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Biharmonic maps

Let (M™ g) and (N" h) be two Riemannian manifolds. Assume that M is
compact and consider

@ Bienergy functional

© 1
B COMN) SR, Eo(9) = [ [T(9)Pyg
@ Euler-Lagrange equation

(p) = —A¢T(¢)—tracq,RN(dd),T(d)))d(p
= 0

Critical points of E; are called biharmonic maps.
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The biharmonic equation (G.Y. Jiang, 1986)

T2(9) = —A%1(¢) —tracg R (dg, 7(¢))d¢ = O,

where "
A? = —trace (0°0°¢ - O0F)

is the rough Laplacian on sections of ¢ ~1TN and

RV(X,Y)z=808z - ooz - D&Y}z.

@ is a fourth-order non-linear elliptic equation;
@ any harmonic map is biharmonic;
@ a non-harmonic biharmonic map is called proper-biharmonic;
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The stress-bienergy tensor

@ G.Y. Jiang, 1987 defined the stress-energy tensor S, for the bienergy
functional, and called it the stress-bienergy tensor:

(S:X),Y) =3 T(@)X.Y) + (09, DT(9)) (X, V)
~ (A9(X), DvT(9)) — (AP(Y). xT(9)).

It satisfies
divs, = —(12(¢),d¢).
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The stress-bienergy tensor

@ G.Y. Jiang, 1987 defined the stress-energy tensor S, for the bienergy
functional, and called it the stress-bienergy tensor:
1
(S(X).Y) =5 [T(9) (X, Y) +(do, Or(¢))(X.Y)
— (d¢(X),0v1(¢9)) — (do(Y),0x1(¢)).

It satisfies
divs, = —(12(¢),de).

¢ = biharmonic = divS, = 0.

If ¢ is a submersion, divS, = 0 if and only if ¢ is biharmonic.

If ¢ : M — N is an isometric immersion then (divS;)" = —12(¢)". In
general, for an isometric immersion, divS, # 0.
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Introducing the biconservative submanifolds

Biharmonic and biconservative submanifolds

Definition 3.1

A submanifold ¢ : M™ — N" is called biharmonic if ¢ is a biharmonic map, i.e.,

T2(¢) = 0.
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Biharmonic and biconservative submanifolds

Definition 3.1
A submanifold ¢ : M™ — N" is called biharmonic if ¢ is a biharmonic map, i.e.,

T2(¢) = 0.

Definition 3.2

A submanifold ¢ : M™ — N" is called biconservative if divS, = 0, i.e.,
n(9)" =0.
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Introducing the biconservative submanifolds
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Introducing the biconservative submanifolds

M™ submanifold of N"

M™ biconservative

M™ biharmonic

M™ minimal
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Introducing the biconservative submanifolds

Characterization results

Proposition 3.3
A hypersurface ¢ : M™ — N™1(c) is biconservative if and only if

f
A(gradf) = ~3 gradf.

where A is the shape operator of M and f = traceA is its mean curvature
function. )

@ Every CMC hypersurface in N™(c) is biconservative.
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Biconservative surfaces in 3-dimensional space forms
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@ Local and global extrinsic results in H2®
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Biconservative surfaces in 3-dimensional space forms

Biconservative surfaces in N3(c)

(zome}—(zmaremn)
/

[ Local conditions ]
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e gradK £ 0on M,
intrinsic  [—
and the level curves

of K are certain circles
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Biconservative surfaces in N3(c)

(zome}—(zmaremn)
/

[ Local conditions ]

c—K>0onM,

e gradk £ 0on M,
intrinsic  [—
and the level curves

of K are certain circles

(M, g) complete

Global conditions and the above properties
hold on an open and dense

subset of M
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Biconservative surfaces in 3-dimensional space forms

Local results

Theorem 4.1 ([Caddeo, Montaldo, Oniciuc, Piu — 2014])

Let ¢ : M? — N3(c) be a biconservative surface with gradf # 0 at any point of
M. Then the Gaussian curvature K satisfies

(i) the extrinsic condition

3fZ
K:detA+c=—T+c; 1)

(i) the intrinsic conditions c— K > 0, gradk = 0 on M, and its level curves are
circles in M with constant curvature

_ 3|gracK],
= 8(c—K)’
(iii)
(c—K)AK—|gradK|2—gK(c—K)2:o, (2)

where A is the Laplace-Beltrami operator on M.
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Local intrinsic characterization

Theorem 4.2 ([Fetcu, N., Oniciuc — 2016])

