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Varietati diferentiabile: definitie si exemple

Fie M un spatiu topologic.

Definiţia 7.1 M se numeste local euclidian de dimensiune n daca

∀p ∈M,∃Ud ⊂M,p ∈ U, ∃ϕ ∶ U → ϕ(U) ⊂
d
Rn homeomorfism.

Definiţia 7.2 M se numeste varietate topologica de dimensiune n daca

• M este local euclidian de dimensiune n

• M este separat Hausdorff

• M admite o baza numerabila a topologiei {Ui}i∈N.

Observatie. Un spatiu euclidian este evident separat. Insa un spatiu
local euclidian nu este neaparat separat.
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Definiţia 7.3 O pereche (U,ϕ) formata dintr-o multime deschisa U ⊂M
si homeomorfismul ϕ ∶ U → ϕ(U) ⊂ Rn ce apare in conditia de a fi local
euclidian se numeste harta locala pentru M . Multimea U este domeniul
hartii locale (U,ϕ), iar ϕ este homeomorfismul hartii locale.

Pentru un punct p ∈ U avem ca ϕ(p) ∈ Rn; avem deci ϕ(p) = (x1(p), . . . , xn(p)).
Functiile x1, . . . , xn sunt functii continue pe U numite functiile coordonate
in harta locala (U,ϕ) sau, simplu, coordonate locale.

Notatie: (U,ϕ) = (U,x1, . . . , xn) = (U, [x])
Fie (V,ψ) = (V, y1, . . . , yn) o alta harta locala pe M .

Dacă U ∩ V ≠ ∅ atunci avem schimbarea de harti locale

ψ ○ ϕ−1 ∶ ϕ(U ∩ V ) → ψ(U ∩ V ), yi = f i(x1, . . . , xn), i = 1, . . . , n.

Figura 7.1: Schimbare de harti locale pe M

Definiţia 7.4 Spunem ca hartile locale (U,ϕ); (V,ψ) pe M sunt compa-
tibile de clasa Ck, 0 ≤ k ≤ ∞, daca fie U ∩ V = ∅, fie U ∩ V ≠ ∅ iar ψϕ−1

este un difeomorfism de clasa Ck.

Definiţia 7.5 O structura diferentiabila neteda pe o varietate topologica
de dimensiune n este data de o familie A = {(Uα, ϕα)}α∈I de harti locale
ce satisface:
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(1) ⋃
α∈I
Uα =M

(2) ∀ α,β ∈ I, (Uα, ϕα) si (Uβ, ϕβ) sunt compatibile de clasa C∞

(3) ∀ (V,ψ) o harta locala pe M compatibila cu ∀ harta locala (Uα, ϕα) ∈
A, atunci (V,ψ) ∈ A.

Familia A se numeste atlas complet.

O familie de harti locale A ce satisface doar (1) si (2) se numeste
atlas.

Definiţia 7.6 O varietate diferentiabila de dimensiune n este o varietate
topologica de dimensiune n impreuna cu o structura diferentiabila.

Propoziţia 7.1 Fie M o varietate topologica de dimensiune n si A0 un
atlas pe M . Atunci ∃! o structura diferentiabila A ⊃ A0. Prin urmare, o
structura diferentiabila poate fi data printr-un atlas care NU este complet.

Observatie. Pe o aceeasi varietate topologica pot exista mai multe struc-
turi diferentiabile.

De exemplu sa consideram M = R cu topologia uzuala. Fie A1 = {(R, id)}
un atlas ce defineste o structura diferentiala. Fie A2 = {(R, ϕ)}, ϕ ∶ R→ R,
ϕ(t) = t3, un alt atlas ce defineste o (alta) structura diferentiala.

Intrebare: Coincid cele doua structuri?

Pentru a raspunde la intrebare, sa studiem compatibilitatea:

id ○ ϕ−1 ∶ R→ R, (id ○ ϕ−1)(t) = 3
√
t.

Ar trebui sa avem un difeomorfism, insa aplicatia nu este derivabila in 0.

Prin urmare, cele doua structuri sunt distincte.

Exemple de varietati diferentiabile sunt furnizate in primul rand de

• Rn cu topologia indusa: A = {(Rn, id)}

• D ⊂
d
Rn cu topologia uzuala: A = {(D, id)}
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• subvarietati regulate in spatii euclidiene: schimbarile de parametrizari
reprezinta schimbari de harti locale.

Subvarietati regulate in Rk

Daca n <m atunci Rn ⊂s.sp Rm cu identificarea

Rn = {(u,0) ∈ Rn ×Rm−n} ⊂ Rm

= {x ∈ Rm ∶ xn+1 = ⋅ ⋅ ⋅ = xn = 0} .

Fie M ⊂ Rm o submultime si p0 ∈M .

Definiţia 7.7 Spunem ca M satisface conditia de subvarietate regulata
de clasa Ck si dimensiune n in punctul p0 daca ∃
- o vecinatate cubica V ∈ Cm

ε (0) a lui 0 in Rm

- o vecinatate U a lui p0 in Rm

- un Ck−difeomorfism F ∶ U → V a.i. F (p0) = 0 si F (M ∩U) = Rn ∩ V .

Figura 7.2: Difeomorfism de indreptare: subvarietati regulate

x ∈M ∩U ⊂ Rm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = f 1(x1, . . . , xm)
⋯⋯⋯
un = fn(x1, . . . , xm)
0 = fn+1(x1, . . . , xm)
⋯⋯⋯
0 = fm(x1, . . . , xm).
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Ultimele m − n componente ale lui F se anuleaza in punctele lui M ∩U .

M este subvarietate regulata de dimensiune n in Rm daca satisface conditia
de subvarietate regulata (de clasa resp.) in oricare din punctele sale.

n = 1 curba in Rm n = 2 suprafata regulata in Rm

n = 1 m = 2 curba in plan n = 2 m = 3 suprafata in spatiul euclidian
n = 1 m = 3 curba in spatiu m = n + 1 hipersuprafata regulata in Rn+1.

Teorema 7.1 Urmatoarele afirmatii sunt echivalente:

(1) M subvarietate regulata de dimensiune n in Rm

(2) ∀p ∈M , ∃W ∈ V(p), ∃fn+1, . . . , fm functional independente pe W a.i.
M ∩ W ∶ fn+1 = ⋅ ⋅ ⋅ = fm = 0

(2) ∀p ∈M , ∃W ∈ V(p), ∃ F submersie F ∶W → Rm−n a.i. M∩W ∶ F = 0

(3) ∀p ∈ M , ∃ W ∈ V(p), ∃ V ′ ⊂
domeniu

Rn, ∃ r ∶ V ′ → Rm scufundare a.i.

r(V ′) =M ∩W

(3) M ∩W = {(u1, . . . , un, hn+1(u), . . . , hm(u)), u ∈W ′ ⊂ Rn}.

Observatie. Itemii (2) si (2̄) dau reprezentarea implicita a subvarietatii.
Conditia (3) da reprezentarea parametrica, iar conditia (3̄) da reprezentarea
explicita a subvarietatii.

Exemple.

• Sfera Sn este subvarietate regulata de dimensiune n in Rn+1.

• Cercul S1 este subvarietate regulata de dimensiune 1 in R2.

• Grupul liniar general Gl(n,R) (al matricilor inversabile)este vari-
etate diferentiabila de dimensiune n2 (fiind deschisa inMn(R) ≡ Rn2

.

• Grupul special liniar Sl(n,R) este subvarietate regulata de dimensi-
une n2 − 1 in Mn(R).

• Grupul ortogonal O(n) si grupul special ortogonal SO(n) sunt sub-

varietati regulate de dimensiune
n(n − 1)

2
in Mn(R).
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Modalitati de a obtine noi varietati diferentiabile:

1 produs direct

Teorema 7.2 Fie M1 si M2 doua varietati diferentiabile de dimensiuni
n1, respectiv n2. Atunci produsul lor direct M1 ×M2 se poate organiza ca
varietate diferentiabila de dimensiune n1 + n2.

Exemplu. Torul n−dimensional T n ∶= S1 × . . .S1 este varietate diferentiabila
de dimensiune n.

2 factorizare

Fie (X,τ) un spatiu topologic. Consideram ∼ o relatie de echivalenta pe
X si notam X/ ∼ spatiul factor (spatiul cat). Avem proiectia canonica
π ∶X →X/ ∼, π(x) = [x] (clasa de echivalenta).

Topologia cat. D deschisa in spatiul factor X/ ∼ daca π−1(D) este dechisa
in X, i.e. π−1(D) ∈ τ .

Pentru o submultime A ⊂ X notam [A] = π−1(π(A)) saturata lui A. Evi-
dent A ⊂ [A].

Propoziţia 7.2 π ∶ X → X/ ∼ este aplicatie deschisa daca si numai daca
relatia ∼ este deschisa, adica saturata oricarei multimi deschise este de-
schisa: ∀A ⊂d X, rezulta [A] ⊂d X.

Propoziţia 7.3 Fie π ∶ X → X/ ∼ deschisa. Presupunem ca X admite
baza numerabila a topologiei. Atunci X/ ∼ admite baza numerabila a
topologiei.

Definim in continuare graficul unei relatii:

Graf ∼= {(x, y) ∈X ×X ∶ x ∼ y} ⊂X ×X.

