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Seminar 31.03.2020

Ex 1. Fie Ω un punct ı̂n plan, δ o dreaptă şi α ∈ (−π, π], α 6= 0 (un unghi orientat). În
ce condiţii RΩ,α(δ) = δ ?

Soluţie: Fie Ω(xΩ, yΩ) şi δ :
x− x0

a
=
y − y0

b
.

Fie P (at+ x0, bt+ y0) ∈ δ.

Scriem P ′ = RΩ,α(P ):

(
x′ − xΩ

y′ − yΩ

)
=

(
cosα − sinα
sinα cosα

)(
x− xΩ

y − yΩ

)
şi deci

{
x′ = xΩ + cosα(x− xΩ)− sinα(y − yΩ)

y′ = yΩ + sinα(x− xΩ) + cosα(y − yΩ)
.

Punctul P ′ ∈ δ, prin urmare,

b [xΩ + cosα(x0 − xΩ + at)− sinα(y0 − yΩ + bt)]− bx0

= a [yΩ + sinα(x0 − xΩ + at) + cosα(y0 − yΩ + bt)]− ay0, ∀t ∈ R.
(1)

Relaţia de mai sus reprezintă un polinom de grad I (aparent) ı̂n t, identic nul. Prin
urmare, coeficienţii sunt zero.

Astfel,

t : (((((b a cosα − b2 sinα = a2 sinα + (((((a b cosα =⇒ (a2 + b2) sinα = 0 =⇒ sinα = 0 =⇒
α = π

Înlocuind ı̂n (1), se obţine

b[xΩ − x0 + xΩ]− bx0 = a[yΩ − y0 + yΩ]− ay0 =⇒ bxΩ − bx0 = ayΩ − ay0 =⇒ Ω ∈ δ.

Deci, condiţiile pentru ca RΩ,α(δ) = δ sunt α = π şi Ω ∈ δ.

Ex 2. Fie ū, v̄ ∈ R2 \ {0̄} a.̂ı. ū 6= v̄ şi fie δ o dreaptă ı̂n plan. Ce condiţie trebuie să fie
ı̂ndeplinită astfel ı̂ncât tū(δ) = tv̄(δ) ?

Soluţie: Fie δ : r̄ = r̄A + tā, t ∈ R, ā 6= 0̄ (ecuaţia vectorială).
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Notăm δ1 = tū(δ) şi δ2 = tv̄(δ).

Avem următoarele ecuaţii vectoriale pentru cele două drepte:

δ1 : r̄ = r̄A1 + λā

δ2 : r̄ = r̄A2 + µā, λ, µ ∈ R,

unde r̄A1 = r̄A + ū şi r̄A2 = r̄A + v̄.

Pentru ca δ1 = δ2 trebuie ca r̄A1 − r̄A2 să fie coliniar cu ā. Prin urmare, rezultă că ū− v̄
şi ā sunt proporţionali.

Ex 3. Să se studieze compunerea Sd2 ◦ Sd1 , unde d1 este axa Ox, iar d2 este prima
bisectoare.

Soluţie. Ecuaţiile celor două drepte sunt: d1 : y = 0 şi d2 : y = x.

Ecuaţiile simetriilor corespunzătoare se scriu: Sd1 :

{
x′ = x

y′ = −y
şi Sd2 :

{
x′ = y

y′ = x
.

Calculăm
(Sd2 ◦ Sd1) (x, y) = Sd2(x,−y) = (−y, x).

Să studiem acum izometria obţinută: f : E2 → E2, f(x, y) = (−y, x).

Matricial putem scrie

(
x′

y′

)
= A

(
x
y

)
+B, unde A =

(
0 −1
1 0

)
şi B =

(
0
0

)
.

Evident A ∈ O(2) şi detA = 1, deci f este o deplasare.

Cum A 6= I2 deducem că f este o rotaţie de unghi α pentru care cosα = 0 şi sinα = 1

(din forma matricii A). Rezultă că α =
π

2
.

Pentru a găsi centrul rotaţiei, rezolvăm ecuaţia f(x, y) = (x, y).

Deducem

{
x = −y
y = x,

de unde avem că (x, y) = (0, 0).

Aşadar avem o rotaţie de centru O şi unghi
π

2
. Remarcăm că {O} = d1 ∩ d2.
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Ex 4. (a) Fie ū = (1, 2) şi d = Ox.
Să se determine o izometrie f : E2 → E2 a.̂ı. f ◦ Sd = tu.
(b) Acelaşi exerciţiu pentru ū = (0, 2).