Let (M2,g) be an abstract surface and c € R a constant. Then, M can be
locally isometrically embedded in N3(c) as a biconservative surface with
gradf # 0 everywhere if and only if it satisfies the local intrinsic conditions
c—K >0, gradK # 0, at any point, and its level curves are circles in M with
constant curvature
_ 3[graK|
= 8(c—K)"
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Theorem 4.2 ([Fetcu, N., Oniciuc — 2016])

Let (M2,g) be an abstract surface and c € R a constant. Then, M can be
locally isometrically embedded in N3(c) as a biconservative surface with
gradf # 0 everywhere if and only if it satisfies the local intrinsic conditions
c—K >0, gradK # 0, at any point, and its level curves are circles in M with
constant curvature
_ 3[graK|
= 8(c—K)"

@ We note that unlike in the minimal immersions case, if M satisfies the
hypotheses from above theorem, then there exists a unique
biconservative immersion in N3(c) (up to an isometry of N3(c)), and not a
one-parameter family.
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Biconservative surfaces in 3-dimensional space forms

Local intrinsic results in N3(c)

Theorem 4.3 ([N., Oniciuc — 2017, N. — 2017])

Let (Mz,g) be an abstract surface with Gaussian curvature K satisfying
c—K(p) > 0and (gradK)(p) # 0 at any point p € M, where c € R is a constant.
Then, the level curves of K are circles in M with constant curvature
k = 3|gradK|/(8(c—K)) if and only if one of the following equivalent conditions
holds
(i) locally, g = €% (du?+dv?), o = o(u) satisfies 0” = e 29/ —¢e? and
o' >0;

u(o)

o dr
/ +u, 0,00€l,aUER;
Jag \/—3e21/3—ce?T+a
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(i) %o (XK) =0 and [, X = - 45 Xy, where X; = gradk /| gradk| and
X2 € C(TM) be two vector fields on M such that {X1(p),X2(p)} is a
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(ii)) OxX1=OxXo =0, Ox, X2 = —galc:X1, Ox,X1 = gale:Xo.
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Biconservative surfaces in 3-dimensional space forms Local and global intrinsic results in u3

9 Biconservative surfaces in 3-dimensional space forms
@ Local and global intrinsic results in H3
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Local intrinsic results in H

Theorem 4.4 ([N., Oniciuc — 2017, N. — 2017])

Let (Mz,g(u,v) =27 (du? + dvz)) be an abstract surface, where u= u(o) is

given by
dr

u(o) :/ 4F
o \/—3e 213+ +a

where a and up are real constants and | is an open interval. Then (M?,g) is
isometric to

Uo, oel,

1 3
(P-18e) = (0,800 x R.ge 1(8.6) = 1 (g —grrgde+a6%) ).

where C_; is a real constant and &p; is the positive vanishing point of
—E8/34C_182+3,

18/45



Local intrinsic results in H

Theorem 4.4 ([N., Oniciuc — 2017, N. — 2017])

Let (Mz,g(u,v) =27 (du? + dvz)) be an abstract surface, where u= u(o) is

given by
dr

uo)= [ o,
o \/—3e 213+ +a

where a and up are real constants and | is an open interval. Then (M?,g) is
isometric to

oel,

1 3
(P-18e) = (0,800 x R.ge 1(8.6) = 1 (g —grrgde+a6%) ).

where C_; is a real constant and &p; is the positive vanishing point of
—E8/34C_182+3,

(Dc,l,gc,l) is called abstract standard biconservative surface.
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Local intrinsic results in H3

Remarks:

@ We note that )

lim|=—| = lIim |=—
EN0|0¢& & & | 0€

and therefore, the metric gc_, blows up at the boundary of D¢ ;.

2

:OO7
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be defined on the whole R but only on a half line (when its arc-length
parameter goes to —o it approaches the boundary given by & = 0).