Propoziţia 7.4 Fie π ∶ X → X/ ∼ deschisa. Atunci X/ ∼ este separat
Hausdorff daca si numai daca Graf ∼ este o multime inchisa in X ×X.

Exemplu. Spatiul proiectiv real RP n sau P n(R) este o varietate diferentia-
bila de dimensiune n.
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Calcul diferenţial pe varietăţi

8.1 Funcţii diferenţiabile

Fie M o varietate diferentiabila de dimensiune n si f ∶ W ⊂
d
M → R o

functie. Daca (U,ϕ) = (U,x1, . . . , xn) este o harta locala pe M astfel incat
U ∩W ≠ ∅ atunci pentru orice p ∈ U ∩W putem scrie

f(p) = f ○ ϕ−1 ○ ϕ(p) = fϕ(x),

unde fϕ ∶= f ○ ϕ−1 si x = ϕ(p). Prin urmare, avem

fϕ ∶ ϕ(U ∩W ) ⊆ Rn → R,

care reprezinta exprimarea locala a lui f in harta locala (U,ϕ).
Daca (V,ψ) = (V, y1, . . . , yn) este o alta harta locala astfel incat V ∩W ≠ ∅
avem definita, in mod analog, fψ.

Legatura intre cele doua exprimari, pe domeniul comun de definitie, este

fψ = fϕ ○ (ϕ ○ ψ−1).

Definiţia 8.1 Functia f ∶W → R definita pe deschisul W ⊂M se numeste
diferentiabila in p ∈W daca fϕ este diferentiabila in f(p).

7
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Calcul diferenţial 8 M. I. Munteanu

Observatie. Evident, definitia diferentiabilitatii NU depinde de harta
locala folosita.

Exemplu. Functiile coordonate xi ∶ U → R sunt diferentiabile pe U , adica
in orice punct din U .

Intr-adevar xi○ϕ−1 ∶ ϕ(U) → R are exprimarea xi○ϕ−1(x1, . . . , xn) = xi(p) =
xi deci este diferentiabila. De fapt, xi ○ϕ−1 este proiectia de la Rn la R pe
componenta i.

Un rezultat ”invers”, consecinta a teoremei functiilor inverse, este urma-
torul:

Propoziţia 8.1 Fie f1, . . . , fk ∶W → R un sistem de functii diferentiabile
pe deschisul W din M . Presupunem ca pentru un punct p0 ∈ W , exista

harta locala (U,ϕ) = (U,x1, . . . , xn) astfel incat
D(fϕ1 , . . . , f

ϕ
k )

D(x1, . . . , xk) (ϕ(p0)) ≠ 0.

Atunci exista o harta locala (V,ψ) in p0 astfel incat primele k coordonate
locale in aceasta harta sa fie functiile f1, . . . , fk.

8.2 Aplicaţii netede ı̂ntre varietăţi

Fie Nn si Mm doua varetati diferentiabile si W ⊂
d
N . Fie F ∶ W → M o

aplicatie (continua) şi p0 ∈W .

Definiţia 8.2 F se numeste diferentiabila de clasa Ck in p0 daca

∃ h.l. in p0 pe N : (U,ϕ) = (U,x1, . . . , xn), U ⊂W
∃ h.l. in F (p0) pe M : (V,ψ) = (V, y1, . . . , ym), F (U) ⊂ V
astfel incat F̂ ∶= ψ ○ F ○ ϕ−1 ∶ ϕ(U) ⊂ Rn → ψ(V ) ⊂ Rm este diferentiabila
de calsa Ck.

F se numeste diferentiabila pe W daca este diferentiabila in orice punct
din W .

Observatie. Definitia este corecta, in sensul ca nu depinde de hartile
locale folosite pe cele doua varietati:

F̃ ∶= ψ̃ ○ F ○ ϕ̃−1 = (ψ̃ψ−1) ○ F̂ ○ (ϕϕ̃−1).
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Figura 8.1: F şi F̂

Aplicatia F̂ se numeste reprezentarea lui F in cele doua harti locale (U,ϕ,x)
şi (V,ψ, y):

F̂ ∶ yα = fα(x1, . . . , xn), α = 1, . . . ,m.

Exemplu. Pentru W = U şi F = ϕ ∶ U → Rn: F este diferentiabila deoarece

ϕ̂ = id ○ ϕ ○ ϕ−1 ∶ ϕ(U) → ϕ(U), ϕ̂ = idϕ(U).

Compunerea. N
F //

G○F

::M
G // P

Avem imediat că: Ĝ ○ F = Ĝ ○ F̂ .

Definiţia 8.3 Fie N şi M de aceeaşi dimensiune. Aplicaţia F ∶ N →M se
numeste difeomorfism daca F este bijectiva şi F , F −1 sunt diferenţiabile.
În aceasta situatie, N şi M se numesc difeomorfe.

Exemplu. Să ne amintim exemplul din cursul precedent: R poate inzes-
tartă cu două structuri de varietate ”diferite”: N = (R, f), f(t) = t3 şi
M = (R, id). Fie F ∶ N →M , t↦ t3. Rezultă F̂ = id ○ F ○ f−1 = 1R.

Astfel, exista un difeomorfism intre cele doua structuri distincte pe R.

Problemă. Câte structuri nedifeomorfe exista pe o varietate topologica data?

, ...
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Calcul diferenţial 10 M. I. Munteanu

Definiţia 8.4 Rangul unei aplicaţii F ∶ W ⊂
d
N → M diferenţiabile in

p ∈W este dat de

rang F (p) ∶= rang DF̂ (x), x = ϕ(p)

unde (U,ϕ,x) este o harta locala in p.

Observatie. Definiţia este bună deoarece schimbarile de harti locale pe
varietati sunt difeomorfisme (locale). Prin urmare, rangul este definit de

DF̂ (x) =
⎛
⎜⎜⎜
⎝

∂f1

∂x1 ⋯ ∂f1

∂xn

⋯ ⋯ ⋯
∂fm

∂x1 ⋯ ∂fm

∂xn

⎞
⎟⎟⎟
⎠

Teorema 8.1 Presupunem că rangul rangF (p) = k este acelasi in orice
punct p ∈W ⊂ N . Atunci pentru orice p0 ∈W ,

∃ (U,ϕ,x1, . . . , xn) hartă locală ı̂n p0

∃ (V,ψ, y1, . . . , ym) hartă locală ı̂n F (p0)
astfel ı̂ncât F̂ (x1, . . . , xn) = (x1, . . . , xk,0, . . . ,0).

Demonstraţie. Ideea demonstraţiei este folosirea teoremei de inversare
locală.

Definiţia 8.5 Fie F ∶ Nn Ð→Mm o aplicatie diferentiabila şi p ∈ N .

• F este imersie in p daca rangF (p) este maxim şi este egal cu n <m.
F este imersie daca este imersie in fiecare punct p ∈ N .

• F este scufundare daca F este imersie şi F ∶ N → F (N) este homeo-
morfism; aici F (N) are topologia indusa; proprietatea este globală.

• F este submersie in p daca rangF (p) este maxim şi este egal cu
m < n. F este submersie daca este submersie in fiecare punct p ∈ N .
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Figura 8.2: imersii; scufundari

8.3 Vectori tangenţi ı̂ntr-un punct la o

varietate

Pentru a intelege noţiunea, ne amintim mai intai ce se intampla in R2 şi
ı̂n R3. Să analizam mai intai urmatoarele doua figuri:

Figura 8.3: curbe; vectori tangenţi – ı̂n plan

Dată curba parametrizată γ ∶ I → R2 astfel incat γ(0) = p0, atunci direcţia
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tangentă ı̂n p0 la γ(I) este dată de γ′(0) = dγ
dt (0).

Figura 8.4: curbe; vectori tangenţi – ı̂n spaţiu

Dată curba parametrizată γ ∶ I → R3 astfel incat γ(0) = p0, atunci direcţia
tangentă ı̂n p0 la γ(I) este dată de γ′(0) = dγ

dt (0). Mai mult, dacă avem o
suprafata parametrizata, un vector tangent intr-un punct p0 la suprafaţă
este dat de un vector tangent la o curba situata pe suprafaţă care trece
prin acel punct.

Fie acum Mn o varietate diferentiabila si p ∈M . Consideram in p o harta
locala (U,ϕ,x). Fie γ ∶ I → U o curba pe M prin p; mai precis

0 ∈ I, γ(I) ⊂ U,γ(0) = p.

Atunci avem definita o curba in ϕ(U) ⊂ Rn, anume

ϕγ ∶ I → ϕ(U), xi = xi(t), t ∈ I.

Figura 8.5: vectori tangenţi ı̂ntr-un punct la o varietate
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Considerăm

(ϕ̇γ)(0)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

este doar o notatie

∶= (ϕγ(0),D(ϕγ)(0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶R→Rn

(1)) = (x1, . . . , xn, ẋ1, . . . , ẋn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

vector legat ı̂n x=ϕ(p)

.

Notaţie ẋi = dxi

dt (0), i = 1, . . . , n.

Daca se considera alta harta locala in p pe M , anume (V,ψ, y1, . . . , yn)
atunci

(ψ̇γ)(0) = (ψγ(0),D(ψγ)(0)(1))= (y,D(ψϕ−1)x(ϕ̇γ(0)))

unde y = (y1, . . . , yn), x = (x1, . . . , xn), iar (ϕ̇γ)(0) = (ẋ1, . . . , ẋn) (doar
ultimile n componente).

