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Varietati diferentiabile: definitie si exemple

Fie M un spatiu topologic.
Definitia 7.1 M se numeste local euclidian de dimensiune n daca

Vpe M,3U;c M,peU, 3Fp:U - p(U) ER” homeomorfism.

Definitia 7.2 M se numeste varietate topologica de dimensiune n daca

e ) este local euclidian de dimensiune n
e M este separat Hausdorff

e M admite o baza numerabila a topologiei {U; }ien.

Observatie. Un spatiu euclidian este evident separat. Insa un spatiu
local euclidian nu este neaparat separat.
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Definitia 7.3 O pereche (U, ¢) formata dintr-o multime deschisa U ¢ M
si homeomorfismul ¢ : U - ¢(U) c R™ ce apare in conditia de a fi local
euclidian se numeste harta locala pentru M. Multimea U este domeniul
hartii locale (U, @), iar ¢ este homeomorfismul hartii locale.

Pentru un punct p € U avem ca p(p) € R™; avem deci o(p) = (x*(p),...,z"(p)).

Functiile x!, ..., 2" sunt functii continue pe U numite functiile coordonate
in harta locala (U, ) sau, simplu, coordonate locale.

Notatie: (U,¢) = (U,x!,...,z") = (U, [x])
Fie (V,v) = (V,y!,...,y") o alta harta locala pe M.

Daca U nV # @ atunci avem schimbarea de harti locale

Yo tip(UnV)>yp(UnV), y'=fi(z',...;2"), i=1,...,n.

Figura 7.1: Schimbare de harti locale pe M

Definitia 7.4 Spunem ca hartile locale (U, ¢); (V,¢) pe M sunt compa-
tibile de clasa C*, 0 < k < o0, daca fie UnV =g, fie UnV # @ iar ¢!
este un difeomorfism de clasa C*.

Definitia 7.5 O structura diferentiabila neteda pe o varietate topologica
de dimensiune n este data de o familie A = {(Uy, ¥a) }aer de harti locale
ce satisface:
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(1) UUy=M

ael

(2) YV a,Bel, (Ua,pa) si (Us, ) sunt compatibile de clasa C*

(3) VY (V,) o harta locala pe M compatibila cu V harta locala (U,, ¢, ) €
A, atunci (V,¢) € A.
Familia A se numeste atlas complet.

O familie de harti locale A ce satisface doar (1) si (2) se numeste
atlas.

Definitia 7.6 O wvarietate diferentiabila de dimensiune n este o varietate
topologica de dimensiune n impreuna cu o structura diferentiabila.

Propozitia 7.1 Fie M o varietate topologica de dimensiune n si Ay un
atlas pe M. Atunci 3! o structura diferentiabila A 2 Ay. Prin urmare, o
structura diferentiabila poate fi data printr-un atlas care NU este complet.

Observatie. Pe o aceeasi varietate topologica pot exista mai multe struc-
turi diferentiabile.

De exemplu sa consideram M =R cu topologia uzuala. Fie A, = {(R,id)}
un atlas ce defineste o structura diferentiala. Fie Ay = {(R,¢)}, ¢ : R > R,
©(t) =13, un alt atlas ce defineste o (alta) structura diferentiala.

Intrebare: Coincid cele doua structuri?

Pentru a raspunde la intrebare, sa studiem compatibilitatea:
idop 1R =R, (ido@ 1) (t) = ¥/t

Ar trebui sa avem un difeomorfism, insa aplicatia nu este derivabila in 0.

Prin urmare, cele doua structuri sunt distincte.
Exemple de varietati diferentiabile sunt furnizate in primul rand de

e R” cu topologia indusa: A = {(R",id)}

e D c R” cu topologia uzuala: A= {(D,id)}
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e subvarietati regulate in spatii euclidiene: schimbarile de parametrizari
reprezinta schimbari de harti locale.

Subvarietati regulate in R*

Daca n <m atunci R” c, ,, R™ cu identificarea
iY

R™ = {(u,0) € R” x R™™} c R™

={xeRm : x”*lz---za:”=0}.

Fie M c R™ o submultime si py € M.

Definitia 7.7 Spunem ca M satisface conditia de subvarietate regulata
de clasa C* si dimensiune n in punctul p, daca 3

- 0 vecinatate cubica V e C™(0) a lui 0 in R™

- o vecinatate U a lui py in R™

- un C*—difeomorfism F:U -V a.i. F(py)=0si F(MnU)=R*nV.

Figura 7.2: Difeomorfism de indreptare: subvarietati regulate

ul = fl(xt,... am)

um = fr(zt, .. am)

peMAU R O

0= fr(at,...,am).



VARIETATI 5 M. I. Munteanu

Ultimele m —n componente ale lui F' se anuleaza in punctele lui M nU.

M este subvarietate requlata de dimensiune n in R™ daca satisface conditia
de subvarietate regulata (de clasa resp.) in oricare din punctele sale.

n =1 curba in R™ n = 2 suprafata regulata in R™
n=1m =2 curba in plan n =2 m = 3 suprafata in spatiul euclidian
n =1 m =3 curba in spatiu m =n + 1 hipersuprafata regulata in R"*+1.

Teorema 7.1 Urmatoarele afirmatii sunt echivalente:

(1) M subvarietate regulata de dimensiune n in R™

(2) Vpe M, 3IW eV(p), 3f*L, ..., fm™ functional independente pe W a.i.
Mn W : fn-%—l — .= fm =0

(2) Vpe M, 3W eV(p), 3 F submersic F: W - R™ " ai. MW : F=0

(3) Vpe M, 3 W eV(p), 3 V' o R?, 3 : V' - R™ scufundare a.i.
r(V')=MnaW '

(3) MW ={(ul,...,u", k" (u),..., h"(u)), ue W cR"}.

Observatie. Itemii (2) si (2) dau reprezentarea implicita a subvarietatii.
Conditia (3) da reprezentarea parametrica, iar conditia (3) da reprezentarea
explicita a subvarietatii.

Exemple.

e Sfera S™ este subvarietate regulata de dimensiune n in R7+1,
e Cercul S! este subvarietate regulata de dimensiune 1 in R2.

e Grupul liniar general GI(n,R) (al matricilor inversabile)este vari-
ctate diferentiabila de dimensiune n? (fiind deschisa in M"(R) = R™*.

e Grupul special liniar SI(n,R) este subvarietate regulata de dimensi-
une n2 -1 in M"*(R).

e Grupul ortogonal O(n) si grupul special ortogonal SO(n) sunt sub-

-1
varietati regulate de dimensiune %) in M"(R).
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Modalitati de a obtine noi varietati diferentiabile:

@ produs direct

Teorema 7.2 Fie M, si M, doua varietati diferentiabile de dimensiuni
ny, respectiv ng. Atunci produsul lor direct M; x M, se poate organiza ca
varietate diferentiabila de dimensiune nq + n,.

Exemplu. Torul n—dimensional 77 := S! x ...S! este varietate diferentiabila
de dimensiune n.

@ factorizare

Fie (X, 7) un spatiu topologic. Consideram ~ o relatie de echivalenta pe
X si notam X/ ~ spatiul factor (spatiul cat). Avem proiectia canonica
m:X - X/ ~, m(x) =[z] (clasa de echivalenta).

Topologia cat. D deschisa in spatiul factor X/ ~ daca 7=1(D) este dechisa
in X, ie 7 1(D)er.

Pentru o submultime A ¢ X notam [A] = 771 (7 (A)) saturata lui A. Evi-
dent A c [A].

