
Seminarul 7
Izometriile spaţiului afin euclidian E3

Fie f : E → E o izometrie a spaţiului euclidian orientat E şi R =
{
O; ī, j̄, k̄

}
un reper cartezian ortonormat pozitiv ı̂n E.

Amintim că ı̂n raport cu R ecuaţiile izometriei f se scriu matricial

Y = AX +B,

unde X =

 x
y
z

 sunt coordonatele unui punct arbitrar P ı̂n raport cu R, Y =

 x′

y′

z′

 sunt coordonatele lui f(P ) ı̂n

raport cu R, A ∈ O(3) si B =

 b1
b2
b3

.

(A) Dacă
−→
f = Id−→

E
⇔ A = I3 rezultă că f = tb̄, unde b̄ = b1ī+ b2j̄ + b3k̄. Ecuaţiile translaţiei ı̂n raport cu R sunt:

x′ = x+ b1,

y′ = y + b2,

z′ = z + b3.

Translaţia tb̄ are puncte fixe daca şi numai dacă b̄ = 0̄.

(B) Dacă există o bază ortonormată {v̄, ū1, ū2} ı̂n raport cu care matricea aplicaţiei liniare asociate să fie

A′ =

 −1 0 0
0 1 0
0 0 1

 ,

atunci
−→
f este simetria ortogonală ı̂n raport cu U = [ū1, ū2] şi ecuaţiile lui f ı̂n raport cu R′ = {O; v̄, ū1, ū2} sunt x′

y′

z′

 =

 −1 0 0
0 1 0
0 0 1

 x
y
z

+

 b1
b2
b3

⇔

x′ = −x+ b1,

y′ = y + b2,

z′ = z + b3.

Punctul P (x, y, z) este punct fix al lui f daca şi numai dacă
x = b1

2 ,

b2 = 0,

b3 = 0.

(B1) Dacă b2 = b3 = 0, atunci toate punctele planului π ce are ı̂n raport cu R′ ecuaţia x = b1
2 sunt fixe pentru f . În

acest caz f este simetria ortogonală faţă de π şi are ı̂n raport cu R′ ecuaţiile
x′ = −x+ b1,

y′ = y,

z′ = z.

Observăm că −→π este subspaţiul vectorilor proprii ai lui A′ corespunzători valorii proprii +1.

Dacă dorim să scriem ecuaţiile simetriei ortogonale Sπ ı̂n raport cu un reper ortonormat arbitrar R, atunci când se dă
ecuaţia generală a lui π, procedăm astfel.

Presupunem că planul are ecuaţia π : ax+ by + cz + d = 0, a2 + b2 + c2 > 0 . Rezultă că un vector normal lui −→π este

N̄(a, b, c). Dacă P (x, y, z) şi Sπ(P ) = P ′(x′, y′, z′), impunând condiţiile
−−→
PP ′ ‖ N̄ si 1

2P + 1
2P
′ ∈ π, obţinem

x′ − x
a

=
y′ − y
b

=
z′ − z
c

,

a

2

(
x+ x′

)
+
b

2

(
y + y′

)
+
c

2

(
z + z′

)
+ d = 0.

1



2

Din aceste condiţii rezultă

Sπ :


x′ = x− 2a(ax+by+cz+d)

a2+b2+c2 ,

y′ = y − 2b(ax+by+cz+d)
a2+b2+c2 ,

z′ = z − 2c(ax+by+cz+d)
a2+b2+c2 .

De exemplu, ecuaţiile simetriilor ortogonale faţă de planele de coordonate (xOy) = O+ [̄i, j̄], (yOz) = O+ [j̄, k̄], (xOz) =
O + [̄i, k̄] sunt:

S(xOy) :


x′ = x,

y′ = y,

z′ = −z,
S(yOz) :


x′ = −x,
y′ = y,

z′ = z,

S(xOz) :


x′ = x,

y′ = −y,
z′ = z.

(B2) Dacă b2 6= 0 sau b3 6= 0, atunci izometria f este compunerea dintre simetria ortogonala fata de un plan π şi o
translaţie de vector ā ∈ −→π . Mai exact f = tā ◦ Sπ = Sπ ◦ tā, unde planul π are ecuaţia x = b1

2 si ā = b2ū1 + b3ū2:

Sπ :


x′ = −x+ b1,

y′ = y,

z′ = z,

tā :


x′′ = x′,

y′′ = y′ + b2,

z′′ = z′ + b3.

În acest caz f nu are puncte fixe. Putem să numim aceasta izometrie simetrie ortogonală alunecată.

(C) Dacă există o bază ortonormată {ū, v̄1, v̄2} ı̂n raport cu care matricea aplicaţiei liniare asociate să fie

A′ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , θ 6= 0,

atunci ecuaţiile izometriei f ı̂n raport cu R′ = {O; ū, v̄1, v̄2} sunt
x′ = x+ b1,

y′ = y cos θ − z sin θ + b2,

z′ = y sin θ + z cos θ + b3.

Punctul P (x, y, z) este fix pentru f daca şi numai dacă
b1 = 0,

y cos θ − z sin θ + b2 = y,

y sin θ + z cos θ + b3 = z.

Sistemul format din ultimele două ecuaţii are soluţie unică, fie aceasta (y0, z0) (sunt coordonatele centrului unei rotaţii de
unghi θ din planul O + [v̄1, v̄2]).

