

New Finslerian Version of Schur's Lemma and its applications

Georgeta Crețu

*Department of Mathematics
Faculty of Mathematics
"Alexandru Ioan Cuza" University*

In collaboration with Prof. dr. Ioan Bucătaru

International Conference on APPLIED AND PURE MATHEMATICS
October 31 - November 3, 2019

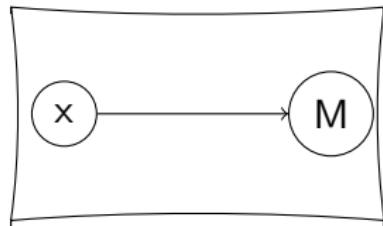
Iași, România

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P3-3.1-PM-RO-FR-2019-0234 / 1BM / 2019, whithin PNCDI III.

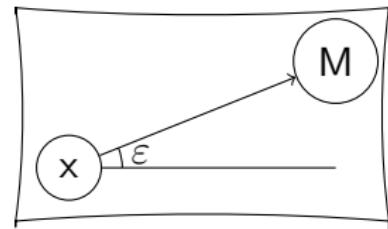
The difference between Riemann and Finsler Geometry

Under the influence of gravitational forces, what is the trajectory the person should walk to reach a given destination in the shortest time?

Riemannian Geometry



Finsler Geometry



- $\bar{v}_x = c$ and the gravitational force is acting perpendicularly.
- $distance(x, M) =$ geographic distance is what Riemannian distance is modeling.

- $\bar{v}_x = c$ on a plane of angle ε . (Minkowski plane)
- the most efficient time minimizing paths are not the Riemannian geodesics, but the geodesics of $F = \alpha^2/(\alpha - \beta)$

Definitions

A *Riemannian metric* on M is a family of (positive-definite) inner products $g_p: T_p M \times T_p M \rightarrow \mathbb{R}$, $p \in M$ such that, for every pair of differentiable vector fields

$X, Y \in M$,

$p \mapsto g_p(X|_p, Y|_p)$ $p \mapsto g_p(X|_p, Y|_p)$ defines a smooth function.

A *Finsler metric* on a manifold M is a function $F: TM \rightarrow [0; \infty)$ with following properties:

- ① Smoothness: $F(x; y)$ is C^∞ on $T_0 M$.
- ② Homogeneity: $F(x; \lambda y) = \lambda F(x; y)$; $\lambda > 0$
- ③ Regularity/Convexity: $(g_{ij}(x, y))$ is positive definite, where

$$g_{ij}(x, y) = \frac{1}{2}[F^2]_{y^i y^j}(x, y)$$

Geometric framework

We consider

$$\frac{d^2x^i}{dt^2} + 2G^i\left(x, \frac{dx}{dt}\right) = 0, \quad (1)$$

a system of n homogeneous differential equations of second order. The system (1) can be identified with a vector field named spray, given by:

$$S = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i} \quad (2)$$

The curvature tensor of the nonlinear connection $\Gamma = [J, S]$ is

$$R = \frac{1}{2}[h, h] = R_{jk}^i \frac{\partial}{\partial y^i} \otimes dx^j \wedge dx^k, \quad (3)$$

where $h := \frac{1}{2}(I + \Gamma)$ and $v := \frac{1}{2}(I - \Gamma)$ are the projectors of Γ .

New condition for isotropic sprays

The curvature tensors $\Phi = v \circ [S, h]$ and R are related by

$$3R = [J, \Phi], \quad \Phi = i_S R. \quad (4)$$

Lemma (Bucătaru I, C.G.-2019)

A spray S is isotropic if and only if there exists a semi-basic 1-form $\xi \in \Lambda^1(T_0 M)$ such that its curvature tensor R is given by:

$$R = \xi \wedge J - d_J \xi \otimes \mathcal{C}, \quad (5)$$

where $\xi = \frac{1}{3}(\alpha + d_J \rho)$.

The curvature 1-form of a Finsler metric

For a Finsler metric of constant flag curvature the curvature tensor is given by

$$R = \xi \wedge J \Rightarrow R_{jk}^i = \xi_j \delta_k^i - \xi_k \delta_j^i, \quad (6)$$

where

$$\xi = \kappa F d_J F \Rightarrow \xi_i = \kappa \frac{1}{2} \frac{\partial F^2}{\partial y^i} = \kappa g_{ij} y^j.$$

Lemma (Bucătaru I, C.G.-2019)

[Differential Bianchi identities] In dimension $n \geq 3$, the curvature 1-form of an isotropic spray satisfies $d_h \xi = 0$.

New Finslerian Version of Schur Lemma

Theorem (Bucătaru I, C.G.-2019)

[Finslerian version of Schur's Lemma for $n \geq 2$] Consider S the geodesic spray of a Finsler metric F . Then F has constant curvature if and only if satisfies the following CFC-conditions:

S is isotropic (this condition is always true for $n=2$); (7)

and the curvature 1-form satisfies:

$$d_J \xi = 0; \quad (8)$$

$$d_h \xi = 0 \quad (\text{this condition is always true for } n \geq 3). \quad (9)$$

The correspondent in the Riemannian case

Remark

We consider S the affine spray of a Finsler metric that is reducible to a Riemannian metric, $F(x, y) = \sqrt{g_{ij}(x)y^i y^j}$. Hence the CFC-conditions from the theorem become:

- S is isotropic.
- $d_J \xi = 0 \Leftrightarrow d_J \kappa = 0$ is always satisfied.
- $d_h \xi = 0 \Leftrightarrow d_h \kappa = 0 \Leftrightarrow R_{ij,k} - R_{ik,j} = 0$.

