UNIVERSITATEA ,,ALEXANDRU IOAN CUZA* din IASI

FACULTATEA DE MATEMATICA

BIHARMONIC SUBMANIFOLDS IN SPACE FORMS

Habilitation Thesis

Author: Cezar ONICIUC

2012






To my daughters






Abstract

The present thesis is devoted to the study of biharmonic submanifolds in real, complex
and Sasakian space forms. First, we shall present some ideas that have encouraged the
study of the biharmonic submanifolds and of the geometry of biharmonic maps, and
then we shall describe the results gathered in the thesis.

Denote by C*°(M, N) the space of smooth maps ¢ : (M, g) — (N, h) between two
Riemannian manifolds. A map ¢ € C*°(M, N) is called harmonic if it is a critical point
of the energy functional

1
B:Cx(M,N) >R, Blp)=3 [ lePu,

and it is characterized by the vanishing of the tension field
7(p) = trace Vdyp = 0.

The tension field is a smooth section in the pull-back bundle o~ *(T'N). If ¢ : (M, g) —
(N, h) is a Riemannian immersion, then it is a critical point of the energy functional if
and only if it is a minimal immersion, i.e. a critical point of the volume functional (see
[B0]).

One can generalize harmonic maps by considering the functional obtained by inte-
grating the squared norm of the tension field. More precisely, biharmonic maps are the
critical points of the bienergy functional
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By: C(M,N) =R, Balo) =3 [ In()fv,

The associated Euler-Lagrange equation is given by the vanishing of the bitension field

7a(p) = —Ar(p) — trace RN (dip(-), 7(¢))dp(-) = 0. (0.1)

Obviously, harmonic maps are biharmonic. Biharmonic non-harmonic maps are called
proper-btharmonic.

The above variational problem and the Willmore problem (see [I34]) produce natural
generalizations of harmonic maps and, respectively, minimal immersions. Nevertheless,
biharmonic Riemannian immersions do not recover Willmore immersions, not even when
the ambient space is R™.



The theory of biharmonic maps is an old and rich subject, initially studied due to its
implications in the theory of elasticity and fluid mechanics. G.B. Airy and J.C. Maxwell
were the first to study and express plane elastic problems in terms of the biharmonic
equation (see [0, 94]). Later on, the theory evolved with the study of polyharmo-
nic functions developed by E. Almansi, T. Levi-Civita, M. Nicolaescu. Biharmonic
and polyharmonic functions on Riemannian manifolds were studied by R. Caddeo and
L. Vanheke |28, B5|, L. Sario et all (see [I17]) and others.

Biharmonic maps have been extensively studied in the last decade and there are two
main research directions. On the one hand, in differential geometry, a special attention
has been payed to the construction of examples and classification results. Results in
this direction were obtained, for example, by P. Baird [, 2], H. Urakawa |7, [78, 28],
Y.-L. Ou [TI0]-|{IT3] and in [@, 04, 21, 22, 27, 29, B0, B3, 34, 42, 46, bR, 79, 127, [39].

On the other hand, from the analytic point of view, biharmonic maps are solutions
of a fourth order strongly elliptic semilinear PDE and the study of their regularity
is nowadays a well-developed field. Contributions in this direction were made by S.-
Y.A. Chang [3%], T. Lamm [84, 85|, R. Moser [99, 000], P. Strzelecki [122], C. Wang
|31, 32, etc.

It was proved in [EI] that there exists no harmonic map from T? to S? (whatever
the metrics chosen) in the homotopy class of Brower degree +1. The biharmonic maps
are expected to exist where harmonic maps do not.

The interest in the theory of biharmonic maps crossed the border of differential
geometry and analysis of PDE’s. In computational geometry, more precisely in the
field of boundary based surface design, the biharmonic Bézier surfaces are studied (see
(82, 96, G7]).

The variational problem associated by considering, for a fixed map, the bienergy
functional defined on the set of Riemannian metrics on the domain gave rise to the
biharmonic stress-energy tensor (see [90]). This proved to be useful for obtaining new
examples of proper-biharmonic maps and for the study of submanifolds with certain
geometric properties, like pseudo-umbilical and parallel submanifolds.

?

In his studies on finite type submanifolds (see |44]), B-Y. Chen defined biharmonic
Riemannian immersions, i.e. biharmonic submanifolds, in the Euclidean space as those
with harmonic mean curvature vector field, that is AH = 0, where A is the rough
Laplacian. By considering the definition of biharmonic maps for Riemannian immersions
into the Euclidean space R™ one recovers the notion of biharmonic submanifolds in the
sense of B-Y. Chen. Although the results obtained by B-Y. Chen and his collaborators
on proper-biharmonic submanifolds in Euclidean spaces are non-existence results, i.e.
the only biharmonic submanifolds are the minimal ones, their techniques were adapted
and led to classification results for proper-biharmonic submanifolds in Euclidean spheres
where the family of such submanifolds is rather rich.

The differential geometric aspect of biharmonic submanifolds was also studied in
the semi-Riemannian case (see, for example, |44, 46]).

In real space forms of nonpositive constant sectional curvature only non-existence
results for proper-biharmonic submanifolds are known (see, for example, 21, P9, @3,
a6, b6, by, [75]). In the case of real space forms of positive sectional curvature the
situation is completely different, and the first chapter of the present thesis concerns



the classification of biharmonic submanifolds in the unit Euclidean sphere S™. The key
ingredient is the characterization formula, obtained by splitting the bitension field in
its normal and tangent components, presented in the first section. The main examples
of proper-biharmonic submanifolds in S”, together with their immediate properties, are
listed. The section ends with a partial classification result for biharmonic submanifolds
with constant mean curvature (CMC) in spheres. Taking this further, in the second
section we study the type of CMC proper biharmonic submanifolds in S and prove
that, depending on the value of the mean curvature, they are of 1-type or of 2-type
as submanifolds of R"*1. In the third section, the proper biharmonic hypersurfaces
are studied from different points of view: first with respect to the number of their
distinct principal curvatures, then with respect to |A|? and |H|?, and, finally, the study
is done with respect to the sectional, Ricci and scalar curvatures of the hypersurface.
All the obtained results are rigidity results, i.e. with the imposed restrictions, the
biharmonic hypersurfaces belong to the main classes of aforementioned examples. The
fourth section is devoted to the study of proper-biharmonic submanifolds with parallel
mean curvature vector field (PMC) in spheres, the main result of this section consisting
in a partial classification. Moreover, a full classification of PMC proper-biharmonic
submanifolds in spheres with parallel shape operator associated to the mean curvature
vector field is presented. The chapter ends with a list of Open Problems. The results
contained in this chapter can be found in [I8]-|24].

Chapter 2 is devoted to the study of proper-biharmonic submanifolds in a com-
plex space form. This subject has already been started by several authors. In [563] some
pinching conditions for the second fundamental form and the Ricci curvature of a bihar-
monic Lagrangian submanifold of CP", with parallel mean curvature vector field, were
obtained. In [IT9], the author gave a classification of biharmonic Lagrangian surfaces
of constant mean curvature in CP?. Then, the characterization of biharmonic constant
mean curvature real hypersurfaces of CP™ and the classification of proper-biharmonic
homogeneous real hypersurfaces of CP™ were obtained in |77, 78|. Our main result in
Chapter 2 is a formula that relates the bitension field of a submanifold in CP™ and
the bitension field of the associated Hopf cylinder (according to the Hopf fibration).
Using this formula, many examples of proper-biharmonic submanifolds in CP™ were
obtained. In the 2-dimensional complex projective space, by using a result of S. Maeda
and T. Adachi, all proper-biharmonic curves were determined.

The Euclidean spheres proved to be a very giving environment for obtaining examples
and classification results. Then, the fact that odd-dimensional spheres can be thought
as a class of Sasakian space forms (which do not have constant sectional curvature,
in general) led to the idea that another research direction would be the study of bi-
harmonic submanifolds in Sasakian space forms. Following this direction, the proper-
biharmonic Legendre curves and Hopf cylinders in a 3-dimensional Sasakian space form
were classified in [79], whilst in [71] their parametric equations were found. In Chap-
ter 3 we classify all proper-biharmonic Legendre curves in arbitrary dimensional Sasa-
kian space forms, and we present a method to obtain proper-biharmonic anti-invariant
submanifolds from proper-biharmonic integral submanifolds. Then, we obtain classi-
fication results for proper-biharmonic hypersurfaces. In the last part, we determine
all 3-dimensional proper-biharmonic integral C-parallel submanifolds in a 7-dimensional
Sasakian space form and then we find these submanifolds in the unit Euclidean 7-sphere



endowed with its canonical and deformed Sasakian structures introduced by S. Tanno in
[I25]. We end by classifying the proper-biharmonic parallel Lagrangian submanifolds of
CP? by determining their horizontal lifts, with respect to the Hopf fibration, in S7(1).

Some of the techniques used in the thesis are based on those developed by D. Blair,
B-Y. Chen, F. Defever, M. do Carmo, J. Erbacher, J.D. Moore, K. Nomizu, P.J. Ryan,
S.-T. Yau, etc.

The author was supported by the grant of the Romanian National Authority for
Scientific Research, CNCS-UEFISCDI, project number PN-II-RU-TE-2011-3-0108.



Rezumat

Lucrarea de fata este dedicata studiului subvarietétilor biarmonice in forme spatiale
reale, complexe si sasakiene. Vom prezenta, pentru inceput, unele idei care au incurajat
studiul subvarietatilor biarmonice si al geometriei aplicatiilor biarmonice si apoi vom
descrie rezultatele incluse in aceasta teza.

Fie C*°(M, N) spatiul aplicatiilor netede ¢ : (M,g) — (N, h) intre doud varietati
riemanniene. O aplicatie ¢ € C*°(M, N) se numeste armonica dacd este un punct critic
al functionalei energie

1
B:Cx(M,N) >R Blp)=3 [ lePu,

si este caracterizata de anularea campului de tensiune
7(p) = trace Vdyp = 0.

Campul de tensiune este o sectiune neteds in fibratul pull-back ¢ ~(T'N).

Dacid ¢ : (M, g) — (N, h) este o imersie riemanniani, atunci este un punct critic al
functionalei energie daca si numai dacid este o imersie minimala, adica un punct critic
al functionalei volum (vezi [60]).

Notiunea de aplicatie armonicd poate fi generalizata considerand functionala obti-
nutd prin integrarea patratului normei ciAmpului de tensiune. Mai exact, aplicatiile
biarmonice sunt punctele critice ale functionalei bienergie

1

By: C(M,N) =R, Balo) =3 [ In()fv,

Ecuatia Euler-Lagrange asociata este data de anularea campului de bitensiune

Ta(p) = —Ar(p) — trace RN (de(-), 7(¢p))d(-) = 0.

Evident, aplicatiile armonice sunt biarmonice. Aplicatiile biarmonice si nearmonice
sunt numite biarmonice propri.

Problema variationald de mai sus i problema Willmore (vezi [I34]) produc gene-
ralizéri naturale ale notiunii de aplicatie armonici, respectiv imersie minimald. Insi
imersiile riemanniene biarmonice nu sunt imersii Willmore, nici mécar in cazul in care
spatiul ambiant este R".
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Teoria aplicatiilor biarmonice este un domeniu vechi gi bogat in rezultate, initial stu-
diat datoritd implicatiilor sale in teoria elasticitatii i in mecanica fluidelor. G.B. Airy
si J.C. Maxwell au fost primii care au studiat si exprimat fenomene elastice plane in
termenii ecuatiei biarmonice (vezi |1, 94]). Mai tarziu, teoria a evoluat cu studiul functii-
lor poliarmonice realizat de cdtre E. Almansi, T. Levi-Civita, M. Nicolaescu. Functiile
biarmonice si poliarmonice pe varietati riemanniene au fost studiate de R. Caddeo si
L. Vanheke |28, B3|, L. Sario et all [T17] si altii.

Aplicatiile biarmonice au fost intens studiate in ultimul deceniu si exista doud directii
principale de cercetare. Pe de o parte, in geometria diferentiala, o atentie deosebita a
fost acordata constructiei de exemple si rezultatelor de clasificare. Rezultate in aceasta
directie au fost obtinute, de exemplu, de P. Baird [0, 2|, H. Urakawa |77, 7R, 0T28|,
Y.-L. Ou [IT0]-[I13] si in (4, 04, 21, 22, 29, B0, B3, B4, 42, 46, bR, (9, 127, [34].

Pe de alta parte, din punct de vedere analitic, aplicatiile biarmonice sunt solutii
ale unui sistem eliptic semi-liniar de ordin 4 de ecuatii cu derivate partiale, iar studiul
regularitatii acestora este un domeniu de cercetare bine dezvoltat in prezent. Contributii
in aceasta directie au fost aduse de cédtre S.-Y.A. Chang 38|, T. Lamm [84, 85], R. Moser
[99, 00|, P. Strzelecki [122], C. Wang |31, I32], etc.

In [61] s-a demonstrat ci nu existd aplicatii armonice de la T? la S? (indiferent
de metricile alese) in clasa de omotopie de grad Brower egal cu +1. Se agteapta ca
aplicatiile biarmonice sa rezolve aceasta problema.

Interesul manifestat pentru aplicatiile biarmonice a depésit granitele geometriei di-
ferentiale si ale analizei ecuatiilor cu derivate partiale. In geometria computationala,
mai precis in designul suprafetelor de bord fixat, sunt intens studiate suprafetele Bézier
biarmonice (vezi [82, 96, 97]).

Problema variationald asociatd considerand, pentru o aplicatie fixata, functionala
bienergie definitd pe multimea metricilor riemanniene pe domeniu a dat nagtere ten-
sorului stress-energie biarmonic (vezi [90]). Acesta s-a dovedit util in constructia de
noi exemple de aplicatii biarmonice proprii gi in studiul subvarietatilor cu anumite pro-
prietati geometrice, cum ar fi subvarietitile pseudo-ombelicale si cele paralele.

In studiile sale asupra subvarietitilor de tip finit (vezi [44]) B-Y. Chen a definit sub-
varietatile biarmonice M C R"™ ale spatiului euclidian ca fiind acele subvarietati pentru
care campul vectorial curburad medie este armonic, i.e. AH = 0, unde A este laplaceanul
pe multimea campurilor vectoriale tangente la R™ in lungul subvarietétii M. Conside-
rand definitia aplicatiilor biarmonice pentru imersii riemanniene in spatiul euclidian se
regiseste notiunea de subvarietate biarmonica in sensul lui B-Y. Chen. Notam cé toate
rezultatele obtinute de catre Chen gi colaboratorii sii, pentru subvarietati biarmonice
in spatiul euclidian, sunt rezultate de neexistenta, adica biarmonicitatea implicd mini-
malitate. Insd tehnicile acestora au fost adaptate si au condus la rezultate de clasificare
pentru subvarietati biarmonice proprii in sfere, unde familia acestor subvarietati este
destul de bogata.

Aspectul geometric al aplicatiilor si subvarietitilor biarmonice a fost tratat si in
context pseudo-riemannian (vezi, de exemplu, |24, 46]).

Toate rezultatele obtinute privitoare la subvarietatile biarmonice proprii in forme
spatiale de curburd sectionald negativa sunt de neexistentd (vezi, de exemplu, |21, 29,
43, 86, 66, 5%, 75]). In cazul formelor spatiale de curburi sectionald pozitivd situatia se
dovedeste a fi complet diferita, iar primul capitol al prezentei teze trateaza problema cla-
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sificarii subvarietatilor biarmonice proprii ale sferei euclidiene unitare S™. Ingredientul
cheie constd in formula de caracterizare obtinutd prin descompunerea campului de bi-
tensiune in componentele sale, tangenta gi normald, prezentatd in prima sectiune. Sunt
apoi prezentate principalele exemple de subvarietati biarmonice proprii in S”, impreuna
cu proprietéatile lor imediate. Sectiunea se incheie cu un rezultat de clasificare partiala
a subvarietatilor biarmonice proprii de curburd medie constanta (CMC) in sfere. S-a
extins acest rezultat, studiand tipul subvarietatilor CMC biarmonice proprii in S™ gi s-a
demonstrat ca, in functie de valoarea curburii medii, acestea sunt fie de tip 1, fie de
tip 2 ca subvarietati in R™*!. In a treia sectiune sunt studiate, din diferite puncte de
vedere, hipersuprafetele biarmonice proprii: mai intai tinidnd cont de numérul de cur-
buri principale distincte, apoi in functie de |A|? si |H|? si, in final, studiul este realizat
tinind cont de curbura sectionald, curbura Ricci gi curbura scalard a hipersuprafetei.
Toate rezultatele obtinute sunt rezultate de rigiditate, adica hipersuprafetele biarmo-
nice apartin claselor de exemple mentionate anterior. Sectiunea a patra este dedicata
studiului subvarietatilor biarmonice proprii de cadmp vectorial curburd medie paralel
(PMC) in sfere, principalul rezultat constand intr-o clasificare partiala. Mai mult, este
prezentata clasificarea completd a subvarietatilor PMC biarmonice proprii in sfere cu
operatorul forma asociat cAmpului vectorial curbura medie paralel. Capitolul se incheie
cu o listd de Probleme Deschise. Rezultatele incluse in acest capitol pot fi gasite in
(=] [24].

Capitolul 2 este dedicat studiului subvarietatilor biarmonice proprii in forme spatiale
complexe. Acest subiect a fost initiat de mai multi autori. In [53] au fost obtinute unele
conditii de pinching asupra formei a doua fundamentale si a curburii Ricci pentru o
subvarietate biarmonica lagrangiana de curburd medie paralela in CP". In [IT9], au-
torul a obtinut o clasificare a suprafetelor lagrangiene biarmonice de curburid medie
constanta in CP2. Apoi, in |77, /8], au fost obtinute caracterizarea hipersuprafete-
lor reale biarmonice de curburd medie constantd si clasificarea hipersuprafetelor reale
omogene biarmonice in CP™. Principalul nostru rezultat prezentat in Capitolul 2 este
formula ce d& legatura dintre cAmpul de bitensiune al unei subvarietiti in CP" gi campul
de bitensiune al cilindrului Hopf asociat (prin intermediul fibrarii Hopf). Cu ajutorul
acestei formule se obtin numeroase exemple de subvarietati biarmonice proprii in CP™.
Folosind un rezultat obtinut de S. Maeda gi T. Adachi, se determin& toate curbele
biarmonice proprii in spatiul proiectiv complex 2-dimensional.

Sferele euclidiene s-au dovedit a fi un ambient foarte generos pentru obtinerea de
exemple si rezultate de clasificare. Mai mult, faptul c& sferele de dimensiune impara pot
fi privite ca o clasa de forme spatiale sasakiene (care in general nu au curbura sectionald
constanta) a condus la idea ci o noud directie de cercetare poate fi studiul subvarietatilor
biarmonic in forme spatiale sasakiene. Urméand aceastd directie, in [79] au fost clasi-
ficate curbele Legendre si cilindrii Hopf biarmonici proprii in forme spatiale sasakiene
3-dimensionale, iar in [71] au fost determinate ecuatiile parametrice ale acestora. In
Capitolul 3 se clasifica toate curbele Legendre biarmonice in forme spatiale sasakiene
de dimensiune arbitrara si se prezintd o metoda de constructie a subvarietatilor anti-
invariante biarmonice proprii pornind de la subvarietati integrale biarmonice proprii. Se
obtin apoi rezultate de clasificare pentru hipersuprafete biarmonice proprii. In ultima
parte sunt determinate toate subvarietatile integrale C-paralele, 3-dimensionale, biar-
monice proprii ale unei forme spatiale sasakiene 7-dimensionale gi apoi sunt obtinute
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aceste subvarietati in sfera unitate 7-dimensionala inzestrata cu structura sasakian ca-
nonica si cu structurile sasakiene deformate introduse de S. Tanno in [I25]. In incheiere
se prezinta clasificarea subvarietitilor lagrangiene paralele biarmonice proprii in CP3
prin determinarea lifturilor orizontale, in raport cu fibrarea Hopf, in S7(1).

Tehnicile folosite in aceasta teza sunt bazate pe tehnici dezvoltate de D. Blair, B-
Y. Chen, F. Defever, M. do Carmo, J. Erbacher, J.D. Moore, K. Nomizu, P.J. Ryan,
S.-T. Yau, etc.

Lucrarea a fost elaborata in cadrul grantului CNCS-UEFISCDI, PN-II-RU-TE-2011-
3-0108.
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(Generalities

Conventions

Throughout this work all manifolds, metrics, maps are assumed to be smooth, i.e. in
the C'°° category. All manifolds are assumed to be connected.
The following sign convention is used for the curvature tensor field of a Riemannian
manifold (M, g)
R(X,Y)=[Vx,Vy] = Vixy)

where X, Y € C(T'M) are vector fields on M and V is the Levi-Civita connection of the
manifold. Moreover, the Ricci tensor field Ricci and the scalar curvature s are defined
by

(Ricci(X),Y) = Ricci(X,Y) = trace(Z — R(Z,X)Y)), s = traceRicci,

where X,Y,Z € C(TN).
For a map ¢ : M — N between two Riemannian manifolds, the rough Laplacian on
the pull-back bundle o~ (TN) is defined by

APV = —trace(V¥)?V,

where V' € C(p~'(T'N)) is a smooth section. Here V¥ denotes the connection of
@ Y(TN) defined by the Levi-Civita connection of (N,h). When no confusion can
occur, we shall denote A¥YV by AV and V¥V by VV.

Submanifolds in Riemannian manifolds

In order to fix the notations, we recall here only the fundamental equations of first
order for a submanifold in a Riemannian manifold. These equations define the second
fundamental form, the shape operator and the connection in the normal bundle.

Let ¢ : (M, g) — (N, h) be a Riemannian immersion. For each p € M, T, N splits
as an orthogonal direct sum

TN = do(T,M) & dp(T,M)*, (0.2)

and NM = U dp(T,M)* is referred to as the normal bundle of ¢, or of M in N.
peEM
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Denote by V and V¥ the Levi-Civita connections on M and N, respectively, and
by V¥ the induced connection in the pull-back bundle ¢ ™1 (T'N) = U T,p)N. Taking

peEM
into account the decomposition in (02), one has

V4dp(Y) = dp(VxY)+ B(X,Y), VX,Y € C(TM),

where B € C(®?T*M ® NM) is called the second fundamental form of M in N. Here

T* M denotes the cotangent bundle of M. The mean curvature vector field of M in N is

defined by H = (trace B)/m € C(NM) and the mean curvature function of M is |H|.
Furthermore, if n € C(NM), then

Vin = —dp(A) (X)) +Vxn, VX e CO(TM),

where A, € C(T*M ®TM) is called the shape operator of M in N in the direction of 7,
and V7 is a connection on sections of N M, called the induced connection in the normal
bundle. Moreover, (B(X,Y),n) = (4,(X),Y), for all X,Y € C(T'M), n € C(NM).
When confusion is unlikely, locally, we identify M with its image, X with dyp(X)
and we replace V%dp(Y) with VYY. With these identifications in mind, we write

VXY = VxY + B(X,Y),

and
V%U = _An(X) + V)L(W-

We shall assume that the Gauss, Codazzi and Ricci equations are known.



Chapter

Classification results for
biharmonic submanifolds in S

1.1 Introduction

Let ¢ : M — (N, h) be a Riemannian immersion of a manifold M into a Riemannian
manifold (N, h). We say that ¢ is biharmonic, or M is a biharmonic submanifold, if its
mean curvature vector field H satisfies the following equation

T2() = —m (AH + trace RN (dp(+), H)de())) =0, (1.1)

where A denotes the rough Laplacian on sections of the pull-back bundle ¢~!}(T'N) and
RY denotes the curvature operator on (N, h).

Obviously, any minimal immersion, i.e. H = 0, is biharmonic. The non-harmonic
biharmonic immersions are called proper-biharmonic.

The study of proper-biharmonic submanifolds is nowadays becoming a very active
subject and its popularity initiated with the challenging conjecture of B-Y. Chen (see
the recent book [8Y]): any biharmonic submanifold in the Euclidean space is minimal.

Chen’s conjecture was generalized to: any biharmonic submanifold in a Riemannian
manifold with nonpositive sectional curvature is minimal, but this was proved not to be
true. Indeed, in [I13], Y.-L. Ou and L. Tang constructed examples of proper-biharmonic
hypersurfaces in a 5-dimensional space of non-constant negative sectional curvature.

Yet, the conjecture is still open in its full generality for ambient spaces with constant
nonpositive sectional curvature, although it was proved to be true in numerous cases
when additional geometric properties for the submanifolds were assumed (see, for example,
[, 29, 43, 56, bR, [75]).

By way of contrast there are several families of examples of proper-biharmonic sub-
manifolds in the n-dimensional unit Euclidean sphere S™. For simplicity we shall denote
these classes by B1, B2, B3 and B4.

The goal of this chapter is to present the results obtained until now for proper-
biharmonic submanifolds in S™. The main purpose, which we are working for, is to
obtain the complete classification of proper-biharmonic submanifolds in S™. This pro-
gram was initiated for the very first time in [R0| and then developed in [I'7] — [24],
(29, B0, 102, (03, 10Y].

17
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At the beginning of the chapter, two important properties of proper-biharmonic
submanifolds in S™ are presented: if the mean curvature |H| of such a submanifold is
constant, then it is bounded, |H| € (0,1]; and the submanifold, now as a submanifold
of the ambient space R"*!, is of 1-type if |H| = 1, or of 2-type if |H| € (0,1).

In this chapter, by a rigidity result for proper-biharmonic submanifolds we mean:
find under what conditions a proper-btharmonic submanifold in S™ is one of the main
ezamples B1, B2, B3 and B4.

We prove rigidity results for the following types of submanifolds in S™: hypersurfaces
with at most two distinct principal curvatures everywhere, constant mean curvature
(CMC) compact hypersurfaces with three distinct principal curvatures everywhere, Du-
pin hypersurfaces; hypersurfaces, both compact and non-compact, with bounded norm
of the second fundamental form; hypersurfaces satisfying intrinsic geometric properties;
parallel mean curvature vector field (PMC) submanifolds; parallel submanifolds. In the
study of complete non-compact proper-biharmonic hypersurfaces with bounded norm
of the second fundamental form we used the Omori-Yau Maximum Principle.

We note that, for compact proper-biharmonic hypersurfaces with bounded norm of
the second fundamental form an interesting connection can be made with the case of
minimal hypersurfaces with the same property.

Moreover, we include in this chapter two results of J.H. Chen published in [4]|, in
Chinese. We give a complete proof of these results using the invariant formalism and
shortening the original proofs.

1.2 Biharmonic submanifolds in S"

The key ingredient in the study of biharmonic submanifolds is the splitting of the
bitension field with respect to its normal and tangent components. In the case when
the ambient space is the unit Euclidean sphere we have the following characterization.

Theorem 1.1 ([44, 109]). An immersion ¢ : M™ — S™ is biharmonic if and only if

AL H + trace B(-, Ag-) —m H = 0,
(1.2)

m

5 grad |H|? =0,

2 trace AvhH(') +

where A denotes the Weingarten operator, B the second fundamental form, H the mean
curvature vector field, |H| the mean curvature function, V+ and A+ the connection and
the Laplacian in the normal bundle of ¢, respectively.

Proof. From (I), the map ¢ is biharmonic if and only if
AH —mH = 0. (1.3)

Consider now {E;}"; to be a local orthonormal frame field on M, geodesic at p € M.
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With the usual local identification of M with ¢(M), at p we have
AH = - ZVS"V 'H = Z{v (VEH - Ap(E;))}

= - Z{Vﬁ-vﬁﬂ — AvL y(Ei) = Vi An(Ei) — B(E;, Au(Ei))}
i=1 ‘
= AYH +trace B(-, Ag-) +traceAV(¢)H(-) + trace VAy.

Also,

iVEiAH(Ei) = Z<VEAH E; —ZE (Ap(E;), E,)E;

= ZE (Ei, E;), HYE; = ZE (V% Ei, H)E;
,L'7j

= Z {(VEVE, Bi, H) + (Vi Ei, Vi, H) } B
4,

= > {(VE VY E, H)+ (B(E;, E;), Vi, H) } E,
4,

= Y (VEVEE.H)+)_ Ags y(E)
irj i '

and, since at p,

SVEVEELH) = Y (R (B BB + V5, Ve Ei + Vg, i H)

=1 =1

= (-mcEj;, H)+ > (V4 B(E;, E;),H) =m(V}, H,H)
=1

= SE(HP).
we get
i m
Z{AVLH )+ Vg Ag(E;)} = 22AvﬁiH(Ei)+§(d\H\2)u
m 2
= 2trace AV#)H(-) t5 grad(|H|%).

Thus, by replacing the expression for AH in ([Z3) we obtain that ¢ is biharmonic
if and only if

— AYH —trace B(, Ag) + meH = 2trace Ay: () + % grad(|H|?). (1.4)

Since the left hand side of (I4) is normal, and the right hand side is tangent to M, we
conclude. 0
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In the codimension one case, denoting by A = A, the shape operator with respect
to a (local) unit section 7 in the normal bundle and putting f = (trace A)/m, the above
result reduces to the following.

Corollary 1.2 ([I09]). Let o : M™ — S™ "L be an orientable hypersurface. Then ¢ is
biharmonic if and only if

() Af=(m—|AP)f,
m (1.5)
(ii) A(grad f) = _Ef grad f.

A special class of immersions in S™ consists of the parallel mean curvature immer-
sions (PMC), that is immersions such that V- H = 0. For this class of immersions
Theorem [ reads as follows.

Corollary 1.3 (|23]). Let ¢ : M™ — S™ be a PMC immersion. Then ¢ is biharmonic
if and only if
trace B(Ag(-),-) = mH, (1.6)
or equivalently,
(Ap,A¢) =0, V&€ C(NM)with & L H,

(1.7)
|An|* = m[H|?,

where NM denotes the normal bundle of M in S™.

We now list the main examples of proper-biharmonic immersions in S”.

B1. The canonical inclusion of the small hypersphere

s1(1/v2) = {(w, 1/v2) e R : 2 € R", |22 = 1/2} cst (18)

B2. The canonical inclusion of the standard (extrinsic) products of spheres

S™(1/v/2) x §%(1/v2) = {(z,y) € R x R™H, |2 = [y|2 = 1/2} C S,
(1.9)
ni+mne =n—1and ny # ns.

B3. The maps ¢ =10¢ : M — S™, where ¢ : M — S*~(1/4/2) is a minimal immersion,
and 2 : S"71(1/4/2) — S™ denotes the canonical inclusion.

B4. The maps ¢ = 10 (¢1 X ¢2) : My x My — S™, where ¢; : M]"" — S"i(1/v2),
0 < m; <ny, i =1,2, are minimal immersions, mj # meo, n1 + no = n — 1, and
2:S™(1/3/2) x S"2(1/+/2) — S™ denotes the canonical inclusion.

Remark 1.4. (i) The proper-biharmonic immersions of class B3 are pseudo-umbilical,
i.e. Ay = |H|?Id, have parallel mean curvature vector field and mean curvature
|H| = 1. Clearly, VA = 0.
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(ii) The proper-biharmonic immersions of class B4 are no longer pseudo-umbilical,
but still have parallel mean curvature vector field and their mean curvature is
|H| = |m1 —ma|/m € (0,1), where m = mj + mgy. Moreover, VAyg = 0 and
the principal curvatures in the direction of H, i.e. the eigenvalues of Ay, are
constant on M and given by A\ = ... = A\, = (m1 —ma)/m, Apyp1 = ... =
Ami+my = —(m1 — ma)/m. Specific B4 examples were given by W. Zhang in [T39]
and generalized in |20, T33].

Example B2 was found in [80], while Example B1 was derived in [30]. The two
families of examples described in Example B3 and Example B4 were constructed in
[29]. Moreover, Example B3 is a consequence of the following property.

Theorem 1.5 ([29]). Let ¢ : M — S""!(a) be a minimal submanifold in a small
hypersphere S"~(a) C S", of radius a € (0,1), and denote by 1 : S*"(a) — S" the
inclusion map. Then @ =104 : M — S™ is proper-biharmonic if and only if a = 1/v/2.

Example B4 is a consequence of the following result.

Theorem 1.6 ([29]). Let ¢y : M{™ — S™ (a) and 1y : M3"* — S"2(b) be two minimal
submanifolds, where ny+na = n—1, a>+b? = 1, and denote by 1 : S™ (a) x S"2(b) — S"
the inclusion map. Then @ =10 (Y1 X 1g) : My x My — S™ is proper-biharmonic if and
only if a = b= 1/v/2 and my # mo.

When a biharmonic immersion has constant mean curvature (CMC) the following
bound for |H| holds.

Theorem 1.7 ([T0R]). Let ¢ : M — S™ be a CMC proper-biharmonic immersion. Then
|H| € (0,1], and |H| = 1 if and only if ¢ induces a minimal immersion of M into
S*=1(1/v/2) C S", that is ¢ is B3.

Proof. Let M be a CMC biharmonic submanifold of S". The first equation of (I22)
implies that
(A“H, H) = m|H|* - |An|?,

and by using the Weitzenbock formula,
1
§A‘H’2 = <AJ—H7 H> - ‘VLH|27

we obtain
m|H|?> = |Ax|? + |[VEH|?. (1.10)

Let now {X;} be a local orthonormal basis such that Ay (X;) = \;X;. From

and
S xi=mlHP, ) (M) =4l

using (M) we obtain

Y=Y NIV > (me+ V= H?. (1.11)
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Thus
m|H|)? > m|H|* + |VtH2

Consequently, if |H| > 1, the last inequality leads to a contradiction.
)2
If |[H| = 1, then the last inequality implies V-H = 0 and S (\;)? = Qo A) =m,
m

thus we get A\ = ... = A\,. Therefore M is PMC and pseudo-umbilical in S™. This
implies that M is a minimal submanifold of a hypersphere S"~!(a) C S" (see, for
example, [45]), and from Theorem A we conclude. Ul

1.3 On the type of biharmonic submanifolds in S”

Definition 1.8 ([&2, 44]). A submanifold ¢ : M — R"*! is called of finite type if it can
be expressed as a finite sum of R"*!-valued eigenmaps of the Laplacian A of M, i.e.

¢:¢0+¢t1+-~-+¢tka (112)
where ¢g € R"*! is a constant vector, ¢, : M — R™*! are non-constant maps satisfying
A¢y, = M@, © = 1,..., k. If, in particular, all eigenvalues )\;, are assumed to be

mutually distinct, the submanifold is said to be of k-type and (I"T2) is called the spectral
decomposition of ¢.

Remark 1.9. If M is compact the immersion ¢ : M — R"*! admits a unique spectral
decomposition ¢ = ¢g + > .oy ¢i, where ¢q is the center of mass. Then, it is of k-type
if only k terms of {¢;};°, are not vanishing. In the non-compact case the spectral
decomposition ¢ = ¢y + Y o) ¢; is not guaranteed. Nonetheless, if Definition IR is
satisfied, the spectral decomposition is unique. Notice also that, in the non-compact
case, the harmonic component of the spectral decomposition is not necessarily constant.
Finite type submanifolds with non-constant harmonic component are called null finite
type submanifolds.

The following result provides us a necessary and a sufficient condition for a subma-
nifold to be of finite type.

Theorem 1.10 ([g4, &7]). Let ¢ : M — R™ be a Riemannian immersion.

(i) If M is of finite k-type, there exist a constant vector ¢g € R™ ! and a monic
polynomial with simple roots P of degree k with P(A)(¢ — ¢o) = 0.

(ii) If there exist a constant vector ¢g € R™ ! and a polynomial P with simple roots
such that P(A)(¢ — ¢o) =0, then M is of finite k-type with k < degree(P).

The following version shall also be used.
Theorem 1.11 ([g4, &7]). Let ¢ : M — R™"L be a Riemannian immersion.

(i) If M is of finite k-type, there exists a monic polynomial P of degree k — 1 or k
with P(AYH® =0 .

(i3) If there exists a polynomial P with simple roots such that P(A)H® = 0, then M
is of infinite type or of finite k-type with k — 1 < degree(P).
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Here HO denotes the mean curvature vector field of M in R 1.

A well known result of T. Takahashi can be rewritten as the classification of 1-type
submanifolds in R"*!,

Theorem 1.12 ([124]). A submanifold ¢ : M — R"*! is of 1-type if and only if either
¢ is a minimal immersion in R"T or ¢ induces a minimal immersion of M in a
hypersphere of RP1.

Definition 1.13. A submanifold ¢ : M — S is said to be of finite type if it is of finite
type as a submanifold of R"*!, where S” is canonically embedded in R™*!1. Moreover,
a non-null finite type submanifold in S™ is said to be mass-symmetric if the constant
vector ¢q of its spectral decomposition is the center of the hypersphere S, i.e. ¢9 = 0.