(C1) Dacă b1 = 0 observăm că orice punct care ı̂n raport cu R′ are coordonatele P (x, y0, z0) este fix pentru f . Deci f
are o dreaptă de puncte fixe, având direcţia ū, care este un vector propriu al lui A′ corespunzător valorii proprii +1.

Izometria f este ı̂n acest caz rotatia ı̂n jurul dreptei d de unghi orientat θ, notată Rd,θ. Ecuaţiile lui d ı̂n raport

cu R′ sunt

{
y = y0,

z = z0.

Ecuaţiile rotaţiei Rd,θ sunt 
x′ = x,

y′ = y cos θ − z sin θ + b2,

z′ = y sin θ + z cos θ + b3.

Observăm că rotaţia ı̂n jurul dreptei d de unghi orientat π este simetria ortogonală faţă de dreapta d. În raport cu R′
ea are ecuaţiile 

x′ = x,

y′ = −y + b2,

z′ = −z + b3,
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matricea aplicaţiei liniare asociate ı̂n raport cu baza {ū, v̄1, v̄2} fiind

 1 0 0
0 −1 0
0 0 −1

.

De exemplu, vom scrie ecuaţiile rotaţiilor ı̂n jurul axelor reperului ortonormat considerat. Pentru R =
{
O; ī, j̄, k̄

}
,

notăm Ox = O + [̄i], Oy = O + [j̄], Oz = O + [k̄].

ROx,π4 :

 x′

y′

z′

 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ·
xy
z

 =

 1 0 0

0
√

2
2 −

√
2

2

0
√

2
2

√
2

2


 x

y
z

 ,

ROy,−π6 :

 x′

y′

z′

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ·
xy
z

 =


√

3
2 0 − 1

2
0 1 0
1
2 0

√
3

2


 x

y
z

 ,

ROz,π2 :

 x′

y′

z′

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ·
xy
z

 =

 0 −1 0
1 0 0
0 0 1

 x
y
z

 .

Simetriile ortogonale faţă de axele reperului au ecuaţiile:

SOx = ROx,π :


x′ = x,

y′ = −y,
z′ = −z,

SOy :


x′ = −x,
y′ = −y,
z′ = −z,

SOz :


x′ = −x,
y′ = −y,
z′ = z.

(C2) Dacă b1 6= 0 izometria f nu are puncte fixe. Ea se poate scrie sub forma tā ◦ Rd,θ = Rd,θ ◦ tā, cu ā = b1ū ∈
−→
d ,

deci este compunerea ı̂ntre o rotaţie ı̂n jurul unei drepte d, de unghi θ şi o translaţie de vector paralel cu d:

Rd,θ :


x′ = x,

y′ = y cos θ − z sin θ + b2,

z′ = y sin θ + z cos θ + b3,

tā :


x′′ = x′ + b1,

y′′ = y′,

z′′ = z′.

Numim o astfel de izometrie rototranslaţie sau deplasare elicoidală.
De exemplu, ecuaţiile izometriei t3ī ◦ROx,π4 sunt x′

y′

z′

 =

 1 0 0

0
√

2
2 −

√
2

2

0
√

2
2

√
2

2


 x

y
z

+

 3
0
0

 .

(D) Dacă există o bază ortonormată {v̄, w̄1, w̄2} ı̂n raport cu care matricea aplicaţiei liniare asociate să fie

A′ =

 −1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , θ 6= 0,

atunci ecuaţiile lui f ı̂n raport cu R′ = {O; v̄, w̄1, w̄2} sunt
x′ = −x+ b1,

y′ = y cos θ − z sin θ + b2,

z′ = y sin θ + z cos θ + b3.

Aceasta izometrie are un singur punct fix, care are ı̂n raport cu R′ coordonatele P ( b12 , y0, z0), cu (y0, z0) centrul rotaţiei
din planul O + [w̄1, w̄2] dată de ultimele două ecuaţii ale sistemului de mai sus.

Aceasta izometrie este f = Rδ,θ ◦ Sβ = Sβ ◦ Rδ,θ deci compunerea dintre o simetrie ortogonală faţă de un plan β de

ecuaţie x = b1
2 ı̂n raport cu R′ (

−→
β = [w̄1, w̄2]) şi o rotaţie ı̂n jurul unei drepte δ, (

−→
δ = [v̄]) de unghi θ, cu δ ⊥ β:

Sβ :


x′ = −x+ b1,

y′ = y,

z′ = z,

Rδ,θ :


x′′ = x′,

y′′ = y′ cos θ − z′ sin θ + b2,

z′′ = y′ sin θ + z′ cos θ + b3.
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Numim această izometrie o rotosimetrie.

Obţinem simetria centrală faţă de punctul {Ω} = δ ∩ β ı̂n cazul particular θ = π: SΩ = Rδ,π ◦ Sβ .

De exemplu, simetria centrală faţă de Ω(1, 2, 3) are ecuaţiile:


x′ = 2− x,
y′ = 4− y,
z′ = 6− z.