The invariance of the CFC-conditions

Definition

Two sprays S and \tilde{S} are *projectively related* if their geodesics coincide up to an orientation preserving reparameterization.

Remark

We consider S and $\tilde{S} = S - 2P\mathcal{C}$ two projectively related sprays. Then:

- \tilde{S} is isotropic if and only if S is isotropic,
- $d_J \tilde{\xi} = d_J \xi + \delta_S P$,
- $\delta_S P = d_J S P - 2d_h P$ is the Euler Lagrange 1-form,
- $d_{\tilde{h}} \tilde{\xi} = d_h \xi$.

Finslerian Version of Beltrami Theorem

Theorem (Bucătaru I, C.G.-2019)

[Finslerian version of Beltrami's Theorem for $n \geq 2$] Consider F and \tilde{F} two projectively related Finsler metrics. If \tilde{F} has constant curvature then F has also constant curvature if and only if the projective factor P is a Hamel function.

Lemma (Bucătaru I, C.G.-2018)

Consider that F and \tilde{F} are two projectively related Finsler functions that are reducible to Riemannian metrics. If F is of constant flag curvature then the projective factor satisfies

$$d_h d_J P = a_{ij} dx^i \wedge dx^j = 0, \quad a_{ij} = \frac{1}{2} \left(\frac{\partial a_j}{\partial x^i} - \frac{\partial a_i}{\partial x^j} \right). \quad (10)$$

Projectively flat Randers metrics

The family of projectively flat Finsler metrics that are reducible to a Riemannian metric is given by:

$$F = \frac{\sqrt{|y|^2 + \mu(|x|^2|y|^2 - \langle x, y \rangle^2)}}{1 + \mu|x|^2}. \quad (11)$$

Lemma (C.G.-2019)

The family of projectively flat Randers metrics of negative constant flag curvature whose projective factor is proportional to the metric is given by

$$F = \frac{\sqrt{|y|^2 - 4c^2(|x|^2|y|^2 - \langle x, y \rangle^2)}}{1 - 4c^2|x|^2} + \frac{2c\langle x, y \rangle}{1 - 4c^2|x|^2}. \quad (12)$$

In this case, the constant c represents the coefficient of proportionality between the projective factor and the metric.

A new family of projectively related Finsler metrics obtained through a Randers deformation

We consider F given by (12). We make a Randers deformation of the metric

$$F \rightarrow \tilde{F} = F + \tilde{b}, \quad (13)$$

where \tilde{b} is given by $\tilde{b}(x, y) = b_i(x)y^i$. Since $\delta_S \tilde{F} = 0 \Leftrightarrow \delta_S \tilde{b} = 0$, it follows that F and \tilde{F} are projectively related.

The projective factor is given by:

$$P = \frac{S(\tilde{F})}{2\tilde{F}} = \frac{S(F + \tilde{b})}{2(F + \tilde{b})} = \frac{S(\tilde{b})}{2(F + \tilde{b})}. \quad (14)$$

New families of Finsler metrics of negative flag curvature

We assume that $P = \nu \tilde{b}$, $\nu \in \mathbb{R}$ and we get

$$S_0 \tilde{b} - 2\nu \tilde{b}^2 = 0. \quad (15)$$

Finally we got that the 1-form \tilde{b} is given by

$$\tilde{b}(x, y) = \frac{\langle e, y \rangle}{4\nu^2 (\langle e, x \rangle + f)}, f > 0, |e| < 1. \quad (16)$$

Therefore, the metric obtained through this deformation is

$$\tilde{F} = \frac{\sqrt{|y|^2 - 4\nu^2 (|x|^2 |y|^2 - \langle x, y \rangle^2)}}{1 - 4\nu^2 |x|^2} - \frac{2\nu \langle x, y \rangle}{1 - 4\nu^2 |x|^2} + \frac{\langle e, y \rangle}{4\nu^2 (\langle e, x \rangle + f)}, \quad (17)$$

with $\tilde{\kappa} = -c^2$.

New Finsler metrics of zero flag curvature inspired by squared metrics

We consider the following deformation of the Finsler metric (12):

$$\tilde{F} = f(x) \frac{F^2}{a}, \quad (18)$$

where f is a positive function and a is given by (12).

