

)
·

(
x− 2
y + 1

)
+

(
2
−1

)
Obţinem:

(8) RΩ,−π
3

:


x′ =

1

2
x+

√
3

2
y + 1 +

√
3

2

y′ = −
√

3

2
x+

1

2
y +
√

3− 1

2

(2) Simetria ortogonală: Considerăm δ : ax + by + c = 0, a2 + b2 > 0. Dorim să scriem ecuaţiile simetriei ortogonale pe
această dreaptă. Pentru aceasta considerăm P (x, y) şi dorim să identificăm coordonatele simetricului său faţă de dreapta

δ. Fie deci P
′
(x′, y′) = sδP.

Dorim să determinăm coordonatele simetricului ı̂n raport cu dreapta δ. Pentru aceasta observăm că N̄ ⊥
−→
d , N̄ = (a, b).

Mai mult,

(9) PP ′ ⊥ δ ⇔ PP ′ ‖ N̄

Obţinem ecuaţia canonică a dreptei PP ′ :
x′ − x
a

=
y′ − y
b

. Egalând aceste ecuaţii cu t ∈ R obţinem ecuaţiile parametrice:

(10) (PP ′) :

{
x′ = x+ at

y′ = y + bt
, t ∈ R

Se observă că P0 este mijlocul segmenului ce are drept extremităţi punctul P şi simetricul acestuia. Mai mult de atât
punctul P0 se află pe dreapta δ, deci verifică ecuaţiile dreptei.
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Din P0 mijlocul segmentului [PP ′] obţinem: P0

(
x+ x′

2
,
y + y′

2

)
. Folosind informaţia că P0 ∈ δ obţinem:

(11)
a

2
(2x+ at) +

b

2
(2y + bt) + c = 0⇔ (a2 + b2)t+ 2ax+ 2by + 2c = 0⇒ t = − 2

a2 + b2
(ax+ by + c) .

Înlocuim t ı̂n (10) şi obţinem ecuaţiile simetriei ortogonale:

(12) Sδ :


x′ = x− 2a

a2 + b2
(ax+ by + c)

y′ = y − 2b

a2 + b2
(ax+ by + c)

În cazul problemei noastre: a = 1, b = −2 şi c = 1. Înlocuind aceste valori ı̂n (12) obţinem:

(13) Sδ :


x′ = x− 2

5
(x− 2y + 1)

y′ = y +
4

5
(x− 2y + 1)

⇒


x′ =

3

5
x+

4

5
y − 2

5

y′ =
4

5
x− 3

5
y +

4

5

(3) Compunerea dintre o rotaţie şi o translaţie

P (x, y)
tū7−→ P ′(x′, y′)

RΩ, π
47−−−−→ P

′′
(x
′′
, y
′′

).

Vom ı̂ncepe cu ecuaţiei translaţiei de vector ū:

(14) tū :

{
x′ = x+ 2,

y′ = y + 1.

Prin analogie cu primul punct obţinem ecuaţiile rotaţiei de centru Ω şi unghi π
4
.

(15) RΩ,π
4

:

(
x
′′

y
′′

)
=

(
2
−1

)
+

(
cos π

4
− sin π

4

sin π
4

cos π
4

)
·

(
x′ − 2
y′ + 1

)
Se obţine:

(16) RΩ,π
4

:


x
′′

=

√
2

2
x′ −

√
2

2
y′ − 3

√
2

2
+ 2

y
′′

=

√
2

2
x′ +

√
2

2
y′ −

√
2

2
− 1

Din compunerea celor două izometrii obţinem:

(17) RΩ,π
4
◦ tū :


x
′′

=

√
2

2
(x+ 2)−

√
2

2
(y + 1)− 3

√
2

2
+ 2

y
′′

=

√
2

2
(x+ 2) +

√
2

2
(y + 1)−

√
2

2
− 1

⇒


x
′′
√

2

2
x−
√

2

2
y −
√

2

2
+ 2

y
′′

=

√
2

2
x+

√
2

2
y +
√

2 + 1

(4) Compunerea dintre simetria ortogonală şi o translaţie:

P (x, y)
tū7−→ P ′(x′, y′)

Sδ7−−→ P
′′

(x
′′
, y
′′

).

