

Bochner-Simons Formulas And The Rigidity Of Biharmonic Submanifolds

Dorel Fetcu

Gheorghe Asachi Technical University of Iași

International Conference On Applied and Pure Mathematics (ICAPM 2019)
October 31- November 3, 2019
Iași, Romania

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P3-3.1-PM-RO-FR-2019-0234/1BM/2019, within PNCDI III

Simons type formulas

(Simons - 1968) The expression of the Laplacian of the squared norm of the second fundamental form of a minimal submanifold.

For minimal hypersurfaces in \mathbb{S}^{m+1} :

$$\frac{1}{2}\Delta|A|^2 = -|\nabla A|^2 - |A|^2(m - |A|^2)$$

Simons type formulas

(Simons - 1968) The expression of the Laplacian of the squared norm of the second fundamental form of a minimal submanifold.

For minimal hypersurfaces in \mathbb{S}^{m+1} :

$$\frac{1}{2}\Delta|A|^2 = -|\nabla A|^2 - |A|^2(m - |A|^2)$$

(Nomizu, Smyth - 1969) These results were generalized to constant mean curvature (CMC) hypersurfaces in space forms.

Simons type formulas

(Simons - 1968) The expression of the Laplacian of the squared norm of the second fundamental form of a minimal submanifold.

For minimal hypersurfaces in \mathbb{S}^{m+1} :

$$\frac{1}{2}\Delta|A|^2 = -|\nabla A|^2 - |A|^2(m - |A|^2)$$

(Nomizu, Smyth - 1969) These results were generalized to constant mean curvature (CMC) hypersurfaces in space forms.

(Cheng, Yau - 1977) A general Simons type formula for Codazzi tensors on M^m :

$$\frac{1}{2}\Delta|S|^2 = -|\nabla S|^2 - \langle S, \text{Hess}(\text{trace } S) \rangle - \frac{1}{2} \sum_{i,j=1}^m R_{ijij}(\lambda_i - \lambda_j)^2$$

Simons type formulas

(Simons - 1968) The expression of the Laplacian of the squared norm of the second fundamental form of a minimal submanifold.

For minimal hypersurfaces in \mathbb{S}^{m+1} :

$$\frac{1}{2}\Delta|A|^2 = -|\nabla A|^2 - |A|^2(m - |A|^2)$$

(Nomizu, Smyth - 1969) These results were generalized to constant mean curvature (CMC) hypersurfaces in space forms.

(Cheng, Yau - 1977) A general Simons type formula for Codazzi tensors on M^m :

$$\frac{1}{2}\Delta|S|^2 = -|\nabla S|^2 - \langle S, \text{Hess}(\text{trace } S) \rangle - \frac{1}{2} \sum_{i,j=1}^m R_{ijij}(\lambda_i - \lambda_j)^2$$

With $S = A$ this equation recovers Nomizu and Smyth's result as well as the Simons' one.

Harmonic and biharmonic maps

Let $\phi : (M, g) \rightarrow (N, h)$ be a smooth map.

Energy functional

$$E(\phi) = E_1(\phi) = \frac{1}{2} \int_M |d\phi|^2 v_g$$

Euler-Lagrange equation

$$\begin{aligned}\tau(\phi) = \tau_1(\phi) &= \text{trace}_g \nabla d\phi \\ &= 0\end{aligned}$$

Critical points of E :
harmonic maps

Harmonic and biharmonic maps

Let $\phi : (M, g) \rightarrow (N, h)$ be a smooth map.