Remark 1.14. By Theorem [T2, biharmonic submanifolds of class B3 are 1-type
submanifolds. Indeed, the immersion ¢ : M — R™*! of M in R™*! has the spectral
decomposition

¢ = ¢0 + pr?
where ¢o = (0, 1/\/§)a bp: M — R, ¢p(z) = (¥(2),0) and Ag, = 2mgy.

Moreover, biharmonic submanifolds of class B4 are mass-symmetric 2-type subma-
nifolds. Indeed, ¢ : My x My — R™*! has the spectral decomposition

¢ = ¢p + by,

where ¢p($7y) = (1/}1(‘,1")70)’ ¢q(1"7y) = (O7¢2(y))7 Aqbp = 2m1¢pa A(]Sq = 2m2¢q-

Let ¢ : M — S™ be a submanifold in S” and denote by ¢ =io¢ : M — R"*! the
immersion of M in R™*!. Denote by H the mean curvature vector field of M in S™ and
by H? the mean curvature vector field of M in R*+!.

The mean curvature vector fields H? and H are related by H? = H — ¢. Moreover,
we have

(H,0)=0, (H° H)=|H], (H%¢)=-1. (1.13)
Following [29], the bitension field of ¢ can be written as
(@) = —mAH® 4+ 2m?H° + m*{2 — |H°|*} 6.

Thus, 72(¢) = 0 if and only if

AH® — 2mH® + m(|H|* - 1)¢ = 0. (1.14a)
or equivalently, since A¢p = —mH?Y,
A% —2mA¢ —m*(|H|* —1)¢ = 0, (1.14b)

In |20, Theorem 3.1] we proved that CMC compact proper biharmonic submanifolds
in S™ are of 1-type or 2-type. This result can be generalized to the following.

Theorem 1.15 (|I7]). Let ¢ : M — S™ be a proper-biharmonic submanifold, not
necessarily compact, in the unit Euclidean sphere S™. Denote by ¢ =io @ : M — R*H!
the immersion of M in R™1 where i : S* — R™1 s the canonical inclusion map.

Then
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(i) M is a 1-type submanifold if and only if |H| = 1. In this case, ¢ = ¢o + ¢p,
A¢y, = 2maep, and ¢g € R™, |do| = 1/V/2.

(11) M is a 2-type submanifold if and only if |H| = constant, |[H| € (0,1). In this
case, ¢ = ¢p + ¢q, Adp = m(1 = [H|)¢p, Adg =m(1 + |H])dy.

Proof. In order to prove (i), notice that the converse is obvious, by Theorem T2 and
Theorem 2.
Let us suppose that M is a 1-type submanifold. From Theorem I[CTT(i) follows that
there exists a € R such that
AH® = aH". (1.15)

Equations (IT4a) and (IH) imply
(2m — a)H® —m(|H|* = 1)¢ = 0,

and by considering the scalar product with H and using (CI3), since M is proper-
biharmonic, we get a = 2m and

m(|H> —1)¢ = 0.

Thus |H| = 1. Now, as the map ¢ can not be harmonic, (I'T2H) leads to the spectral
decomposition ¢ = ¢g + ¢p, Ag, = 2mgy,. Since Ag = —mH?, taking into account the
relation between H and H°, we obtain 2¢g = ¢ + H. Since |¢| = 1 = |H|, and H is
orthogonal to ¢, we conclude that |¢o| = 1/v/2.

Let us now prove (ii). The converse of (ii) follows immediately. Indeed, from (IT4H),
if |H| = constant, |H| € (0,1), then choosing the constant vector ¢9 = 0 and the
polynomial with simple roots

P(A) = A% —o2mAl — mz(|H|2 — 1)A0,

we are in the hypotheses of Theorem [I0(ii). Thus M is of finite k-type, with k < 2.
Taking into account (i), since |H| € (0, 1), this implies that M is a 2-type submanifold
with

(;5 = ¢p + ¢qa
with corresponding eigenvalues A\, = m(1 — [H|), Ay = m(1 + |H|). Also, notice that
g 1 A 1
= — A - — -d A
bp )\q—)\p(b Ny ¢, ¢q )\q—>\p¢+)\q—>\q o

which are smooth non-zero maps.
Suppose now that M is a 2-type submanifold. From Theorem TI0(i) follows that
there exist a constant vector ¢ € R**! and a,b € R such that

AH® = aH® + b(¢ — o). (1.16)

Equations (IT2a) and (II8) lead to

(2m —a)H® — (m(|H|* = 1) + b)¢ + bgy = 0. (1.17)
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We have to consider two cases.

Case 1. If b = 0, i.e. M is a null 2-type submanifold, by taking the scalar product
with H in (ICT2) and using (IT13), since M is proper biharmonic, we get a = 2m and
|H| = 1. By (i), this leads to a contradiction.

Case 2. If b # 0, we shall prove that grad |[H|?> = 0 on M, and therefore |H| is constant
on M. Indeed, locally, by taking the scalar product with X € C(TU) in (II7), we
obtain (¢g, X) =0, for all X € C(TU), i.e. the component of ¢y tangent to U vanishes

(¢0)" =0, (1.18)

where U denotes an arbitrarily open set in M. Take now the scalar product with ¢ in
() and use (IT3). We obtain

—2m+a—m(|H|2—1)—b+b<¢>o,¢) =0,

and, by differentiating,
mgrad |H|? = bgrad(¢o, ¢). (1.19)
Now, by considering {E;}"; to be a local orthonormal frame field on U, we have

m m m

grad(¢o,¢) = > Ei({¢0,0))Ei = > (¢0,Vk¢)Ei =Y (o, Ei)E;
i=1 i=1 i=1
= (¢o)". (1.20)
This, together with equations (I”I8) and (II9), leads to grad |[H|?> = 0 on U.
Now, as |H| is constant on M, using Theorem [T, we conclude the proof. O

Remark 1.16. If M is biharmonic of 1-type, then we can prove, in a more geometric
manner, that ¢ is B3 (see [T4]). Indeed, if ¢ is a 1-type Riemannian immersion of
eigenvalue 2m and |¢o| = 1/+/2, then

»=¢o+ ¢pa A¢p = 2m¢p-

As ¢p : M — R™"! is also a Riemannian immersion, from a result of T. Takahashi (see
[T24]), we have that ¢, (M) is contained in the hypersphere S"(1/v/2) of R"*! (centered
at the origin). Moreover, ¢,, thought of as a map into S*(1/+/2), is minimal. From
here, ¢(M) is contained in the hypersphere Sgo(l /v/2) centered at ¢y and ¢, thought

of as a map into Sgo(l/\/i), is minimal. Since |¢o| = |¢p| = 1/v/2, we get that ¢(M)
lies at the intersection between Sj (1/ v/2) and the hyperplane (x — ¢g, ¢o) = 0, thus
o(M) C Sg;l(l/\/ﬁ). Next, since the inclusion Sg;l(l/\/i) — Sgo(l/\/i) is totally
geodesic, we have that ¢, as a map into S’;O_l(l /+/2), is minimal. This last minimal
map is the desired map 1), where Sg;l(l/\/i) is identified with S"~1(1/v/2).

1.4 Biharmonic hypersurfaces in spheres

The first case to look at is that of CMC proper-biharmonic hypersurfaces in S™*1.
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Theorem 1.17 ([Z1]). Let ¢ : M™ — S™*! be a CMC proper-biharmonic hypersurface.
Then

(i) |A]? = m;
(ii) the scalar curvature s is constant and positive, s = m?(1 + |H|?) — 2m.

Proof. We obtain (i) as an immediate consequence of (ICH).
For (ii), from the Gauss equation we obtain

Ricci(X,Y) = (m — 1)(X,Y) + (A(X),Y) trace A — (A(X), A(Y)).
Since |A|?> = m, by considering the trace, we conclude. ]

Remark 1.18. In the minimal case the condition |A|?> = m is exhaustive. In fact a
minimal hypersurface in S™! with |A|? = m is a minimal standard product of spheres
(see [52, B7]). We point out that the full classification of CMC hypersurfaces in S™*!
with |A|? = m, therefore biharmonic, is not known.

As a direct consequence of |05, Theorem 2| we have the following result.

Theorem 1.19 ([16]). Let o : M™ — S™ be a CMC proper-biharmonic hypersurface.
Assume that M has non-negative sectional curvature. Then o(M) is either an open part

of S™(1/+/2), or an open part of S™ (1/4/2) x S™2(1//2), m1 +ma =m, my # ma.

In the following we shall no longer assume that the biharmonic hypersurfaces have
constant mean curvature, and we shall split our study in three cases. In Case 1 we shall
study the proper-biharmonic hypersurfaces with respect to the number of their distinct
principal curvatures, in Case 2 we shall study them with respect to |A|? and |H|?, and in
Case 3 the study will be done with respect to the sectional, Ricci and scalar curvatures
of the hypersurface.

1.4.1 Casel

Obviously, if ¢ : M™ — S™*! is an umbilical proper-biharmonic hypersurface in S™+1,
then (M) is an open part of S™(1/v/2).

When the hypersurface has at most two or exactly three distinct principal curvatures
everywhere we obtain the following rigidity results.

Theorem 1.20 ([Z0]). Let ¢ : M™ — S™ be a hypersurface. Assume that ¢ is
proper-btharmonic with at most two distinct principal curvatures everywhere. Then ¢
s CMC.

Proof. Suppose that ¢ is not CMC. Then, there exists an open subset U of M such that
f=1H| >0, grad f # 0 at any point of U; n = H/|H|. Note that U can not be made
out only of umbilical points (otherwise it would be CMC). We can then assume that
there exists a point ¢ € U which is not umbilical. Then, eventually by restricting U, we
can assume that A # fId at every point of U, thus A has exactly two distinct principal
curvatures on U. Recall that, as A has exactly two distinct principal curvatures, the
multiplicities of its principal curvatures are constant and the principal curvatures are
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smooth (see [I16] or [I3]). Thus A is diagonalizable with respect to a local orthonormal
frame field {E1, ..., E,,}. We then have A(E;) = k;E;, i = 1,...,m, where

ki(g) = =km (@) =k1(@) s kmyr1(@) = -+ = km(q) = ka(q),

and k1(q) # ka(q), for any ¢ € U. From ([C3) we can assume that
ky = —% f (1.21)

and F, = grad f/| grad f| on U.
Since (Ey, E1) = 0, we have on U

E.(f)=0, VYa=2,...,m. (1.22)
We shall use the connection equations with respect to the frame field {Ex,. .., En,},
Vi E; = wj(E;)Ey. (1.23)

Let us first prove that the multiplicity of &y is m; = 1. Suppose that m; > 2. Then
there exists a € {2,...,m;}, such that k, = k; on U. Since V5 = 0, the Codazzi
equation for A writes as

(Ve A)E) = (Vg A)(E), Yij=1,...,m. (1.24)

By using (I"Z3), the Codazzi equation becomes
Ei(kj)E; + Y (kj — ko)wi(Ei)Ee = Ej(ki)E;i + > (ki — ke)w; (Ej) Ey. (1.25)

Putting i« = 1 and j = « in (ICZ3) and taking the scalar product with E, we obtain
Ey(k1) = 0, which, together with (I"2T) and (IZ22), gives f = constant, and this is a
contradiction. B

Thus k1 = k1 and ky = ko, for all o = 2,...,m, and since trace A = mf, we get

3 m
ko = ——f. 1.26
2T 2m—1 / ( )

Putting i = 1 and j = a in (I"23) and taking the scalar product with E,, Eg, § # «,
and FE, respectively, one gets

Wi (Ea) = —WiQEIf(ﬁ (1.27a)
wi'(Eg) =0, (1.27D)
wi(By) =0, (1.27¢)

forall a, 8 =2,...,m, a # 5.
We now express the Gauss equation for U in S™,
(R (X,Y)Z,W) = (R(X,Y)Z,W)
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with X =W = F; and Y = Z = E,. One obtains
B(El,Ea) = 0, B(El,El) = le], <B(Ea,Ea),B(E1,E1)> = klkg.

From (C23), (I27H), (I27d), and using wé-“ = —wi, the curvature term is

(R(E1, Ba)Eq, Br) = —Er(wf (Ea)) — (Wi (Ba))*.
Finally, (I'Z8) and (ZZ7d) imply

m+ 2 m?2(m + 2)

fEW(EN(])) = 3 1 - Xm —1) f4+m+2(E1(f))2- (1.29)
From (IZZ1) and (Z28), we have
m2 m
A = k2 + (m — 1)k = Hﬂ (1.30)

Moreover, using (I"22), (I23) and (I=27d), the Laplacian of f becomes

Af = —E(E(f) = EalBa(f) + (VE,EV)f+ > (Ve Ea)f
a=2

a=2

= —Ei(Ei(f) + Y wh(Ea)Er(f)
a=2
3(m—1) (El(f))Q.

= —EBEN)+ = 7 (1.31)
From (I3)(i), by substituting ([=30) and (I=31), we get
m?(m m —
FEAE) = -mp? 4 D S D )

Consider now 7 = ~(u) to be an arbitrary integral curve of E; in U. Along v we
have f = f(u) and we set w = (E1(f))? = (f')%. Then dw/df = 2f”, and (I"2Z9) and
(I=32) become

1 dw _ m+2f2_ m2(m+2)f4+ m+5w7
27 df 3 4(m —1) m+ 2 (133)
1, dw 5, m*(m+38) ., 3(m-1) '
T T ey T T2
By subtracting the two equations we find two cases.
If m =4, then
2(2m + 1) 2 m2(m + 5) 4
— =0
AR RS A

thus f is constant.
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If m # 4, then

m?(m + 2)(m +5)
4m —4)(m —1)

_ (m+2)2m+1)

2 4

3(m —4) f U

Differentiating with respect to f and replacing this in the second equation of (I=33), we
get

(m—1)(m+5)

3

3m?(2m + 1)

A(m —1) ft=0.

2+

Therefore f is constant along -y, thus grad f = 0 along v and we have a contradiction. [

Theorem 1.21 ([21]). Let ¢ : M™ — S™ be a hypersurface. Assume that ¢ is
proper-btharmonic with at most two distinct principal curvatures everywhere. Then
(M) is either an open part of S™(1/\/2), or an open part of S™ (1/4/2) x S™2(1/+/2),
mi +mae = m, my # ma. Moreover, if M is complete, then either (M) = S™(1/y/2)
and @ is an embedding, or o(M) = S™ (1//2) x S™2(1/3/2), m1 +mg =m, my # ma
and ¢ is an embedding when m1 > 2 and mg > 2.

Proof. By Theorem and Theorem 2, the mean curvature of M in S™*! is constant,
|H| € (0,1]. Thus we have a globally defined unit section in the normal bundle n =
H/|H| and a globally defined mean curvature function f = |H|. By using Corollary 2,
we also obtain |A|? = m.

We now have two situations.

(i) If there exists an umbilical point py € M and we denote by k(pg) the principal
curvature with respect to n at pg, then

mk(po) = m|H (po)l,

and |A|? = m implies
mk?(po) = m.

These two relations lead to |H(pg)| = 1, but |H| is constant, thus |[H| =1 on M. From
Theorem 7 we conclude that ¢(M) is an open part of S™(1//2).

(ii) If M has only non-umbilical points, we have the globally defined continuous
principal curvature functions ki and ko with multiplicity functions m; and mso with
respect to n = H/|H|, and k1(p) # ka(p), for all p € M. As discussed at the beginning
of the proof of Theorem 20, mq and mo are constant on M. Since ki and ko are the
solutions of

miki + maky = mf,
(1.34)
mik? + mok3 = m,

where m1, mo and f are constant, we conclude that M has two distinct constant
principal curvatures. Theorem 1 in [IT5] implies that ¢(M) is an open part of the
product of two spheres S™!(a) x S™2(b), such that a® 4+ b?> = 1, my +mg = m. Since M
is biharmonic in S, from Theorem [CH, we get that a = b = 1/y/2 and my # ma.

The last statement of the theorem follows by a standard argument presented by
K. Nomizu and B. Smyth in [T03]. [
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Corollary 1.22 ([30]). Let ¢ : M? — S be a proper-biharmonic surface. Then (M)
is an open part of S*(1/v/2) C S3.

Theorem 1.23 ([Z1]). Let ¢ : M™ — S™ m >3, be a proper-biharmonic hypersur-
face. The following statements are equivalent:

(i) ¢ is quasi-umbilical,
(ii) ¢ is conformally flat,
(iii) (M) is an open part of S™(1/v/2) or of S"1(1/v/2) x SY(1/V/2).

Proof. By Theorem [ZI we get that (i) is equivalent to (iii). Also, note that (iii)
obviously implies (ii).

In order to prove that (ii) implies (i), recall that, for m > 4, by a well-known
result (see, for example, [45]), any conformally flat hypersurface of a space form is
quasi-umbilical and we conclude.

For m = 3, as the hypersurface is conformally flat, it follows that the (0, 2)-tensor

field L = — Ricci —i—i( , ), where s is the scalar curvature of M, is a Codazzi tensor field,
ie.

(VxL)(Y, Z) = (VyL)(X,Z), VX,Y,ZeC(TM). (1.35)

Using the notations from the proof of Theorem 20, the Gauss equation implies

and
s=6+9f%—|AP (1.36)

We use the same techniques as in the proof of Theorem 2. Suppose the existence
of an open subset U of M with 3 distinct principal curvatures.

If f is constant on U, using the above expressions, we conclude that U is flat and that
the product of any of its two principal curvatures is —1, thus we get to a contradiction.

Assume that f is not constant on U. We can suppose that grad, f # 0, Vp € U.

grad f

Consider £y = =———. As M is proper biharmonic, F; gives a principal direction

| grad f| \ .
with principal curvature ky = —§f. From ki + ko + ks = 3f, we can write ko = Zf +¢

9
and k3 = 1 f—e,e € C®{U). Using the Codazzi and Gauss equations and equations

(I33) and (I38) we show that f = ae®, a € R, and combining all these relations we
obtain that € is a solution of a polynomial equation with constant coefficients. Thus ¢
and f are constant.

Hence M has at most two distinct principal curvatures and this completes the proof.
O

It is well known that, if m > 4, a hypersurface ¢ : M™ — S™*+! is quasi-umbilical
if and only if it is conformally flat. From Theorem 23 we see that under the biharmo-
nicity hypothesis the equivalence remains true when m = 3.
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We recall that an orientable hypersurface ¢ : M™ — S™*1 is said to be isoparametric
if it has constant principal curvatures or, equivalently, the number ¢ of distinct principal
curvatures k1 > ko > --- > ky is constant on M and the k;’s are constant. The distinct
principal curvatures have constant multiplicities mq,...,my, m =mq +mo + ...+ my.

The isoparametric hypersurfaces with ¢ < 3 were studied by E. Cartan (see [38])
and P.J. Ryan (see [T16]). We present here a general result.

Theorem 1.24 ([36, [16]). Let p : M — S™! be an m-dimensional isoparametric
hypersurface in S™L. Let ki > ko > ... > k¢ be the distinct principal curvatures with
multiplicities mq,...,mg, m =mq +mo + ...+ my. Then

(i) ¢ is either 1,2,3,4 or 6.

(ii) If ¢ =1, then M is totally umbilical.
(iii) If £ = 2, then ¢(M) is an open part of S™ (r1) x S™2(r9), v +r3 = 1.
(iv) If € =3, then mi =ma=mg=29,¢=0,...,3.

(v) If £ = 4, m1 = m3 and ma = myg. Moreover, (mi,ma) = (2,2) or (4,5), or
mi+mg + 1 is a multiple of 260" =1 Here ¢(n) is the number of integers a with
l<a<n,a=0,1,2,4 mod 8 and m* = min{m, ma}.

(Vi) Ift=6, my =mag=...=mg=1 or2.
(vii) There exists an angle 0, 0 < 6 < 7, such that

ko =cot (04 (a—1)7/l), a=1,...,L

The next result on hypersurfaces with 3 distinct principal curvatures was proved.

Theorem 1.25 ([37]). A compact hypersurface M™ of constant scalar curvature s and
constant mean curvature |H| in S™*! is isoparametric provided it has 3 distinct principal
curvatures everywhere.

In order to analyze the case of S*, we shall need the following.

Theorem 1.26 ([51]). Any complete hypersurface with constant scalar and mean cur-
vature in S* is isoparametric.

For what concerns biharmonic hypersurfaces with 3 distinct principal curvatures in
spheres, the following non-existence result was proved.

Theorem 1.27 ([19]). There exist no compact CMC proper-biharmonic hypersurfaces
0 M™ — S™HL with three distinct principal curvatures everywhere.

Proof. From the hypothesis it follows that M has constant scalar curvature. Since M
has three distinct principal curvatures, we can apply Theorem ™23 and we get that M
is isoparametric with ¢ = 3 in S™*+1.
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We now use (vii) in Theorem in order to express the principal curvatures of M.
There exists 6 € (0,7/3) such that

™ kl—\/g 2w kl—i-\/g
k1 = cot @, ke =cot (0 + =) = ———, ks=cot (0 + —) = ——.
' ? 0+3) 1+ v/3k ’ 0+ 1 —v/3k
Thus,
9k% + 45k% + 6

AP =20k + ki + k) =20 1~ 1.37

Al (kT + k3 + k3) (1—3%2)? (1.37)

Moreover, from (iv) in Theorem we obtain m = 3-27, ¢ = 0,...,3 and since

M is biharmonic of constant mean curvature, from (IC3), we get |A|> =m = 3 - 29.
The last equation together with (I37) implies that k? is a solution of
P(t) = 3t3 — 9t + 21t + 1 = 0, which is an equation with no positive roots. In-
deed, P(0) = 1 > 0 and P'(t) = 9> — 18t + 21 > 0, for all t+ € R, hence P is an
increasing function on R. O

Then, in |77, 78|, T. Ichiyama, J.I. Inoguchi and H. Urakawa classified all proper-
biharmonic isoparametric hypersurfaces in spheres.

Theorem 1.28 (|77, [7]]). Let ¢ : M™ — S™ ! be an orientable isoparametric hyper-
surface. If @ is proper-biharmonic, then (M) is either an open part of S™(1/v/2), or
an open part of S™ (1/v/2) x S™2(1/+/2), m1 + ma = m, my1 # ma.

The biharmonic hypersurfaces in S* were studied in [T9].

Theorem 1.29 ([19]). Let ¢ : M3 — S* be a proper-biharmonic hypersurface. Then o
is CMC.

Proof. Suppose that |H| is not constant on M. Then there exists an open subset U
of M such that grad, |H |2 #£ 0, for all p € U. By eventually restraining U we can
suppose that [H| > 0 on U, and thus grad, |H| # 0, for all p € U. If U has at most two
distinct principal curvatures, then , by Theorem 4.1 in [Z1], we conclude that its mean
curvature is constant and we have a contradiction. Then there exists a point in U with
three distinct principal curvatures. This implies the existence of an open neighborhood
of points with three distinct principal curvatures and we can suppose, by restraining
U, that all its points have three distinct principal curvatures. On U we can consider
the unit section in the normal bundle n = H/|H| and denote by f = |H| the mean
curvature function of U in S™*1(c) and by k;, i = 1,2, 3, its principal curvatures w.r.t.
n.

Conclusively, the hypothesis for M to be proper-biharmonic with at most three
distinct principal curvatures in S™*!(c) and non-constant mean curvature, implies the
existence of an open connected subset U of M, with

grad, f # 0,
fp) >0, (1.38)

k1(p) # ka(p) # ks(p) # k1(p),  Vp e U.
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We shall contradict the condition grad, f # 0, for all p € U.
Since M is proper-biharmonic in S*(¢), from (IZH) we have

Af = (3c— AP,

3 (1.39)
A(grad f) = _if grad f.
. 3 grad f . . N
We can consider k1 = —3 fand Xy = [arad /] on U. Then X; is a principal direction

corresponding to the principal curvature k. Recall that 3f = k1 + ko + k3, thus
9
ko + ks = §f' (1.40)

We shall use the moving frames method and denote by X7, X5, X3 the orthonormal
frame field of principal directions and by {w?®}3_; the dual frame field of {X,}3_; on
U.

Obviously,
Xi(f) = (X;,grad f) = | grad f|(X;, X1) =0, 1=2,3, (1.41)
thus
grad f = X1 (f)Xl (142)
We write

VX, =w'X,, b eC(T).
From the Codazzi equations for M, for distinct a,b,d = 1,2, 3, we get
Xa(ks) = (Ko — k)l (X) (1.43)
and
(kp — ka)wh(Xa) = (ka — ka)wg (Xs). (1.44)

Consider now in (IZ3), a = 1 and b = i and, respectively, a = i and b = j with
1 # j. We obtain

X1 (ki)
1 ) _ 1\
wi (Xl) k@ _ kl
and
; Xi(kj)
Wi(X;) = 7
A kj — ki

For a =i and b= 1, as X;(k1) = 0, (IZ3) leads to w)(X;) = 0 and we can write
wh(X1)=0, a=1,2,3.

Notice that, since X;(f) = 0, then ([X;, X;], X1) = 0, thus w{(Xi) = wi(X;). Now,
from (24), for a = 1, b =1 and d = 7, with i # j, we get

wy(X3) = wi(X1) = wi(X2) = 0.
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The structure 1-forms are thus determined by the following set of relations

'wam):muyxgzgggza%uaxg:a

wi(X1) =0, wi(Xy) =0, wh(Xz) = Xalks) _ o) (1.45)

. o
w%(Xl) - O, w%(XQ) = % = 52’ w%(Xg) = M — 53’
In order to express the first condition in (I=39), by using (I20), we compute

A2 = k2 +k3+K3
= k2 + (ko + k3)? — 2koks (1.46)
45

2
= 222K
17— 2K,

where K denotes the product kaks. From (IZ2) we deduce that

Af = —div(grad f) = —le(Xl(f)Xl) = —Xl(Xl(f)) - Xl(f) div X1
= —Xa(X1(f)) + X2 (F) (w2 (X2) + w3(X3))
= —X1(Xa1(f) + X1 (f)(az + az), (1.47)

Now, by using (I48) and (A1), the equation Af = (3¢ — |A|?)f becomes

XX () ~ Xa(f)(0z +a5) + (2K +3c— )] = 0. (1.48)
We also compute

(X1, Xi] = Vx, Xi —Vx, X1 =(Vx, X;, X1) X1 — (Vx, X1, Xi) X;
We shall now use the Gauss equation
(RE(X,Y)Z,W) = (R(X,Y)Z,W)
+(B(X,Z),B(Y,W)) —(B(X,W),B(Y,Z)). (1.50)
From (IC50) we have:

efor X=W=X;andY =27=X;

Xi(ag) = a3+ c— 3 fko,
(1.51)
Xi(az) = a3 +c— 3 fks;
efor X=W=XoandY =7 = X3

K + ¢ = Xa(f3) — X3(Ba) — anaz — 85 — 55; (1.52)
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e for Y =W = X3, X = X and Z = X and, respectively, for X = W = Xs,
Y = X3 and Z = X1
{ Xo(az) = B3(as — az),

X3(ag) = Ba(az — az);

e for X =W = X5, Y = X; and Z = X3, and, respectively, for X = W = X3,
Y = X2 and Z = X1

(1.53)

{ X1(B2) = aafa,
(1.54)
X1(B3) = asps.
Notice now that, from (IZZ1) and (I—29),
Xi(X1(f)) = —[X0, Xil f + X1(X5(f)) = —ai Xi(f) + X1 (Xi(f)) =0 (1.55)
and
X;(X1(X1(f))) =0. (1.56)
Also, since K = (k2 + ks)® ; (ks — k2)? we obtain
{ Xo(K) = —(ks — k2)? B3,
(1.57)
X3(K) = (k3 — ka)*Ba.

We differentiate (48) along X2 and X3 and use ([C53), (I53), (ICH6) and (7). We
get

Xalas) = —Balas — as) — Xf(ff)wa k)2,
(1.58)
Xs3(a3) = —fa(asz — ag) + X?{f)(k:s — k2)?Bs.

We intend to prove that X;(k;) = 0, i,j = 2,3. In order to do this we apply
[X1, X2] = ae X5 to the quantity a. On one hand, from (IZ58), we get

2f
X1(f)

On the other hand, by using (Iall) and (I58), we obtain

[Xl, X2]Oé2 = OéQXQ(OéQ) = 53{ — 003 + Ck% — (kg — k2)2a2}. (1.59)

(X1, XoJan = X1(Xa(az2)) — X2(X1(a2))

= 53{ — 2a3 — 062 + 3agag + Xf{f [ kQ)Xl(k?, — kg)
+(k33 — k:2)2(2a2 — 013 — 2X1< f(‘f > k‘3 — kg) } (160)
By putting together (I"39) and (I60) we either have 3 = 0 or
fy (ag—ag)? f X1(ks — k2)
Xl(Xl(f)) s e <3a2 —as— QW)' (1.61)
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Moreover,
X1 (ks — ko) 1 Xo(ks — ka)
Xol——————=) = — X1, Xp](ks — Kk Xi| —=
(T ) o X0 Xl — ) 30 (F )
= 2(a3 — a2)Bs.
Suppose that 83 # 0, differentiate (IG1) along X9 and use (I53) and (I5H8). We get
23 — ) = — / (ks — ko). (1.62)
X1(f)
We differentiate now (ICG2) along X2 and obtain
o5 — r = ~2 (kg — k)?, (1.63)
Xi1(f)

and since ka # k3 the equations (I6G2) and (I63) lead to a contradiction.
Analogously, by using the symmetry of the equations in Xs and X3, we immediately
prove that 8y = 0.
We rewrite equations (IC2J) in the form

X1(X1(k2)) = ZaoXi(f) +2(K +c)(ks + 5f) + (¢ — 3 fka) (ka + 3 ),

X1(X1(ks)) = FasX1(f) +2(K +c)(ka + 3 f) + (¢ = 3 fks) (ks + 5f), e
and by summing up we obtain
Xi(X1() = $X1() 0z +ag) + FUK +5¢ = 97%). (1.65)
Now, by using (I28) and (ICGH) we obtain
Xl(f)(a2+a3):f(—gK—6c+ %F). (1.66)
We replace (IC5B) in (IG3) and get
X1(X1(f)) :f(—l—;K—Qch ?ﬂ). (1.67)

In order to get another relation on f and K we first use (IZ532), (I22d), (T20), (T24H)
and determine

Xl(K) = —Xl(agag) (168)

= —(agas+c)(az +ag) + gf(omkg + asks)
= (K+9f)(az+ a3) — %le(f).

By differentiating (IC6A) along X, and by using (ITGR), (ICG4), (I230), (IC6H) we get

Xl(f)(?K + 10c — 108f2> = flaz + ag)(gK 115 —

441
- f2>. (1.69)
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We multiply (IZ69) first by X1 (f) and secondly by as + a3 and, by using (ICGH), we get

{ (X1(f))?*(BK 4 10c — 108f?) = (3K — 6c+ 182 f)(2 K + 15c — 431 f2), o)
1.70

(B K +10c — 108/2) (=5 K — 6c+ 182 f2) = (a2 + a3)* (£ K + 15¢ — 132 f2).

Differentiating (I'6H) along X;, and using (I6R), (IT64), (I-21), (IC6H), (), we
obtain

27 £2(4044800¢® — 49579440¢% f2 + 187840944cf* — 254205945 £°)
—6(51200¢% — 19600320¢2 £ + 119328660c £+ — 80969301 %) K (1.71)

—208(2240¢% — 108396¢f? — 285363 f4) K>

+2704(16¢ — 22773 K3

+140608K* = 0.

Consider now v = ~(t), t € I, to be an integral curve of X; passing through
p = 7(to). Since Xo(f) = X3(f) =0 and X5(K) = X3(K) =0 and X;(f) # 0, we can
write ¢t = t(f) in a neighborhood of fy = f(tp) and thus consider K = K(f).

Notice that if %K + 15¢ — %fQ =0 or 10c + %K — 1082 = 0, then from (I_ZT)
the function f results to be the solution of a polynomial equation of eighth degree with
constant coefficients and we would get to a contradiction. Thus, from (IZZ0) we have
that

(@2 _ FA(=§K —6c+ 2 f2) (B K + 15c — 131 f?)
dt B 10 — 1082 ’
(1.72)
L K410c-108f2)(— 2 K —6c+182 2
We can now compute % by using (IC72), (CB8) and (CHQ),
AKX dKdr
a dt df
_ (K+9f2)%(a2 —i—a3) B gf
(&2 4
(K +9f%) (2K +10c—108f%) 27
T JBK{e—Hpy 4 (1.73)
2 1

The next step consists in differentiating (I"ZT) with respect to f. By substituting

dK
— from ([Z73) we get another polynomial equation in f and K, of fifth degree in

df
K. We eliminate K® between this new polynomial equation and (I_Z1). The result

constitutes a polynomial equation in f and K, of fourth degree in K. In a similar way,
by using (D) and its consequences we are able to gradually eliminate K* K3 K2
and K and we are led to a polynomial equation with constant coefficients in f. Thus f
results to be constant and we conclude. O
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Theorem 1.30. Let o : M3 — S* be a complete proper-biharmonic hypersurface. Then
p(M) = S¥(1/V2) or p(M) = S2(1/v/2) x S} (1/V/2).

Proof. Suppose that M?® is a compact proper-biharmonic hypersurface of S*. From
Theorem follows that M has constant mean curvature and, since it satisfies the
hypotheses of Theorem T4, we conclude that it also has constant scalar curvature. We
can thus apply Theorem and it results that M is isoparametric in S*. From Theo-
rem 24 we get that M cannot be isoparametric with ¢ = 3, and by using Theorem 21
we conclude the proof. O

An orientable hypersurface ¢ : M™ — S™*! is said to be a proper Dupin hypersur-
face if the number £ of distinct principal curvatures is constant on M and each principal
curvature function is constant along its corresponding principal directions.

Theorem 1.31 (|I6]). Let ¢ : M™ — S™*! be an orientable proper Dupin hypersurface.
If  is proper-biharmonic, then ¢ is CMC.

Proof. As M is orientable, we fix n € C(NM) and denote A = A, and f = (trace A)/m.

Suppose that f is not constant. Then there exists an open subset U C M such that
grad f # 0 at every point of U. Since ¢ is proper-biharmonic, from (IH) we get that
—mf/2 is a principal curvature with principal direction grad f. Since the hypersurface
is proper Dupin, by definition, grad f(f) = 0, i.e. grad f = 0 on U, and we come to a
contradiction. O

Corollary 1.32 ([16]). Let p : M™ — S™ "L be an orientable proper Dupin hypersurface
with £ < 3. If @ is proper-biharmonic, then (M) is either an open part of S™(1/v/2),
or an open part of S™ (1//2) x S™2(1/v/2), m1 + ma = m, my # mo.

Proof. Taking into account Theorem IZI, we only have to prove that there exist no
proper-biharmonic proper Dupin hypersurfaces with ¢ = 3. Indeed, by Theorem =31,
we conclude that ¢ is CMC. By a result in [I[7], ¢ is of type 1 or of type 2, in the
sense of B.-Y. Chen. If ¢ is of type 1, we must have £ = 1 and we get a contradiction.
If ¢ is of type 2, since ¢ is proper Dupin with ¢ = 3, from Theorem 9.11 in [42], we
get that ¢ is isoparametric. But, from Theorem [CZ8, proper-biharmonic isoparametric
hypersurfaces must have £ < 2.

O

1.4.2 Case 2

The simplest result is the following.

Proposition 1.33 ([I6]). Let p : M™ — S™HL be a compact hypersurface. Assume that
@ is proper-biharmonic with nowhere zero mean curvature vector field and |A|?> < m, or
|A|2 > m. Then ¢ is CMC and |A|*> = m.

Proof. As H is nowhere zero, we can consider n = H/|H| a global unit section in the
normal bundle NM of M in S™*!. Then, on M,

Af = (m—AP)f,

where f = (trace A)/m = |H|. Now, as m — |A|?> does not change sign, from the
maximum principle we get f = constant and |A|> = m. O
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In fact, Proposition =33 holds without the hypothesis “H nowhere zero”. In order
to prove this we shall consider the cases |A|?> > m and |A|?> < m, separately.

Proposition 1.34 ([I6]). Let ¢ : M™ — S™! be a compact hypersurface. Assume
that @ is proper-biharmonic and |A|?> > m. Then ¢ is CMC and |A|? = m.

Proof. Locally,
Af=(m—|AP)f,

where f = (trace A)/m, 2 = |H|?, and therefore
1
LA = (m [AP)F - gmad £ <0

As f2, |A|? and |grad f|? are well defined on the whole M, the formula holds on M.
From the maximum principle we get that |H| is constant and |A]? = m. O

The case |A|?> < m was solved by J.H. Chen in [28]. Here we include the proof for
two reasons. First, the original one is in Chinese and second, the formalism used by
J.H. Chen was local, while ours is globally invariant. Moreover, the proof we present is
slightly shorter.

Theorem 1.35 ([48]). Let p : M™ — S™ be a compact hypersurface in S™F1. If ¢
is proper-biharmonic and |A|?> < m, then ¢ is CMC and |A]*> = m.