Amintim ecuaţiile celor două izometrii:

(18) tū :

{
x′ = x+ 2,

y′ = y + 1.
, Sδ :


x
′′

=
3

5
x′ +

4

5
y′ − 2

5

y
′′

=
4

5
x′ − 3

5
y′ +

4

5

Obţinem:

(19) Sδ ◦ tū :


x
′′

=
3

5
x+

4

5
y +

8

5

y
′′

=
4

5
x− 3

5
y +

9

5

Exerciţiul 2. În E2 se consideră un reper ortonormat pozitiv R =
{
O; ī, j̄

}
şi ı̂n raport cu acesta se dau punctele A(1, 2), B(3,−1),

C(0, 4), A′(2,−3), B′( 5
√

2
2

+ 2,−
√

2
2
− 3) şi C′(− 3

√
2

2
+ 2,

√
2

2
− 3). Verificaţi că d(A,B) = d(A′, B′), d(A,C) = d(A′, C′), d(B,C) =

d(B′, C′). Determinaţi izometria f : E → E cu proprietatea f(A) = A′, f(B) = B′, f(C) = C′.

Soluţie: Vom ı̂ncepe prin verificarea egalităţilor ı̂ntre distanţele menţionate.

(1)
−→
AB = (2,−3),

−−−→
A′B′ =

(
5
√

2

2
,−
√

2

2

)
,
−→
AC = (−1, 2),

−−−→
A′C′ =

(
−3
√

2

2
,

√
2

2

)
,
−−→
BC = (−3, 5),

−−−→
B′C′ = (−4

√
2,
√

2).

(2) d(A,B) = d(A′, B′) =
√

13, d(A,C) = d(A′, C′) =
√

5, d(B,C) = d(B′, C′) =
√

34.
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În continuare dorim să determinăm izometria pentru care f(A) = A′, f(B) = B′, f(C) = C′.

Mai ı̂ntâi trebuie să stabilim dacă lucrăm cu o deplasare sau cu o antideplasare. Considerăm S1 =

(
2 −1
−3 2

)
şi S2 =


5
√

2

2
−3
√

2

2
−
√

2

2

√
2

2

.

Matricele S1 respectiv S2 reprezintă matricele de schimbare de bază de la baza canonică la bazele B = {
−→
AB,
−→
AC} respec-

tiv B′ = {
−−−→
A′B′,

−−−→
A′C′}. ( se observă că aceste baze sunt alcătuite din vectori ce au drept componente coordonatele pentru

−→
AB,

−−−→
A′B′,

−→
AC,

−−−→
A′C′.)

Dacă determinantul matricei schimbării de bază de la B la B′ va fi pozitiv vom obţine informaţia că B şi B′ sunt la fel orientate

deci f va fi o deplasare. În caz contrar vom lucra cu o antideplasare.

(20) B
S−1

17−−−→ Bc
S27−−→ B′

Matricea schimbării de bază de la B la B′ este:

S = S−1
1 ◦ S2 → detS = det

(
S−1

1 · S2

)
= 1 · 1 = 1 > 0→ f deplasare .

Vom căuta expresia acestei deplasări de forma:

(21) f :

(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)
·

(
x
y

)
+

(
b1
b2

)
.

Obţinem următoarele seturi de relaţii:

(22) f(A) = A′ →

(
2
−3

)
=

(
cos θ − sin θ
sin θ cos θ

)
·

(
1
2

)
+

(
b1
b2

)

(23) f(B) = B′ →

(
5
√

2
2

+ 2

−
√

2
2
− 3

)
=

(
cos θ − sin θ
sin θ cos θ

)
·

(
3
−1

)
+

(
b1
b2

)

(24) f(C) = C′ →

(
− 3
√

2
2

+ 2√
2

2
− 3

)
=

(
cos θ − sin θ
sin θ cos θ

)
·

(
0
4

)
+

(
b1
b2

)
Din cele şase relaţii obţinem următorul sistem neomogen cu şase ecuaţii şi 4 necunoscute:

(25)



cos θ − 2 sin θ + b1 = 2

2 cos θ + sin θ + b2 = −3

3 cos θ + sin θ + b1 =
5
√

2

2
+ 2

3 sin θ − cos θ + b2 = −
√

2

2
−
√

3

−4 sin θ + b1 = −3
√

2

2
+ 2

4 cos θ + b2 =

√
2

2
+ 3

Matricea extinsă a acestui sistem este:

(26) Ā =



1 −2 1 0 2
2 1 0 1 −3

3 1 1 0
5
√

2

2
+ 2

3 −1 0 1 −
√

2

2
−
√

3

−4 0 1 0 −3
√

2

2
+ 2

0 4 0 1

√
2

2
+ 3


Dorim să calculăm rangul acestei matrici. Vom alege următorul minor de ordin 4 pentru a verifica compatibilitatea sistemului:

(27) ∆0 =

∣∣∣∣∣∣∣∣∣
3 1 1 0
3 −1 0 1
−4 0 1 0
0 4 0 1

∣∣∣∣∣∣∣∣∣L2 = L2 − L4

∣∣∣∣∣∣∣∣∣
3 1 1 0
3 −5 0 0
−4 0 1 0
0 4 0 1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
3 1 1
3 −5 0
−4 0 1

∣∣∣∣∣∣∣ = −38 6= 0
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Obţinem rangA = rangĀ=4=numarul de decunoscute, deci sistemul este compatibil unic determinat. Ecuaţiile principale sunt:

(28)



3 cos θ + sin θ + b1 =
5
√

2

2
+ 2

3 sin θ − cos θ + b2 = −
√

2

2
−
√

3

−4 sin θ + b1 = −3
√

2

2
+ 2

4 cos θ + b2 =

√
2

2
+ 3

Din ultimele două relaţii obţinem:

(29)


sin θ = −

− 3
√

3
2

+ 2− b1
−4

⇒ sin θ =
3
√

2

8
− 1

2
+
b1
4

cos θ =

√
2

2
− 3− b2

4
→ cos θ =

√
2

8
− 3

4
− b2

4

Înlocuim aceste valori ı̂n primele două ecuaţii principale şi obţinem:

(30)

{
5b1 − 3b2 = 7

√
2 + 19,

3b1 + 5b2 = −6
√

2− 9

Soluţiile sistemului precedent sunt:

(31)


b1 =

√
2

2
+ 2,

b2 = −3
√

2

2
− 3

În final, din (??) obţinem:

(32)


sin θ =

3
√

2

8
− 1

2
+

√
2

8
+

1

2
=

√
2

2
.

cos θ =

√
2

8
− 3

4
+

3
√

8

2
+

3

4
=

√
2

2

Se verifică că soluţiile prezentate sunt soluţii şi pentru primele două ecuaţii din sistemul iniţial. Obţinem soluţia

(33) cos θ =

√
2

2
, sin θ =

√
2

2
, b1 =

√
2

2
+ 2, b2 = −3

√
2

2
− 3

Rezultă θ =
π

4
, de unde:

(34) f :

(
x′

y′

)
=

(√
2

2
−
√

2
2√

2
2

√
2

2

)
·

(
x
y

)
+

( √
2

2
+ 2

− 3
√

2
2
− 3

)
În cele ce urmează dorim să vedem dacă izometria studiată este o rotaţie. Vom folosi pentru aceasta ipoteza că rotaţia are un singur
punct fix. Verificăm dacă următorul sistem are soluţii:

(35) f(X) = X →

(
x
y

)
=

(√
2

2
−
√

2
2√

2
2

√
2

2

)
·

(
x
y

)
+

( √
2

2
+ 2

− 3
√

2
2
− 3

)
În cazul ı̂n care sistemul anterior are soluţii izometria prezentată este o rotaţie. În caz contrar va fi compunerea dintre o rotaţie şi
o translaţie care urmează să fie identificate.

Exerciţiul 3. În E2 se consideră un reper ortonormat pozitiv R =
{
O; ī, j̄

}
şi ı̂n raport cu acesta se dau punctele A(1,−1), B(2, 0),

C(−1, 3), A′(−1,−1), B′(−2, 0) si C′(1, 3). Verificaţi că d(A,B) = d(A′, B′), d(A,C) = d(A′, C′), d(B,C) = d(B′, C′). Determinaţi
izometria f : E → E cu proprietatea f(A) = A′, f(B) = B′, f(C) = C′.

Soluţie: temă

Exerciţiul 4. Fie R =
{
O; ī, j̄

}
un reper ortonormat pozitiv ı̂n E2 şi punctul Ω(1, 2). Scrieţi, ı̂n raport cu R, ecuaţiile rotaţiei de

centru Ω şi unghi orientat α = π
3

. Determinaţi ecuaţiile imaginii dreptei d : x+ y − 2 prin aceasta rotaţie. Determinaţi translaţia

dreptei d de vector ū = 2̄i+ j̄.

Soluţie: Vom ı̂ncepe cu ecuaţiile rotaţiei de centru Ω şi unghi
π

3
:

(36) RΩ,π
3

:

(
x′

y′

)
=

(
cos
(
π
3

)
− sin

(
π
3

)
sin
(
π
3

)
cos
(
π
3

) ) ·(x− 1
y − 2

)
+

(
1
2

)
⇒


x′ =

1

2
x−
√

3

2
y +

1

2
+
√

3

y′ =

√
3

2
x+

1

2
y −
√

3

2
+ 1

În cele ce urmează dorim să determinăm ecuaţia imaginii dreptei d prin rotaţia scrisă anterior. Vom prezenta trei metode pentru
realizarea cerinţei:
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(1) Metoda I: Vom alege două puncte de pe dreapta d şi vom determina imaginile acestora prim rotaţia de centru Ω şi unghi
π
3
. Fie A(1, 1) şi B(2, 0) două puncte de pe d.