Soluţie.

a) Din relaţia dată obţinem imediat f = tū ◦ S−1
d . Ştim că Sd este involutivă, adică

Sd ◦ Sd = Id, astfel că S−1
d = Sd. Deci f = tū ◦ Sd. Rezultă că

f(x, y) = tū (Sd(x, y)) = tū(x,−y) = (x+ 1,−y + 2).

Scriind matricial, obţinem că

(
x′

y′

)
= A

(
x
y

)
+B, unde A =

(
1 0
0 −1

)
şi B =

(
1
2

)
.

Matricea A este ortogonală şi detA = −1, deci f este o antideplasare.

Să verificăm dacă f are puncte fixe, adică să rezolvăm sistemul de ecuaţii

{
x = x+ 1

y = −y + 2.

Evident, nu avem soluţie, deci f este o alunecare (simetrie alunecată). Dreapta d (faţă
de care facem simetria) este unic determinată de mijloacele segmentelor de forma [PP ′],
unde P ′ = f(P ).

De exemplu,

pentru A(0, 0), avem A′ = f(A) = (1, 2)
pentru B(1, 1), avem B′ = f(B) = (2, 1).

Mijloacele coresunzătoare sunt M =
1

2
A+

1

2
A′ =

(
1

2
, 1

)
şi N =

1

2
B +

1

2
B′ =

(
3

2
, 1

)
.

Dreapta d are ecuaţia y = 1.

Vectorul ū (de alunecare) este dat de
−−→
PP ′, unde P ∈ d şi P ′ = f(P ).

Evident ū nu depinde de punctul ales P . Observăm că B ∈ d, deci ū =
−−→
BB′ = (1, 0).

b) Pentru celălalt vector ū = (0, 2), izometria f se scrie f(x, y) = (x,−y+ 2). Din nou, f
este o antideplasare, ı̂nsă de data aceasta f are puncte fixe. Acestea sunt de forma (x, 1),
deci formează o dreaptă d : y = 1. Astfel, f = Sd.
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Ex 5. Fie dreptele

d1 : x+ 2y − 1 = 0 şi d2 : x+ 2y + 1 = 0.

Să se arate că Sd2 ◦ Sd1 = tū, pentru un anumit vector ū care să se determine.

Soluţie: Ecuaţiile simetriilor sunt următoarele:

Sd1 :


x′ =

3x− 4y + 2

5

y′ = −4x+ 3y − 4

5

şi Sd2 :


x′ =

3x− 4y − 2

5

y′ = −4x+ 3y + 4

5

.

Calculăm

(Sd2 ◦ Sd1) (x, y) = Sd2 (Sd1(x, y)) = Sd2

(
3x− 4y + 2

5
,−4x+ 3y − 4

5

)

=

(−2 + 3
5
(3x− 4y + 2) + 4

5
(4x+ 3y − 4)

5
,
−4− 4

5
(3x− 4y + 2) + 3

5
(4x+ 3y − 4)

5

)

=

(
25x− 20

25
,
25y − 40

25

)
= (x, y)−

(
4

5
,
8

5

)
.

Deci ū =

(
−4

5
,−8

5

)
.

Se verifică imediat că d1‖d2, ū ⊥ ~d1 şi ‖ū‖ = 2d(d1, d2).

Ex 6. Fie ū = (1,−2) şi dreapta d : y =
x

2
. Să se determine δ (dacă există), astfel ı̂ncât

Sδ ◦ Sd = tū.

Soluţie: Deoarece Sd este involutivă, Sd ◦ Sd = Id, avem că Sδ = tū ◦ Sd.

Scriem mai ı̂ntâi ecuaţiile simetriei Sd, astfel: Sd :


x′ =

3x+ 4y

5

y′ =
4x− 3y

5

.

Deci Sδ(x, y) =

(
3x+ 4y + 5

5
,
4x− 3y − 10

5

)
.

4



M
-I-
M
un
te
an
u

În scriere matricială, A =


3

5

4

5

4

5
−3

5

 şi B =

(
1
−2

)
.

Deoarece A ∈ O(2) şi detA = −1, rezultă că izometria este o antideplasare.