Propozitia 7.2 7 : X - X/ ~ este aplicatie deschisa daca si numai daca
relatia ~ este deschisa, adica saturata oricarei multimi deschise este de-
schisa: YA cy X, rezulta [A] ¢y X.

Propozitia 7.3 Fie 7 : X —> X/ ~ deschisa. Presupunem ca X admite
baza numerabila a topologiei. Atunci X/ ~ admite baza numerabila a
topologiei.

Definim in continuare graficul unei relatii:

Graf ~={(z,y) e X xX : z~y}c X x X.

Propozitia 7.4 Fie 7 : X - X/ ~ deschisa. Atunci X/ ~ este separat
Hausdorff daca si numai daca Graf ~ este o multime inchisa in X x X.

Exemplu. Spatiul proiectiv real RP™ sau P"(R) este o varietate diferentia-
bila de dimensiune n.
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Calcul diferential pe varietati

8.1 Functii diferentiabile

Fie M o varietate diferentiabila de dimensiune n si f : W c M —-Ro

functie. Daca (U, ) = (U,z!,...,2™) este o harta locala pe M astfel incat
UnW # @ atunci pentru orice p € U n W putem scrie

f(p)=fo¢op(p)=f?(2),
unde f¥:= fop™!six=p(p). Prin urmare, avem
fPre(UnW)cR" >R,

care reprezinta exprimarea locala a lui f in harta locala (U, ).

Daca (V,¢) = (V,y',...,y") este o alta harta locala astfel incat VnW + @
avem definita, in mod analog, fv.

Legatura intre cele doua exprimari, pe domeniul comun de definitie, este

fU=ffo(poy™).

Definitia 8.1 Functia f: W — R definita pe deschisul W c M se numeste
diferentiabila in p e W daca f¢ este diferentiabila in f(p).
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Observatie. Evident, definitia diferentiabilitatii NU depinde de harta
locala folosita.

Exemplu. Functiile coordonate 2 : U — R sunt diferentiabile pe U, adica
in orice punct din U.

Intr-adevar ziop~!: p(U) — R are exprimarea ziop~!(z!,... x") = 2'(p) =
2 deci este diferentiabila. De fapt, 2% o o~! este proiectia de la R” la R pe
componenta 7.

Un rezultat "invers”, consecinta a teoremei functiilor inverse, este urma-
torul:

Propozitia 8.1 Fie f1,..., fr : W — R un sistem de functii diferentiabile

) )

pe deschisul W din M. Presupunem ca pentru un punct py € W, exista
, D(f?,..., i

harta locala (U, ¢) = (U, x!,...,z") astfel incat (fl—f"”)(p(pg)) #0.

Atunci exista o harta locala (V1) in pg astfel incat primele k& coordonate

D(x!, ..., xF)
locale in aceasta harta sa fie functiile fi,..., f.

8.2 Aplicatii netede intre varietati

Fie N™ si M™ doua varetati diferentiabile si W < N. Fie F: W - M o
aplicatie (continua) si pg € W.

Definitia 8.2 F' se numeste diferentiabila de clasa C* in py daca

Fhl in py pe N: (Uyp)=(U,z',...;2"), UcW

Fhl in F(py) pe M: (V) =(V,y',...,y™), F(U)cV

astfel incat F = o Fopl:p(lU) c R* - (V) c R™ este diferentiabila
de calsa C*.

F se numeste diferentiabila pe W daca este diferentiabila in orice punct
din W.

Observatie. Definitia este corecta, in sensul ca nu depinde de hartile
locale folosite pe cele doua varietati:

Fi=toFop™ =y ) oFo(pp™).
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= % e - N7 |
S0 > —— (-
1+ = e

le T
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= =

o R'W\

Figura 8.1: F si F

Aplicatia F' se numeste reprezentarea lui F'in cele doua harti locale (U, ¢, )

st (Vah,y): )
F: oy>=ft....2"), a=1,...,m.

Exemplu. Pentru W =U i F = p: U — R": F este diferentiabila deoarece
p=idopop ip(U)—p(U), ¢ =idyw).

Compunerea. N i M % P
GoF
Avem imediat ci: Go F =G o .

Definitia 8.3 Fie N si M de aceeasi dimensiune. Aplicatia F': N - M se
numeste difeomorfism daca F' este bijectiva si F, F'-! sunt diferentiabile.
In aceasta situatie, N si M se numesc difeomorfe.

Exemplu. Sa ne amintim exemplul din cursul precedent: R poate inzes-
tartd cu doud structuri de varietate "diferite”: N = (R, f), f(t) = ¢* si
M = (R,id). Fie F: N - M, t » t3. Rezulta F'=ido F o f~1 = 1.

Astfel, exista un difeomorfism intre cele doua structuri distincte pe R.

Problema. Cate structuri nedifeomorfe exista pe o varietate topologica data?

®© .0
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Definitia 8.4 Rangul unei aplicatii F' : W S N — M diferentiabile in
p e W este dat de

rang F(p) :=rang DF(z), x=¢(p)

unde (U, ¢, x) este o harta locala in p.

Observatie. Definitia este buna deoarece schimbarile de harti locale pe
varietati sunt difeomorfisme (locale). Prin urmare, rangul este definit de

ot ... ot

ozl o™
DF(x) =

oo

ozl o™

Teorema 8.1 Presupunem ca rangul rangF'(p) = k este acelasi in orice
punct pe W c N. Atunci pentru orice py € W,

3 (U,p,z!,...,2™) harta locala in py
3 (V4,9 ..., y™) hartd locald in F'(po)

astfel incat F(z!,...,z") = (x1,...,2%,0,...,0).

Demonstratie. Ideea demonstratiei este folosirea teoremei de inversare
locala. O
Definitia 8.5 Fie F': N® — M™ o aplicatie diferentiabila i p € V.

e [ este imersie in p daca rangF'(p) este maxim si este egal cu n < m.

F' este imersie daca este imersie in fiecare punct p e N.

e F este scufundare daca F' este imersie gi F': N - F(N) este homeo-
morfism; aici F'(IV) are topologia indusa; proprietatea este globala.

e F este submersie in p daca rangF'(p) este maxim si este egal cu
m <n. F este submersie daca este submersie in fiecare punct p € N.
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Figura 8.2: imersii; scufundari

8.3 Vectori tangenti intr-un punct la o
varietate

Pentru a intelege notiunea, ne amintim mai intai ce se intampla in R? gi
in R3. S& analizam mai intai urmatoarele doua figuri:

10

|
e ]
I a r:“h/> \ i
o = \B\H—\c\ T

\

Figura 8.3: curbe; vectori tangenti — in plan

Data curba parametrizata v : I — R? astfel incat v(0) = po, atunci directia
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tangenta in po la y(I) este data de ~/(0) = fli—;’(()).

Figura 8.4: curbe; vectori tangenti — in spatiu

Data curba parametrizata v : I — R3 astfel incat v(0) = po, atunci directia
tangents in p la (1) este data de 7/(0) = 22(0). Mai mult, daci avem o
suprafata parametrizata, un vector tangent intr-un punct pg la suprafata
este dat de un vector tangent la o curba situata pe suprafata care trece
prin acel punct.

Fie acum M™ o varietate diferentiabila si p € M. Consideram in p o harta
locala (U, ¢, x). Fie v: I - U o curba pe M prin p; mai precis

0el,y(I)cUn~(0)=p.

Atunci avem definita o curba in ¢(U) c R?, anume

oy: I - pU), xt=2xi(t), tel.

