

Complete biconservative surfaces in the hyperbolic space \mathbb{H}^3

Asist.dr. Simona Barna

“Alexandru Ioan Cuza” University of Iași, SING

Iași, April 30, 2020

Article

- S. Nistor, C. Oniciuc, *Complete biconservative surfaces in the hyperbolic space \mathbb{H}^3* , Nonlinear Anal. 198 (2020) 111860.

Outline

- 1 Introducing the biconservative submanifolds

Outline

- 1 Introducing the biconservative submanifolds
- 2 Biconservative surfaces in 3-dimensional space forms
 - Local and global intrinsic results in \mathbb{H}^3
 - Local and global extrinsic results in \mathbb{H}^3

Outline

1 Introducing the biconservative submanifolds

2 Biconservative surfaces in 3-dimensional space forms

- Local and global intrinsic results in \mathbb{H}^3
- Local and global extrinsic results in \mathbb{H}^3

Biharmonic maps

Let (M^m, g) and (N^n, h) be two Riemannian manifolds. Assume that M is compact and consider

- Bienergy functional

$$E_2 : C^\infty(M, N) \rightarrow \mathbb{R}, \quad E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 v_g$$

- Euler-Lagrange equation

$$\begin{aligned} \tau_2(\varphi) &= -\Delta^{\varphi} \tau(\varphi) - \text{trace}_g R^N(d\varphi, \tau(\varphi))d\varphi \\ &= 0. \end{aligned}$$

Critical points of E_2 are called **biharmonic maps**.

Biharmonic maps

Let (M^m, g) and (N^n, h) be two Riemannian manifolds. Assume that M is compact and consider

- Bienergy functional

$$E_2 : C^\infty(M, N) \rightarrow \mathbb{R}, \quad E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 v_g$$

- Euler-Lagrange equation

$$\begin{aligned} \tau_2(\varphi) &= -\Delta^{\varphi} \tau(\varphi) - \text{trace}_g R^N(d\varphi, \tau(\varphi))d\varphi \\ &= 0. \end{aligned}$$

Critical points of E_2 are called biharmonic maps.

The biharmonic equation (G.Y. Jiang, 1986)

$$\tau_2(\varphi) = -\Delta^\varphi \tau(\varphi) - \text{trace}_g R^N(d\varphi, \tau(\varphi))d\varphi = 0,$$

where

$$\Delta^\varphi = -\text{trace}_g (\nabla^\varphi \nabla^\varphi - \nabla_{\nabla}^\varphi)$$

is the **rough Laplacian** on sections of $\varphi^{-1}TN$ and

$$R^N(X, Y)Z = \nabla_X^N \nabla_Y^N Z - \nabla_Y^N \nabla_X^N Z - \nabla_{[X, Y]}^N Z.$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called **proper-biharmonic**;

The biharmonic equation (G.Y. Jiang, 1986)

$$\tau_2(\varphi) = -\Delta^\varphi \tau(\varphi) - \text{trace}_g R^N(d\varphi, \tau(\varphi))d\varphi = 0,$$

where

$$\Delta^\varphi = -\text{trace}_g (\nabla^\varphi \nabla^\varphi - \nabla_{\nabla}^\varphi)$$

is the **rough Laplacian** on sections of $\varphi^{-1}TN$ and

$$R^N(X, Y)Z = \nabla_X^N \nabla_Y^N Z - \nabla_Y^N \nabla_X^N Z - \nabla_{[X, Y]}^N Z.$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called **proper-biharmonic**;

The biharmonic equation (G.Y. Jiang, 1986)

$$\tau_2(\varphi) = -\Delta^\varphi \tau(\varphi) - \text{trace}_g R^N(d\varphi, \tau(\varphi))d\varphi = 0,$$

where

$$\Delta^\varphi = -\text{trace}_g (\nabla^\varphi \nabla^\varphi - \nabla_{\nabla}^\varphi)$$

is the **rough Laplacian** on sections of $\varphi^{-1}TN$ and

$$R^N(X, Y)Z = \nabla_X^N \nabla_Y^N Z - \nabla_Y^N \nabla_X^N Z - \nabla_{[X, Y]}^N Z.$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called **proper-biharmonic**;

The biharmonic equation (G.Y. Jiang, 1986)

$$\tau_2(\varphi) = -\Delta^\varphi \tau(\varphi) - \text{trace}_g \mathbf{R}^N(d\varphi, \tau(\varphi))d\varphi = 0,$$

where

$$\Delta^\varphi = -\text{trace}_g (\nabla^\varphi \nabla^\varphi - \nabla_{\nabla}^\varphi)$$

is the **rough Laplacian** on sections of $\varphi^{-1}TN$ and

$$\mathbf{R}^N(X, Y)Z = \nabla_X^N \nabla_Y^N Z - \nabla_Y^N \nabla_X^N Z - \nabla_{[X, Y]}^N Z.$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called **proper-biharmonic**;

The biharmonic equation (G.Y. Jiang, 1986)

$$\tau_2(\varphi) = -\Delta^\varphi \tau(\varphi) - \text{trace}_g R^N(d\varphi, \tau(\varphi))d\varphi = 0,$$

where

$$\Delta^\varphi = -\text{trace}_g (\nabla^\varphi \nabla^\varphi - \nabla_{\nabla}^\varphi)$$

is the **rough Laplacian** on sections of $\varphi^{-1}TN$ and

$$R^N(X, Y)Z = \nabla_X^N \nabla_Y^N Z - \nabla_Y^N \nabla_X^N Z - \nabla_{[X, Y]}^N Z.$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called **proper-biharmonic**;

The biharmonic equation (G.Y. Jiang, 1986)

$$\tau_2(\varphi) = -\Delta^\varphi \tau(\varphi) - \text{trace}_g R^N(d\varphi, \tau(\varphi))d\varphi = 0,$$

where

$$\Delta^\varphi = -\text{trace}_g (\nabla^\varphi \nabla^\varphi - \nabla_{\nabla}^\varphi)$$

is the **rough Laplacian** on sections of $\varphi^{-1}TN$ and

$$R^N(X, Y)Z = \nabla_X^N \nabla_Y^N Z - \nabla_Y^N \nabla_X^N Z - \nabla_{[X, Y]}^N Z.$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called proper-biharmonic;

The stress-bienergy tensor

- G.Y. Jiang, 1987 defined the stress-energy tensor S_2 for the bienergy functional, and called it **the stress-bienergy tensor**:

$$\begin{aligned}\langle S_2(X), Y \rangle = & \frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle \\ & - \langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle.\end{aligned}$$

It satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\varphi), d\varphi \rangle.$$

The stress-bienergy tensor

- G.Y. Jiang, 1987 defined the stress-energy tensor S_2 for the bienergy functional, and called it **the stress-bienergy tensor**:

$$\begin{aligned}\langle S_2(X), Y \rangle = & \frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle \\ & - \langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle.\end{aligned}$$

It satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\varphi), d\varphi \rangle.$$

$$\varphi = \text{biharmonic} \Rightarrow \operatorname{div} S_2 = 0.$$

The stress-bienergy tensor

- G.Y. Jiang, 1987 defined the stress-energy tensor S_2 for the bienergy functional, and called it **the stress-bienergy tensor**:

$$\begin{aligned}\langle S_2(X), Y \rangle = & \frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle \\ & - \langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle.\end{aligned}$$

It satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\varphi), d\varphi \rangle.$$

$$\varphi = \text{biharmonic} \Rightarrow \operatorname{div} S_2 = 0.$$

If φ is a submersion, $\operatorname{div} S_2 = 0$ if and only if φ is biharmonic.

The stress-bienergy tensor

- G.Y. Jiang, 1987 defined the stress-energy tensor S_2 for the bienergy functional, and called it **the stress-bienergy tensor**:

$$\begin{aligned}\langle S_2(X), Y \rangle = & \frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle \\ & - \langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle.\end{aligned}$$

It satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\varphi), d\varphi \rangle.$$

$$\varphi = \text{biharmonic} \Rightarrow \operatorname{div} S_2 = 0.$$

If φ is a submersion, $\operatorname{div} S_2 = 0$ if and only if φ is biharmonic.

If $\varphi : M \rightarrow N$ is an isometric immersion then $(\operatorname{div} S_2)^\sharp = -\tau_2(\varphi)^\top$. In general, for an isometric immersion, $\operatorname{div} S_2 \neq 0$.

Biharmonic and biconservative submanifolds

Definition 3.1

A submanifold $\varphi : M^m \rightarrow N^n$ is called **biharmonic** if φ is a biharmonic map, i.e., $\tau_2(\varphi) = 0$.