Energy functional

$$E(\phi) = E_1(\phi) = \frac{1}{2} \int_M |d\phi|^2 v_g$$

Euler-Lagrange equation

$$\begin{aligned} \tau(\phi) = \tau_1(\phi) &= \text{trace}_g \nabla d\phi \\ &= 0 \end{aligned}$$

Bienergy functional

$$E_2(\phi) = \frac{1}{2} \int_M |\tau(\phi)|^2 v_g$$

Euler-Lagrange equation

$$\begin{aligned} \tau_2(\phi) &= -\Delta^\phi \tau(\phi) - \text{trace}_g R^N(d\phi, \tau(\phi))d\phi \\ &= 0 \end{aligned}$$

Critical points of E :
harmonic maps

Critical points of E_2 :
biharmonic maps

The biharmonic equation

(Jiang - 1986)

$$\tau_2(\phi) = -\Delta^\phi \tau(\phi) - \text{trace}_g R^N(d\phi, \tau(\phi))d\phi = 0$$

where

$$\Delta^\phi = -\text{trace}_g (\nabla^\phi \nabla^\phi - \nabla^\phi_{\nabla})$$

is the **rough Laplacian** on sections of $\phi^{-1}TN$

The biharmonic equation

(Jiang - 1986)

$$\tau_2(\phi) = -\Delta^\phi \tau(\phi) - \text{trace}_g R^N(d\phi, \tau(\phi))d\phi = 0$$

where

$$\Delta^\phi = -\text{trace}_g (\nabla^\phi \nabla^\phi - \nabla^\phi_{\nabla})$$

is the **rough Laplacian** on sections of $\phi^{-1}TN$

- it is a fourth-order non-linear elliptic equation
- any harmonic map is biharmonic
- a non-harmonic biharmonic map is **proper-biharmonic**
- a submanifold $\phi : M \rightarrow N$ is a **biharmonic submanifolds** if the immersion ϕ is biharmonic

Biharmonic submanifolds

Theorem (Balmuş, Montaldo, Oniciuc - 2012)

A hypersurface Σ^m in a Riemannian manifold N is biharmonic iff

$$\Delta f + f|A|^2 - f \text{Ricci}^N(\eta, \eta) = 0$$

and

$$2A(\text{grad}f) + mf \text{grad}f - 2f(\text{Ricci}^N(\eta))^{\top} = 0,$$

where $f = (1/m) \text{trace}A$ is the mean curvature function, $H = f\eta$, and $(\text{Ricci}^N(\eta))^{\top}$ is the tangent component of the Ricci curvature of N in the direction of η .

Biharmonic submanifolds

Theorem (Balmuş, Montaldo, Oniciuc - 2012)

A hypersurface Σ^m in a Riemannian manifold N is biharmonic iff

$$\Delta f + f|A|^2 - f \text{Ricci}^N(\eta, \eta) = 0$$

and

$$2A(\text{grad}f) + mf \text{grad}f - 2f(\text{Ricci}^N(\eta))^\top = 0,$$

where $f = (1/m) \text{trace}A$ is the mean curvature function, $H = f\eta$, and $(\text{Ricci}^N(\eta))^\top$ is the tangent component of the Ricci curvature of N in the direction of η .

Remark

CMC hypersurfaces M^m in \mathbb{S}^{m+1} are biharmonic iff $|A|^2 = m$. Therefore, their classification is a natural goal after Chern, do Carmo, and Kobayashi's classification of minimal hypersurfaces with $|A|^2 = m$.

Conjectures on biharmonic submanifolds

Conjecture (Balmuş, Montaldo, Oniciuc - 2012)

Proper-biharmonic submanifolds of \mathbb{S}^n are CMC.

Conjecture (Balmuş, Montaldo, Oniciuc - 2012)

The only proper-biharmonic hypersurfaces of \mathbb{S}^{m+1} are (open parts of) either hyperspheres $\mathbb{S}^m(1/\sqrt{2})$ or standard products of spheres $\mathbb{S}^{m_1}(1/\sqrt{2}) \times \mathbb{S}^{m_2}(1/\sqrt{2})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

Biconservative submanifolds

Let $\phi : M \rightarrow N$ be a smooth map between Riemannian manifolds.
The stress-energy tensor S_2 of the bienergy:

$$S_2(X, Y) = \frac{1}{2} |\tau(\phi)|^2 \langle X, Y \rangle + \langle d\phi, \nabla \tau(\phi) \rangle \langle X, Y \rangle - \langle d\phi(X), \nabla_Y \tau(\phi) \rangle - \langle d\phi(Y), \nabla_X \tau(\phi) \rangle$$