În concluzie, am obţinut următoarele izometrii ale lui E3:

• deplăsari:
– translaţia

– rotaţia ı̂n jurul unei drepte d, de unghi orientat θ, cu cazul particular θ = π cand obţinem simetria ortogonală
fata de dreapta d

– rototranslaţia (miscare elicoidala): tā ◦Rd,θ, ā ∈
−→
d

• antideplăsari:
– simetria ortogonală faţă de un plan Sπ

– simetria “alunecată” tā ◦ Sπ, ā ∈ −→π , ā 6= 0̄

– rotosimetria Rδ,θ ◦ Sβ , δ ⊥ β (cu cazul particular al simetriei centrale)

Exerciţii rezolvate

Exerciţiul 1. În spaţiul afin euclidian orientat E3 se dau, ı̂n raport cu un reper ortonormat pozitiv R =
{
O; ī, j̄, k̄

}
,

dreptele d :
X

1
=
Y − 1

2
=
Z

3
, δ :

X − 1

2
=
Y + 1

1
=

Z

−1
şi planul α : X + Y − Z + 1 = 0.

(1) Scrieţi ecuaţiile simetriei ortogonale Sd faţă de dreapta d şi ecuaţiile simetriei ortogonale Sα faţă de planul α.

(2) Verificaţi că cele două simetrii ortogonale sunt aplicaţii involutive.

(3) Apoi determinaţi ecuaţiile lui Sd(δ) şi Sα(δ).

(4) Aceeaşi problemă pentru d :
X − 1

2
=
Y

1
=
Z

3
, δ :

X

−1
=
Y

2
=
Z

3
şi α : X − 2Y + 1 = 0.

(1) Soluţie: Pentru a determina ecuaţiile simetriei ortogonale faţă de dreapta d vom considera P (x, y, z) ∈ E un
punct arbitrar. Vom fi interesaţi de găsirea coordonatelor simetricului punctului faţă de dreapta d: P ′ = sdP :
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Este cunoscut faptul că pentru a determina simetricul unui punct faţă de o dreapta trebuie să determinăm mai
ı̂ntâi proiecţia punctului pe dreaptă. Deoarece ne aflăm ı̂n spaţiul 3-dimensional această proiecţie va fi intersecţia
dintre dreaptă şi planul perpendicular pe aceasta care trece prin punct.
Avem următoarele:

(1)

{
P (x, y, z) ∈ E, P0 = prdP = π ∩ d, unde π ⊥ d, P ∈ π.
deoarece π ⊥ d→ N̄π ‖ ā, unde ā ∈

−→
d .

Se observă că vectorul director al dreptei d este ā = (1, 2, 3) deci planul π va avea acelaşi vector normal. Scriem
acum ecuaţia planului π ştiind că trece prin P (x, y, z) şi are direcţia normală dată de ā.

(2) (π) : 1 (X − x) + 2 (Y − y) + 3 (Z − z) = 0

Determinăm acum coordonatele proiecţiei punctului P pe dreapta d rezolvând următorul sistem:

(3) d ∩ π :


X = t,

Y = 1 + 2t,

Z = 3t

1 (X − x) + 2 (Y − y) + 3 (Z − z) = 0

⇒ t− x+ 2 + 4t− 2y + 9t− 3z = 0→ t =
x+ 2y + 3z − 2

14

Înlocuim ı̂n ecuaţiile parametrice ale dreptei d şi obţinem coordonatele proiecţiei:

(4) P0 = d ∩ π :


X =

x+ 2y + 3z − 2

14
,

Y = 1− x+ 2y + 3z − 2

7
=

2x+ 2y + 6z + 10

14

Z =
3x+ 6y + 9z − 6

14

Vom considera P0 mijlocul segmentului ce are drept extremităţi punctul P şi simetricul acestuia: P = 2P0 − P .
Obţinem astfel ecuaţiile simetriei ortogonale faţă de dreapta d:

(5) Sd :


x′ =

x+ 2y + 3z − 2

7
− x =

−6x+ 2y + 3z − 2

7

y′ =
2x+ 2y + 6z + 10

7
− y =

2x− 3y + 6z + 10

7

z′ =
3x+ 6y + 9z − 6

7
− z =

3x+ 6y + 2z − 6

7

În cele ce urmează ne propunem să determinăm ecuaţiile simetriei ortogonale faţă de planul α. Fie P (x, y, z) ∈ E.
Dorim să determinăm coordonatele simetricului punctului P faţă de planului α: P ′ = sαP, P

′(x′, y′, z′).

Avem următoarele:

(6)

{
P0 = prαP = PP ′ ∩ α
deoarece PP ′ ⊥ α→

−−→
PP ′ ‖ N̄α
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Din ecuaţia generală a planului se observă că direcţia vectorului normal la plan are coordonatele N̄α = (1, 1,−1).
Deci ecuaţia dreptei PP ′ este:

(7) (PP ′) :
x′ − x

1
=
x′ − y

1
=
x′ − z
−1

→


x′ = t+ x,

y′ = t+ y

z′ = −t+ z

, t ∈ R.