° 58/3 , ) 53
chl(EvQ)ZK(E):_ 9 =4 K(E):—2—7£/ <0 (3)
| 82(—E%P4C1E2+43) , 0
gradk = 3 K (E)_df (4)

l dK)(&,0) = i dK)(£,8)=0 0 cR.
Elr\no(gra )(&,0) EI/@m(gra )(&,8) =0, €
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Changes of coordinates

dc_,(&,0) = i2 (Wdfz+d92> (€,0) €(0,&01) xR




Changes of coordinates

dc ,(¢,8) = % (Wdfz+d92) (€,0) €(0,&01) xR

_ ¢ 3
PE&) =g/ Fme g O

gc_,(p,8) = M?(p)d6%+dp?, (p,8) € (p1,) xR,

h(p) = g5, p1 € R-




Changes of coordinates

dc ,(¢,8) = % (Wdfz+d62) (€,0) €(0,&01) xR

_ ¢ 3
PE&) =g/ Fme g O

gc_,(p,8) = M?(p)d6%+dp?, (p,8) € (p1,) xR,

h(p) = &, € R-

A(p)=p—p1

gc,(w,0) = h?(w)d6? +dw?, (w,0) € (0,0) x R,

h(w) = h(p(w)),
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Local intrinsic result

gc ,(w,0) = h*(w)de? +dw?, (w,0) € (0,00) xR

Remark

We note that

2 1

26| &2

and thus, the metric gc , can be smoothly extended to the boundary w = 0.

lim

e R}
N0 T
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Biconservative surfaces in 3-dimensional space forms  Local and global intrinsic results in H3

Global intrinsic result

Theorem 4.5

The surface (R?,§c ,(w,0) = M?(w)d6?+dw?) is complete, where the
function I : R — R is given by

h(w), w>0

Mw =1 7 w=0 . (5)

h(—w), w<0
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Global intrinsic result

Theorem 4.5

The surface (R?,§c ,(w,0) = M?(w)d6?+dw?) is complete, where the
function I : R — R is given by

h(w), w>0
Mw =1 7 w=0 . (5)
h(—w), w<0

@ (gradkc ,)(0,8) =0, for any 8 € R.

@ As 0, 2 = 0along the boundary of ((0,) x R,gc ,) it follows that its
20
boundary 6 — (0,6) becomes a geodesic in (Rz,gcfl).
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Biconservative surfaces in 3-dimensional space forms Local and global intrinsic results in u3

Global intrinsic result

As the complete surface (R?,§c_,) satisfies (gradkc_,)(0,6) = 0, for any

6 € R, the existence of a (non-CMC) biconservative immersion from (RZ,QQI)
in H® is not guaranteed.
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Global intrinsic result

As the complete surface (R?,§c_,) satisfies (gradkc_,)(0,6) = 0, for any

6 € R, the existence of a (non-CMC) biconservative immersion from (RZ,QQI)
in H® is not guaranteed.

Our aim is to construct such an immersion!!!!

@ We will omit writing the index C_; in the following construction.

23/45



Global intrinsic result

Let us consider two surfaces

19(w,0) = h?(w)d6? +dw? ~ (w,0) € (0,00) x R

and
29(w,0) = h?(—w)d6? +dw?,  (w,0) € (—,0) xR.
Let
1, _ grad’K oy _ grad?K
17 grad K|’ 17 grad K|’

be two vector fields defined on (0,») x R, respectively on (—,0) x R. One

obtains: 5 5
1 2

Xi=—=—and Xy =——

17 9w an 1 Jw

on (0,0) x R, respectively on (—,0) x R.

24/45



Global intrinsic result

Let us consider two surfaces

19(w,0) = h?(w)d6? +dw? ~ (w,0) € (0,00) x R

and
29(w,0) = h?(—w)d6? +dw?,  (w,0) € (—,0) xR.
Let
1, _ grad’K oy _ grad?K
17 grad K|’ 17 grad K|’

be two vector fields defined on (0,») x R, respectively on (—,0) x R. One

obtains: 5 5
1 2

Xi=—=—and Xy =——

17 9w an 1 Jw

on (0,0) x R, respectively on (—,0) x R.

[Xlzﬁon]&z]




Global intrinsic result

Let us consider two surfaces

19(w,0) = h?(w)d6? +dw? ~ (w,0) € (0,00) x R

and
29(w,0) = h?(—w)d6? +dw?,  (w,0) € (—,0) xR.
Let
1, _ grad’K oy _ grad?K
17 grad K|’ 17 grad K|’

be two vector fields defined on (0,») x R, respectively on (—,0) x R. One

obtains: 5 5
1 2

Xi=—=—and Xy =——

17 9w an 1 Jw

on (0,0) x R, respectively on (—,0) x R.

{Xla XZ}
positive orthonormal

frame field on R2
[Xlzﬁon]&z szr—bf—gonRz
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Biconservative surfaces in 3-dimensional space forms Local and global intrinsic results in u3

Global intrinsic result

Proposition 4.6

Let (RZ,Q) the above complete surface. Then, the Gaussian curvature K of

(R2,8) satisfies —1—K > 0 at any point, and the vector fields X; and X,
defined above, satisfy on R?