Proof. We may assume that M is orientable, since, otherwise, we consider the double co-
vering M of M. This is compact, connected and orientable, and in the given hypotheses
@ : M — S™t1 is proper-biharmonic and |A|? < m. Moreover, ¢(M) = p(M).

As M is orientable, we fix a unit global section € C'(INM) and denote A = A,
and f = (trace A)/m. In the following we shall prove that

1 2 1
32 (1emad P Tt ) Sl e ) <

< 8(m —1)

< G gy (AP = m)IAP s, (174

on M, and this will lead to the conclusion.
From (I3)(i) one easily gets

SAF = (m— AP | grad f12 (1.75)

and
AT = m— AP) = 3% grad 12 (1.76)

From the Weitzenbock formula we have

1
§A\ grad f|? = —(trace V2 grad f, grad f) — |V grad f|?, (1.77)

and, since

trace V2 grad f = — grad(Af) + Ricci(grad f),
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we obtain
1
§A| grad f|? = (grad Af, grad f) — Ricci(grad f, grad f) — |V grad f|°. (1.78)
Equations (I3)(i) and (IZZ3) imply
1
(erad Af,grad f) = (m—|A]*)|grad f|* — _ (grad |A[", grad f?)
1
= (m—|A]")|grad f|* —  (div(|A|* grad f*) + [A[*Af?)
1
— ol gwad f[2 — L div(| A grad 1) — | A2 (m — |AP) 12 (170
From the Gauss equation of M in S™*! we obtain
Ricci(X,Y) = (m — 1)(X,Y) + (A(X),Y) trace A — (A(X), A(Y)), (1.80)
for all X,Y € C(T'M), therefore, by using (IZ3)(ii),
- 3m? 2
Ricci(grad f,grad f) = [m — 1 — Tf | grad f|*. (1.81)

Now, by substituting (I"79) and (=) in (I78) and using (IZ73) and (IZ78), one
obtains

2
SAlgrad f? = <1+3Tf2> [arad f[? — J div(| AP grad )
—|AP(m — [AP?) f? = |V grad f|?

2 2
SSAL = m 14P) (AP - T - 1) 2

1
D) div(|A|% grad f?) — |V grad f|?.

1
= _ZAf2_
5 Af

Hence
—%A (] grad f|? + %2f4 + f2) — %div(|A[2grad 2 =
= (m— |AP) (JA2 = Zf2 1) f2 + |V grad /]2 (1.82)

We shall now verify that

m—14p) (147 =272 =) 2 -4y (g -1) . s

at every point of M. Let us now fix a point p € M. We have two cases.

Case 1. If grad,, f # 0, then ey = (grad,, f)/| grad,, f| is a principal direction for A with
principal curvature Ay = —mf(p)/2. By considering e, € T,M, k =2, ..., m, such that
{e;}™, is an orthonormal basis in T, M and A(ex) = Agex, we get at p

m m 2 m
A2 = Ale))]? = |A 2 A 2_ M o 2
Al ;\ ()" = [A(e1)] +§! (en)|” == f +;/\k

2

2
m 2 1 = _ mQ(m+8) 2
My L (;&) S g (1.8

Y
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thus inequality (IR3) holds at p.
Case 2. 1f grad, f = 0, then either there exists an open set U C M, p € U, such that
grad f/;y = 0, or p is a limit point for the set V = {g € M : grad, f # 0}.
In the first situation, we get that f is constant on U, and from a unique continuation
result for biharmonic maps (see [T08]), this constant must be different from zero. Equa-
tion (IH)(i) implies |A|> = m on U, and therefore inequality (I83) holds at p.
In the second situation, by taking into account Case 1 and passing to the limit, we
conclude that inequality (I"S3) holds at p.

In order to evaluate the term |V grad f|? of equation (IZ82), let us consider a local
orthonormal frame field {E;}"; on M. Then, also using (H)(i),

|V grad f|*> = Z (Vg grad f, E;)* > Z<VE1 grad f, E;)?
ij=1 i=1
> 1 f}v rad f, E;) 2 = i(Af)Q
= m rar E; & s g m
= (m— AP (1.85)

In fact, (I=83) is a global formula.
Now, using (ICX3) and (I=83) in (IZ82), we obtain (IC74), and by integrating it, since
|A|? < m, we get
(1A = m)|A*f2 =0 (1.86)

on M. Suppose that there exists p € M such that |A(p)|> # m. Then there exists an
openset U C M, p € U, such that ]A|?U # m. Equation ([C88) implies that \A|2f/2U = 0.
Now, if there were a g € U such that f(q) # 0, then A(g) would be zero and, therefore,
f(g) = 0. Thus f v = 0 and, since M is proper-biharmonic, this is a contradiction.
Thus |A|? =m on M and Af =0, i.e. f is constant and we conclude. O

Remark 1.36. It is worth pointing out that the statement of Theorem I=33 is similar
in the minimal case: if ¢ : M™ — S™*! is a minimal hypersurface with |[A]> < m,
then either |A| = 0 or |A|?> = m (see [IZI]). Apparently, by way of contrast, an
analog of Proposition I=34 is not true in the minimal case. In fact, it was proved
in [IT4] that if a minimal hypersurface ¢ : M3 — S* has |A|? > 3, then |A|? > 6.
But, if the compact minimal hypersurface of S™*! with |A|?> > m has at most two
distinct principal curvatures, then |A|? = m (see [74]); and we believe that any proper-
biharmonic hypersurface in S™*! has at most two principal curvatures everywhere.

Obviously, from Proposition I=34 and Theorem =33 we get the following result.

Proposition 1.37 ([I6]). Let ¢ : M™ — S™! be a compact hypersurface. If o is
proper-biharmonic and |A|? is constant, then ¢ is CMC and |A]> = m.

The next result is a direct consequence of Proposition I-34.

Proposition 1.38 ([16]). Let ¢ : M™ — S™* be a compact hypersurface. If ¢ is
proper-biharmonic and |H|?> > 4(m — 1)/(m(m + 8)), then ¢ is CMC. Moreover,
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(i) if m € {2,3}, then (M) is a small hypersphere S™(1/v/2);

(1) if m = 4, then (M) is a small hypersphere S*(1/v/2) or a standard product of
spheres S(1/4/2) x SY(1/v/2).

Proof. Taking into account (&), the hypotheses imply |A|?> > m. O
For the non-compact case we obtain the following.

Proposition 1.39 ([16]). Let ¢ : M™ — S™" m > 2, be a non-compact hyper-
surface. Assume that M is complete and has mon-negative Ricci curvature. If ¢ is
proper-biharmonic, |A|? is constant and |A|*> > m, then o is CMC and |A]*> = m. In
this case |H|?> < ((m — 2)/m)?.

Proof. We may assume that M is orientable (otherwise, we consider the double covering
M of M , which is non-compact, connected, complete, orientable, proper-biharmonic and
with non-negative Ricci curvature; the final result will remain unchanged). We consider
n to be a global unit section in the normal bundle NM of M in S™*!. Then, on M, we
have

Af = (m— AP/, (1.87)
where f = (trace A)/m, and

SAF = (m— |AP)f* | grad fI < 0. (1.58)

On the other hand, as f2 = |H|? < |A|?/m is bounded, by the Omori-Yau Maximum
Principle (see, for example, |[36]), there exists a sequence of points {pi }reny C M such

that
1

AfQ(pk) > —z and klg](r)lo fz(pk) = S}.\l/[p f2.

It follows that klim Af?(p) = 0, so klim ((m —|AP)f2(pr)) = 0.
—00 —00
As klim 2(pr) = sup f2 > 0, we get |A|> = m. But from (K1) follows that f is a
—00 M

harmonic function on M. As f is also a bounded function on M, by a result of Yau
(see |36]), we deduce that f = constant. O

Corollary 1.40 ([186]). Let ¢ : M™ — S™*! be a non-compact hypersurface. Assume
that M is complete and has non-negative Ricci curvature. If ¢ is proper-biharmonic,
|A|? is constant and |H|?> > 4(m — 1)/(m(m +8)), then ¢ is CMC and |A]*> = m. In
this case, m > 4 and |H|* < ((m — 2)/m)?.

Proposition 1.41 ([I6]). Let o : M™ — S™! be a non-compact hypersurface. Assume
that M is complete and has non-negative Ricci curvature. If o is proper-biharmonic,
|A|? is constant, |A|?> < m and H is nowhere zero, then ¢ is CMC and |A|*> = m.

Proof. As H is nowhere zero we consider n = H/|H| a global unit section in the normal
bundle. Then, on M,
Af = (m—|AP)f, (1.89)

where f = |H| > 0. As m— |A|?> > 0 by a classical result (see, for example, [89, pag. 2|)
we conclude that m = |A|? and therefore f is constant. O



1.4. Biharmonic hypersurfaces in spheres 43

1.4.3 Case 3

We first present another result of J.H. Chen in [48]. In order to do that, we shall need
the following lemma.

Lemma 1.42. Let ¢ : M™ — S™tL be an orientable hypersurface, n a unit section in
the normal bundle, and put A, = A. Then

(i) (VA)(-,-) is symmetric,
(i) (VA)(-,+),-) is totally symmetric,
(iii) trace(VA)(-,-) = mgrad f.

Theorem 1.43 ([48]). Let ¢ : M™ — S™1 be a compact hypersurface. If ¢ is proper-
biharmonic, M has non-negative sectional curvature and m < 10, then ¢ is CMC and
©(M) is either S™(1/+/2), or S™(1/v/2) x S™2(1/v/2), m1 + ma = m, my # ma.

Proof. For the same reasons as in Theorem 33 we include a detailed proof of this
result. We can assume that M is orientable (otherwise, as in the proof of Theorem =33,
we work with the oriented double covering of M). Fix a unit section n € C(NM) and
put A=A, and f = (trace A)/m.

We intend to prove that the following inequality holds on M,

1 m? 3m?(m — 10) 1 &
From the Weitzenbock formula we have
%A\A\Q = (AAA) — VAP (1.91)

Let us first verify that
trace(V2A)(X, -, ) = Vx(trace VA), (1.92)

for all X € C(T'M). Fix p € M and let {E;}"; be a local orthonormal frame field,
geodesic at p. Then, also using Lemma [Z2(i), we get at p,

m m

trace(V?A)(X,-,-) = > (VPA)(X,E;,E;) =) (VxVA)(E;, E)
i=1 =1
i=1 =1
= Vx(trace VA).

Using Lemma 22, the Ricci commutation formula (see, for example, [25]) and (IC92),
we obtain
AA(X) = —(trace VZA)(X) = —trace(V2A)(-,-, X) = — trace(V?A4)(-, X, -)
= —trace(V?A4)(X,-,-) — trace(RA)(-, X, -)
= —Vx(trace VA) — trace(RA)(-, X, -)
= —mVyxgrad f — trace(RA)(-, X, -), (1.93)
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where
RA(X,Y,Z) = R(X,Y)A(Z) — A(R(X,Y)Z), VX,Y,Z¢e C(TM).
Also, using ([F)(ii) and Lemma 42, we obtain

trace(A(V.grad f),-) = trace(V.A(grad f) — (VA)(-,grad f),-)
= —% trace(V. grad f2,-) — (trace(VA), grad f)

= %AfQ —m|grad f|*. (1.94)

Using (ICI3) and (C9E), we get

(AAA) = trace(AA(), A("))
= —mtrace(V.grad f, A(-))
= —mtrace(A(V.grad f), ) + (T, A)

+
=
2

2
= m?|grad 7 — oA+ (T, A), (1.95)

where T'(X) = —trace(RA) (-, X,-), X € C(T'M).
In the following we shall verify that

m?2(m + 26)

25
IVA|” > Tom—1)

| grad f?, (1.96)
at every point of M. Now, let us fix a point p € M.

If grad,, f = 0, then (I98) obviously holds at p.

If grad,, f # 0, then on a neighborhood U C M of p we can consider an orthonormal

frame field £y = (grad f)/| grad f|, Ea,..., En, where Ep(f) =0, forall k =2,...,m
Using (3)(ii), we obtain on U

1
m«vgrad]‘A(grad f),grad f)

*<A(vgradf grad f)a grad f>)
- —%|gradf\. (1.97)

(VA)(EL, Br), Er)

From here, using Lemma ™42, we also have on U

m

Y AVANE By, Er) = ) ((VA)(E;, E), Er) = (VA)(E1, Ev), B1)
k=2 i=1

3
= (traceVA,E1)+%|gradf|ZTm]gradﬂ. (1.98)
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Using (ICI7) and (T98), we have on U

VAP = iluw)(Ei,Ej)F: §1<<VA><EZ-,E]'>,E;1>2
> <(VA)(E1,E1),E1>2+3k§:2<(VA)(Ek,Ek),E1>2
> (VA B ), B+ (é«mek,Ew,Em)Q
- W|grad fI2, (1.99)
thus (ICUB) is verified, and (C9T) implies
32 (1ar+ ) < 2 = g 2+ 1) (1.100)

Fix p € M and consider {e;}7", to be an orthonormal basis of T,M, such that
A(e;) = Aje;. Then, at p, we get

1 m
(T,4)=—3 > (N = A)?Rijig,

ij=1

and then (ITT0) becomes (IC9M).
Now, since m < 10 and M has non-negative sectional curvature, we obtain

2
A (148 + 1) <0
on M. As M is compact, we have
m2
A (\AF + 2\H2> =0

on M, which implies
(N — A)?Rijij =0 (1.101)

on M. Fix p € M. From the Gauss equation for ¢, R;j;; = 14+ \;Aj, for all ¢ # j, and
from (CIO) we obtain

(N = AL+ XiA) =0, i

Let us now fix A;. If there exists another principal curvature A\; # A1, j > 1, then from
the latter relation we get that A; # 0 and A; = —1/A;. Thus ¢ has at most two distinct
principal curvatures at p. Since p was arbitrarily fixed, we obtain that ¢ has at most two
distinct principal curvatures everywhere and we conclude by using Theorem T21. [
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Proposition 1.44 ([16]). Let ¢ : M™ — S™1 m > 3, be a hypersurface. Assume
that M has non-negative sectional curvature and for all p € M there exists X, € T,M,
| Xp| = 1, such that Ricci(X,p, X,) = 0. If ¢ is proper-biharmonic, then o(M) is an
open part of S"1(1/4/2) x SY(1/v/2).

Proof. Let p € M be an arbitrarily fixed point, and {e;}", an orthonormal basis in T, M
such that A(e;) = Aje;. Fori # j, using (IC80), we have that Ricci(e;, ej) = 0. Therefore,
{e;}*, is also a basis of eigenvectors for the Ricci curvature. Now, if Ricci(e;, e;) > 0
for all ¢ = 1,...m, then Ricci(X, X) > 0 for all X € T,M \ {0}. Thus there must exist
ip such that Ricci(e;, €i,) = 0. Assume that Ricci(ej, e;) = 0. From

m m
0= Ricci(el, 61) == Z lelj = Z Klj
7j=2 7j=2

and since Ki; > 0 for all j > 2, we conclude that Ki; = 0 for all j > 2, that is
1+ AiAj =0 for all j > 2. The latter implies that A\; # 0 and A\j = —1/X; for all j > 2.
Thus M has two distinct principal curvatures everywhere, one of them of multiplicity
one. O

Remark 1.45. If ¢ : M™ — S™t1 m > 3, is a compact hypersurface, then the
conclusion of Proposition 24 holds replacing the hypothesis on the Ricci curvature
with the requirement that the first fundamental group is infinite. In fact, the full
classification of compact hypersurfaces in S™*! with non-negative sectional curvature
and infinite first fundamental group was given in [50].

By imposing conditions on the scalar curvature, other classification results can be
obtained. We first have the following estimate for the scalar curvature of compact
proper-biharmonic hypersurfaces with constant scalar curvature in spheres.

Proposition 1.46. Let ¢ : M™ — S™H be a compact proper-biharmonic hypersurface
with constant scalar curvature s. Then

m(m —2) < s <2m(m—1).
Moreover, s = 2m(m — 1) if and only if (M) = S™(1/1/2).
Proof. From the Gauss equation one gets
s=m(m—1)+m?f? — |A]?, (1.102)
and, together with ([C73), this implies
%Af2 = (s —m(m —2))f* —m?f* — | grad f|*. (1.103)

Suppose that s < m(m — 2). Then, from (III3) we obtain Af? < 0, and since M
is compact this implies that f2 = constant. Now, (I_II3) implies f? = 0 and we have a
contradiction.

Suppose that s > 2m(m — 1). Then, from (II2), since |A|?> > mf?, we obtain
f? > 1. Using Corollary 3.3 in [23], we get f2 = 1, thus o(M) = S™(1/y/2) and
s=2m(m —1).

O]
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Now, using Theorem 2 in [88|, we obtain the following classification.

Theorem 1.47. Let ¢ : M™ — S™! be a proper-biharmonic compact hypersurface
with constant scalar curvature s, m > 3. If

(i) s >m(m—1),
(ii) the squared norm of the shape operator |A|? satisfies

s—m(m—1) s—(m—2)(m—1)+ (m—2)(m—1)

<l4f < ) s—(m—2)(m—1)

m—1
then |A|? = m and either s = 2m(m—1) and (M) = S™(1/V/2), or s = 2(m—2)(m—1)
and (M) = SY(1/+/2) x S™~1(1/v/2).

By Theorem 11 in [T37] and Theorem 2 in [49], with a restriction on the sectional
curvature, we obtain the next rigidity result.

Theorem 1.48. Let ¢ : M™ — S™T! be a proper-biharmonic compact hypersurface.
Suppose M has constant scalar curvature s and non-negative sectional curvature.

(i) If M has positive sectional curvature, then o(M) = S™(1/v/2).

(i) If s > m(m — 1), then either o(M) = S™(1/V/2) or o(M) = S™(1/v2) x
Sm2(1/\@), mi 4+ mo =m, my # ms.

1.5 PMC biharmonic immersions in S”

In this section we present some of the most important results on PMC biharmonic
submanifolds in spheres. In order to do that we first need the following lemma.

Lemma 1.49 ([16]). Let ¢ : M™ — N™ be an immersion. Then |Ag|* < |H|?|B|* on
M. Moreover, |Ag|* = |H|?*|B|? at p € M if and only if either H(p) = 0, or the first
normal of ¢ at p is spanned by H(p).

Proof. Let p € M. If |H(p)| = 0, then the conclusion is obvious. Consider now the
case when |H(p)| # 0, let n, = H(p)/|H(p)| € NpM and let {e;}" be a basis in T, M.
Then, at p,

|‘4H|2 = Z<AH(€Z'),€]'>2 = Z<B(€i,€j),H>2 = |I{|2 Z<B(ei7€j)>np>2
ig=1 ij=1 ij=1
< [HP|BJ*.

m
In this case equality holds if and only if Z (Blei,e;),mp)? = |BJ?, ie.
ij=1

(Bleisej),&p) =0, V& € NyM with &, L H(p).

This is equivalent to the first normal at p being spanned by H(p) and we conclude. [



48 Chapter 1. Classification results for biharmonic submanifolds in S™

Using the above lemma we can prove the following lower bound for the norm of the
second fundamental form.

Proposition 1.50 (|I6]). Let ¢ : M™ — S"™ be a PMC proper-biharmonic immersion.
Then m < |B|? and equality holds if and only if ¢ induces a CMC proper-biharmonic
immersion of M into a totally geodesic sphere S™t1 C S™.

Proof. By Corollary 3 we have |Ag|? = m|H|? and, by using Lemma 49, we obtain
m < |BJ%.

Since H is parallel and nowhere zero, equality holds if and only if the first normal
is spanned by H, and we can apply the codimension reduction result of J. Erbacher
([62]) to obtain the existence of a totally geodesic sphere S™*! C S" such that ¢ is
an immersion of M into S™*!. Since ¢ : M™ — S™ is PMC proper-biharmonic, the
restriction M™ — S™*+! is CMC proper-biharmonic. O

Remark 1.51. (i) Let ¢ = 10¢ : M — S™ be a proper-biharmonic immersion of
class B3. Then m < |B|? and equality holds if and only if the induced ¢ is totally
geodesic.

(i1) Let ¢ =120 (g1 X ¢2) : My x My — S™ be a proper-biharmonic immersion of class
B4. Then m < |B|? and equality holds if and only if both ¢; and ¢s are totally
geodesic.

The above remark suggests to look for PMC proper-biharmonic immersions with
|H| =1 and |BJ]?> = m.

Corollary 1.52 (|i6]). Let ¢ : M™ — S"™ be a PMC proper-biharmonic immersion.
Then |H| = 1 and |B|?> = m if and only if o(M) is an open part of S™(1/1/2) c S™*! ¢
S™.

The case when M is a surface is more rigid. Using the classification of PMC surfaces
in S™ given by S.-T. Yau [I38|, and |21, Corollary 5.5|, we obtain the following result.

Theorem 1.53 ([21]). Let ¢ : M? — S"™ be a PMC proper-biharmonic surface. Then
¢ induces a minimal immersion of M into a small hypersphere S*~1(1/+/2) C S™.

If n = 4 in Theorem A3, then the same conclusion holds under the weakened
assumption that the surface is CMC. In order to prove this, the following result is also
needed.

Theorem 1.54 ([Z1]). Let p : M™ — S™2 be a pseudo-umbilical submanifold, m # 4.
Then M is proper-biharmonic in S™2 if and only if it is minimal in S™T1(1/y/2).

We have

Theorem 1.55 ([24]). Let ¢ : M? — S* be a CMC proper-biharmonic surface in S*.
Then M? is minimal in S*(1/v/2).
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Proof. Following [46], we shall first prove that any proper-biharmonic CMC surface in
S* is PMC. Then we shall conclude by using Theorem [53.

Denote by H the mean curvature vector field of M? in S*. Since M is CMC proper-
biharmonic with constant mean curvature, its mean curvature does not vanish at any
point and we denote by

By = 1L ¢ C(NM). (1.104)
| H
Consider {E1, Ea} to be a local orthonormal frame field on M around an arbitrary fixed
point p € M and let E4 be a local unit section in the normal bundle, orthogonal to
Es5. We can assume that {E1, Eo, F3, E4} is the restriction of a local orthonormal frame
field around p on S*, also denoted by {Ey, Fy, E3, E4}.

Denote by B the second fundamental form of M in S* and by As and A4 the
Weingarten operators associated to E3 and E4, respectively.

Let V5" and V be the Levi-Civita connections on S* and on M , respectively, and
denote by wf the connection 1-forms of S* with respect to {E1, Ey, E3, Eq}, ie.

VSEy=wBEg, AB=1,... 4. (1.105)

From (II04) we have H = |H|E3 and, since 2H = B(E\, E1)+ B(E2, E3), we obtain
that

0 = 2<H, E4> = <B(E1,E1),E4> + <B(E2,E2),E4>
= (Au(Er), Er) + (A4(E2), En), (1.106)

i.e. trace Ay = 0. As a consequence, we have

[Asl> = |A4(E1)] + |As(Es)
= (A4(Er), E1)® + 2(A4(E), Ba)® + (A4(Ey), Es)®
= 2((Aa(Er), E1)? + (As(B1), E2)?). (1.107)

The tangent part of the biharmonic equation (I”2) now writes

Agy 5y(E1) + Avy p,(E2) =0. (1.108)
Since
4
Vi Es = (Vi B3 E3)Es+ (Vi B3, E)Ey = (Vi B3, Ey) Ey
= wg(El)E47
and

V5, B3 = wi(Es)Ey,
from (CIO8) we get
wg(El)A4(E1) + wg(EQ)A4(E2) =0. (1109)
Considering now the scalar product by E; and Ep in (II09), we obtain
(Aa(EBr), Er)w3(Br) + (A4(B), Er)ws(Es) = 0,

(1.110)
(Au(Br), B2)ws (Br) + (A4(Er), Ea)w3(Es) = 0.
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Equations (I_II) can be thought of as a linear homogeneous system in wj(E;) and
w3(Ey). By using (ICI08) and (CIO7), the determinant of this system is equal to
1
—5lAaf*.
Suppose now that (VXH)(p) # 0. Then there exists a neighborhood U of p in M
such that V- H # 0, at any point of U. Since

V1YH = |H|V*Es = |H|{wi(E))E, @ By + wi(E)ES @ By},

the hypothesis V- H # 0 on U implies that (III0) admits non-trivial solutions at any
point of U. Therefore, the determinant of (I_II0) is zero, which means that |A4]? = 0,
ie. Ay, =0o0nU.

We have two cases.
Case I. If U is pseudo-umbilical in S*, i.e. A3 = |H|Id, from Theorem we get that
U is minimal in $3(1/v/2) and we have a contradiction, since any minimal surface in
S3(1/4/2) has parallel mean curvature vector field in S*.
Case II. Suppose that there exists ¢ € U such that As(q) # |H|Id. Then, eventually
by restricting U, we can suppose that As # |H|Id on U. Since the principal curvatures
of Az have constant multiplicity 1, we can suppose that Eq and Es are such that

A3(Er) = k1B, A3(E2) = ko Es,
where k1 # ko at any point of U. As A4 = 0, we obtain
B(E1,Ey) = k1Es, B(Ei,E2) =0, B(E E>)=kyEs, (1.111)

on U.

In the following we shall use the Codazzi and Gauss equations in order to get to a
contradiction.

The Codazzi equation is given in this setting by

0= (V¥B)(Y.Z1) — (V§ B)(X,Zn), VX,Y,Ze C(TM),¥yeC(NM), (1112)
where V?;“?B is defined by

(V¥ B)(Y.Z,n) = X(B(Y,Z),n) —(B(VxY,Z),n) — (B(Y,VxZ),n)
*<B(Y7 Z)’ VJL(U>

For X =7 = E;, Y = E5 and n = E3, equation (CIT2) leads to

0 = FEi(B(Es, Er), E3) — Ex(B(E1, Er), E3)
_<B(VE1E27E1)a >+ <B(VE2E17E1)>E3>
_<B(E2avE1E1)a >+ <B(E17VE2E1)>E3)
—(B(Es, E1), V5, E3) + (B(Ey, E1), Vi, ). (1.113)

Es
Es

Now, from (IIID) we have

B(Vg, B2, B1) = kw3 (E1)Es, B(E2, Vg, B1) = —kawy (E1)E3,
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B(Ve,Er, B1) =0,  (B(Ey, Er), Vi, Bs) =0,
thus (ITT3) implies
BEy(ky) = (ko — kp)wa (EL). (1.114)
Analogously, for X = Z = E,, Y = F; and n = Ej3 in (ICI12), we obtain

El(k‘g) = (kQ — kl)W%(EQ). (1.115)
For X =7 = E;,Y = Ey and n = E4 in (CIT4), we obtain

0 = (B(Es E1),VE, Ey) — (B(E1, E1), VE,Ey)
= —ki(E3, VE,Ey),

which implies
kw3 (Fa) = 0. (1.116)

Analogously, for X = Z = Ey, Y = F; and n = E; in (CI12), we obtain
kows(E1) = 0. (1.117)

Since V*H # 0 on U, we can suppose that w3(E1) # 0 on U. This, together with
(1), leads to k2 = 0. From here we get |k1| = 2|H| # 0, and consequently k; is a
non-zero constant. As ki # ko, from (CII4) and (ITITH) we obtain

wy(Er) = wy(Ep) =0, (1.118)

thus M is flat.
Consider now the Gauss equation (IC0). As M is flat, for X =W =F, and Y = Z =
E,, equations (ICA0) and (II1) lead to

1 = (B(Ey,Ey),B(Es, E1)) — (B(Ey, Ey), B(Ey, Ey)) = —kiks
= 0, (1.119)

and we have a contradiction.
Therefore, V- H = 0 and we conclude. O

For the higher dimensional case, in |23] there were obtained bounds for the value of
the mean curvature of a PMC proper-biharmonic immersion.

We shall further see that, when m > 2, the situation is more complex and, apart
from 1, the mean curvature can assume other lower values, as expected in view of
Theorem IA.

First, let us prove an auxiliary result, concerning non-full proper biharmonic sub-
manifolds of S”, which generalizes Theorem 5.4 in |21].

Proposition 1.56 ([23]). Let v : M™ — S"'(a) be a submanifold of a small hyper-
sphere S""1(a) in S*, a € (0,1). Then M is proper-biharmonic in S™ if and only if
either a = 1/+/2 and M is minimal in S"~1(1/v/2), or a > 1/v/2 and M is minimal in
a small hypersphere SP2(1/y/2) in S*"1(a). In both cases, |H| = 1.
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Proof. The converse follows immediately by using Theorem 3.

In order to prove the other implication, denote by j and i the inclusion maps of M
in S"1(a) and of S*"!(a) in S, respectively.

Up to an isometry of S, we can consider

S"a) = {(ml, oz V1 —a?) e R zn:(:nz)2 = a2} C Ss".

i=1
Then

C(TS" (a)) = {(Xl, .., X"0) € C(TR™™) zn::gx = 0} :
i=1

a2

V1 —a?
2 a?

in S", where ¢ = %5, ¢ > 0. The tension and bitension fields of the inclusion

1=1i0j: M — S", are given by

1
while n = — (ml, e, — ) is a unit section in the normal bundle of S"~!(a)
c

. m . 2m ., 1 . m2
=10 - Tn 0 =n)- 250+ {OF - @ -0 b
c c c c
Since M is biharmonic in S™, we obtain
2m .
T2(j) = CTT(J) (1.120)
and
2_ a1y Z g2
I7(3)] —CT(C - )—ﬁ( a®—1)
From here a > 1/\@ Also,
2 |2 m? 2
WP = ()P + T = m?

This implies that the mean curvature of M in S™ is 1.

The case a = 1/+/2 is solved by Theorem 3.

Consider @ > 1/4/2, thus 7(j) # 0. As |H| = 1, by applying Theorem 04, M
is a minimal submanifold of a small hypersphere S*~1(1/4/2) C S, so it is pseudo-
umbilical and with parallel mean curvature vector field in S™ ([45]). From here it can be
proved that M is also pseudo-umbilical and with parallel mean curvature vector field in
S"1(a). As M is not minimal in S*~!(a), it follows that M is a minimal submanifold
of a small hypersphere S?~2(b) in S"~!(a). By a straightforward computation, equation
(CT20) implies b = 1/4/2 and the proof is completed.

O

Since every small sphere S (a) in S”, a € (0,1), is contained into a great sphere
S+ of §”, from Proposition we have the following.

Corollary 1.57 ([23]). Let ) : M™ — S™ (a) be a submanifold of a small sphere S (a)
in S", a € (0,1). Then M is proper-biharmonic in S™ if and only if either a = 1/+/2
and M is minimal in S™ (1/v/2), or a > 1/v/2 and M is minimal in a small hypersphere
S 1(1/v/2) in S" (a). In both cases, |H| = 1.
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Let ¢ : M™ — S™ be a submanifold in S™. For our purpose it is convenient to define,
following [2] and [8], the (1, 1)-tensor field ® = Ay — |H|*I, where I is the identity on
C(T'M). We notice that ® is symmetric, trace ® = 0 and

@2 = |Ag|> — m|H|*. (1.121)

Moreover, ® = 0 if and only if M is pseudo-umbilical.
By using the Gauss equation of M in S™, one gets the curvature tensor field of M
in terms of ® as follows.

Lemma 1.58 (|23]). Let ¢ : M™ — S™ be a submanifold with nowhere zero mean
curvature vector field. Then the curvature tensor field of M is given by

RX,Y)Z = (1+|H)(ZY)X —{(Z,X)Y)
+Ij,2<<z,<1><y>><1><x> —(Z,B(X)B(Y))
HZ,P(Y)NX — (Z,9(X)Y +(Z,Y)P(X) — (Z, X)P(Y)

k—1
+ 3 {2, A, (V) Ag, (X) = (2, Ag, (X)) Ay, (Y)}, (1.122)
a=1

forall X,Y,Z € C(TM), where {H/|H|,n,}*=}, k = n—m, denotes a local orthonormal

a=1’

frame field in the normal bundle of M in S™.

In the case of hypersurfaces, i.e. k = 1, the previous result holds by making the
k-1

convention that Z{ .}=0.
a=1
For what concerns the expression of trace V2®, which will be needed further, the
following result holds.

Lemma 1.59 (|23]). Let ¢ : M™ — S™ be a submanifold with nowhere zero mean
curvature vector field. If VEH =0, then V® is symmetric and

|2

(o T @)(X) = ~0PX + (m o+l - {7

) B(X) + md*(X)

N

-1
3B, Ay, ) Ay, (X). (1.123)
1

e
Il

Proof. From the Codazzi equation, as VX H = 0, we get (VAg)(X,Y) = (VAg)(Y, X),
for all X,Y € C(T'M), where

(VAg)(X,Y) = (VxAp)(Y) = VxAu(Y) = Au(VxY).

As the mean curvature of M is constant we have V® = VApg, thus V® is symmetric;
and trace(V®) = trace(VAy) = 0.
We recall the Ricci commutation formula

(V20)(X,Y, Z) — (V2®)(Y, X, Z) = R(X,Y)®(Z) — ®(R(X,Y)Z), (1.124)
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for all X,Y,Z € C(T'M), where
(V20)(X,Y,Z) = (VxVO)(Y,2)
= Vx((VO)(Y,2)) = (V®)(VxY,Z) = (VO)(Y,Vx Z).
Consider {X;}™, to be a local orthonormal frame field on M and {H/|H|, 7, }*~1

a=1>
k =n —m, a local orthonormal frame field in the normal bundle of M in S". As n, is
orthogonal to H, we get trace A,, =0, foralla = 1,...,k—1. Using also the symmetry
of ® and V&, (CI22) and (CI22), we have
i=1

M

@
Il
—

(trace V2®)(X) =

{(V?®)(X, X;, X;) + R(X;, X)@(X;) — ®(R(X;, X)X;)}

I

@
I
—

(V20)(X, X;, X;)

|

=1
2
—|®2X + <m +m|H|? — ‘|§2> O(X) + md*(X)
k-1
+ Z{(Ana 0@ — ®o Ay, )(Ay, (X)) — (P, Ay, ) Ay, (X) }.
a=1

By a straightforward computation,
m
Z(VQQD)(X, X, X;) = Vx(trace V&) = 0.
i=1
Moreover, from the Ricci equation, since V-H = 0, we obtain Ay, 0 Ay = Ao Ay,
thus A,, o® = ®o0 A4, , and we end the proof of this lemma.
O

We shall also use the following lemma.

Lemma 1.60 (|23]). Let ¢ : M™ — S™ be a submanifold with nowhere zero mean
curvature vector field. If V:-H = 0 and Ay is orthogonal to Ay, foralla=1,... k-1,
then

|2
[H[?
Proof. Since Ap is orthogonal to A,, and trace A,, = 0, we get (®, A,,) = 0, for all
a=1,...,k—1, and (CIZ3) becomes

1
— §A\<I>]2 = |Vo|* + (m +m|H|? — ) |®|? + m trace ®3. (1.125)

2

(trace V2®)(X) = —|®|*X + <m+ m|H|* — e

) d(X) + md?(X). (1.126)
Now, the Weitzenbock formula,

1
—§A|<I>|2 = |V®|? 4 (®, trace V2P),

together with the symmetry of ® and (IZIZ8), leads to the conclusion. O
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We also recall here the Okumura Lemma.

Lemma 1.61 (Okumura Lemma, [I07]). Let by,... by, be real numbers such that

i”: b; =0. Then
i=1

m— 9 m 3/2 m m—9 m 3/2
e () <Rt ()
i=1

m(m — 1) — m(m —1) =

Moreover, equality holds in the right-hand (respectively, left-hand) side if and only if
(m — 1) of the b;’s are nonpositive (respectively, nonnegative) and equal.

By using the above lemmas we obtain the following result on the boundedness of
the mean curvature of proper-biharmonic submanifolds with parallel mean curvature
vector field in spheres, as well as a partial classification result. We shall see that |H]|
does not fill out all the interval (0, 1].

Theorem 1.62 (|23]). Let ¢ : M™ — S™ be a PMC proper-biharmonic immersion.
Assume that m > 2 and |H| € (0,1). Then |H| € (0,(m —2)/m]|, and |[H| = (m —2)/m
if and only if locally (M) is an open part of a standard product

M, x SY(1/v2) c s™,

where My is a minimal embedded submanifold of S"~2(1/+/2). Moreover, if M is com-
plete, then the above decomposition of @(M) holds globally, where M is a complete
minimal submanifold of S*2(1/v/2).

Proof. Consider the tensor field ¢ associated to M. Since it is traceless, Lemma &1

implies that
m—2

vm(m—1)
By (IC17), as M is proper-biharmonic with parallel mean curvature vector field, |Ay|? =
m|H|* and (Ag, A,) = 0, for all n € C(NM), n orthogonal to H. From (IZI2I) we
obtain

trace &% > — B3, (1.127)

|@* = m|H|*(1 - |H|*), (1.128)

thus |®| is constant. We can apply Lemma and, using (IT21) and (ICI2X), equation
(TZ3) leads to

m—2
0> mlHP(L - |HP) (208 - =2 T-THT),

thus |H| € (0, =2].