Căutăm punctele fixe şi obţinem sistemul

{
3x+ 4y + 5 = 5x

4x− 3y − 10 = 5y
, care are soluţia

{
(x, y) ∈ R2 : 2x− 4y − 5 = 0

}
,

adică o dreaptă.

Aceasta este dreapta δ faţă de care se face simetria.

Ex 7. Fie dreptele d1 : x = −1 şi d2 : y =
√

3 x. Să se arate că Sd2 ◦ Sd1 este o rotaţie
RΩ,α şi să se determine Ω şi α. Ce se poate spune despre Sd1 ◦ Sd2 ?

Soluţie. Cele două simetrii se scriu astfel:

Sd1 :

{
x′ = −2− x
y′ = y

şi Sd2 :


x′ =

−x+
√

3 y

2

y′ =

√
3 x+ y

2

.

Avem

(Sd2 ◦ Sd1) (x, y) = Sd2(−2− x, y) =

(
x+
√

3 y + 2

2
,
−
√

3 x+ y − 2
√

3

2

)
,

(Sd1 ◦ Sd2) (x, y) = Sd1

(
−x+

√
3 y

2
,

√
3 x+ y

2

)
=

(
−4 + x−

√
3 y

2
,

√
3 x+ y

2

)
.

În scriere matricială,

(
x′

y′

)
= A

(
x
y

)
+B, avem:

• pentru Sd2 ◦ Sd1 : A =

(
1
2

√
3

2

−
√

3
2

1
2

)
, B =

(
1

−
√

3

)
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• pentru Sd1 ◦ Sd2 : A =

(
1
2
−
√

3
2

√
3

2
1
2

)
, B =

(
−2
0

)

În ambele situaţii A ∈ O(2), detA = +1 şi A 6= I2, deci avem rotaţii. Astfel:

• pentru Sd2 ◦ Sd1 : cosα = 1
2
, sinα = −

√
3

2
, deci α = −π

3
, iar Ω(−1,−

√
3).

• pentru Sd1 ◦ Sd2 : cosα = 1
2
, sinα =

√
3

2
, deci α = π

3
, iar Ω(−1,−

√
3).

Să remarcăm că {Ω} = d1 ∩ d2, iar unghiul neorientat dintre d1 şi d2 este π
6
.

Ex 8. Fie dreptele d1 : y = x şi d2 : x+ y− 1 = 0. Să se arate că Sd2 ◦Sd1 este o rotaţie
RΩ,α şi să se determine Ω şi α. Ce se poate spune despre Sd1 ◦ Sd2 ?

Soluţie. Ecuaţiile celor două simetrii sunt:

Sd1 :

{
x′ = y

y′ = x
şi Sd2 :

{
x′ = 1− y
y′ = 1− x

.

Prin urmare,

(Sd2 ◦ Sd1) (x, y) = Sd2 (Sd1(x, y)) = Sd2(y, x) = (1− x, 1− y). (2)

Matricial, această izometrie se scrie

(
x′

y′

)
= A

(
x
y

)
+ B, unde A =

(
−1 0

0 −1

)
,

B =

(
1
1

)
. Se verifică: A ∈ O(2) şi detA = 1. Aşadar Sd2 ◦ Sd1 este o rotaţie de unghi

α = π, deoarece cosα = −1 şi sinα = 0 (din forma matricii A).

Centrul rotaţiei este dat de punctul fix al izometriei, adică de soluţia sistemului

{
1− x = x

1− y = y
.

Rezultă Ω(1
2
, 1

2
). Se observă că {Ω} = d1 ∩ d2 şi π = 2^(d1, d2).

Cealaltă compunere se scrie

(Sd1 ◦ Sd2) (x, y) = Sd1 (Sd2(x, y)) = Sd1(1− y, 1− x) = (1− x, 1− y). (3)

Prin urmare, din (2) şi (3) rezultă că cele două simetrii comută.
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Ex 9. Fie dreapta d : 2x− y − 3 = 0 şi α = π
4
. Să se determine o dreaptă δ astfel ı̂ncât

Sδ ◦ Sd = RΩ,α, unde Ω(1,−1).

Soluţie. Deoarece simetria ortogonală faţă de o dreaptă este involutivă, rezultă că
S−1
d = Sd. Aşadar, trebuie să avem Sδ = RΩ,α ◦ Sd.

Scriem ecuaţiile izometriilor Sd şi RΩ,α, respectiv:

Sd :


x′ =

−3x+ 4y + 12

5

y′ =
4x+ 3y − 6

5

, RΩ,π
4

:


x′ =

x− y√
2

+ 1−
√

2

y′ =
x+ y√

2
− 1

.