Figura 8.5: vectori tangenti intr-un punct la o varietate
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Consideram
(¥7)(0) = (pv(0), D) (0)(1)) = (a',..., 2", 3",...,@").
—_—— [ S —
este doar o notatie HINIING vector legat in z=p(p)

Notatie 7 = %°(0),i=1,...,n.

Daca se considera alta harta locala in p pe M, anume (V,¥,y, ..., y")
atunci

(1¥7)(0) = (¥7(0), D(17)(0)(1))= (3. D(™)o(57(0)))

unde y = (y',...,y"), v = (z!,...,2"), iar (gy)(0) = (&!,...,2") (doar
ultimile n componente).

Dorim sa definim notiunea de vector tangent in p la M; mai precis un
obiect care sa nu depinda de harta locala folosita (o ”sageata universala”).

Fie o alta curba a: J — M, 0 € J cu «(0) = p o alta curba diferentiabila
prin p astfel incat

(pa)(0) = (£7)(0).
Sa vedem ce se intampla in cealalta harta locala in p. Vom analiza numai
ultimile n componente:

(¢a)(0) = D(¥yp ") (2)($a(0)) = D(vp™") () (#7(0)) = (¥7)(0).

Asadar, daca (pa)(0) = (¢y)(0) intr-o anumita harta locala, ele coincid
in orice harta locala. Prin urmare, nu este esentiala curba, ci vectorul din
Rn.

Sa vedem ca, pentru orice vector £ € R™ exista o curba ~ diferentiabila prin
p in M astfel incat (¢y)(0) = ¢ (de fapt (pa)(0) = (z,£)).

In ¢(U) consideram un segment deschis dat de z+t¢, t € I (interval suficient
de mic).

Consider

yil=UcM, ~(t)=¢ Y x+t).

Concluzia este ca pentru orice vector £ € R™ exista o curba 7 prin p astfel
incat (£7)(0) =¢&.
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Figura 8.6: Curba in ¢(U) cu vector tangent dat

Astfel, in p € M, consideram multimea perechilor (¢, ), unde ¢ este home-
omorfismul corespunzator unei harti locale (U, ) in p, iar £ € R*. Pe
aceasta multime introducem o relatie de echivalenta

0.~ W)y = n=D(be ) (@)(&)
unde n € R, z = p(p).

Definitia 8.6 Numim vector tangent in p la M o clasa de echivalenta

[(¢,€)p]-

Notatie. [(©,£),] =@, &]p-

In particular, pentru o curba diferentiabild v si pentru € = (g7)(0) se
obtine vectorul tangent in p la imaginea geometrica y(I) a lui 7 si notam

7(0) = [, (¢7)(0) -
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Calcul diferential pe varietati (cont.)

9.1 Spatiul tangent intr-un punct
la o varietate

Definitia 9.1 Numim spatiul tangentin p la M si notam 7, M, multimea
vectorilor tangenti in p la M, adica

T,M ={[¢,&], : (U,p) harta locala in p pe M, £ e R"}.

Fie acum (U, ¢) o harta locala in p, fixata.

Propozitia 9.1 Corespondenta R" 5 £ — [, &], € T,M este o bijectie.

Intrucat pe R™ avem structura de spatiu vectorial, vom ”transporta” struc-
tura pe 1, M:

(1) [907 gl]p +<P [997 52]10 = [(707 51 + 52]]?
(2) ") [907 g]p = [907 ag]l)
unde &, & e R g1 aeR.

Aparent, operatiile definite pe 7,M (adunarea si inmultirea cu scalari)
depind de ¢. Insa, daca se considera

[.mlp = [, &y st [, m2]p = [0, &2]p

15
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avem
m =D ") (2)(&) sine = D(Pp™)(2)(&2)-

Astfel, ny +m2 = D(¢Yo1)(2)(& +&2), deci +, si +y coincid.

Analog se arata si pentru inmultirea cu scalari. Deci

structura de spatiu vectorial a lui 7, M definitd mai sus NU depinde de harta
locala folosita.

Notatii: X;, = [, &], = [0, D(¢7)(0)(1)]
Baza naturalda. Vom transporta acum baza canonica a lui R" pe T,M.

0
Astfel, daca (U, p,x!,...,2™) este o harta locala in p pe M notam (8_)
'/

sall o ) = [, eilp-

Atunci, pentru £ € R* avem descompunerea £ = {¥e;; prin urmare

0
oxt

Xp = [@7 g]p = [@a fiei]p = 51[907 ei]p N 52

p

care reprezinta descompunerea vectorului tangent X, in baza naturala

{ 0
0xtlp) iy,

Observatie. Daca se considera o alta harta locala (V,¢,y!,...,y") in p,
acelasi vector tangent X, se exprima [¢,n],, n € R*. Avem urmatoarele
schimbari (de baze gi de coordonate):

0 w0

iy~ 921 oyl (9.1)
j_ oy’ i
=55 (@)E (9.2)

. o,
Daca X, = 4(0) atunci & = dfe; si, prin urmare, ¥(0) = jzzf , unde
xtlp
p=7(0).
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9.2 Actiunea vectorilor tangenti asupra ger-
menilor de functii diferentiabile

Fie M™ o varietate diferentiabila, p € M, U,V doua vecinatati deschise a
lui p. Fie feC>(U) si g e C=(V).

Definitia 9.2 Spunem ca f si g definesc acelagi germene de functie dife-
rentiabila in p daca exista o vecinatate W deschisa a lui p, W c UnV,
astfel incat f,, =gy, -

Avem astfel definita o relatie de echivalenta (pe multimea functiilor dife-
rentiabile "in jurul lui p), iar clasele de echivalenta se numesc germeni de
functii diferentiabile in p.

Notatii. [f], (ca orice clasa de echivalentd); insd prin abuz vom nota tot
cu f. Multimea germenilor in p se noteaza cu C*(p).

Consideram:
e (U p,xt, ..., 2") harta locala in p pe M;
o v:I->U,~(0)=p, o(p) =2;

Xp =[e,€lp = [z, ($7)(0)], § € R
e f:U — R functie diferentiabia in p.
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Evident f o~ : I - R nu depinde de harta locala (U,y) si astfel nici
d

%(fof}l)‘tzo'

Pe de alta parte, avem fo~y = fo (plp)oy= ffo(py). Astfel

%(f °)| = df* o DN (0)(1) = df# (2) ().

d
astfel, E( fo 'y)|t:0 nu depinde de curba aleasa .

Definitia 9.3 Actiunea vectorului tangent X, asupra germenelui de functie
f este data de
d(f o)

dt
unde ¢(p) =z st X, = [¢,{],.

Xpf = (0) = df*(x)(8),

Proprietati. Se pot demonstra urmatoarele proprietati:
L (Xp+ V) f = Xp [+ Yy f;
2. (aXp)f=a Xpf;
3. Xp(f+9) = Xpf + Xy
4. Xy(af)=aX,f, aeR;

5. Xp(fg) = f(p)Xp(9) +9(p) X,(f) (Liebnitz).

Caz particular. Daca X, = [¢, €], = —| , atunci
8x’ D
0 ofe
= = 14 - ) =
X = o] =) -

—
derivata partiala

Spunem despre X, ca defineste o derivare pe C*(p).