We have

$$\operatorname{div} S_2 = -\langle \tau_2(\phi), d\phi \rangle.$$

Biconservative submanifolds

Let $\phi : M \rightarrow N$ be a smooth map between Riemannian manifolds.
The stress-energy tensor S_2 of the bienergy:

$$S_2(X, Y) = \frac{1}{2} |\tau(\phi)|^2 \langle X, Y \rangle + \langle d\phi, \nabla \tau(\phi) \rangle \langle X, Y \rangle - \langle d\phi(X), \nabla_Y \tau(\phi) \rangle - \langle d\phi(Y), \nabla_X \tau(\phi) \rangle$$

We have

$$\operatorname{div} S_2 = -\langle \tau_2(\phi), d\phi \rangle.$$

A submanifold $\phi : M \rightarrow N$ of a Riemannian manifold N is called **biconservative** if $\operatorname{div} S_2 = 0$, i.e., $\tau_2(\phi)^\top = 0$.

Biconservative submanifolds

Let $\phi : M \rightarrow N$ be a smooth map between Riemannian manifolds.
 The stress-energy tensor S_2 of the bienergy:

$$S_2(X, Y) = \frac{1}{2} |\tau(\phi)|^2 \langle X, Y \rangle + \langle d\phi, \nabla \tau(\phi) \rangle \langle X, Y \rangle - \langle d\phi(X), \nabla_Y \tau(\phi) \rangle - \langle d\phi(Y), \nabla_X \tau(\phi) \rangle$$

We have

$$\operatorname{div} S_2 = -\langle \tau_2(\phi), d\phi \rangle.$$

A submanifold $\phi : M \rightarrow N$ of a Riemannian manifold N is called **biconservative** if $\operatorname{div} S_2 = 0$, i.e., $\tau_2(\phi)^\top = 0$.

For hypersurfaces M^m of space forms:

$$S_2 = -\frac{m^2 f^2}{2} I + 2mfA.$$

Moreover, $\nabla S_2 = 0$ iff $\nabla A = 0$.

A Simons type formula

(Loubeau, Oniciuc - 2014) A (quite complicated) formula of ΔS_2 for a general smooth map $\phi : M \rightarrow N$.

A Simons type formula

(Loubeau, Oniciuc - 2014) A (quite complicated) formula of ΔS_2 for a general smooth map $\phi : M \rightarrow N$.

Theorem (F., Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow N^{m+1}(c)$ be a hypersurface in a space form. Then

$$\begin{aligned}
 \frac{1}{2}\Delta|S_2|^2 = & 4cm^4f^4 - 4m^3f^3(\text{trace } A^3) - 4m^2f^2|A|^2(cm - |A|^2) \\
 & - 8m^4f^2|\text{grad } f|^2 - 4m^2f^2|\nabla A|^2 + 4m^2f\langle \text{grad } s, \text{grad } f \rangle \\
 & - 8m^2 \text{div}(f \text{Ricci}(\text{grad } f)) - 2m^2 \text{div}(|A|^2 \text{grad } f^2) \\
 & + \frac{m^5}{8}\Delta f^4 - 4cm^2(m-1)\Delta f^2 - 10m^2f\langle \tau_2^\top(\phi), \text{grad } f \rangle \\
 & - 4m^2f^2 \text{div}(\tau_2^\top(\phi)) - 2|\tau_2^\top(\phi)|^2 + 4mf\langle \nabla \tau_2^\top(\phi), A \rangle.
 \end{aligned}$$

Theorem (F., Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow N^{m+1}(c)$ be a constant-scalar-curvature biconservative hypersurface in a space form. Then

$$\frac{3m^2}{2}\Delta f^4 = 4f^2 \{ cm^2f^2 - mf(\text{trace } A^3) - |A|^2(cm - |A|^2) - 2m^2|\text{grad } f|^2 - |\nabla A|^2 \}.$$