The condition |H| = ™=2 holds if and only if V® = 0 and we have equality in
(27). This is equivalent to the fact that VAy = 0 and, by the Okumura Lemma, the
principal curvatures in the direction of H are constant functions on M and given by

m — 2
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Further, we consider the distributions

Tn={X €TM: Ay(X) =AX}, dimT\=m—1,
T,={X eTM: Ay(X)=pX},  dimT,=1.

One can easily verify that, as Ay is parallel, T) and 7}, are mutually orthogonal, smooth,
involutive and parallel, and the de Rham decomposition theorem (see [83]) can be
applied.

Thus, for every po € M there exists a neighborhood U C M which is isometric to a
product M}"fl x I, I = (—e¢,¢e), where M; is an integral submanifold for T} through py
and I corresponds to the integral curves of the unit vector field Y1 € T, on U. Moreover
Ml is a totally geodesic submanifold in U and the integral curves of Y; are geodesics in
U. We note that Y7 is a parallel vector field on U.

In the following, we shall prove that the integral curves of Y7, thought of as curves
in R™*1, are circles of radius 1/4/2, all lying in parallel 2-planes. In order to prove this,
consider {H/|H|,1,}*Z1 to be an orthonormal frame field in the normal bundle and

{Xao 21:—11 an orthonormal frame field in T, on U. We have

m—1
trace B(Ag(+),:) = ZB(AH(Xa),Xa)+B(AH(Y1)7Y1)»
a=1

= AmH — 2AB(Y1, Y1).

This, together with (ICH) and (CIT29), leads to
1
B(Y1,Y1) = _XH’ (1.130)

so |B(Y1,Y1)| = 1. From here, since A,, and Ay commute, we obtain
Ay, (Y1) =0, Va=1,...,k—1 (1.131)

We also note that
1
A
Consider ¢ : I — U to be an integral curve for Y7 and denote by v : I — S™, v =1oc,
where ¢ : M — S™ is the inclusion map. Denote by E1 = 4 = Yj 04. Since Y] is parallel,
¢ is a geodesic on M and, using equations (ICI30) and (CI32), we obtain the following
Frenet equations for the curve v in S™,

Vi B(Y1,Y1) = = (Vi H — Ag(Y1)) = —Y1. (1.132)

n 1
V' B = B(Y, 1) = —5H =B,
VY Ey = —F1. (1.133)

Let now ¥ = oy : I — R"! where j: §” — R™"! denotes the inclusion map.
Denote by E1 = = Yi 07. From (ICI33) we obtain the Frenet equations for 7 in R"+1,

nt1 ~ 1 " ~
VETE = —H =7 =V2E;,

Rn+l
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thus 7 is a circle of radius 1/4/2 in R"*! and it lies in a 2-plane with corresponding
vector space generated by E1(0) and E5(0).

Since Y7 and —%H — x, with x the position vector field, are parallel in R"*! along
any curve of Ml, we conclude that the 2-planes determined by the integral curves of Y;
have the same corresponding vector space, thus are parallel.

Consider the immersions -

¢: M xI—S",

and

(szod):ﬁl x I — R
Using the fact that M, is an integral submanifold of Ty and (ICT3), it is not difficult
to verify that B(X,Y) = 0, for all X € C(TM,) and Y € C(TI), thus we can apply
the Moore Lemma in [98]. As the 2-planes determined by the integral curves of Y7 have
the same corresponding vector space and by Corollary [C27, we obtain the orthogonal

decomposition
R" = R ¢ R? (1.134)

and U = My x Ms, where ZMlm_1 c R* 1 and My c R? is a circle of radius 1/\/§ We
can see that the center of this circle is the origin of R2. Thus M; C S"2(1/y/2) c R*™!
and from Theorem A, since U is biharmonic in §”, we conclude that M; is a minimal
submanifold in $"2(1/v/2) C R"~!. Consequently, the announced result holds locally.
We can thus conclude that M is an open part of a standard product
M, x SY(1/v2) c s™,

where Mj is a minimal submanifold in S*~2(1/ \/§)
O

Remark 1.63. The same result of Theorem [C62 was proved, independently, in [I33].
The following consequences for hypersurfaces follow.

Corollary 1.64 ([23]). Let p : M™ — S™*L be a CMC proper-biharmonic hypersurface
with m > 2. Then |H| € (0, (m — 2)/m]U{1}. Moreover, |H| =1 if and only if (M)
is an open subset of the small hypersphere S™(1/v/2), and |H| = (m — 2)/m if and only
if (M) is an open subset of the standard product S™1(1/4/2) x SY(1/v/2).

Corollary 1.65. Let o : M™ — S™+ be a complete proper-biharmonic hypersurface.
(i) If |[H| =1, then (M) = S™(1/v/2) and ¢ is an embedding.

(i) If |H| = (m —2)/m, m > 2, then o(M) = S™1(1/v/2) x SY(1/v/2) and the
universal cover of M is S"~1(1/4/2) x R.

If we assume that M is compact and | B| is bounded we obtain the following theorem.

Theorem 1.66 ([I6]). Let o : M™ — S™? be a compact PMC proper-biharmonic
immersion with m > 2, d > 2 and

m — 2

vm—1

d—1 3d —4
m < |B*><m <1+ |H|? —

H|\/1-|H?).
24— 3 d—1 I | |>
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(i) If m =2, then |H| =1, and either d = 2, |B|?> = 6, o(M?) = S'(1/2) xS'(1/2) C
S*(1/v2) or d = 3, |B> = 14/3, o(M?) is the Veronese minimal surface in
S3(1/v/2).

(i) If m > 2, then |H| =1, d =2, |B|> = 3m and
o(M™) = §™ ( m /(2m)) x §Me ( ma /(2m)) c §"H(1/v/32),

where m1 +mg =m, m1 > 1 and mg > 1.

Proof. The result follows from the classification of compact PMC immersions with boun-
ded |B|? given in Theorem 1.6 of [ITg]. O

Inspired by the case |H| = T of Theorem B2, in the following we shall study
proper-biharmonic submanifolds in S™ with parallel mean curvature vector field and
parallel Weingarten operator associated to the mean curvature vector field.

We shall also need the following general result.

Proposition 1.67 (|23]). Let ¢ : M™ — S™ be a submanifold with nowhere zero mean
curvature vector field. If VIH = 0, VAg = 0 and Ag is orthogonal to Ay, for all
ne C(NM), n L H, then M is either pseudo-umbilical, or it has two distinct principal
curvatures in the direction of H. Moreover, the principal curvatures in the direction of
H are solutions of the equation

A 2
mt? + <m— ||;||2 >t—m|H\2 = 0. (1.135)

Proof. As VA = 0, the principal curvatures in the direction of H are constant on M.
Denote by {X;}", a local orthonormal frame field on M such that Ay (X;) = X,
i=1,...,m. Clearly, 7", \; = m|H|?.

Since Ap is parallel, VxAp(Y) = Ag(VxY), thus R(X,Y) and Ay commute for
all X, Y € C(T'M). In particular,

R(Xi, Xj)An(X;) = An(R(Xi, X;)X;),
and by considering the scalar product with X; and using the symmetry of Ay, we get
(N — N)(R(X;, X)X, X3) =0, Vi,j=1,...,m. (1.136)

Consider {H/|H|,n.}"=}, k = n — m, a local orthonormal frame field in the normal
bundle of M in S". We have

B(X;, X))

» 1.1

and for A\; # A;, and so i # j, as X; is orthogonal to X; and Ay o A,, = A, o Ay, for
alla=1,...,k— 1, we obtain

k—1
(An(Xi), X)) H + ) (Ag, (X3), Xj)na = 0. (1.138)

a=1

B(X;, X;) = !H|2
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By using (IT137) and (CI38) in the Gauss equation for M in S™, one gets, for \; # A;,

L kel
[i”; + Z<Aﬁa(Xi)=Xi><Ana(Xj),Xj>- (1.139)

=1

(R(X:, X)X, X5) =1+

)

In fact, (ICI38), together with (ICI39), implies

e (1422

and the above formula holds Vi, j = 1,...,m. Summing on ¢ in (II20) we obtain

7711 <A77a<XJ)7Xj>> =0, (1-140)

A 2 k—1
0 = m|H|2_(m_' al )Aj—mAi+Z<Ana,AH><Ana<Xj>,Xj>

|H|2 a=1
k—1
=) trace Ay, (Ag, (X;), Am (X))
a=1

Since trace A,, = 0 and (Ag, A,,) =0, forall a =1,...,k — 1, we conclude the proof.
O

Corollary 1.68 (|23]|). Let M™, m > 2, be a proper-biharmonic submanifold in S™. If
VLiH =0, VAg =0 and |H| € (0, 2], then M has two distinct principal curvatures
A and p in the direction of H, of dzﬁerent multiplicities my and me, respectively, and

\ = mi1 — My
m
o= _m T ma (1.141)
m
[m1 — my|
\ |H| = - .

Proof. Since M is proper-biharmonic, all the hypotheses of Proposition G4 are satis-
fied. Taking into account ([Z4), from (II33) follows that the principal curvatures of
M in the direction of H satisfy the equation t* = |H[%. As [H| € (0, 2], M cannot
be pseudo-umbilical, thus it has two distinct principal curvatures A = —p # 0 in the
direction of H. If m; denotes the multiplicity of A and my the multiplicity of u, from
trace Ay = m|H|? we have (mj —m2)A = mA2. Since A # 0, we obtain (I_IZT). Notice
also that m1 # ma. O

-2
The case |H| = —— was solved in Theorem 62, thus we shall consider now only
m

[m1 — ma|

the case |[H| € (0, ™2). Since |H| = , m1 # mgy we obtain the following.

Corollary 1.69 (|23]). Let o : M™ — S™, m € {3,4}, be a PMC proper-biharmonic im-
mersion with VAg = 0. Then |H| € {(m —2)/m,1}. Moreover, if |H| = (m — 2)/m,
then locally (M) is an open part of a standard product

M, x SY(1/v/2) c s™,
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where My is a minimal embedded submanifold of S*=2(1/v/2), and if |H| = 1, then ¢
induces a minimal immersion of M into S*"1(1/1/2).

We are left with the case m > 5 and my > 2, my > 2 and we are able to prove the
following result.

Theorem 1.70 (|23]). Let ¢ : M™ — S™ be a PMC proper-biharmonic immersion with
VAg =0. Assume that |H| € (0,(m — 2)/m). Then, m >4 and, locally,

O(M) = M™ x My C S™(1/v2) x S"2(1/v/2) S,

where M; is a minimal embedded submanifold of S (1/v/2), m; > 2, i = 1,2, my+my =
m, my # ma, n1 +mnge = n — 1. In this case |H| = |my — ma|/m. Moreover, if M is
complete, then the above decomposition of ¢(M) holds globally, where M; is a complete

minimal submanifold of S (1/+/2), i = 1,2.

Proof. We are in the hypotheses of Corollary 68, thus Ay has two distinct eigenvalues
A= "2 and g = —"12. Consider the distributions

T)\:{XETM:AH(X):)\X}, dim Ty = mq,
T,={XeTM: Ax(X) =puX}, dim T}, = mo.

As Ay is parallel, T and T}, are mutually orthogonal, smooth, involutive and parallel,
and from the de Rham decomposition theorem follows that for every po € M there
exists a neighborhood U C M which is isometric to a product M{"* x M3"?, such that
the submanifolds which are parallel to Ml in Ml X Mg correspond to integral subma-
nifolds for T and the submanifolds which are parallel to My correspond to integral
submanifolds for T},.
Consider the immersions
¢ : Ml X MQ — Sn,

and
(b:]oqﬁ:Mlng—)Rn'H.

It can be easily verified that B(X, Y) = B(X,Y), for all X € C(Tﬁl) and Y €
C(T'M>). Since Ag o A, = Ao Ay for all n € C(NM), we have that Ty and T}, are
invariant subspaces for A,, for all n € C(NM), thus

(B(X,Y),n) = (4,(X),Y) =0, VneC(NM).

Thus B(X,Y) =0, for all X € C(TM;) and Y € C(TMy), and we can apply the Moore
Lemma. In this way we have an orthogonal decomposition R+ = R0 g RM+L gR72+L
and ¢ is a product immersion. From Corollary [, since |H| # 1, follows that ng = 0.
Thus

(g: 51 X %2 : Ml X MQ — RMm L @Rn2+1.

We denote by M; = 51(1\7_71) c Rmtl My, = $Q(M2) C R™*! and we have U =
My x My C S™.
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Consider now { X4}/, an orthonormal frame field in T and {Y;};*% an orthonormal
mi — ma

frame field in T),, on U. From (IH), by using the fact that A = —p = ——, we
m
obtain - e
mi ma
B(X., X,) = "LH B(Y.,Y)) = -2 H, 1.142
a§:1 ( )= ;_1 (Ye, Yo) 3 (1.142)

Since V*H = 0, from (CI22) follows that M x {ps} is pseudo-umbilical and with
parallel mean curvature vector field in R"*!, for any ps € My. But M; x {p2} is
included in R™'*! x {p,y} which is totally geodesic in R**!, thus M is pseudo-umbilical
and with parallel mean curvature vector field in R™*!. This implies that M; is minimal
in R™*1 or minimal in a hypersphere of R™*!. The first case leads to a contradiction,
since M1 x {p2} C S™ and cannot be minimal in R Thus M; is minimal in a
hypersphere S7! (r1) C R™+1 where ¢; € R™T! denotes the center of the hypersphere.

In the following we will show that ¢; = 0. Since U C S and My C S7!(r1), we get
Ip1|? + |p2|? = 1 and |p; — c1]* = r?, for all p; € M;. This implies (p1,c1) = constant
for all py € M;. Thus (ui,c1) = 0, for all uy € T),, My and for all p; € M;. From the
Moore Lemma follows that ¢; = 0, thus My C S™(r1) C R+l

From (II42) also follows that the mean curvature of M; x {pa} in S™ is 1, so its
mean curvature in R"*1 is v/2. As R™*T1 x {py} is totally geodesic in R™*! it follows
that the mean curvature of Mj in Rt is /2 too. Further, as M is minimal in 8™ (ry),
we get 71 = 1/4/2.

Analogously, Mo is minimal in a hypersphere S"2(1/4/2) in R"2%! and we conclude
the proof.

O

Remark 1.71. In the case of a non-minimal hypersurface the hypotheses V*H = 0
and VAp = 0 are equivalent to VB = 0, i.e. the hypersurface is parallel. Such hyper-
surfaces have at most two principal curvatures and the proper-biharmonic hypersurfaces
with at most two principal curvatures in S are those given by () and (I9) (see [21]).

If one searches for a relaxation of the hypothesis VAg = 0 in Theorem 70, natural
candidates would be RAg = 0 (see, for example, [IT5]), or M has at most two distinct
principal curvatures in the direction of H everywhere. But the following can be proved.

Proposition 1.72 (|23]). Let ¢ : M™ — S™ be a PMC proper-biharmonic immersion.
The following statements are equivalent:

(i) RApg =0, where (RAg)(X,Y,Z) = (R(X,Y)An)(Z),
(i) M has at most two distinct principal curvatures in the direction of H everywhere,
(iii) VAg = 0.

Another restriction which leads to VAg = 0, thus to a classification result for PMC
proper-biharmonic immersions in spheres, concerns the sectional curvature.

Proposition 1.73. Let ¢ : M™ — S™ be a PMC proper-biharmonic immersion with
non-negative sectional curvature. Then VA = 0. Moreover, if there exists p € M such
that Riem™ (p) > 0, then ¢ is pseudo-umbilical.
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Proof. Since M is PMC, |H| = constant and Ay is a Codazzi operator. Moreover, as M
is also biharmonic, |A| = constant and equation (2.8) in [249| applied for Ay, implies

0=|VAu*+ ) Rijij(\i — X)),
1<J

where {\;}_; denote the principal curvatures of M in the direction of H. The conclusion
is now immediate. O

We should note that there exist examples of proper-biharmonic submanifolds of S?
and S7 which are not PMC but with VAy = 0 (see [I20] and [67]).

1.6 Parallel biharmonic immersions in S"

An immersed submanifold is said to be parallel if its second fundamental form B is
parallel, that is V- B = 0.

In the following we give the classification for proper-biharmonic parallel immersed
surfaces in S™.

Theorem 1.74 ([I6]). Let ¢ : M? — S™ be a parallel surface in S™. If ¢ is proper-
biharmonic, then the codimension can be reduced to 3 and (M) is an open part of
either

(i) a totally umbilical sphere S*(1/v/2) lying in a totally geodesic S* C S°, or

(ii) the minimal flat torus S'(1/2) x SY(1/2) C S3(1/v2); @(M) lies in a totally
geodesic S* C S, or

(iii) the minimal Veronese surface in S*(1/v/2) C SP.

Proof. The proof relies on the fact that parallel submanifolds in S™ are classified in the
following three categories (see, for example, [40]):

(a) a totally umbilical sphere S?(r) lying in a totally geodesic S% C S™;

(b) a flat torus lying in a totally geodesic S* C S™ defined by
(0,...,0,acosu,asinu,beosv,bsinv, V1 —a2 —b2), a®+0b><1;

(c) a surface of positive constant curvature lying in a totally geodesic S> C S™ defined
by

"707777777 ) ’
V3 V3 VA 23 6 ;

with w2 + 2 +w? =3 and 0 < r < 1.

(O vw uw wo u?— 02 u?+ 02— 2uw? \/1—T2>
'r‘ b b

In case (a) the biharmonicity implies directly (i). Requiring the immersion in (b) to
be biharmonic and using [21, Corollary 5.5] we get that va? +b? = 1/2 and then
(ii) follows. The immersion in (c¢) induces a minimal immersion of the surface in the
hypersphere S*(r) C S°. Then, applying [30, Theorem 3.5], the immersion in (c) reduces
to that in (iii). ]
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In all three cases of Theorem [T, ¢ is of type B3 and thus its mean curvature is
1. In the higher dimensional case we know, from Theorem I, that if |[H| = 1, then ¢
is of type B3. Moreover, if we assume that ¢ is also parallel, then the induced minimal
immersion in S"71(1/y/2) is parallel as well.

If VIB = 0, then VH = 0 and VAy = 0. Therefore Theorem 63 and Theo-
rem 70 hold also for parallel proper-biharmonic immersions in S™. From this and
Theorem 74, in order to classify all parallel proper-biharmonic immersions in S”, we
are left with the case when m > 2 and |H| € (0, 1).

Theorem 1.75 ([16]). Let ¢ : M™ — S™ be a parallel proper-biharmonic immersion.
Assume that m > 2 and |H| € (0,1). Then |H| € (0,(m — 2)/m]. Moreover:

(i) |H| = (m —2)/m if and only if locally (M) is an open part of a standard product
M; x SY(1/v2) c s™,
where My is a parallel minimal embedded submanifold of S*~2(1/v/2);
(ii) |H| € (0,(m —2)/m) if and only if m > 4 and, locally,
(M) = M™ x M3™ c S™(1/v/2) x S™(1/V2) c S,

where M; is a parallel minimal embedded submanifold of S™(1/v/2), m; > 2,
1=1,2, mi+mo=m, m #£meo, ny+no=n-—1.

Proof. We only have to prove that M; is a parallel minimal submanifold of S™(1/y/2),
m; > 2. For this, denote by B’ the second fundamental form of M; in S™(1/v/2),
i = 1,2. If B denotes the second fundamental form of My x Ms in S™, it is easy to
verify, using the expression of the second fundamental form of S (1/v/2) x §"2(1//2)
in S™, that

(V%XI,XQ)B)((YI’Y2)’ (217 ZQ)) - ((VJ)ZlBl)(Yh Zl)a (VAJ)_(QBQ)(YV% ZQ))?
for all X1,Y1,21 € C(T'My), Xo,Ys,Zy € C(T'Ms). Consequently, M; x My is parallel
in S” if and only if M; is parallel in S™(1/v/2), i = 1,2. O

1.7 Open problems
We list some open problems and conjectures that seem to be natural.

Conjecture 1. The only proper-biharmonic hypersurfaces in S™ 1 are the open parts of
hyperspheres S™(1/4/2) or of the standard products of spheres S™ (1/+/2) x S™2(1//2),
mi+mo =m, miy # ms.

Taking into account the results presented in this chapter, we have a series of state-
ments equivalent to Conjecture

1. A proper-biharmonic hypersurface in S™*! has at most two principal curvatures
everywhere.
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2. A proper-biharmonic hypersurface in S™*1 is parallel.

3. A proper-biharmonic hypersurface in S”*! is CMC and has non-negative sectional
curvature.

4. A proper-biharmonic hypersurface in S™*! is isoparametric.
One can also state the following intermediate conjecture.
Conjecture 2. The proper-biharmonic hypersurfaces in S™! are CMC.

Related to PMC immersions and, in particular, to Theorem [, we propose the
following problem.

Problem 1. Find a PMC proper-biharmonic immersion ¢ : M™ — S™ such that Ag
18 not parallel.



Chapter

Biharmonic submanifolds in
complex space forms

2.1 Introduction

In the first part of Chapter 2 we obtain some general properties of proper-biharmonic
submanifolds with constant mean curvature, or parallel mean curvature vector field, of
the complex projective space endowed with the standard Fubini-Study metric. When
the ambient space is a complex space form of nonpositive holomorphic curvature we
obtain non-existence results.

In the second part we consider the Hopf map defined as the restriction of the natural
projection 7 : C**1\ {0} — CP™ to the sphere S?**!, which defines a Riemannian sub-
mersion. For a real submanifold M of CP" we denote by M := 7~ 1(M) the Hopf-tube
over M. We obtain the formula which relates the bitension field of the inclusion of M in
CP" and the bitension field of the inclusion of M = 7~!(M) in S***! (Theorem Z12).
Using this formula we are able to produce a new class of proper-biharmonic submani-
folds M of CP™ when M is of “Clifford type” (Theorem PZZIR), and to reobtain a result
in [I39] when M is a product of circles (Theorem Z28).

We note that M is minimal (harmonic) in CP" if and only if M is minimal in
(see [86]) but, for what concerns the biharmonicity, the result does not hold anymore.

In the last part of the chapter we focus on the geometry of proper-biharmonic
curves of CP". We characterize all proper-biharmonic curves of CP” in terms of their
curvatures and complex torsions. Then, using the classification of holomorphic helices
of CP? given in [41], we determine all proper-biharmonic curves of CP? (Theorem 2Z1).

SQn—l—l

2.2 Biharmonic submanifolds of complex space forms

Let E¢(4c) be a complex space form of holomorphic sectional curvature 4c. Let us
denote by J the complex structure and by (,) the Riemannian metric on E¢(4c). Then
its curvature operator is given, for vector fields X,Y and Z, by

RECUN(X YVZ = {(Y,Z)X — (X, 2)Y (2.1)
H(JY, ZVJX — (JX,Z)JY +2(X,JY)JZ}.

65
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Let now
7: M™ — E¢(4c)

be the canonical inclusion of a submanifold M in EZ(4c) of real dimension m. Then
the bitension field becomes

72(7) = —m{ATH — emH + 3¢ (JH) '}, (2.2)

where H denotes the mean curvature vector field, A7 is the rough Laplacian, and ()T
denotes the tangential component to M. The overbar notation will be justified in the
next section. If we assume that JH is tangent to M, then (272) simplifies to

(7)) = —m{AH — c(m + 3)H}. (2.3)
Decomposing (E23) with respect to its tangential and normal components we get

Proposition 2.1 ([66]). Let M be a real submanifold of EL(4c) of dimension m such
that JH is tangent to M. Then M is biharmonic if and only if
A+ H +trace B(-, Ag(-)) —e(m +3)H =0 04
4tracef1V<L>H(-)+mgrad(]ﬁ|2) =0 ’ (24)

where A denotes the Weingarten operator, B the second fundamental form, H the mean

curvature vector field, VL and At the connection and the Laplacian in the normal
bundle of M in E(4c).

If M is a hypersurface, then JH is tangent to M, and the previous proposition gives
the following result of |77, R|.

Corollary 2.2. Let M be a real hypersurface of E¢(4c) of non-zero constant mean
curvature. Then it is proper-biharmonic if and only if

|B|? = 2¢(n +1).

Proposition EZ11 can be applied also in the case of Lagrangian submanifolds. We
recall here that M is called a Lagrangian submanifold if dim M = n and 7*Q = 0, where
Q is the fundamental 2-form on EZ(4c) defined by Q(X,Y) = (X, JY), for any vector
fields X and Y tangent to E¢(4c).

Corollary 2.3 ([66]). Let M be a Lagrangian submanifold of EX(4c) with parallel mean
curvature vector field. Then it is biharmonic if and only if

trace B(-, Ag(-)) = c¢(n + 3)H.

In the sequel we shall consider only the case of complex space forms with positive
holomorphic sectional curvature. A partial motivation of this fact is that Corollary 2
rules out the case ¢ < 0. As usual, we consider the complex projective space CP™ =
(C"*1\ {0})/C*, endowed with the Fubini-Study metric, as a model for the complex
space form of positive constant holomorphic sectional curvature 4.
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Proposition 2.4 ([66]). Let M be a real submanifold of CP™ of dimension m such that
JH is tangent to M. Assume that it has non-zero constant mean curvature. We have

T - - 712 n+3
(a) If M is proper-biharmonic, then |H|? € (0, ™3],

(b) If ]H!Q TE3 then M s proper-biharmonic if and only if it is pseudo-umbilical
and V+

Proof. Let M be a real submanifold of CP™ of dimension /m such that JH is tangent
to M. Assume that it has non-zero constant mean curvature, and it is biharmonic. As
M is biharmonic we have

ALTH = (i + 3)H — trace B(-, Az (")),
S0)
(AYH, H) = (m+3)|H[> = Y (B(Xi, Ap(Xy)), H) = (m+3)|H[* = |Ag|*.
i=1
Replacing in the Weitzenbock formula (see, for example, [69])
fA\H]Q (AtH H) - |VTH)?
the expression of (A+H, H), and using the fact that |H| is constant, we obtain
(m+3)H* = |Ag* + |V H[. (2.5)

Let p be an arbitrary point of M and let {X;}™, be an orthonormal basis of T, M such
that Ag(X;) = \;X;. We have

Ni = (Ag(Xi), Xi) = (B(X;, Xi), H)
which implies )
Z | H|?

or, equivalently,

|Agl?* = Z<AH<XZ‘); Ag(Xy)) = Z(&)Q

3 moN)? _
mt ZA—Z 24 |VEE? > (Zlﬁ}b)ﬂvim?.
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Therefore
(m+3)[H]> > m|H|* + |[VTH]> > m|H*,
w0 +3
- m
AP e 0,712
(b) If |H|? = % and M is biharmonic, the above inequalities become equalities,
and therefore A\; = =M and VI H =0, i.e. M is pseudo-umbilical and V- H = 0.
Conversely, it is clear that if |[H|? = %"’3 and M is pseudo-umbilical with V- H = 0,
then M is proper-biharmonic. O

Remark 2.5. We shall see in Proposition that the upper bound of |H|? is reached
in the case of curves.

Proposition 2.6 ([66]). Let M be a proper-biharmonic real hypersurface of CP™ of
constant mean curvature |H|. Then its scalar curvature s is constant and given by

M — 4n? — 2n — 4+ (2n — 1) H|%.
Proof. Let M?"~! be a proper-biharmonic real hypersurface of CP" with constant mean
curvature, so |B|? = 2(n + 1).
The Gauss equation for the submanifold M of CP™ is
RY(X.V)Z.T) = (R*"(X,Y)Z.T) (2:6)
_<B(Y7T)7B(X7 Z)> + <B(X7T)7B(Yv Z)>a
where RM is the curvature tensor field of M. B
Let us denote by Ricci (X,Y) = trace{Z — RM(Z, X)Y'} the Ricci tensor.
Computing (Z8) for X = T = X;, where {X;}?"! is a local orthonormal frame field,
we have
(RM(X,Y)Z. X)) = ((Z,Y)Xi— (2, X))V, X;)
+{(JY, Z)J X, X3) — ((J X3, Z)JY, X;)
22X, JY)JZ, X;)
—(B(Y, X:), B(X;, Z)) + (B(Xi, X;), B(Y, Z))
= (2Y) = (2, Xi)(Y, Xi)
+(JY, Z)(T X3, Xi) — (T X;
+2(X;, JYWNJZ, X;) — (
+(B(X;, X:), B(Y, Z))
—(A(Y), Xi)(A(Z), Xi) + (B(Xi, X;), B(Y, Z)),

where H = |H|ij and A = Aj. Therefore

L)Y, X)
Xi),

( B(Z, X;))

2n—1
Ricci (v, 2) = Y (RM(X:,Y)Z,X;)
=1
= 2n—1Z,Y) —(Z,Y)+3((J2)",(JY)T)
—(A(Y), A(2)) + (2n — DIH|(A(Y), Z).
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Now,

which implies
(T2) T, (IY)T) = (2,Y) — (2, Ja)(Y, T).
Replacing in the above expression of the Ricci tensor, we get
Ricci (V,Z) = 2(n—1)(Z,Y) +3{(Y, Z) — (Z, Jq)(Y, Ji)}
—(A(Y), A(Z)) + (2n — )| H[{A(Y), Z).
Finally, taking the trace, we have

B 2n—1
sM = Zp (X5, Xi) =2(n—1)(2n—1) +3(2n — 1)

—IJUIQ—\AF (2n — 1)*|H[?
= 2n—2+3)2n—1)—1-2(n+1)+ (2n— 1)?|H|?
4n® —2n — 4+ (2n — 1)*|H|?.

O

Another important family of submanifolds of CP™ is that consisting of the subma-
nifolds for which JH is normal to M. In this case, using an argument similar to the
case when JH is tangent to M, we have the following result.

Proposition 2.7 ([66]). Let M be a real submanifold of CP™ of dimension m such that
JH is normal to M. Then M is biharmonic if and only if

17 B(-. A (-)) — mH =
{A H + trace B(-, Ag (")) H=0 (2.7)

4trace AV(L)H(‘) +megrad(|H|*) =0
Moreover, if JH is normal to M and M has parallel mean curvature, then M is bihar-

momnic if and only if
trace B(-, Ag(-)) = mH.
Also in this case, if the mean curvature is constant we can bound its value, as it is

shown by the following.

Proposition 2.8 ([66]). Let M be a real submanifold of CP™ of dimension m such that
JH is normal to M. Assume that it has non-zero constant mean curvature. We have

(a) If M is proper-biharmonic, then |H|? € (0,1].

(b) If |H|> = 1, then M is proper-biharmonic if and only if it is pseudo-umbilical and
V4LH =0.

Remark 2.9. We shall see in Proposition 2232 (a), that the upper bound is reached in
the case of curves.
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2.3 The Hopf fibration and the biharmonic equation

Let m: C"™1\ {0} — CP™ be the natural projection. Then 7 restricted to the sphere
S2HL of €™ gives rise to the Hopf fibration 7 : $?"*1 — CP™ and if 4¢ = 4 then
7 . $?"1  CP" defines a Riemannian submersion. In the sequel we shall look at
S?"t1 as a hypersurface of R?"*2 and denote by J the complex structure of R2"+2.

Let M be a real submanifold of CP™ of dimension m and denote by M := m~1(M)
the Hopf-tube over M. If we denote by 7: M — CP™ and 5 : M — S?"*! the respective
inclusions we have the following diagram

M J SQn—l—l

| | =
M —— cp~.

We shall now find the relation between the bitension field of the inclusion 7 and the
bitension field of the inclusion j. For this, let {X;}7, be a local orthonormal frame
field tangent to M, 1 < m < 2n — 1, and let {f,}2",;, ., be a local orthonormal frame
field normal to M. Let us denote by X, := X ,f and 7, := 7 the horizontal lifts with
respect to the Hopf map and by & the Hopf vector field on S?*! which is tangent to
the fibres of the Hopf fibration, i.e. £(p) = —Jp, for any p € S***1. Then {£&, Xk} is a
local orthonormal frame field tangent to M and {7} is a local orthonormal frame field
normal to M.

Lemma 2.10 ([66]). Let X = X € C(TM), where X € C(TM), and V = VI ¢
C (Y (TS*™ YY), where V € C((7)"*(TCP™)). Then

VAV = (VAT + (VI X)¢ = (V)T + (V, TX) o),

where V7 and V7 denote the pull-back connections on j~Y(TS**1) and (7))~ (TCP™),
respectively.

Proof. Decomposing V4V in its horizontal and vertical components we have

ViV = Vi VI = (V)T + (VR V)¢

Now,
(VAV,&) = —(V,V%€) = —(V, Vx&+ (X, &)p)
= <V¢¢ij> = <‘/7 jX) = <V7 jX> o,
where V is the Levi-Civita connection on the Euclidean space R2n+2. ]

Lemma 2.11 ([66]). If V = VH c C(;71(TS*"™)), V € C((5)~Y(TCP™)), then
AV = (A 1 2div((JV) e+ (V, Jr())e+V — J(JIV)T,

where A? and AV are the rough Laplacians acting on sections of 7~ Y(TS**1) and
(7)~Y(TCP™), respectively, whilst (V) denotes the component of V tangent to M.
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Proof. The Laplacian A7 is given by

AV =) (V4 V4V — VL

oy x VIV -
i=1

VA/Iév

We compute each term separately. From Lemma P7T0 we have
VA VAV = (Ve VE T+ (VA VT X)E + Y, (V. T X0)€)
- .
= (V%V‘%V) + 2(V§QV, JX;)¢
H(V, Vi JX)E+ (JV, X;) T X;.

Using R R
we get
VA VAV = (vf;zivf;hf/)H +2(V VT X)¢ (2.8)
HV, IV X0+ J((TV, X3) X3).
Next -
VJVMX V= (Vi e VT + (V. IVE Xi)e. (2.9)
X Z
Summing (Z) and (Z9) up we find
m
~NV = —(ATV) +2Z (VA V.IX)E+(V, Z Vi Xi — VY X)))¢
=1 i=1
IN7I
Z (JV, Xi)Xi) + V{ViV

= —(AV) +2ZVJVJX>§+(VJT())§
=1

aaayl IN7J
+J(JV)' + Ve VeV
We now compute the extra terms in the above equation.
Z(V&ZV, JX;) = Z{—X¢<jv7 Xi) + (JV, V4 Xi)} (2.10)
i=1 =

= (JV,7(9) - Z{Xi<jV, X;) = (JV, VA X3)}

= (JV,7(y)) = div((JV)").
Finally
VIV = H(VIV)+(ViV,)¢ = H(VLV)
= H(V{¢&) =H(Vvé+ (V,&)p) = H(-JV) = —JV
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which gives
Iy —
VeVeV= V.
O

Before giving the relation between the bitension fields we need to compute the trace
of the curvature operators. One gets immediately

2n+1

— trace RS (dg, 7(9))dy = (m + 1)7(y) (2.11)

and
— trace R (d7,7(7))d7 = mr(7) — 3J(J(7)". (2.12)

We are now ready to state the main theorem of this section.

Theorem 2.12_([66]). Let M be a real submanifold of CP™ of dimension m and denote
by M := 71 (M) the corresponding Hopf-tube. If we denote by 7 : M — CP™ and
9 M — S?™ 1 the respective inclusions we have that

(e (D) = 72(7) = 4T (Jr(9) " +2div((J7(5)) . (2.13)
Proof. From (Il) and (1) we have
72(y) = —A7(9) + (M + 1)7(9).

Next, since 7(7) = (7(7)), using Lemma 21 and (ZI2) we find the assertion of the
theorem. O

Remark 2.13 ([66]). (i) Using the horizontal lift, it is straightforward to check that
(13) can be written as

(r(D)™ = 72(9) = 4 (J7(7)) )T +2(div g (J7(7) ") 0 M)
(ii) If J7(7) is normal to M, then 75(7) = 0 if and only if 75(7) = 0.

(iii) If J7(y) is tangent to M, then 75(7) = 0 and div; ((J7(7))7) = 0 if and only if
72(g) +47(y) = 0.

(iv) Assume that, locally, M = 7~ (M) =St x M, where M is an integral submanifold
of S* e (X5,£(p)) = 0, for any vector X; tangent to M. Denote by j :
M — S**L the canonical inclusion, and by {¢:} the flow of &. We know that
72(2) .5 = (dt)p(72(7)), see [], and we can check that, at p,
()" = 72(7) = 4J(JT(7) " +2div g ((J7(7) e

To state the next results we recall that a smooth map ¢ : (M, g) — (N, h) is called
A-biharmonic if it is a critical point of the A-bienergy

Es(p) + AE(p),

where A is a real constant. The critical points of the A-bienergy satisfy the equation

T2(p) — AT(p) = 0.
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Proposition 2.14 (|66]). Let M_ be a real hypersurface of CP™ of constant mean cur-
vature and denote by M = (M) the Hopf-tube over M. Then m5(7) = 0 if and only
if 72(9) +47(y) =0, i.e. j is (—4)-biharmonic.