Dorim să definim noţiunea de vector tangent ı̂n p la M ; mai precis un
obiect care sa nu depinda de harta locala folosita (o ”săgeată universală”).

Fie o altă curbă α ∶ J → M , 0 ∈ J cu α(0) = p o altă curbă diferenţiabilă
prin p astfel ı̂ncât

(ϕ̇α)(0) = (ϕ̇γ)(0).
Să vedem ce se ı̂ntâmplă in cealaltă hartă locala in p. Vom analiza numai
ultimile n componente:

(ψ̇α)(0) =D(ψϕ−1)(x)(ϕ̇α(0)) =D(ψϕ−1)(x)(ϕ̇γ(0)) = (ψ̇γ)(0).

Aşadar, dacă (ϕ̇α)(0) = (ϕ̇γ)(0) intr-o anumita harta locala, ele coincid
in orice harta locala. Prin urmare, nu este esentiala curba, ci vectorul din
Rn.

Să vedem că, pentru orice vector ξ ∈ Rn există o curbă γ diferenţiabilă prin
p in M astfel incat (ϕ̇γ)(0) = ξ (de fapt (ϕ̇α)(0) = (x, ξ)).
In ϕ(U) considerăm un segment deschis dat de x+tξ, t ∈ I (interval suficient
de mic).

Consider
γ ∶ I → U ⊂M, γ(t) = ϕ−1(x + tξ).

Concluzia este că pentru orice vector ξ ∈ Rn există o curbă γ prin p astfel
incat (ϕ̇γ)(0) = ξ.
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Figura 8.6: Curbă ı̂n ϕ(U) cu vector tangent dat

Astfel, in p ∈M , consideram multimea perechilor (ϕ, ξ)p unde ϕ este home-
omorfismul corespunzător unei harti locale (U,ϕ) in p, iar ξ ∈ Rn. Pe
această mulţime introducem o relaţie de echivalenţă

(ϕ, ξ)p ∼ (ψ, η)p ⇐⇒ η =D(ψϕ−1)(x)(ξ)

unde η ∈ Rn, x = ϕ(p).

Definiţia 8.6 Numim vector tangent ı̂n p la M o clasă de echivalenţă
[(ϕ, ξ)p].

Notaţie. [(ϕ, ξ)p] ∶= [ϕ, ξ]p.
În particular, pentru o curbă diferenţiabilă γ şi pentru ξ = (ϕ̇γ)(0) se
obţine vectorul tangent ı̂n p la imaginea geometrică γ(I) a lui γ şi notăm

γ̇(0) = [ϕ, (ϕ̇γ)(0)]p.
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9.1 Spaţiul tangent ı̂ntr-un punct

la o varietate

Definiţia 9.1 Numim spaţiul tangent ı̂n p la M şi notăm TpM , mulţimea
vectorilor tangenţi ı̂n p la M , adică

TpM = {[ϕ, ξ]p ∶ (U,ϕ) hartă locală ı̂n p pe M, ξ ∈ Rn}.

Fie acum (U,ϕ) o hartă locală ı̂n p, fixată.

Propoziţia 9.1 Corespondenţa Rn ∋ ξ z→ [ϕ, ξ]p ∈ TpM este o bijecţie.

Întrucât pe Rn avem structură de spaţiu vectorial, vom ”transporta” struc-
tura pe TpM :

(1) [ϕ, ξ1]p +ϕ [ϕ, ξ2]p ∶= [ϕ, ξ1 + ξ2]p
(2) a ⋅ϕ [ϕ, ξ]p ∶= [ϕ,aξ]p

unde ξ1, ξ2 ∈ Rn şi a ∈ R.

Aparent, operaţiile definite pe TpM (adunarea şi ı̂nmulţirea cu scalari)

depind de ϕ. Însă, dacă se consideră

[ψ, η1]p = [ϕ, ξ1]p şi [ψ, η2]p = [ϕ, ξ2]p

15
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avem

η1 =D(ψϕ−1)(x)(ξ1) şi η2 =D(ψϕ−1)(x)(ξ2).
Astfel, η1 + η2 =D(ψϕ−1)(x)(ξ1 + ξ2), deci +ϕ şi +ψ coincid.

Analog se arată şi pentru ı̂nmulţirea cu scalari. Deci

structura de spaţiu vectorial a lui TpM definită mai sus NU depinde de harta
locală folosită.

Notaţii: Xp = [ϕ, ξ]p = [ϕ,D(ϕγ)(0)(1)]
Baza naturală. Vom transporta acum baza canonică a lui Rn pe TpM .

Astfel, dacă (U,ϕ,x1, . . . , xn) este o hartă locală ı̂n p pe M notăm ( ∂

∂xi
)
p

sau
∂

∂xi
∣
p
= [ϕ, ei]p.

Atunci, pentru ξ ∈ Rn avem descompunerea ξ = ξiei; prin urmare

Xp ∶= [ϕ, ξ]p = [ϕ, ξiei]p = ξi[ϕ, ei]p = ξi
∂

∂xi
∣
p

care reprezintă descompunerea vectorului tangent Xp ı̂n baza naturală

{ ∂

∂xi
∣
p
}
i=1,...,n

, relativ la harta locală (U,ϕ).

Observaţie. Dacă se consideră o altă hartă locală (V,ψ, y1, . . . , yn) ı̂n p,
acelaşi vector tangent Xp se exprimă [ψ, η]p, η ∈ Rn. Avem următoarele
schimbări (de baze şi de coordonate):

∂

∂xi
∣
p
= ∂y

j

∂xi
(x) ∂

∂yj
∣
p

(9.1)

ηj = ∂y
j

∂xi
(x)ξi . (9.2)

Dacă Xp = γ̇(0) atunci ξ = ẋiei şi, prin urmare, γ̇(0) = ẋi
∂

∂xi
∣
p
, unde

p = γ(0).
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9.2 Acţiunea vectorilor tangenţi asupra ger-

menilor de funcţii diferenţiabile

Fie Mn o varietate diferenţiabilă, p ∈ M , U,V două vecinătăţi deschise a
lui p. Fie f ∈ C∞(U) şi g ∈ C∞(V ).

Definiţia 9.2 Spunem că f şi g definesc acelaşi germene de funcţie dife-
renţiabilă ı̂n p dacă există o vecinătate W deschisă a lui p, W ⊂ U ∩ V ,
astfel ı̂ncât f∣W = g∣W .

Avem astfel definită o relaţie de echivalenţă (pe mulţimea funcţiilor dife-
renţiabile ”̂ın jurul lui p), iar clasele de echivalenţă se numesc germeni de
funcţii diferenţiabile ı̂n p.

Notaţii. [f]p (ca orice clasă de echivalenţă); ı̂nsă prin abuz vom nota tot
cu f . Mulţimea germenilor ı̂n p se notează cu C∞(p).

Considerăm:

• (U,ϕ,x1, . . . , xn) hartă locală ı̂n p pe M ;

• γ ∶ I → U , γ(0) = p, ϕ(p) = x;

• Xp = [ϕ, ξ]p = [x, (ϕ̇γ)(0)], ξ ∈ Rn;

• f ∶ U → R funcţie diferenţiabiă ı̂n p.
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Evident f ○ γ ∶ I → R nu depinde de harta locală (U,ϕ) şi astfel nici
d

dt
(f ○ γ)∣

t=0
.

Pe de altă parte, avem f ○ γ = f ○ (ϕ−1ϕ) ○ γ = fϕ ○ (ϕγ). Astfel

d

dt
(f ○ γ)∣

t=0
= dfϕ ○D(ϕγ)(0)(1) = dfϕ(x)(ξ),

astfel,
d

dt
(f ○ γ)∣

t=0
nu depinde de curba aleasă γ.

Definiţia 9.3 Acţiunea vectorului tangentXp asupra germenelui de funcţie
f este dată de

Xpf ∶=
d(f ○ γ)
dt

(0) = dfϕ(x)(ξ),

unde ϕ(p) = x şi Xp = [ϕ, ξ]p.

Proprietăţi. Se pot demonstra următoarele proprietăţi:

1. (Xp + Yp)f =Xpf + Ypf ;

2. (aXp)f = a Xpf ;

3. Xp(f + g) =Xpf +Xpg;

4. Xp(af) = aXpf , a ∈ R;

5. Xp(fg) = f(p)Xp(g) + g(p)Xp(f) (Liebnitz).

Caz particular. Dacă Xp = [ϕ, ei]p =
∂

∂xi
∣
p
, atunci

Xpf = ∂

∂xi
∣
p
= dfϕ(x)(ei) =

∂fϕ

∂xi
(x)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
derivată parţială

.

Spunem despre Xp că defineşte o derivare pe C∞(p).
Dăm acum o reciprocă a rezultatului demonstrat mai sus, care reprezintă
de fapt un alt mod de a introduce vectori tangenţi ı̂ntr-un punct la o
varietate.
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Propoziţia 9.2 Fie Mn o varietate diferenţiabilă, p ∈M şi D ∶ C∞(p) → R
o aplicaţie R-liniară, care verifică regula de tip Leibnitz ı̂n p:
D(fg) = f(p)Dg + g(p)Df . Atunci există şi este unic un vector tangent
ı̂n p la M care defineşte aceeaşi acţiune asupra germenilor de funcţii din
C∞(p) ca şi D.

