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Introducing the biconservative submanifolds

Biharmonic maps

Let (Mm,g) and (Nn,h) be two Riemannian manifolds. Assume that M is
compact and consider

Bienergy functional

E2 : C∞(M,N)→ R, E2 (ϕ) =
1
2

∫

M
|τ(ϕ)|2vg

Euler-Lagrange equation

τ2(ϕ) = −∆ϕτ(ϕ)− traceg RN(dϕ ,τ(ϕ))dϕ
= 0.

Critical points of E2 are called biharmonic maps.
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Introducing the biconservative submanifolds

The biharmonic equation (G.Y. Jiang, 1986)

τ2(ϕ) =−∆ϕτ(ϕ)− traceg RN(dϕ ,τ(ϕ))dϕ = 0,

where
∆ϕ =− traceg

(

∇ϕ∇ϕ −∇ϕ
∇
)

is the rough Laplacian on sections of ϕ−1TN and

RN(X,Y)Z = ∇N
X ∇N

Y Z −∇N
Y ∇N

X Z −∇N
[X,Y]Z.

is a fourth-order non-linear elliptic equation;

any harmonic map is biharmonic;

a non-harmonic biharmonic map is called proper-biharmonic;
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Introducing the biconservative submanifolds

The stress-bienergy tensor

G.Y. Jiang, 1987 defined the stress-energy tensor S2 for the bienergy
functional, and called it the stress-bienergy tensor:

〈S2(X),Y〉=
1
2
|τ(ϕ)|2〈X,Y〉+ 〈dϕ ,∇τ(ϕ)〉〈X,Y〉

− 〈dϕ(X),∇Yτ(ϕ)〉− 〈dϕ(Y),∇Xτ(ϕ)〉.

It satisfies
divS2 =−〈τ2(ϕ),dϕ〉.
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It satisfies
divS2 =−〈τ2(ϕ),dϕ〉.

ϕ = biharmonic ⇒ divS2 = 0.

If ϕ is a submersion, divS2 = 0 if and only if ϕ is biharmonic.

If ϕ : M → N is an isometric immersion then (divS2)
♯ =−τ2(ϕ)⊤. In

general, for an isometric immersion, divS2 6= 0.
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Introducing the biconservative submanifolds

Biharmonic and biconservative submanifolds

Definition 3.1

A submanifold ϕ : Mm → Nn is called biharmonic if ϕ is a biharmonic map, i.e.,
τ2(ϕ) = 0.
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A submanifold ϕ : Mm → Nn is called biharmonic if ϕ is a biharmonic map, i.e.,
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Introducing the biconservative submanifolds
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Introducing the biconservative submanifolds

Mm submanifold of Nn

Mm biconservative

Mm biharmonic

Mm minimal
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Introducing the biconservative submanifolds

Characterization results

Proposition 3.3

A hypersurface ϕ : Mm → Nm+1(c) is biconservative if and only if

A(gradf ) =− f
2

gradf .

where A is the shape operator of M and f = traceA is its mean curvature
function.

Every CMC hypersurface in Nm+1(c) is biconservative.
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Biconservative surfaces in 3-dimensional space forms

Biconservative surfaces in N3(c)

Let ϕ : M2 → N3(c) be a non-CMC biconservative surface.
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Biconservative surfaces in 3-dimensional space forms

Biconservative surfaces in N3(c)

Local conditions

extrinsic

intrinsic

gradf 6= 0 on M

c−K > 0 on M,
gradK 6= 0 on M,

and the level curves
of K are certain circles
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Biconservative surfaces in N3(c)

Local conditions

extrinsic

intrinsic

gradf 6= 0 on M

c−K > 0 on M,
gradK 6= 0 on M,

and the level curves
of K are certain circles

Global conditions

(M,g) complete
and the above properties

hold on an open and dense
subset of M
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Biconservative surfaces in 3-dimensional space forms

Local results

Theorem 4.1 ([Caddeo, Montaldo, Oniciuc, Piu – 2014])

Let ϕ : M2 → N3(c) be a biconservative surface with gradf 6= 0 at any point of
M. Then the Gaussian curvature K satisfies

(i) the extrinsic condition

K = detA+ c =−3f 2

4
+ c; (1)

