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UNIVERSITATEA “AL.I. CUZA” DIN IAŞI
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IAŞI – 2026



2



3

CUPRINS

CURS 1 7

I. INTRODUCERE 7
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3.6. Ecuaţii Riccati 25

3.7. Ecuaţii Lagrange şi ecuaţii Clairaut 26
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Curs 1 7

CURS 1

I. INTRODUCERE

Numeroase fenomene din fizică, chimie, biologie şi din alte domenii
ale ştiinţei pot fi descrise cu ajutorul ecuaţiilor diferenţiale. Studiul
acestor ecuaţii permite o mai bună ı̂nţelegere şi predicţie a fenomenelor
descrise de acestea.

O ecuaţie diferenţială este o ecuaţie ı̂n care necunoscuta este o
funcţie şi ı̂n care apar funcţia şi derivatele acesteia până la un anumit
ordin n ∈ N∗. Numărul n se numeşte ordinul ecuaţiei diferenţiale.

Dacă funcţia necunoscută depinde de un singur argument, atunci
ecuaţia diferenţială respectivă se numeşte ordinară. În cazul ı̂n care
funcţia necunoscută depinde de mai multe variabile, ecuaţia se numeşte
cu derivate parţiale.

Prezentul curs este dedicat studierii ecuaţiilor diferenţiale ordinare.

1. Ecuaţie diferenţială ordinară. Soluţie a unei
ecuaţii diferenţiale ordinare

Forma generală a unei ecuaţii diferenţiale ordinare de ordin n este
următoarea:

F (t, x, x′, ..., x(n)) = 0, (1)

unde t este variabila independentă, x este funcţia necunoscută (este
o funcţie de variabilă t), iar x′, x′′, ..., x(n) sunt derivatele până la
ordinul n ∈ N∗ ale lui x.
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Funcţia F : D −→ R, unde D este un subdomeniu al lui Rn+2.

Definiţie. Se numeşte soluţie pentru (1) o funcţie x definită pe
un interval I al axei reale (I poate fi un interval deschis (α, β), ı̂nchis
[α, β] sau de forma (α, β] sau [α, β) ) cu valori ı̂n R, cu proprietatea
x ∈ Cn(I) şi care verifică

F (t, x(t), x′(t), ..., x(n)(t)) = 0, ∀t ∈ I

(se sub̂ınţelege deci că (t, x(t), x′(t), ..., x(n)(t)) ∈ D pentru orice t ∈
I).

Mulţimea tuturor soluţiilor ecuaţiei (1) se numeşte soluţia generală
a acesteia.

În anumite situaţii ecuaţia (1) se poate scrie sub forma (normală):

x(n) = f(t, x, x′, ..., x(n−1)). (2)

Pentru n = 1 obţinem forma generală a unei ecuaţii diferenţiale
ordinare de ordinul 1:

F (t, x, x′) = 0, (3)

unde F : D −→ R, (D fiind un domeniu din R3), precum şi forma
normală

x′ = f(t, x). (4)

În general, o ecuaţie diferenţială de ordinul 1 se studiază ı̂mpreună
cu o condiţie iniţială

x(t0) = x0, (5)

unde t0 ∈ I şi x0 ∈ R sunt date (şi se numesc valori iniţiale).

Prin problemă Cauchy asociată ecuaţiei (3) (sau (4)) se ı̂nţelege
găsirea soluţiilor x ale ecuaţiei (3) (sau (4)) care verifică condiţia (5).
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În cazul ı̂n care funcţia f din (4) este independentă de x, atunci
problema Cauchy ataşată ecuaţiei (4) se scrie astfel

x′(t) = f(t)

x(t0) = x0,
(6)

unde f : (α, β) −→ R şi t0 ∈ (α, β).
Presupunem că f este o funcţie continuă. Problema Cauchy revine

la a găsi primitivele funcţiei f , definite pe subintervale ce conţin t0,
care iau ı̂n punctul t0 valoarea x0. Pentru a le găsi nu avem decât de
integrat de la t0 la t şi obţinem∫ t

t0
x′(s)ds =

∫ t

t0
f(s)ds.