Punctul P0 este mijlocul segmentului [PP ′] deci P0 =
1

2
P +

1

2
P ′ =

(
2x+ t

2
,

2y + t

2
,

2z − t
2

)
. Ne interesează

valoarea parametrului t. Pentru determinarea aceastuia vom folosi faptul că P0 ∈ α:

(8)
2x+ t

2
+

2y + t

2
− 2z − t

2
+ 1 = 0→ t = −2

3
(x+ y − z + 1)

Înlocuim ı̂n ecuaţiile parametrice ale dreptei PP ′ şi găsim ecuaţiile simetriei ortogonale faţă de planul α:

(9) Sα :


x′ = x− 2

3
(x+ y − z + 1) =

x− 2y + 2z − 2

3

y′ = y − 2

3
(x+ y − z + 1) =

−2x+ y + 2z − 2

3

z′ = z +
2

3
(x+ y − z + 1) =

2x+ 2y + z + 2

3

(2) Trebuie să verificăm dacă Sd ◦ Sd = Id şi Sα ◦ Sα = Id
(10)

Sd ◦ Sd :



x′ =

−6

(
−6x+ 2y + 3z − 2

7

)
+ 2

(
2x− 3y + 6z + 10

7

)
+ 3

(
3x+ 6y + 2z − 6

7

)
− 2

7
= x

y′ =

2

(
−6x+ 2y + 3z − 2

7

)
− 3

(
2x− 3y + 6z + 10

7

)
+ 6

(
3x+ 6y + 2z − 6

7

)
+ 10

7
= y

z′ =

3

(
−6x+ 2y + 3z − 2

7

)
+ 6

(
2x− 3y + 6z + 10

7

)
+ 2

(
3x+ 6y + 2z − 6

7

)
− 6

7
= z

→ Sd aplicaţie involutivă.

Analog:
(11)

Sα◦Sα :



x′ =

(
x− 2y + 2z − 2

3

)
− 2

(
−2x+ y + 2z − 2

3

)
+ 2

(
2x+ 2y + z + 2

3

)
− 2

3
= x

y′ =

−2

(
x− 2y + 2z − 2

3

)
+

(
−2x+ y + 2z − 2

3

)
+ 2

(
2x+ 2y + z + 2

3

)
− 2

3
= y

z′ =

2

(
x− 2y + 2z − 2

3

)
+ 2

(
−2x+ y + 2z − 2

3

)
+

(
2x+ 2y + z + 2

3

)
+ 2

3
= z

→ Sα aplicaţie involutivă.

(3) Dorim să determinăm Sdδ. Se observă că d şi δ nu sunt perpendiculare sau paralele. Prin urmare considerăm două
puncte de pe dreapta δ : A(1,−1, 0), B(3, 0,−1). Determinăm imaginile acestor puncte prin legea de definire a
simetriei ortogonale faţă de dreapta d:

(12)


A′ = sd(A) =

(
−10

7
,

15

7
,

5

7

)
B′ = sd(B) =

(
−23

7
,

10

7
,

1

7

)
Dreapta pe care o căutăm este determinată ı̂n mod unic de punctele A′ şi B′.

(13) Sdδ = A′B′ :
X + 10

7

13
=
Y − 15

7

5
=
Z + 9

7

−10
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Pentru a determina Sαδ vom vedea mai ı̂ntâi dacă dreapta intersectează planul:

(14) δ ∩ α :


X = 2t+ 1

Y = t− 1

Z = −t
X + Y − Z + 1 = 0

→ 2t+ 1 + t− 1 + t+ 1 = 0→ t = −1

3

Obţinem δ ∩ α = C, C

(
1

3
,−4

3
,

1

3

)
. Deci dreapta intersectează planul dar nu este pependiculară pe acesta. Mai

avem nevoie de ı̂ncă un punct de pe δ pe care să ı̂l simetrizăm faţă de planul α. Îl vom alege tot pe A(1,−1, 0).

A
′′

= sαA =

(
1

3
,−5

3
,

2

3
.

)
Dreapta pe care o căutăm este:

(15) A
′′
C :

X − 1
3

0
=
Y + 4

3

−1
=
Z − 1

3

3
.

(4) Temă:

Exerciţiul 2. Determinaţi ecuaţiile următoarelor izometrii ı̂n E3:

(1) mişcarea elicoidala ROx,−π6 ◦ tū, ū = 2̄i;

(2) rotosimetria Sπ ◦ROy,π3 , π : y − 2 = 0;

(3) alunecarea tā ◦ Sα, ā = −2̄i+ j̄, α : x+ 2y − z + 1 = 0.

Soluţie:

(1)

P (x, y, z)
tū7−→ P ′(x′, y′, z′)

ROx,−π
67−−−−−→ P

′′
(x
′′
, y
′′
, z
′′
)

Scriem mai ı̂ntâi ecuaţiile translaţiei:

(16) tū(P ) = P + ū :


x′ = x+ 2,

y′ = y,

z′ = z

Apoi:

(17) P = O +
−−→
OP ′ → ROx,θ(P

′) = ROx,θ(O) +Rī,θ(
−−→
OP ′) = Rī,θ(

−−→
OP ′).

Matricea lui Rī,θ ı̂n raport cu {̄i, j̄, k̄} este:

(18) Aθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , Rī,θ(
−−→
OP ′) = x

′′
ī+ y

′′
j̄ + z

′′
k̄.