3X;K 3X;K
Ox, X1 =D0Ox, X2 =0, DOx,X2 = _71X1, Ux, X1 = 71)(2

8(-1-K) 8(—1—K)
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Global intrinsic result

Proposition 4.6

Let (RZ,Q) the above complete surface. Then, the Gaussian curvature K of
(R2,8) satisfies —1—K > 0 at any point, and the vector fields X; and X,
defined above, satisfy on R?

3X;K 3X;K

D)(1X1 = |:|x1X2 = O, szxz = —mXL DXZXJ- = mxz

Theorem 4.7

| \

Let (RZ,Q) the above complete surface. Then, there exists a unique
biconservative immersion @ : (R?,§) — H3. Moreover, gradf # 0 at any point of
R* x R, where f is the mean curvature function of the immersion ®.

.
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Proof:
A:C(TR?) — C(TR?) defined by

_1—-K =

A(Xy) = — VR AXp) = 1/3(~1—K)Xa.
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Biconservative surfaces in 3-dimensional space forms Local and global intrinsic results in u3

A:C(TR?) — C(TR?) defined by
_1—-K =

A(Xy) = — VR AXp) = 1/3(~1—K)Xa.

A satisfies:

@ The Gauss equation detA = 1+K;
@ The Codazzi equation (Ox,A) (X2) = (Ox,A) (X1);
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A(Xy) = — VR AXp) = 1/3(~1—K)Xa.

A satisfies:

@ The Gauss equation detA = 1+K;

@ The Codazzi equation (Ox,A) (X2) = (Ox,A) (X1);
From the fundamental theorem of surfaces in H?, it follows that there exists an
unique isometric immersion @ : (Rz,g) — H2 such that A is its shape operator.
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A:C(TR?) — C(TR?) defined by
_1—-K =

A(Xy) = — VR AXp) = 1/3(~1—K)Xa.

A satisfies:
@ The Gauss equation detA = 1+K;
@ The Codazzi equation (Ox,A) (X2) = (Ox,A) (X1);
From the fundamental theorem of surfaces in H3, it follows that there exists an

unique isometric immersion @ : (Rz,g) — H2 such that A is its shape operator.
Moreover, the operator A satisfies

A(gradf) = —fé gradf,

which shows that @ is biconservative.
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Proof:
A:C(TR?) — C(TR?) defined by
A(X)——ﬂx A(X2) = 1/3(-1—K)X
1) — \/§ 1, 2) — 2+
A satisfies:

@ The Gauss equation detA = 1+K;

@ The Codazzi equation (Ox,A) (X2) = (Ox,A) (X1);
From the fundamental theorem of surfaces in H?, it follows that there exists an
unique isometric immersion @ : (Rz,g) — H2 such that A is its shape operator.

Moreover, the operator A satisfies
A(gradf) = —fé gradf,

which shows that @ is biconservative.
Uniqueness: we suppose that there exist two biconservative immersions ®;

and @, from (R?,§) in H* and using the fact that ®1)(g.)xr and ®1)(_e 0)xr
are biconservative and unique (up to isometries of H3) we can prove that ®;

and @, coincide.
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9 Biconservative surfaces in 3-dimensional space forms

@ Local and global extrinsic results in H2®
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As there exist several models for the hyperbolic space, we will consider, in
each particular situation, the most appropriate model in order to obtain a
complete biconservative surface.

Let us recall that the Minkowski space R is given by RT = (R*,(-,-)), where
(+,-) is the bilinear form

3

) = SAY = (). y= (YR ).

i=1

The hyperboloid model is
HS = {xeR‘{ . (x,X)=—1and X4>0},

that is the upper part of the hyperboloid of two sheets.
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Local extrinsic result; C_; >0

Theorem 4.8 ([Caddeo, Montaldo, Oniciuc, Piu — 2014])

Let M? be a biconservative surface in H® with gradf # 0 everywhere. If
C_1 > 0, then, locally, M? R‘l‘ can be parametrized by

X(:l(K,V):< 4 cosv 4sinv R(K)Sinhu(K),R(K)COSI’I[J(K)), (6)

3/C_1k%/4" 3,/C_1k8/4’