În urma compunerii RΩ,π
4
◦ Sd se obţine izometria f dată de ecuaţiile:

f :


x′ =

−7x+ y

5
√

2
+ 1 +

4
√

2

5

y′ =
x+ 7y

5
√

2
− 1 +

3
√

2

5

.

În notaţiile uzuale din scrierea matricială a lui f avem:

A =

(
− 7

5
√

2
1

5
√

2

1
5
√

2
7

5
√

2

)
şi B =

(
1 + 4

√
2

5

−1 + 3
√

2
5

)
.

Matricea A este ortogonală şi detA = −1, deci avem o antideplasare. Căutând punctele
fixe, obţinem simetria Sδ, unde δ : (5

√
2 + 7)x− y − 5

√
2− 8 = 0.

Ex 10. Fie izometriile f1, f2 : E2 → E2, date prin:

f1(x, y) =

(
1

2
x−
√

3

2
y − 1

2
,

√
3

2
x+

1

2
y +

√
3

2

)

f2(x, y) =

(√
3

2
x+

1

2
y − 1, −1

2
x−
√

3

2
y + 2−

√
3

)
.

(a) Să se studieze tipul acestor izometrii.

(b) Să se arate că f1 ◦ f2 şi f2 ◦ f1 reprezintă rotaţii ı̂n plan, cărora să se stabilească
elementele.
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Soluţie:

(a) Se arată că f1 = RΩ1,
π
3

şi f2 = RΩ2,−π
6
, unde Ω1(−1, 0) şi Ω2(0, 2).

(b) Rezultă (f2 ◦ f1)(x, y) =

(√
3

2
x− 1

2
y − 1,

1

2
x+

√
3

2
y + 3−

√
3

)
.

În scriere matricială, avem: A =


√

3

2
−1

2
1

2

√
3

2

 şi B =

(
−1

3−
√

3

)
, notaţiile fiind cele

uzuale. Se verifică imediat că A ∈ O(2) şi detA = 1. Întrucât A 6= I2, rezultă că f2 ◦ f1

este o rotaţie de unghi α, unde cosα =
√

3
2

şi sinα = 1
2
, adică α = π

6
= π

3
− π

6
(suma

unghiurilor celor două rotaţii, care este diferită de 0 mod 2π). Centrul acestei rotaţii

este punctul fix, adică Ω

(
−2−

√
3

2
,
1

2
−
√

3

)
.

Lăsăm spre studiu cititorului cea de-a doua izometrie, adică f1 ◦ f2.

Propunem spre rezolvare următoarea problemă.

Fie δ dreapta determinată de Ω1 şi Ω2. Descompunem cele două izometrii astfel:
f1 = Sδ ◦ Sd1 şi f2 = Sd2 ◦ Sδ, unde d1 şi d2 sunt două drepte ce vor fi determinate (vezi
exerciţiile precedente). Să se verifice că d1 ∩ d2 = {Ω}.

Ex 11. Fie izometria f : E2 → E2, dată prin f(x, y) = (3− y, 1 + x).

(a) Să se arate că f este o rotaţie.

(b) Să se arate că f 2 = f ◦ f este o rotaţie.

Soluţie:

(a) Se verifică faptul că f = RΩ,α, unde Ω(1, 2) şi α = π
2
.

(b) Calculăm f 2(x, y) = (2−x, 4−y), care este o rotaţie de acelaşi centru Ω(1, 2) şi unghi
2α.
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Ex 12. Fie izometriile f1, f2 : E2 → E2 date prin ecuaţiile:

f1(x, y) = (3− y, 1 + x),

f2(x, y) = (4 + y, 2− x).

(a) Să se determine tipul acestor izometrii.

(b) Să se arate că f2 ◦ f1 şi f1 ◦ f2 sunt translaţii.

Soluţie: Scriind matricial (̂ın notaţiile obişnuite) avem:

• pentru f1: A1 =

(
0 −1
1 0

)
, B1 =

(
1
3

)

• pentru f2: A2 =

(
0 1
−1 0

)
, B1 =

(
4
2

)
.

Deci f1 = RΩ1,
π
2

şi f2 = RΩ2,−π
2
, unde Ω1(1, 2) şi Ω2(3,−1).