Biharmonic and biconservative submanifolds

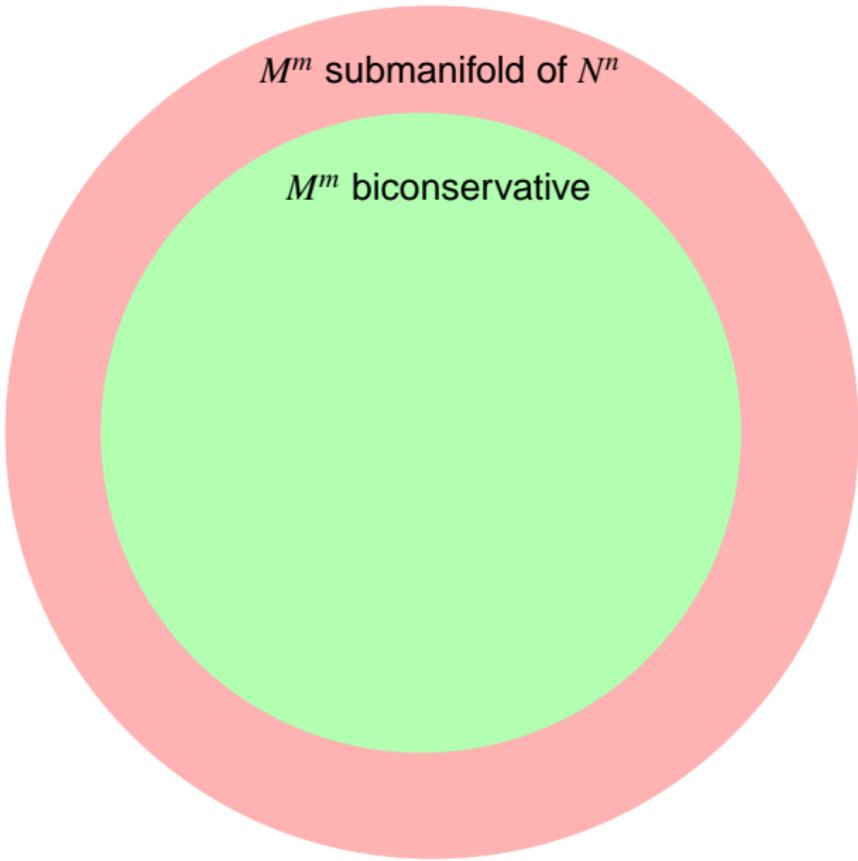
Definition 3.1

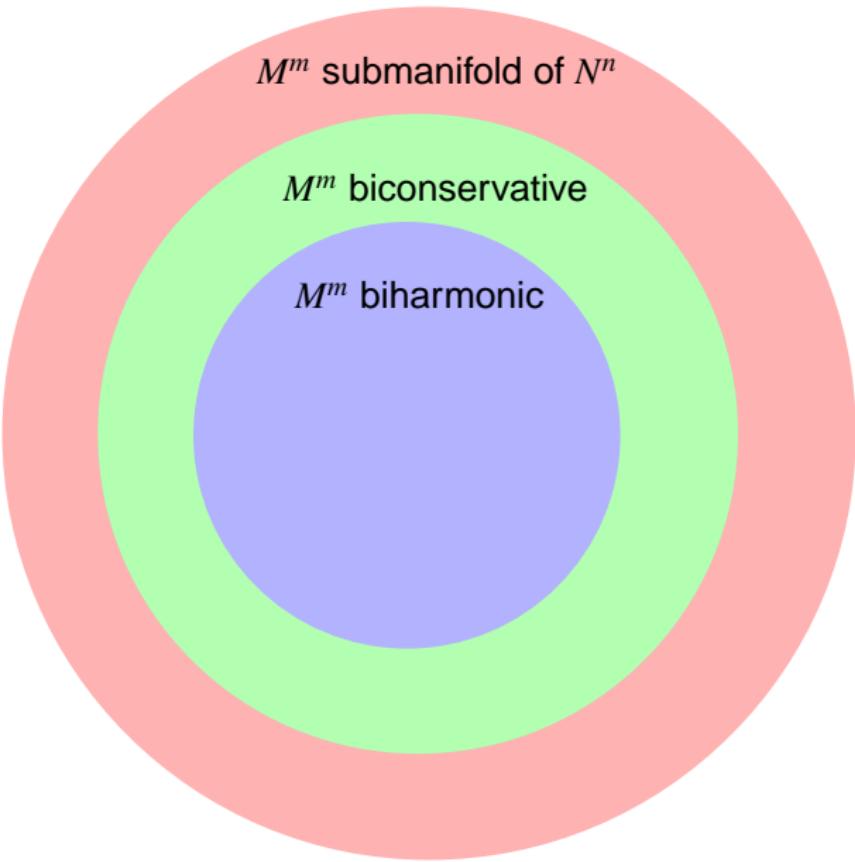
A submanifold $\varphi : M^m \rightarrow N^n$ is called **biharmonic** if φ is a biharmonic map, i.e., $\tau_2(\varphi) = 0$.

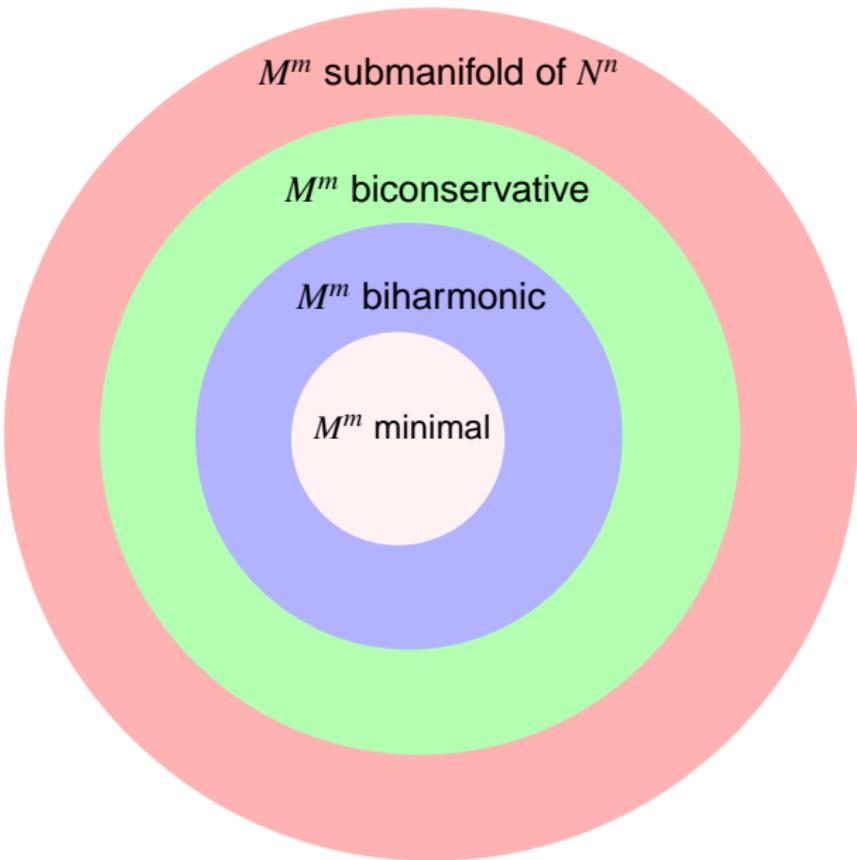
Definition 3.2

A submanifold $\varphi : M^m \rightarrow N^n$ is called **biconservative** if $\text{div } S_2 = 0$, i.e., $\tau_2(\varphi)^\top = 0$.

M^m submanifold of N^n







Characterization results

Proposition 3.3

A *hypersurface* $\varphi : M^m \rightarrow N^{m+1}(c)$ is *biconservative* if and only if

$$A(\text{grad}f) = -\frac{f}{2} \text{grad}f.$$

where A is the shape operator of M and $f = \text{trace}A$ is its mean curvature function.

- Every CMC hypersurface in $N^{m+1}(c)$ is biconservative.

Outline

- 1 Introducing the biconservative submanifolds
- 2 Biconservative surfaces in 3-dimensional space forms
 - Local and global intrinsic results in \mathbb{H}^3
 - Local and global extrinsic results in \mathbb{H}^3

Biconservative surfaces in $N^3(c)$

Let $\varphi : M^2 \rightarrow N^3(c)$ be a non-CMC biconservative surface.

Local results

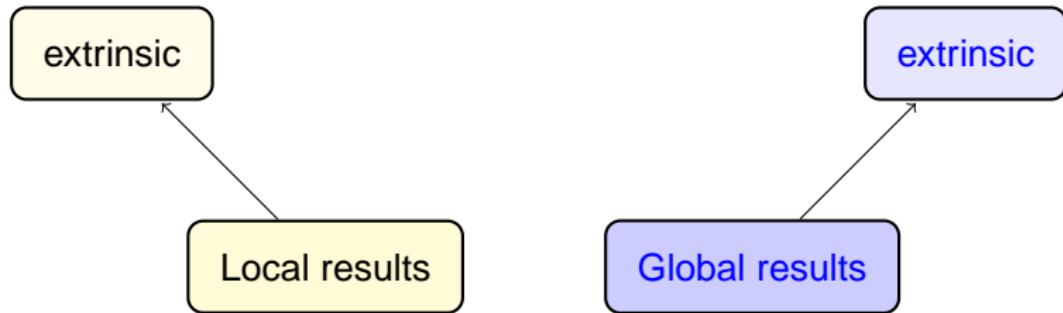
Global results

Biconservative surfaces in $N^3(c)$

Let $\varphi : M^2 \rightarrow N^3(c)$ be a non-CMC biconservative surface.

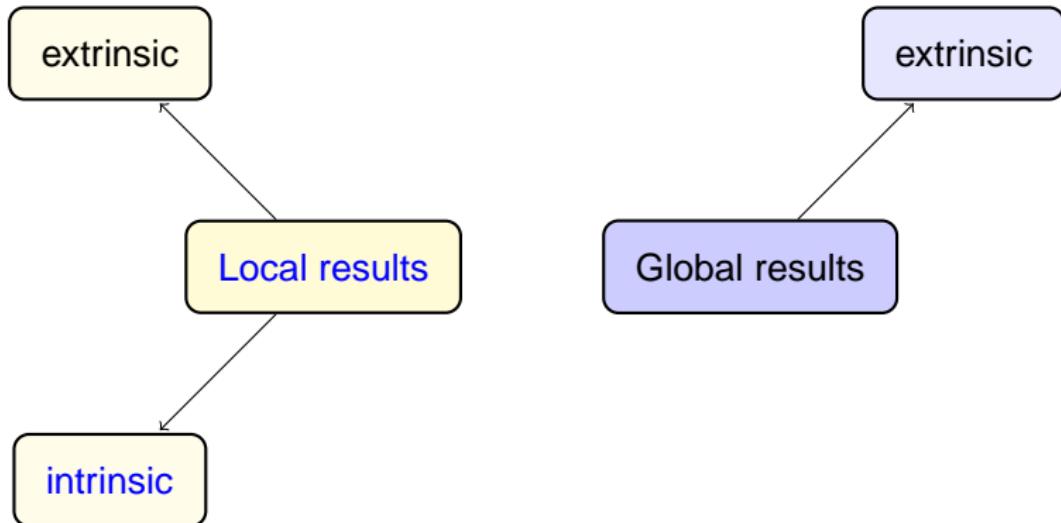
Biconservative surfaces in $N^3(c)$

Let $\varphi : M^2 \rightarrow N^3(c)$ be a non-CMC biconservative surface.