Proof. We have (J7(7))T = J7(7) and it remains to prove that div;(J7(7)) = 0. Let 7
be a local unit section in the normal bundle of M in CP" and consider
{X1,JX1,...,Xn-1,JXn_1,J77} alocal orthonormal frame field tangent to M. Since M
is a hypersurface of constant mean curvature, it is enough to prove that div;(J7) = 0.
But, denoting by Aﬁ the shape operator of M,

(VAL T, Xa) = (Ag(

forany 1 <a,b<n-—1, and

so we conclude. O

Proposition 2.15 ([66]). Let M be a Lagrangian submanifold of CP™ with parallel
mean curvature vector field and denote by M = 7=Y(M) the Hopf-tube over M. Then j
is biharmonic if and only if y is (—4)-biharmonic.

Proof. Since M is a Lagrangian submanifold, dim M = m = n and J(TM) = NM
(therefore J(NM) = TM). We have that Jr(7) € C(TM) and we shall prove that
VM J7(3) = 0 which implies div;(J7(7)) = 0. Indeed, for any vector fields X and Y

tangent to M we have

(VYTT(0).Y) = (ViJr(2),Y) = (JVEr(2),Y) = (=T A,(X).Y)

We end this section with the following result.

Proposition 2.16 ([66]). Let M be a real submanifold of CP™ such that J7(3) is normal
to M and denote by M = 7~ 1(M) the Hopf-tube over M. Then 7 is biharmonic if and
only if 7 is biharmonic.

2.4 Biharmonic submanifolds of Clifford type

For a fixed n > 1, consider the spheres S***1(a) ¢ R**? = CP*! and S?77L(b) C
R27+2 = I with a®>4-b? = 1 and p+q = n—1. Denote by Ti’g = ST (a)xS¥ (b)) C
S+ the Clifford torus. Let now M; be a minimal submanifold of S?**1(a) of dimension
my and My a minimal submanifold of S**1(b) of dimension my. The submanifold
M x My is clearly minimal in Tﬁ’f and, according to [29], is proper-biharmonic in
S?*1if and only if a = b = \/5/2 and my # ma. If My x M> is invariant under the
action of the one-parameter group of isometries generated by the Hopf vector field £ on
S?"*+1 then it projects onto a submanifold of CP" and we could ask for which values
of a,b, my, mg is it a proper-biharmonic submanifold.
We start with the following lemma.
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Lemma 2.17 ([66]). Let denote by 31 : M{™ x My" — TP the inclusion of My x My
in the Clifford torus and by j: T7 — S the inclusion of the Clifford torus in the
sphere. Then

a b
T(g01) = (ym2 — —m1)n = cn

b , (2.14)

To(30791) = ¢(m1 + mg — ﬁml - b—ng)r]

where n is the unit normal section in the normal bundle of T(f’f in S?"1 given by

n(z,y) = (gx, —3Y), T € S*t(a),y € S24TL(b).
Proof. Let p = (z,y) € T,y = € R?P+2 4 € R¥*2 |z| = a, |y| = b. Then n(z,y) =
(2z,—%y) defines a unit normal section in the normal bundle of Ty in S We
identify X = (X,0) € T,T,3, Y = (0,Y) € T,T7}, and a straightforward computation
gives

Vin=—A(X) = °X, Vyy=-A(Y)=-0¥.

Let {X; = (X1,0)} be a local orthonormal frame field tangent to S**!(a) and {V; =
(0,Y7)} a local orthonormal frame field tangent to S***1(b). Then, applying the com-
position law for the tension field and using that j; is harmonic, we have

T(gon) = dy(7(5)) + trace Vdy(dy1, dy)
1 2 a b
’;:1( (Xk), Xp)n + ;:1( (Y7),Y)n (bmz aml)n cn

To compute 12(7071), let us choose around p = (z,y) € My X My a frame field {(Xy, Y;)}
such that {X;},", is a geodesic frame field around z and {Y;};3 is a geodesic frame
field around y. Then at p

mi m2
AN, — 3071 7100 o1 700
A = vak vxkn+zv}ﬁ le n
k=1 =1
b mi a m2
_ 7 J0J1 ¢ 7071
= D VRN — ) W'
k=1 =1
m
o ax-

prq
> (B(Y, V) + Vi 1) (2.15)
=1

be _
D=3

k

b T
= D (B/(Xy, X) + Vy
k=1

b 4 2
= ;B%Xk,Xk) -3 ;BJ(YI,YZ)

b2 a?

= (—ﬁml — b72m2)77

Finally, using the standard formula for the curvature of S***1, we get

S2n+l

—trace R (d(g001),7(7021))d(go ) = (m1 4+ ma)T(g0 1) = (M1 + ma)en,

that summed up with (E713) gives the lemma. O
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Theorem 2.18 ([66]). Let 7 : S*"™1 — CP™ be the Hopf map. Let M = M]™ x M3" be
the product of two minimal submanifolds of S** ™1 (a) and S*¥1(b), respectively. Assume
that M is invariant under the action of the one-parameter group of isometries generated
by the Hopf vector field & on S*™ L. Then w(M) is a proper-biharmonic submanifold of
CP™ if and only if M is (—4)-biharmonic, that is

a?+b?=1

a b
gmg—fml#()
b2 aa2
¥m1+bfzm2:4+m1+m2

where my1 and my are the dimensions of My and Ms, respectively.

, (2.16)

Proof. The Hopf vector field ¢ is a Killing vector field on S?"*! that, at a point p =
(z,y), is given by

2 .1 2p+2 | 2p+1 2 .1 2q+2 | 2q+1
g:—(—(]j , L 7"'7_xp+ ’xIH* y Y LY Y ot 7yq+ ):(51752)-

Since M7 x Ms> is invariant under the action of the one-parameter group of isometries
generated by &, it remains Killing when restricted to M7 x Ms. As

5 b
Jn=(=26,58).

it follows that J n is a Killing vector field on My x M.
Since div(J7(y071)) = div(cJn) = 0, using Remark T3 (iii), it results that m(M; x
M>) is a biharmonic submanifold of CP™ if and only if

To(3071) +47(g0 ) =0.

Finally, using Lemma PZT4, we get

b2 a?

(90 1) +41(90 1) = c(4+m1 +mg — poL i bjmz)n-

O

Remark 2.19 ([66]). If M; = S*"1(a) and M, = S??"1(b), we recover the result
in |74, 78] concerning the proper-biharmonic homogeneous real hypersurfaces of type A
in CP".

Example 2.20 ([66]). Let e; and e3 be two constant unit vectors in E?"*2 with e3
orthogonal to e; and Je;. We consider the circles S'(a) and S!(b) lying in the 2-planes
spanned by {ey, Je;} and {es, Jes}, respectively. Then M = S'(a) x S'(b) is invariant
under the flow-action of £, and m(M) is a proper-biharmonic curve of CP™ if and only

V242
M

Example 2.21 ([66]). For p = 0 and ¢ = n—1, we get that 7(S*(a) xS**~1(b)) is proper-
biharmonic in CP" if and only if a2 = 2EEVRE2nED 1y particular, 7(S!(a) x S3(b))

4(n+1)
. . . . 2 . . 2 5i\/ﬁ
is a proper-biharmonic real hypersurface in CP< if and only if a* = >55-=.

ifa=
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Example 2.22 ([66]). If p = ¢ then M =T} is never a proper-biharmonic hypersur-

face of "1, and it is easy to check that 7T(M ) is a proper-biharmonic hypersurface of
CP™ if and only if a? = % V+21()p+1).

Example 2.23 ([66]). Let M = S?’*1(a) x Sp<%) X Sp< ) p odd. Then M is

7

minimal in Tf ,» and is proper-biharmonic in S*+Lif and only if @ = b = % By a

stralghtforward computation we can check that 7(M) is proper-biharmonic in CP™ if
_ 8p+T7++/32p+25

and only if a? = 2+& 16p+1§+ :

2.4.1 Sphere bundle of all vectors tangent to S**'(a)

We have seen that if M is a product submanifold in T then its projection 7(M) can
be proper-biharmonic in CP™. But when M is not a product the situation can be more
complicated as it is illustrated by the following example.

We consider the sphere of radius a

S (a) = {z e R?PT2: (212 4 ... 4 (2%72)2 = o2}
and its sphere bundle of all vectors tangent to S??*!(a) and of norm b, that is
M =TS+ (a) = {(z,y) € R 12,y e R |2 = a, |y = b, (2, y) = O}

It is easy to check that M is invariant under the flow-action of the characteristic vector
field &, which means e™''p € M, Vp € M and Vt € R. Let (x0,v0) € M. Then

T( M = {ZO = (X(]:YO) € R4p+4 : <II,'0,X0> = 07 <y07Yb> = 07

(Xo, o) + (o, Yo) = 0}.

M, we consider {yo,¥2, Y3, .., Y2p+1} an orthogonal

%0,Y0)

In order to find a basis in T4, )
basis in TIOS2p+1(CL), each vector being of norm b. We think M as a hypersurface of the
tangent bundle TS?*’*!(a), and we consider on TS***!(a) and M the induced metrics

from the canonical metric on R**4
M — TS?T(a) — RIPH,

The above inclusions are the canonical ones.
The vertical lifts of the tangent vectors y2,ys, ..., y2p+1, in (2o, %0), are

y;/ = (anQ)a yi‘{ = (an:s), SRR y2‘;7+1 = (O,y2p+1)a
and the horizontal lifts of yo,y2,y3, ..., y2p+1, in (z0,y0), are

b2
yé{ - (907_915‘0)7 nyI - (y270)7 y?{{ - (y370)7 sy ygﬂ»l = (y2p+170)'

The vectors {yil, ydf,yH ..., ygjﬂ,yg/,yi‘{, e 73/5;9+1} form an orthogonal basis in

T(Zo,yo)M and

b
H H
| = lys | == lyspal = b, (3| = 5| = = lysh 1l = b, [y’ | = =
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The vector C(zo,y0) = yy = (0,90) is tangent to TS*(a) in (20, o) and ortho-
gonal to M.
From now on we shall consider a% + b2 = 1 and the inclusions

M — SP1(q) x SPHL(p) 5 §PF3 _y RiPH,

2
We define 71 (z0,%0) = (yo,70) and n2(wo,yo) = (w0, —z¥0). We have that n; and 7y
are normal to M, and

(20, Y0) € T(ag.yo) (S (a) x S#H(B)), | (0, 50)| =1

a

12(20,Y0) € Taoo)S™ >, 02(20,40) L Tiag o) (S (a) x S#PF(D)), |n2(z0,0)| = 7

We denote by B, ., the second fundamental form of M in S*+3 in the point (29, yo).
By a straightforward computation we obtain

b2 a?
Blzo.0)(Z0, Z0) = —2(Xo, Yo)m — Q(IXOIQ - bﬁ\Yo|2)7727 (2.17)

where Zy = (Xo, Y0) € T,y M. From (1) we get

20 a®—b?
H = = c1).
(0, %0) il @ PO
Therefore M is minimal in S**3 if and only if a = b = %
It is not difficult to check that
S4P+3 . 4p+3 " 4p+3 _om 4p+3 _H
Vg m=m Vou =y, Vg T =Y Vir T = Y
4p+3 2 4p+3 2 4p+3 2
T A 2 ST & A
S4p+3 . b2 4p+3 v S4p+3 v 4p+3 v
i M= @ Vyn m=vYs, Vir =Yg Vin = Yo
S4p+3 R 4p+3 : 4p+3 _om
Viy M=y, Viy m=ygh. Ve =Yg
(2.18)
From (EIR) we obtain that
a’> b
trace AV(L_)W(-) =0 and trace B(-,A,,(:)) = 2p(b—2 + E)ng. (2.19)
Denoting W (g, yo) = yd!, we get
1 Cay— 1
— AT = bﬁ(VWanz - VV%WW) = —. (2.20)

Before concluding we give the following Lemma which follows by direct computation.



78 Chapter 2. Biharmonic submanifolds in complex space forms

Lemma 2.24 ([66]). Let N™ be a hypersurface of a Riemmanian manifold (P™1,(,)),
and X € C(TP) a Killing vector field. We denote X' = (X,y)" € C(TN). Then
divX" = n(H,X), where H is the mean curvature vector field of N. In particular, if
N is minimal then div X T = 0.

Now we can state

Proposition 2.25 ([66]). Let M = T*S*’*1(a) be the sphere bundle of all vectors of
norm b tangent to S?*T1(a). Assume that a®> +b*> =1 and p > 1. Then we have

(a) M is never proper-biharmonic in S*+3.

(b) M is (—4)-biharmonic in S***3 if and only if a®> = 2p+ﬁ+”22p+ :

(¢c) M is minimal in Tp’p 82p+1( ) X 82p+1(b)~

(d) w(M) is never proper-biharmonic in CP™.

Proof. As the mean curvature vector field of M in S**3 is H = ¢, where ¢ =

2p a2—b2 . . . . .
P e then M is biharmonic if and only if

{_ALUQ — trace B(-, Ay, (1)) + (4p + 1) =0 (2.21)

2 trace Avbnz(') + 4p+1 grad(c|mz|?) =

From (Z19) and (2220) we get that M is biharmonic if and only if
2 b2
b2
which is equivalent to @ = b, that is M is minimal in S**3.
(b) We obtain that M is (—4)-biharmonic if and only if
a2 2
—2 = 2p(35 + 5)n2 + (4p + L)z + 4z = 0,

which holds if and only if a2 = 22 Jﬁi Y 22p +L

(c) We denote by A the shape operator of M in S?**1(a) x S?*1(b), A = A,,. We
can check that

{A( §h) =0, A(yz) —yy, A(ysf{) ==, Al ) = -8 (2.22)
AWY) = -yl Awd) =—vil, ..., Ay, ) = -y

and therefore trace A = 0, which means that M is minimal in S?P*1(a) x S?*1(b).
(d) We first define

—12 — 2p(5 )nz + (4p+ 1)z = 0,

R 2
&(2,y) = (Jo, —5 Jy) = (=&, b2€2) V(z,y) € S*F(a) x ST (b).

The vector field &3 is a Killing vector field on S?P*1(a) x S*T1(h). We observe that
§3/m = Jns. Since M is minimal in S%*(a) x §?P*L(b), from Lemma 224, we get

div(Jn2)T = 0. Therefore w(M) is biharmonic in CP™ if and only if
n(5) —4J(Jr(5)" =0,
which is not satisfied. O
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2.4.2 Circles products.

We shall recover a result of Zhang (see [I39]).
We denote by T the (n + 1)-dimensional Clifford torus

7: T =SYa1) x - x S (ap41) — S,

where a? + -+ - + a%_H = 1. The projection 7 = 7(T) is a Lagrangian submanifold in
CP™ of parallel mean curvature vector field.

Theorem 2.26 (|I3Y]). The Lagrangian submanifold T = w(T) of CP™ is proper-
biharmonic if and only if T is (—4)-biharmonic, that is

n+1
day, — L :%(n+3)((n+1)a%—1), ke{l,2,....n+1} ~

-3
ag

{azo#l for some ko € {1,2,...,n+ 1} (2.23)

where d = Y"1 L

j=1aZ"
Proof. We denote a point z € T by
z = (@1, np1) = (21,08, Ty, Thg),
where we identify
zp = (z3,27) = (0,0,...,0,0, 2}, 22,0,0,...,0,0), k=1,...,n+1.
We define ny(z) = éxk and X = jnk, k=1,...,n+1, where

51 2 1 2 _ 2 1 2 1
J(x1, 27, Ty 1, Thg) = (27,20, =T 1, Ty )

The vector fields { X} form an orthonormal frame field of C(T'T). It is easy to check
that, at a point z,

1

B(Xk,Xk) =—mtT

ay

and for k # j:
B(X, X;) =0.

Therefore 7(7) = Y771 ((n + 1)ay, — i)nk, which implies that (J7())T = Jr(j) and
div(J7(7)) = 0.
Since V+7(7) = 0 and Az (Xg) = —=((n+1) —a%)Xk, by a straightforward computation

k
we get m2() + 47(7) = 0 if and only if the desired relation is satisfied. O

Remark 2.27 ([66]). Following [I39], for n = 2, we obtain that 7 is a proper-

biharmonic Lagrangian surface in CP? if and only if a3 = 9:|:2v041 and a3 = a3 = 11%0 V41

(see also [I1Y]).
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2.5 Biharmonic curves in CP"

Let ¥ : I C R — CP™ be a curve parametrized by arc-length. The curve ~ is called a
Frenet curve of osculating order d, 1 < d < 2n, if there exist d orthonormal vector fields
{Ey =#,...,E;} along 7 such that

?E}El = filEg
?ElEi = —Ri—lEi—l + RiEi+1, Vi=2,...,d—1 (2.24)
vElEd = —kg-1Eq

where {R1, R, R3,...,R4—1} are positive functions on I called the curvatures of 4 and
V denotes the Levi-Civita connection on CP™.

A Frenet curve of osculating order d is called a heliz of order d if k; = constant > 0
for 1 <4 <d—1. A helix of order 2 is called a circle, and a helix of order 3 is simply
called heliz.

Following S. Maeda and Y. Ohnita 92|, we define the complex torsions of the curve
v by 7i; = (E;, jEj>, 1 <i<j<d. A helix of order d is called a holomorphic helix of
order d if all the complex torsions are constant.

Using the Frenet equations, the bitension field of 4 becomes

() = —3RiREr+ (R] — R — RiR3 + R1) Es (2.25)
+(2K  Ro + R1Rb) E3 + Ri1keksEy — 31712 J E1.

In order to solve the biharmonic equation 75(%5) = 0, because of the last term in (E223),
we must split our study in three cases.

2.5.1 Biharmonic curves with 7, = £1

In this case JEy = £F; and, using the Frenet equations of 4, we obtain

SO

Consequently, z; = 0, i > 2, and, from (223), we obtain the following.

Proposition 2.28 ([66]). A Frenet curve 7y : I C R — CP™ parametrized by arc-length
with T19 = £1 s proper-bitharmonic if and only if it is a circle with k1 = 2.

Next, let us consider a curve 54 : I C R — CP" parametrized by arc-length with
Tio = +1, and denote by v : I € R — S**! one of its horizontal lifts. We shall
characterize the biharmonicity of 4 in terms of ~.

We denote by V the Levi-Civita connection on §?"+1. We have v/ = E; = (Ep)?
and

VElEl = (?ElEl)H = RlEéq = /£1E2,
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ie. ki =Ry and By = E¥ = £(JE))Y = FJE;. Tt follows

Ve By = (Vi E)" + (Vi By )¢
= —k1E1 — (B2, VE, £)¢
= —r1E F (Eq, En)¢
= —riE1 F§
and this means ko = 1 and E3 = F£. Then VElEg = :FVElg = —Fs.

In conclusion 7 is a helix with k1 = k1 and kg = 1.
Now, we have J7(v) = k1JEy = +k1E1, which is tangent to v, and then

HIr()) T} = FPr(y) = =7(3).
From
le{(jT(”?))T} = diV{R1<jEQ,E_'1>E_'1}
(V, (R1(JEs, E1))Ey, Ey)
/75/1<jE27E1> + F&1<j?E1E2,E1>
= =R} =0,

applying Remark 213 (iii), we have the following result.

Proposition 2.29 ([66]). A Frenet curve 7 : I C R — CP™ parametrized by arc-length
with T1a = +1 is proper-biharmonic if and only if its horizontal lift v : I C R — §*+1
is (—4)-biharmonic, i.e. v is a heliz with k1 = 2 and ke = 1.

Moreover, we can obtain the explicit parametric equations of the horizontal lifts of
a proper-biharmonic Frenet curve 4 : I — CP™.

Proposition 2.30 ([66]). Let ¥ : I C R — CP" be a proper-biharmonic Frenet curve
parametrized by arc-length with 715 = 1. Then its horizontal lift v : I € R — $?7+1
can be parametrized in the Euclidean space R*"2 by

v(s) = 2;\/§ cos((V2+1)s)e; — 2;\/§ sin((V2 +1)s)Je;

V242
2

cos((V2 —1)s)es +

LV2HV2 ; V2 sin((V2 — 1)s) Jes,

where e1 and eg are constant unit vectors in R2"2 with e3 orthogonal to ey and Jey.

Proof. The curve 7 is a helix with the Frenet frame field { £y = Eff, By = EN | B3 = ¢}
and with curvatures k1 = k1 = 2 and k9 = 1.

From the Weingarten equation of S?**1 in R?"*2 and Frenet equations we get
Vi Bl = Vi, Ei — (E1, E1)y = k1B — 7,

Vi, Ve E1 = kiVE By — By = ki(—k1 By T &) — By = — (k2 + 1)E1 T ki€
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and
@ElﬁElﬁElEl = _(’{'% + ]-)@E]_E]. + K/I@Elg
= *(K,%+1)VE1E1 — k1 FE>
_ —6’)/” _ .

Hence 7 is a solution of the differential equation
76y +y =0,
whose general solution is
~v(s) = cos(As)cy + sin(As)eg + cos(Bs)cs + sin(Bs)cy,

where A, B = /241 and {¢;} are constant vectors in R>"*+2,
As v satisfies

=1 =1 ©Y)=0, ,¥)=0, (', 7)=1+ki=5,
(7, =-1, (V¥ =-01+«k})=-5 (7" =0,

<%7///> =0, <7///77///> _ 75% +1=29,

and since, in s = 0, we have v = ¢; + ¢3, 7/ = Acy + Bey, 7" = —A%c; — B?cs,

A" = —A3¢cy — B3¢y, we obtain

ci1+2ci3+c33=1 (2.26)

A2c99 +2ABcay + B%cyy = 1 (2.27)

Ac1g + Acog + Beja + Besa = 0 ( )
A3ciy + AB?co3 4+ A?Beyy + B3e3y = 0 (2.29)
Atcy) +24%B%ci3 + Btegz3 =5 (2.30)
A?ciy + (A% + B%)ei3 + Blegz = 1 (2.31)
A*cyy 4+ (AB? + A’B)cgy + Bregy = 5 (2.32)
Ao + A3B%cgs + A2B3ciy + Boc34 = 0 ( )
A3¢19 4+ A3cos + B3epy + B3esy = 0 ( )
AScoy + 243 B3coy + BSeyy = 29 ( )

where ¢;; = (¢;, ¢;). From (2228), (2229), (2233) and (2233) it follows that

c12 = cog3 = c14 = c34 = 0.

The equations (2228), (2230) and (EZ30) give

1— B2 A2 -1

M= p gy (8= 0, c33= 152
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and, from (2227), (2232) and (E2233), it follows that

1- B? A% -1
w=popr HTh T

R2n+2

Therefore, we obtain that {¢;} are orthogonal vectors in with |c1| = |eo| =

—_RB2 2_
%a |c3| = |ea| = \/ ﬁ-

By using that £y =+’ L £ and then that JEy = +E;, we conclude. 0

Remark 2.31 ([66]). Under the flow-action of &, the (—4)-biharmonic curves 7 induce
the (—4)-biharmonic surfaces obtained in Example ZZ20.

2.5.2 Biharmonic curves with 75 =0

From the expression (EZZH) of the bitension field of 4 we obtain that % is proper-
biharmonic if and only if

kK1 = constant > 0, Ko = constant
Ri4+R3 =1 : (2.36)
Koksy =0
Proposition 2.32 (|66]). A Frenet curve 5 : I C R — CP™ parametrized by arc-length
with T2 = 0 is proper-biharmonic if and only if either

(a) n =2 and 7 is a circle with Ry = 1,
or
(b) n >3 and 7 is a circle with &1 = 1 or a heliz with k% + k3 = 1.

Proof. We only have to prove the statements concerning the dimension n.

First, since {E1, Fy, JEs} are linearly independent, it follows that n > 1.

Now, assume that 4 is a Frenet curve of osculating order 3 such that JE; 1 E;. We
have

El = ’7/

?EIEH = RlEQ

?EIEQ = —ElEl + EJQE;;
?ElEg, = —EQEQ

(2.37)

It is easy to see that, at an arbitrary point, the system
S1={E\, By, E3, JE|, JE>}
consists of non-zero vectors which are orthogonal to each other, and therefore n > 3. [

Next, we shall consider the horizontal lift v : I € R — S*"*! of a curve 7 :
I C R — CP" parametrized by arc-length with 7i5 = 0. As in the previous case we
have v = By = Eff, By = E¥ and then JE, L Ej. This means JA(T(v)) 1 Eq, so
(J(r(7)))" = 0. From Theorem P2 we obtain the following.



84 Chapter 2. Biharmonic submanifolds in complex space forms

Proposition 2.33 ([66]). A Frenet curve 7y : I C R — CP"™ parametrized by arc-length
with 712 = 0 is proper-biharmonic if and only if its horizontal lift v : I C R — S+ s
proper-btharmonic.

The parametric equations of the proper-biharmonic Frenet curves in S$?"*! with
JE5 1 Ej were obtained in [70]. Using that result we can state the following proposition.

Proposition 2.34 ([66]). Let ¥ : I C R — CP" be a proper-biharmonic Frenet curve
parametrized by arc-length with 712 = 0. Then the horizontal lift v : I C R — S*"* can
be parametrized, in the Euclidean space R*"*2 either by

v(s) = \}5 cos(V2s)er + \2 sin(v/2s)eg + \}563,

where {e;, jej}ijzl are constant unit vectors orthogonal to each other, or by
v(s) = % cos(v/1+ Kis)er + % sin(v/1 + k18)es
—i—% cos(v/1 — K1s)es + % sin(v/1 — K18)ey,
where k1 € (0,1), and {e;, jej}?’j:l are constant unit vectors orthogonal to each other.

2.5.3 Biharmonic curves with 7,5 different from 0, 1 or —1

Assume that 7 is a proper-biharmonic Frenet curve of osculating order d such that 79
is different from 0,1 or —1.
First, we shall prove that d > 4.

Assume that d = 2. From the biharmonic equation 72(%) = 0 we have k; = constant > 0
and then (—&$ + k1)Ey — 3k1712JE1 = 0. It follows that Ey is parallel to JEj, i.e.
Tip = 1.
Now, if d = 3, from the biharmonic equation of 4, we obtain again K, = constant > 0
and then

(—R? — R2 4+ 1)Ey + RyF3 — 3712 JEy = 0. (2.38)

Next, differentiating —712(s) = (E2, JE1), we obtain
Hols) =

=
K

EIEQ, jE1> + <E2,vEle1> = <vE1EQ, jEl) + <E2, /_‘ileQ)
71E2’ jE1> = <_R1E1 + RQE?)) jE1>
2(E3, JEy).

Hence, taking the inner product with s F3 in (2238), we get khko + 37127], = 0 and so
k3 = —372 + wp, where wy = constant. Using (Z38) it results that &3 = 1 — wy + 675,
Therefore f = constant and Ay = constant. Finally, (Z38) becomes (—&? — k3 + 1) Ey —
3710 JF = 0, which means that Es is parallel to JFE;.

We have proved the following result.

Proposition 2.35 (|66]). Let ¥ be a proper-biharmonic Frenet curve in CP™ of oscu-
lating order d, 1 < d < 2n, with 712 different from 0, 1 or —1. Then we have d > 4.



2.5. Biharmonic curves in CP" 85

Next we shall prove that for a proper-biharmonic Frenet curve in CP", 715 and R
are constants whatever the osculating order of ¥ is.
We have seen that —7{4(s) = ka2(FE3, JE1). If 72(5) = 0 we have JE| = (JEy, Es)Es +
<jE1, E3>E3 + <J_E1, E4>E4 and

K1 = constant > 0

R? + k3 =14 375
Rokh = —3T127T]9
Kok3 = 3?12<jE1, E4>

(2.39)

From the third equation of (2239), we get
Rs = =375 + wo,
where wy = constant. Replacing in the second equation of (EZ39) it follows that
R% =1+ 6712 — wo,

which implies 712 = constant, and therefore, Ro = constant > 0. From —7],(s) =
RQ(Eg,jE_l), we have <jE1,E3> = 0 and then jEl = fEQ + <jE_1,E4>E4. It follows
that there exists a unique constant ag € (0,27) \ {3, 7, 2%} such that —712 = cos g
and (JE1, Ey) = sinag = §22.

We can summarise as follows.

Proposition 2.36 ([66]). A Frenet curve 5 : I C R — CP™, n > 2, parametrized
b_y_ arc-length _wz‘th T12 diﬁerent from 0, 1 or —1 is proper-biharmonic if and only if
JE1 = cosagFs 4+ sinagFEy and

K1, Ko, kg = constant > 0
K7 + k3 =1+ 3cos? ap

o 5 . : (2.40)
Rokg = —35 sin(2ap)

T12 = — COS Q)

where ag € (5, 7) U (23F,27) is a constant.

We end this section classifying the proper-biharmonic curves in CP™ of osculating
order d < 4. First, we prove the following proposition.

Proposition 2.37 (|66]). Let 7 be a proper-biharmonic Frenet curve in CP™ of os-
culating order d < 4. Then 7 is one of the following: a holomorphic circle of curva-
ture k1 = 2, a holomorphic circle of curvature k1 = 1, or a holomorphic helixz with
R+ R3=1

1 2= L

Proof. Let 4 be a proper-biharmonic Frenet curve of osculating order d < 4. Then,
from Proposition 2238, 719 = +1 or 712 = 0. If 7o = £1, from Proposition 228, 7 is a
circle of curvature k1 = 2. If 710 = 0 then we know that 4 is either a holomorphic circle



86 Chapter 2. Biharmonic submanifolds in complex space forms

of curvature K1 = 1 or a helix. We now prove that it is a holomorphic helix. For this
we need to prove that the complex torsions 7y3, Tog are constant.

L 1 - 1 -
T3 = <E1,JE3> = —;2<VE1E2,JE1> = ;2<E2,VE1JE1>
= "YEy, JEy) =0.
K2

Now, using that for a Frenet curve of osculating order 3 we have k1723 = 7|5 + RaTi2,
we see that also o3 is constant. ]

When the biharmonic curve is of osculating order 4, system (220) has four solutions.

Proposition 2.38 ([66]). Let ¥ be a proper-biharmonic Frenet curve in CP™ of oscu-
lating order d = 4. Then 7 is a holomorphic heliz. Moreover, depending on the value of
Tia = — cos ag, we have

(a) If T12 > 0, then the curvatures of 7 are given by

Fo = %\/1 —3cos2ag £+ v9costag —42cos? o + 1

Rg = —% sin(2ayg) (2.41)
_ 1 _ _ .
Rl = —m(ﬁg cos g — K sin ayg)
and
T34 = —Tlg = COSQg, Ti4 = —Tog = —Sinag and T3 = Tog = 0,
P 2—V3
where o € (5, arccos(— N )

(b) If T12 < 0, then the curvatures of 4 are given by

Koy = _Sinﬁ\/l — 3cos? ap + V9 cost ag — 42 cos? ap + 1

_ 3 .
Ry = —55 sin(2ap) (2.42)
_ 1 _ _ .
Rl = —Snao (Rg cos ag — Rg sinayg)
and
T34 = —T12 = COS g, Ti4 = —Tog = —Sinag and Ti3 = Tog = 0,

—2%).

where a € (3T, 7 + arccos( NG

Proof. Let %4 be a proper-biharmonic Frenet curve in CP" of osculating order d = 4.
Then 719 = — cos oy is different from 0, 1 or —1, and JE; = cos agFs + sin agFEy. Then
it results that

Tia = —cosag, Ti3=0, Tig=—sinag and 7oy =0.

In order to prove that 7»3 is constant we differentiate the expression of JE; and using
the Frenet equations we obtain

Vg JE1 = cosao?ElEg—i—sinaO?ElEL

= —Ricosagby + (Kocosag — k3 sinag)Es.



2.5. Biharmonic curves in CP" 87

On the other hand ?El JE,| = k1J E5 and therefore we have
k1JEy = —F1 cos agEy + (K2 cos ag — Rg sin ag) Es. (2.43)

We take the inner product of (243) with E3, JEy and JEy, respectively, and we get

R1T23 = —(RQ cos oy — k3 sin Oéo), (2.44)
R1sin’ ag = —(Rg cos ag — K3 sin ag)Tos, (2.45)
0 = Ry cos o sin o + (Ka cos g — Rz sin ag)T34. (2.46)

From (Z24) and (PZ-43) we obtain
73 sin? ag = (Rg cos g — Rz sin ag)? (2.47)
and 733 = sin® ag. From 73 = sin? ag, (Z44) and o € (5, 7) U (35, 27), one obtains
To3 = sin ay.
From To3 = sin o, (Z44) and (E28) we get
T34 = COS Q.
Finally, from Proposition P38 and (247) we obtain

2

R% + /_-{% sin” (3 cos® a — 1)+9 sin® a cos?

Oé():O.

The latter equation has either the solutions

sin ag

V2

Ro = \/1—300s2agj:\/9cos4ao—420082a0+1

provided that og € (5, arccos(— 2\/‘5/3)), or the solutions

Fo = _Shao \/1 — 3cos2 ag £ /9 cost ap — 42 cos2 ag + 1
V2
provided that g € (3, + arccos(f—)) Note that in both cases &3 € (0,4), thus
all solutions for ko are compatible Wlth K2+ k3 =1+ 3cos? ap. O

Corollary 2.39 ([66]). Any proper-biharmonic Frenet curve in CP? is a holomorphic
circle or a holomorphic heliz of order 4.

Remark 2.40 ([66]). The existence of biharmonic curves of osculating order d > 4 is
an open problem (the case d = 4 and n = 2 will be solved in the next section). We note
that there is no curve (not necessarily biharmonic) of order d = 5 in CP™ such that
JE1 = cos agFs + sinagEy, where ag € (0,27) \ {7}
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2.6 Biharmonic curves in CP?

In this section we give the complete classification of all proper-biharmonic Frenet curves
in CP2. From the previous section, we only have to classify the proper-biharmonic
Frenet curves of osculating order 4.

In the proof of Proposition we have seen that

T34 = —Tlg = COSQg, Ti4 = —Tog3 = —sinag and T3 = Tog =0,
and
K1sinag = —(RQ cos g — K3 sin ao),
which implies that &1 — k3 = —/%22?572‘8 > 0.
Moreover, if ag € (5, arccos(—%ﬁf)), then
K1 — K3 K9

— COsS g = T12, = sin g = 7oz,

K1 — K3
VES + (Rl — R3)?

= CcosQp = —T19,

and, if ap € (3, 7 + arccos(—Q}Z/g)), then

VRS + (F1 — FRa)?

K2 . _
= S g — —723.

ViR + (R — Fa)?

In order to conclude, we briefly recall a result of S. Maeda and T. Adachi.

In [91], they showed that for given positive constants 71,k and kg, there exist four
equivalence classes of holomorphic helices of order 4 in CP? with curvatures &1, ko and
R3 with respect to holomorphic isometries of CP?. The four classes are defined by
certain relations on the complex torsions and they are: when Ry # R3

K1 # K3
L | Tio="Taa = p To3 = T4 = Ropt/(R1 + R3) Tiz=Tu=0
L | Tio=Taa=—p To3=Tia=—FRop/(R1+K3) Tiz=Tu=0
I3 | Tio=—T34 =v  Tog = —T14 = Rov/(R1 —R3) Ti3="Tau =0
Iy | Tio=—T34 = —v Tog = —Ti4 = —hov/(R1 —R3) Ti13="Tou =0
where B B
B K1+ K3
8 VF3 + (F1+ F3)?
R1— R3 ’

UV = — ——
VRS + (F1 — Ra)

and when k1 = k3 the classes I3 and I are substituted by

K1 = K3
/ — — — — — —
Is | Tio=T3a =T13 =Tau =0 T3 =-Tiu=1
/ - - — — — -
I | Tio=T3a=T13=Tau =0 Toz3 = —Tiu = —1

Using Maeda-Adachi classification, we can conclude.
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Theorem 2.41 ([66]). Let 7 be a proper-biharmonic Frenet curve in CP? of osculating
order 4. Then % is a holomorphic helix of order 4 of class I3 or 14 according to the
following table

I3 if T19<0 and 793 <0
Iy if 719 >0 and 73 >0

Conversely,

(a) For any ag € (gjarccos(—%)) there exist two proper-biharmonic holomorphic

helices of order 4 of class I3 with

Ro = %\/1 —3cos? ap £+ V9 cost g — 42 cos? ap + 1

R3 = —% sin(2ap) . (2.48)
R1 = —ﬁ(ﬁg cos oy — K sin )
(b) For any o € (21, 7r—|—arccos(—2?}2/§)) there exist two proper-biharmonic holomor-

phic helices of order 4 of class 14 with

Ro = —Sii‘/go V1 —3cos?ag £ v9cosTag — 42 cos? ag + 1
k3 = —% sin(2ay) . (2.49)
Rl = —ﬁ(/‘{g cos g — K3 sin )






Chapter

Biharmonic submanifolds in
Sasakian space forms

The present chapter, divided in three sections, is dedicated to the study of biharmonic
submanifolds in Sasakian space forms.