(ii) the intrinsic conditions c−K > 0, gradK 6= 0 on M, and its level curves are
circles in M with constant curvature

κ =
3|gradK|
8(c−K)

;

(iii)

(c−K)∆K−|gradK|2− 8
3

K(c−K)2 = 0, (2)

where ∆ is the Laplace-Beltrami operator on M.
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Biconservative surfaces in 3-dimensional space forms

Local intrinsic characterization

Theorem 4.2 ([Fetcu, N., Oniciuc – 2016])

Let
(

M2,g
)

be an abstract surface and c ∈R a constant. Then, M can be
locally isometrically embedded in N3(c) as a biconservative surface with
gradf 6= 0 everywhere if and only if it satisfies the local intrinsic conditions
c−K > 0, gradK 6= 0, at any point, and its level curves are circles in M with
constant curvature

κ =
3|gradK|
8(c−K)

.

15 / 45



Biconservative surfaces in 3-dimensional space forms

Local intrinsic characterization

Theorem 4.2 ([Fetcu, N., Oniciuc – 2016])

Let
(

M2,g
)
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locally isometrically embedded in N3(c) as a biconservative surface with
gradf 6= 0 everywhere if and only if it satisfies the local intrinsic conditions
c−K > 0, gradK 6= 0, at any point, and its level curves are circles in M with
constant curvature

κ =
3|gradK|
8(c−K)

.

We note that unlike in the minimal immersions case, if M satisfies the
hypotheses from above theorem, then there exists a unique
biconservative immersion in N3(c) (up to an isometry of N3(c)), and not a
one-parameter family.
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Biconservative surfaces in 3-dimensional space forms

Local intrinsic results in N3(c)

Theorem 4.3 ([N., Oniciuc – 2017, N. – 2017])

Let
(

M2,g
)

be an abstract surface with Gaussian curvature K satisfying
c−K(p)> 0 and (gradK)(p) 6= 0 at any point p ∈ M, where c ∈ R is a constant.
Then, the level curves of K are circles in M with constant curvature
κ = 3|gradK|/(8(c−K)) if and only if one of the following equivalent conditions
holds

(i) locally, g = e2σ (du2+ dv2
)

, σ = σ(u) satisfies σ ′′ = e−2σ/3− ce2σ and
σ ′ > 0;

u(σ) =

∫ σ

σ0

dτ
√

−3e−2τ/3− ce2τ + a
+ u0, σ ,σ0 ∈ I,a,u0 ∈ R;
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σ0

dτ
√

−3e−2τ/3− ce2τ + a
+ u0, σ ,σ0 ∈ I,a,u0 ∈ R;

(ii) X2 (X1K) = 0 and ∇X2X2 =
−3X1K
8(c−K)X1, where X1 = gradK/|gradK| and

X2 ∈ C(TM) be two vector fields on M such that {X1(p),X2(p)} is a
positively oriented orthornomal basis at any point p ∈ M;
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positively oriented orthornomal basis at any point p ∈ M;
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Biconservative surfaces in 3-dimensional space forms Local and global intrinsic results in H
3

Local intrinsic results in H3

Theorem 4.4 ([N., Oniciuc – 2017, N. – 2017])

Let
(

M2,g(u,v) = e2σ(u)
(

du2+ dv2
)

)

be an abstract surface, where u = u(σ) is

given by

u(σ) =
∫ σ

σ0

dτ
√

−3e−2τ/3+ e2τ + a
+ u0, σ ∈ I,

where a and u0 are real constants and I is an open interval. Then
(

M2,g
)

is
isometric to

(

DC−1,gC−1

)

=

(

(0,ξ01)×R,gC−1(ξ ,θ ) =
1

ξ 2

(

3

−ξ 8/3+C−1ξ 2+3
dξ 2+ dθ 2

))

,

where C−1 is a real constant and ξ01 is the positive vanishing point of
−ξ 8/3+C−1ξ 2+3.
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,

where C−1 is a real constant and ξ01 is the positive vanishing point of
−ξ 8/3+C−1ξ 2+3.