Prin urmare, vectorii tangenţi sunt caracterizaţi de derivări asupra germe-
nilor de funcţii diferenţiabile.

9.3 Aplicaţia liniară tangentă

Ideea acestei noţiuni este de a ”transporta” vectori tangenţi de pe o vari-
etate pe alta printr-o aplicaţie diferenţiabilă. Fie aşadar F ∶ Nn →Mm o
astfel de aplicaţie ı̂ntre două varietăţi.

Fie p ∈ N , (U,ϕ,x1, . . . , xn) o hartă locală ı̂n p pe N şi (V,ψ, y1, . . . , ym) o
hartă locală ı̂n F (p) pe M astfel ı̂ncât F (U) ⊂ V .

Dorim să definim o aplicaţie ı̂ntre TpN şi TF (p)M .
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Considerăm aşadar Xp ∈ TpN , Xp = [ϕ, ξ]p şi fie γ ∶ I → U astfel ı̂ncât
p = γ(0) şi ξ = D(ϕγ)(0)(1). Astfel, Fγ este o curbă diferenţiabilă ı̂n V
prin F (p). Calculăm (Ḟ γ)(0) = [ψ, η]F (p):

η =D(ψFγ)(0)(1) =D(ψFϕ−1ϕγ)(0)(1) =DF̂ (D(ϕγ)(0)(1))
=DF̂ (x)(ξ).

Am obţinut astfel un vector tangent ı̂n F (p) la M .

Definiţia 9.4 Aplicaţia

F∗,p ∶ TpN Ð→ TF (p)M

Xp = [ϕ, ξ]p z→ [ψ,DF̂ (x)(ξ)]F (p)
se numeşte aplicaţia liniară tangentă a lui F .

Observaţie. F∗,p este intr-adevăr o aplicaţie liniară.

Alte notaţii: DF (p), TpF sau F ′(p).
Observaţie. Definiţia nu depinde de hărţile locale folosite.

Propoziţia 9.3 Dacă N,M,P sunt varietăţi şi F,G sunt aplicaţii ca ı̂n
figură

N
F //

G○F

77M
G // P

atunci (G ○ F )∗,p = G∗,F (p) ○ F∗,p.

Aplicaţie. Să se descrie spaţiul tangent ı̂ntr-un punct la sfera Sn.

Propoziţia 9.4 Fie F ∶ N → M o aplicaţie diferenţiabilă ı̂ntre două va-
rietăţi. Fie p ∈ N , Xp ∈ TpN şi g ∈ C∞(F (p)) (un germene de funcţie
diferenţiabilă). Atunci

(F∗,pXp)g =Xp(g ○ F ).

Demonstraţie. Dacă Xp = [ϕ, ξ]p, atunci avem F∗,pXp = [ψ, η]F (p) unde

η =DF̂ (x)ξ. Calculăm

(F∗,pXp)g = dgψ(y)(η) = d(gψ−1)DF̂ (x)ξ = d(gψ−1ψFϕ−1)(x)ξ
= d(gFϕ−1)(x)ξ = d(gF )ϕ(x)ξ =Xp(g ○ F ).
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Exprimări ı̂n coordonate. Dacă notăm coordonatele ı̂n cele două hărţi
locale cu x = (x1, . . . , xn) şi y = (y1, . . . , ym), respectiv, atunci avem repre-
zentarea lui F ı̂n cele două hărţi

F̂ ∶ yα = fα(x1, . . . , xn), α = 1, . . . ,m.

Diferenţiala se scrie matricial

DF̂ (x) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∂f 1

∂x1
⋯ ∂f 1

∂xn

⋯ ⋯ ⋯
∂fm

∂x1
⋯ ∂fm

∂xn

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Pentru Xp = [ϕ, ξ]p = ξi
∂

∂xi
∣
p

avem

F∗,pXp = [ψ,DF̂ (x)ξ]F (p) = ξi[ψ,DF̂ (x)ei]F (p)
= ξi[ψ, ∂fα

∂xi
e′α]F (p) baza canonică ı̂n Rm

= ξi ∂fα
∂xi

[ψ, e′α]F (p) = ξi ∂f
α

∂xi
∂

∂yα
∣
F (p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
baza naturală ı̂n TF (p)M

.

Exemple.

1. Fie (U,ϕ,xi, . . . , xn) o hartă locală pe M şi p ∈ M . Considerăm
aplicaţia

ϕ ∶ U Ð→ ϕ(U) ⊂ Rn,

pentru care ϕ̂ = 1ϕ(U) ○ ϕ ○ ϕ−1 = 1ϕ(U). Aplicaţia liniară tangentă ı̂n
p este

ϕ∗,p ∶ TpM Ð→ Tϕ(p)Rn ≡ Rn

Xp = [ϕ, ξ]p z→ ϕ∗,pXp = ξ.
Observaţie. Avem, de asemenea, că

ϕ−1
∗,x ∶ Rn Ð→ TpU ≡ TpM

ξ z→ ϕ−1
∗,x = [ϕ, ξ]p.
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2. Fie γ ∶ I ⊂
d
R→M o curbă netedă. Atunci

γ∗,t0 ∶ Tt0I ≡ R→ Tγ(t0)M

∂

∂t
∣
t0
= [1R,1]t0 ≡ 1↦ γ∗,t0(1) = γ′(t0) ∶= [ϕ, (ϕγ)′(t0)]γ(t0).

Propoziţia 9.5 Fie F ∶ Nn →Mm, p ∈ N . Atunci

(a) F este imersie ı̂n p dacă şi numai dacă F∗,p ∶ TpN → TF (p)M este
injectivă.

(b) F este submersie ı̂n p dacă şi numai dacă F∗,p ∶ TpN → TF (p)M este
surjectivă.
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Calcul diferenţial pe varietăţi (cont.)

Fie V un spaţiu vectorial real. Atunci dualul său este un spaţiu vectorial
real, definit astfel

V ∗ = {θ ∶ V → R ∶ θ aplicaţie liniară}.

10.1 Spaţiul cotangent şi aplicaţia liniară cotan-

gentă

Fie Mn o varietate diferenţiabilă, p ∈M şi TpM spaţiul tangent ı̂n p la M .

Definiţia 10.1 Numim spaţiul cotangent ı̂n p la M şi notăm T ∗
pM , dualul

spaţiului tangent ı̂n p a M , adică

T ∗
pM = {θp ∶ TpM → R ∶ θp aplicaţie liniară}.

Un element θp din T ∗
pM se numeşte vector tangent sau covector tangent.

Observaţie. Spaţiul T ∗
pM se organizează ı̂n mod natural ca spaţiu vecto-

rial real de dimensiune n.

Vom pune ı̂n evidenţă nişte covectori ”speciali”.

Fie f ∈ C∞(p) (germene de funcţie diferenţiabilă ı̂n p). Definim

dfp ∈ TpM prin dfp(Xp) ∶=Xpf.

23
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Evident că dfp este liniară.

Avem, ı̂n plus, că

⊗ d(f + g)p = dfp + dgp

⊗ d(af)p = adfp

⊗ d(fg)p = f(p)dgp + g(p)dfp, f, g ∈ C∞(p), a ∈ R.

Structura de spaţiu vectorial real este cea pe care o avem din cadrul general
(de la dualul unui spaţiu vectorial real). Căutăm o bază ı̂n T ∗

pM :

Considerăm funcţiile coordonate xi ∶ U → R, i = 1, . . . , n ı̂ntr-o hartă locală
(U,ϕ,xi) ı̂n p. Atunci dxip ∈ T ∗

pM şi formează o bază:

dxip(Xp) =Xp(xi) = (ξj ∂

∂xj
∣
p
)(xi) = ξj ∂x

i

∂xj
(x) = ξi.

Rezultă dxip( ∂
∂xj

∣
p
) = δij adică {dxip} este duala bazei naturale din TpM .

Observaţie. Dacă θp ∈ T ∗
pM atunci există n numere reale θi astfel ı̂ncât

θp = θidxip.

Observaţie. Dacă f ∈ C∞(p), atunci dfp = ∂fϕ

∂xi
(x)dxip.

Observaţie. Într-o altă hartă locală (Ũ , ϕ̃, x̃) putem considera acelaşi
scenariu. Trecerea de la o hartă locală la alta se face astfel

dx̃jp =
∂x̃j

∂xi
(x)dxip.

Dacă θp ∈ T ∗
pM se scrie θp = θidxip = θ̃jdx̃jp, atunci

θi =
∂x̃j

∂xi
(x)θ̃j.

10.2 Aplicaţia liniară cotangentă

Fie F ∶ Nn → Mm o aplicaţie diferenţiabilă, p ∈ N , iar TpN şi TF (p)M
spaţiile tangente corespunzătoare. Fie T ∗

pN şi T ∗
F (p)

M spaţiile cotangente

(obţinute prin dualitate).
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Pentru aplicaţia liniară tangentă F∗,p ∶ TpN → T∗,F (p)M considerăm duala

F ∗
p ∶ T ∗

F (p)M → T ∗
pN,

ωF (p) ↦ F ∗
p ωF (p)

(F ∗
p ωF (p))(Xp) = ωF (p)(F∗,pXp).

Atenţie! Se notează F ∗
p şi NU F ∗

F (p)
!

Propoziţia 10.1 Fie F ∶ N →M o aplicaţie diferenţiabilă şi g ∈ C∞(F (p)).
Atunci F ∗

p dgF (p) ∈ T ∗
pN şi

F ∗
p dgF (p) = d(g ○ F )p.