Obţinem:

(37) A′ = RΩ,π
3

(A) :


x′ = 1 +

√
3

2
,

y′ =
3

2

(38) B′ = RΩ,π
3

(B) :


x′ =

3

2
+
√

3,

y′ =

√
3

2
+ 1

Dreapta pe care o căutăm este

(39) d′ = (A′B′) :
x′ − 1−

√
3

2√
3 + 1

=
y′ − 3

2√
3− 1

.

(2) Metoda II: De această dată vom identifica vectorul director al dreptei şi un punct de pe aceasta. Aşadar fie A(1, 1) ∈ d
şi N̄(1, 1) ⊥ d→ ā = (1,−1), d = A+ [ā].
Obţinem:

(40) d′ = RΩ,π
3

(A) +
[
Rπ

3
(ā)
]

= A′ + [ā′],

unde

(41) A′ = RΩ,π
3

(A) :


x′ = 1 +

√
3

2
,

y′ =
3

2

şi

(42) ā′ = Rπ
3

(ā) = (x′, y′),

(
x′

y′

)
=

(
1
2
−
√

3
2√

3
2

1
2

)
·

(
1
−1

)
=

(
1
2

+
√

3
2

− 1
2

+
√

3
2

)
Dreapta pe care o căutăm este

(43) d′ =:
x′ − 1−

√
3

2√
3 + 1

=
y′ − 3

2√
3− 1

.

Metoda III: Vom porni de la ecuaţiile rotaţiei de centru Ω şi unghi π
3

şi vom ı̂ncerca să scoatem coordonatele punctului
iniţiale ı̂n funcţie de coordonatele punctului rotit. După obţinerea acestora vom ı̂nlocui ı̂n ecuaţia dreptei d. Pornim de la:

(44) RΩ,π
3

:

(
x′

y′

)
=

(
cos
(
π
3

)
− sin

(
π
3

)
sin
(
π
3

)
cos
(
π
3

) ) ·(x− 1
y − 2

)
+

(
1
2

)
⇒


x′ =

1

2
x−
√

3

2
y +

1

2
+
√

3

y′ =

√
3

2
x+

1

2
y −
√

3

2
+ 1

Înmulţim prima relaţie cu −
√

3 şi le adumăm. Se obţine:

(45) y = −
√

3

2
x′ +

1

2
y′ +

√
3

2
+ 1

Analog, vom ı̂nmulţi a doua relaţie cu
√

3 şi le vom aduna. Se obţine:

(46) x =
1

2
x′ +

√
3

2
y′ +

1

2
−
√

3

Noi vrem să determinăm imaginea dreptei d : x+ y− 2 = 0 prin aceasă rotiaţie. Vom ı̂nlocui rezultatele din (37) şi (38) ı̂n
ecuaţie dreptei şi obţinem:

(47) (d′) :
√

3x′ + y′ +
√

3− 2 = 0

Exerciţiul 5. Fie R =
{
O; ī, j̄

}
un reper ortonormat pozitiv ı̂n E2 şi dreapta d : x+ y− 2 = 0. Scrieţi ecuaţiile simetriei ortogonale

faţă de dreapta d şi ecuaţiile simetricei dreptei δ : x − y = 0 faţă de dreapta d. Aceeaşi problemă pentru d : 2x − 3y − 1 = 0 şi
δ : 4x− 6y + 1 = 0. Reprezentaţi dreptele d, δ, δ′ = Sd(δ) ı̂ntr-un sistem de axe ortogonale corespunzator reperului dat.

Soluţie: temă

Exerciţiul 6. Fie R =
{
O; ī, j̄

}
un reper ortonormat pozitiv in E2 , dreapta d : x + 2y − 1 = 0 şi vectorul ū = −2̄i + j̄. Scrieţi

ecuaţiile compunerii dintre simetria ortogonală faţă de dreapta d şi translaţia de vector ū, Sd ◦ tū. Determinaţi imaginile punctelor
A(1, 1), B(1, 0), C(−1, 2) prin această izometrie şi reprezentaţi-le grafic ı̂ntr-un sistem de axe ortogonale.

Soluţie: temă
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