Deci:

(19)

x
′′

y
′′

z
′′

 = Aθ

xy
z

→
x

′′

y
′′

z
′′

 =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ·
x′y′
z′


După ı̂nlocuirea lui θ cu −π6 obţinem:

(20) ROx,−π6 :


x
′′

= x′

y
′′

=

√
3

2
y′ +

1

2
z′

z
′′

= −1

2
y′ +

√
3

2
z′.
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În final:

(21) ROx,−π6 ◦ tū :


x
′′

= x+ 1

y
′′

=

√
3

2
y +

1

2
z

z
′′

= −1

2
y +

√
3

2
z

(2) Considerăm:

(22) P (x, y, z)
ROy,j̄7−−−−→ P ′(x′, y′, z′)

Sπ7−−→ P
′′
(x
′′
, y
′′
, z
′′
).

Începem cu ecuaţiile rotaţiei:

(23) P ′ = O +
−−→
OP ′ → ROy,θ(P

′) = ROy,θ(O) +Rj̄,θ(
−−→
OP ′) = Rj̄,θ(

−−→
OP ′).

Matricea lui Rj̄,θ ı̂n raport cu {̄i, j̄, k̄} este:

(24) Aθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , Rī,θ(
−−→
OP ′) = x

′
ī+ y

′
j̄ + z

′
k̄.

Deci:

(25)

x′y′
z′

 = Aθ

xy
z

→
x′y′
z′

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ·
xy
z


După efectuarea calculelor obţinem:

(26) ROy,π3 :


x′ = x cos π3 + z sin π

3

y′ = y

z′ = −x sin π
3 + z cos π3

→


x′ =

1

2
x+

√
3

2
z

y′ = y

z′ = −
√

3

2
x+

1

2
z

Mai avem de determinat ecuaţiile simetriei ortogonale faţă de planul π. Pentru aceasta considerăm P”(x′, y′, z′) ∈
E şi P

′′
(x
′′
, y
′′
, z
′′
) = sπP

′. Observăm următoarele:

(27)

{
P ′P

′′ ⊥ π
Oy ⊥ π

→ P ′P
′′
‖ Oy →

−−−→
P ′P

′′
‖ j̄

Putem scrie ecuaţiile dreptei P ′P
′′
:

(28) P ′P
′′

:


x
′′

= x′

y
′′

= y′ + t

z
′′

= z′

Determinăm valoarea parametrului t folosind faptul că este mijlocul segmentului [P ′P
′′
] şi se află ı̂n planul π. Din

P0 mijlocul lui [P ′P
′′
] obţinem P0

(
x′ + x

′′

2
,
y′ + y

′′

2
,
z′ + z

′′

2

)
=

(
x′,

2y′ + t

2
, z′
)

Din P0 ∈ π →
2y′ + t

2
− 2 = 0→ 2y′ + t = 4→ t = 4− 2y′.

Ecuaţiile simetriei devin:

(29) Sπ :


x
′′

= x′

y
′′

= 4− y′

z
′′

= z′

În final compunerea dintre cele două izometrii are ecuaţia:

(30) Sπ ◦ROy,π3 :


x
′′

=
1

2
x+

√
3

2
z

y
′′

= −y + 4

z
′′

= −
√

3

2
x+

1

2
z
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(3) Considerăm:

(31) P (x, y, z)
Sα7−−→ P ′(x′, y′, z′)

tā7−→ P
′′
(x
′′
, y
′′
, z
′′
).

Începem cu ecuaţia simetriei ortogonale faţă de planul α. Pentru aceasta observăm că

PP ′ ⊥ α→
−−→
PP ′ ‖ N̄α = (1, 2,−1).

Scriem ecuaţia dreptei PP ′ :

(32) (PP ′) :
x′ − x

1
=
y′ − y

2
=
z′ − z
−1

= t→


x′ = 2 + x

y′ = 2t+ y

z′ = −t+ z

t ∈ R.

Punem condiţia ca P0 =
1

2
P +

1

2
P ′ ∈ α. Obţinem:

(33)
x′ + x

2
+ 2

y′ + y

2
− z′ + z

2
+ 1 = 0→ t =

−x− 2y + z − 1

3
.

Ecuaţiile simetriei ortogonale sunt:

(34) Sα :


x′ =

2x− 2y + z − 1

3

y′ =
−2x− y + 2z − 2

3

z′ =
x+ 2y + 2z + 2z + 1

3

Ecuaţiile translaţiei sunt:

(35) tā :


x
′′

= x′ − 2

y
′′

= y′ + 1

z
′′

= z′

În final:

(36) tā ◦ Sα :


x
′′

=
2x− 2y + z − 7

3

y
′′

=
−2x− y + 2z + 1

3

z
′′

=
x+ 2y + 2z + 2z + 1

3

Exerciţiul 3. În raport cu un reper ortonormat pozitiv R =
{
O; ī, j̄, k̄

}
ı̂n E3 se consideră aplicaţia f : E → E dată prin

ecuaţiile 
x′ = x,

y′ =
√

3
2 y + 1

2z,

z′ = 1
2y −

√
3

2 z.

Să se verifice că f este o izometrie şi determinaţi izometria.

Soluţie: Începem cu observaţia că ecuaţiile aplicaţiei pot fi scrise sub forma

X ′ = AX +B →

x′y′
z′

 =

1 0 0

0
√

3
2

1
2

0 1
2 −

√
3

2

 ·
xy
z

 .