Demonstraţie. Evident F ∗
p dgF (p) este liniară pe TpN . Este de asemenea

evident că g ○ F defineşte un germene de funcţie diferenţiabilă pe N .

Considerăm Xp ∈ TpN şi facem următorul calcul:

(F ∗
p dgF (p))(Xp) = dgF (p)(F∗,pXp) = (F∗,pXp)(g) =Xp(g○F ) = d(g○F )p(Xp).

Cum Xp a fost ales arbitrar, rezultă concluzia.

Observaţie. Notăm F ∗g ∶= g ○ F aplicaţia indusă la nivel de funcţii.
Putem rescrie relaţia din propoziţia precedentă

F ∗
p ○ d = d ○ F ∗

p

(cei doi ”operatori” comută). Vom reveni!

Compunerea.

Propoziţia 10.2 Dacă N,M,P sunt varietăţi şi F,G sunt aplicaţii ca ı̂n
figură

N
F //

G○F

77M
G // P

atunci (G ○ F )∗p = F ∗
p ○G∗

F (p)
.

Exprimări ı̂n coordonate locale.

Fie (U,ϕ,xi) şi (V,ψ, yα) două hărţi locale ı̂n p ∈ N şi F (p) ∈M , respectiv.
Scriem ωF (p) = ωαdyαF (p). Dacă F̂ ∶ yα = fα(x1, . . . , xn), α = 1, . . . ,m este
exprimarea lui F ı̂n cele două hărţi atunci

F ∗
p ωF (p) = ωα

∂fα

∂xi
(x)dxip.
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10.3 Spaţii de tensori

Noţiunea de tensor reprezintă o generalizare a noţiunii de vector şi covec-
tor, respectiv. Vom insista pe cazul tensorilor de ordinul al doilea, urmând
ca extinderea pentru ordin arbitrar să se facă ı̂n mod natural.

10.3.1 Tensori covarianţi de ordinul al doilea

Definiţia 10.2 Un tensor covariant (de ordinul al doilea) ı̂n p pe M este
o aplicaţie biliniară pe TpM

ωp ∶ TpM × TpM → R,

adică ωp ∈ L2(TpM).

Notaţie. Mulţimea tensorilor covarianţi de ordinul al doilea ı̂n p se
notează T 0

2,p(M).
Cum putem construi un tensor de ordinul al doilea ı̂n p? Fie θ1

p şi θ2
p doi

covectori ı̂n p (adică aparţin spaţiului T ∗
pM); definim produsul tensorial

θ1
p ⊗ θ2

p ∶ TpM × TpM → R

(Xp, Yp) ↦ θ1
p(Xp)θ2

p(Yp).

Propoziţia 10.3 Produsul tensorial este un tensor (adică o aplicaţie biliniară)
covariant de ordinul al doilea ı̂n p.

Proprietăţi. Avem

⋆ θ1
p ⊗ (θ2

p + θ3
p) = θ1

p ⊗ θ2
p + θ1

p ⊗ θ3
p;

⋆ (θ1
p + θ2

p) ⊗ θ3
p = θ1

p ⊗ θ3
p + θ2

p ⊗ θ3
p;

⋆ (aθ1
p) ⊗ θ2

p = θ1
p ⊗ (aθ2

p) = aθ1
p ⊗ θ2

p, a ∈ R.

Teorema 10.1 Mulţimea T 0
2,p(M) se poate organiza ca spaţiu vectorial

real de dimensiune n2. Dacă (U,ϕ,xi) este o hartă locală ı̂n p pe M atunci
sistemul {dxip ⊗ dxjp ∶ i, j = 1, . . . , n} formează o bază ı̂n T 0

2,p(M).
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Demonstraţie. Demonstraţia se rezumă la calcule simple de algebră
liniară.

Astfel, dacă ωp ∈ T 0
2,p(M), atunci există n2 numere reale ωij astfel ı̂ncât

ωp = ωijdxip ⊗ dxjp. Aceste numere reprezintă

ωij = ωp(
∂

∂xi
∣
p
,
∂

∂xj
∣
p
).

Avem astfel posibilitatea introducerii unei alte notaţii pentru L2(TpM) şi
anume

L2(TpM) = T ∗
pM ⊗ T ∗

pM = ⊗2 T ∗
pM.

Simetrie / antisimetrie.

Definiţia 10.3 Un tensor covariant ωp de ordinul al doilea ı̂n p pe M se
numeşte

• simetric dacă ωp(Xp, Yp) = ωp(Yp,Xp);

• antisimetric dacă ωp(Xp, Yp) = −ωp(Yp,Xp),

pentru orice Xp, Yp ∈ TpM .

Notaţii. Spaţiul vectorial al tensorilor simetrici de ordinul al doilea se
notează cu S2(TpM) şi are dimensiunea n(n+1)

2 . Spaţiul vectorial al ten-
sorilor antisimetrici de ordinul al doilea se notează cu A2(TpM) şi are

dimensiunea n(n−1)
2 . Avem evident

L2(TpM) = S2(TpM) ⊕A2(TpM).

Dacă ωp = θ1
p ⊗ θ2

p atunci descompunem ωp ı̂n

● partea simetrică, obţinută cu ajutorul produsului simetric a doi covectori

θ1
p ⋅ θ2

p(Xp, Yp) =
1

2
(θ1
p(Xp)θ2

p(Yp) + θ1
p(Yp)θ2

p(Xp))

● partea antisimetrică, obţinută cu ajutorul produsului antisimetric a doi
covectori

θ1
p ∧ θ2

p(Xp, Yp) =
1

2
(θ1
p(Xp)θ2

p(Yp) − θ1
p(Yp)θ2

p(Xp)).
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Punem astfel ı̂n evidenţă baze pentru cele două spaţii:

◇ pentru S2(TpM): {dxip ⋅ dxjp ∶ 1 ≤ i ≤ j ≤ n}

◇ pentru A2(TpM): {dxip ∧ dxjp ∶ 1 ≤ i < j ≤ n}.

Observaţie. Dacă θp ∈ T ∗
pM atunci θp ∧ θp = 0.
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Calcul diferenţial pe varietăţi (cont.)

11.1 Spaţii de tensori (cont.)

11.1.1 Tensori covarianţi de ordinul al doilea (cont.)

Aplicaţia liniară indusă.

Fie F ∶ Nn →Mm, p ∈ N şi ωF (p) un tensor covariant de ordinul al doilea
ı̂n F (p) pe M . Dorim să ”aducem” ωF (p) ı̂n p pe N .

Definim F ∗
p ∶ T 0

2,F (p)
(M) → T 0

2,p(N)

F ∗
p ωF (p)(Xp, Yp) ∶= ωF (p)(F∗,pXp, F∗,pYp), ∀Xp, Yp ∈ TpN.

Tensori covarianţi de ordin arbitrar: Extindem produsul tensorial
astfel:

Pentru ωp ∈ T 0
k,p(M) şi θp ∈ T 0

l,p(M) definim

ωp ⊗ θp ∈ T 0
k+l,p(M)

ωp⊗θp(X1,p, . . . ,Xk,p,Xk+1,p, . . . ,Xk+l,p) = ωp(X1,p, . . . ,Xk,p)θp(Xk+1,p, . . . ,Xk+l,p).

29
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11.1.2 Tensori contravarianţi de ordinul al doilea

Se definesc analog (prin dualitate): Sp este un tensor contravariant ı̂n p pe
M dacă Sp este o aplicaţie biliniară pe T ∗

pM × T ∗
pM . Mulţimea tensorilor

contravarianţi de ordinul al doilea pe M se notează T 2
0,p(M).

Local, ı̂ntr-o hartă (U,ϕ,x), un tensor contravariat Sp de ordinul al doilea
se scrie

Sp = Sij
∂

∂xi
∣
p
⊗ ∂

∂xj
∣
p

unde produsul tensorial se defineşte analog.

Observaţie. Definim Xp ∶ T ∗
p (M) → R, Xp(ωp) = ωp(Xp) pentru orice

ωp ∈ T ∗
p (M).

11.1.3 Tensori micşti de ordinul al doilea

Un astfel de tensor (care va fi definit imediat) este o dată covariant şi o
dată contravariant.

Definiţia 11.1 Un tensor mixt (de ordinul al doilea) ı̂n p pe M este o
aplicaţie biliniară pe TpM × T ∗

p (M)

Jp ∶ TpM × T ∗
pM → R,

adică Jp ∈ L2(TpM,T ∗
pM).

Notaţie. Mulţimea tensorilor covarianţi de ordinul al doilea ı̂n p se
notează T 1

1,p(M).
Cum putem construi un tensor mixt de ordinul al doilea ı̂n p? Fie θp şi Xp

un covector, respectiv un vector ı̂n p; definim produsul tensorial

θp ⊗Xp ∶ TpM × T ∗
pM → R

(Yp, ωp) ↦ θp(Yp)ωp(Xp).

Propoziţia 11.1 Produsul tensorial definit mai sus este un tensor mixt
de ordinul al doilea ı̂n p.
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Prin urmare, ı̂ntr-o hartă locală (U,ϕ,x) ı̂n p pe M , un tensor mixt se
scrie

Jp = J ij dxjp ⊗
∂

∂xi
∣
p
.