Cele două compuneri se scriu

(f2 ◦ f1)(x, y) = (x+ 5, y − 1), deci f2 ◦ f1 = tū, unde ū = (5,−1),

(f1 ◦ f2)(x, y) = (1 + x, 5 + y), deci f1 ◦ f2 = tv̄, unde v̄ = (1, 5).

———————— ————————

Ex 13. În E3: Se consideră dreapta

δ :
x− 1

2
=
y − 1

1
=
z + 1

−1
.

(i) Să se scrie ecuaţiile simetriei ortogonale Sδ faţă de dreapta δ.

(ii) Să se verifice că Sδ ◦ Sδ = Id (aplicaţie involutivă).

(iii) Să se determine Sδ(d), unde

d :
x

1
=
y + 1

1
=

z

−2
.

9
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(iv) Să se determine Sδ(π), unde π : x− y + z − 1 = 0.

Soluţie:

(i) Fie P (xP , yP , zP ) un punct arbitrar din E3. Prin P ducem planul π normal la δ,
intersecţia dintre plan şi dreaptă fiind proiecţia P0 a lui P pe δ. Planul π are direcţia
normală (2, 1,−1) şi prin urmare, ecuaţia sa este:

π : 2(x− xP ) + (y − yP )− (z − zP ) = 0.

Pentru a afla P0, scriem ecuaţiile parametrice ale dreptei δ:


x = 2t+ 1

y = t+ 1

z = −t− 1.

Înlocuind, obţinem 2(2t+ 1− xP ) + (t+ 1− yP ) + (t+ 1 + zP ) = 0.

Rezultă t =
2xP + yP − zP − 4

6
.

Deci P0 are coordonatele


x0 =

2xP + yP − zP − 1

3

y0 =
2xP + yP − zP + 2

6

z0 =
−2xP − yP + zP − 2

6
.

Dacă P ′ este simetricul căutat, avem P ′ = 2P0 − P .

Deducem ecuaţiile simetriei Sδ :


x′ =

x+ 2y − 2z − 2

3

y′ =
2x− 2y − z + 2

3

z′ = −2x+ y + 2z + 2

3
.

(ii) Se arată, prin calcul direct, că Sδ (Sδ(x, y, z)) = (x, y, z).

(iii) Scriem d ı̂n formă parametrică


x = t

y = t− 1

z = −2t

, t ∈ R.

10
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Înlocuind ı̂n ecuaţiile simetriei Sδ obţinem


x′ =

7t− 4

3

y′ =
2t+ 4

3

z′ =
t− 1

3

, t ∈ R.

Eliminând t, obţinem ecuaţiile canonice ale dreptei simetrice

Sδ(d) :
x′ + 4

3

7
=
y′ − 4

3

2
=
z′ + 1

3

1
.

(iv) Fie P ∈ π şi P ′ = Sδ(P ). Evident, P = Sδ(P
′).

Rezultă că:

x′ + 2y′ − 2z′ − 2

3
− 2x′ − 2y′ − z′ + 2

3
− 2x′ + y′ + 2z′ + 2

3
− 1 = 0.

Obţinem ecuaţia planului π′ := Sδ(π) : x′ − y′ + z′ + 3 = 0.

Observaţie: Remarcăm că dreapta δ este paralelă cu planul π, prin urmare e firesc ca
π′‖π.

Ex 14. În E3: Se consideră planul π : 2x+ y − 2z + 5 = 0.

(i) Să se scrie ecuaţiile simetriei ortogonale Sπ faţă de planul π.

(ii) Să se verifice că Sπ ◦ Sπ = Id.

(iii) Să se determine Sπ(δ) şi Sπ(α), unde δ :
x

1
=
y

1
=
z − 1

−1
şi α : x+ y + z = 0.

(iv) Să se arate că Sπ(d) = d, unde d :
x− 1

2
=
y + 1

1
=

z

−2
. Justificare.

Soluţie:

(i) Fie P (xP , yP , zP ) un punct arbitrar ı̂n E3.

Prin P ducem dreapta d0 normală la planul π:

d0 :
x− xP

2
=
y − yP

1
=
z − zP
−2

.
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Intersecţia dintre π şi d0 este proiecţia P0 a lui P pe π. Să obţinem coordonatele lui P0.

Astfel, d0 :


x = 2t+ xP

y = t+ yP

z = −2t+ zP ,

t ∈ R

şi 2(2t+ xP ) + (t+ yP )− 2(−2t+ zP ) + 5 = 0.