Aplicând formula Leibniz-Newton rezultă că

x(t)− x(t0) =
∫ t

t0
f(s)ds

şi cum x(t0) = x0, concluzionăm că

x(t) = x0 +
∫ t

t0
f(s)ds (7)

(care este funcţie de clasă C1) este soluţie a problemei (6) şi este
definită pe ı̂ntreg intervalul (α, β). De altfel, cum orice soluţie a pro-
blemei (6) are forma dată de (7), rezultă şi unicitatea soluţiei proble-
mei Cauchy (6).

2. Sisteme de ecuaţii diferenţiale de ordinul 1 şi
ecuaţii diferenţiale de ordin superior

Vom studia ı̂n această lucrare şi sisteme diferenţiale de ordinul 1
de următoarea formă:

x′1 = f1(t, x1, x2, ..., xn)
x′2 = f2(t, x1, x2, ..., xn)
.......
x′n = fn(t, x1, x2, ..., xn),

(8)
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unde f1, f2, ..., fn sunt funcţii definite pe un domeniu din Rn+1, cu
valori ı̂n R.

Definiţie. Spunem că x(t) = (x1(t), x2(t), ..., xn(t)) este o soluţie
pentru (8) dacă x1, x2, ..., xn sunt funcţii de clasă C1 pe un interval
I ⊂ R şi verifică

x′i(t) = fi(t, x1(t), x2(t), ..., xn(t)), ∀t ∈ I,

pentru orice i ∈ {1, 2, ..., n}.
Mulţimea tuturor soluţiilor sistemului (8) se numeşte soluţia ge-

nerală a acestuia.

Dacă ataşăm sistemului (8) condiţia iniţială
x1(t0) = x10
x2(t0) = x20
.......
xn(t0) = xn0 ,

vom obţine o problemă Cauchy.

Considerăm din nou ecuaţia (2). Dacă x este o soluţie a ecuaţiei
(2) şi dacă considerăm funcţiile

x1 = x, x2 = x′, ..., xn = x(n−1),

deducem că (x1, x2, ..., xn) este o soluţie a următorului sistem de ecuaţii
diferenţiale de ordinul 1:

x′1 = x2
x′2 = x3
.......
x′n−1 = xn
x′n = f(t, x1, x2, ..., xn).

(9)

Reciproc, dacă (x1, x2, ..., xn) este o soluţie pentru sistemul (9),
atunci funcţia x(t) = x1(t) este o soluţie pentru (8).

Vom spune astfel că ecuaţia de ordinul n, (8) este echivalentă cu
sistemul (9). De asemenea este natural, ı̂n virtutea acestei echivalenţe,
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să se studieze ecuaţiile diferenţiale de ordinul n ı̂mpreună cu condiţia
iniţială 

x(t0) = x10
x′(t0) = x20
.......
x(n−1)(t0) = xn0 ,

unde t0, x
1
0, x

2
0, ..., x

n
0 sunt numere reale fixate.

3. Ecuaţii diferenţiale ordinare abordate prin metode
elementare

În această secţiune vom discuta câteva tipuri de ecuaţii diferenţiale
ordinare pentru care se găsesc formule explicite de rezolvare sau metode
de reducere a acestora la ecuaţii mai simple.

3.1. Ecuaţii cu variabile separabile

Numeroase ecuaţii diferenţiale ordinare se pot reduce printr-un
număr finit de operaţii algebrice la o ecuaţie de forma:

x′ = f(t) · g(x), (10)

unde f : (α, β) → R, g : (γ, δ) → R sunt funcţii continue cu g(x) ̸= 0,
∀x ∈ (γ, δ) (intervalele de definiţie putând fi şi nemărginite). Ecuaţia
(10) este o ecuaţie cu variabile separabile.

De exemplu, ecuaţia
1

t
x′ =

sin t

x2 + 1

se reduce prin ı̂nmulţire cu t la ecuaţia:

x′ = t sin t · 1

x2 + 1
.