Schimbarea de hărţi locale. individual

Observaţie. Se ştie de la algebră liniară că pentru un spaţiu vectorial
V avem L2(V,V ∗) ∼ End(V ). Vom aplica acea teorie pe cazul tensorilor
micşti de ordinul al doilea.

Dacă Jp ∈ T 1
1,p(M), atunci lui Jp i se poate asocia J̃p ∶ TpM → TpM (endo-

morfism). Să stabilim legătura dintre cele două obiecte Jp şi J̃p.

● Fie Xp ∈ TpM ; atunci J̃pXp ∈ TpM . Pentru ωp ∈ T ∗
pM , definim

ωp(J̃pXp) ∶= Jp(Xp, ωp)

relaţie ce defineşte ı̂n mod unic endomorfismul J̃p.

Prin urmare am definit o aplicaţie, evident liniară, de la T 1
1,p(M) la End(TpM)

dată prin Jp ↦ J̃p.

Întrucât dinensiunile celor două spaţii sunt egale (cu n2) rezultă ca ele sunt
izomorfe.

Caz special Jp = θp ⊗Xp; cine este J̃p?

Definim ωp(J̃pYp) = (θp ⊗Xp)(Yp, ωp) = θp(Yp)ωp(Xp). Astfel

(θp ⊗Xp)Yp ≡ θp(Yp)Xp.

Local, dacă Jp = J ji dxip ⊗ ∂
∂xj

∣
p

atunci J̃p se defineşte astfel

J̃p
∂

∂xi
∣
p
= J ji

∂

∂xj
∣
p
.

Prin urmare, coeficienţii sunt aceiaşi şi astfel vom renunţa la ˜ pentru J̃p.

Schimbări de coordonate. Fie (U,ϕ,x) şi (Ũ , ϕ̃, x̃) două hărţi locale ı̂n
p, ı̂n care Jp ∈ T 1

1,p(M) are exprimările

Jp = J ji dxip ⊗
∂

∂xj
∣
p

Jp = J̃ badx̃ap ⊗
∂

∂x̃b
∣
p
.
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Atunci

J̃ ba =
∂x̃b

∂xj
(x) ∂x

i

∂x̃a
(x̃)J ji .

11.1.4 Tensori micşti de ordin superior

Punem ı̂n evidenţă doar doi astfel de tensori

• Tp ∈ T 1
2,p(M), Tp ∶ TpM × TpM × T ∗

pM → R, triliniară

Analog ca ı̂n cazul tensorilor de tip (1,1) pe M , adică din T 1
1,p(M)

putem gândi Tp ∶ TpM × TpM → TpM .

• Rp ∈ T 1
3,p(M), Tp ∶ TpM × TpM × TpM × T ∗

pM → R, 4-liniară

Analog ca mai sus putem gândi Rp ∶ TpM × TpM × TpM → TpM .

Astfel de tensori vor fi ı̂ntâlniţi ı̂n capitolul Conexiuni liniare pe varietăţi,
când vom studia torsiunea şi curbura unei conexiuni liniare pe M .

11.2 Fibratul tangent

Fie Mn o varietate diferenţibilă de dimensiune n. Dorim să construim o
nouă varietate diferenţiabilă strâns legată de M .

Fie T (M) = ⋃
p∈M

TpM mulţimea tuturor vectorilor tangenţi la M .

Mulţimea T (M) se numeşte fibratul tangent al lui M , iar TpM se numeşte
fibra ı̂n p. Momentan această mulţime este una abstractă pe care vrem să
definim o topologie şi o structură diferenţială.

Definiţia 11.2 Aplicaţia π ∶ T (M) → M care asociază fiecărui vector
v ∈ T (M) punctul său de tangenţă se numeşte proiecţia canonică. Mai
precis,

π(v) = p dacă v ∈ TpM.

Definiţia 11.3 Dacă A ⊂M este o submulţime a lui M , definim

T (M)∣A = ⋃
p∈A

TpM = π−1(A).
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În cazul particular A = {p0} avem T (M)∣
{p0}

= π−1(p0) = Tp0M .

Teorema 11.1 Mulţimea T (M) poate fi organizată ca varietate diferen-
ţiabilă de dimensiune 2n. Dacă M este de clasă Ck (k < ∞), atunci T (M)
este de clasă k − 1.

Demonstraţie. (schiţă)

Vom defini topologia şi structura diferenţială pe T (M), evident pornind
de la M .

Fie A = {(Uα, ϕα)} un atlas pe M ; ϕα ∶ Uα → ϕα(Uα) ⊆
d
Rn

Definim Φα ∶ π−1(Uα) → ϕα(Uα)×Rn ⊆ Rn×Rn; v ↦ (ϕα(π(v)), (ϕα)∗,π(v)v).

Mai precis primele n componente sunt coordonatele punctului de tangenţă
p = π(v), iar ultimele n componente sunt coordonatele lui v prin aplicaţia
liniară tangentă (ϕα)∗,p.
● Arătăm căm obţinut un homeomorfism.

Dacă (x, ξ) ∈ ϕα(Uα) ×Rn atunci există unic p ∈ Uα astfel ı̂ncât ϕ(p) = x.
Luăm v = [ϕα, ξ]p ∈ T (M)Uα .

Topologia: mulţimile deschise din T (M) sunt reuniuni arbitrare de intersecţii
finite de mulţimi de tipul Φ−1(D) cu D ⊂ R2n (deschisă). Prin urmare ex-
istă bază numărabilă a topologiei pe T (M).
Deoarece Φ−1

α (D) este deschis, rezultă că Φα este continuă.

Avem:

1. π ∶ T (M) →M este continuă;

2. topologia definită anterior este separată Hausdorff.

Anticipăm că (π−1(Uα),Φα) vor fi hărţile pe T (M).
Aplicaţia Φ−1

α ∶ π−1(Uα) → ϕα(Uα) × Rn ne dă proprietatea de a fi local
euclidian de dimensiune 2n.

Compatibilitatea hărţilor:

Fie (U,ϕ) şi (V,ψ) hărţi locale pe M şi Φ, respectiv Ψ definite ca mai sus.
Fie de asemenea v ∈ π−1(U) ∩ π−1(V ) cu π(v) = p ∈ U ∩ V . Punem

ϕ(p) = x, ψ(p) = y, ϕ∗,pv = ξ, ψ∗,pv = η.
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Atunci
Φ(v) = (x, ξ) Ψ(v) = (y, η).

Compunerea este dată de relaţiile

(Ψ ○Φ−1)(x, ξ) = Ψ([ϕ, ξ]p) = (ψϕ−1(x),D(ψϕ−1)(x)ξ)
= (ψϕ−1(x), ψ∗,pϕ−1

∗,xξ).
Deci ΨΦ−1 este difeomorfism.

Observaţie. Referitor la clasa de diferenţiabilitate, se observă că, dacă pe
prima componentă (vectorială) avem k, atunci pe a doua componentă avem
k−1 deoarece se face o ”derivare” prin operatorul diferenţialei Fréchet, deci
clasa scade cu 1.

Propoziţia 11.2 Aplicaţia π ∶ T (M) →M este o submersie.

Demonstraţie. Lucru individual.
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Calcul diferenţial pe varietăţi (cont.)

12.1 Câmpuri vectoriale pe varietăţi

Fie Mn o varietate diferenţiabilă, T (M) fibratul său tangent şi fie
π ∶ T (M) →M proiecţia canonică.

Definiţia 12.1 O aplicaţie diferenţiabilă X ∶W ⊂
d
M → T (M) cu propri-

etatea π ○X = 1W se numeşte câmp vectorial pe W .

Precizări. Condiţia din enunţ se rescrie X(p) ∈ TpM pentru orice p ∈W ,
ceea ce ı̂nseamnă (pentru W =M) că diagrama de mai jos este comutativă

X ∶ MOO //

1M

��

T (M)

π

��

��

M

Un câmp vectorial este o ”colecţie” de vectori tangenţi care se schimbă
diferenţiabil la trecerea de la un punct la altul.

Exprimări locale. Dacă (U,ϕ,x1, . . . , xn) este o hartă locală pe M .
Definim, pentru fiecare i = 1, . . . , n, aplicaţia

∂

∂xi
∶ U → T (M), pz→ ∂

∂xi
∣
p
∈ TpM.

35
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Cu alte cuvinte,
∂

∂xi
(p) ∶= ∂

∂xi
∣
p
.

Trebuie să demonstrăm că aplicaţia este diferenţiabilă (pe U). Pentru
aceasta, să găsim reprezentarea aplicaţiei de mai sus ı̂n două hărţi, adică

∂̂

∂xi
∶ ϕ(U) → Φ(π−1(U)) = ϕ(U) ×Rn,

∂̂

∂xi
= Φ ○ ∂

∂xi
○ ϕ−1.

Avem

Rn ∋ x ϕ−1z→ p
∂

∂xiz→ ∂

∂xi
∣
p

Φz→ (x, ei) ∈ R2n,

care este evident diferenţiabilă.

Am obţinut astfel, un set de n câmpuri vectoriale (locale) pe U .

Fie acum un câmp vectorial arbitrar X; atunci X(p) ∈ TpM , deci X(p) =
ξi ∂
∂xi

∣
p
, unde ξi ∈ R, ∀i = 1, . . . , n. Când p variază, atunci ξi variază, prin

urmare se obţin funcţii pe U (depind de p). Aşadar,

X = ξi ∂
∂xi

, ξi ∈ C∞(U).

