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The difference between Riemann and Finsler Geometry

Under the influence of gravitational forces, what is the trajectory the
person should walk to reach a given destination in the shortest time?

Riemannian Geometry

x M

v x = c and the gravitational
force is acting perpendicularly.

distance(x ,M)=geographic
distance is what Riemannian
distance is modeling.

Finsler Geometry

x

M

ε

v x = c on a plane of angle
ε.(Minkowski plane)

the most efficient time
minimizing paths are not the
Riemannian geodesics, but the
geodesics of F = α2/(α− β)
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Definitions

A Riemannian metric on M is a
family of (positive-definite) inner
products gp : TpM × TpM → R,
p ∈ M such that, for every pair of
differentiable vector fields
X ,Y ∈ M,
p 7→ gp(X |p,Y |p)p 7→ gp(X |p,Y |p)
defines a smooth function.

A Finsler metric on a manifold M is
a function F : TM → [0;∞) with
following properties:

1 Smoothness: F (x ; y) is C∞ on
T0M.

2 Homogeneity:
F (x ;λy) = λF (x ; y);λ > 0

3 Regularity/Convexity:
(gij(x , y)) is positive definite,
where

gij(x , y) =
1

2
[F 2]y iy j (x , y)
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Geometric framework

We consider
d2x i

dt2
+ 2G i

(
x ,

dx

dt

)
= 0, (1)

a system of n homogeneous differential equations of second order. The
system (1) can be identified with a vector field named spray, given by:

S = y i
∂

∂x i
− 2G i (x , y)

∂

∂y i
(2)

The curvature tensor of the nonlinear connection Γ = [J,S ] is

R =
1

2
[h, h] = R i

jk

∂

∂y i
⊗ dx j ∧ dxk , (3)

where h := 1
2 (I + Γ) and v := 1

2 (I − Γ) are the projectors of Γ.
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New condition for isotropic sprays

The curvature tensors Φ = v ◦ [S , h] and R are related by

3R = [J,Φ], Φ = iSR. (4)

Lemma (Bucătaru I, C.G.-2019)

A spray S is isotropic if and only if there exists a semi-basic 1-form
ξ ∈ Λ1(T0M) such that its curvature tensor R is given by:

R = ξ ∧ J − dJξ ⊗ C, (5)

where ξ =
1

3
(α + dJρ) .
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The curvature 1-form of a Finsler metric

For a Finsler metric of constant flag curvature the curvature tensor is
given by

R = ξ ∧ J ⇒ R i
jk = ξjδ

i
k − ξkδij , (6)

where

ξ = κFdJF ⇒ ξi = κ
1

2

∂F 2

∂y i
= κgijy

j .

Lemma (Bucătaru I, C.G.-2019)

[Differential Bianchi identies] In dimension n ≥ 3, the curvature 1-form of
an isotropic spray satisfies dhξ = 0.
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New Finslerian Version of Schur Lemma

Theorem (Bucătaru I, C.G.-2019)

[Finslerian version of Schur’s Lemma for n ≥ 2] Consider S the geodesic
spray of a Finsler metric F . Then F has constant curvature if and only if
satisfies the following CFC-conditions:

S is isotropic (this condition is always true for n=2); (7)

and the curvature 1-form satisfies:

dJξ = 0; (8)

dhξ = 0 (this condition is always true for n ≥ 3). (9)
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The correspondent in the Riemannian case

Remark

We consider S the affine spray of a Finsler metric that is reducible to a
Riemannian metric, F (x , y) =

√
gij(x)y iy j . Hence the CFC -conditions

from the theorem become:

S is isotropic.

dJξ = 0⇔ dJκ = 0 is always satisfied.

dhξ = 0⇔ dhκ = 0⇔ Rij ,k − Rik,j = 0.
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The invariance of the CFC -conditions

Definition

Two sprays S and S̃ are projectively related if their geodesics coincide up
to an orientation preserving reparameterization.

Remark

We consider S and S̃ = S − 2PC two projectively related sprays. Then:

S̃ is isotropic if and only if S is isotropic,

dJ ξ̃ = dJξ + δSP,
δSP = dJSP − 2dhP is the Euler Lagrange 1-form,

d
h̃
ξ̃ = dhξ.
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Fislerian Version of Beltrami Theorem

Theorem (Bucătaru I, C.G.-2019)

[Finslerian version of Beltrami’s Theorem for n ≥ 2] Consider F and F̃
two projectively related Finsler metrics. If F̃ has constant curvature then
F has also constant curvature if and only if the projective factor P is a
Hamel function.