Se observă că B = O3,1 → nu avem termeni liberi. Am obţinut că f este morfism. Verificăm dacă aplicaţia asociată este
ortogonală:

(37) A ·At =

1 0 0

0
√

3
2

1
2

0 1
2 −

√
3

2

 ·
1 0 0

0
√

3
2

1
2

0 1
2 −

√
3

2

 = I3 →
−→
f ortogonală, deci f este izometrie.
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Calculăm valoarea determinantului pentru a stabili dacă avem o deplasare sau o antideplasare:

(38) detA =

∣∣∣∣∣∣∣
1 0 0

0
√

3
2

1
2

0 1
2 −

√
3

2

∣∣∣∣∣∣∣ = −1 < 0→ f antideplasare

Determinăm mulţimea punctelor fixe:
(39)

f(Ω) = Ω→


x = x,

y =
√

3
2 y + 1

2z,

z = 1
2y −

√
3

2 z

→


x = x,

y
(

1−
√

3
2

)
+ 1

2z = 0,

1
2y +

(
−
√

3
2 − 1

)
z = 0

→


0 = 0

y
(√

3− 2
)

+ z = 0

−y +
(√

3 + 2
)
z = 0↔ y

(√
3− 2

)
+ z = 0

Deci obţinem o infinitate de puncte fixe toate aparţinând planului α : y
(√

3− 2
)

+z = 0. Izometria obţinută este simetria

ortogonală faţă de planul α: Sα.

Exerciţiul 4. Fie dreapta d :
x

1
=
y

1
=
z − 1

0
. Scrieţi ecuaţiile rotaţiei ı̂n jurul lui d de unghi orientat

π

4
.

Soluţie: Observăm că A(0, 0, 1) ∈ d şi ā = (1, 1, 0) ∈
−→
d . Fie P (x, y, z) ∈ E. Dorim să identificăm coordonatele rotaţiei

Rd,θ, r̄d = A+ tā, t ∈ R. Este evident că A reprezintă un punct fix pentru rotaţie.

Atunci:

(40) P ′ = Rd,θ(P )→
−−→
AP ′ = Rā,θ(

−→
AP )→ P ′ = A+Rā,θ(

−→
AP )

Amintim că Prā
−→
AP =

〈
−→
AP, ā

||ā||2
ā. Considerăm

(41) v̄1 =
−→
AP − Prā

−→
AP =

−→
AP − 〈

−→
AP, ā〉
||ā||2

ā

Prin urmare

(42) Rθ(v̄1) = cos θv1 +
sin θ

||ā||
(ā× v̄1).
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În final se obţine:

(43) Rā,θ(
−→
AP ) = Prā

−→
AP +Rθ(v̄1)→ Rd,θ(P ) = A+ cos θ

−→
AP + (1− cos θ)

〈
−→
AP, ā〉
||ā||2

ā+
sin θ

||ā||
(ā×

−→
AP )

Vom ı̂nlocui ı̂n formula scrisă anterior. Avem:

(44)



||ā|| =
√

2,
−→
AP = (x, y, z − 1),

〈
−→
AP, ā〉 = x+ y

ā×
−→
AP =

∣∣∣∣∣∣∣∣
ī j̄ k̄

1 1 0

x y z − 1

∣∣∣∣∣∣∣∣ = (z − 1, 1− z, y − x)

Deci:

(45) Rd,π4 :

x′y′
z′

 =

0
0
1

+

√
2

2

 x
y

z − 1

+
2−
√

2

4
(x+ y)

1
1
0

+
1

2

z − 1
1− z
y − x


Exerciţiul 5. În raport cu un reper ortonormat pozitiv R =

{
O; ī, j̄, k̄

}
ı̂n E3 se consideră aplicaţia f : E → E centro-afină

de centru O şi a cărei aplicaţie liniară indusă
−→
f :
−→
E →

−→
E are ı̂n raport cu baza reperului matricea

A =


1
2 −

√
2

2 − 1
2

1
2

√
2

2 − 1
2√

2
2 0

√
2

2


Să se arate ca f este o rotaţie.

Soluţie: Demonstrăm mai ı̂ntâi că aplicaţia prezentată este un morfism. Este suficient să rescriem ecuaţiile sub formă
matriceală:

(46)

x′y′
z′

 =


1
2 −

√
2

2 − 1
2

1
2

√
2

2 − 1
2√

2
2 0

√
2

2

 ·
xy
z


Verificăm dacă matricea asociată este ortogonală:

(47) AAt =


1
2 −

√
2

2 − 1
2

1
2

√
2

2 − 1
2√

2
2 0

√
2

2

 ·


1
2

1
2

√
2

2

−
√

2
2

√
2

2 0

− 1
2 − 1

2

√
2

2

 = I3 → f izometrie

Calculăm valoarea determinantului matricii pentru a ne asigura că lucrăm cu o deplasare:

(48) detA =

∣∣∣∣∣∣∣∣
1
2 −

√
2

2 − 1
2

1
2

√
2

2 − 1
2√

2
2 0

√
2

2

∣∣∣∣∣∣∣∣ =
1

2
+

1

2
= 1 > 0→ fdeplasare.