Dam acum o reciproca a rezultatului demonstrat mai sus, care reprezinta
de fapt un alt mod de a introduce vectori tangenti intr-un punct la o
varietate.
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Propozitia 9.2 Fie M" o varietate diferentiabila, pe M ¢i D: C*=(p) - R
o aplicatie R-liniara, care verifica regula de tip Leibnitz in p:
D(fg) = f(p)Dg+ g(p)Df. Atunci exista gi este unic un vector tangent
in p la M care defineste aceeasi actiune asupra germenilor de functii din
C>=(p) casi D.

Prin urmare, vectorii tangenti sunt caracterizati de derivari asupra germe-
nilor de functii diferentiabile.

9.3 Aplicatia liniara tangenta

Ideea acestei notiuni este de a "transporta” vectori tangenti de pe o vari-
etate pe alta printr-o aplicatie diferentiabila. Fie asadar F' : N* - M™ o
astfel de aplicatie intre doua varietati.

Fiepe N, (U,p,x',...,2") o harta locala in p pe N i (V,¥,y',...,y™) o
harta locala in F'(p) pe M astfel incat F(U) c V.

Dorim sa definim o aplicatie intre T, N i T,y M.
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Consideram asadar X, € T,N, X, = [¢,{], si fie v: I - U astfel incat
p=7(0) si £ = D(¢y)(0)(1). Astfel, F'y este o curba diferentiabila in V/
prin F(p). Calculam (Fv)(0) = [¢,n]p@p):
0= D(0F)(0)(1) = D(wFe™¢9)(0)(1) = DE(D(7)(0)(1))
= DF()(8).
Am obtinut astfel un vector tangent in F'(p) la M.
Definitia 9.4 Aplicatia
Fup TN — TrgyM
Xp=[e,&lp — [, DF()(E)]rw)

se numeste aplicatia liniara tangenta a lui F.

Observatie. I, este intr-adevar o aplicatie liniara.
Alte notatii: DF(p), T,F sau F'(p).
Observatie. Definitia nu depinde de hartile locale folosite.

Propozitia 9.3 Daca N, M, P sunt varietati si £, G sunt aplicatii ca in
figura

atunci (Go F).p, = Guppy o Fup.
Aplicatie. S3 se descrie spatiul tangent ntr-un punct la sfera S™.

Propozitia 9.4 Fie F': N - M o aplicatie diferentiabila intre doua va-
rietatl. Fie p e N, X, € T,N si g € C*(F(p)) (un germene de functie
diferentiabila). Atunci

(F*,po)g = Xp(g o I).
Demonstratie. Daca X, = [¢,&],, atunci avem F\ , X, = [, 7] r() unde
n=DF(z)¢. Calculim
(F.pXp)g = dg’(y)(n) = d(g~") DF ()€ = (g Fo~ ) ()¢
=d(gFp™")(x)§ =d(gF)#(x)€ = Xp(go F).
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Exprimari in coordonate. Daca notam coordonatele in cele doua harti
locale cu z = (z!,...,2") sty = (y',...,y™), respectiv, atunci avem repre-
zentarea lui F' in cele doua harti

F yo‘:fc“(xl,...,q:”)7 a=1,...,m.

Diferentiala se scrie matricial

of! of!
ort  Oan
DF(;E) -
afm afm
orl  Ozn

Pentru X, = [¢,¢], = fi%L avem

Fop X, = [0, DE(2)€]py = €[4, DF(x)ei]p(y)

= ¢, —%]:: GQ]F(p) baza canonica in R™
A o 0
_ i 9f / _ ¢i9f
=% [V ealre) = €5
5 ox |:¢ ]F(P) 5 ox aya F(p)
—_—

baza naturald in T'p(,) M

Exemple.

1. Fie (U,p,z% ...,2") o harta locala pe M i p € M. Consideram
aplicatia
p:U—p(U)cR",

pentru care ¢ = 1,y o o™ = 1,y. Aplicatia liniara tangenta in

p este
Pupt TpM — T R™ = R”

Xp=[0,&]p — 0upXp =&,

Observatie. Avem, de asemenea, ca
oL R —T,U =T,M

§ — QOI}:C = [QO, f]P
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2. Fiey:1 c R — M o curba neteda. Atunci

Varto * Ttgl =R = Ty M

0

57l = (e 1 = 10 70 (1) =7/ (o) = [, (97)"(t0) hyeo)-

to

Propozitia 9.5 Fie F': N* - M™, pe N. Atunci

(a) I este imersie in p daca si numai daca Fy, : T,N - T M este
injectiva.

(b) F este submersie in p daca si numai daca F, ,: T,N = Ty, M este
surjectiva.
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Calcul diferential pe varietati (cont.)

Fie V' un spatiu vectorial real. Atunci dualul sau este un spatiu vectorial
real, definit astfel

V*={6:V >R : 0 aplicatie liniara}.

10.1 Spatiul cotangent si aplicatia liniara cotan-
genta

Fie M™ o varietate diferentiabila, p € M si T}, M spatiul tangent in p la M.

Definitia 10.1 Numim spafiul cotangent in p la M gi notam Ty M, dualul
spatiului tangent in p a M, adica

« ) ) o
TyM={0,:T,M - R : 0, aplicatie liniara}.
Un element 6, din Ty M se numeste vector tangent sau covector tangent.

Observatie. Spatiul 7y M se organizeaza in mod natural ca spatiu vecto-
rial real de dimensiune n.

Vom pune in evidenta niste covectori ”speciali”.

Fie f € C>~(p) (germene de functie diferentiabila in p). Definim
df, € T,M prin df,(X,) = X, f.

23
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Evident ca df, este liniara.

Avem, 1n plus, ca

® d(f+g)p=dfy+dg,

® d(af), = adf,

® d(fg)y = f(p)dgp +9(p)dfp, [,9€C=(p), acR.

Structura de spatiu vectorial real este cea pe care o avem din cadrul general
(de la dualul unui spatiu vectorial real). Cautam o baza in T M:

Consideram functiile coordonate z* : U -~ R, i =1,...,n intr-o harta locala
(U,p,2") in p. Atunci dx}, € T> M si formeaza o baza:

daj(X,) = X, (a') = ])(xz fj () g

v i o
Rezulta dzl (557

) =0 adica {dx}} este duala bazei naturale din 7,M .
p

Observatie. Daca 0, € T; M atunci exista n numere reale 6; astfel incat
0, = 0;dxl,.

Observatie. Daca f € C~(p), atunci df, = r)dx),.

81‘1 (

Observatie. Intr-o altd hartd locals (U ,$,T) putem considera acelasi
scenariu. Trecerea de la o harta locala la alta se face astfel

5 * 3 — Dyt — .5 1
Daca 6, € T M se scrie 0, = 0;dx}, = 0;d7, atunci

oI
i al()J

10.2 Aplicatia liniara cotangenta

Fie F': N™ - M™ o aplicatie diferentiabila, p € N, iar T,N si Tpp M
spatiile tangente corespunzatoare. Fie TN si T;(p)]\/[ spatiile cotangente
(obtinute prin dualitate).
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Pentru aplicatia liniara tangenta F, ,: T,N — T, p,)M consideram duala

Wrp) = Fywep)

F* . * M N T*N’
) ! (F;wF(P))(Xp) = wF(p)(F*prp)‘

p T F(p

Atentie! Se noteazd F; si NU F;(p)!

Propozitia 10.1 Fie F': N — M o aplicatie diferentiabila gi g € C=(F(p)).
Atunci Fydgp,) € Ty N si

Frdgppy =d(go F)p.

Demonstratie. Evident Fjdgr(,) este liniara pe T,N. Este de asemenea
evident ca g o I’ definegte un germene de functie diferentiabila pe N.