Mulţimea câmpurilor vectoriale pe o varietate M se notează cu χ(M) sau
X(M).

Am văzut că pentru vectori tangenţi avem la dispoziţie aplicaţia liniară
tangentă pentru a-i ”transporta” de pe o varietate pe alta. Formulă acelaşi
tip de problemă şi ı̂n cazul câmpurilor vectoriale:

Fie F ∶ Nn →Mm o aplicaţie diferenţiabilă ı̂ntre cele două varietăţi. Pre-
supunem că avem X un câmp vectorial pe N . În general, NU putem defini
F∗X. Totuşi, dacă F este un difeomorfism, definirea este posibilă, anume
F∗X este câmp vectorial pe M . Mai precis,

(F∗X)(q) ∶= F∗,pX(p), unde p = F −1(q).

Scris succint F∗X = F∗ ○X ○ F −1.
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12.1.1 Acţiunea câmpurilor vectoriale asupra funcţiilor
diferenţiabile

Fie X ∈ X(M) un câmp vectorial, iar f ∈ C∞(M) o funcţie diferenţiabilă
pe o varietate M .

Definiţia 12.2 Acţiunea câmpuluiX asupra funcţiei f esteXF ∈ C∞(M)
dată prin

Xf ∶M → R, p↦ (Xf)(p) ∶=Xpf,

unde Xp =X(p) ∈ TpM , iar f defineşte germenele f (aceeaşi notaţie).

Proprietăţi. Pentru X,Y ∈ X(M), f, g ∈ C∞(M), a ∈ R avem:

1. X(f + g) =Xf +Xg;

2. X(af) = aXf ;

3. X(fg) = fX(g) +X(f)g;

4. acţiunea lui X asupra lui f este locală, adică dacă f∣W = 0, atunci
Xf∣W = 0;

5. (X + Y )f =Xf + Y f ;

6. (aX)f = aXf .

Propoziţia 12.1 Fie D ∶ C∞(M) z→ C∞(M) cu următoarele proprietăţi:

• R-liniară;

• este derivare (”verifică Leibnitz”)

• este locală.

Atunci există şi este unic un câmp vectorial X pe M care defineşte aceeaşi
acţiune ca şi D.
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12.1.2 Croşetul a două câmpuri vectoriale

Fie (U,ϕ,x) o hartă locală pe M şi fie f ∈ c∞(U). Atunci ∂
∂xi
f = ∂fϕ

∂xi
.

Apoi,
∂

∂xi
∂

∂xj
f = ∂2fϕ

∂xi∂xj
f iar

∂

∂xj
∂

∂xi
f = ∂2fϕ

∂xj∂xi
f .

Cele două expresii sunt egale graţie legii de comutare Schwarz.

Definiţia 12.3 Fie X,Y ∈ X(M). Numim croşetul câmpurilor vectoriale
X cu Y un alt câmp vectorial notat [X,Y ], definit prin acţiunea asupra
funcţiilor astfel:

[X,Y ]f =X(Y f) − Y (Xf), ∀f ∈ C∞(M).

Observaţie. Croşetul [X,Y ] ”măsoară abaterea” de la regula de comutare

Schwarz pentru X,Y . Conform celor de mai sus, [ ∂

∂xi
,
∂

∂xj
] = 0, ∀i, j.

Observaţie. Se arată că, intr-adevăr, [X,Y ] este un câmp vectorial pe
M .

Proprietăţi. Croşetul a două câmpuri vectoriale X,Y verifică:

(i) antisimetria: [Y,X] = −[X,Y ];

(ii) R-biliniaritate: [aX, bY ] = ab[X,Y ], a, b ∈ R;

(iii) identitatea lui Jacobi: [X, [Y,Z]]+[Y, [Z,X]]+[Z, [X,Y ]] = 0 1

(iv) [fX, gY ] = fg[X,Y ]+f(Xg) Y −g(Y f)X, pentru orice f, g ∈ C∞(M).

Scriere locală. Dacă (U,ϕ,x) este o hartă locală pe M , iar X,Y ∈ X(U)
cu ajutorul căreia X =X i

∂

∂xi
şi Y = Y j

∂

∂xj
, atunci

[X,Y ] = (X i∂Y
j

∂xi
− Y i∂X

j

∂xi
) ∂

∂xj
.

Încheiem această parte cu două rezultate care implică aplicaţia liniară
tangentă.

1de arătat!
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Propoziţia 12.2 Fie F ∶ N → M un difeomorfism, X,Y ∈ X(N) două
câmpuri vectoriale pe N şi g ∈ C∞(M) o funcţie diferenţiabilă pe M .
Atunci

1. (F∗X)g =X(g ○ F ) ○ F −1;

2. F∗[X,Y ] = [F∗X,F∗Y ].

12.2 Fibratul cotangent - forme diferenţiale

pe varietăţi

Fibratul cotangent – schiţă.

Fie T ∗(M) = ⋃
p∈M

T ∗
pM mulţimea tuturor spaţiilor cotangente peM . Definim

proiecţia canonică

τ ∶ T ∗(M) →M, proiecţia canonică

aplicaţia care asociază unui covector punctul său de tangenţă.

Teorema 12.1 Fibratul cotangent se poate organiza ca o varietate diferen-
ţiabilă de dimensiune 2n.

În continuare, teoria se dezvoltă prin dualitate cu fibratul tangent.

Forme diferenţiale – schiţă.

Definiţia 12.4 O formă diferenţială pe M sau o 1-formă este o secţiune
ı̂n fibratul cotangent, adică θ ∶M → T ∗(M) este o aplicaţie diferenţiabilă
astfel ı̂ncât τ ○ θ = 1M .

Mulţimea 1-formelor se notează cu Λ1(M) sau cu Ω1(M).
Scriere locală. Într-o hartă locală definim 1-formele locale dxi ∶ U → T ∗M
prin dxi(p) = dxip. Astfel, o 1-formă θ se exprimă local astfel θ = θidxi, unde
θi ∈ C∞(U).
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Definiţia 12.5 O formă diferenţială (exterioară) de grad k pe M (sau o k-
formă pe M) este o secţiune diferenţiabilă ı̂n Ak(T (M)) adică
ω ∶ M → Ak(T (M)) astfel ı̂ncât ω(p) ∈ Ak(TpM) (spaţiul tensorilor de
grad k antisimetrici ı̂n p).

De fapt avem

ω ∶ X(M) × . . .×´¹¹¹¹¸¹¹¹¹¹¶
de k ori

X(M) → C∞(M), (X1, . . . ,Xk) z→ ω(X1, . . . ,Xk)

total antisimetrică.

Proprietate. Fie ω ∈ Λk(M) (o k-formă) şi σ ∈ Sk (permutare). Atunci

ω(Xσ(1), . . . ,Xσ(k)) = ε(σ)ω(X1, . . . ,Xk).

De fapt, aceasta este şi condiţia ca un câmp tensorial covariant arbitrar să
fie o k-formă.



M
-I-
M
un
te
an
uCURS 25-05-2020

Calcul diferenţial pe varietăţi (cont.)

13.1 Fluxul unui câmp vectorial

Fie Mn o varietate diferenţiabilă de clasă C∞ şi fie γ ∶ I Ð→M un drum C∞

diferenţiabil pe M . Am definit ı̂n cursurile precedente noţiunea de vector
tangent intr-un punct la o varietate cu ajutorul curbelor; prin urmare ştim
noţiunea de vector tangent la γ ı̂ntr-un punct al său γ̇(t) = dγ̂

dt ∈ Tγ(t)M ,
unde γ̂ = ϕγ ∶ I Ð→ ϕ(U) ⊂ Rn.

Fie X un câmp vectorial de clasă C∞ pe M (de fapt X ∈ X(U), unde U
este domeniu de hartă locală).

Problemă. Dat X, să se găsească un drum γ ∶ I Ð→ M astfel ı̂ncât
ı̂n fiecare punct al său valoarea vectorului tangent γ̇(t) să fie valoarea
câmpului X in γ(t), adică

γ̇(t) =X(γ(t)), ∀t ∈ I. (13.1)

41
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Exemplu:

Figura 13.1: X = y ∂
∂x − x ∂

∂y

Definiţia 13.1 Drumul γ se numeşte curbă integrală a câmpului vectorial
X.

Să scriem problema in coordonate locale folosind harta locală (U,ϕ,x1, . . . , xn).
Mai intâi avem: γ̇(t) = ẋi(t) ∂

∂xi
∣γ(t), unde ẋi(t) = dxi

dt .

Dacă X =Xj ∂
∂xj

pe U (cu Xj funcţii diferenţiabile pe U) atunci

X(γ(t)) =X i(x1(t), . . . , xn(t)) ∂

∂xi ∣γ(t)
.

Ecuaţia (13.1) se scrie

ẋi(t) =X i(x1(t), . . . , xn(t)), t ∈ I, i = 1, . . . , n. (13.2)

Se obţine un sistem de ecuaţii diferenţiale ordinare autonom.
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În problema de mai sus considerăm şi o condiţie iniţială, anume:

γ(0) = p0 = (x1
0, . . . , x

n
0)

(i.e. la momentul t = 0 curba γ ”trece” prin punctul p0).