(

DC−1,gC−1

)

is called abstract standard biconservative surface.
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3

Local intrinsic results in H3

Remarks:

We note that

lim
ξց0

∣

∣

∣

∣

∂
∂ξ

∣

∣

∣

∣

2

= lim
ξրξ01

∣

∣

∣

∣

∂
∂ξ

∣

∣

∣

∣

2

= ∞,

and therefore, the metric gC−1 blows up at the boundary of DC−1.
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and therefore, the metric gC−1 blows up at the boundary of DC−1.

The surface
(

DC−1,gC−1

)

is not complete since the geodesic θ = θ0 cannot
be defined on the whole R but only on a half line (when its arc-length
parameter goes to −∞ it approaches the boundary given by ξ = 0).
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The surface
(

DC−1,gC−1

)

is not complete since the geodesic θ = θ0 cannot
be defined on the whole R but only on a half line (when its arc-length
parameter goes to −∞ it approaches the boundary given by ξ = 0).

KC−1(ξ ,θ ) = K(ξ ) =−ξ 8/3

9
−1, K′(ξ ) =− 8

27
ξ 5/3 < 0 (3)

gradK =
ξ 2
(

−ξ 8/3+C−1ξ 2+3
)

3
K′(ξ )

∂
∂ξ

(4)
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gradK =
ξ 2
(
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)

3
K′(ξ )

∂
∂ξ

(4)

lim
ξց0

(gradK)(ξ ,θ ) = lim
ξրξ01

(gradK)(ξ ,θ ) = 0, θ ∈ R.
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Changes of coordinates

gC−1(ξ ,θ ) =
1

ξ 2

(

3
−ξ 8/3+C−1ξ 2+3

dξ 2+ dθ 2
)

, (ξ ,θ ) ∈ (0,ξ01)×R

gC−1(ρ ,θ ) = h̃2(ρ)dθ 2+ dρ2, (ρ ,θ ) ∈ (ρ1,∞)×R,

h̃(ρ) = 1
ξ (ρ) ,ρ1 ∈ R−

ρ(ξ ) =−∫ ξ
ξ00

√

3
τ2(−τ8/3+C−1τ2+3)

dτ

gC−1(ω ,θ ) = h2(ω)dθ 2+ dω2, (ω ,θ ) ∈ (0,∞)×R,

h(ω) = h̃(ρ(ω)),

ω(ρ) = ρ −ρ1
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Biconservative surfaces in 3-dimensional space forms Local and global intrinsic results in H
3

Local intrinsic result

gC−1(ω ,θ ) = h2(ω)dθ 2+ dω2, (ω ,θ ) ∈ (0,∞)×R

Remark

We note that

lim
ωց0

∣

∣

∣

∣

∂
∂θ

∣

∣

∣

∣

2

=
1

ξ 2
01

∈ R
∗
+,

and thus, the metric gC−1 can be smoothly extended to the boundary ω = 0.
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Biconservative surfaces in 3-dimensional space forms Local and global intrinsic results in H
3

Global intrinsic result

Theorem 4.5

The surface
(

R2, g̃C−1(ω ,θ ) = Γ2(ω)dθ 2+ dω2
)

is complete, where the
function Γ : R→ R is given by

Γ(ω) =























h(ω), ω > 0

1
ξ01

, ω = 0

h(−ω), ω < 0

. (5)
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function Γ : R→ R is given by

Γ(ω) =























h(ω), ω > 0

1
ξ01

, ω = 0

h(−ω), ω < 0

. (5)

(

gradK̃C−1

)

(0,θ ) = 0, for any θ ∈ R.

As ∇ ∂
∂ θ

∂
∂θ = 0 along the boundary of

(

(0,∞)×R,gC−1

)

it follows that its

boundary θ → (0,θ ) becomes a geodesic in
(

R2, g̃C−1

)

.
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Global intrinsic result

As the complete surface
(

R2, g̃C−1

)

satisfies (gradK̃C−1)(0,θ ) = 0, for any
θ ∈ R, the existence of a (non-CMC) biconservative immersion from

(

R
2, g̃C−1

)

in H3 is not guaranteed.
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Global intrinsic result

As the complete surface
(

R2, g̃C−1

)

satisfies (gradK̃C−1)(0,θ ) = 0, for any
θ ∈ R, the existence of a (non-CMC) biconservative immersion from

(

R
2, g̃C−1

)

in H3 is not guaranteed.