Dorim să găsim soluţiile ecuaţiei (10) care verifică condiţia:

x(t0) = x0, (11)



12 INTRODUCERE

unde t0 ∈ (α, β) şi x0 ∈ (γ, δ). Împărţind ecuaţia (10) prin g(x(t))
(care este diferit de 0) se obţine

x′(t)

g(x(t))
= f(t)

şi integrând de la t0 la t avem:∫ t

t0

x′(s)

g(x(s))
ds =

∫ t

t0
f(s)ds. (12)

Făcând schimbarea de variabilă y = x(s), (12) devine∫ x(t)

x0

dy

g(y)
=
∫ t

t0
f(s)ds. (13)

Notăm cu

G(x) =
∫ x

x0

dy

g(y)
, x ∈ (γ, δ). (14)

G este o primitivă a funcţiei continue
1

g
. Cum g este diferită de 0

pe (γ, δ) şi este şi continuă, concluzionăm că g este fie strict pozitivă

pe (γ, δ), fie strict negativă pe (γ, δ). În prima situaţie rezultă că G
este strict crescătoare pe (γ, δ), iar ı̂n a doua situaţie G este strict
descrescătoare pe (γ, δ).

Deci, G este strict monotonă şi continuă. Funcţia G−1 are deci
aceleaşi proprietăţi.

Relaţia (13) se mai poate scrie ca

G(x(t)) =
∫ t

t0
f(s)ds.

De aici rezultă că

x(t) = G−1
( ∫ t

t0
f(s)ds

)
(15)

şi x este definită pe un subinterval al lui (α, β) care conţine pe t0 (este

definită doar pentru acei t ∈ (α, β) cu proprietatea că
∫ t

t0
f(s)ds ∈

G((α, β))).
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Reciproc, funcţia x definită de (15) pe un subinterval al lui (α, β),
este o funcţie de clasă C1 şi verifică

x(t0) = G−1
( ∫ t0

t0
f(s)ds

)
= G−1(0).

Cum G(x0) = 0 (din (15)), rezultă că G−1(0) = x0 şi deci x verifică
condiţia iniţială (11). Derivând (15) obţinem

x′(t) =
f(t)

G′
(
G−1(

∫ t
t0
f(s)ds)

) = f(t) · g(x(t)),

adică x este soluţie a ecuaţiei (10).

Exemplu. Să se găsească soluţia problemei Cauchy:
x′ =

2tx

t2 + 1
, t ∈ R

x(0) = c > 0.

Soluţie. În cazul acesta f : R → R, f(t) =
2t

t2 + 1
este o funcţie

continuă, iar g(x) = x. Pentru a avea că g este diferită de 0 este

necesar să o considerăm fie g : (0,+∞) → R, fie g : (−∞, 0) → R. În
ambele cazuri g este o funcţie continuă. Cum x(0) = c > 0, este deci
necesar să ne limităm la cazul când g : (0,+∞) → R.

Înseamnă că vom căuta soluţii strict pozitive ale problemei Cauchy.

Împărţind ambii membri ai ecuaţiei prin x obţinem:

x′

x
=

2t

t2 + 1
.

Integrând de la 0 la t rezultă∫ t

0

x′(s)

x(s)
ds =

∫ t

0

2s

s2 + 1
ds
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şi deci ∫ x(t)

c

dy

y
= ln(s2 + 1)|t0.

Aceasta implică
lnx(t)− ln c = ln(t2 + 1)

⇐⇒ x(t) = c(t2 + 1), t ∈ R.
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CURS 2

3.2. Ecuaţii omogene

Considerăm ecuaţia

x′ = h
(x
t

)
, (16)

unde h : (a, b) −→ R este o funcţie continuă cu proprietatea că h(u) ̸=
u, ∀u ∈ (a, b).

Ecuaţia (16) se numeşte ecuaţie diferenţială omogenă. Fâcând
substituţia

u =
x

t
se obţine imediat că x′ = tu′ + u şi ı̂nlocuind ı̂n (16) avem

tu′ + u = h(u) ⇐⇒ tu′ = h(u)− u

care se reduce la o ecuaţie cu variabile separabile.