3.1 Explicit formulas for biharmonic submanifolds in Sasa-
kian space forms

3.1.1 Introduction

At the beginning of the first section we classify all proper-biharmonic Legendre curves
in any dimensional Sasakian space forms. Because of the complexity of the biharmonic
equation, we had to do a case by case analysis and the classification is given by Theorems
B3, B, B8 and BT0. As a by-product we prove that in a 5-dimensional Sasakian
space form all proper-biharmonic curves are helices (Theorem BT3). Then, we consider
the unit (2n + 1)-dimensional Euclidian sphere S?"*! endowed with the canonical and
deformed Sasakian structures defined by S. Tanno as a model for the Sasakian space
forms, and obtain the explicit parametric equations of proper-biharmonic Legendre
curves (Theorems BT, BT9 and B20).

In the second part of the first section we prove that, by composing with the flow
of the characteristic vector field of a Sasakian space form, we can render a proper-
biharmonic integral submanifold onto a proper-biharmonic anti-invariant submanifold
(Theorem B=22). This result allows us to obtain all proper-biharmonic surfaces which
are invariant under the flow-action of the characteristic vector field (Theorem B24).

3.1.2 Preliminaries

In this section we briefly recall basic things from the theory of Sasakian manifolds (for
example see [26]) which we shall use throughout the paper.

A contact metric structure on an odd-dimensional manifold N2"*1 is given by (¢, &,7, g),
where ¢ is a tensor field of type (1,1) on N, £ is a vector field, n is an 1-form and g is

91
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a Riemannian metric such that

pr=—I+neE ) =1
and
9(eX,0Y) = g(X, V) =n(X)n(Y), g(X,¢Y)=dn(X,Y), VXY € C(TN).

A contact metric manifold (N, ¢, &, 1, g) is called Sasakian if it is normal, i.e.

N, +2dn® & =0,
where

No(X,Y) = [pX, Y] = 0[pX,Y] - ¢[X, 0Y] + ¢*[X,Y], VX,Y € C(TN),
is the Nijenhuis tensor field of ¢, or, equivalently, if
(Vxe)(YV) =g(X,Y)E=n(Y)X, VX,Y € C(TN).

We note that from the above formula it follows Vx& = —pX.

The contact distribution of a Sasakian manifold (N, p,&,n,g) is defined by {X €
TN : n(X) = 0}. We say that a submanifold M of N is an integral submanifold if
n(X) = 0 for any vector X tangent to M; in particular, an integral curve is called a
Legendre curve. The maximum dimension for an integral submanifold of N2"*! is n.
Moreover, for m = n, one gets ¢(NM) = TM. If we denote by B the second funda-
mental form of M then, by a straightforward computation, one obtains the following
relation which we shall use later in this chapter

g(B(X7Y)790Z) = Q(B(X7 Z)?SOY)7

for any vector fields X,Y and Z tangent to M (see also [I0], [130]).

A submanifold M of N which is tangent to ¢ is said to be anti-invariant if ¢ maps
any vector tangent to M and normal to £ to a vector normal to M.

Let (N,p,&,1m,9) be a Sasakian manifold. The sectional curvature of a 2-plane
generated by X and ¢X, where X is an unit vector orthogonal to &, is called the -
sectional curvature determined by X. If the ¢-sectional curvature is a constant ¢, then
(N, p,&,m,9) is called a Sasakian space form and it is denoted by N (c).

The curvature tensor field of a Sasakian space form N(c) is given by

RIX,Y)Z = “P{g(2,Y)X —g(Z, X)Y} + F{n(Z)n(X)Y —
—n(Z)n(Y)X +9(Z, X)n(Y)§ — g(Z, Y )n(X)&+ (3.1)
+9(Z,9Y)pX — g(Z, o X)pY + 29(X, Y )pZ}.

The classification of complete, simply connected Sasakian space forms N(c¢) was given

in [I25]. When ¢ > —3, N(c) is isometric to the unit sphere S?**! endowed with the
Sasakian structure defined by S. Tanno. This structure is given as follows (see [TZ6]).
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Let St = {2 € C"*! : |2| = 1} be the unit (2n+ 1)-dimensional Euclidean sphere.
Consider the following structure tensor fields on S?"*1: the standard metric field go, the
vector field £y(2) = —J 2, z € S?"*! where J is the usual almost complex structure on
C"*+! defined by

Tz=(—yt, ., =yt T,

for z = (x!, ..., 2"yl . ") and ¢g = soJ, where s : T,C"*! — T,§?"*! denotes
the orthogonal projection. Equipped with these tensors, S?"*! becomes a Sasakian
space form with the @g-sectional curvature equal to 1, denoted by S?"+1(1).

Now, consider the deformed structure on S?7+1

1
n = ano, 52550, © =0, g=ago+ ala—1)ny ®no,

where a is a positive constant. The structure (¢, &, 7, g) is still a Sasakian structure and
(S . & m, g) is a Sasakian space form with constant ¢-sectional curvature ¢ = %—3,
¢ > —3, denoted by S?"*1(c).

If M™, with m < n, is a submanifold of the sphere S*"*! then M is integral with
respect to its canonical Sasakian structure (o, &0, 70, go) if and only if it is integral with
respect to the deformed one (¢,&,7,¢), since no(X) = 0 if and only if n(X) = 0 for
any vector field X tangent to M. Moreover, if M is an integral submanifold of S?7t!
then the normal bundle of M in (S?"*1, gg) coincides with the normal bundle of M in
(S*+L g), since for any X € T,M and Y € T,S**!, where p is an arbitrary point in
M, we have go(X,Y) =0 if and only if g(X,Y) = 0.

Next, we consider M to be an integral submanifold of , and denote by g(])‘/[ and
g™ the induced metrics on M by go and g, respectively. Denote by VM and VM their
Levi-Civita connections. Then the identity map 1 : (M, g}!) — (M, g™) is a homothety
and therefore VM = VM.

The following Lemma holds.

S2n+1

Lemma 3.1. Let M be an integral submanifold of S*" 1. If X and Y are vector fields
tangent to M then
V)(Y = VXY and V)((pY = VchY,

2 1 2 1
S2n+ s+,

g), respecti-

where V and V are the Levi-Civita connections on ( ,90) and (

vely.

Proof. From the definition of the metric g we have, for any vector fields X, Y tangent
to M and Z tangent to S?"*1,

g(VXY, Z) = ago(VXY, Z) + a(a — 1)7]0(VXY)7]0(Z).
But, since M is integral,
1 1 1 1
n(VxY) = 577(VXY> = ag(vavé-) = —59(Yy Vx¢&) = 59(Ya eX) =0,

and so
g(VXY7 Z) = ago(VXY, Z).
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On the other hand, applying the characterization of the Levi-Civita connection for V
and V, we obtain

9(VxY,Z) = ago(VxY, Z).

From the last two relations we get
90(VxY.Z) = go(VxY,2)

and therefore VxY = VxY for any vector fields X and Y tangent to M. .

For the second relation, we use (Vx¢)Y = ¢g(X,Y){ —n(Y)X and (Vxp)Y =
90(X, Y )& —no(Y)X for vector fields X and Y tangent to M, and come to the conclu-
sion. O

We end this subsection recalling that a contact metric manifold (N, p,&,n,g) is

regular if for any point p € N there exists a cubic neighborhood such that any integral
curve of £ passes through it at most once; and it is strictly reqular if all integral curves
of £ are homeomorphic to each other.
Let (N, p, €&, 1, g) be a regular contact metric manifold. Then the orbit space N = N/¢&
has a natural manifold structure and, moreover, if N is compact then N is a principal
circle bundle over N (the Boothby-Wang Theorem). In this case the fibration 7 : N —
N is called the Boothby-Wang fibration. The Hopf fibration 7 : S?"*1(1) — CP"(4) is
a well-known example of a Boothby-Wang fibration.

Theorem 3.2 ([IU6]). Let (N, p,&,n,9) be a strictly regular Sasakian manifold. Then
on N can be given the structure of a Kdhler manifold. Moreover, if (N, ¢,&,1,9) is a
Sasakian space form N(c), then N has constant sectional holomorphic curvature ¢+ 3.

Even if N is non-compact, we still call the fibration 7 : N — N of a strictly regular
Sasakian manifold, the Boothby-Wang fibration.
We end with the following classification result.

Theorem 3.3 ([I35]). A simply connected complete Kihler manifold of constant holo-
morphic sectional curvature ¢ can be identified with the complex projective space CP™,
the open unit ball D™ in C", or C™, according as ¢ >0, ¢ < 0, or ¢ = 0.

3.1.3 Biharmonic Legendre curves in Sasakian space forms

We shall work with Frenet curves of osculating order r, parametrized by arc-length.
For such a curve v : I — N we shall denote by {Ey =+ =T, Es, ..., E,} the Frenet
frame field along it, and by k1, ..., k,—1 the corresponding curvatures which are positive
functions on I.

Let (N2"+1 o €., g) be a Sasakian space form with constant (-sectional curvature
cand v:I — N a Legendre Frenet curve of osculating order r. Since

V%T = (=3rik))EL + (k] — HZI’ — K,l/{%)EQ + (2K} k2 + K1KS) E3

+r1K2K3E,

and
c+3)k1

4 4

R(T,V1T)T = !
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we obtain the expression of the bitension vector field
m(y) = V3T — R(T,VrT)T

= (=3rk1K))E1 + (n’l’ — Kk} — kK3 + %)EQ (3.2)
+(2K1 Ko + K1K5) B3 + Kkikokz By + WQ(E% ©T)eT.

In the following we shall solve the biharmonic equation m(y) = 0. Because of the last
term of 72(y) we must do a case by case analysis.

Case I: c = 1.

In this case, from (B32), it follows that v is proper-biharmonic if and only if

k1 = constant > 0, k9 = constant
/@% + KZ% =1

RoK3 = 0
One obtains the following.

Theorem 3.4 ([70]). Let N*"*1(1) be a Sasakian space form and~y : I — N a Legendre
Frenet curve of osculating order r. Then ~y is proper-biharmonic if and only if n > 2
and either 7y is a circle with k1 = 1, or 7y a heliz with k2 + k3 = 1.

Remark 3.5 ([I/0]). If n» = 1 and ~y is a non-geodesic Legendre curve we have Vo1 =
+r1¢T and then By = £oT and VrEy = £V7roT = £(§Fr1T) = —k1T+E. Therefore
ko = 1 and 7y cannot be biharmonic.

Case II: c #1, Eg 1 ©T.
From (B=) we obtain that - is proper-biharmonic if and only if

k1 = constant > 0, k9 = constant

2 2 _ c+3
K]+ K3 = =

KRoRK3 = 0

Before stating the theorem we need the following lemma which imposes a restriction on
the dimension of the manifold N2"+1(c).

Lemma 3.6 ([70]). Let v be a Legendre Frenet curve of osculating order 3 such that
Ey L oT. Then {T = E1, Ey, E3, oT,&,V7eT?} is linearly independent, in any point,
and hence n > 3.

Proof. Since 7 is a Frenet curve of osculating order 3, we have
( E1 = ’)// =T

VTEl = HlEQ

VrEy = —k1E1 + ko F3

VrE3 = —koEs
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It is easy to see that, in an arbitrary point, the system
S1={T = Er, B2, B3, 0T, &, VpT}
has only non-zero vectors and
T1Ey, TL1LE;, TLT, TL1LE T 1L VpeT.

Thus S; is linearly independent if and only if So = {E9, E3, T, &, VreT} is linearly
independent. Further, as

E2 1 57 E2 uE VT(;DTv E3 1 Ea E3 1 VTSOTv SOT 1 ga QDT 1 VTSOTa

and
E2 1 Eg 1L (pT,

it follows that Ss is linearly independent if and only if S3 = {&, VreT} is linearly
independent. But VT = £+ k19Fs, k1 # 0, and therefore Sj is linearly independent.
O

Now we can state the result.

Theorem 3.7 ([70]). Let N*"*1(c) be a Sasakian space form withc# 1 and~y : I — N
a Legendre Frenet curve of osculating order v such that Es L oT. We have
1) If ¢ < =3 then v is biharmonic if and only if it is a geodesic.
2) If ¢ > —3 then +y is proper-biharmonic if and only if either

a)n > 2 and v is a circle with k3 = %. In this case {E1, Eq, T, &} are linearly
independent,

or

b)n >3 and 7y is a heliz with k3 + K3 = %. In this case {Ev, B9, E3, oT, £,V 1T}
are linearly independent.

Case III: ¢ #1, Ez || ¢T.
In this case, from (B™), v is proper-biharmonic if and only if

k1 = constant > 0, kg = constant
ff% + /i% =c

RoKk3 = 0

We can assume that Ey = ¢T'. Then we have V1T = k1 Fy = k19T, VrEy = VT =
& — k1T. That means E3 = & and ko = 1. Hence V7 E3 = V& = —T = —Fs.
Therefore, we obtain the following result.

Theorem 3.8 ([0]). Let N*"*1(c) be a Sasakian space form withc# 1 andy: I — N
a Legendre Frenet curve of osculating order r such that Es || ¢T. Then {T, T, &} is
the Frenet frame field of v and we have

1) If ¢ < 1 then 7 is biharmonic if and only if it is a geodesic.

2) If ¢ > 1 then v is proper-biharmonic if and only if it is a heliz with k3 = ¢ — 1
(and Ky =1).
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Remark 3.9. If n = 1, for any Legendre curve Es || ¢T, and we reobtain Inoguchi’s
result in |79].

Case IV: ¢ # 1 and g(Eg2, ¢T) is not constant 0,1 or —1.
Assume that « is a proper-biharmonic Legendre Frenet curve of osculating order r
such that g(Eq,¢T') is not constant 0,1 or —1. One can check that, in this case,
4<r<2n+1,n>2 and T € span{Fy, E3, F,}.

Now, we denote f(s) = g(Ea,¢T) and differentiating it we obtain

f'(s) =g(VrE2,¢T) + g(E2,VrpT) = g(V1E2, ¢T) + g(E2, & + k19E»)
= g(VrEs, oT) = g(—mT + k2 E3, oT)

= Kag(E3, ¢T).

Since T = g(¢T, E2)Ea+g(¢T, E3)Es+g(¢T, E4) Ey, the curve +y is proper-biharmonic
if and only if

(k1 = constant > 0

24,2 ct3 | 3(c=1) g2
kit ry =+ = f

why = — 2 fo(oT, B3)

Kokg = —@fg(sﬂw, Ey)

Using the expression of f’(s) we see that the third equation of the above system is

equivalent to
3(c—1)
=Ty

where wy = constant. Replacing in the second equation it follows

2 _ct+3 3(c—1)

Kl = 1 wo + 9 f

which implies f = constant. Thus ko = constant > 0, g(E3, ¢T) = 0 and then T =

fEs + g(oT,E4)Ey. Tt follows that there exists an unique constant agy € (0,27) \
Z,m, 3%} such that f = cosap and g(¢T, Ex) = sin .

We can state the result.

Theorem 3.10 ([70]). Let N?"T1(c) be a Sasakian space form with ¢ # 1, n > 2, and
v : I — N a Legendre Frenet curve of osculating order r such that g(FEa, pT) is not
constant 0,1 or —1. We have

1) If ¢ < =3 then v is biharmonic if and only if it is a geodesic.

2) If ¢ > —3 then 7 is proper-biharmonic if and only if r > 4, ¢T = cosagFs +
sinagE4 and

f? + wo,

K1, k2, kg = constant > (

3(c—1
K3+ K3 = b2 +7(4 ) cos?ag

Kok3 = —@ sin(2ap)
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where o € (0,27) \ {5, 7, 35} is a constant such that ¢+ 3+ 3(c — 1) cos®> ap > 0 and
3(c—1)sin(2ap) < 0.

Remark 3.11 ([/0]). In this case we may obtain biharmonic curves which are not
helices.

Proposition 3.12 (|70]). Assume that ¢ > —3, ¢ # 1, and n = 2. Let vy be a proper-
biharmonic Legendre Frenet curve of osculating order r, such that g(Ea, ¢T) is not
constant 0,-1, or 1. Then vy is a heliz of order 4 or 5.

Proof. We know that r € {4,5}. If r = 4, then the result is obvious from Theorem BT0.
Assume now r = 5. Since T = cosapgFy +sinagFy, and £ L ¢T, £ 1L E,, we get
¢ L E4, and then, along v, £ € span{Es, F5}.
From the Frenet equations of «y it follows that

9(V1E3,§) = g(—roEo + k3Ey,&) =0

and

9(V1Es5, &) = g(—kaEy, &) = 0.

Then, since Vg = 0, we obtain (g(Es,&)) = 0 and (g(E5,¢£)) =0, i.e. a = g(FE3,¢&) =
constant and b = g(Ej5, ) = constant.
Now, we have

9(VrEy,§) = —k3g(E3,§) + r19(E5, §) = —K3za + kab
and, since g(VrFEy,§) = g(Ey, ¢T) = sin ag, we get
sin g = —k3a + K4b (3.3)

which implies that b = 0 or k4 = constant.
Case b= 0. Since £ € span{E3, E5}, we have E3 = ££ and therefore

VTE;), = :FQOT = Fcos OzoEg F sin OzoE4.

From the third Frenet equation, ko = £ cosag, k3 = Fsinag, and then, from Theo-

rem B0, Kok = —3sin(2a0) = —@ sin(2ap). Thus, we have ¢ = % and, again
using Theorem B0, k1 = %

We shall prove now k4 = k1, S0 7y is a helix of order 5. From the last Frenet equation,
we obtain

9(V1rEs5,¢T) = —kag(Ey, ¢T) = —k4 sin ag. (3.4)

Since g(Es,¢T) = 0 we have g(VrEs5, ¢T') + g(Es, VreT) = 0. We can check that
9(E5,V1reT) = k19(Es, pE2), therefore, using (B4), we get

ng(Eg), QOEQ) = R4 sin Q. (35)

Next, from the fourth Frenet equation and (B3),

2

K3 .
9(VrEy, pEo) = kag(Es, pE2) = ﬁ sin ayg. (3.6)
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Since T = cos agFEs + sin apFy it results that g(F4, pF2) = 0. It follows
9(VrEy, pE2) = —g(Es, VrpEs)
= —g(Ey, V1 E2) = r19(Ey, ¢T) (3.7)
= K1 Sin ag.

From (B8) and (B7) we obtain k4 = k1 = %
Case b # 0. Of course, due to (B33) k4 = constant and so v is a helix. Moreover, we
can obtain an additional relation between the curvatures.

Indeed, since ¢ € span{E3, E5} it follows a? 4+ b% = 1. On the other hand
9(VrEs,§) = g(E2,¢T) = cosag
= g(=r1T + koE3,§) = kaa

and as —r3a + k4b = sin oy, replacing in a? + b? = 1 we get

(kg sin ag + K3 cos ag)? + K3 (cos ag)? = K3K7.

From Theorems B4, B7, BR and the above Proposition we conclude.

Theorem 3.13 ([i0]). Let v be a proper-biharmonic Legendre curve in N°(c). Then
¢ > —3 and 7y is a helix of order r with 2 < r <5.

In the following, we shall choose the unit (2n + 1)-dimensional sphere S?"*! with
its canonical and deformed Sasakian structures as a model for the complete, simply
connected Sasakian space form with constant ¢-sectional curvature ¢ > —3, and we
shall find the explicit equations of biharmonic Legendre curves obtained in the first
three cases, viewed as curves in R2"12,

In [92] are introduced the complex torsions for a Frenet curve in a complex manifold.
In the same way, for v : I — N a Legendre Frenet curve of osculating order r in
a Sasakian manifold (N?"T1 ¢ € 7, g), we define the @-torsions 7;; = g(E;, pE;) =
—g((pEZ‘,E]’), ,g=1,...,r, 1 <j.

It is easy to see that the following holds.

Proposition 3.14. Let v : I — N(c) be a proper-biharmonic Legendre Frenet curve in
a Sasakian space form N(c), ¢ # 1. Then ¢ > —3 and T2 is constant.

Moreover, we prove the following result.

Proposition 3.15. If v is a proper-biharmonic Legendre Frenet curve in a Sasakian
space form N(c), ¢ > =3, ¢ # 1, of osculating order r < 4, then it is a circle or a heliz
with constant -torsions.
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Proof. From Theorems B7, B8 and B0 we see that if -y is a proper-biharmonic Legendre
Frenet curve of osculating order r < 4, then 79 = 0 or 7o = £1 and, obviously, we
only have to prove that when ~ is a helix then 713 and 73 are constants.

Indeed, by using the Frenet equations of v, we have
(pF1,VE By + k1 Ep) =

T3 = 9(E17<PE3): (¢E17VE1E2)

-9 -9
K9 K2

1 1
= ;29(E2,VE130E1) = (B2, ¢oVE,E1+£) =0

—g
K2
since

1 1
g(EQag) = ;lg(vElElvf) = (ElavElf) = ;lg(El?SOEl) =0.

-9
R1
On the other hand, it is easy to see that for any Frenet curve of osculating order 3
we have 793 = %1(7{3 + ko712 + n(F3)) and

n(Es3) = g(E3,§) = ;(g(vElEmﬁ) + /ﬂg(Eh{)) = (B2, V&)

-9
K2
1

= ——Ti2.
K2

In conclusion, 793 = %1(7'{3 + KoTi2 — %27'12) = constant.

O]

Proposition 3.16. If v is a proper-biharmonic Legendre Frenet curve in a Sasakian
space form N(c) of osculating order r = 4, then ¢ € (%, 5) and the curvatures of y are

Ve+3s 1\/6(0—1)(5—0) - _1\/3((:—1)(3(:—7)_

- - c+3

K1 = ) R2 = 2 C+3 ’ 3 2

2 2

Moreover, the p-torsions of v are given by

2(5—c 3c—7

T2 = F (C+3)7 13 =0, T4 = 4/ 5%
3e—7 2(5—¢)(3c—7
To3 = FoBl | 7y =0, Ty = g/ 2000

3(c—1)(c+3)’ 3(c—=1)(c+3)

Proof. Let 7 be a proper-biharmonic Legendre Frenet curve in N(c) of osculating order
r = 4. Then ¢ # 1 and 719 is different from 0, 1 or —1. From Theorem B0 we have
pE1 = cos agFEa + sin agEy. It results that

Tig = —cosag, Ti3=0, 714 = —sinag, and 7y =0.

In order to prove that 7o3 is constant we differentiate the expression of ¢ E; along ~ and
using the Frenet equations we obtain

VEl(pEl = COS&0VE1E2+SinOé0VE1E4

= —kKycosapFEy + (ko cosag — kg sinag) Es.
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On the other hand, Vg, oF = k1pFE> + £ and therefore we have
k1pEs + & = —k1 cosagEq + (ke cos g — k3 sin o) E. (3.8)
We take the scalar product in (BX8) with £ and obtain
(k2 cos g — k3 sinag)n(E3) = 1. (3.9)

In the same way as in the proof of Proposition B234 we get

1
n(Es) = g(£3,8) = ;2<9(VE1E27§) + /4&19(E1,§)> = —;29(]52, Vi §)
1 COS (g
= —T12 =

K2 K9

and then, from (B9),
Ko Sin aig = — K3 COS Q.
Therefore ag € (5, m) U (3F, 2m).
Next, from Theorem BT, we have
3 3(c—1 3(c—1
KZ% = CZ . K3 = (04 ) cos? ag, /1% = (C4 ) sin? ay,

and so ¢ must be greater than 1.
Now, we take the scalar product in (BR) with F3, pFEs and @FEy, respectively, and
we get

. K2 oS g
K1Tog = — (ke cosag — K3 sinag) + n(E3) = — (3.10)
COS K9
. 9 . K2
k1sin® ag = — (kg cos g — k3 sin ag)Te3 = — To3 (3.11)
€oS A
0 = K1 cos apsinag + (kg cos ag — K3 Sin ) T34 = K1 COS (g sin o + T34. (3.12)
cos
and then, equations (B10) and (B11) lead to
2
) K
/-i% sin? ag = TQ -1
cos? g

We come to the conclusion sin® oy = 36‘3_;37, S0 ¢ € (%,5), and then we obtain the
expressions of the curvatures and the p-torsions. O

Theorem 3.17 ([0]). Let v : I — S*™*1(1), n > 2, be a proper-biharmonic Legendre
curve parametrized by arc-length. Then the equation of v in the Euclidean space R*"2,
is either

~v(s) = \2 cos (\@8) el + \}5 sin (\/§8> es + \}563

where {e;, «763‘}?]’:1 are constant unit vectors orthogonal to each other, or

1 1 1 1
v(s) = —=cos(As)e; + —=sin(As)es + —= cos(Bs)esz + —= sin(Bs)eu,

V2 V2 V2 V2
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where

A=+1+k1, B=+V1—-k1, K1 E(O,l), (313)
and {ei}le are constant unit vectors orthogonal to each other, satisfying
(e1,Te3) = (e1, Teq) = (e2, Te3) = (e2, Tea) =0, Afe1,Jea) + Bes, Teq) = 0.

2n+1
Sen+l,

Proof. Let us denote by V and by V the Levi-Civita connections on ( go) and

(R27+2 (1)), respectively.
First, assume that 7 is the biharmonic circle, that is k; = 1. From the Gauss and
Frenet equations we get

VoT = VT — (T, T)y = k1 By —

and o
VoVerT = (—k2 — 1)T = —2T,

which implies
v +29 =0.

The general solution of the above equation is
~v(s) = cos (\/55) ¢y + sin (\@s) co + c3,

where {c;} are constant vectors in R?"+2,
Now, as ~y satisfies

v=1 7)=1 (1,7)=0, (+,7") =0, ",y =2, (v,7") = -1,

and since in s = 0 we have v = ¢ + ¢3, 7 = V2¢a, 7" = —2¢1, we obtain

1 1
c11 +2c13+c33 =1, co2 = c12t+co3 =0, c12=0, ¢11 = 5,c11 + 13 = >

2’ 2
where ¢;; denotes (c;,cj). The above relations imply that {c;} are orthogonal vectors
in R2n+2 with ‘01‘ = ‘CQ‘ = ’63’ = %

Finally, using the fact that ~ is a Legendre curve one obtains easily that (c;, J¢;) =0
for any i, = 1,2,3. If we denote e; = v/2¢; we obtain the first part of the Theorem.

Suppose now <y is the biharmonic helix, that is KJ% + mg =1, k1 € (0,1). From the
Gauss and Frenet equations we get

VT = VT — (T, T)y = k1 Ey — v,
6T6TT = mﬁTEQ —T =Ky ( — T + :‘<62E3) -T=-— (Iﬂ:% + 1)T + k1koFs3
and
%TﬁTﬁTT = — (H% + 1) %TT + K1 H2€TE3 = — (/@% + 1) %TT — K1 K)%EQ = —2')/” — m%'y.

Hence ‘
7" +29" + Kiy =0,
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and its general solution is
~v(s) = cos(As)cy + sin(As)ey + cos(Bs)cs + sin(Bs)cy,

where A, B are given by (BI3) and {c;} are constant vectors in R?"2,
As ~ satisfies

=1 . A)=1, (1,7)=0, (V,7") =0, (v/,7") =1+ &3,

(7" = =1, (") =~ D), (77" =0, (30" = 0, (" y") = 363 + 1,

and since in s = 0 we have v = ¢ + ¢3, ¥ = Acy + Bey, 7' = —A%c; — B?cs,
A" = —A3¢y — B3¢y, we obtain

c11+ 2c13 +c33 =1 (3.14)

APcoy + 2ABcoy + B?cqy = 1 (3.15)

Acyo + Acos + Beyg + Bezg = 0 (3.16)

A3cip + AB%co3 + A?Beyy + BPc3y = 0 (3.17)

Alcyy +24%B%c13 4+ Bless = 1+ 2 (3.18)

Aciy + (A + B*)eis + Blesz = 1 (3.19)

Alcgg + (AB? + A3B)coy + Blegy = 1+ K2 (3.20)

Adcig + APB?cog + A2B3ciy + Boc3y = 0 (3.21)

Acig 4 Aoz + B3e1y 4+ B3e3y =0 (3.22)

ACcoy +243B3cyy + Bleyy = 3k + 1 (3.23)

where ¢;; = (¢;, ¢;). Since the determinant of the system given by (818), (BI4), (8=21)

and (B22) is —A2B2(A% — B?)* # 0 it follows that
Cig = C23 = C1qa = c34 = 0.
The equations (B14), (BIX) and (BT9) give
=g, caz3=0, 3=,

and, from (BT3), (320) and (B23) follows that
P
622—2, C24 = U, c44—2-

Therefore, we obtain that {c;} are orthogonal vectors in R?"*2 with |c1| = |ca| = |e3| =
1
|ca| = 3
Finally, since v is a Legendre curve one obtains the second part of the Theorem. [
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Remark 3.18 ([70]). We note that if v is a proper-biharmonic Legendre circle, then
Ey L T and n > 3. If 7 is a proper-biharmonic Legendre helix, then go(Eq, ¢T) =
—Ale1, Je2) and we have two cases: either Fy L ¢T and then {e;, jej};{j:l is an or-
thonormal system in R2"*2 so n > 3, or go(Ea, ¢T) # 0 and, in this case, go(Ea, ¢T) €
(—=1,1)\ {0}. We also observe that T cannot be parallel to Eo. When go(E2, ¢T') # 0
and n > 3 the first four vectors (for example) in the canonical basis of the Euclidean
space R?"t2 satisfy the conditions of Theorem BId, whilst for n = 2 we can obtain
four vectors {e1, ea, e3, €4} satisfying these conditions in the following way. We consider
constant unit vectors ey, ez and f in RS such that {eq, e3, f, Je1, Tes, J f} is a J-basis.
Then, by a straightforward computation, it follows that the vectors es and e4 have to
be given by

B
ey = JFZJel +af+adf, es==xTes,

where a7 and a9 are constants such that a% + a% =1-B2%/A? = 2r1/A%. As a concrete
example, we can start with the following vectors in RS:

e1 =(1,0,0,0,0,0), e3=(0,0,1,0,0,0), f=(0,1,0,0,0,0)

and obtain

B
€2 = (Oaalaoa _270427())7 €4 = (0707070707 1)7

where o + a4 = 1 — B%/A2.

The classification of all proper-biharmonic Legendre curves in a Sasakian space form
N?7F1(c) was given in [70]. This classification is invariant under an isometry ¥ of N
which preserves £ (or, equivalently, ¥ is p-holomorphic).

In order to find higher dimensional proper-biharmonic submanifolds in a Sasakian
space form we gave Theorem B2

Next we shall use the deformed Sasakian structure (p,€,,g) on S?*1,

Theorem 3.19 ([0]). Let v : I — S**1(c), n > 2, ¢ > —3 and ¢ # 1, be a proper-
biharmonic Legendre curve parametrized by arc-length such that Eo L @T. Then the
equation of 7y in the Euclidean space R*"*2 is either

v(s) = \}5 cos <\/§S)61 + \}5 sin <\/§S)62 + \}563,

forn > 2, where {e;, jej}%jzl are constant unit vectors orthogonal to each other, or

1 1 1 1
v(s) = 7 cos(As)ey + 7 sin(As)eg + 7 cos(Bs)es + 7 sin(Bs)ey,

form > 3, where

A:UM, B:UM, H1€(0,l>, (3.24)
a a a

and {e;, Jej}g’jzl are constant unit vectors orthogonal to each other.
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Proof. Again let us denote by V, V and by V the Levi-Civita connections on (St g),
(SZnF1 go) and (R?™2 (,)), respectively. From the definition of the Levi-Civita connec-
tion, as go(X, oY) = dno(X,Y) and g(X,¢Y) = dn(X,Y), we obtain ¢g(VxY,Z) =
ago(VxY, Z), for any vector field Z and for any X, Y which satisfy X 1 £, Y L ¢ and
X 1 @Y. Further, it is easy to check that we have

VxY =VxY, VX,Y e C(TS*™ ) with X L€, Y L¢& X LY. (3.25)

First we consider the case when 7 is the biharmonic circle, that is x2 = C'Z—?’. Let T =
7' be the unit tangent vector field (with respect to the metric ¢) along +. Using (B=23)
we obtain VTT = V7T and VTEQ = VrEs.
From the Gauss and Frenet equations we get

~ . 1
VTT = VTT - <T, T>’y = HlEQ — E’y

and
VoVl = (—k2 — )T = —=T.
Hence
ay +2v =0,

with the general solution

() = cos (42 ) +-sin (1 Z5)e -+ o

where {c;} are constant vectors in R?"+2,
As ~ verifies the following equations,

1 2 1
<’Ya’y> = 1’ <’)/a’y/> = E? <’Y7’7/> = Oa <’yla’}//> = O’ <’Y”7/7H> = ?7 <’Y;’Y”> = _aa

and in s =0 we have y =¢; +¢3, 7 = \/302, ~' = —%cl, one obtains

1 1 1
ci1+2ci3+c33=1, coo = 3 12 +c23=0, c12=0, ¢c11 = 3 cn +ci13 = 2

where ¢;; = (c;, ¢;). Consequently, we obtain that {c;} are orthogonal vectors in R?"+2
with ‘01‘ = ‘CQ‘ = ’63’ = %

Finally, using the facts that v is a Legendre curve and ¢g(V.,v',¢7') = 0 one obtains
easily that (c;, Jc¢j) =0 for any 4,5 = 1,2,3.

Now we assume that + is a biharmonic helix, that is k3 + k3 = <3, k% € (O, %)

First, using (3223), we obtain VT = V7T, VpEy = VpEy and VpEs = Vi Fs.
From the Gauss and Frenet equations we get

~ . 1
VT =V7T — (T, T)y = k1 Ey — =,
a

~ _ 1 1 1
VoVeT = kiNVpEy — =T = 1y ( — T+ HQEQ,) _IT= —(n% n —)T + K1k Fs,
a a a
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and
ﬁT%T%TT = — <H% + %)%TT + H11€2€TE3 = — (/{% + é)%TT — HlH%EQ
=—29" — 3K3y.
Therefore

ay™ + 29" + K3y = 0,
and its general solution is
v(s) = cos(As)cy + sin(As)ca + cos(Bs)cs + sin(Bs)cq,

where A, B are given by (B24) and {c¢;} are constant vectors in R?*+2,
The curve ~ satisfies

1 1+ ar?
() =1 () =2 (07) =0, (V9" =0, () = — 5,
1 1 + ar?
<7a’7”> = _57 <7/77W> = - a2 1? <’7”a7/”> =0, <7’7///> =0,
3ak? + 1
<’}//”, ’Y/”> — ;3 ,

and in s = 0 we have
vy=c1+c3, ¥ =Acy+ Bey, 7' = —A%cy — B203, 7" = —A3cy — B3ey.

Then, it follows

c11+2c13 +ec33 =1 (3.26)

APcyp + 2ABeoy + B?cyy = 2 (3.27)

Acyg + Acas + Beyg + Besg = 0 (3.28)

A3cig 4+ AB?cy3 4+ A?Beyy + B3c3 = 0 (3.29)
Aoyt + 242 B215 + Blegy — © t;“% (3.30)
A%cy + (A% + B3+ B3z = 2 (3.31)
Alcyy + (AB + AB)cas + Blogy = tl;“””% (3.32)
APcig + A3B2co3 4+ A’B3ciy + Boc3y = 0 (3.33)
A3cio + A3co3 + B3¢y + B33y =0 (3.34)
AScgo 4+ 2A3B3coy 4+ BSeyy = ?’a’f;rl (3.35)

where ¢;; = (¢;, ¢;j).
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The solution of the system given by (B=28), (B229), (8233) and (B=33) is
clg = c93 = c1q4 = ¢34 = 0.
From equations (B=28), (B230) and (B=3T) we get
R
611_27 613_ I 033_27

and, from (B=21), (8332), (B=33),

1

Co9 = 5, Coqg = 0, C44 = 5
We obtain that {c;} are orthogonal vectors in R?"*2 with |c1| = |e2| = |e3]| = |ca| = %
Finally, since + is a Legendre curve and ¢g(V.7/,¢7") = 0, one obtains the conclusion.
O

In the third case, just like for S* (see [Z1]), we obtain.

Theorem 3.20 ([70]). Let v : I — S*"*1(c), ¢ > 1, be a proper-biharmonic Legendre
curve parametrized by arc-length such that Eo || ¢T. Then the equation of 7 in the
Euclidean space R?"t2 s

v(s) = \/%cos(As)el — \/%sin(/ls)jel

+ AJFLB cos(Bs)es + M% sin(Bs)Jes

= /—AEB exp(—ids)e; + —A_’ﬁB exp(iBs)es,

where {e1,e3} are constant unit orthogonal vectors in R?"*2 with e3 orthogonal to Jeq,
and

A:\/3—2a—2 Ela—l)(a—Q)7 B:\/3—2a+2 Ela—l)(a_Q)' (3.36)

Remark 3.21 ([lZ0}). For the fourth case the ODE satisfied by proper-biharmonic
Legendre curves in the unit (2n+ 1)-sphere may be also obtained but the computations
are rather complicated.