Our aim is to construct such an immersion!!!!

We will omit writing the index C−1 in the following construction.
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Global intrinsic result

Let us consider two surfaces

1g(ω ,θ ) = h2(ω)dθ 2+ dω2, (ω ,θ ) ∈ (0,∞)×R

and
2g(ω ,θ ) = h2(−ω)dθ 2+ dω2, (ω ,θ ) ∈ (−∞,0)×R.

Let
1X1 =

grad 1K
|grad 1K| ,

2X1 =
grad 2K
|grad 2K| ,

be two vector fields defined on (0,∞)×R, respectively on (−∞,0)×R. One
obtains:

1X1 =
∂

∂ω
and 2X1 =− ∂

∂ω
on (0,∞)×R, respectively on (−∞,0)×R.
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Global intrinsic result

Let us consider two surfaces

1g(ω ,θ ) = h2(ω)dθ 2+ dω2, (ω ,θ ) ∈ (0,∞)×R

and
2g(ω ,θ ) = h2(−ω)dθ 2+ dω2, (ω ,θ ) ∈ (−∞,0)×R.

Let
1X1 =

grad 1K
|grad 1K| ,

2X1 =
grad 2K
|grad 2K| ,

be two vector fields defined on (0,∞)×R, respectively on (−∞,0)×R. One
obtains:

1X1 =
∂

∂ω
and 2X1 =− ∂

∂ω
on (0,∞)×R, respectively on (−∞,0)×R.

X1 =
∂

∂ω on R2 X2 =
1

Γ(ω)
∂

∂θ on R2

{X1,X2}
positive orthonormal

frame field on R2
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Global intrinsic result

Proposition 4.6

Let
(

R2, g̃
)

the above complete surface. Then, the Gaussian curvature K̃ of
(

R2, g̃
)

satisfies −1− K̃ > 0 at any point, and the vector fields X1 and X2

defined above, satisfy on R2

∇X1X1 = ∇X1X2 = 0, ∇X2X2 =− 3X1K̃

8
(

−1− K̃
)X1, ∇X2X1 =

3X1K̃

8
(

−1− K̃
)X2.
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Global intrinsic result

Proposition 4.6

Let
(

R2, g̃
)

the above complete surface. Then, the Gaussian curvature K̃ of
(

R2, g̃
)

satisfies −1− K̃ > 0 at any point, and the vector fields X1 and X2

defined above, satisfy on R2

∇X1X1 = ∇X1X2 = 0, ∇X2X2 =− 3X1K̃

8
(

−1− K̃
)X1, ∇X2X1 =

3X1K̃

8
(

−1− K̃
)X2.

Theorem 4.7

Let
(

R2, g̃
)

the above complete surface. Then, there exists a unique
biconservative immersion Φ :

(

R2, g̃
)

→H3. Moreover, gradf 6= 0 at any point of
R∗×R, where f is the mean curvature function of the immersion Φ.
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Proof:

A : C
(

TR2
)

→ C
(

TR2
)

defined by

A(X1) =−
√

−1− K̃√
3

X1, A(X2) =
√

3
(

−1− K̃
)

X2.
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Proof:

A : C
(

TR2
)

→ C
(

TR2
)

defined by

A(X1) =−
√

−1− K̃√
3

X1, A(X2) =
√

3
(

−1− K̃
)

X2.

A satisfies:
The Gauss equation detA = 1+ K̃;
The Codazzi equation (∇X1A)(X2) = (∇X2A)(X1);
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3
(

−1− K̃
)

X2.

A satisfies:
The Gauss equation detA = 1+ K̃;
The Codazzi equation (∇X1A)(X2) = (∇X2A)(X1);

From the fundamental theorem of surfaces in H3, it follows that there exists an
unique isometric immersion Φ :

(

R2, g̃
)

→H3 such that A is its shape operator.
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(
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→ C
(
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)

defined by

A(X1) =−
√

−1− K̃√
3

X1, A(X2) =
√

3
(

−1− K̃
)

X2.