Lemma (C.G.-2019)

Let $F = a + b$ a Randers metric. Then $\tilde{F} = f(x) \frac{F^2}{a}$ is projectively related to F if and only if the following relation is satisfied

$$\frac{F^2}{a} d_h f - S(f) d_J \left(\frac{F^2}{a} \right) + f S(a) d_J \left(\frac{F^2}{a^2} \right) = 0. \quad (19)$$

A new Finsler metric of zero flag curvature

$$P = \frac{S(f)}{2f} - \frac{S_0a - 2cFa}{2a} = \frac{Sf}{2f} - \frac{4cab - 2cFa}{2a} = \frac{S_0f}{2f} - 2cb + cF. \quad (20)$$

We notice that

$$\delta_S P = \delta_S \left(\frac{S_0f}{2f} - 2cb + cF \right) = \delta_S \left(\frac{S_0f}{2f} \right) \quad (21)$$

We assume that $S_0f = 4cfb$ and we get

$$\widetilde{F} = \frac{\eta(\sqrt{|y|^2 - 4c^2(|x|^2|y|^2 - \langle x, y \rangle^2)} + 2c\langle x, y \rangle)^2}{(1 - 4c^2|x|^2)^2 \sqrt{|y|^2 - 4c^2(|x|^2|y|^2 - \langle x, y \rangle^2)}}, \quad \eta \in \mathbb{R}^+, \quad (22)$$

with $\widetilde{\kappa} = 0$.

A new metric of zero flag curvature obtained through a conformal transformation

Lemma (C.G.-2019)

We consider F and \tilde{F} two projectively flat Finsler metrics and $\bar{F} = g(x)\tilde{F} + \frac{f(y)}{F}\tilde{F}$ a metric obtained by a multiplication of the projectively flat metric \tilde{F} with the 0-homogeneous function $g(x) + \frac{f(y)}{F}$, where g and f are considered such that \tilde{F} is positive. Then \bar{F} is projectively flat if and only if the following relation is satisfied

$$\begin{aligned} & \tilde{F}d_{h_0}g - S_0gd_{J\tilde{F}} - \frac{S_0fd_{J\tilde{F}}}{F} + \frac{\tilde{F}S_0fd_{JF}}{F^2} - \frac{S_0\tilde{F}d_{Jf}}{F} + \frac{fS_0\tilde{F}d_{JF}}{F^2} + \frac{\tilde{F}S_0Fd_{Jf}}{F^2} \\ & + \frac{fS_0Fd_{J\tilde{F}}}{F^2} - \frac{2f\tilde{F}S_0Fd_{JF}}{F^3} = 0. \end{aligned} \tag{23}$$

New Finsler metric of zero flag curvature

$$P = \frac{S_0 \bar{F}}{2\tilde{F}} = \frac{S_0 g \cdot \tilde{F} + g S_0 \tilde{F} + \frac{S_0 f}{F} \tilde{F} + \frac{f S_0}{F} \tilde{F} - f \frac{\tilde{F}}{F^2} S_0 F}{2 \left(g \tilde{F} + \frac{f}{F} \tilde{F} \right)} \quad (24)$$

We recall that F and \tilde{F} are two projectively flat Finsler metrics for which $S_0 F = 2cF^2$ and $S_0 \tilde{F} = 4cF\tilde{F}$.

Therefore, (24) becomes:

$$P = \frac{S_0 g \cdot \tilde{F} + \frac{S_0 f}{F} \tilde{F} - 2cf\tilde{F}}{2 \left(g \tilde{F} + \frac{f}{F} \tilde{F} \right)} + 2cF. \quad (25)$$

New Finsler metric of zero flag curvature

Taking into account the conditions imposed on the functions f and g it follows that we can make the following extra assumption

$$S_0g = 2cf \text{ and } S_0f = 0. \quad (26)$$

With the assumptions considered in (26) we get that the projective factor associated is

$$P = 2cF, \quad (27)$$

which is a Hamel function. We can write now the expression for the new metric as follows

$$\begin{aligned} \bar{F} = & \frac{\eta(\sqrt{|y|^2 - 4c^2(|x|^2|y|^2 - \langle x, y \rangle^2)} + 2c\langle x, y \rangle)^2}{(1 - 4c^2|x|^2)^2 \sqrt{|y|^2 - 4c^2(|x|^2|y|^2 - \langle x, y \rangle^2)}} \\ & \cdot \left(2c\langle a, x \rangle + e + \frac{\langle a, y \rangle}{\frac{\sqrt{|y|^2 - 4c^2(|x|^2|y|^2 - \langle x, y \rangle^2)}}{1 - 4c^2|x|^2} + \frac{2c\langle x, y \rangle}{1 - 4c^2|x|^2}} \right). \end{aligned} \quad (28)$$

References

- Bao, D., Chern, S.-S., Shen, Z.: *An introduction to Riemann-Finsler geometry*, Springer, 2000.
- Bucătaru, I., Crețu G.: *Finsler spaces of constant flag curvature and their projective geometry*, submitted.
- Bucătaru, I., Muzsnay, Z.: *Sprays metrizable by Finsler functions of constant flag curvature*, Differ. Geom. Appl., **31** (2013), 405–415.
- Crețu G.: *New classes of projectively related Finsler metrics of constant flag curvature*, submitted.
- Matveev, V.: *Projectively Invariant Objects and the Index of the Group of Affine Transformations in the Group of Projective Transformations*, Bull. Iranian Math. Soc., **44** (2) (2018), 341-375.

Thank you