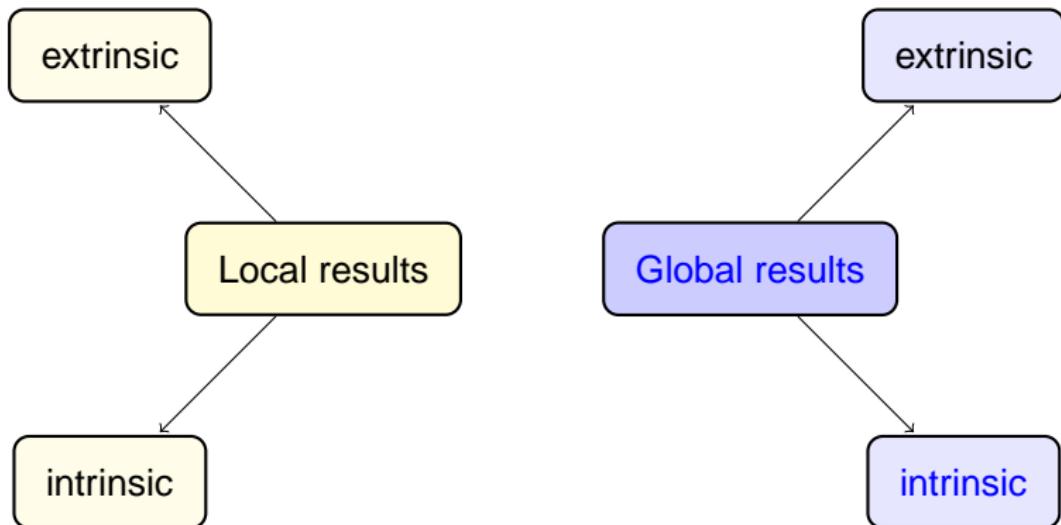
Biconservative surfaces in $N^3(c)$

Let $\varphi : M^2 \rightarrow N^3(c)$ be a non-CMC biconservative surface.

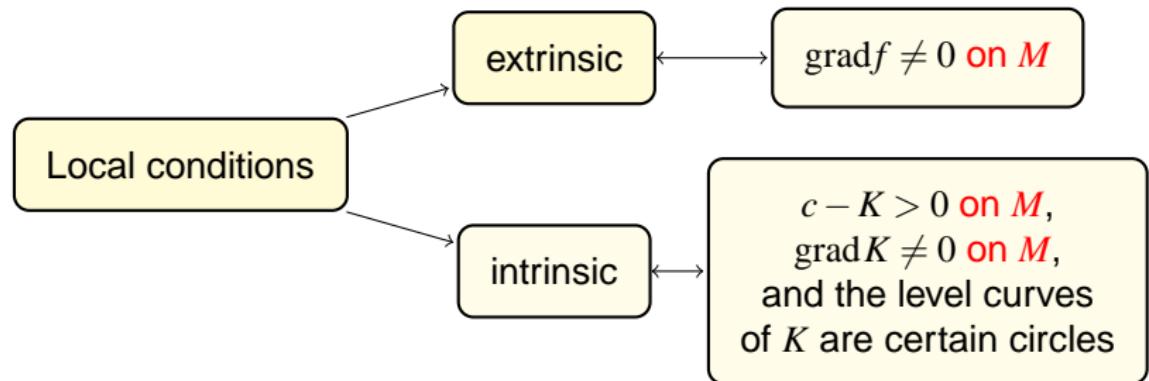


Biconservative surfaces in $N^3(c)$

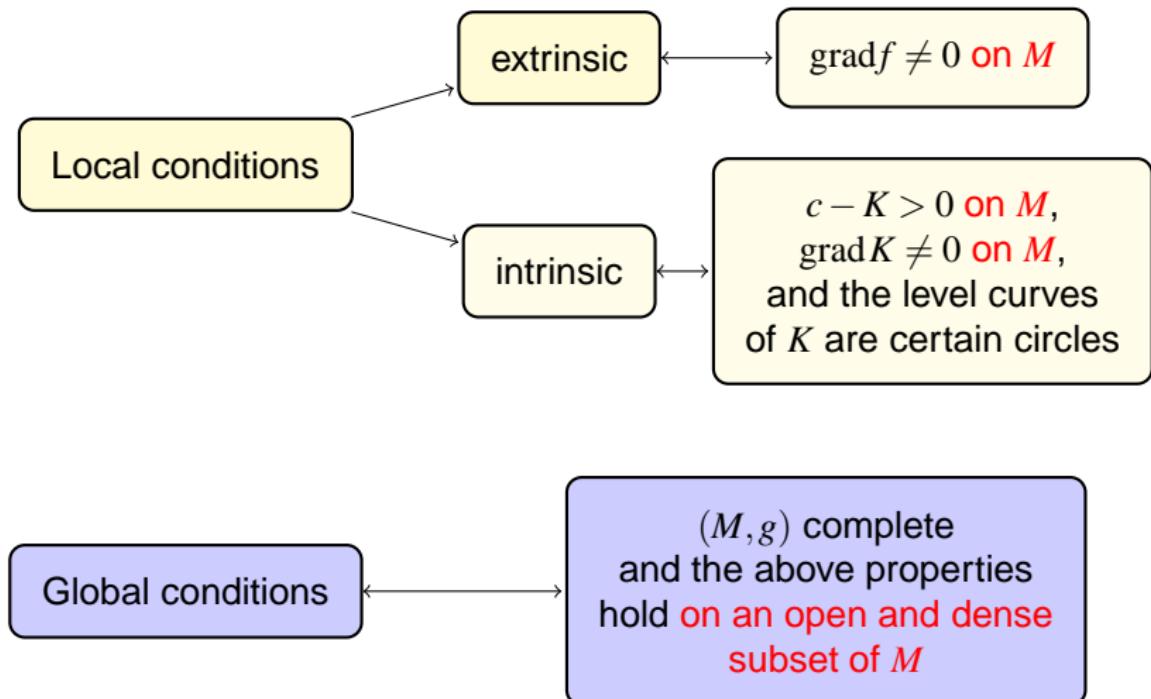
Let $\varphi : M^2 \rightarrow N^3(c)$ be a non-CMC biconservative surface.



Biconservative surfaces in $N^3(c)$



Biconservative surfaces in $N^3(c)$



Local results

Theorem 4.1 ([Caddeo, Montaldo, Oniciuc, Piu – 2014])

Let $\varphi : M^2 \rightarrow N^3(c)$ be a biconservative surface with $\text{grad}f \neq 0$ at any point of M . Then the Gaussian curvature K satisfies

(i) the extrinsic condition

$$K = \det A + c = -\frac{3f^2}{4} + c; \quad (1)$$

(ii) the intrinsic conditions $c - K > 0$, $\text{grad}K \neq 0$ on M , and its level curves are circles in M with constant curvature

$$\kappa = \frac{3|\text{grad}K|}{8(c - K)};$$

(iii)

$$(c - K)\Delta K - |\text{grad}K|^2 - \frac{8}{3}K(c - K)^2 = 0, \quad (2)$$

where Δ is the Laplace-Beltrami operator on M .

Local intrinsic characterization

Theorem 4.2 ([Fetcu, N., Oniciuc – 2016])

Let (M^2, g) be an abstract surface and $c \in \mathbb{R}$ a constant. Then, M can be locally isometrically embedded in $N^3(c)$ as a biconservative surface with $\text{grad}f \neq 0$ everywhere if and only if it satisfies the local intrinsic conditions $c - K > 0$, $\text{grad}K \neq 0$, at any point, and its level curves are circles in M with constant curvature

$$\kappa = \frac{3|\text{grad}K|}{8(c - K)}.$$

Local intrinsic characterization

Theorem 4.2 ([Fetcu, N., Oniciuc – 2016])

Let (M^2, g) be an abstract surface and $c \in \mathbb{R}$ a constant. Then, M can be locally isometrically embedded in $N^3(c)$ as a biconservative surface with $\text{grad}f \neq 0$ everywhere if and only if it satisfies the local intrinsic conditions $c - K > 0$, $\text{grad}K \neq 0$, at any point, and its level curves are circles in M with constant curvature

$$\kappa = \frac{3|\text{grad}K|}{8(c - K)}.$$

- We note that unlike in the minimal immersions case, if M satisfies the hypotheses from above theorem, then there exists a unique biconservative immersion in $N^3(c)$ (up to an isometry of $N^3(c)$), and not a one-parameter family.