A satisfies:
The Gauss equation detA = 1+ K̃;
The Codazzi equation (∇X1A)(X2) = (∇X2A)(X1);

From the fundamental theorem of surfaces in H3, it follows that there exists an
unique isometric immersion Φ :

(

R2, g̃
)

→H3 such that A is its shape operator.
Moreover, the operator A satisfies

A(gradf ) =− f
2

gradf ,

which shows that Φ is biconservative.
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Proof:

A : C
(

TR2
)

→ C
(

TR2
)

defined by

A(X1) =−
√

−1− K̃√
3

X1, A(X2) =
√

3
(

−1− K̃
)

X2.

A satisfies:
The Gauss equation detA = 1+ K̃;
The Codazzi equation (∇X1A)(X2) = (∇X2A)(X1);

From the fundamental theorem of surfaces in H3, it follows that there exists an
unique isometric immersion Φ :

(

R2, g̃
)

→H3 such that A is its shape operator.
Moreover, the operator A satisfies

A(gradf ) =− f
2

gradf ,

which shows that Φ is biconservative.
Uniqueness: we suppose that there exist two biconservative immersions Φ1

and Φ2 from
(

R2, g̃
)

in H3 and using the fact that Φ1|(0,∞)×R and Φ1|(−∞,0)×R

are biconservative and unique (up to isometries of H3) we can prove that Φ1

and Φ2 coincide.
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Outline

1 Introducing the biconservative submanifolds

2 Biconservative surfaces in 3-dimensional space forms
Local and global intrinsic results in H3

Local and global extrinsic results in H3
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As there exist several models for the hyperbolic space, we will consider, in
each particular situation, the most appropriate model in order to obtain a
complete biconservative surface.
Let us recall that the Minkowski space R

4
1 is given by R

4
1 =

(

R
4,〈·, ·〉

)

, where
〈·, ·〉 is the bilinear form

〈x,y〉 =
3

∑
i=1

xiyi − x4y4, x =
(

x1,x2,x3,x4
)

, y =
(

y1,y2,y3,y4
)

.

The hyperboloid model is

H
3 =

{

x ∈ R
4
1 : 〈x,x〉=−1 and x4 > 0

}

,

that is the upper part of the hyperboloid of two sheets.
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Local extrinsic result; C−1 > 0

Theorem 4.8 ([Caddeo, Montaldo, Oniciuc, Piu – 2014])

Let M2 be a biconservative surface in H
3 with gradf 6= 0 everywhere. If

C−1 > 0, then, locally, M2 ⊂ R4
1 can be parametrized by

XC̃−1
(κ ,v) =

(

4cosv

3
√

C̃−1κ3/4
,

4sinv

3
√

C̃−1κ3/4
,R(κ)sinhµ(κ),R(κ)coshµ(κ)

)

, (6)

for any (κ ,v) ∈ (0,κ01)×R, where R(κ) =
√

9C̃−1κ3/2+16

3
√

C̃−1κ3/4
and

µ(κ) =±
∫ κ

κ00

36
√

C̃−1τ7/4

(

9C̃−1τ3/2+16
)

√

16
9 τ2−16τ4+ C̃−1τ7/2

dτ + c0, c0 ∈ R, (7)

for any κ ∈ (0,κ01), where C̃−1 > 0 and κ01 is the positive vanishing point of
16κ2/9−16κ4+ C̃−1κ7/2, 16κ2/9−16κ4+ C̃−1κ7/2 > 0, for any κ ∈ (0,κ01),
κ01 >

(

3C̃−1
)2
/212, and κ00 is arbitrarily fixed in (0,κ01).
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Local extrinsic result; C−1 > 0
(

M2,X∗
C̃−1

〈,〉
)

is called standard biconservative surface and is isometric

to the abstract standard biconservative surface
(

DC−1,gC−1

)

, and the link
between the constants C−1 and C̃−1 is

C−1 =
33/4

16
C̃−1 > 0.
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to the abstract standard biconservative surface
(

DC−1,gC−1
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, and the link
between the constants C−1 and C̃−1 is

C−1 =
33/4

16
C̃−1 > 0.

The “profile curve” σ :

σ(κ) =

(

4

3
√

C̃−1κ3/4
,0,R(κ)sinhµ(κ),R(κ)coshµ(κ)

)

,

for any κ ∈ (0,κ01), does not have self-intersections.
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Local extrinsic result; C−1 > 0
(