Studiem mulţimea punctelor fixe ale acestei deplsări:

(49) AX = X → (A− I3)X = O3 →

−
1
2 −

√
2

2 − 1
2

1
2

√
2

2 − 1 − 1
2√

2
2 0

√
2

2 − 1


xy
z

 =

0
0
0


Obţinem următorul sistem omogen:

(50)


−1

2
x−
√

2

2
y − 1

2
z = 0

1

2
x+

√
2− 1

2
y − 1

2
z = 0

√
2

2
x+

√
2− 1

2
z = 0
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Deoarece det(A− I3) = 0 rezultă că sistemul este compatibil nedeterminat. Alegem:

(51) δ =

∣∣∣∣∣
√

2
2 − 1 − 1

2

0
√

2
2 − 1

∣∣∣∣∣ =

(√
2

2
− 1

)2

6= 0→ rang(A− I3) = 2 < 3

Avem y, z necunoscute principale şi x = t necunoscuta secundară. Sistemul devine:

(52)


√

2− 1

2
y − 1

2
z = −1

2
t

√
2− 1

2
z = −

√
2

2
t→ z =

√
2

1−
√

2
t

Înlocuim ı̂n prima relaţie şi obţinem:

(53)

√
2− 1

2
y =

1

2

( √
2

1−
√

2
− 1

)
t→ y = − 2

√
2− 1

(1−
√

2)2
t

Am obţinut o infinitate de puncte fixe toate aparţinând dreptei de ecuaţie:

(54) d :



x = t,

y = − 2
√

2− 1

(1−
√

2)2
t,

z =

√
2

1−
√

2
t

, t ∈ R.

Mai avem de determinat unghiul rotaţiei. Considerăm o schimbare ortonormată de baze astfel ı̂ncât ā =

(
1,− 2

√
2− 1

(1−
√

2)2
,

√
2

1−
√

2

)
,

vectorul director al lui d, să devină primul vector al noii baze şi cele doua baze să fie la fel orientate. Urma lui f are ı̂n
raport cu noua bază matricea

(55) A′ =

1 0 0
0 cosθ − sin θ
0 sin θ cos θ


Cele două matrici sunt asemenea deci au acelaşi polinom caracterisic:

(56) pA′(λ) = det(A′ − λI3) = (1− λ)(λ2 − 2λ cos θ + 1),

deci avem valorile proprii 1, cos θ ± i sin θ.
Determinăm polinomul caracteristic pentru A. Acesta va avea valorile proprii 1, a ± ib. Determinăm valoarea unghiului
din condiţiile:

(57)

{
cos θ = a

sin θ = b

În cazul de faţă

(58) det(A− λI3) =

∣∣∣∣∣∣∣∣
1
2 − λ −

√
2

2 − 1
2

1
2

√
2

2 − λ − 1
2√

2
2 0

√
2

2 − λ

∣∣∣∣∣∣∣∣ = (λ− 1)(−2λ2 + (−1 + 2
√

2)λ− 2).

Se obţine valoarea proprie 1 şi ı̂nca două valori proprii care ne ajută să determinăm unghiul.

Exerciţiul 6. În raport cu un reper ortonormat pozitiv R =
{
O; ī, j̄, k̄

}
ı̂n E3 se consideră aplicaţia f : E → E centro-afină

de centru O şi a cărei aplicaţie liniară indusă
−→
f :
−→
E →

−→
E are ı̂n raport cu baza reperului matricea

A =


1
3

1−
√

3
3

1+
√

3
3

1+
√

3
3

1
3

1−
√

3
3

1−
√

3
3

1 +
√

3

3
1
3


Să se arate ca f este o rotaţie.
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Soluţie: Observăm că f se poate scrie matriceal sub forma:

(59) X ′ = AX →

x′y′
z′

 =


1
3

1−
√

3
3

1+
√

3
3

1+
√

3
3

1
3

1−
√

3
3

1−
√

3
3

1+
√

3
3

1
3

 ·
xy
z

→ f morfosm

Mai avem de verificat dacă matricea A ete ortogonală:

(60) AAT =


1
3

1−
√

3
3

1+
√

3
3

1+
√

3
3

1
3

1−
√

3
3

1−
√

3
3

1+
√

3
3

1
3

 ·


1
3

1+
√

3
3

1−
√

3
3

1−
√

3
3

1
3

1+
√

3
3

1+
√

3
3

1−
√

3
3

1
3

 = I3 → f izometrie.

Studiem mulţimea punctelor fixe asociate izometriei:

(61) f(x, y, z) = (x, y, z)→ (A− I3)X = O3 →

 − 2
3

1−
√

3
3

1+
√

3
3

1+
√

3
3 − 2

3
1−
√

3
3

1−
√

3
3

1+
√

3
3 − 2

3

 ·
xy
z

 =

0
0
0


Se observă că det(A− I3) = 0 deci sistemul este compatibil nedeterminat. Alegem

(62) δ =

∣∣∣∣∣ − 2
3

1−
√

3
3

1+
√

3
3 − 2

3

∣∣∣∣∣ =
2

3
6= 0→ rang(A− I3) = 2 < 3

Avem x, y necunoscute principale şi z = t ne cunocuta secundară. Sistemul devine:

(63)

{
− 2

3x+ 1−
√

3
3 y = − 1+

√
3

3 t
1+
√

3
3 x− 2

3y = − 1−
√

3
3 t

Se obţine x = y = t deci o infiniate de soluţii toate aparţinând drepteide ecuaţie:

(64) d :


x = t,

y = t,

z = t

Mai avem de determinat unghiul rotaţiei. Considerăm o schimbare ortonormată de baze astfel ı̂ncât ā = (1, 1, 1), vectorul
director al lui d, să devină primul vector al noii baze şi cele doua baze să fie la fel orientate. Urma lui f are ı̂n raport cu
noua bază matricea