Local intrinsic results in $\mathbb{N}^3(c)$

Theorem 4.3 ([N., Oniciuc – 2017, N. – 2017])

Let (M^2, g) be an abstract surface with Gaussian curvature K satisfying $c - K(p) > 0$ and $(\text{grad } K)(p) \neq 0$ at any point $p \in M$, where $c \in \mathbb{R}$ is a constant. Then, the level curves of K are circles in M with constant curvature $\kappa = 3|\text{grad } K|/(8(c - K))$ if and only if one of the following equivalent conditions holds

(i) locally, $g = e^{2\sigma} (du^2 + dv^2)$, $\sigma = \sigma(u)$ satisfies $\sigma'' = e^{-2\sigma/3} - ce^{2\sigma}$ and $\sigma' > 0$;

$$u(\sigma) = \int_{\sigma_0}^{\sigma} \frac{d\tau}{\sqrt{-3e^{-2\tau/3} - ce^{2\tau} + a}} + u_0, \quad \sigma, \sigma_0 \in I, a, u_0 \in \mathbb{R};$$

Local intrinsic results in $\mathbb{N}^3(c)$

Theorem 4.3 ([N., Oniciuc – 2017, N. – 2017])

Let (M^2, g) be an abstract surface with Gaussian curvature K satisfying $c - K(p) > 0$ and $(\text{grad } K)(p) \neq 0$ at any point $p \in M$, where $c \in \mathbb{R}$ is a constant. Then, the level curves of K are circles in M with constant curvature $\kappa = 3|\text{grad } K|/(8(c - K))$ if and only if one of the following equivalent conditions holds

(i) locally, $g = e^{2\sigma} (du^2 + dv^2)$, $\sigma = \sigma(u)$ satisfies $\sigma'' = e^{-2\sigma/3} - ce^{2\sigma}$ and $\sigma' > 0$;

$$u(\sigma) = \int_{\sigma_0}^{\sigma} \frac{d\tau}{\sqrt{-3e^{-2\tau/3} - ce^{2\tau} + a}} + u_0, \quad \sigma, \sigma_0 \in I, a, u_0 \in \mathbb{R};$$

(ii) $X_2(X_1 K) = 0$ and $\nabla_{X_2} X_2 = \frac{-3X_1 K}{8(c-K)} X_1$, where $X_1 = \text{grad } K / |\text{grad } K|$ and $X_2 \in C(TM)$ be two vector fields on M such that $\{X_1(p), X_2(p)\}$ is a positively oriented orthonormal basis at any point $p \in M$;

Local intrinsic results in $\mathbb{N}^3(c)$

Theorem 4.3 ([N., Oniciuc – 2017, N. – 2017])

Let (M^2, g) be an abstract surface with Gaussian curvature K satisfying $c - K(p) > 0$ and $(\text{grad } K)(p) \neq 0$ at any point $p \in M$, where $c \in \mathbb{R}$ is a constant. Then, the level curves of K are circles in M with constant curvature $\kappa = 3|\text{grad } K|/(8(c - K))$ if and only if one of the following equivalent conditions holds

(i) locally, $g = e^{2\sigma} (du^2 + dv^2)$, $\sigma = \sigma(u)$ satisfies $\sigma'' = e^{-2\sigma/3} - ce^{2\sigma}$ and $\sigma' > 0$;

$$u(\sigma) = \int_{\sigma_0}^{\sigma} \frac{d\tau}{\sqrt{-3e^{-2\tau/3} - ce^{2\tau} + a}} + u_0, \quad \sigma, \sigma_0 \in I, a, u_0 \in \mathbb{R};$$

(ii) $X_2(X_1 K) = 0$ and $\nabla_{X_2} X_2 = \frac{-3X_1 K}{8(c-K)} X_1$, where $X_1 = \text{grad } K / |\text{grad } K|$ and $X_2 \in C(TM)$ be two vector fields on M such that $\{X_1(p), X_2(p)\}$ is a positively oriented orthonormal basis at any point $p \in M$;

(iii) $\nabla_{X_1} X_1 = \nabla_{X_1} X_2 = 0$, $\nabla_{X_2} X_2 = -\frac{3X_1 K}{8(c-K)} X_1$, $\nabla_{X_2} X_1 = \frac{3X_1 K}{8(c-K)} X_2$.

Outline

- 1 Introducing the biconservative submanifolds
- 2 Biconservative surfaces in 3-dimensional space forms
 - Local and global intrinsic results in \mathbb{H}^3
 - Local and global extrinsic results in \mathbb{H}^3

Local intrinsic results in \mathbb{H}^3

Theorem 4.4 ([N., Oniciuc – 2017, N. – 2017])

Let $(M^2, g(u, v) = e^{2\sigma(u)} (du^2 + dv^2))$ be an abstract surface, where $u = u(\sigma)$ is given by

$$u(\sigma) = \int_{\sigma_0}^{\sigma} \frac{d\tau}{\sqrt{-3e^{-2\tau/3} + e^{2\tau} + a}} + u_0, \quad \sigma \in I,$$

where a and u_0 are real constants and I is an open interval. Then (M^2, g) is isometric to

$$(D_{C_{-1}}, g_{C_{-1}}) = \left((0, \xi_{01}) \times \mathbb{R}, g_{C_{-1}}(\xi, \theta) = \frac{1}{\xi^2} \left(\frac{3}{-\xi^{8/3} + C_{-1}\xi^2 + 3} d\xi^2 + d\theta^2 \right) \right),$$

where C_{-1} is a real constant and ξ_{01} is the positive vanishing point of $-\xi^{8/3} + C_{-1}\xi^2 + 3$.

Local intrinsic results in \mathbb{H}^3

Theorem 4.4 ([N., Oniciuc – 2017, N. – 2017])

Let $(M^2, g(u, v) = e^{2\sigma(u)} (du^2 + dv^2))$ be an abstract surface, where $u = u(\sigma)$ is given by

$$u(\sigma) = \int_{\sigma_0}^{\sigma} \frac{d\tau}{\sqrt{-3e^{-2\tau/3} + e^{2\tau} + a}} + u_0, \quad \sigma \in I,$$

where a and u_0 are real constants and I is an open interval. Then (M^2, g) is isometric to

$$(D_{C_{-1}}, g_{C_{-1}}) = \left((0, \xi_{01}) \times \mathbb{R}, g_{C_{-1}}(\xi, \theta) = \frac{1}{\xi^2} \left(\frac{3}{-\xi^{8/3} + C_{-1}\xi^2 + 3} d\xi^2 + d\theta^2 \right) \right),$$

where C_{-1} is a real constant and ξ_{01} is the positive vanishing point of $-\xi^{8/3} + C_{-1}\xi^2 + 3$.

$(D_{C_{-1}}, g_{C_{-1}})$ is called **abstract standard biconservative surface**.

Local intrinsic results in \mathbb{H}^3

Remarks:

- We note that

$$\lim_{\xi \searrow 0} \left| \frac{\partial}{\partial \xi} \right|^2 = \lim_{\xi \nearrow \xi_{01}} \left| \frac{\partial}{\partial \xi} \right|^2 = \infty,$$

and therefore, the metric $g_{C_{-1}}$ blows up at the boundary of $D_{C_{-1}}$.

Local intrinsic results in \mathbb{H}^3

Remarks:

- We note that

$$\lim_{\xi \searrow 0} \left| \frac{\partial}{\partial \xi} \right|^2 = \lim_{\xi \nearrow \xi_{01}} \left| \frac{\partial}{\partial \xi} \right|^2 = \infty,$$

and therefore, the metric $g_{C_{-1}}$ blows up at the boundary of $D_{C_{-1}}$.

- The surface $(D_{C_{-1}}, g_{C_{-1}})$ is not complete since the geodesic $\theta = \theta_0$ cannot be defined on the whole \mathbb{R} but only on a half line (when its arc-length parameter goes to $-\infty$ it approaches the boundary given by $\xi = 0$).

Local intrinsic results in \mathbb{H}^3

Remarks:

- We note that

$$\lim_{\xi \searrow 0} \left| \frac{\partial}{\partial \xi} \right|^2 = \lim_{\xi \nearrow \xi_0} \left| \frac{\partial}{\partial \xi} \right|^2 = \infty,$$

and therefore, the metric $g_{C_{-1}}$ blows up at the boundary of $D_{C_{-1}}$.

- The surface $(D_{C_{-1}}, g_{C_{-1}})$ is not complete since the geodesic $\theta = \theta_0$ cannot be defined on the whole \mathbb{R} but only on a half line (when its arc-length parameter goes to $-\infty$ it approaches the boundary given by $\xi = 0$).
-

$$K_{C_{-1}}(\xi, \theta) = K(\xi) = -\frac{\xi^{8/3}}{9} - 1, \quad K'(\xi) = -\frac{8}{27}\xi^{5/3} < 0 \quad (3)$$

$$\text{grad } K = \frac{\xi^2(-\xi^{8/3} + C_{-1}\xi^2 + 3)}{3} K'(\xi) \frac{\partial}{\partial \xi} \quad (4)$$

Local intrinsic results in \mathbb{H}^3

Remarks:

- We note that

$$\lim_{\xi \searrow 0} \left| \frac{\partial}{\partial \xi} \right|^2 = \lim_{\xi \nearrow \xi_0} \left| \frac{\partial}{\partial \xi} \right|^2 = \infty,$$

and therefore, the metric $g_{C_{-1}}$ blows up at the boundary of $D_{C_{-1}}$.

- The surface $(D_{C_{-1}}, g_{C_{-1}})$ is not complete since the geodesic $\theta = \theta_0$ cannot be defined on the whole \mathbb{R} but only on a half line (when its arc-length parameter goes to $-\infty$ it approaches the boundary given by $\xi = 0$).