Rezultă t = −2xP + yP − 2zP + 5

9
, de unde obţinem coordonatele căutate:

P0 :


x0 =

5xP − 2yP + 4zP − 10

9

y0 =
−2xP + 8yP + 2zP − 5

9

z0 =
4xP + 2yP + 5zP + 10

9
.

Deoarece Sπ(P )
not
= P ′ = 2P0 − P , obţinem ecuaţiile simetriei:

Sπ :


x′ =

x− 4y + 8z − 20

9

y′ =
−4x+ 7y + 4z − 10

9

z′ =
8x+ 4y + z + 20

9
.

(ii) Se verifică, prin calcul direct, că Sπ (Sπ(x, y, z)) = (x, y, z).

(iii) Scriem ecuaţiile parametrice ale dreptei δ :


x = t

y = t

z = −t+ 1

şi ı̂nlocuim ı̂n ecuaţiile simetriei.
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Obţinem


x′ =

−7t− 16

9

y′ =
−t− 6

9

z′ =
11t+ 21

9

, de unde putem scrie ecuaţiile canonice:

Sπ(δ) :
x′ + 16

9

−7
=
y′ + 2

3

−1
=
z′ − 7

3

11
.

Deoarece Sπ este involutivă, obţinem imediat ecuaţia planului

Sπ(α) : 5x′ + 7y′ + 13z′ − 10 = 0.

(iv) Analog ca la (iii), avem ecuaţiile parametrice ale dreptei d :


x = 2t+ 1

y = t− 1

z = −2t,

pe care,

dacă le ı̂nlocuim ı̂n ecuaţiile simetriei, obţinem


x′ =

−6t− 5

3

y′ =
−3t− 7

3

z′ =
6t+ 8

3
,

Aşadar,

Sπ(d) :
x′ + 5

3

−2
=
y′ + 7

3

−1
=
z′ − 8

3

2
.

Se observă că d şi Sπ(d) au aceeaşi direcţie, iar A(1,−1, 0) aparţine ambelor drepte, prin
urmare coincid.

Observăm că dreapta d este perpendiculară pe planul π.

Ex 15. Să se scrie ecuaţiile mişcării elicoidale (rototranslaţie) ROy,π
3
◦ tū, unde ū = 2j̄.

Ex 16. În E3 se consideră dreapta orientată δ :
x− 1

2
=

y + 1

1
=

z

−1
. Să se descrie

rotaţia Rδ,θ ı̂n jurul dreptei δ de unghi θ = π
4
.
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Soluţie: Vectorul ā = (2, 1,−1) dă orientarea dreptei δ. Considerăm planul π, printr-un
punct P (xP , yP , zP ) normal dreptei δ:

π : 2(x− xP ) + (y − yP )− (z − zP ) = 0.

Dorim să aflăm coordonatele proiecţiei P0 := Prδ(P ); facem deci intersecţia dintre δ şi π.

Punctul P0 are coordonatele


x0 = 2t0 + 1

y0 = t0 − 1

z0 = −t0
, t0 ∈ R.

Înlocuind ı̂n ecuaţia planului, se obţine t0 =
2xP + yP − zP − 1

6
. În planul π (care

urmează a fi orientat) vom face rotaţia de unghi θ = π
4
.

Orientarea: În −→π trebuie să găsim o bază ortonormată {ū1, ū2} a.̂ı. ū1× ū2 să aibă acelaşi
sens cu ā .

Fie ū ∈ −→π , ū = (a, b, c), ū ⊥ ā, deci 2a+ b− c = 0.

Considerăm, de exemplu, vectorul ū1 :=
(

0, 1√
2
, 1√

2

)
.

Rezultă că ū2 := ā
‖ā‖ × ū1 =

(
1√
3
,− 1√

3
, 1√

3

)
. Evident ū1 × ū2 = 1√

6
ā.

Dacă exprimăm vectorul

−−→
P0P =

(
xP − yP + zP − 2

3
,
−2xP + 5yP + zP + 7

6
,
2xP + yP + 5zP − 1

6

)
ı̂n baza {ū1, ū2} obţinem

−−→
P0P = λ1ū1 + λ2ū2, unde

λ1 =
1√
2

(yP + zP + 1)

λ2 =
1√
3

(xP − yP + zP − 2).

Deci, scrierea matricială a lui
−−→
P0P ı̂n baza {ū1, ū2} este

(
λ1

λ2

)
.