Theorem (F., Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow N^{m+1}(c)$ be a constant-scalar-curvature biconservative hypersurface in a space form. Then

$$\frac{3m^2}{2}\Delta f^4 = 4f^2 \{ cm^2f^2 - mf(\text{trace} A^3) - |A|^2(cm - |A|^2) - 2m^2|\text{grad} f|^2 - |\nabla A|^2 \}.$$

Corollary

Let $\phi : M^m \rightarrow \mathbb{S}^{m+1}$ be a biharmonic hypersurface with constant scalar curvature. Then the following equations hold

$$\frac{3m^2}{2}\Delta f^4 = 4f^2 \{ m^2f^2 - mf(\text{trace} A^3) - |A|^2(m - |A|^2) - 2m^2|\text{grad} f|^2 - |\nabla A|^2 \}$$

and

$$\Delta f = f(m - |A|^2).$$

Rigidity results

Theorem (F., Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow N^{m+1}(c)$ be a compact biconservative hypersurface in a space form $N^{m+1}(c)$, with $c \in \{-1, 0, 1\}$. If M is not minimal, has constant scalar curvature and $\text{Riem}^M \geq 0$, then M is either

- 1 $\mathbb{S}^m(r)$, $r > 0$, if $c \in \{-1, 0\}$; or
- 2 $\mathbb{S}^m(r)$, $r \in (0, 1)$, or the product $\mathbb{S}^{m_1}(r_1) \times \mathbb{S}^{m_2}(r_2)$, where $r_1^2 + r_2^2 = 1$, $m_1 + m_2 = m$, and $r_1 \neq \sqrt{m_1/m}$, if $c = 1$.

Rigidity results

Theorem (F., Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow N^{m+1}(c)$ be a compact biconservative hypersurface in a space form $N^{m+1}(c)$, with $c \in \{-1, 0, 1\}$. If M is not minimal, has constant scalar curvature and $\text{Riem}^M \geq 0$, then M is either

- ① $\mathbb{S}^m(r)$, $r > 0$, if $c \in \{-1, 0\}$; or
- ② $\mathbb{S}^m(r)$, $r \in (0, 1)$, or the product $\mathbb{S}^{m_1}(r_1) \times \mathbb{S}^{m_2}(r_2)$, where $r_1^2 + r_2^2 = 1$, $m_1 + m_2 = m$, and $r_1 \neq \sqrt{m_1/m}$, if $c = 1$.

Corollary

Let $\phi : M^m \rightarrow \mathbb{S}^{m+1}$ be a compact proper-biharmonic hypersurface with constant scalar curvature and $\text{Riem}^M \geq 0$. Then M is either $\mathbb{S}^m(1/\sqrt{2})$ or the product $\mathbb{S}^{m_1}(1/\sqrt{2}) \times \mathbb{S}^{m_2}(1/\sqrt{2})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

A Bochner formula

(Mok, Siu, Yeung - 1993) A non-linear Bochner type formula, involving the 4-tensor defined on a Riemannian manifold (M, g) :

$$Q(X, Y, Z, W) = \langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle,$$

the map

$$\sigma_{24}(X, Y, Z, W) = (X, W, Z, Y),$$

and, given a symmetric $(1, 1)$ -tensor S , the 1-form θ defined as the contraction $C((Q \circ \sigma_{24}) \otimes g^*, \nabla S \otimes S)$, where g^* is the dual of g .

A Bochner formula

(Mok, Siu, Yeung - 1993) A non-linear Bochner type formula, involving the 4-tensor defined on a Riemannian manifold (M, g) :

$$Q(X, Y, Z, W) = \langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle,$$

the map

$$\sigma_{24}(X, Y, Z, W) = (X, W, Z, Y),$$

and, given a symmetric $(1, 1)$ -tensor S , the 1-form θ defined as the contraction $C((Q \circ \sigma_{24}) \otimes g^*, \nabla S \otimes S)$, where g^* is the dual of g .

Theorem (F., Loubeau, Oniciuc - 2018)

On a Riemannian manifold M with curvature tensor R we have

$$\operatorname{div} \theta = \langle T, S \rangle + |\operatorname{div} S|^2 - |\nabla S|^2 + \frac{1}{2} |W|^2,$$

where $T(X) = -\operatorname{trace}(RS)(\cdot, X, \cdot)$ and $W(X, Y) = (\nabla_X S)Y - (\nabla_Y S)X$.