-

$$K_{C_{-1}}(\xi, \theta) = K(\xi) = -\frac{\xi^{8/3}}{9} - 1, \quad K'(\xi) = -\frac{8}{27}\xi^{5/3} < 0 \quad (3)$$

$$\text{grad } K = \frac{\xi^2(-\xi^{8/3} + C_{-1}\xi^2 + 3)}{3} K'(\xi) \frac{\partial}{\partial \xi} \quad (4)$$

$$\lim_{\xi \searrow 0} (\text{grad } K)(\xi, \theta) = \lim_{\xi \nearrow \xi_0} (\text{grad } K)(\xi, \theta) = 0, \quad \theta \in \mathbb{R}.$$

Changes of coordinates

$$g_{C_{-1}}(\xi, \theta) = \frac{1}{\xi^2} \left(\frac{3}{-\xi^{8/3} + C_{-1}\xi^2 + 3} d\xi^2 + d\theta^2 \right), \quad (\xi, \theta) \in (0, \xi_{01}) \times \mathbb{R}$$

Changes of coordinates

$$g_{C_{-1}}(\xi, \theta) = \frac{1}{\xi^2} \left(\frac{3}{-\xi^{8/3} + C_{-1}\xi^2 + 3} d\xi^2 + d\theta^2 \right), \quad (\xi, \theta) \in (0, \xi_{01}) \times \mathbb{R}$$

$$\rho(\xi) = - \int_{\xi_{00}}^{\xi} \sqrt{\frac{3}{\tau^2(-\tau^{8/3} + C_{-1}\tau^2 + 3)}} d\tau$$

$$g_{C_{-1}}(\rho, \theta) = \tilde{h}^2(\rho) d\theta^2 + d\rho^2, \quad (\rho, \theta) \in (\rho_1, \infty) \times \mathbb{R},$$

$$\tilde{h}(\rho) = \frac{1}{\xi(\rho)}, \quad \rho_1 \in \mathbb{R}_+$$

Changes of coordinates

$$g_{C_{-1}}(\xi, \theta) = \frac{1}{\xi^2} \left(\frac{3}{-\xi^{8/3} + C_{-1}\xi^2 + 3} d\xi^2 + d\theta^2 \right), \quad (\xi, \theta) \in (0, \xi_{01}) \times \mathbb{R}$$

$$\rho(\xi) = - \int_{\xi_{00}}^{\xi} \sqrt{\frac{3}{\tau^2(-\tau^{8/3} + C_{-1}\tau^2 + 3)}} d\tau$$

$$g_{C_{-1}}(\rho, \theta) = \tilde{h}^2(\rho) d\theta^2 + d\rho^2, \quad (\rho, \theta) \in (\rho_1, \infty) \times \mathbb{R},$$

$$\tilde{h}(\rho) = \frac{1}{\xi(\rho)}, \quad \rho_1 \in \mathbb{R}_+$$

$$\omega(\rho) = \rho - \rho_1$$

$$g_{C_{-1}}(\omega, \theta) = h^2(\omega) d\theta^2 + d\omega^2, \quad (\omega, \theta) \in (0, \infty) \times \mathbb{R},$$

$$h(\omega) = \tilde{h}(\rho(\omega)),$$

Local intrinsic result

$$g_{C_{-1}}(\omega, \theta) = h^2(\omega) d\theta^2 + d\omega^2, \quad (\omega, \theta) \in (0, \infty) \times \mathbb{R}$$

Remark

We note that

$$\lim_{\omega \searrow 0} \left| \frac{\partial}{\partial \theta} \right|^2 = \frac{1}{\xi_{01}^2} \in \mathbb{R}_+^*,$$

and thus, the metric $g_{C_{-1}}$ can be smoothly extended to the boundary $\omega = 0$.

Global intrinsic result

Theorem 4.5

The surface $(\mathbb{R}^2, \tilde{g}_{C_{-1}}(\omega, \theta) = \Gamma^2(\omega)d\theta^2 + d\omega^2)$ is complete, where the function $\Gamma : \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$\Gamma(\omega) = \begin{cases} h(\omega), & \omega > 0 \\ \frac{1}{\xi_{01}}, & \omega = 0 \\ h(-\omega), & \omega < 0 \end{cases} . \quad (5)$$

Global intrinsic result

Theorem 4.5

The surface $(\mathbb{R}^2, \tilde{g}_{C_{-1}}(\omega, \theta) = \Gamma^2(\omega)d\theta^2 + d\omega^2)$ is complete, where the function $\Gamma : \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$\Gamma(\omega) = \begin{cases} h(\omega), & \omega > 0 \\ \frac{1}{\xi_{01}}, & \omega = 0 \\ h(-\omega), & \omega < 0 \end{cases} . \quad (5)$$

- $(\text{grad } \tilde{K}_{C_{-1}})(0, \theta) = 0$, for any $\theta \in \mathbb{R}$.

Global intrinsic result

Theorem 4.5

The surface $(\mathbb{R}^2, \tilde{g}_{C_{-1}}(\omega, \theta) = \Gamma^2(\omega)d\theta^2 + d\omega^2)$ is complete, where the function $\Gamma : \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$\Gamma(\omega) = \begin{cases} h(\omega), & \omega > 0 \\ \frac{1}{\xi_{01}}, & \omega = 0 \\ h(-\omega), & \omega < 0 \end{cases} . \quad (5)$$

- $(\text{grad } \tilde{K}_{C_{-1}})(0, \theta) = 0$, for any $\theta \in \mathbb{R}$.
- As $\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta} = 0$ along the boundary of $((0, \infty) \times \mathbb{R}, g_{C_{-1}})$ it follows that its boundary $\theta \rightarrow (0, \theta)$ becomes a geodesic in $(\mathbb{R}^2, \tilde{g}_{C_{-1}})$.

Global intrinsic result

As the complete surface $(\mathbb{R}^2, \tilde{g}_{C_{-1}})$ satisfies $(\text{grad } \tilde{K}_{C_{-1}})(0, \theta) = 0$, for any $\theta \in \mathbb{R}$, the existence of a (non-CMC) biconservative immersion from $(\mathbb{R}^2, \tilde{g}_{C_{-1}})$ in \mathbb{H}^3 is not guaranteed.

Global intrinsic result

As the complete surface $(\mathbb{R}^2, \tilde{g}_{C_{-1}})$ satisfies $(\text{grad } \tilde{K}_{C_{-1}})(0, \theta) = 0$, for any $\theta \in \mathbb{R}$, the existence of a (non-CMC) biconservative immersion from $(\mathbb{R}^2, \tilde{g}_{C_{-1}})$ in \mathbb{H}^3 is not guaranteed.

Our aim is to construct such an immersion!!!!

Global intrinsic result

As the complete surface $(\mathbb{R}^2, \tilde{g}_{C_{-1}})$ satisfies $(\text{grad } \tilde{K}_{C_{-1}})(0, \theta) = 0$, for any $\theta \in \mathbb{R}$, the existence of a (non-CMC) biconservative immersion from $(\mathbb{R}^2, \tilde{g}_{C_{-1}})$ in \mathbb{H}^3 is not guaranteed.

Our aim is to construct such an immersion!!!!

- We will omit writing the index C_{-1} in the following construction.

Global intrinsic result

Let us consider two surfaces

$${}^1g(\omega, \theta) = h^2(\omega)d\theta^2 + d\omega^2, \quad (\omega, \theta) \in (0, \infty) \times \mathbb{R}$$

and

$${}^2g(\omega, \theta) = h^2(-\omega)d\theta^2 + d\omega^2, \quad (\omega, \theta) \in (-\infty, 0) \times \mathbb{R}.$$

Let

$${}^1X_1 = \frac{\text{grad } {}^1K}{|\text{grad } {}^1K|}, \quad {}^2X_1 = \frac{\text{grad } {}^2K}{|\text{grad } {}^2K|},$$

be two vector fields defined on $(0, \infty) \times \mathbb{R}$, respectively on $(-\infty, 0) \times \mathbb{R}$. One obtains:

$${}^1X_1 = \frac{\partial}{\partial \omega} \text{ and } {}^2X_1 = -\frac{\partial}{\partial \omega}$$

on $(0, \infty) \times \mathbb{R}$, respectively on $(-\infty, 0) \times \mathbb{R}$.

Global intrinsic result

Let us consider two surfaces

$${}^1g(\omega, \theta) = h^2(\omega)d\theta^2 + d\omega^2, \quad (\omega, \theta) \in (0, \infty) \times \mathbb{R}$$

and

$${}^2g(\omega, \theta) = h^2(-\omega)d\theta^2 + d\omega^2, \quad (\omega, \theta) \in (-\infty, 0) \times \mathbb{R}.$$

Let

$${}^1X_1 = \frac{\text{grad } {}^1K}{|\text{grad } {}^1K|}, \quad {}^2X_1 = \frac{\text{grad } {}^2K}{|\text{grad } {}^2K|},$$

be two vector fields defined on $(0, \infty) \times \mathbb{R}$, respectively on $(-\infty, 0) \times \mathbb{R}$. One obtains:

$${}^1X_1 = \frac{\partial}{\partial \omega} \text{ and } {}^2X_1 = -\frac{\partial}{\partial \omega}$$

on $(0, \infty) \times \mathbb{R}$, respectively on $(-\infty, 0) \times \mathbb{R}$.

$$X_1 = \frac{\partial}{\partial \omega} \text{ on } \mathbb{R}^2$$

Global intrinsic result

Let us consider two surfaces

$${}^1g(\omega, \theta) = h^2(\omega)d\theta^2 + d\omega^2, \quad (\omega, \theta) \in (0, \infty) \times \mathbb{R}$$

and

$${}^2g(\omega, \theta) = h^2(-\omega)d\theta^2 + d\omega^2, \quad (\omega, \theta) \in (-\infty, 0) \times \mathbb{R}.$$

Let

$${}^1X_1 = \frac{\text{grad } {}^1K}{|\text{grad } {}^1K|}, \quad {}^2X_1 = \frac{\text{grad } {}^2K}{|\text{grad } {}^2K|},$$

be two vector fields defined on $(0, \infty) \times \mathbb{R}$, respectively on $(-\infty, 0) \times \mathbb{R}$. One obtains:

$${}^1X_1 = \frac{\partial}{\partial \omega} \text{ and } {}^2X_1 = -\frac{\partial}{\partial \omega}$$

on $(0, \infty) \times \mathbb{R}$, respectively on $(-\infty, 0) \times \mathbb{R}$.