Consideram X, € T, N si facem urmatorul calcul:

(5 dgre))(Xp) = dgre) (FepXp) = (FipXp)(9) = Xp(goF) = d(goF),(Xp).
Cum X, a fost ales arbitrar, rezulta concluzia. O

Observatie. Notam F*g := g o F' aplicatia indusa la nivel de functii.
Putem rescrie relatia din propozitia precedenta

* A *
Fyod=doF,
(cei doi "operatori” comuta). Vom reveni!

Compunerea.

Propozitia 10.2 Daca N, M, P sunt varietati si I, G’ sunt aplicatii ca in
figura

v F o oag G

N—M——7P

atunci (Go F)* = Fy o GMF(p)'

Exprimari in coordonate locale.

Fie (U, p,2") si (V,4,y*) doud harti locale in p € N si F((p) € M, respectiv.
Scriem wp(p) = wadylo‘,(p . Daca F': y>=fo(al,...;2"), a=1,...,m este
exprimarea lui F' in cefe doua harti atunci

afe

(z)dx!

* _
F,pu)p(p) = Wy p
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10.3 Spatii de tensori

Notiunea de tensor reprezinta o generalizare a notiunii de vector si covec-
tor, respectiv. Vom insista pe cazul tensorilor de ordinul al doilea, urmand
ca extinderea pentru ordin arbitrar sa se faca in mod natural.

10.3.1 Tensori covarianti de ordinul al doilea

Definitia 10.2 Un tensor covariant (de ordinul al doilea) in p pe M este
o aplicatie biliniara pe 7, M

wp: T,M x T,M - R,

adica wy, € Lo(T,M).

Notatie. Multimea tensorilor covarianti de ordinul al doilea in p se
noteaza T, (M).

Cum putem construi un tensor de ordinul al doilea in p? Fie 6} si 62 doi
covectori in p (adica apartin spatiului Ty M); definim produsul tensorial

9;&903  T,M xT,M - R
(XmY;)) = 9117(Xp)912>(yp)-

Propozitia 10.3 Produsul tensorial este un tensor (adica o aplicatie biliniara)
covariant de ordinul al doilea 1n p.

Proprietati. Avem
* 0@ (02+03)=0L002+0, 03
x  (01+02)®03=0L005+0203;
*  (ab))®02=0L® (ab2)=al}® 02, acR.
Teorema 10.1 Multimea 7'2(_),)(]\/_7) se poate organiza ca spatiu vectorial

real de dimensiune n?. Daca (U, ¢, z?) este o harta locala in p pe M atunci
sistemul {da}, ® dry, : 4,5 =1,...,n} formeaza o baza in T, (M).
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Demonstratie. Demonstratia se rezuma la calcule simple de algebra
liniara.
Astfel, daca w, € T;,(M), atunci exista n? numere reale w;; astfel incat

= . dri J s
wp = wydr), ® dry. Aceste numere reprezinta
(52, 31,
wij =wpl == » 5= )

J b 8$Z p7 afL‘J p

Avem astfel posibilitatea introducerii unei alte notatii pentru Lo(7,M) si
anume

Ly(T,M) =TyM®T; M = T;M.
Simetrie / antisimetrie.

Definitia 10.3 Un tensor covariant w, de ordinul al doilea in p pe M se
numeste

e simetric daca wy(X,,Y,) = wp(Yy, Xp);
o antisimetric daca w,(X,,Y,) = —wp(Yy, X,),
pentru orice X, Y, € T,M.

Notatii. Spatiul vectorial al tensorilor simetrici de ordinul al doilea se
noteaza cu Sz(7,M) si are dimensiunea n{n+l) Spatiul vectorial al ten-
sorilor antisimetrici de ordinul al doilea se noteaza cu Ap(7,M) si are

. . -1 .
dimensiunea % Avem evident

LQ(TPM) = SQ(TPM) @ AQ(TPM)

d 10 . .
Daca w, = 6, ® 6 atunci descompunem wj, in

e partea simetrica, obtinuta cu ajutorul produsului simetric a doi covectori
1
0, 05 (Xp, Yp) = 5 (05(X5)05 (V) + 6,(Y;)05(X5))

e partea antisimetrica, obtinuta cu ajutorul produsului antisimetric a doi
covectori

A2, ,) = (A, - B (IE(X,)
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Punem astfel in evidenta baze pentru cele doua spatii:

o pentru So(T,M):  {dxi - dr) : 1<i<j<n}
o pentru Ay(T,M):  {dxi A dr) : 1<i<j<n}.

Observatie. Daca 0, € TyM atunci 6, A6, =0.
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Calcul diferential pe varietati (cont.)

11.1 Spatii de tensori (cont.)

11.1.1 Tensori covarianti de ordinul al doilea (cont.)

Aplicatia liniara indusa.

Fie F': N* - M™, p € N §i wpp) un tensor covariant de ordinul al doilea
in F(p) pe M. Dorim sa "aducem” wp(,) in p pe N.

Fz?wF(p)(va Yp) = wWre) (FlpXp, FlpYp), VX, Y, € T,N.

Tensori covarianti de ordin arbitrar: Extindem produsul tensorial
astfel:

Pentru w, € T (M) si 0, € T° (M) definim
wy ® 0, € 7760+l,p(M)

wp®0p(X17p, ce ,X]w), Xk+1,p7 e ,X;HLP) = wp(XLp, - ,Xk7p)0p(Xk+17p, . 7Xk+l,p)-

29
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11.1.2 Tensori contravarianti de ordinul al doilea

Se definesc analog (prin dualitate): S, este un tensor contravariant in p pe
M dacd S, este o aplicatie biliniara pe Ty M x Ty M. Multimea tensorilor
contravarianti de ordinul al doilea pe M se noteaza 76?p(M ).

Local, intr-o harta (U, ¢, ), un tensor contravariat S, de ordinul al doilea
se scrie
0 0

S = S”— —
P 8:152 p 8:153 P

unde produsul tensorial se defineste analog.

Observatie. Definim X, : (M) - R, X,(w,) = w,(X,) pentru orice
wy € Ty (M).

11.1.3 Tensori micsti de ordinul al doilea

Un astfel de tensor (care va fi definit imediat) este o data covariant si o
data contravariant.

Definitia 11.1 Un tensor mizt (de ordinul al doilea) in p pe M este o
aplicatie biliniara pe T, M x T*(M)

Jp: T,M x T M - R,

adica J, € Lo(T,M, Ty M).
Notatie. Multimea tensorilor covarianti de ordinul al doilea in p se
noteaza T,',(M).

Cum putem construi un tensor mixt de ordinul al doilea in p? Fie 0, si X,
un covector, respectiv un vector in p; definim produsul tensorial

Op® X, : T,MxTyM—>R
(Y, wp) = 0, (Y )wp(Xp).

Propozitia 11.1 Produsul tensorial definit mai sus este un tensor mixt
de ordinul al doilea in p.
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Prin urmare, intr-o harta locala (U, p,x) in p pe M, un tensor mixt se
scrie

Jpzjj dl’%@@p.

‘ Schimbarea de harti locale. ‘ individual

Observatie. Se stie de la algebra liniara ca pentru un spatiu vectorial
V avem Lo(V,V*) ~ End(V'). Vom aplica acea teorie pe cazul tensorilor
micsti de ordinul al doilea.