Un exemplu de ecuaţie care se reduce la o ecuaţie omogenă este
următorul:

x′ =
x− t

x+ t
, t > 0.

Ecuaţia se mai poate scrie ca

x′ =
t(x

t
− 1)

t(x
t
+ 1)

⇐⇒ x′ =
x
t
− 1

x
t
+ 1

,

care este evident o ecuaţie omogenă. În acest caz h(u) = u−1
u+1

, h :
(−∞,−1) → R sau h : (−1,+∞) → R, iar condiţia h(u) ̸= u este
echivalentă cu

u− 1

u+ 1
̸= u⇐⇒ u− 1 ̸= u2 + u,

care este evident adevărată.
Făcând substituţia u = x

t
se obţine

u′t+ u =
u− 1

u+ 1
⇐⇒ tu′ =

u− 1

u+ 1
− u



16 INTRODUCERE

⇐⇒ tu′ =
u− 1− u2 − u

u+ 1
⇐⇒ u′ = −1

t
· 1 + u2

u+ 1
,

care este evident o ecuaţie cu variabile separabile

Exemplul 2. Ecuaţia

txx′ = t2 + x2, t, x ̸= 0

se mai poate scrie ca

x′ =
t2 + x2

tx
=

1 + (x
t
)2

x
t

,

care este o ecuaţie omogenă. În acest caz

h(u) =
1 + u2

u

este o funcţie continuă pe (0,+∞) şi pe (−∞, 0) şi satisface condiţia
h(u) ̸= u, ∀u ̸= 0. Făcând substituţia u = x

t
, ecuaţia devine

tu′ + u =
1 + u2

u
⇐⇒ tu′ =

1

u

⇐⇒ u′ =
1

t
· 1
u
,

care este o ecuaţie cu variabile separabile.

Observaţie. Ecuaţia diferenţială

x′ =
at+ bx+ c

αt+ βx+ γ

(a, b, c, α, β, γ ∈ R şi satisfac condiţia aβ ̸= αb) se reduce la ecuaţia

y′(s) =
as+ by

αs+ βy

prin substituţia s = t − t0, y = x − x0, unde (t0, x0) este o soluţie a
sistemului {

at0 + bx0 + c = 0
αt0 + βx0 + γ = 0.
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3.3. Ecuaţii diferenţiale liniare de ordinul 1

O ecuaţie de forma

x′ = a(t)x+ b(t), (17)

unde a, b : (α, β) −→ R, se numeşte ecuaţie diferenţială liniară de
ordinul 1.

În cele ce urmează vom găsi soluţia generală a ecuaţiei (17).
Fie x0 valoarea ı̂n t0 a soluţiei x (t0 ∈ (α, β), x0 ∈ R sunt oarecare).

Ecuaţia (17) este echivalentă cu

x′ − a(t)x = b(t).

Înmulţim ultima ecuaţie cu e
−
∫ t

t0
a(s)ds

şi obţinem(
x(t)e

−
∫ t

t0
a(s)ds

)′
= e

−
∫ t

t0
a(s)ds

b(t).

Integrând de la t0 la t şi utilizând formula lui Leibniz-Newton rezultă

x(t)e
−
∫ t

t0
a(s)ds − x0 =

∫ t

t0
e
−
∫ s

t0
a(τ)dτ

b(s)ds.

De aici deducem că

x(t) = e
∫ t

t0
a(s)ds

x0 +
∫ t

t0
e
∫ t

s
a(τ)dτb(s)ds. (18)

Reciproc, funcţia x dată de formula (18) (cu t0 ∈ (α, β) şi x0 ∈ R

oarecare) este de clasă C1 pe (α, β). În plus, derivând (18) se obţine
că x verifică (17).

Concluzia este că soluţia generală a ecuaţiei (17) este dată de for-
mula (18), iar intervalul maxim de definiţie al acestor soluţii este
(α, β).

În cazul particular al funcţiilor a şi b constante, ecuaţia (17) devine

x′ = ax+ b, (19)
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cu a, b ∈ R. Soluţia generală a ecuaţiei (19) este

x(t) = eatx0 +
∫ t

0
ea(t−s)bds, t ∈ R (20)

(formula variaţiei constantelor), cu x0 ∈ R oarecare (l-am ales pe
t0 = 0).