$\{X_1, X_2\}$
 positive orthonormal
 frame field on \mathbb{R}^2

$$X_1 = \frac{\partial}{\partial \omega} \text{ on } \mathbb{R}^2$$

$$X_2 = \frac{1}{\Gamma(\omega)} \frac{\partial}{\partial \theta} \text{ on } \mathbb{R}^2$$

Global intrinsic result

Proposition 4.6

Let $(\mathbb{R}^2, \tilde{g})$ the above complete surface. Then, the Gaussian curvature \tilde{K} of $(\mathbb{R}^2, \tilde{g})$ satisfies $-1 - \tilde{K} > 0$ at any point, and the vector fields X_1 and X_2 defined above, satisfy on \mathbb{R}^2

$$\nabla_{X_1}X_1 = \nabla_{X_1}X_2 = 0, \quad \nabla_{X_2}X_2 = -\frac{3X_1\tilde{K}}{8(-1 - \tilde{K})}X_1, \quad \nabla_{X_2}X_1 = \frac{3X_1\tilde{K}}{8(-1 - \tilde{K})}X_2.$$

Global intrinsic result

Proposition 4.6

Let $(\mathbb{R}^2, \tilde{g})$ the above complete surface. Then, the Gaussian curvature \tilde{K} of $(\mathbb{R}^2, \tilde{g})$ satisfies $-1 - \tilde{K} > 0$ at any point, and the vector fields X_1 and X_2 defined above, satisfy on \mathbb{R}^2

$$\nabla_{X_1}X_1 = \nabla_{X_1}X_2 = 0, \quad \nabla_{X_2}X_2 = -\frac{3X_1\tilde{K}}{8(-1 - \tilde{K})}X_1, \quad \nabla_{X_2}X_1 = \frac{3X_1\tilde{K}}{8(-1 - \tilde{K})}X_2.$$

Theorem 4.7

Let $(\mathbb{R}^2, \tilde{g})$ the above complete surface. Then, there exists a unique biconservative immersion $\Phi : (\mathbb{R}^2, \tilde{g}) \rightarrow \mathbb{H}^3$. Moreover, $\text{grad}f \neq 0$ at any point of $\mathbb{R}^* \times \mathbb{R}$, where f is the mean curvature function of the immersion Φ .

Proof:

$A : C(T\mathbb{R}^2) \rightarrow C(T\mathbb{R}^2)$ defined by

$$A(X_1) = -\frac{\sqrt{-1 - \tilde{K}}}{\sqrt{3}}X_1, \quad A(X_2) = \sqrt{3(-1 - \tilde{K})}X_2.$$

Proof:

$A : C(T\mathbb{R}^2) \rightarrow C(T\mathbb{R}^2)$ defined by

$$A(X_1) = -\frac{\sqrt{-1 - \tilde{K}}}{\sqrt{3}}X_1, \quad A(X_2) = \sqrt{3(-1 - \tilde{K})}X_2.$$

A satisfies:

- The Gauss equation $\det A = 1 + \tilde{K}$;
- The Codazzi equation $(\nabla_{X_1} A)(X_2) = (\nabla_{X_2} A)(X_1)$;

Proof:

$A : C(T\mathbb{R}^2) \rightarrow C(T\mathbb{R}^2)$ defined by

$$A(X_1) = -\frac{\sqrt{-1 - \tilde{K}}}{\sqrt{3}}X_1, \quad A(X_2) = \sqrt{3(-1 - \tilde{K})}X_2.$$

A satisfies:

- The Gauss equation $\det A = 1 + \tilde{K}$;
- The Codazzi equation $(\nabla_{X_1} A)(X_2) = (\nabla_{X_2} A)(X_1)$;

From the fundamental theorem of surfaces in \mathbb{H}^3 , it follows that there exists a unique isometric immersion $\Phi : (\mathbb{R}^2, \tilde{g}) \rightarrow \mathbb{H}^3$ such that A is its shape operator.

Proof:

$A : C(T\mathbb{R}^2) \rightarrow C(T\mathbb{R}^2)$ defined by

$$A(X_1) = -\frac{\sqrt{-1 - \tilde{K}}}{\sqrt{3}}X_1, \quad A(X_2) = \sqrt{3(-1 - \tilde{K})}X_2.$$

A satisfies:

- The Gauss equation $\det A = 1 + \tilde{K}$;
- The Codazzi equation $(\nabla_{X_1} A)(X_2) = (\nabla_{X_2} A)(X_1)$;

From the fundamental theorem of surfaces in \mathbb{H}^3 , it follows that there exists a unique isometric immersion $\Phi : (\mathbb{R}^2, \tilde{g}) \rightarrow \mathbb{H}^3$ such that A is its shape operator. Moreover, the operator A satisfies

$$A(\operatorname{grad} f) = -\frac{f}{2} \operatorname{grad} f,$$

which shows that Φ is biconservative.

Proof:

$A : C(T\mathbb{R}^2) \rightarrow C(T\mathbb{R}^2)$ defined by

$$A(X_1) = -\frac{\sqrt{-1-\tilde{K}}}{\sqrt{3}}X_1, \quad A(X_2) = \sqrt{3(-1-\tilde{K})}X_2.$$

A satisfies:

- The Gauss equation $\det A = 1 + \tilde{K}$;
- The Codazzi equation $(\nabla_{X_1} A)(X_2) = (\nabla_{X_2} A)(X_1)$;

From the fundamental theorem of surfaces in \mathbb{H}^3 , it follows that there exists a unique isometric immersion $\Phi : (\mathbb{R}^2, \tilde{g}) \rightarrow \mathbb{H}^3$ such that A is its shape operator. Moreover, the operator A satisfies

$$A(\operatorname{grad} f) = -\frac{f}{2} \operatorname{grad} f,$$

which shows that Φ is biconservative.

Uniqueness: we suppose that there exist two biconservative immersions Φ_1 and Φ_2 from $(\mathbb{R}^2, \tilde{g})$ in \mathbb{H}^3 and using the fact that $\Phi_1|_{(0,\infty) \times \mathbb{R}}$ and $\Phi_1|_{(-\infty,0) \times \mathbb{R}}$ are biconservative and unique (up to isometries of \mathbb{H}^3) we can prove that Φ_1 and Φ_2 coincide.

Outline

- 1 Introducing the biconservative submanifolds
- 2 Biconservative surfaces in 3-dimensional space forms
 - Local and global intrinsic results in \mathbb{H}^3
 - Local and global extrinsic results in \mathbb{H}^3

As there exist several models for the hyperbolic space, we will consider, in each particular situation, the most appropriate model in order to obtain a complete biconservative surface.

Let us recall that the Minkowski space \mathbb{R}_1^4 is given by $\mathbb{R}_1^4 = (\mathbb{R}^4, \langle \cdot, \cdot \rangle)$, where $\langle \cdot, \cdot \rangle$ is the bilinear form

$$\langle x, y \rangle = \sum_{i=1}^3 x^i y^i - x^4 y^4, \quad x = (x^1, x^2, x^3, x^4), \quad y = (y^1, y^2, y^3, y^4).$$

The hyperboloid model is

$$\mathbb{H}^3 = \left\{ x \in \mathbb{R}_1^4 \quad : \quad \langle x, x \rangle = -1 \text{ and } x^4 > 0 \right\},$$

that is the upper part of the hyperboloid of two sheets.

Local extrinsic result; $C_{-1} > 0$

Theorem 4.8 ([Caddeo, Montaldo, Oniciuc, Piu – 2014])

Let M^2 be a biconervative surface in \mathbb{H}^3 with $\text{grad}f \neq 0$ everywhere. If $C_{-1} > 0$, then, locally, $M^2 \subset \mathbb{R}_1^4$ can be parametrized by

$$X_{\tilde{C}_{-1}}(\kappa, v) = \left(\frac{4 \cos v}{3\sqrt{\tilde{C}_{-1}}\kappa^{3/4}}, \frac{4 \sin v}{3\sqrt{\tilde{C}_{-1}}\kappa^{3/4}}, R(\kappa) \sinh \mu(\kappa), R(\kappa) \cosh \mu(\kappa) \right), \quad (6)$$

for any $(\kappa, v) \in (0, \kappa_{01}) \times \mathbb{R}$, where $R(\kappa) = \frac{\sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}}{3\sqrt{\tilde{C}_{-1}}\kappa^{3/4}}$ and

$$\mu(\kappa) = \pm \int_{\kappa_{00}}^{\kappa} \frac{36\sqrt{\tilde{C}_{-1}}\tau^{7/4}}{(9\tilde{C}_{-1}\tau^{3/2} + 16)\sqrt{\frac{16}{9}\tau^2 - 16\tau^4 + \tilde{C}_{-1}\tau^{7/2}}} d\tau + c_0, \quad c_0 \in \mathbb{R}, \quad (7)$$

for any $\kappa \in (0, \kappa_{01})$, where $\tilde{C}_{-1} > 0$ and κ_{01} is the positive vanishing point of $16\kappa^2/9 - 16\kappa^4 + \tilde{C}_{-1}\kappa^{7/2}$, $16\kappa^2/9 - 16\kappa^4 + \tilde{C}_{-1}\kappa^{7/2} > 0$, for any $\kappa \in (0, \kappa_{01})$, $\kappa_{01} > (3\tilde{C}_{-1})^2/2^{12}$, and κ_{00} is arbitrarily fixed in $(0, \kappa_{01})$.