Lemma (Bucătaru I, C.G.-2018)

Consider that F and F̃ are two projectively related Finsler functions that
are reducible to Riemannian metrics. If F is of constant flag curvature
then the projective factor satisfies

dhdJP = aijdx
i ∧ dx j = 0, aij =

1

2

(
∂aj
∂x i
− ∂ai
∂x j

)
. (10)
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Projectively flat Randers metrics

The family of projectively flat Finsler metrics that are reducible to a
Riemannian metric is given by:

F =

√
|y |2 + µ (|x |2|y |2 − 〈x , y〉2)

1 + µ|x |2
. (11)

Lemma (C.G.-2019)

The family of projectively flat Randers metrics of negative constant flag
curvature whose projective factor is proportional to the metric is given by

F =

√
|y |2 − 4c2 (|x |2|y |2 − 〈x , y〉2)

1− 4c2|x |2
+

2c〈x , y〉
1− 4c2|x |2

. (12)

In this case, the constant c represents the coefficient of proportionality
between the projective factor and the metric.
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A new family of projectively related Finsler metrics obtained through
a Randers deformation

We consider F given by (12). We make a Randers deformation of the
metric

F → F̃ = F + b̃, (13)

where b̃ is given by b̃(x , y) = bi (x)y i . Since δS F̃ = 0⇔ δS b̃ = 0, it
follows that F and F̃ are projectively related.
The projective factor is given by:

P =
S(F̃ )

2F̃
=

S(F + b̃)

2(F + b̃)
=

S(b̃)

2(F + b̃)
. (14)

Georgeta Creţu New Finslerian Version of Schur’s Lemma 13 / 21



New familes of Finsler metrics of negative flag curvature

We assume that P = νb̃, ν ∈ R and we get

S0b̃ − 2νb̃2 = 0. (15)

Finally we got that the 1-form b̃ is given by

b̃(x , y) =
〈e, y〉

4ν2 (〈e, x〉+ f )
, f > 0, |e| < 1. (16)

Therefore, the metric obtained through this deformation is

F̃ =

√
|y |2 − 4ν2 (|x |2|y |2 − 〈x , y〉2)

1− 4ν2|x |2
− 2ν〈x , y〉

1− 4ν2|x |2
+

〈e, y〉
4ν2 (〈e, x〉+ f )

,

(17)
with κ̃ = −c2.
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New Finsler metrics of zero flag curvature inspired by squared metrics

We consider the following deformation of the Finsler metric (12):

F̃ = f (x)
F 2

a
, (18)

where f is a positive function and a is given by (12).

Lemma (C.G.-2019)

Let F = a + b a Randers metric. Then F̃ = f (x)
F 2

a
is projectively related

to F if and only if the following relation is satisfied

F 2

a
dhf − S(f )dJ

(
F 2

a

)
+ fS(a)dJ

(
F 2

a2

)
= 0. (19)
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A new Finsler metric of zero flag curvature

P =
S(f )

2f
− S0a− 2cFa

2a
=

Sf

2f
− 4cab − 2cFa

2a
=

S0f

2f
− 2cb + cF . (20)

We notice that

δSP = δS

(
S0f

2f
− 2cb + cF

)
= δS

(
S0f

2f

)
(21)

We assume that S0f = 4cfb and we get

F̃ =
η(
√
|y |2 − 4c2 (|x |2|y |2 − 〈x , y〉2) + 2c〈x , y〉)2

(1− 4c2|x |2)2
√
|y |2 − 4c2 (|x |2|y |2 − 〈x , y〉2)

, η ∈ R+, (22)

with κ̃ = 0.
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A new metric of zero flag curvature obtained through a conformal
transformation

Lemma (C.G.-2019)

We consider F and F̃ two projectively flat Finsler metrics and

F = g(x)F̃ +
f (y)

F
F̃ a metric obtained by a multiplication of the

projectively flat metric F with the 0-homogeneous function g(x) +
f (y)

F
,

where g and f are considered such that F̃ is positive. Then F is
projectively flat if and only if the following relation is satisfied

F̃ dh0g − S0gdJ F̃ −
S0fdJ F̃

F
+

F̃ S0fdJF

F 2
− S0F̃ dJ f

F
+

fS0F̃ dJF

F 2
+

F̃ S0FdJ f

F 2

+
fS0FdJ F̃

F 2
− 2f F̃ S0FdJF

F 3
= 0.

(23)
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New Finsler metric of zero flag curvature

P =
S0F

2F
=

S0g · F̃ + gS0F̃ +
S0f

F
F̃ +

fS0F̃

F
− f

F̃

F 2
S0F

2

(
gF̃ +

f

F
F̃

) (24)

We recall that F and F̃ are two projectively flat Finsler metrics for which
S0F = 2cF 2 and S0F̃ = 4cF F̃ .
Therefore, (24) becomes:

P =
S0g · F̃ +

S0f

F
F̃ − 2cf F̃

2

(
gF̃ +

f

F
F̃

) + 2cF . (25)
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New Finsler metric of zero flag curvature

Taking into account the conditions imposed on the functions f and g it
follows that we can make the following extra assumption

S0g = 2cf and S0f = 0. (26)

With the assumptions considered in (26) we get that the projective factor
associated is

P = 2cF , (27)

which is a Hamel function. We can write now the expression for the new
metric as follows

F =
η(
√
|y |2 − 4c2 (|x |2|y |2 − 〈x , y〉2) + 2c〈x , y〉)2

(1− 4c2|x |2)2
√
|y |2 − 4c2 (|x |2|y |2 − 〈x , y〉2)

·

2c〈a, x〉+ e +
〈a, y〉√

|y |2−4c2(|x|2|y |2−〈x,y〉2)

1−4c2|x|2 + 2c〈x,y〉
1−4c2|x|2

 .

(28)
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Thank you
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