Daca J, € T;',(M), atunci lui Jj, i se poate asocia J, : T,M - T,M (endo-

morfism). Sa stabilim legatura dintre cele doua obiecte J, si jp.

e Fie X, € T,M; atunci ijp € T,M. Pentru w, € Ty M, definim
wp(ijp) = Jp(Xp, wp)

relatie ce definegte in mod unic endomorfismul jp.

Prin urmare am definit o aplicatie, evident liniara, dela 7;', (M) la End (T, M)
data prin J, jp.

Intrucat dinensiunile celor doua spatii sunt egale (cu n?) rezulta ca ele sunt
izomorfe.

Caz special J, = 0, ® X,,; cine este jp?
Definim Wp(ij;)) = (0, ® X)) (Yp,wp) = 0, (Y, )wp(X,). Astfel
(0p ® Xp)Y), = 0,(Y}) X,

Local, dacd J, = J/ dzi, ® 52| atunci J, se defineste astfel
p

9
oxt

; 0

p b Oxd p‘

Jy

Prin urmare, coeficientii sunt aceiasi si astfel vom renunta la = pentru J,.

Schimbiri de coordonate. Fie (U, p,z) si (U, $,%) doui harti locale in
p, in care J, € T{ (M) are exprimarile

| 7.4 d 7b 170 0
Jp:Jz‘jdl‘p@%p JP:Jad‘$p®@p'
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Atunci

11.1.4 Tensori micsti de ordin superior

Punem in evidenta doar doi astfel de tensori

o T,eT, (M), T,: T,M xT,M xT;M - R, triliniara
Analog ca 1n cazul tensorilor de tip (1,1) pe M, adica din 7'11P(M)
putem gandi T, : T,M xT,M — T, M.

o RyeTS (M), T,: T,M xT,M xT,MxT;M — R, 4-liniara
Analog ca mai sus putem gandi R, : T,M x T, M x T,M — T,M.

Astfel de tensori vor fi intalniti in capitolul Conexiuni liniare pe varietati,
cand vom studia torsiunea si curbura unei conexiuni liniare pe M.

11.2 Fibratul tangent

Fie M™ o varietate diferentibila de dimensiune n. Dorim sa construim o
noua varietate diferentiabila strans legata de M.

Fie T'(M) = U T,M multimea tuturor vectorilor tangenti la M.
peM

Multimea T'(M) se numeste fibratul tangent al lui M, iar T,M se numeste
fibra in p. Momentan aceasta multime este una abstracta pe care vrem sa
definim o topologie si o structura diferentiala.

Definitia 11.2 Aplicatia 7 : T(M) — M care asociaza fiecarui vector
v € T(M) punctul sau de tangenta se numeste proiectia canonica. Mai
precis,

m(v)=p dacaveT,M.

Definitia 11.3 Daca A c M este o submultime a lui M, definim
T(M), =UT,M=n"1(A).
peA
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In cazul particular A = {po} avem T'(M); . =71 (po) = Tp, M.

Teorema 11.1 Multimea T'(M) poate fi organizata ca varietate diferen-
tiabila de dimensiune 2n. Daca M este de clasa C* (k < o0), atunci 7'(M)
este de clasa k- 1.

Demonstratie. (schita)

Vom defini topologia si structura diferentiala pe T'(M), evident pornind
de la M.

Fie A= {(Ua,pa)} un atlas pe M; go : Us = a(Ua) CR"

Definim @, : 71(U,) = po(Uy)xR™ € R*xR"; v > (gpa(ﬁ(v)), (goa)*m(l,)v).

Mai precis primele n componente sunt coordonatele punctului de tangenta
p = m(v), iar ultimele n componente sunt coordonatele lui v prin aplicatia
liniara tangenta (g ). p-

e Aratam cam obtinut un homeomorfism.

Daca (z,€) € vo(Uy) x R™ atunci exista unic p € U, astfel incat ¢(p) = .
Luam v = [¢q,&], € T (M),

Topologia: multimile deschise din T'( M) sunt reuniuni arbitrare de intersectii
finite de multimi de tipul ®-1(D) cu D c R?" (deschisd). Prin urmare ex-
ista baza numarabila a topologiei pe T'(M).

Deoarece ®;1(D) este deschis, rezulta ca @, este continua.

Avem:

1. m:T(M) - M este continua;

2. topologia definita anterior este separata Hausdorff.

Anticipam ca (7=4(U,), ®,) vor fi hartile pe T'(M).

Aplicatia @3 : 71(Uy) = pa(Us) x R ne da proprietatea de a fi local
euclidian de dimensiune 2n.

Compatibilitatea hartilor:

Fie (U, ) si (V,1) harti locale pe M si ®, respectiv ¥ definite ca mai sus.
Fie de asemenea v e 7} (U) nm~ 1 (V) cu 7(v) =pe UnV. Punem

o) =2, Y(pP)=y, @ pv=E§ Yupv=1.
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Atunci
®(v) = (,¢) U(v) = (y.n)-
Compunerea este data de relatiile
(W o t)(2,8) = ¥([p,&]p) = (v (x), D(dp™") (2)E)
= (et (2), e p i)
Deci Ud-! este difeomorfism.

Observatie. Referitor la clasa de diferentiabilitate, se observa ca, daca pe
prima componenta (vectoriala) avem k, atunci pe a doua componenta avem
k-1 deoarece se face o "derivare” prin operatorul diferentialei Fréchet, deci
clasa scade cu 1.

[]

Propozitia 11.2 Aplicatia 7 : T (M) — M este o submersie.

Demonstratie. Lucru individual.
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Calcul diferential pe varietati (cont.)

12.1 Campuri vectoriale pe varietati

Fie M™ o varietate diferentiabila, T'(M) fibratul siu tangent si fie
7w :T(M) - M proiectia canonica.

Definitia 12.1 O aplicatie diferentiabila X : W < M — T(M) cu propri-
etatea mo X = 1y se numeste camp vectorial pe W.

Precizari. Conditia din enunt se rescrie X (p) € T, M pentru orice p e W,
ceea ce Inseamna (pentru W = M) ca diagrama de mai jos este comutativa

XuM—T(M)
N\

Un camp vectorial este o ”colectie” de vectori tangenti care se schimba
diferentiabil la trecerea de la un punct la altul.

Exprimari locale. Daca (U, p,z!,...,2") este o harta locala pe M.
Definim, pentru fiecare i = 1,...,n, aplicatia

0
U ->T(M — —| €T, M.
axZ ( )7 p axl‘pe p

35
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0
oz

Cu alte cuvinte, —(p) := .

oz’ p
Trebuie sa demonstram ca aplicatia este diferentiabila (pe U). Pentru
aceasta, sa gasim reprezentarea aplicatiei de mai sus in doua harti, adica

J——

() > N (U)) = p(U) X BY, = oo

- o - 0
aZL’Z 895’

Avem )
1w 0 @

R" 52 i p & | = (z,¢;) e R*

8{[5112 ) Y

care este evident diferentiabila.

Am obtinut astfel, un set de n campuri vectoriale (locale) pe U.

Fie acum un camp vectorial arbitrar X; atunci X(p) € T,M, deci X(p) =

& a?ci ,unde & € R, Vi =1,...,n. Cand p variaza, atunci £ variaza, prin
p

urmare se obtin functii pe U (depind de p). Asadar,

e C=(U).

Multimea campurilor vectoriale pe o varietate M se noteaza cu x (M) sau

x(M).