Local extrinsic result; $C_{-1} > 0$

- $(M^2, X_{\tilde{C}_{-1}}^*, \langle \cdot, \cdot \rangle)$ is called **standard biconervative surface** and is isometric to the abstract standard biconervative surface $(D_{C_{-1}}, g_{C_{-1}})$, and the link between the constants C_{-1} and \tilde{C}_{-1} is

$$C_{-1} = \frac{3^{3/4}}{16} \tilde{C}_{-1} > 0.$$

Local extrinsic result; $C_{-1} > 0$

- $(M^2, X_{\tilde{C}_{-1}}^*, \langle \cdot, \cdot \rangle)$ is called **standard biconervative surface** and is isometric to the abstract standard biconervative surface $(D_{C_{-1}}, g_{C_{-1}})$, and the link between the constants C_{-1} and \tilde{C}_{-1} is

$$C_{-1} = \frac{3^{3/4}}{16} \tilde{C}_{-1} > 0.$$

- The “profile curve” σ :

$$\sigma(\kappa) = \left(\frac{4}{3\sqrt{\tilde{C}_{-1}}\kappa^{3/4}}, 0, R(\kappa) \sinh \mu(\kappa), R(\kappa) \cosh \mu(\kappa) \right),$$

for any $\kappa \in (0, \kappa_{01})$, does not have self-intersections.

Local extrinsic result; $C_{-1} > 0$

- $(M^2, X_{\tilde{C}_{-1}}^*, \langle \cdot, \cdot \rangle)$ is called **standard biconservative surface** and is isometric to the abstract standard biconservative surface $(D_{C_{-1}}, g_{C_{-1}})$, and the link between the constants C_{-1} and \tilde{C}_{-1} is

$$C_{-1} = \frac{3^{3/4}}{16} \tilde{C}_{-1} > 0.$$

- The “profile curve” σ :

$$\sigma(\kappa) = \left(\frac{4}{3\sqrt{\tilde{C}_{-1}}\kappa^{3/4}}, 0, R(\kappa) \sinh \mu(\kappa), R(\kappa) \cosh \mu(\kappa) \right),$$

for any $\kappa \in (0, \kappa_{01})$, does not have self-intersections.

- The immersion $X_{\tilde{C}_{-1}}$ is, in fact, an embedding, thus the image of $X_{\tilde{C}_{-1}}$ is a regular surface in \mathbb{H}^3 . Therefore, in order to glue two standard biconservative surfaces in \mathbb{R}^4_1 , **it is enough to glue two profile curves** defining them, in this way obtaining a complete biconservative regular surface in \mathbb{H}^3 .

Global extrinsic result; $C_{-1} > 0$

Our strategy is as follows:

Since the gluing process of the curves σ implies all its components it is more convenient to chose another model for \mathbb{H}^3 (**the upper half space**) such that, after that transformation, the curve σ would have two components.

After the gluing process is performed, we will obtain a **regular curve, which is a closed subset of the upper half plane** and therefore, we will get a biconservative regular surface, closed in \mathbb{H}^3 , which has to be complete.

Global extrinsic result; $C_{-1} > 0$

Using the standard diffeomorphism from hyperboloid model to upper half space model.

$$\delta(x^1, x^2, x^3, x^4) = \left(1, \frac{2x^2}{x^1 + x^4}, \frac{2x^3}{x^1 + x^4}, \frac{2}{x^1 + x^4}\right) \quad (8)$$

the profile curve σ becomes

$$\begin{aligned} \sigma(\kappa) &= \left(1, 0, \frac{2\sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}\sinh\mu(\kappa)}{4 + \sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}\cosh\mu(\kappa)}, \frac{6\sqrt{\tilde{C}_{-1}}\kappa^{3/4}}{4 + \sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}\cosh\mu(\kappa)}\right) \\ &\equiv \left(\frac{2\sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}\sinh\mu(\kappa)}{4 + \sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}\cosh\mu(\kappa)}, \frac{6\sqrt{\tilde{C}_{-1}}\kappa^{3/4}}{4 + \sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}\cosh\mu(\kappa)}\right). \end{aligned}$$

Choosing appropriate values of the constant c_0 and of the sign in the expression of $\mu(k)$, we can find two profile curves σ_1 and σ_2 such that we can glue them smoothly (at least of C^3 class).

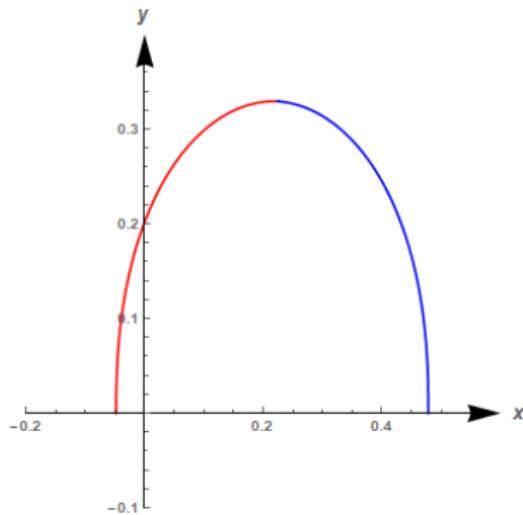


Figure 1. The profile curves σ_1 and σ_2

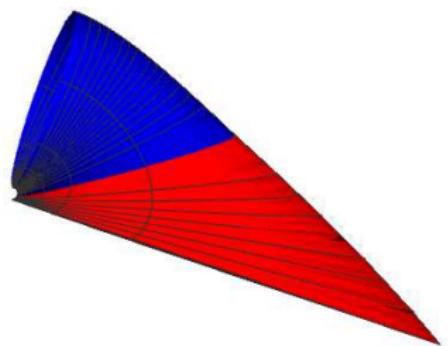


Figure 2. The corresponding surface to σ_1 and σ_2

Local extrinsic result; $C_{-1} < 0$

Theorem 4.9 ([Caddeo, Montaldo, Oniciuc, Piu – 2014])

Let M^2 be a biconservative surface in \mathbb{H}^3 with $\text{grad}f \neq 0$ everywhere. If $C_{-1} < 0$, then, locally, $M^2 \subset \mathbb{R}^4_1$ can be parametrized by

$$X_{\tilde{C}_{-1}}(\kappa, v) = \left(\sqrt{2}R(\kappa) \sin \mu(\kappa) + \frac{4 \cosh v}{3\sqrt{-\tilde{C}_{-1}}\kappa^{3/4}}, \frac{4 \sinh v}{3\sqrt{-\tilde{C}_{-1}}\kappa^{3/4}}, \right. \\ \left. R(\kappa) \cos \mu(\kappa), R(\kappa) \sin \mu(\kappa) + \frac{4\sqrt{2} \cosh v}{3\sqrt{-\tilde{C}_{-1}}\kappa^{3/4}} \right), \quad (9)$$

for any $(\kappa, v) \in (0, \kappa_{01}) \times \mathbb{R}$, where $R(\kappa) = \frac{\sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}}{3\sqrt{-\tilde{C}_{-1}}\kappa^{3/4}}$ and

$$\mu(\kappa) = \pm \int_{\kappa_{00}}^{\kappa} \frac{36\sqrt{-\tilde{C}_{-1}}\tau^{7/4}}{(9\tilde{C}_{-1}\tau^{3/2} + 16)\sqrt{\frac{16}{9}\tau^2 - 16\tau^4 + \tilde{C}_{-1}\tau^{7/2}}} d\tau + c_0, \quad c_0 \in \mathbb{R}, \quad (10)$$

for any $\kappa \in (0, \kappa_{01})$, $\tilde{C}_{-1} < 0$ and κ_{00} arbitrarily fixed in $(0, \kappa_{01})$, where κ_{01} is the vanishing point of $16\kappa^2/9 - 16\kappa^4 + \tilde{C}_{-1}\kappa^{7/2}$.

Local extrinsic result; $C_{-1} < 0$

- $(M^2, X_{\tilde{C}_{-1}}^* \langle \cdot, \cdot \rangle)$ is called **standard biconervative surface** and is isometric to the abstract standard biconervative surface $(D_{C_{-1}}, g_{C_{-1}})$, and the link between the constants C_{-1} and \tilde{C}_{-1} is

$$C_{-1} = \frac{3^{3/4}}{16} \tilde{C}_{-1} < 0.$$

Local extrinsic result; $C_{-1} < 0$

- $(M^2, X_{\tilde{C}_{-1}}^* \langle \cdot, \cdot \rangle)$ is called **standard biconervative surface** and is isometric to the abstract standard biconervative surface $(D_{C_{-1}}, g_{C_{-1}})$, and the link between the constants C_{-1} and \tilde{C}_{-1} is

$$C_{-1} = \frac{3^{3/4}}{16} \tilde{C}_{-1} < 0.$$

- The “profile curve” σ :

$$\sigma(\kappa) = \left(\sqrt{2}R(\kappa) \sin \mu(\kappa) + \frac{4}{3\sqrt{-\tilde{C}_{-1}\kappa^{3/4}}}, 0, R(\kappa) \cos \mu(\kappa), R(\kappa) \sin \mu(\kappa) + \frac{4\sqrt{2}}{3\sqrt{-\tilde{C}_{-1}\kappa^{3/4}}} \right),$$

for any $\kappa \in (0, \kappa_{01})$, does not have self-intersections.

Local extrinsic result; $C_{-1} < 0$

- $(M^2, X_{\tilde{C}_{-1}}^* \langle \cdot, \cdot \rangle)$ is called **standard biconervative surface** and is isometric to the abstract standard biconervative surface $(D_{C_{-1}}, g_{C_{-1}})$, and the link between the constants C_{-1} and \tilde{C}_{-1} is

$$C_{-1} = \frac{3^{3/4}}{16} \tilde{C}_{-1} < 0.$$

- The “profile curve” σ :

$$\sigma(\kappa) = \left(\sqrt{2}R(\kappa) \sin \mu(\kappa) + \frac{4}{3\sqrt{-\tilde{C}_{-1}\kappa^{3/4}}}, 0, R(\kappa) \cos \mu(\kappa), R(\kappa) \sin \mu(\kappa) + \frac{4\sqrt{2}}{3\sqrt{-\tilde{C}_{-1}\kappa^{3/4}}} \right),$$

for any $\kappa \in (0, \kappa_{01})$, does not have self-intersections.