M2,X∗
C̃−1

〈,〉
)

is called standard biconservative surface and is isometric

to the abstract standard biconservative surface
(

DC−1,gC−1

)

, and the link
between the constants C−1 and C̃−1 is

C−1 =
33/4

16
C̃−1 > 0.

The “profile curve” σ :

σ(κ) =

(

4

3
√

C̃−1κ3/4
,0,R(κ)sinhµ(κ),R(κ)coshµ(κ)

)

,

for any κ ∈ (0,κ01), does not have self-intersections.
The immersion XC̃−1

is, in fact, an embedding, thus the image of XC̃−1
is a

regular surface in H3. Therefore, in order to glue two standard
biconservative surfaces in R

4
1, it is enough to glue two profile curves

defining them, in this way obtaining a complete biconservative regular
surface in H3.
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Global extrinsic result; C−1 > 0

Our strategy is as follows:

Since the gluing process of the curves σ implies all its components it is more
convenient to chose another model for H3 (the upper half space) such that,
after that transformation, the curve σ would have two components.
After the gluing process is performed, we will obtain a regular curve, which is
a closed subset of the upper half plane and therefore, we will get a
biconservative regular surface, closed in H3, which has to be complete.
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Global extrinsic result; C−1 > 0

Using the standard diffeomorphism from hyperboloid model to upper half
space model.

δ
(

x1,x2,x3,x4
)

=

(

1,
2x2

x1+ x4 ,
2x3

x1+ x4 ,
2

x1+ x4

)

(8)

the profile curve σ becomes

σ(κ) =

(

1,0,
2
√

9C̃−1κ3/2+16sinhµ(κ)
4+
√

9C̃−1κ3/2+16coshµ(κ)
,

6
√

C̃−1κ3/4

4+
√

9C̃−1κ3/2+16coshµ(κ)

)

≡
(

2
√

9C̃−1κ3/2+16sinhµ(κ)
4+
√

9C̃−1κ3/2+16coshµ(κ)
,

6
√

C̃−1κ3/4

4+
√

9C̃−1κ3/2+16coshµ(κ)

)

.

Choosing appropriate values of the constant c0 and of the sign in the
expression of µ(k), we can find two profile curves σ1 and σ2 such that we can
glue them smoothly (at least of C3 class).
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Figure 1. The profile curves Figure 2. The corresponding surfaces
σ1 and σ2 to σ1 and σ2
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Local extrinsic result; C−1 < 0

Theorem 4.9 ([Caddeo, Montaldo, Oniciuc, Piu – 2014])

Let M2 be a biconservative surface in H3 with gradf 6= 0 everywhere. If
C−1 < 0, then, locally, M2 ⊂ R4

1 can be parametrized by

XC̃−1
(κ ,v) =

(

√
2R(κ)sinµ(κ)+

4coshv

3
√

−C̃−1κ3/4
,

4sinhv

3
√

−C̃−1κ3/4
,

R(κ)cosµ(κ),R(κ)sinµ(κ)+
4
√

2coshv

3
√

−C̃−1κ3/4

)

, (9)

for any (κ ,v) ∈ (0,κ01)×R, where R(κ) =
√

9C̃−1κ3/2+16

3
√

−C̃−1κ3/4
and

µ(κ) =±
∫ κ

κ00

36
√

−C̃−1τ7/4

(

9C̃−1τ3/2+16
)

√

16
9 τ2−16τ4+ C̃−1τ7/2

dτ + c0, c0 ∈ R,

(10)
for any κ ∈ (0,κ01), C̃−1 < 0 and κ00 arbitrarily fixed in (0,κ01), where κ01 is the
vanishing point of 16κ2/9−16κ4+ C̃−1κ7/2. 34 / 45
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Local extrinsic result; C−1 < 0
(

M2,X∗
C̃−1

〈,〉
)

is called standard biconservative surface and is isometric

to the abstract standard biconservative surface
(

DC−1,gC−1

)

, and the link
between the constants C−1 and C̃−1 is

C−1 =
33/4

16
C̃−1 < 0.
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4

3
√
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4
√

2

3
√

−C̃−1κ3/4

)

,

for any κ ∈ (0,κ01), does not have self-intersections.
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√
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,0,R(κ)cosµ(κ),R(κ)sinµ(κ)+

4
√

2

3
√

−C̃−1κ3/4

)

,

for any κ ∈ (0,κ01), does not have self-intersections.