3.1.4 Biharmonic submanifolds in Sasakian space forms

A method to obtain biharmonic submanifolds in a Sasakian space form is provided by
the following Theorem.

Theorem 3.22 ([70]). Let (N?"*1 . &, n, g) be a strictly reqular Sasakian space form
with constant p-sectional curvature ¢ and leti: M — N be an r-dimenstonal integral
submanifold of N, 1 <r < n. Consider

F:M=IxM-=N, F(tp)=d(p)=dyt),
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where I =S or I =R and {¢;}ie; is the flow of the vector field &. Then F : (M,ﬁ =
dt?> +i*g) — N is a Riemannian immersion, and it is proper-biharmonic if and only if
M is a proper-biharmonic submanifold of N.

Proof. From the definition of the flow of £ we have

A7(1,p)(57) = e ls=eAp(5)} = bylt) = E(6(1)) = E(F (1. p))

ie. % is F-correlated to £ and

ar .0 ()] = e = 1= |7

The vector X, € T,M can be identified to (0, Xp) € T(y,) (I x M) and we have

dFyp)(Xp) = (dF) (1) (7(0)) = %|s=o{¢t(7(8))} = (do)p(Xp).

Since ¢; is an isometry [dF{; ) (Xp)| = |(dor)p(Xp)| = [Xp|.
Moreover,

9(AFu (§) (X)) = g(E(ép(®), (do0)y(X,))
:g((d@)p(fp) (d¢t) (X, )) —9(§pa ) 0

~r 0
= g(ﬁv Xp)7
and therefore F': (I x M,g) — N is a Riemannian immersion.

Let F~Y(TN) be the pull-back bundle over M and V7T the pull-back connection
determined by the Levi-Civita connection on N. We shall prove that

T(F)p) = (doe)p(T(i)) and m2(F) () = (dor)p(2(i)),

so, from the point of view of harmonicity and biharmonicity, M and M have the same
behaviour.

We start with two remarks. First, let 0 € C(F~Y(TN)) be a section in F~}(TN)
defined by o,y = (d¢t)y(Z,), where Z is a vector field along M, ie. Z, € T,N,
Vp € M. One can easily check that

(VX0) @y = (dd)p(VXZ), VX € C(TM). (3.37)

Then, if o € C(F~Y(TN)), it follows that po given by (p0)¢,) = ©g,1) (1)) 18 a
section in F~1(TN) and
vh 290 = oV o (3.38)
ot

Now, we consider { X7, ..., X, } a local orthonormal frame field on U, where U is an open
subset of M. The tension field of F'is given by

r(F) = VFdF(gt) dF(Vftgt) Z{VF dF(X,) — dF (VY X)) (3.39)

a=1
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As
0 0 0
F _ wNg M Y _
Va dF<8t>_v5€_0’ Voo Vom0
(VE.AF(X0)(1p) = (d60)p(VY, Xa), dF(p (VY Xo) = (dé0)p(VY X,

replacing in (BZ39) we get

T(F)tp) = (de)p(7(1))-
In order to obtain that 72(F) ) = (dét)p(2(i)), we shall prove first that V% 7(F) =

ot
—p((F)).
Since [%,Xa] =0,a=1,..,r, it follows that

vh dF(X,) = VK, dF( 8)

ot
But
(vF dF<5’Q))(t,p) vdF(thaf Vids,x.§ = ~#((ddu)p(Xa))
—(dor)p(0Xa),
SO
(VEAP(X,) = —(dd)y(eXa). (3.40)
ot (t,p)

We note that

0
RF (£, X, )dF(X,) = V5 VK dF(X,) - V5, V5 dF(X,)
ot’ ot ot

and, on the other hand, as IV is a Sasakian space form,

(R (5 Xa)aF (X)) | = B )€ (X)) (0 Xe) = €

Therefore
vh VE dF(X,) ~ VK,V dF(X,) = ¢ (3.41)
ot ot

Using (B337) and (820), V§ V4 dF(X,) can be written as
ot

(VEVEAF(XD) = ~(do0,(VE,0Xe)
o ’ (3.42)

—(dde)p(& + oV, Xa).

Moreover, from (BZ0)

(v% dF(VY Xa)) - (v% dF(V%LXa)) (

t,p) t,p) (3.43)

- (d(bt)P(Spvé\(/[aXa)'
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Replacing (B22) in (BZ) and using (8Z3), we obtain
¢ = VEVE dF(X,) - VE dF(VY X,) + VE dF(VA X,) - VE VE dF(X,)
ot ot ot ot
= Vi VdF(Xa, Xo) = (do)p(p VX, Xa) + (d60)p(€ + VY, Xa)

= V4 VAF (X4, Xa) + 0(dé)p(VY, Xo — VY Xo) + ¢,

ot
SO

(vg VdF(X,, Xa)) = —o(dér)p(Vdi(Xa, X)) (3.44)

(t.p)

Since VAF (&, £) = 0, summing up in (824) we obtain

VL T(F) = —p(r(F)). (3.45)

ot

From (B238) and (BZ3) we have

VL VET(F) ==V o(r(F) = =V 7(F) = p*r(F)
ot ot ot ot (346)
= _T(F)a
and from (BZ37)

(VR VX T(E))(rp) = (don)p(VX, VX, 7(1)), (3.47)
(vg )A?QXGT(F)) = (90 (v%fa Xar(i)) . (3.48)

From (BZ8), (821) and (B2X) we obtain

APy = VEVETF)+ i (VE, V5 r(F) - VE, ()

‘ (3.49)

= —T(F)(p) — (dde)p(Alr(1)).

Using the form of the curvature tensor field RN, after a straightforward computation,
we get
trace R" (dF, 7(F))dF = —7(F) + (d¢y),(trace R (di, 7(i))di). (3.50)

Finally, from (B29) and (B=50) we conclude

72(F) ) = (dor)p(Ta(i))-
O

Remark 3.23 (|70]). The previous result was expected because of the following remark.
Assume that (N2t . € n,g) is a compact strictly regular Sasakian manifold and let
G : M — N be an arbitrary smooth map from a compact Riemannian manifold M.
If F is biharmonic, then the map G is biharmonic, where F : M = S' x M — N,

F(t,p) = ¢:«(G(p)).
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Indeed, an arbitrary variation {Gs}s of G induces a variation {F}4 of F. We can check
that 7,4 (Fs) = (dot)c,(p)(Tp(Gs)) and, from the biharmonicity of F' and the Fubini
Theorem, we get

d 1. d )
0 = ol BalF} = 5o [IEE 5= 52l [ 1e(G

= 2#% ls=0{E2(Gs)}-

Since 4 |,—o{E2(Gs)} = 0 for any variation {G,}, of G, it follows that G is biharmonic.
In particular, if M is a submanifold of N and G is the inclusion map i, then we have
the direct implication of the Theorem.

Theorem 3.24 ([70]). Let M? be a surface of N2F1(c) invariant under the flow-action
of the characteristic vector field £. Then M 1is proper-bitharmonic if and only if, locally,
it is given by F(t,s) = ¢¢(y(s)), where v is a proper-biharmonic Legendre curve.

Proof. A surface M of N2+ invariant under the flow-action of the characteristic vector
field &, that is ¢¢(p) € M, for any t and any p € M, can be written, locally, F(t,s) =
¢1(v(s)), where 7 is a Legendre curve in N. Then, from Theorem B=22, such a surface
is proper-biharmonic if and only if « is proper-biharmonic. O

Corollary 3.25 ([7]). Let M? be a surface of S endowed with its canonical Sasa-
kian structure which is invariant under the flow-action of the characteristic vector field
&. Then M s proper-biharmonic if and only if, locally, it is given by F(t,s) = ¢i(v(s)),
where 7y is a proper-bitharmonic Legendre curve given by Theorem 11

Next, consider the unit (2n + 1)-dimensional sphere S?**! endowed with its cano-
nical or deformed Sasakian structure. The flow of £ is ¢¢(z) = exp(—il)z, and from
Theorems BTY, and we obtain explicit examples of proper-biharmonic surfaces
n (S, €1, 9), a > 0, of constant mean curvature.
Moreover, we reobtain a result in [4].

Proposition 3.26 ([d]). Let F : M3 — (S5, 0, €0, M0, go) C R be a proper-biharmonic
anti-invariant immersion. Then

F(t,u,v) = eXp(\/;t)(exp(iu),ieXp(—iu) sin(v/2v), i exp(—iu) cos(v2v)).

Proof. It was proved in [I20] that the proper-biharmonic integral surface of (S°, g, &0, 70,
go) is given by

\}5 (exp(iu),iexp(—iu) sin(v'2v), i exp(—iu) cos(v/2v)).

Now, composing with the flow of £y we reobtain the result in [4]. O

z(u,v) =
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3.2 Biharmonic hypersurfaces in Sasakian space forms

3.2.1 Introduction

The first result of the second section is the characterization of the biharmonic subma-
nifolds in a strictly regular Sasakian space form N(c) obtained from submanifolds in
the quotient space N(c + 3) by using the Boothby-Wang fibration. We call such sub-
manifolds Hopf cylinders. In order to insure the existence, we show that ¢ + 3 must be
positive and then, by using the Takagi classification, we obtain all proper-biharmonic
Hopf cylinders over homogeneous real hypersurfaces in complex projective spaces of

constant holomorphic sectional curvature ¢+ 3 > 0.

3.2.2 Biharmonic hypersurfaces in Sasakian space forms

Let (N27F1 o € 1, g) be a strictly regular Sasakian space form with constant ¢-sectional
curvature ¢, and m : N — N = N/¢ the Boothby-Wang fibration. Let i : M — N be
a submanifold and consider the associated Hopf cylinder i : M = 7= }(M) — N, of
dimension m. We shall denote by B, A and H the second fundamental form of M in
N, the shape operator and the mean curvature vector field, respectively. By V+ and
AL we shall denote the normal connection and Laplacian on the normal bundle of M
in N.
We have the following characterization.

Theorem 3.27 ([64]). The Hopf cylinderi: M™ = m=Y(M) — N is biharmonic if and
only if

AtH = —trace B(-, Ag-) + C(m+2)4+3m72H + 3(621) (p(pH)*)*
(3.51)
dtrace Ag1 (1) + megrad(|H[?) — 3(c — 1)(p(pH)H) T = 0.

Corollary 3.28 ([6Y]). If M is a hypersurface of N, then M = w~Y(M) is biharmonic
if and only if

Alg = ( - |B|2 + c(n+1)2+3n71)H

(3.52)
2trace Ay (-) + ngrad(|H|?) = 0.
Proof. This result follows easily since, in codimension 1, (pH)* = 0 and
trace B(-, Ag-) = |B|*H.
O

Now, since 7(i) = 2nH = (7(i))¥ = (2n — 1)H", we obtain the following.

Corollary 3.29 ([6Y]). If M is a hypersurface and |H| = constant # 0, then M =
7~ Y(M) is proper-biharmonic if and only if

cn+1)+3n—1

B> =
2
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We shall prove now a Lawson type formula which relates |B|? to |B|? (see [63], [76]
and [86]). First we denote by (3, the restriction of ¢ to the normal bundle of M in N
composed with the projection on the same normal bundle, that is (pﬁa = (po)t, for
any o a section in the normal bundle of M in N.

Proposition 3.30 ([69]). Let M be a submanifold of N, and denote by B its second
fundamental form. Then, the second fundamental form B of 7=*(M) in N and B are
related by

|B|? = |B|* +2(2n + 1 — m) — 2|py|*.

Proof. Let us consider X,Y € C(TM). We have
VY = (VI + LV (XH, v H]
VeuVH = (VI 4 Ly[XH 7]
thus B(XH, Y1) = (B(X,Y))".
Also,

B(XH7§) = Z?LZ;}JA 9<B(XH;§)aUa)Ua = Zii—i—rll+1 g(ngf —Vxn&,04)04

o 9 X M )oe =2 g(poa, XT)oq,

where {0, }2"H1 41 is a local orthonormal frame in the normal bundle of M in N.

Next, let {X,}™ be a local orthonormal frame on M. Tt follows that {XZ}m U
{¢} is a local orthonormal frame on M and one obtains

B =B &P + 205 1BIX, P + Zam 1B, X
= 23000 Yl (9(eoa, XEN)* + B

= |B|2 +2(2n+1—-m— Ziitnl-&-l |(900a)L|2)-

Corollary 3.31 ([89]). If M is a hypersurface, then |B|> = |B|? + 2.
From Corollary and Corollary BZ31 we obtain the following result.

Proposition 3.32 ([6Y]). If |H| = constant # 0, then M = 7 1(M) is proper-
biharmonic if and only if

cn+1)+3n—5

B> =
2

Remark 3.33 ([69]). From Proposition BZ32 we see that there exist no proper-biharmonic

hypersurfaces M = 7=1(M) in N(c) if ¢ < 5{_31", which implies that such hypersurfaces

do not exist if ¢ < —3, whatever the dimension of N is.
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Proposition 3.34 ([6Y]). If M = 7= 1(M) is a proper-biharmonic hypersurface with
constant mean curvature, then

2n — 1)(c(n+1 3n—95
|H|2€ (07( )( (87;2 )+ ))

Proof. Assume that M = 7~!(M) is a proper-biharmonic hypersurface with constant
mean curvature. Then, from Corollary and Proposition B332 follows that

cn+1)+3n—1 B2 = cn+1)+3n-5
2 ’ B 2 '

On the other hand we have the inequalities

|B® =

|B]?> > 2n|H|* and |B|* > (2n —1)|H|*.

It can be easily proved that there are no non-minimal umbilical hypersurfaces of type
M = 7=1(M) and it is known that M cannot be umbilical. Therefore, in the above
inequalities we cannot have equality, so

cn+1)+3n—-1 cn+1)+3n—-5

5 > 2n|H|? and 5 > (2n — 1)|H|?.
put 2n —1)% _ 2n —1 +1)+3n—-5
P 2n =D g (n=1)ieln +1) +3n - 5)
(2n)2 8n?2 '
Since (2’%1)(0(;;1”3"75) < c(n+1i:3n717 one obtains
9 (2n —1)(c(n+1)+3n —5)
|H[" € (O’ 8n? )

O

Proposition 3.35 ([6Y]). If M = 7= 1(M) is a proper-biharmonic hypersurface with
constant mean curvature, then the scalar curvature s of M is constant

c—1
s=(c+3)(n*—n)+ T(n—?)) + 4n?|H|?.

Proof. Let {X;}?", be a local orthonormal frame on M.
Using the Gauss equation we have

g(R(X;, X)Y, X;) = g(RN(X;, X)Y, X;) — g(B(X, X;), B(X;,Y))
(3.53)
+9(B(X;, Xi), B(X,Y)).

We consider H = |H|o and A = A,, where o is a unit section in the normal bundle of
M in N. We obtain

S (9(B(Xi, X), B(X,Y)) — g(B(X, X;), B(X;,Y)))
= g(2nH, B(X,Y)) - 7" 9(B(X, X;),0)9(B(X:,Y), 0) (3.54)

= 2n|H|g(0, B(X,Y)) — 2271 9(A(X), X)g(A(Y), X,).
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In order to compute 2321 g(RN (Xi, X )Y, X;) we shall use the local orthonormal frame
{XHy2 1 U (¢} on M where {X,}*™ ! is a local orthonormal frame on M. From the
expression of the curvature tensor field of N we have

gRNXT, X)Y. X)) = <P (9(X,Y) - g(X, X{g(Y, X))

+ L (—n(X)n(Y) + 3g(p X, XH)g(pY, X 1))

and
€3 (X, ¥) — n(X)m(v)) - S

g(RN (£, X)Y,¢) =

In conclusion

(X, pY).

Y2 g(RN (X, X)Y, X;) = Gnlemd) gy yy - BocleD oy (v
(3.55)

+558g(p X, Y ) - X g(X, po)g (Y. o).
We obtain, using (B53), (854), (8253) and Corollary B29, the scalar curvature of M

s = traceRicci = “32n(2n — 1) + <2 (2n — 4) + 4n?|H|> — |B|?

= (c+3)(n® —n) + S (n —3) + 4n?|H|%.

O

3.2.3 Classification results for biharmonic hypersurfaces in Sasakian
space forms with p-sectional curvature ¢ > —3

In [123] all homogeneous real hypersurfaces in the complex projective space CP™, n > 1,
are classified and five types of such hypersurfaces are identified (see also [T04]). We shall
use them for classifying the proper-biharmonic Hopf cylinders M = 7~!(M) in Sasakian
space forms N?"*1(¢), ¢+ 3 > 0.

3.2.4 Types Al, A2

We shall consider u € (0, §) and 7 a positive constant given by r% = %. A hypersurface
of Type Al in CP"(c+3) is a geodesic sphere and it has two distinct principal curvatures:
Ao = % cot u of multiplicity 2n—2 and a = % cot 2u of multiplicity 1, while a hypersurface
of Type A2 has three distinct principal curvatures: A\; = —%tanu of multiplicity 2p,
Ao = %cotu of multiplicity 2¢, and a = %cot 2u of multiplicity 1, where p > 0, ¢ > 0,
andp+qg=n-—1

We note that if ¢ = 1 and M is a hypersurface of Type Al or A2, then 7~ 1(M) is
the standard (extrinsic) product of a circle of radius cosu and a (2n — 1)-dimensional
sphere of radius sin u or, respectively, the standard product of two spheres of dimensions
2p+ 1 and 2g + 1 and of radii cosu and sin u.

Now, for the biharmonicity of the hypersurfaces M = 7w=1(M) in N?"*1(¢), where
M is a hypersurface in CP"(c+ 3) of Type Al or A2, we can state the following result.

Theorem 3.36 ([69]). Let M = w1 (M) be the Hopf cylinder over M.
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1. If M is of Type Al, then M is proper-biharmonic if and only if either
(a) c=1 and (tanu)? =1, or

(b) ¢ |zt lesyan] +oo) \ {1} and

(banw)? = ny 2 2E VE(n +2n +5) + 2013;12 — 20— 1) +9n” —30n+13
&

2. If M is of Type A2, then M is proper-biharmonic if and only if either

(a) c=1, (tanu)? =1 and p # q, or

—3( —dn+4+8+/(2p+1)(2 +1
(b) c € [T int sy il)Cy )\{1} and
2c—2
(tan U)2 = 2p+1 + (c+3)(2p+1)

:l:\/CQ(p q)2+4n+4)+2c(3(p—q)2+4n—4)+9(p—q)2— 12n+4
(c+3)(2p+1)

Proof. First, assume that M is of Type Al. Then, from Proposition B32, we have that
M = 7~1(M) is biharmonic if and only if

B> = (2n—2)A\3 +a® = (2n — 2) 5 (cot u)? + 5 (cot 2u)?
_ c(n+1)+3n—5
5 .
Denoting tanu = t, after a straightforward computation, we obtain the equation
(c+3)tr —2(c(n+2)+3n—2)t> + (2n — 1)(c+ 3) = 0, (3.56)
which admits real solutions if and only if
A(n? +2n +5) +2¢(3n? — 2n — 1) + 9n? — 30n + 13 > 0.

5—3n
n+1

But ¢ > and we can conclude that (B58) has real solutions if and only if

32 +2n+1+8/2n—1
cE [ +oo>,
n2+2n+5

and these solutions are given by

2¢ — 2+ \/c2(n2 +2n +5) + 2¢(3n2 — 2n — 1) + 9n2 — 30n + 13

> 0.
c+3

tio=n+

Now, we have that M is minimal if and only if M is minimal and this means
(2n —2)A2 +a =0,

which leads to (tanu)? = 2n — 1.
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It is easy to obtain that if one of the solutions t%, t% is equal to 2n — 1 then ¢ = 1.
If ¢ = 1, then M is proper-biharmonic if and only if (tanu)? = 1, and if ¢ # 1, then
12420 —1 aridt§7é2n—1.

Next, let M be a hypersurface of Type A2. Then, according to Proposition B=32, M
is biharmonic if and only if

|B|? = 2pA? +2¢A\} + a® = 2p5 (tanw)? + 2¢5 (cot u)? + 5 (cot 2u)?

_ c¢(n+1)+3n—>5
= .

This equation becomes, after a straightforward computation,
(c+3)2p+ )t* —2(c(n+2) +3n - 2)t> + (c+3)(2¢ + 1) = 0, (3.57)

where ¢t = tanu.
The equation (BZx1) has real solutions if and only if

Allp—q)*+4n+4) +2cBp—q) 2 +4n—4)+9(p—q)? —12n+4 >0,

5—3n

el leads to

which, together with ¢ >

—3(p—q)? —4n+4+8y/(2p+1)(2¢+ 1)
“c (p—q)? +4n+4 ’+OO)\{1}'

Then the solutions of equation (BZ21) are

n + 2c—2
2p+1 (c+3)(2p+1)

2 _
o=

(3.58)

/2 ((p—q)2+4n+4)+2¢(3(p—q)2+4n—4)+9(p—q)2 —12n+4
+ 31 2p D) > 0.

The hypersurface M is minimal if and only if

2pA1 + 2qX o +a =0,

which gives (tanu)? = %. It follows that M is proper-biharmonic if ¢ = 1, (tanu)? =
1 and p # ¢, or ¢ # 1 and tanu is given by (B5S). O

Remark 3.37 ([6Y9]). If ¢ # 1, in the Al case we can obtain two proper-biharmonic
Hopf cylinders, not only one. The same thing happens in the A2 case when p # q; for
p = q we do obtain a proper-biharmonic Hopf cylinder if and only if ¢ € (1, 4+00) and,
in this case, it is given by:

20c—1)+2y/An+1)+2c(n—1)—3n+1
n(c+ 3) )

(tanu)? =1+
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3.2.5 Types B, C, D and E

We shall consider u € (0,%) and r a positive constant given by %2 = %. The Type
B hypersurfaces in complex projective space CP™(c + 3) have three distinct principal
curvatures: —% cot w and %tan u, both of multiplicity n — 1, and %tan 2u of multiplicity
1. The hypersurfaces of Type C, D or E have five distinct principal curvatures: A\; =
—%cotu, Ao = %cot (%—u), A3 = %cot (%—u), Ay = %cot (‘%r—u) and a = —%cotQu,
each with specific multiplicities (see |104] and [1T23]).

For what concerns the biharmonicity of Hopf cylinders M = 7~!(M) we have the

following non-existence result.

Theorem 3.38 ([6Y]). There are no proper-biharmonic hypersurfaces M = 7L (M),
where M is a hypersurface of Type B, C, D or E in complex projective space CP™(c+3).

Proof. First, let M be a hypersurface of Type B. Then, from Proposition B32 we have
that M is biharmonic if and only if

B2 = (n— 1) % ((cotw)? + (tanu)?) + 5 (tan 2u)? = L=

If we denote (sin2u)? =t we obtain easily the following equation
(en4c+3n—1)t? — (2en —c+6n — 7t + (n — 1)(c + 3) = 0. (3.59)

If ¢ = 1 the equation become nt? — 2(n — 1)t +n — 1 = 0 and it has no real solutions.
Assume that ¢ # 1. Then equation (BXd) has real solutions if and only if

(5 — 4n) — 2¢(12n — 11) + 37 — 36n > 0.
Further, it follows that

c [11—12n—8\/n—1 11 - 12n+8y/n —1
¢ 4n —5 ’ dn —5 '

But since ¢ > 5nf1" it results that there are no real solutions of (B09) if n < 17. Now,

if n > 17 we have two real solutions

2en — ¢+ 6n — 7+ /c2(5 — 4n) — 2c(12n — 11) + 37 — 36n
2(ecn+c+3n—1) '

t12 =

Finally, it can be easily verified that ¢; 2 > 1 and this is a contradiction since ¢ =
(sin 2u)?.

Let M be a hypersurface of Type C. These hypersurfaces occur for n > 5 and n
odd. The multiplicities of the principal curvatures are: n — 3 for A\; and Az, 2 for Ay
and )4, and 1 for a.

In the same way as above, by denoting ¢ = (sin 2u)?, we have that M is biharmonic if
and only if

(en+c+3n— 1)t — (2cn — 3¢+ 6n — 13)t + (n — 2)(c +3) = 0. (3.60)

If ¢ =1 it is easy to see that (B®B0) does not admit real solution. If ¢ # 1 equation
(B10) has real solutions if and only if

(17 — 8n) — 2¢(24n — 47) + 145 — 72n > 0
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and this means

_ [24n — 47 +8,/2(n —2) 24n — 47~ 8,/2(n 2)}

¢ 17— 8n 17— 8n

5—3n
n+1

Since ¢ > it follows that real solutions exist only if n > 33 and they are

2cn — 3¢+ 6n — 13 & /c2(17 — 8n) — 2¢(24n — 47) + 145 — 72n
2(ecn+c+3n—1) )

1,2 =

But t; 5 are greater than 1 and, since ¢t = (sin 2u)?, M cannot be proper-biharmonic.
The hypersurfaces of Type D occurs only in CP?(c+3). In this case, the multiplicity

of each of the first four principal curvatures is 4 and the multiplicity of the fifth one is

1.

Now, let M be a hypersurface of Type D. As in the previous two cases, we obtain that

M is biharmonic if and only if

(10c¢ + 26)t? — (11c + 29)t + 5¢c + 15 = 0,

where t = (sin 2u)?. Real solutions exist if and only if

2414 165 241 - 161/5

79 79
But ¢ > 5n_+31" = —% and —% > —%. Thus there are no real solutions.

Finally, let M be a hypersurface of Type E. This case occurs only in CP(c + 3),
and the multiplicities are: 8 for A; and A3, 6 for Ay and A4 and 1 for the principal
curvature a.

It follows that M is biharmonic if and only if

(16¢ + 44)t* — (19¢ + 53)t + 9c + 27 = 0,

where t = (sin 2u)2. The equation has real solutions if and only if

649 + 24+/6 649 — 24+/6

215 215
Since ¢ > 5n_ff = —g and —% > —%, there exist no real solutions. ]

3.3 Biharmonic integral C-parallel submanifolds in 7-dimen-
sional Sasakian space forms

3.3.1 Introduction

We start the last section of Chapter 3 by recalling some general facts on Sasakian
space forms with a special emphasis on the notion of integral C-parallel submanifolds.
Then we study the biharmonicity of maximum dimensional integral submanifolds in
a Sasakian space form. We obtain the necessary and sufficient conditions for such a
submanifold to be biharmonic, we prove some non-existence results and we find the
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characterization of proper-biharmonic integral C-parallel submanifolds of maximum di-
mension. Restricting our attention on 7-dimensional Sasakian space forms, we classify
all 3-dimensional proper-biharmonic integral C-parallel submanifolds in a 7-dimensional
Sasakian space form, and we find these submanifolds in the 7-sphere endowed with its
canonical and deformed Sasakian structures introduced by S. Tanno in [I25]. A key
ingredient proved to be a special local basis constructed on the 3-dimensional integral
C-parallel submanifolds.

In the last part we classify the proper-biharmonic parallel Lagrangian submanifolds
of CP3 by determining their horizontal lifts, with respect to the Hopf fibration, in S7(1).

3.3.2 Integral C-parallel submanifolds of a Sasakian manifold

We recall that a submanifold M™ of a Sasakian manifold (N1, p, &0, g) is called
an integral submanifold if n(X) = 0 for any vector field X tangent to M. We have
o(T'M) € NM and m < n, where TM and NM are the tangent bundle and the
normal bundle of M, respectively. Moreover, for m = n, one gets o(NM) =TM. If we
denote by B the second fundamental form of M then, by a straightforward computation,
one obtains the relation

9(pZ, B(X,Y)) = g(¢Y, B(X, 2))

for any vector fields X,Y and Z tangent to M (see also [I0]). We also note that A¢ = 0,
where A is the shape operator of M (see [26]).

A submanifold M of N is said to be anti-invariant if § is tangent to M and (© maps
the tangent bundle to M into its normal bundle.

Next, we shall recall the notion of an integral C-parallel submanifold of a Sasakian
manifold (see, for example, [I0]). Let M™ be an integral submanifold of a Sasakian
manifold (N?"*1 ¢, €, n,g). Then M is said to be integral C-parallel if V* B is parallel
to the characteristic vector field &, where V' B is given by

(VIB)(X,Y,Z)=V%B(Y,Z)— B(VxY,Z) — B(Y,VxZ)

for any vector fields X,Y,Z tangent to M, V* and V being the normal connection
and the Levi-Civita connection on M, respectively. Thus, M is an integral C-parallel
submanifold if (V1 B)(X,Y, Z) = S(X,Y, Z)¢ for any vector fields X, Y, Z tangent to
M, where S(X,Y,Z) = g(pX,B(Y, Z)) is a totally symmetric tensor field of type (0, 3)
on M. It is not difficult to check that, when m = n, V+B = 0 if and only if B = 0,
i.e., M™ is totally geodesic.

Now, let M™ be an integral submanifold of a Sasakian manifold N?"*! and denote
by H its mean curvature vector field. We say that H is C-parallel if V+H is parallel to
¢ e, VEH = 0(X)&, where 60 is a 1-form on M. As we shall see, (X) = g(H, pX)
for any vector field X tangent to M.

In general, a Riemannian submanifold M of N is called parallel if V-B = 0, and
we say that H is parallel if V- H = 0.

The following two results shall be used later in this paper and, for the sake of
completeness, we also provide their proofs.

Proposition 3.39 (|67|). If the mean curvature vector field H of an integral submanifold
M" of a Sasakian manifold (N?"*1, 0, & n, g) is parallel then M™ is minimal.
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Proof. Let X,Y be two vector fields tangent to M. Since
9(B(X,Y),€) = g(VxY,€) = —g(Y, Vx€) = g(V,X) =0
we have B(X,Y) € o(T'M) and, in particular, H € ¢(T'M). Then
9(VxH, &) = g(Vx H,&) = —g(H,VXE) = g(H, pX).

Thus, if VX H = 0 it follows that g(H,X) = 0 for any vector field X tangent to M,
and this means H = 0, since M has maximal dimension. ]

Proposition 3.40 ([67]). Let (N?"*1 o & n,g) be a Sasakian manifold and M™ be an
integral C-parallel submanifold with mean curvature vector field H. The following hold:

1. V)L(H = g(H, pX)&, for any vector field X tangent to M, i.e., H is C-parallel;
2. the mean curvature |H| is constant,
3. ifm=mn, then AVH = H.

Proof. In order to prove (1), we consider {X;}I"; to be a local geodesic frame at p € M.
Then we have at p

(V'B)(Xi, X;, X;) = Vx,B(X;, X;) = g(B(X;, X;), pX;)¢

and, by summing for j = 1,...,m, we obtain V}QH = g(H,pX;)¢. Then, for (2), we
have

X(|H?) =2g(H,VxH) =2g(H,pX)g(H,&) =0

for any vector field X tangent to M, i.e., |H| is constant.

For the last item, we assume that m = n. As V%& = —pX, from the Weingarten
equation, we get A¢ = 0, where A¢ is the shape operator of M corresponding to &, and
V)L(& = V§§ = —pX. Thus

AtH = — Z Vx,Vx H=— Z Vx,(9(H, ¢X;)E)
=1 i=1

=— Z Xi(g(H, ¢X;))§ — ZQ(H, SOXi)V%ig
i=1

i=1

==Y Xi(g(H,pXi)E+ D g(H, 0 Xi)pX;
=1 i=1

== Xi(g(H,X;))¢ + H.
=1

But, since Vév(igoXi = goV%iXi + &, it results

Xi(g(H, 0X3)) = g(VX,H, 0Xi) + g(H, oV, X + €)
= g(—AuX; + Vx,H,¢X;) + g(H, oB(X;, X))
= 0.

We have just proved that AYH = H. O
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3.3.3 Biharmonic submanifolds in SZ”+1(1)

Working with anti-invariant submanifolds rather than with cylinders, we can state the
following (known) result.

Proposition 3.41 ([67]). Let M™ be an anti-invariant submanifold of the strictly
reqular Sasakian space form N?"t(c), 1 < m < n, invariant under the flow-action of
the characteristic vector field &. Then M is locally isometric to I x M™, where M™ is
an integral submanifold of N. Moreover, we have

1. M is proper-btharmonic if and only if M is proper-biharmonic in N;
2. if m =n, then M is parallel if and only if M s C-parallel;

3. if m = n, then the mean curvature vector field of M is parallel if and only if the
mean curvature vector field of M is C-parallel.

Proof. The restriction £, /31 of the characteristic vector field £ to M is a Killing vector

field tangent to M. Since M is anti- invariant, the horizontal distribution defined on M is
integrable. Let p € M be an arbitrary point and M a small enough integral submanifold
of the horizontal distribution on M such that p € M. Then F': IxM — F(IxM) C M,
F(t,p) = ¢¢(p), is an isometry. As M is an integral submanifold of the horizontal
distribution on M , it is an integral submanifold of N.

The item (1) follows immediately from Theorem B2, and (2) and (3) are known
and can be checked by straightforward computations. O

We recall that, if M? is a surface of N 2n+l(c) invariant under the flow-action of
the characteristic vector field £, then it is also anti-invariant and, locally, M is given by
F(t,s) = ¢¢(v(s)), where 7 is a Legendre curve in N. Moreover, M is proper-biharmonic
if and only if ~ is proper-biharmonic in N.

Now, consider M? a surface of N 2n+1(¢) invariant under the flow-action of the
characteristic vector field £ and let T' =+ and Es be the first two vector fields defined
by the Frenet equations of the above Legendre curve 7. As Vg/atT(F) = —p(7(F)),

where V¥ is the pull-back connection determined by the Levi-Civita connection on N,
we can prove the following proposition.

Proposition 3.42 ([67]). Let M? be a proper-biharmonic surface of N2 (¢) invariant
under the flow-action of the characteristic vector field &. Then M has parallel mean
curvature vector field if and only if c > 1 and ¢T = +FEs.

Corollary 3.43 ([67]). The proper-biharmonic surfaces of S***1(1) invariant under the
flow-action of the characteristic vector field &y are not of parallel mean curvature vector

field.

We shall see that we do have examples of maximum dimensional proper-biharmonic
anti-invariant submanifolds of S?"*1(1), invariant under the flow-action of &, which
have parallel mean curvature vector field.
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In [120] the parametric equations of all proper-biharmonic integral surfaces in S%(1)
were obtained. Up to an isometry of S?(1) which preserves &y, we have only one proper-
biharmonic integral surface given by

1
z(u,v) = E(exp(iu),iexp(—iu) sin(v/2v),1exp(—iu) cos(v/2v)).
The map « induces a proper-biharmonic Riemannian embedding from the 2-dimensio-
nal torus 72 = R%/A into S°(1), where A is the lattice generated by the vectors (27, 0)

and (0, v/27).

Remark 3.44 ([67]). We recall that an isometric immersion = : M — R""! of a
compact manifold is said to be of k-type if its spectral decomposition contains exactly k
non-constant terms excepting the center of mass xg = (Vol(M))~! [ v T vg. When xg =
0, the submanifold is called mass-symmetric (see [42]). It was proved in [IR, 21| that a
proper-biharmonic compact constant mean curvature submanifold M™ of S™ is either
a 1-type submanifold of R"*! with center of mass of norm equal to 1/4/2, or a mass-
symmetric 2-type submanifold of R™*!. Now, using [8, Theorem 3.5], where all mass-
symmetric 2-type integral surfaces in S°(1) were determined, and [29, Proposition 4.1],
the result in [T20] can be (partially) reobtained.

Further, we consider the cylinder over = and we recover the result in [4]: up to an
isometry of 85(1) which preserves &y, we have only one 3-dimensional proper-biharmonic
anti-invariant submanifold of S?(1) invariant under the flow-action of &,

F(t,u,v) = exp(—it)x(u,v).

The map y is a proper-biharmonic Riemannian immersion with parallel mean curvature
vector field and it induces a proper-biharmonic Riemannian immersion from the 3-
dimensional torus 72 = R3/A into S°, where A is the lattice generated by the vectors
(27,0,0), (0,27,0) and (0,0,+/27). Moreover, a closer look shows that y factorizes
to a proper-biharmonic Riemannian embedding in S°, and its image is the standard
(extrinsic) product between three Euclidean circles, one of radius 1/4/2 and each of the
other two of radius 1/2. Indeed, we may consider the orthogonal transformation of R3

given by
—t+u —t—u

V2 v

T(t,u,v) = ( v) = (t',u/,0")

and the map y becomes

Fi(tJ0W) = é(exp(iﬁt’), iexp(iv2u') sin(v2v'), i exp(iv/2u’) cos(v20')).

Then, acting with an appropriate holomorphic isometry of C*, y; becomes
1
V2

and, further, an obvious orthogonal transformation of the domain leads to the desired
results.

exp(iv2t'), % exp(i(u’ — ")), L exp(i(u + v')))

R ) = ( 5
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3.3.4 Biharmonic integral submanifolds of maximum dimension in Sa-
sakian space forms

Let (N2"*1 » € n,g) be a Sasakian space form with constant ¢-sectional curvature
¢, and M™ an n-dimensional integral submanifold of N. We recall that this means
n(X) = 0 for any vector field X tangent to M. We shall denote by B, A and H the
second fundamental form of M in N, the shape operator and the mean curvature vector
field, respectively. By V1 and A1 we shall denote the connection and the Laplacian in
the normal bundle. We have the following theorem.