More rigidity results

Proposition (F., Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow \mathbb{S}^{m+1}$ be a compact proper-biharmonic hypersurface with $\text{Riem}^M \geq 0$, such that

$$f^2|\nabla A|^2 - |A|^2|\text{grad}f|^2 + |A|^2(m - |A|^2)f^2 \geq 0.$$

Then M is either $\mathbb{S}^m(1/\sqrt{2})$ or the product $\mathbb{S}^{m_1}(1/\sqrt{2}) \times \mathbb{S}^{m_2}(1/\sqrt{2})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

More rigidity results

Proposition (F., Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow \mathbb{S}^{m+1}$ be a compact proper-biharmonic hypersurface with $\text{Riem}^M \geq 0$, such that

$$f^2|\nabla A|^2 - |A|^2|\text{grad}f|^2 + |A|^2(m - |A|^2)f^2 \geq 0.$$

Then M is either $\mathbb{S}^m(1/\sqrt{2})$ or the product $\mathbb{S}^{m_1}(1/\sqrt{2}) \times \mathbb{S}^{m_2}(1/\sqrt{2})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

Corollary

Let $\phi : M^m \rightarrow \mathbb{S}^{m+1}$ be a compact proper-biharmonic hypersurface with $\text{Riem}^M \geq 0$, such that

$$\left(\frac{m^2(m+26)}{4(m-1)}f^2 - |A|^2 \right) |\text{grad}f|^2 + |A|^2(m - |A|^2)f^2 \geq 0.$$

Then M is either $\mathbb{S}^m(1/\sqrt{2})$ or the product $\mathbb{S}^{m_1}(1/\sqrt{2}) \times \mathbb{S}^{m_2}(1/\sqrt{2})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

More rigidity results

Theorem (F. Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow N^n(c)$ be a compact PNMC biconservative submanifold in a space form with $\text{Riem}^M \geq 0$ and $m \leq 10$. Then M is a PMC submanifold and $\nabla A_H = 0$.

More rigidity results

Theorem (F. Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow N^n(c)$ be a compact PNMC biconservative submanifold in a space form with $\text{Riem}^M \geq 0$ and $m \leq 10$. Then M is a PMC submanifold and $\nabla A_H = 0$.

Corollary

Let $\phi : M^m \rightarrow N^{m+1}(c)$ be a compact biconservative hypersurface in a space form such that its mean curvature does not vanish at any point, $\text{Riem}^M \geq 0$, and $m \leq 10$. Then M is one of the hypersurfaces in The Rigidity of Biconservative Hypersurfaces Theorem.

More rigidity results

Theorem (F. Loubeau, Oniciuc - 2018)

Let $\phi : M^m \rightarrow N^n(c)$ be a compact PNMC biconservative submanifold in a space form with $\text{Riem}^M \geq 0$ and $m \leq 10$. Then M is a PMC submanifold and $\nabla A_H = 0$.

Corollary

Let $\phi : M^m \rightarrow N^{m+1}(c)$ be a compact biconservative hypersurface in a space form such that its mean curvature does not vanish at any point, $\text{Riem}^M \geq 0$, and $m \leq 10$. Then M is one of the hypersurfaces in The Rigidity of Biconservative Hypersurfaces Theorem.

Corollary

Let $\phi : M^m \rightarrow \mathbb{S}^{m+1}$ be a compact proper-biharmonic hypersurface such that its mean curvature does not vanish at any point, $\text{Riem}^M \geq 0$, and $m \leq 10$. Then M is either $\mathbb{S}^m(1/\sqrt{2})$ or the product $\mathbb{S}^{m_1}(1/\sqrt{2}) \times \mathbb{S}^{m_2}(1/\sqrt{2})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

D. Fetcu, E. Loubeau, and C. Oniciuc, *Bochner-Simons formulas and the rigidity of biharmonic submanifolds*, arXiv:1801.07879.