The immersion XC̃−1
is, in fact, an embedding, thus the image of XC̃−1

is a

regular surface in H3. Therefore, in order to glue two standard
biconservative surfaces in R4

1, it is enough to glue two profile curves
defining them, in this way obtaining a complete biconservative regular
surface in H3.
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Global extrinsic result; C−1 < 0

Using the same diffeomorphism (8) the profile curve σ becomes

σ(κ) =

(

2
√

9C̃−1κ3/2+16cosµ(κ),6
√

−C̃−1κ3/4
)

(

1+
√

2
)(

4+
√

9C̃−1κ3/2+16sinµ(κ)
) .

Choosing appropriate values of the constant c0 and of the sign in the
expression of µ(k), we can find two profile curves σ1 and σ2 such that we can
glue them smoothly (at least of C3 class).
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Figure 3. The profile curves Figure 4. The corresponding surfaces
σ1 and σ2 to σ1 and σ2
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Local extrinsic result; C−1 = 0

Theorem 4.10 ([Fu – 2015])

Let M2 be a biconservative surface in H3 with gradf 6= 0 everywhere. If
C−1 = 0, then, locally, M2 ⊂ R4

1 can be parametrized by

X(κ ,v) =

(

23/4κ3/4
(

1+ x2(κ)+ v2
)

− 1

211/4κ3/4
,v,x(κ),

23/4κ3/4
(

1+ x2(κ)+ v2
)

+
1

211/4κ3/4

)

, (11)

for any (κ ,v) ∈ (0,1/3)×R, where x(κ) = 1
κ3/4 µ(κ) and

µ(κ) =±9
4

∫ κ

κ00

τ3/4
√

1−9τ2
dτ + c0, (12)

with c0 ∈ R.
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Local extrinsic result; C−1 = 0

(

M2,X∗〈,〉
)

is called standard biconservative surface and is isometric to
the abstract standard biconservative surface (D0,g0).
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Local extrinsic result; C−1 = 0

(

M2,X∗〈,〉
)

is called standard biconservative surface and is isometric to
the abstract standard biconservative surface (D0,g0).

The “profile curve” σ :

σ(κ) =
(

y(κ)− 1

27/4κ3/4
,0,x(κ),y(κ)

)

, κ ∈
(

0,
1
3

)

where y(κ) = 23/4κ3/4
(

x2(κ)+1
)

+ 1
211/4κ3/4 , for any κ ∈ (0,1/3), does not

have self-intersections.
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Local extrinsic result; C−1 = 0

(

M2,X∗〈,〉
)

is called standard biconservative surface and is isometric to
the abstract standard biconservative surface (D0,g0).

The “profile curve” σ :

σ(κ) =
(

y(κ)− 1

27/4κ3/4
,0,x(κ),y(κ)

)

, κ ∈
(

0,
1
3

)

where y(κ) = 23/4κ3/4
(

x2(κ)+1
)

+ 1
211/4κ3/4 , for any κ ∈ (0,1/3), does not

have self-intersections.

The immersion X is, in fact, an embedding, thus the image of X is a
regular surface in H3. Therefore, in order to glue two standard
biconservative surfaces in R4

1, it is enough to glue two profile curves
defining them, in this way obtaining a complete biconservative regular
surface in H3.
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Global extrinsic result; C−1 = 0

Using the same diffeomorphism (8) the profile curve σ becomes

σ(κ) =
(

µ(κ),κ3/4
)

23/4
(

κ3/2+ µ2(κ)
) , κ ∈

(

0,
1
3

)

.

Choosing appropriate values of the constant c0 and of the sign in the
expression of µ(k), we can find two profile curves σ1 and σ2 such that we can
glue them smoothly (at least of C3 class).
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Figure 5. The profile curves Figure 6. The corresponding surfaces
σ1 and σ2 to σ1 and σ2
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Theorem 4.11

By gluing two standard biconservative surfaces along their common boundary
we get a complete biconservative regular surface in H3. Moreover, the
gradient of its mean curvature vanishes along the initial boundary which now
is a geodesic of the surface.
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