/oE K32
for any (k,v) € (0,ko1) X R, where R(k) = 390%1’(3;16 and

K 36,/C_117/4

koo (9C_173/2 4 16) \/%5r2 — 1614+ C_117/2

U(k) ==+ dt + co, ceR, (7)

for any k € (0,Koy), where C_;>0and Ko is the positive vanishing point of
16k2/9—16k*+C_1k7/2, 16k%2/9—16K*+C_1k7/2 > 0, for any k € (0, Ko1),
Ko1 > (36_1)2/212, and Koo is arbitrarily fixed in (0, Ko1).
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Local extrinsic result; C_; >0

o (MZ,XE 1<’>) is called standard biconservative surface and is isometric
to the abstract standard biconservative surface (D¢ ,,dc ,), and the link
between the constants C_; and C_; is

33/4
C,]_ = 1—6071 > 0
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Local extrinsic result; C_; >0

o (MZ,XE 1<’>) is called standard biconservative surface and is isometric

to the abstract standard biconservative surface (D¢ ,,dc ,), and the link
between the constants C_; and C_; is

33/4
C,]_ = 1—60 1 > 0

@ The “profile curve”

oK) = <3 T O RIOSITA(0) <>cosm<x>>,

for any k € (0,Kp1), does not have self-intersections.
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Local extrinsic result; C_; >0

o (MZ,XE 1<’>) is called standard biconservative surface and is isometric

to the abstract standard biconservative surface (D¢ ,,dc ,), and the link
between the constants C_; and C_; is
33/4

c,=2_¢&,>0
1= 1”7

@ The “profile curve”

oK) = <3 T O RIOSITA(0) <>cosm<x>>,

for any k € (0,Kp1), does not have self-intersections.
@ The immersion Xg | is, in fact, an embedding, thus the image of Xz  is a

regular surface in H3. Therefore, in order to glue two standard
biconservative surfaces in R4, it is enough to glue two profile curves
defining them, in this way obtaining a complete biconservative regular
surface in HZ.
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Global extrinsic result; C_1 >0

Our strategy is as follows:

Since the gluing process of the curves o implies all its components it is more
convenient to chose another model for H2 (the upper half space) such that,
after that transformation, the curve o would have two components.

After the gluing process is performed, we will obtain a regular curve, which is
a closed subset of the upper half plane and therefore, we will get a
biconservative regular surface, closed in H3, which has to be complete.
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Global extrinsic result; C_1 >0

Using the standard diffeomorphism from hyperboloid model to upper half
space model.

(8)

2x2 23 2
1.2 _
5()( X ,x3,><4) B <1’ x1+x4’x1+x4’x1+x4)

the profile curve o becomes

Lo 2,/9C_1k3/24 16sinhu(k) 6,/C_1k%/4
" 44 \/9C_1k3/2+ 16coshu(k) 4+ +/9C_1k3/2 + 16coshu(k)
_( 2/9C _1k3?2 4 16sinhu (k) 61/C_1k%/4
~ \4++/9C_1k32 4 16costu(k) 4+ /9C_1k32+ 16coshu(k) )
Choosing appropriate values of the constant ¢y and of the sign in the

expression of u(k), we can find two profile curves o1 and o> such that we can
glue them smoothly (at least of C® class).

oK)=
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0.2

Figure 1. The profile curves Figure 2. The corresponding surface
o1 and o> to o1 and o,
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Local extrinsic result; C_; <0

Theorem 4.9 ([Caddeo, Montaldo, Oniciuc, Piu — 2014])

Let M2 be a biconservative surface in H° with gradf # 0 everywhere. If
C_1 <0, then, locally, M? R‘l‘ can be parametrized by

4 coshv 4 sinhv
Xz (k,v) = [ V2R(K)sinu(k)+ : ;
C,l( ) < ( ) I"l( ) 3 /_C_1K3/4 3 /_C_1K3/4
4\/2 costv
R(k)cosu(k), sin 9
(k) cosu(k),R(k)sinu (k) 3\/j6_1K3/4> ©)
for any (k,v) € (0,ko1) x R, where R(k) = L22#2"11¢ and
-C
. & 7/4
(k) =+ ey e ditco, ek,

Koo (96711'3/2 aF 16) \/%STZ — 1614+ 671T7/2

_ (20)
for any k € (0,Kp1), C_1 <0and Kog arbitrarily fixed in (0, Ko1), where Ko is the
vanishing point of 16x2/9 — 16xk4 -+ C .k 7/2

34/45



Local extrinsic result; C_; <0

o (MZ,XE 1<’>) is called standard biconservative surface and is isometric

to the abstract standard biconservative surface (D¢ ,,9c ,), and the link
between the constants C_; and C_; is