Dacă adăugăm la (13.2) şi condiţia iniţială

(CI) xi(0) = xi0, i = 1, . . . , n,

atunci din teoria ecuaţiilor diferenţiale obţinem că există (şi este unică) o
soluţie locală care depinde neted de condiţiile iniţiale. Prin urmare, pe M
există ı̂ntotdeauna o curbă integrală locală.

Să dovedim acum unicitatea curbelor integrale ale lui X pe ı̂ntreg domeniul
lor de definiţie.

Fie γ1 ∶ I1 → M si γ2 ∶ I2 → M doua curbe integrale ale lui X astfel incât
γ1(0) = γ2(0) = p0. Atunci cele două curbe coincid pe I1 ∩ I2.

Demonstraţie. [Schiţă] Mulţimea I1 ∩ I2 este un interval, deci este
conexă.

Fie I∗ = {t ∶ γ1(t) = γ2(t)}. Evident 0 ∈ I∗, deci I∗ este nevidă.

Cum γ1 si γ2 sunt diferenţiabile, deci continue, iar M este separat Haus-
dorff, rezultă că I∗ este o mulţime inchisă.

Arătăm că I∗ este şi deschisă in I1 ∩ I2 şi in baza faptului că acesta din
urmă este conex, va rezulta că I∗ = I1 ∩ I2.

Fie t0 ∈ I∗; considerăm drumurile d1,2 = γ1,2(t0 + t), pentru t situat ı̂ntr-un
interval suficient de mic ce conţine originea. Se arată uşor că d1,2 sunt curbe
integrale ale lui X cu condiţia iniţială d1(t0) = d2(t0). In baza unicităţii
soluţiei, ele coincid pe o vecinătate deschisă a lui t0. Deci I∗ este deschisă
ı̂n I1 ∩ I2.

Fie I(p0) intervalul maximal, care conţine originea, domeniu de definiţie al
curbei integrale a luiX cu condiţia iniţială γ(0) = p0: I(p0) = (t−(p0), t+(p0))
(limitele acestui interval pot fi şi −∞, respectiv +∞).

Prin urmare, pentru fiecare p ∈M avem câte un astfel de interval deschis
I(p). Considerăm:

D(X) = {(t, p) ∈ R ×M ∶ t−(p) < t < t+(p)} ⊆ R ×M.
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Definiţia 13.2 Se numeşte fluxul câmpului vectorial X o aplicaţie

Φ ∶ D(X) Ð→M

astfel incât pentru orice p ∈M aplicaţia φp ∶ I(p) Ð→M dată prin φp(t) ∶=
Φ(t, p) este o curbă integrală a lui X cu condiţia iniţială φp(0) = p.

Exemplul 1. Fie M = R2(x, y) si X = ∂
∂x .

Atunci curba

γ(x0,y0) ∶ R→M, γ(x0,y0)(t) = (x0 + t, y0)

este curba integrală a lui X cu condiţia iniţială γ(x0,y0)(0) = (x0, y0). În
acest caz I(x0, y0) = R pentru orice (x0, y0) ∈ M , prin urmare
D(X) = R ×M . Fluxul lui X este

Φ ∶ R ×M →M, Φ(t, x, y) = (x + t, y).

Exemplul 2. Fie M = R2(x, y) si X = −y ∂
∂x + x ∂

∂y .

Atunci curba

γ(x0,y0) ∶ R→M, γ(x0,y0)(t) = (x0 cos t − y0 sin t, y0 cos t + x0 sin t)

este curba integrală a lui X cu condiţia iniţială γ(x0,y0)(0) = (x0, y0). Vezi
figura de mai sus.

Şi in acest caz I(x0, y0) = R pentru orice (x0, y0) ∈ M , prin urmare
D(X) = R ×M . Fluxul lui X este

Φ ∶ R ×M →M, Φ(t, x, y) = (x cos t − y sin t, y cos t + x sin t).

Exemplul 3. (la seminar) Fie M = R3(x, y, z) si X = −y ∂
∂x + x ∂

∂y + a ∂
∂z ,

unde a ∈ R. Să se determine fluxul lui X.

Exemplul 4. Fie M = R2(x, y) si X = y2 ∂
∂y .

Să determinăm curbele integrale ale lui X: Condiţia pentru γ ∶ I → M ,
γ(t) = (x(t), y(t)) să fie curbă integrală pentru X se scrie

⎧⎪⎪⎨⎪⎪⎩

ẋ = 0,

ẏ = y2.
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Impunem acum condiţia iniţială γ(0) = (x0, y0). Se obţine

γ(t) = (x0,
y0

1 − y0t
) .

Rezultă

I(x0,y0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

( 1
y0
,+∞) pentru y0 ∈ (−∞,0)

R pentru y0 = 0

(−∞, 1
y0
) pentru y0 ∈ (0,+∞).

Avem că D(X) = ⋃
(x0,y0)∈M

I(x0,y0) × {(x0, y0)}.

Definiţia 13.3 Un câmp vectorial X pe M se numeste complet dacă
D(X) = R ×M . O varietate M se numeşte completă dacă orice câmp
vectorial definit pe M este complet.

Observaţie. Orice câmp vectorial cu suport compact este complet şi orice
varietate compactă este completă.

În continuare vom folosi şi notaţia φt(p) = Φ(t, p), analogă notaţiei φp(t),
cu observaţia că atunci când fixăm un argument in Φ ı̂l vom scrie ca indice.

Propoziţia 13.1 (fără demonstraţie) Fie t, s ∈ R, p ∈ M astfel ı̂ncât ex-
presiile (φs ○ φt)(p), (φt ○ φs)(p) si φt+s(p) să fie definite.

Atunci (φs ○ φt)(p) = (φt ○ φs)(p) = φt+s(p).
Mai mult, aplicaţia φt este un difeomorfism local.

Observaţie. Avem φ0(p) = p şi φ−1
t (p) = φ−t(p).

Definiţia 13.4 Familia de difeomorfisme {φt}t se numeşte grupul 1-para-
metric local generat de câmpul vectorial X.
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Calcul diferenţial 46 M. I. Munteanu

Propoziţia 13.2 Reciproc, avem ca orice grup 1-parametric pe M , adica
Φ ∶ R ×M →M aplicaţie diferenţiabilă aşa ı̂ncât

• φt ∶M →M este un difeomorfism;

• φp ∶ R→M este un drum diferentiabil a.i. φp(0) = p;

• φs ○ φt = φt ○ φs = φt+s

determină un câmp vectorial pe M .

Vom vedea in continuare cum se ”transportă” fluxul de pe o varietate pe
alta prin intermediul difeomorfismelor.

Fie F ∶ Nn → Mm un difeomorfism. Fie X ∈ X(N) in câmp vectorial şi
{φt}t grupul 1-parametric local generat de acesta.

Întrebare. Ce grup 1-parametric local generează F∗X?

Răspuns. {Ψt = F ○Φt ○ F −1}t.
Demonstraţie. [Schiţă de demonstraţie.] Din faptul că Φ este fluxul lui
X avem: ⎧⎪⎪⎨⎪⎪⎩

∂Φ
∂t (t, p) =X(Φ(t, p))

Φ(0, p) = p, ∀p ∈ N.

Fie q ∈M şi fie p = F −1(q).
Avem imediat că Ψ(0, q) = F (Φ(0, F −1(q))) = F (p) = q.
Apoi calculăm:

∂Ψ
∂t (t, q) = ∂

∂tF (Φ(t, p)) = F∗,Φ(t,p) ∂Φ
∂t (t, p) = F∗,φt(p)X(φt(p)) =

= (F∗X)(Fφt(p)) = (F∗X)(FΦF −1(t, q)).

Propoziţia 13.3 (Consecinţă) Un câmp vectorial este invariant prin grupul
său 1-parametric.

Demonstraţie. [Schiţă de demonstraţie.]

Fie X un câmp vectorial complet şi {φt}t grupul său 1-parametric:
φt ∶M →M este un difeomorfism.



M
-I-
M
un
te
an
u
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Avem (φt)∗,p ∶ TpM → Tφt(p)M

X(p) z→ φt,∗,pX(p) =X(φt(p)) (de demonstrat).

Consider {φs}s grupul 1-parametric al lui X pe varietatea de plecare.
Atunci grupul 1-parametic al lui (φt)∗X (pe varietatea de sosire) este
φt ○ φs ○ φ−1

t (conform cu rezultatul de mai sus).

Calculăm: φt ○ φs ○ φ−1
t = φt ○ φs ○ φ−t = φt+s−t = φs.

Acest grup 1-parametric determină un câmp vectorial pe M (varietatea de
sosire) care este exact X.

Aplicaţii ale fluxului. Derivata Lie: pentru funcţii diferenţiabile, pentru
câmpuri vectoriale, pentru 1-forme, etc.

Derivata Lie Definiţie Formulă
pentru . . .

funcţii LXf = lim
t→0

1
t (φ∗t f − f) = d

dt(φ∗t f)∣t=0 LXf =Xf

câmpuri (LXY )(p) = lim
t→0

1
t ((φ−t,∗Y )(p) − Y (p)) LXY = [X,Y ]

vectoriale

1-forme (LXθ)(p) = lim
t→0

1
t ((φ∗t θ)(p) − θ(p)) (LXθ)(Y ) =Xθ(Y ) − θ([X,Y ])

câmpuri . . . . . .
tensoriale

Derivata Lie duce un câmp tensorial de tip (k, l) ı̂ntr-un câmp tensorial de
tip (k, l).
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