Am vazut ca pentru vectori tangenti avem la dispozitie aplicatia liniara
tangenta pentru a-i "transporta” de pe o varietate pe alta. Formula acelasi
tip de problema si in cazul campurilor vectoriale:

Fie F : N* - M™ o aplicatie diferentiabila intre cele doua varietati. Pre-
supunem ca avem X un camp vectorial pe V. In general, NU putem defini
F,X. Totusi, daca F este un difeomorfism, definirea este posibila, anume
F, X este camp vectorial pe M. Mai precis,

(F.X)(q) = F.,X(p), unde p=F"(q).

Scris succint F, X = F, 0o X o F-1.
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12.1.1 Actiunea campurilor vectoriale asupra functiilor
diferentiabile

Fie X € X(M) un camp vectorial, iar f € C*(M) o functie diferentiabila
pe o varietate M.

Definitia 12.2 Actiunea campului X asupra functiei f este X F' € C* (M)
data prin

Xf:M->R, pe(X[f)(p):=Xpf,
unde X, = X(p) e T,M, iar f defineste germenele f (aceeasi notatie).

Proprietati. Pentru X, Y e X(M), f,ge C>*(M), a € R avem:

1. X(f+9)=X[f+Xg;
2. X(af)=aXf;

3. X(fg) = fX(9)+X(f)g;

4. actiunea lui X asupra lui f este locald, adica daca fj, = 0, atunci
X fiw =0;

5. (X+Y)f=Xf+Y[f;
6. (aX)f=aXf.

Propozitia 12.1 Fie D : C>°(M) — C>~ (M) cu urmatoarele proprietati:

e R-liniara;
e cste derivare ("verifica Leibnitz”)

e cste locala.

Atunci exista si este unic un camp vectorial X pe M care defineste aceeasi
actiune ca si D.
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12.1.2 Crosetul a doua campuri vectoriale

Fie (U, ,x) o harta locala pe M i fie f € c=(U). Atunci 7% f = %{;
o 0 , &fe .. 9 9, 0fe
owiow’ T ovan’ ™ gwan! T gwar?

Cele doua expresii sunt egale gratie legii de comutare Schwarz.

Apoi

Definitia 12.3 Fie XY € X(M). Numim crogetul campurilor vectoriale
X cu Y un alt camp vectorial notat [ X, Y], definit prin actiunea asupra
functiilor astfel:

[X.Y]f=X(Y[)-Y(X[), VfeC=(M).

Observatie. Crogetul [ X, Y] "masoara abaterea” de la regula de comutare

. 0 .
Schwarz pentru X,Y. Conform celor de mai sus, [—., —] =0, Vi, .
ox' OxJ
Observatie. Se arata ca, intr-adevar, [ X,Y] este un camp vectorial pe

M.
Proprietati. Crogetul a doua campuri vectoriale X, Y verifica:
(i) antisimetria: [V, X]=-[X,Y];
(ii) R-biliniaritate: [aX,bY ] =ab[X,Y], a,beR;
(iii) identitatea lui Jacobi: [X,[Y,Z]]+[Y,[Z,X]]+[Z.[X,Y]]=0[]
(iv) [fX.gY]=fo[X.Y]+f(Xg) Y-g(Y f)X, pentruorice f,g e C=(M).

Scriere locala. Daca (U, p,x) este o harta locala pe M, iar X, Y € X(U)

cu ajutorul careia X = X¢— gi Y = Y/— atunci
ox’ oxJ
QY7 0XIT\ 0
XY |=X"—-Y'"— -
[XY] ( oz’ oz’ ) i

Incheiem aceasta parte cu doua rezultate care implica aplicatia liniara
tangenta.

Lde argtat!
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Propozitia 12.2 Fie F' : N - M un difeomorfism, X,Y € X(NN) doua
campuri vectoriale pe N si g € C°(M) o functie diferentiabila pe M.
Atunci

1. (F,X)g=X(goF)oF1;
2. F[X,Y]=[F.X,F.Y]

12.2 Fibratul cotangent - forme diferentiale
pe varietati

Fibratul cotangent — schita.
Fie T*(M) = pELJJM Ty M multimea tuturor spatiilor cotangente pe M. Definim
proiectia canonica
T:T*(M)—> M, proiectia canonica
aplicatia care asociaza unui covector punctul sau de tangenta.
Teorema 12.1 Fibratul cotangent se poate organiza ca o varietate diferen-

tiabila de dimensiune 2n.

In continuare, teoria se dezvolta prin dualitate cu fibratul tangent.

Forme diferentiale — schita.

Definitia 12.4 O forma diferentiala pe M sau o 1-forma este o sectiune
in fibratul cotangent, adica 6 : M — T*(M) este o aplicatie diferentiabila
astfel incat 706 =1,,.

Multimea 1-formelor se noteaza cu A'(M) sau cu Q(M).

Scriere locald. Intr-o hartd locald definim 1-formele locale dzi : U — T* M
prin dz*(p) = dx},. Astfel, o 1-forma 6 se exprima local astfel 6 = 0;dz’, unde
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Definitia 12.5 O forma diferentiala (exterioara) de grad k pe M (sau o k-
forma pe M) este o sectiune diferentiabila in Ag(T(M)) adica
w: M - A(T(M)) astfel incat w(p) € Ap(T,M) (spatiul tensorilor de
grad k antisimetrici in p).

De fapt avem
w:X(M)x..xX(M)—>C°(M), (Xq,...,Xg) — w(Xq,..., X})

de k ori

total antisimetrica.

Proprietate. Fie w e A*(M) (o k-forma) si o € Sp (permutare). Atunci
wW(Xo@y, - Xowy) = €(0)w(Xq, ... ,- Xy).

De fapt, aceasta este gi conditia ca un camp tensorial covariant arbitrar sa
fie o k-forma.
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Calcul diferential pe varietati (cont.)

13.1 Fluxul unui camp vectorial

Fie M™ o varietate diferentiabila de clasa C'* i fie vy : I — M un drum C'*
diferentiabil pe M. Am definit in cursurile precedente notiunea de vector
tangent intr-un punct la o varietate cu ajutorul curbelor; prin urmare stim
notiunea de vector tangent la v intr-un punct al sau () = % e TyyM,
unde 4 = ¢y: I — o(U) c R™.

Fie X un camp vectorial de clasa C* pe M (de fapt X € X(U), unde U
este domeniu de harta locala).

41
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\ A
(®
&/
v \ -

Figura 13.1: X = ya% - xa%

Exemplu:

A

Definitia 13.1 Drumul v se numeste curba integrala a campului vectorial

X.

Sa scriem problema in coordonate locale folosind harta locala (U, ¢, 2, ... x").
Mai intéi avem: 4(t) = & (t) 22|, unde @i(t) = &

Daca X = Xj% pe U (cu X7 functii diferentiabile pe U) atunci

. 0
X(v(t)) = X¥(2M(t),...,z"(t -
(1) = X 0)a” )
Ecuatia ([13.1]) se scrie
P'(t) = X(2'(t),...,2"(t)), tel, i=1,...,n. (13.2)

Se obtine un sistem de ecuatii diferentiale ordinare autonom.
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In problema de mai sus consideram si o conditie initiala, anume:
7(0) = po = (@, -, 27)
(i.e. la momentul ¢ = 0 curba 7 "trece” prin punctul py).
Daca adaugam la (|13.2)) si conditia initiala
(CI) 2'(0)=af, i=1,...,n,

atunci din teoria ecuatiilor diferentiale obtinem ca exista (si este unica) o
solutie locala care depinde neted de conditiile initiale. Prin urmare, pe M
exista intotdeauna o curba integrala locala.

Sa dovedim acum unicitatea curbelor integrale ale lui X pe intreg domeniul
lor de definitie.