- The immersion $X_{\tilde{C}_{-1}}$ is, in fact, an embedding, thus the image of $X_{\tilde{C}_{-1}}$ is a regular surface in \mathbb{H}^3 . Therefore, in order to glue two standard biconervative surfaces in \mathbb{R}^4_1 , **it is enough to glue two profile curves** defining them, in this way obtaining a complete biconervative regular surface in \mathbb{H}^3 .

Global extrinsic result; $C_{-1} < 0$

Using the same diffeomorphism (8) the profile curve σ becomes

$$\sigma(\kappa) = \frac{\left(2\sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}\cos\mu(\kappa), 6\sqrt{-\tilde{C}_{-1}}\kappa^{3/4}\right)}{\left(1 + \sqrt{2}\right)\left(4 + \sqrt{9\tilde{C}_{-1}\kappa^{3/2} + 16}\sin\mu(\kappa)\right)}.$$

Choosing appropriate values of the constant c_0 and of the sign in the expression of $\mu(k)$, we can find two profile curves σ_1 and σ_2 such that we can glue them smoothly (at least of C^3 class).

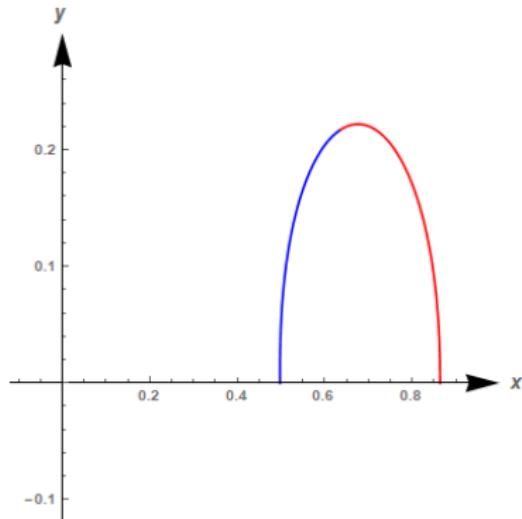


Figure 3. The profile curves σ_1 and σ_2

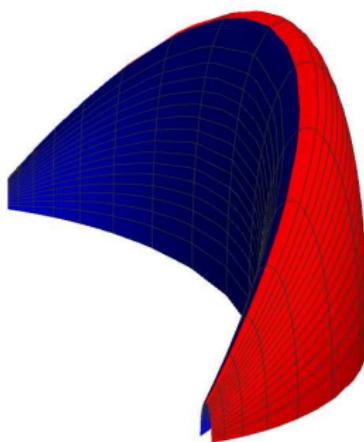


Figure 4. The corresponding surfaces to σ_1 and σ_2

Local extrinsic result; $C_{-1} = 0$

Theorem 4.10 ([Fu – 2015])

Let M^2 be a biconservative surface in \mathbb{H}^3 with $\text{grad}f \neq 0$ everywhere. If $C_{-1} = 0$, then, locally, $M^2 \subset \mathbb{R}^4_1$ can be parametrized by

$$X(\kappa, v) = \left(2^{3/4} \kappa^{3/4} \left(1 + x^2(\kappa) + v^2 \right) - \frac{1}{2^{11/4} \kappa^{3/4}}, v, x(\kappa), \right. \\ \left. 2^{3/4} \kappa^{3/4} \left(1 + x^2(\kappa) + v^2 \right) + \frac{1}{2^{11/4} \kappa^{3/4}} \right), \quad (11)$$

for any $(\kappa, v) \in (0, 1/3) \times \mathbb{R}$, where $x(\kappa) = \frac{1}{\kappa^{3/4}} \mu(\kappa)$ and

$$\mu(\kappa) = \pm \frac{9}{4} \int_{\kappa_{00}}^{\kappa} \frac{\tau^{3/4}}{\sqrt{1 - 9\tau^2}} d\tau + c_0, \quad (12)$$

with $c_0 \in \mathbb{R}$.

Local extrinsic result; $C_{-1} = 0$

- $(M^2, X^* \langle , \rangle)$ is called **standard biconservative surface** and is isometric to the abstract standard biconservative surface (D_0, g_0) .

Local extrinsic result; $C_{-1} = 0$

- $(M^2, X^* \langle , \rangle)$ is called **standard biconervative surface** and is isometric to the abstract standard biconervative surface (D_0, g_0) .
- The “profile curve” σ :

$$\sigma(\kappa) = \left(y(\kappa) - \frac{1}{2^{7/4} \kappa^{3/4}}, 0, x(\kappa), y(\kappa) \right), \quad \kappa \in \left(0, \frac{1}{3} \right)$$

where $y(\kappa) = 2^{3/4} \kappa^{3/4} (x^2(\kappa) + 1) + \frac{1}{2^{11/4} \kappa^{3/4}}$, for any $\kappa \in (0, 1/3)$, does not have self-intersections.

Local extrinsic result; $C_{-1} = 0$

- $(M^2, X^* \langle , \rangle)$ is called **standard biconervative surface** and is isometric to the abstract standard biconervative surface (D_0, g_0) .
- The “profile curve” σ :

$$\sigma(\kappa) = \left(y(\kappa) - \frac{1}{2^{7/4} \kappa^{3/4}}, 0, x(\kappa), y(\kappa) \right), \quad \kappa \in \left(0, \frac{1}{3} \right)$$

where $y(\kappa) = 2^{3/4} \kappa^{3/4} (x^2(\kappa) + 1) + \frac{1}{2^{11/4} \kappa^{3/4}}$, for any $\kappa \in (0, 1/3)$, does not have self-intersections.

- The immersion X is, in fact, an embedding, thus the image of X is a regular surface in \mathbb{H}^3 . Therefore, in order to glue two standard biconervative surfaces in \mathbb{R}^4_1 , **it is enough to glue two profile curves** defining them, in this way obtaining a complete biconervative regular surface in \mathbb{H}^3 .

Global extrinsic result; $C_{-1} = 0$

Using the same diffeomorphism (8) the profile curve σ becomes

$$\sigma(\kappa) = \frac{(\mu(\kappa), \kappa^{3/4})}{2^{3/4} (\kappa^{3/2} + \mu^2(\kappa))}, \quad \kappa \in \left(0, \frac{1}{3}\right).$$

Choosing appropriate values of the constant c_0 and of the sign in the expression of $\mu(k)$, we can find two profile curves σ_1 and σ_2 such that we can glue them smoothly (at least of C^3 class).

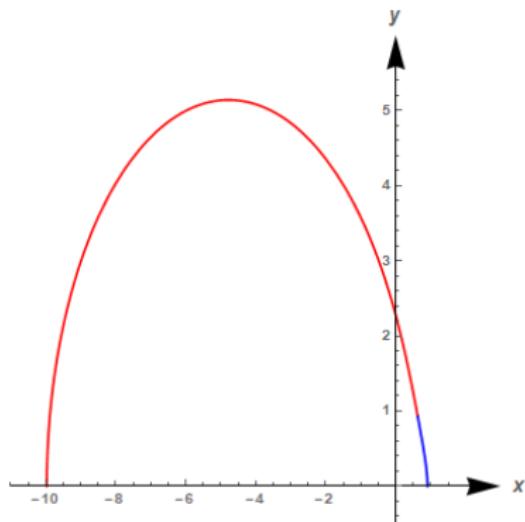


Figure 5. The profile curves σ_1 and σ_2

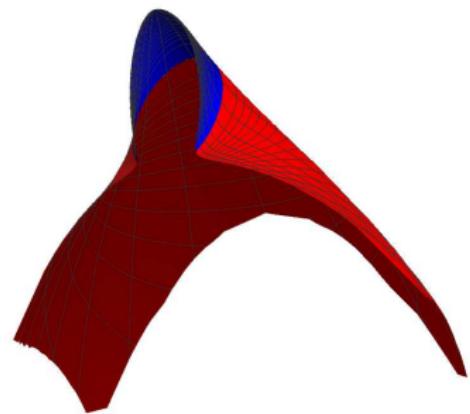


Figure 6. The corresponding surfaces to σ_1 and σ_2

Theorem 4.11

By gluing two standard biconervative surfaces along their common boundary we get a complete biconervative regular surface in \mathbb{H}^3 . Moreover, the gradient of its mean curvature vanishes along the initial boundary which now is a geodesic of the surface.

References I

[Caddeo, Montaldo, Oniciuc, Piu – 2014] R. Caddeo, S. Montaldo, C. Oniciuc, P. Piu,
Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor, Ann. Mat. Pura Appl. (4) 193 (2014), 529–550.

[Fetcu, N., Oniciuc – 2016] D. Fetcu, S. Nistor, C. Oniciuc,
On biconservative surfaces in 3-dimensional space forms, Comm. Anal. Geom. (5) 24 (2016), 1027–1045.

[Fu – 2015] Y. Fu,
Explicit classification of biconservative surfaces in Lorentz 3-space forms, Ann. Mat. Pura Appl. (4) 194 (2015), 805–822.

[N. – 2017] S. Nistor,
Biharmonicity and biconservativity topics in the theory of submanifolds, PhD Thesis, 2017.

References II

[N., Oniciuc – 2017] S. Nistor, C. Oniciuc,

Global properties of biconservative surfaces in \mathbb{R}^3 and \mathbb{S}^3 , Proceedings of The International Workshop on Theory of Submanifolds, Istanbul Technical University, Turkey, vol. 1 (2016), 30–56.

Thank you for your attention!