(65) A′ =

1 0 0
0 cosθ − sin θ
0 sin θ cos θ


Cele două matrici sunt asemenea deci au acelaşi polinom caracterisic:

(66) pA′(λ) = det(A′ − λI3) = (1− λ)(λ2 − 2λ cos θ + 1),

deci avem valorile proprii 1, cos θ ± i sin θ.
Determinăm polinomul caracteristic pentru A. Acesta va avea valorile proprii 1, a ± ib. Determinăm valoarea unghiului
din condiţiile:

(67)

{
cos θ = a

sin θ = b

Avem:

(68) det(A− λI3) =

∣∣∣∣∣∣∣∣
1
3 − λ

1−
√

3
3

1+
√

3
3

1+
√

3
3

1
3 − λ

1−
√

3
3

1−
√

3
3

1+
√

3
3

1
3 − λ

∣∣∣∣∣∣∣∣ = (λ− 1)(λ2 + 1)

Obţinem valorile proprii λ1 = 1, λ2,3 = ±i. Deci:

(69)

{
cos θ = 0,

sin θ = 1
→ θ =

π

2
.

Exerciţiul 7. Determinaţi ecuaţia generală a planului

(70) π′ = ROy,π4 (π), π : x+ y + 2z + 1 = 0.



14

Soluţie:
Metoda I Se obsevă că P (0,−1, 0) ∈ π şi N̄π = (1, 1, 2). Prin urmare planul π′ va trece prin P ′ = ROy,π4 (P ) ( observăm

că P aparţine axei de rotaţie) şi va avea direcţia normală dată de N̄π′ = Rj̄,π4 (N̄π).

(71) ROy,π4 (P ) :

 x′

y′

z′

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ·
xy
z

 =


√

2
2 0

√
2

2
0 1 0

−
√

2
2 0

√
2

2

 ·
 0
−1
0

→ P ′(0,−1, 0).

Analog:

(72) Rj̄,π4 (N̄π) =


√

2
2 0

√
2

2
0 1 0

−
√

2
2 0

√
2

2

 ·
1

1
2

→ N̄π′ =

(√
2

2
+
√

2, 1,−
√

2

2
+
√

2

)
.

Scriem ecuaţia generală a planului π′ determinat de P şi direcţia normală N̄π′ :

(73) (π′) :

(√
2

2
+
√

2

)
x+ y +

(
−
√

2

2
+
√

2

)
z + 1 = 0.

Metoda II: Din ecuaţia generală a planului π scoatem ecuaţiile parametrice:

(74) π :


x = t

y = −t− 2s− 1

z = s

, t, s ∈ R.

Deci vectorii ū = (1,−1, 0), v̄ = (0,−2, 1) şi P (0,−1, 0) ∈ Oy determină planul π. Calculăm:

(75) ū′ = Rj̄,π4 (ū) =


√

2
2 0

√
2

2
0 1 0

−
√

2
2 0

√
2

2

 ·
 1
−1
0

 =


√

2
2
−1

−
√

2
2

 , v̄′ = Rj̄,π4 (v̄) =


√

2
2 0

√
2

2
0 1 0

−
√

2
2 0

√
2

2

 ·
 0
−2
1

 =


√

2
2
−2√

2
2


Obţinem ecuaţiile parametrice ale planului (π′)

(76) (π′) :


x′ =

√
2

2 t+
√

2
2 s

y′ = −t− 2s− 1

z′ = −
√

2
2 t+

√
2

2 s

, t, s ∈ R.

Exerciţiul 8. În raport cu un reper ortonormat pozitiv R =
{
O; ī, j̄, k̄

}
ı̂n E3, scrieţi ecuaţiile următoarelor rotaţii:

(1) rotaţia ı̂n jurul axei Ox, de unghi orientat α = π
3 ,

(2) rotaţia ı̂n jurul axei Oy de unghi orientat β = −π2 ,
(3) rotaţia ı̂n jurul axei Oz de unghi orientat γ = π

4 .

Temă:

Exerciţiul 9. Determinaţi ecuaţiile următoarelor izometrii ı̂n E3:

(1) mişcarea elicoidala ROy,π6 ◦ tū, ū = 4j̄;

(2) rotosimetria Sπ ◦ROx,π4 , π : x− 4 = 0;

(3) alunecarea tā ◦ Sα, ā = −ī+ j̄, α : x+ y + 1 = 0.

Temă:

Exerciţiul 10. În spaţiul afin euclidian orientat E3 se dau, ı̂n raport cu un reper ortonormat pozitiv R =
{
O; ī, j̄, k̄

}
,

dreptele

d :
X

2
=
Y − 2

2
=
Z

4
, δ :

X

4
=
Y − 1

1
=

Z

−1
şi planul α : X + 2Y − 2Z + 1 = 0.

(1) Scrieţi ecuaţiile simetriei ortogonale Sd faţă de dreapta d şi ecuaţiile simetriei ortogonale Sα faţă de planul α.

(2) Verificaţi că cele două simetrii ortogonale sunt aplicaţii involutive.

(3) Apoi determinaţi ecuaţiile lui Sd(δ) şi Sα(δ).
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