33/4
C_]_ - Ec_l < 0.
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Local extrinsic result; C_; <0

o (MZ,XE 1<’>) is called standard biconservative surface and is isometric

to the abstract standard biconservative surface (D¢ ,,9c ,), and the link
between the constants C_; and C_; is

3/4
C.1= 3—C 1 <0.
@ The “profile curve”
(k)= (\/ER(K)sinu(K)+ﬁﬂﬂ(mcosy(m. R(K)sinu(k) 3\/_4('3\/21K3/4>

for any k € (0,kp1), does not have self-intersections.
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Local extrinsic result; C_; <0

o (MZ,XE 1<’>) is called standard biconservative surface and is isometric

to the abstract standard biconservative surface (D¢ ,,9c ,), and the link
between the constants C_; and C_; is

3/4
(:__1 = S§———'(: 1 < ()
@ The “profile curve” o
(K) = (ﬁR(K)sinu(K)+ﬁ.o.R(K)COSH(K). R(K)sing(k) 3\/—46\/;1,(3 4>

for any k € (0,kp1), does not have self-intersections.

@ The immersion Xz | is, in fact, an embedding, thus the image of Xz  is a
regular surface in H3. Therefore, in order to glue two standard
biconservative surfaces in R‘l‘, it is enough to glue two profile curves
defining them, in this way obtaining a complete biconservative regular
surface in H3.
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Global extrinsic result; C_1 <0

Using the same diffeomorphism (8) the profile curve o becomes

(2 9C,1K3/2+1600$(K)76\/—C,1K3/4>

= ] (e ]

Choosing appropriate values of the constant ¢y and of the sign in the
expression of u(k), we can find two profile curves o1 and o> such that we can
glue them smoothly (at least of C2 class).
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X
0.2 04 0.6

—o}f

Figure 3. The profile curves Figure 4. The corresponding surfaces
o1 and oz to 01 and o>
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Local extrinsic result; C_1 =0

Theorem 4.10 ([Fu — 2015])

Let M? be a biconservative surface in H® with gradf # 0 everywhere. If
C_1 =0, then, locally, M? C R‘l‘ can be parametrized by

1
X(K,V) = <23/4K3/4 (1+X2(K)+V2) ~ gV X(K),
1
2 (1+X2(K)+V2) +W) ) (11)

for any (k,v) € (0,1/3) x R, where x(k) = KTlMu(K) and

9 (K T3/4 ’ ( 2)
K)==+— | ——— dr+cy, 1
IJ( ) 4 Koo \/1—9T2

with cg € R.
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Local extrinsic result; C_1 =0

@ (M2,X*(,)) is called standard biconservative surface and is isometric to
the abstract standard biconservative surface (Do, Qo).
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Local extrinsic result; C_1 =0

@ (M2,X*(,)) is called standard biconservative surface and is isometric to
the abstract standard biconservative surface (Do, Qo).

@ The “profile curve” o:

0= (¥~ gy 0030}, ke (02)

where y(k) = 23/4k%4 (x2(K) + 1) + zis7, for any k € (0,1/3), does not
have self-intersections.
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Local extrinsic result; C_1 =0

@ (M2,X*(,)) is called standard biconservative surface and is isometric to
the abstract standard biconservative surface (Do, Qo).

@ The “profile curve” o:

0= (¥~ gy 0030}, ke (02)

where y(k) = 23/4k%4 (x2(K) + 1) + zis7, for any k € (0,1/3), does not
have self-intersections.

@ The immersion X is, in fact, an embedding, thus the image of X is a
regular surface in H3. Therefore, in order to glue two standard
biconservative surfaces in R, it is enough to glue two profile curves
defining them, in this way obtaining a complete biconservative regular
surface in H3.
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Global extrinsic result; C_1 =0

Using the same diffeomorphism (8) the profile curve o becomes

I CIC RIS 1
o)~ graaryay << (3):

Choosing appropriate values of the constant ¢y and of the sign in the
expression of u(k), we can find two profile curves o1 and o> such that we can
glue them smoothly (at least of C® class).
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Figure 5. The profile curves Figure 6. The corresponding surfaces
o1 and oz to o1 and o>
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Theorem 4.11

By gluing two standard biconservative surfaces along their common boundary
we get a complete biconservative regular surface in H®. Moreover, the
gradient of its mean curvature vanishes along the initial boundary which now
is a geodesic of the surface.
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