În urma rotaţiei, coordonatele punctului P ′ se găsesc astfel:

(
cos θ − sin θ
sin θ cos θ

)(
λ1

λ2

)
.

14



M
-I-
M
un
te
an
u

Astfel,

−−→
P0P

′ =

√
2

2
(λ1 − λ2)ū1 +

√
2

2
(λ1 + λ2)ū2

= (λ1 − λ2)

(
0,

1

2
,
1

2

)
+ (λ1 + λ2)

(
1√
6
,− 1√

6
,

1√
6

)
.

Obţinem

x′ =
1

6

[
(4− 2

√
2 +
√

3) + (4 +
√

2)xP + (2−
√

2 +
√

3)yP + (−2 +
√

2 +
√

3)zP

]
y′ =

1

12

[
(−14 + 7

√
2 + 2

√
3) + 2(2−

√
2−
√

3)xP + (2 + 5
√

2)yP + (−2 +
√

2− 4
√

3)zP

]
z′ =

1

12

[
(2−

√
2 + 6

√
3) + 2(−2 +

√
2−
√

3)xP + (−2 +
√

2 + 4
√

3)yP + (2 + 5
√

2)zP

]
.

Să vizualizăm această rotaţie:
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Figura 1: Rotaţia a trei puncte ı̂n jurul unei drepte; cele albastre sunt duse ı̂n cele magenta
(vizualizări din unghiuri diferite)

Ex 17. În E3 se consideră punctul P0(x0, y0, z0), z0 > 0, z0 6= 1, a. ı̂. ‖
−−→
OP0‖ = 1. Să se

scrie ecuaţiile rotaţiei de unghi α ı̂n jurul unei drepte ce trece prin origine şi are orientarea

dată de vectorul k̄ ×
−−→
OP0.

Caz particular: α ∈
(
0, π

2

)
a.̂ı. cosα = z0.

Obsevaţie: În această situaţie particulară, rotaţia duce axa Oz+ in semidreapta [OP0 .

Soluţie: Dreapta ı̂n jurul căreia se face rotaţia are ecuaţia r̄ = O + tā, unde O(0, 0, 0)

este orginea reperului cartezian, iar ā = k̄ ×
−−→
OP0 este unitar.

Dacă P este un punct arbitrar ı̂n E3 şi P ′ = Rδ,α(P ), atunci avem ecuaţia vectorială a lui
P ′:

r̄P ′ = r̄O +
〈
−→
OP, ā〉
‖ā‖2

(1− cosα)ā+ cosα
−→
OP +

sinα

‖ā‖
ā×
−→
OP.

Avem: r̄O = (0, 0, 0),
−→
OP = (xP , yP , zP ), ā = (−y0, x0, 0), ‖ā‖2 = x2

0 + y2
0,

〈
−→
OP, ā〉 = −xPy0 + yPx0, ā×

−→
OP =

∣∣∣∣∣∣
−y0 xP ī
x0 yP j̄
0 zP k̄

∣∣∣∣∣∣ = (x0zP , y0zP ,−y0yP − x0xP ).

16



M
-I-
M
un
te
an
u

Rezultă coordonatele lui P ′:
x′ = (1− cosα)(y2

0xP − x0y0yP ) + cosα xP + sinα x0zP

y′ = (1− cosα)(x2
0yP − x0y0yP ) + cosα yP + sinα y0zP

z′ = cosα zP − sinα (x0xP + y0yP ).

În cazul particular avem sinα =
√
x2

0 + y2
0 şi cosα = z0. Astfel, P ′ are coordonatele:

x′ =
y0

1 + z0

(y0xP − x0yP ) + z0xP + x0zP

y′ =
x0

1 + z0

(x0yP − y0xP ) + z0yP + y0zP

z′ = z0zP − (x0xP + y0yP ).

Figura 2: Rotaţia unei figuri (un cerc) ı̂n jurul unei drepte; diferite unghiuri de rotaţie

Ex 18. Fie dreapta δ orientată care trece prin A(1, 1, 1) şi are direcţia (pozitivă) dată de
ā = (1, 0, 1).

(i) Să se scrie rotaţia Rδ,α ı̂n jurul dreptei δ de unghi α =
π

4
.

(ii) Să se calculeze Rδ,α(d) unde α =
π

4
şi d :

x

1
=
y

1
=
z

2
.
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