Fie v, : Iy = M si 7, : Iy > M doua curbe integrale ale lui X astfel incat
7(0) =12(0) = pg. Atunci cele doua curbe coincid pe I N Is.

Demonstratie.  [Schita] Multimea I; n I este un interval, deci este
conexa.

Fie I* = {t:v1(t) = v(t)}. Evident 0 € I*, deci I* este nevida.

Cum ~; si v sunt diferentiabile, deci continue, iar M este separat Haus-
dorff, rezulta ca I* este o multime inchisa.

Aratam ca I* este si deschisa in I; n Iy si in baza faptului ca acesta din
urma este conex, va rezulta ca [* = I} n .

Fie t € I*; consideram drumurile dy 5 = v 2(fo +t), pentru ¢ situat intr-un
interval suficient de mic ce contine originea. Se arata usor ca d; o sunt curbe
integrale ale lui X cu conditia initiala di(tg) = da(tg). In baza unicitatii
solutiei, ele coincid pe o vecinatate deschisa a lui ¢y. Deci I* este deschisa
mn I nls.

Fie I(po) intervalul maximal, care contine originea, domeniu de definitie al
curbei integrale a lui X cu conditia initiald v(0) = po: 1(po) = (t~(po),t*(po))
(limitele acestui interval pot fi §i —co, respectiv +o0).

Prin urmare, pentru fiecare p € M avem cate un astfel de interval deschis
I(p). Consideram:

D(X)={(t,p) eRx M :t(p)<t<t'(p)} cRx M.
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Definitia 13.2 Se numeste flurul campului vectorial X o aplicatie
&:D(X) — M

astfel incat pentru orice p € M aplicatia ¢, : I(p) — M data prin ¢, (1) =

®(t,p) este o curba integrala a lui X cu conditia initiala ¢,(0) = p.

Exemplul 1. Fie M =R?(z,y) si X = 2.

Atunci curba
Y(zo.y0) * R - M? /y(wo,yo)(t) = (170 +1, yO)

este curba integrala a lui X cu conditia initiald vz, .4,)(0) = (%0, yo)- In
acest caz I(xg,yo) = R pentru orice (xzg,y9) € M, prin urmare
D(X)=Rx M. Fluxul lui X este

O:RxM->M, &(tzy)=(x+ty).

Exemplul 2. Fie M =R*(z,y) si X = -y2 +T8%

Atunci curba
Viwowo) * R = M, Y(zoyo)(t) = (zocos t —yosin t,ypcos t+xpsin t)
este curba integrala a lui X cu conditia initiald v(z,.40)(0) = (20, 0). Vezi
figura de mai sus.
Si in acest caz I(xg,y0) = R pentru orice (zg,yo) € M, prin urmare
D(X)=Rx M. Fluxul lui X este
O:Rx M- M, &(t,x,y)=(xrcost-ysint,ycost +xsint).

Exemplul 3. (la seminar) Fie M =R3(z,y,2) si X = -y2 + 22 + a2,

g
unde @ € R. Sa se determine fluxul lui X.
Exemplul 4. Fie M =R?(z,y) si X = yQ%.

Sa determinam curbele integrale ale lui X: Conditia pentru v : I - M,
v(t) = (x(t),y(t)) sa fie curba integrala pentru X se scrie

=0,
v =12
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Impunem acum conditia initiala v(0) = (zo,y0). Se obtine

1(8) = (o 1@’—“)

Rezulta
(&£ +00) pentru yo € (~00,0)
I(%’yo) _ R pentru gy =0
(—oo, %) pentru yo € (0, +00).
Avem cAD(X) = U I(zgwe) X {(z0,%0)}
(zo,y0)eM

Definitia 13.3 Un camp vectorial X pe M se numeste complet daca
D(X) = Rx M. O varietate M se numeste completd daca orice camp
vectorial definit pe M este complet.

Observatie. Orice camp vectorial cu suport compact este complet si orice
varietate compacta este completa.

In continuare vom folosi si notatia ¢,(p) = ®(¢, p), analogi notatiei op(t),
cu observatia ca atunci cand fixam un argument in ® il vom scrie ca indice.

Propozitia 13.1 (fara demonstratie) Fie ¢,s € R, p € M astfel incat ex-
presiile (¢5 0 ¢;)(p), (dro ds)(p) si dirs(p) sa fie definite.

Atunci (¢s 0 ¢1)(p) = (¢r 0 ¢s) (D) = Pras(p).

Mai mult, aplicatia ¢, este un difeomorfism local.

Observatie. Avem go(p) = p si 6 (p) = 6.4(p).

Definitia 13.4 Familia de difeomorfisme {¢,;}; se numeste grupul 1-para-
metric local generat de campul vectorial X.
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Propozitia 13.2 Reciproc, avem ca orice grup 1-parametric pe M, adica
®: R x M — M aplicatie diferentiabila asa incat

o ¢;: M — M este un difeomorfism;
e ¢,:R — M este un drum diferentiabil a.i. ¢,(0) = p;

® ¢g0 ¢t = @0 O% = ©t+5
determina un camp vectorial pe M.

Vom vedea in continuare cum se ”transporta”’ fluxul de pe o varietate pe
alta prin intermediul difeomorfismelor.

Fie F': N* > M™ un difeomorfism. Fie X e X(N) in camp vectorial si
{¢¢}+ grupul 1-parametric local generat de acesta.

Intrebare. Ce grup 1-parametric local genereaza F,.X7
Raspuns. {U, = Fo®,0 F1},.

Demonstratie. [Schita de demonstratie.] Din faptul ca & este fluxul lui

X avem: r
®(0,p)=p, VpeN.

Fie g € M si fie p = F~1(q).
Avem imediat ca U (0,q) = F(®(0,F'(q))) = F(p) =q.
Apoi calculam:
5 (t.0) = GF(R(t,p)) = Frawp 5 (1.) = Fepn X (6:(p)) =
= (X)) (Fou(p)) = (EX)(FRF1(t,q)).

Propozitia 13.3 (Consecinta) Un camp vectorial este invariant prin grupul
sau l-parametric.

Demonstratie. [Schitd de demonstratie.]

Fie X un camp vectorial complet si {¢;}; grupul sau l-parametric:
¢y : M - M este un difeomorfism.
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Avem (¢r)sp: T,M = Ty, ()M
X(p) ¥ b pX(p) = X (0:(p))

Consider {¢s}s grupul l-parametric al lui X pe varietatea de plecare.
Atunci grupul 1l-parametic al lui (¢;).X (pe varietatea de sosire) este
G0 ¢so@;t (conform cu rezultatul de mai sus).

Calculam: ¢y 0 g0 ¢yt = o dsod_y = Prisy = Ps.

Acest grup 1-parametric determina un camp vectorial pe M (varietatea de
sosire) care este exact X.

Aplicatii ale fluxului. Derivata Lie: pentru functii diferentiabile, pentru
campuri vectoriale, pentru 1-forme, etc.

Derivata Lie | Definitie Formula
pentru . . .
functii | Lxf =l I(6i /- ) = (i Ny | Lxf=X]
chmpuri | (£xY)(p) =lim }((6-.Y)(p) =Y (8)) | LxY = [X.Y]
vectoriale
lorme | (Lx0)(p) =l H((@10) () ~0()) | (Lx0)(Y) = XO(Y) ~6([X.V])
campuri C
tensoriale

Derivata Lie duce un camp tensorial de tip (k,!) intr-un camp tensorial de

tip (k,1).
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