Theorem 3.45 ([67]). The integral submanifold i: M™ — N*"*1 is biharmonic if and
only if

AL H + trace B(-, Ag-) — cn+3)+3n- 3H =0,
1 (3.61)

4traceAv(¢)H(') + ngrad(|H|2) = 0.

Corollary 3.46 ([67]). Let N?"T1(c) be a Sasakian space form with constant -sectional
curvature ¢ < (3 —3n)/(n+ 3). Then an integral submanifold M™ with constant mean
curvature |H| in N?"*1(c) is biharmonic if and only if it is minimal.

Proof. Assume that M™ is a biharmonic integral submanifold with constant mean cur-
vature |H| in N?"*1(c). It follows, from Theorem B4H, that

c(n+3)+3n—

g(ALH, H) = —g(trace B(-, Ay-), H) + 32

4
c(n+3)+3n—3 -
= RIS g(BOX:, Ano), H)
i=1
cn+3)+3n—3 "
_d )4 HE = g(AnX;, Au X))
i=1
cn+3)+3n—3
— ( )4 |H|2_|AH|2

Thus, from the Weitzenbock formula
%A]HP =g(AtH, H) — |[VtH]?

one obtains
c(n+3)+3n—

4
If ¢ < (3—=3n)/(n+ 3), relation (BB2) is equivalent to H = 0. Now, assume that

c=(3—-3n)/(n+3). As for integral submanifolds V*H = 0 is equivalent to H = 0,
again (B67) is equivalent to H = 0. O

3
|H> — |Ag|® — |[VEH]? = 0. (3.62)

Corollary 3.47 ([57]). Let N?"*1(¢) be a Sasakian space form with constant @-sectional
curvature ¢ < (3—3n)/(n+3). Then a compact integral submanifold M™ is biharmonic
if and only if it is minimal.
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Proof. Assume that M™ is a biharmonic compact integral submanifold. As in the proof
of Corollary B8 we have

c(n+3)+3n—

3
TS A Ay

g(A+H,H) =

and so A|H|? < 0, which implies that |H|? is constant. Therefore we obtain that M is
minimal in this case too. O

Remark 3.48 (|67]). From Corollaries B4 and B2 it is easy to see that in a Sasakian
space form N2"*1(¢) with constant ¢-sectional curvature c+3 < 0 a biharmonic compact
integral submanifold, or a biharmonic integral submanifold M"™ with constant mean
curvature, is minimal whatever the dimension of NV is.

Proposition 3.49 ([67]). Let N?"*1(c) be a Sasakian space form and i : M™ — N2"+1
be an integral C-parallel submanifold. Then (m2(i))T = 0.

Proof. Indeed, from Proposition B40 we have |H| is constant and V+H is parallel to &,
which implies that AV)L( g = 0 for any vector field X tangent to M, since A¢ = 0. Thus
we conclude the proof. O

Proposition 3.50 (|67]). A non-minimal integral C-parallel submanifold M™ of a Sa-
sakian space form N?"*1(c) is proper-biharmonic if and only if ¢ > (7 — 3n)/(n + 3)

and
c(n+3)+3n—-7

4

Proof. We know, from Proposition BZ0, that A*H = H. Hence, from Theorem BZH
and the above Proposition, it follows that M™ is biharmonic if and only if

trace B(-, Ag+) = H.

(n+3)+3n—17

H.
4

trace B(+, Ag-) = ¢

Next, if M™ verifies the above condition, we contract with H and get

cn+3)+3n—-7
|AH‘2 — ( )4 ’H|2
Since Ay and H do not vanish it follows that ¢ > (7 —3n)/(n + 3). O

Now, let {X;}I' ; be an arbitrary orthonormal local frame field on the integral C-
parallel submanifold M™ of a Sasakian space form N?"T1(c), and let A, = Ayx,, i =
1,...,n, be the corresponding shape operators. Then, from Proposition BXhl, we obtain

Proposition 3.51 (|67]). A non-minimal integral C-parallel submanifold M™ of a Sa-
sakian space form N?"*1(c), ¢ > (7 — 3n)/(n + 3), is proper-biharmonic if and only
of
g(A1, A1) ... g(AAy) trace A1 trace A1
: : : : =k :
g(An, A1) ... g(An, An) trace A, trace A,

where k = (c(n+3) +3n —7)/4.
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3.3.5 3-dimensional biharmonic integral C-parallel submanifolds of a
Sasakian space form N7(c)

In [10], C. Baikoussis, D.E. Blair and T. Koufogiorgios classified the 3-dimensional
integral C-parallel submanifolds in a Sasakian space form (N7(c), ¢, &,7n,g). In order to
obtain the classification, they worked with a special local orthonormal basis (see also
[67]). Here we shall briefly recall how this basis is constructed.

Let i: M3 — N7(c) be an integral C-parallel submanifold of constant mean curva-
ture. Let p be an arbitrary point of M, and consider the function f, : U,M — R given
by

fp(u) = g(B(uv ’LL), QOU),
where UyM = {u € T,M : g(u,u) = 1} is the unit sphere in the tangent space T,M. If
fp(u) =0, for all u € U,M, then, for any vy, ve € U,M such that g(v1,v2) = 0 we have
that
g(B(’Ul,’Ul),QO’Ul) =0 and g(B(vlvvl)v@’UZ) =0.
We obtain B(v1,v1) = 0, and then it follows that B vanishes at the point p.

Next, assume that the function f, does not vanish identically. Since U,M is compact,
fp attains an absolute maximum at a unit vector Xy. It follows that

9(B(X1, X1),9X1) >0, g(B(X1,X1),9X1) > [9(B(w, w), pw)|
g(B(Xth)v(pw) =0, g(B(leXl)a(le) > 29(B<w7w)790X1)7

where w is a unit vector tangent to M at p and orthogonal to X;. It is easy to see that
X1 is an eigenvector of the shape operator A; = A, x, with the corresponding eigenvalue
A1. Then, since A; is symmetric, we consider X5 and X3 to be unit eigenvectors of Ay,
orthogonal to each other and to X, with the corresponding eigenvalues Ao and As.
Further, we distinguish two cases.

If A2 # A3, we can choose X5 and X3 such that

9(B(X3,X3),90X3) >0

0,
9(B(X3,X3),0X3).

g(B(X2a X2)7 ‘PX2) >
9(B(X2, X2),pXo) >

If A2 = A3, we consider f;, the restriction of f, to {w € UM : g(w, X;) = 0}, and
we have two subcases:

1. the function f; p is identically zero. In this case, we have

g(B(X27X2)790X2) =0, Q(B(XQ,XQ),QDXg) =0
9(B(X2, X3),9X3) =0, g(B(X3,X3),X3) =0

2. the function f; ;, does not vanish identically. Then we choose X3 such that fi ,(X2)
is an absolute maximum. We have that

9(B(X2,X2),0X2) >0, ¢g(B(X2,X2),9X2) > g(B(X3,X3),90X3) >0
9(B(X2,X2),0X3) =0, ¢(B(X2,X2),pX2) > 2g(B(X3,X3),pX2).
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Now, with respect to the orthonormal basis {Xi, X3, X3}, the shape operators A,
Ay = Ayx, and Az = Ayx,, at p, can be written as follows

A1 00 0 X2 O 0 0 M3
A1 = 0 AQ 0 5 AQ = )\2 o B 5 Ag = 0 5 1% . (3.63)
0 0 )\3 0 ﬁ 1% )\3 1% 0
We also have Ag = A¢ = 0. With these notations we have
A >0, A > |a|, A > ’(5|, A1 > 2X9, Ay > 2)s. (364)
For Ay # A3 we get
a>0, §>0 and a>4 (3.65)
and for Ay = A3 we obtain that
a=0F=p=0=0 (3.66)
or
a>0, 6>0, a>6 =0 and «o>2u. (3.67)

Now, let V}, be a normal neighbourhood around the point p. Consider g an arbitrary
point in V,,, and let 7, : [0, 1] — V], be the unique geodesic with v4(0) = p and v4(1) = ¢.
For an arbitrary vector v € T,M we consider its parallel transport u(t) along the
geodesic v4; u = u(0). It is not difficult to check that the function

t— fy,(w®) = g(B(u(t), u(t)), (1))

is constant and thus fp(u) = fy(u(1)). Therefore, f, vanishes identically if and only if
fp vanishes too, i.e. By = 0 if and only if B, = 0.

Assume that f, does not vanish identically, and consider X (t) the parallel transport
of X along 7,. The function f, () attains an absolute maximum at X (t). We define
Ay = Ayx, along v, and we have that Xi(t) is a an eigenvector of A;. Again, we
consider X(t) and X3(t) the parallel transport of Xy and X3, respectively, along v. It
follows that Xs(t) and X3(t) are eigenvectors for A; and Ai, A2, Az are constant allong
Vq- As the function

t—> g(B(Xi7Xj)v o(Xk))

is constant, it follows that the functions «, 8 and p are constant along 7.

Using this basis and de Rham decomposition theorem, in |0, the authors classified
locally all 3-dimensional integral C-parallel submanifolds in a 7-dimensional Sasakian
space form.

According to that classification, if ¢ +3 > 0 then M is a non-minimal integral
C-parallel submanifold if and only if either:

Case I. M is flat, it is locally a product of three curves which are helices of osculating
orders 7 < 4, and A\; = (A% — (¢ +3)/4)/\, A2 = A3 = \ = constant # 0, a = constant,
B =0, u = constant, § = constant, such that —/c+3/2 <A< 0,0 < a <A, a> 2y,
a>8>0,(c+3)/4+ 2 +apu—p? =0and ((3X\%2— (c+3)/4)/N)? + (a+ p)? + 62 > 0,
or

Case II. M is locally isometric to a product v x M?, where v is a curve and M? is a
C-parallel surface, and either
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(1) M =20 = =X =Vc+3/(2v2), a=p=6=0, 8==%/3(c+3)/(4V/2). In
this case v is a helix in N with curvatures k1 = 1/v/2 and ko = 1, and M? is locally
isometric to the 2-dimensional Euclidean sphere of radius p = 1/8/(3(c + 3)), or

(2) M= (A2 = (c+3)/4)/A\, Ay = A3 = A\ = constant, a = 3 = u = § = 0, such that
—vVc+3/2 < X< 0and A\? # (c+3)/12. In this case, v is a helix in N with
curvatures k1 = A; and ko = 1, and M? is the 2-dimensional Euclidean sphere of

radius p = 1/4/(c+ 3)/4 + A2

Now, identifying the shape operators A; with the corresponding matrices, from
Proposition BXadl, we get the following proposition.

Proposition 3.52 ([67]). A non-minimal integral C-parallel submanifold M? of a Sa-
sakian space form N7(c), ¢ > —1/3, is proper-biharmonic if and only if

3 trace A; trace A;

3 1

( E Af) trace Ay | = 02+ trace Ay |, (3.68)
i=1 trace As trace As

where matrices A; are given by (BB3).
Now, we can state the theorem.

Theorem 3.53 ([67]). A 3-dimensional integral C-parallel submanifold M3 of a Sasa-
kian space form N7(c) is proper-biharmonic if and only if either:

1. ¢> —1/3 and M3 is flat and it is locally a product of three curves:

e a heliz with curvatures k1 = (A2 — (¢ + 3)/4)/\ and kg = 1,
e a heliz of order 4 with curvatures kK1 = VA? + a2, k2 = (a/k1)VA2 + 1 and
K3 = —(/\/Iﬂ) A2+ 1,

e a heliz of order 4 with curvatures k1 = /A% + p? 4+ 02, ko = (6/k1) VA2 + p? + 1
and k3 = (ka/0)\/ A2 4+ u?, if § # 0, or a circle with curvature k1 = \/A\? + 2,
ifd=0,

where X\, a, 1, § are constants given by

( 3 3)2

(32 - %) (33" = 2(c+1)2% + (CJ{(),)) + X (o + )%+ 62) =0,
Tc+5

(aJru)5>\2+o<2+u2—i 1é? =0,
4
7

5(5)\2+52+3u2+au— 62_5):0,

C+3+)\2+au—u2:0

Ly
(3.69)

such that —/c+3/2 <A <0,0<a< (A= (c+3)/4)/\, a>5§>0, a>2u
and A2 # (c+3)/12 ;

or
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(2) M3 is locally isometric to a product v x M? between a curve and a C-parallel
surface of N, and either

(a) ¢ =15/9, v is a heliz in N7(5/9) with curvatures k1 = 1/v/2 and kg = 1, and
M? is locally isometric to the 2-dimensional Euclidean sphere with radius
\/3/2, or

(b) ¢ € [(—7 + 8V3)/13,+00) \ {1}, ~ is a heliz in N7(c) with curvatures

1= (A2 = (c+3)/4)/\ and ky = 1, and M? is locally isometric to the
2-dimensional Euclidean sphere with radius 2/v/4X\? + ¢ + 3, where

de +4 4+ /132 + 14e — 11

if ¢ <1,
A<0 and N = 12 / (3.70)
de+4—+/13c2 +14c —11 .
12 if ¢>1.

Proof. Let M? be a proper-biharmonic integral C-parallel submanifold of a Sasakian
space form N7(c). From Proposition B52 we see that ¢ > —1/3.
Next, we easily get that the equation (BB3) is equivalent to the system

(g_y)(i S 30ELY 4ot m)(aa +0da) + (84 6)(Bha + 0s) = 0,

(Z)‘i)(a)‘2+ﬂ)‘3)+(a+ﬂ)<2)\§+a2+362+u +ﬁ5_¥)+ﬂ(5+5)2:
=1
3
(i_zl)\i)(ﬁ)\2+5)\3)+ﬁ(a+u)2+(5_’_5)(2)\§+62+3M2+ﬁ2+au_30;—1) _0
(3.71)

In the following, we shall split the study of this system, as M?3 is given by Case I
or Case II of the classification.
Case I. The system (BZ) is equivalent to the system given by the first three equations
of (BB9). Now, M is not minimal if and only if at least one of the components of
the mean curvature vector field H does not vanish and, from the first equation of
(BEBY), it follows that A2 must be different from (¢ + 3)/12. Thus, again using [I0] for
the expressions of the curvatures of the three curves, we obtain the first case of the
theorem.
Case II. (1) In this case, the second equation of (BZ) is identically satisfied and
the other two are equivalent to ¢ = 5/9. Thus, from the classification of the integral
C-parallel submanifolds, we get the first part of the second case of the theorem.

(2) The second and the third equation of (BZ1) are satisfied, in this case, and the
first equation is equivalent to

(c+3)?

A2 1)\
3 (c+ )X+ 16

=0.

This equation has solutions if and only if

—7—8\/3} U [—7+8\/§’+OO)’

CE(_OO’ 13 13



130 Chapter 3. Biharmonic submanifolds in Sasakian space forms

and these solutions are given by

_de+ 4+ V132 + 14c— 11

AQ
12

Since ¢ > —1/3 it follows that ¢ € [(—=7 + 8V/3)/13,+00). Moreover, if ¢ = 1, from the
above relation, it follows that A2 must be equal to 1 or 1/3, which is a contradiction,
and therefore ¢ € [(—7 + 8v/3)/13,4+00) \ {1}. Further, it is easy to check that \? =
(4c+ 4+ V13c2 + 14c — 11)/12 < (c + 3)/4 if and only if ¢ € [(—7 + 8/3)/13,1) and
A = (4e+4—V13c% + 14c — 11)/12 < (c+3) /4 if and only if ¢ € [(=7+8v/3)/13,4+00)\

{1}. O

3.3.6 Proper-biharmonic submanifolds in the 7-sphere

In this section we shall work with the standard model for simply connected Sasakian
space forms N7(c) with ¢ + 3 > 0, which is the unit Euclidean sphere S endowed with
its canonical Sasakian structure or with the deformed Sasakian structure introduced by
S. Tanno.

In [00] the authors obtained the explicit equation of the 3-dimensional integral C-
parallel flat submanifolds in S7(1), whilst in [68] we gave the explicit equation of such
submanifolds in S7(c), ¢ +3 > 0.

Using these results and Theorem B53 we easily get the following theorem.

Theorem 3.54 ([67]). A 3-dimensional integral C-parallel submanifold M3 of S7(c),
c=4/a— 3> =3, is proper-biharmonic if and only if either:

1. ¢ > —1/3 and M3 is flat, it is locally a product of three curves and its position
vector in C* is

A2+ L a)\u

+ ! exp(—i(u — (11 — 0)v))&>
Valp —a)(2u —a)

+ w exp(—i(Au + pv + p1w))&s

+ _ exp(—i(Au + pv — paw))&a,

ap2(p1 + p2)

where p1o = (\/Au(2u — @) + 62 £6)/2 and X\, o, 1, are real constants given by
(BEY) such that —1/y/a <A< 0,0 < a< (AN —-1/a)/\, a >8>0, a > 2u,
AN #£1/(3a) and {&;}}_, is an orthonormal basis of C* with respect to the usual
Hermatian inner product,

or

(2) M3 is locally isometric to a product v x M? between a curve and a C-parallel
surface of N, and either
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(a) ¢ =5/9, v is a heliz in S7(5/9) with curvatures k1 = 1/v/2 and ke = 1, and
M? is locally isometric to the 2-dimensional Euclidean sphere with radius
\/§/2, or

(b) c € [(=7+8v3)/13, +00)\{1}, 7 is a heliz in S7(c) with curvatures k1 = (A\*—
(c+3)/4)/X and ky = 1, and M? is locally isometric to the 2-dimensional
FEuclidean sphere with radius 2/v4X% 4+ ¢ + 3, where

4e + 4+ /132 + 1de — 11 .
if c<l1,

A<0 and N =

12
de +4 —V/13¢2 + 14e — 11

‘ 1.
1 if ¢>

Now, applying this theorem in the case of the 7-sphere endowed with its canonical
Sasakian structure we get the following Corollary, which also shows that, for ¢ = 1, the
system (BT9) can be completely solved.

Corollary 3.55 ([67]). A 3-dimensional integral C-parallel submanifold M?> of ST(1) is
proper-biharmonic if and only if it is flat, it is locally a product of three curves and its
position vector in C* is

G V6 N
\[

—f—\l[exp((\[ —i—\/%v 5 w))

Je

1 V3 V2
+7exp( (7“*7”*7 w)
where {&;}}_, is an orthonormal basis of C* with respect to the usual Hermitian inner
product. Moreover, the x,-curve is a heliz with curvatures k1 = 4v/5/5 and Ky = 1,
the x,-curve is a heliz of order 4 with curvatures k1 = \/@/\/ﬁ, K9 = 9\@/\/% and
K3 = 2\/3/\/% and the x-curve is a helix of order 4 with curvatures k1 = \/g/ﬁ,
ke = 2v/3/V/10 and k3 = v/3//10.

Proof. Since ¢ = 1 the system (B6Y) becomes

x(u, v, w) = = exp(—ivbu)&y + 1 exp (1( ! mv))é'g
V2

4,

(BA2 =122 = 1)+ M ((a+p)? +6%) =0,
(@ + @) (5N + @® + pi? = 3) + ué* = 0,
S(5A2 + 62+ 3u> + ap—3) =0,
Ntoap—p?+1=0

(3.72)

with the supplementary conditions

A2 -1

—1<A<0, O0<a< N

1
>8>0, a>2u and )\27&5. (3.73)

We note that, since o > 2u, from the fourth equation of (BZ72) it results that u < 0.
The third equation of system (BZ72) suggests that, in order to solve this system, we
need to split our study in two cases as J is equal to 0 or not.
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Case 1: § = 0. In this case the third equation holds whatever the values of A\, o and p
are, and so does the condition o > d. We also note that o # —p, since otherwise, from
the first equation, it results A2 = 1 or A2 = 1/3, which are both contradictions.

In the following, we shall look for a of the form o = wp, where w € (—o00,0) \ {—1},
since a > 0, p < 0 and a # —pu. From the second and the fourth equations of the
system we have A2 = —(w? + 3w — 2)/((w — 2)(w — 3)), p? = 8/((w — 2)(w — 3)) and
then a? = 8w?/((w—2)(w—3)). Replacing in the first equation, after a straightforward
computation, it can be written as

8(w +1)3(1 — 3w)
(w—=3)3(w—2)
and its solutions are —1 and 1/3. But w € (—00,0) \ {—1} and therefore we conclude

that there are no solutions of the system that verify all conditions (B“Z3) when 6 = 0.
Case 2: 0 > 0. In this case the third equation of (BZZ2) becomes

=0

SN2+ 6% +3u? +ap—3=0.

Now, since @ > 0 and p < 0, we can take again @ = wp, with w € (—00,0), and
then, from the last three equations of the system, we easily get \?> = —(w? + 5w +
2)/((@ — Dw — 2)), a2 = 83/((w — 1)2(w — 2)), 42 = 8w/((w — 1w — 2)) and
82 =8w+1)?2/(w—1)%

Next, from the first equation of (BZ72), after a straightforward computation, one obtains

16(w + 1)3(w + 3)

=0
(w—2)(w—1)3 ’
whose solutions are —3 and —1. If w = —1 it follows that A> = 1/3, which is a
contradiction, and therefore we obtain that w = —3. Hence
1 27 3
N==, ==, == and =2
5 10 10

As A <0, a >0, x4 < 0and § > 0 it results that A = —1/v/5, a = 3v/3/V10,

= —v/3/V/10 and § = v/2. Tt can be easily seen that also the conditions (B723) are
verified by these values, and then, by the meaning of the first statement of Theorem
B354, we come to the conclusion. O

Remark 3.56 (|67]). A proper-biharmonic compact submanifold M of S™ of constant
mean curvature |H| € (0, 1) is of 2-type and mass-symmetric (see |8, 21]). In our case,
the Riemannian immersion x can be written as x = x1 4+ x5, where

Vi V3
z1(u,v,w) = \%exp((\lf rv—i—— >>84,
)

1 . 1 .
xo(u,v,w) = — 7 exp(—ivbu)&E + 7 exp (1(ﬁu - ﬁv

1 V3 o 3V2

+ —exp ( (—u + —=v - —w))é’g,
V6 V5 V10 2

and Azy = 3(1 — |H|)z1 = x1, Azg = 3(1 + |H|)z2 = bz, |H| = 2/3. Now, Corol-

lary B33 could also be proved by using the main result in [9] and [29, Proposition 4.1].
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Remark 3.57 ([67]). By a straightforward computation we can deduce that the map «
factorizes to a map from the torus 72 = R3/A into R®, where A is the lattice generated
by the vectors a; = (67/v/5,v37/v/10,7/v/2), az = (0, —3v/57/\/6, —1/v/2) and a3 =

(0,0, —47/+/2), and the quotient map is a Riemannian immersion.
By the meaning of Theorem B=Z4 we know that the cylinder over x, given by
F(t,u,v,w) = ¢¢(x(u,v,w)),
is a proper-biharmonic map into S7(1). Moreover, we have the following proposition.

Proposition 3.58 ([67]). The cylinder over z determines a proper-biharmonic Rie-
mannian embedding from the torus T4 = R*/A into S, where the lattice A is ge-
nerated by a; = (27/v/6,0,0,0), as = (0,27/4/6,0,0), a3 = (0,0,27//6,0) and
ay = (0,0,0,27/v/2). The image of this embedding is the standard (extrinsec) pro-
duct between a Fuclidean circle of radius 1/\/5 and three other Euclidean circles, each

of radius 1/+/6.

Proof. As the flow of the characteristic vector field ¢ is given by ¢.(z) = exp(—it)z we
get

F(t,u,v,w):—iexp( i(t +v5u))E + 16exp (1( %u—%v))&

V6
1 1 3 2
+—exp(i<—t+— LV, V2 ))
V6 ViV 2
1 1 3 \/5
+—ex (i(—t+— MOy X2 ))5
vzl vt e
where {&;}?_; is an orthonormal basis of C* with respect to the usual Hermitian inner
product.
Now, we consider the following two orthogonal transformations of R*:

&3

- —u ——w=w,
V2 V10 25 2
and )
2 2 ~
£t’Jr—u’:lt,
6 6
\/i/ L \/gl ~
———=t + —=u — —=v =,
V6 V6 V6
2 1 3 -
_£t/+7ul+£’u/:1},
6 6 6
w =w
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Then we obtain

P05, 5) = — \}6 exp(—i(v6D)E: + \}6 exp(i(V670))Es + ;6 exp(i(V67))E3

+ % exp(i(v2))E4,

which ends the proof. O

Remark 3.59 ([67]). We see that F' can be written as F' = Fy+Fy, where F (t,u, v, w) =
exp(—it)z1, Fo(t,u,v,w) = exp(—it)ze, and AF} = 2F;, AFy = 6F», the mean curva-
ture of y being equal to 1/2.

Remark 3.60 ([67]). It is known that the parallel flat (n + 1)-dimensional compact
anti-invariant submanifolds in S?"*!(1) are standard products of circles of radii r;,
i=1,...,n+1, where E?:Jrll 72 =1 (see [I35]). The biharmonicity of such submanifolds

was solved in [T39].

3.3.7 Proper-biharmonic parallel Lagrangian submanifolds of CP3

We consider the Hopf fibration 7 : S?**1(1) — CP"(4), and M a Lagrangian submani-
fold of CP™. Then M = 7~ 1(M) is an (n + 1)-dimensional anti-invariant submanifold
of | S?7+1 invariant under the flow-action of the characteristic vector field & and, locally,
M is isometric to ST x M™. The submanifold M is a parallel Lagrangian submanifold
if and only if M is an integral C-parallel submanifold (see [I01]), and it was proved
in [66] that a parallel Lagrangian submanifold M is biharmonic if and only if M is
(—4)-biharmonic.

We recall here that a map ¢ : (M, g) — (N, h) is (—4)-biharmonic if it is a critical
point of the (—4)-bienergy Fs (1)) — 4E (1)), i.e., ¥ verifies 12(1)) + 47(1p) = 0. Also, a
real submanifold M of CP" is called Lagrangian if it has dimension n and the complex
structure J of CP™ maps the tangent space to M onto the normal one.

Thus, in order to determine all proper-biharmonic parallel Lagrangian submanifolds
of CP3, we shall determine the (—4)-biharmonic integral C-parallel submanifolds of
S7(1).

Just as in the case of Theorem BZH we obtain the following theorem.

Theorem 3.61 ([57]). The integral submanifold i : M3 — S"(1) is (—4)-biharmonic if
and only if
A+H +trace B(-, Ay) — TH =0
{4traceAv(+)H(-) + 3grad(|H|?) = 0.

Therefore it follows the next proposition.

Proposition 3.62 ([67]). A non-minimal integral C-parallel submanifold M? of S7(1)
is (—4)-biharmonic if and only if

trace B(-, Ag-) = 6H. (3.74)

Now, we can state the theorem.
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Theorem 3.63 ([67]). A 3-dimensional integral C-parallel submanifold M3 of S7(1) is
(—4)-biharmonic if and only if either:

1. M?3 is flat and it is locally a product of three curves:

e a heliz with curvatures k1 = (A2 — 1)/X and ko = 1,

e a heliz of order 4 with curvatures k1 = VA? + a2, ko = (a/k1)VA%2 + 1 and
R3 = —(/\/Hl) A2 + 1,

e a heliz of order 4 with curvatures k1 = \/A? + p? 4+ 0%, ko = (0/k1) /A2 + p? + 1
and k3 = (k2/0)\/ A2 + u?, if § # 0, or a circle with curvature k1 = \/A? + p2,
if 6 =0,

where X\, a, 11,8 are constants given by

(BAZ = 1)(3AT = 8AZ + 1) + M ((a+ p)? + 62) =0,
(a+p)(5BA2 +a? + p? —7) + ud? =0,

§(5A2 + 6% + 32 +au—17) =0,

1+ XM +ap—p?=0

(3.75)

such that —1 <A <0,0<a< (AN —1)/\, a>68>0, a>2u and \> # 1/3;
or

(2) M3 is locally isometric to a product vy x M? between a heliz with curvatures k1 =
(V13 —1)/3/12 = 3v/13 and ke = 1, and a C-parallel surface of ST(1) which is
locally isometric to the 2-dimensional Euclidean sphere with radius \/3/(7 — V/13).

Proof. 1t is easy to see that the equation (BZ74) is equivalent to the system

3 3
(ZAZ) (Z A — 6) + (a+ p) (g + pA3) + (B + 6)(BA2 + X3) = 0,
=1 i=1

3
(Z&)(mz + 1Az) + (@ + p) (203 + o® + 367 + i + 86 — 6) + (B +6)* =0,
i=1

3
(Z/\i>(ﬁ)\2+5>\3)+6(a+u)2+(B+5)(2/\§+62+3u2+ﬁ2+au—6) —0.
=1

(3.76)

In the same way as for the study of biharmonicity, we shall split the study of this
system, as M3 is given by Case I or Case II of the classification.

Case I. The system (BZ78) is equivalent to the system given by the first three equations
of (BZ3) and, just like in the proof of Theorem BXA3, we conclude the result.
Case II. (1) It is easy to verify that this case cannot occur in this setting.

(2) The second and the third equation of system (BZ78) are satisfied and the first
equation is equivalent to 3A\* — 8)\? 4- 1 = 0, whose solutions are \?> = (4 + /13)/3.
Since A2 < 1 it follows that A2 = (4 — /13)/3 and this, together with the classification
of the integral C-submanifolds, leads to the conclusion. O
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Using the explicit equation of the 3-dimensional integral C-parallel flat submanifolds
in S7(1) (see [IM]), we obtain the following corollary.

Corollary 3.64 ([61]). Any 3-dimensional flat (—4)-biharmonic integral C-parallel sub-
manifold M3 of ST(1) is given locally by

o ()8 gy e

1
+ ——— exp(—i(Au+ pv + prw))&s
p1(p1+ p2)
1
+ ————=exp(—i(Au + pv — paw))&;,
p2(p1 + p2)

x(u, v, w)

where p12 = ( \/4/1,2u—a)+52i5)/2 —1<A<0,0<a< (M =1)/A, a>§>0,
a > 2u, A2 #1/3, the tuple (N, a, i1, ) being one of the following

(S =)
B 1 45421v3 6 0
5+2v3 | 13 214113 )’
1 \/523+139\/ﬁ \/79—17\/ﬁ \/14+2\/ﬁ
\Ve6+vi3’ 138 T 138 3 ’

and {52-};1:1 is an orthonormal basis of C* with respect to the usual Hermitian inner
product.

or

Proof. In order to solve the system (BZZ3), we first note that, since a > 2pu, from the
fourth equation it results p < 0.
The third equation suggests that we need to split our study in two cases as ¢ is equal

to 0 or not.
Case 1: § = 0. In this case the third equation holds whatever the values of A\, a and
u are, and so does the condition a > §.

If @« = —p we easily obtain that the solution of the system is
4 —+/13 7—+13 7—+13
A=\ T 6 M7\ 6

In the following, we shall look for « of the form o = wp, where w € (—00,0) \ {—1},
since @« > 0 and g < 0. From the second and the fourth equations of the system
we have \2 = —(w? + 7w — 6)/((w — 2)(w — 3)), p? = 12/((w — 2)(w — 3)) and then

2 = 120?/((w — 2)(w — 3)). Replacing in the first equation, after a straightforward
computation, it can be written as

3w’ + 16w® — 58w* — 140w + 531w? — 444w + 108 = 0,
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which is equivalent to
(w — 2)%(3w* + 28w + 420w — 84w + 27) = 0,

whose solutions are 2, —3+2+/3 and (—5+2+/13)/3. From these solutions the only one
to verify the supplementary conditions is w = —3 — 2v/3, for which we have

N 1 o 45 + 21v/3 - 6
5+2v3 V" 21+ 113

Case 2: ¢ > 0. In this case the third equation of (BZ73) becomes
SN2 462+ 32 +ap—7=0.

Now, again taking a = wy, this time with w € (—o00,0), from the last three equations
of the system, we easily get

5 w? + 9w + 2 5 1203
N XTI 2
(w—1)(w—2)’ (w—1)%(w—2)’
9 12w 52— 12(w +1)?
e w-2y " T w12

Replacing in the first equation of the system we obtain the solutions —2 4 /3 and
—4 4+ /13, from which only w = —4 — /13 verifies the supplementary conditions.
Therefore, we obtain

N 1 W22 H183VI3 - JT9-17VI3 o [14+2V13
~ Vervz T s M7 s 0T 3
m

and we are done.

Remark 3.65 (|67]). By a straightforward computations we can check that the images
of the cylinders over the above z are, respectively: the standard (extrinsic) product of

a circle of radius y/(5 — v/13)/12 and three circles, each of radius 1/ (7 + v/13)/36; the
standard product of two circles each of radius /(3 + v/3)/12 and two circles each of
radius 4/ (3 — v/3)/12; the standard product of a circle of radius /(5 + 1/13)/12 and
three circles each of radius 4/ (7 — v/13)/36.






Further developments

In [72], the authors studied proper-biharmonic submanifolds in S" x R. First, they
gave a Simons type formula for submanifolds with parallel mean curvature vector field
(PMC) and then, the authors obtained a gap theorem for the mean curvature of certain
complete PMC proper-biharmonic submanifolds. Moreover, the complete determination
of all PMC proper-biharmonic surfaces in S™ x R was obtained. A first research direction
would be the continuation of the study of proper-biharmonic submanifolds in S™ x R. In
particular, it would be interesting to determine all proper-biharmonic surfaces in S? x R
without any additional hypothesis.

Recently, the bi-conservative submanifolds have been introduced in [31]. By defi-
nition, such a submanifold has free divergence bi-tensor field, i.e. div Sy = 0, and it
represents a generalization of the H-hypersurfaces in Euclidean spaces R™. These hy-
persurfaces were introduced by T. Hasanis and T. Vlachos in [[75]. One can prove that
a submanifold is bi-conservative if and only if the tangent part of the bitension field
vanishes. We intend to continue the study of the bi-conservative submanifolds. First,
we shall study the bi-conservative surfaces in 4-dimensional Euclidean space R?, and
then we shall study the bi-conservative submanifolds in real space forms, especially in
Sm.

Recently, H. Urakawa has studied for the first time the biharmonic maps with values
in a compact Lie group endowed with a bi-invariant metric ([129]). By using the Maurer-
Cartan form, the author gave the characterization for the biharmonic maps defined on
an open domain in R?, endowed with a conformal metric to the usual one, and with
values in a compact Lie group endowed with a bi-invariant metric. Another result that
he obtained is the explicit determination of biharmonic maps from the real line into
the group SU(2). A research direction will be the study of biharmonic maps (with
additional properties) in Lie groups.

The study of the biharmonicity of vector fields, thought of as maps from the base
manifold (M, g) to its tangent bundle (T'M, G), where (M, g) is a compact Lie group
with a bi-invariant metric and G is the corresponding Sasaki metric, was recently initia-
ted in [93]. Another research direction will be the study of the biharmonicity of vector
fields when the domain manifold is a (non-compact) Lie group.

Although the theory of biharmonic maps and submanifolds is the main topic of
investigation, we shall further extend the search for, and the analysis of other simi-
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lar problems, also discussing their applications in other theories. There are various
fourth-order elliptic equations similar to the biharmonic one, some of them derived
from Geometry, but also as mathematical models in Mechanics or Physics. An example
derived from Geometry is the equation of motion for the constrained Lagrangian as-
sociated to a non-holonomic Lagrangian of second order. This equation is known in
literature as the Heisenberg spinning particle equation. An example of a fourth-order
elliptic equation that appears in Sciences is the steady state of a curvature-drive flow
model for two dimensional biphasic biological systems, such as the immunological sy-
napse. A research direction will be the study the biharmonic and other similar equations
from the analytical point of view, by investigating some properties of their solutions.
We expect to obtain existence results, conditions for the periodicity of the solutions,
and stability properties.

Some of the results concerning the theory of biharmonic maps and submanifolds
could be the main topic of a course for PhD students and, mixed with elements from
the theory of harmonic maps, of a graduate course. Considering that this theory is
mainly based on classical, very beautiful results of Differential Geometry, we expect
that such a course will be very appealing and useful for young researchers. The very
proof of this claim is the activity of our younger collaborators: Adina Balmus and Dorel
Fetcu.

We should mention that well known mathematicians like Paul Baird, Bang-Yen
Chen, Eric Loubeau, Stefano Montaldo, Ye-Lin Ou, Harold Rosenberg, Hajime Urakawa
are interested in this kind of problems and some of their PhD. students are preparing
(or have already defended) their theses on biharmonicity.

Another way to attract young researchers to this field of Riemannian Geometry and
Geometric Analysis, is to include them in national and international research grants.
The author of this thesis has a good experience getting such grants, as he was awarded
6 national competitive grants, as well as more than 10 international fellowships.
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