Exemplul 1. Ecuaţia dinamicii populaţiei este

y′ = ky

(modelul lui Malthus; k = β − µ, unde β este rata natalităţii, iar µ
este rata mortalităţii). Aceasta este o ecuaţie liniară (dar şi una cu
variabile separabile). Aplicând formula (20) obţinem că numărul de
indivizi la momentul t este

y(t) = ekty0, t ≥ 0,

unde y0 ∈ (0,+∞) este numărul iniţial de indivizi. Concluzia lui
Malthus era una catastrofică, anume că pentru k < 0 (rata natalităţii
este mai mică decât cea a mortalităţii) avem:

y(t) → 0, pentru t→ +∞

(populaţia evoluează spre extincţie).
Pentru k > 0 (rata natalităţii este mai mare decât cea a mor-

talităţii), avem:

y(t) → +∞, pentru t→ +∞,

ceea ce conduce la ı̂nmulţirea necontrolată a populaţiei şi implicit la
distrugerea resurselor mediului.

Doar pentru k = 0 (rata natalităţii este egală cu cea a mortalităţii),
avem că

y(t) = y0, ∀t ∈ [0,+∞),

deci populaţia este staţionară.

Această concluzie finală a dus la cea mai importantă critică adusă
modelului lui Malthus: el nu ţine cont de limitarea resurselor de hrană
şi de suprapopulare.
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Exemplul 2. Să se afle soluţia problemei{
tx′ = 2x+ t2, t > 1
x(1) = 0.

Soluţie. Împărţind prin t obţinem:

x′ =
2

t
x+ t.

De aici deducem că

x(t) = e
∫ t

1
2
s
dsx(1) +

∫ t

1
e
∫ t

s
2
τ
dτs ds

⇐⇒ x(t) =
∫ t

1

t2

s2
s ds

⇐⇒ x(t) = t2 ln t, ∀t ∈ [1,+∞).

3.4. Ecuaţii Bernoulli

O ecuaţie de forma

x′ = a(t)x+ b(t)xα, (21)

unde α ∈ R \ {0, 1} se numeşte ecuaţie Bernoulli. Dacă α = 0 sau
α = 1, atunci (21) este o ecuaţie liniară.

Prin substituţia y = x1−α, ecuaţia se reduce la o ecuaţie diferenţială
liniară de ordinul 1.

Exemplu. Modelul propus de Malthus pentru dinamica unei populaţii
a fost corectat de Verhulst prin luarea ı̂n considerare a suprapopulării.
Modelul propus de acesta este

y′ = ky − γy2 (γ > 0), (22)

unde γy este o rată suplimentară de mortalitate datorată suprapopulării
şi proporţională cu y şi se foloseşte pentru situaţia când k > 0.
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Presupunem pentru ı̂nceput că y(0) = y0 ∈
(
0,
k

γ

)
.

Împărţim ambii membri ai ecuaţiei prin y şi facem substituţia z =
y−1. Obţinem astfel:

y−2y′ = ky−1 − γ ⇐⇒ −z′ = kz − γ

⇐⇒ z′ = −kz + γ.

Cum y(0) = y0, rezultă deci z(0) = y−1
0 . Utilizând formula variaţiei

constantelor avem

z(t) = e−kty−1
0 +

∫ t

0
e−k(t−s)γds

= e−kty−1
0 + e−ktγ

1

k
(ekt − 1)

= e−kt(y−1
0 − γ

k
) +

γ

k
>
γ

k
, ∀t ≥ 0.

Deci,

y(t) =
1

e−kt( 1
y0

− γ
k
)
+
γ

k
, ∀t ≥ 0. (23)

Făcând pe t→ +∞ rezultă

y(t) → k

γ
, pentru t→ +∞

(k
γ
este soluţie staţionară a ecuaţiei (22)).

Observaţie. Dacă y0 >
k

γ
, atunci rezultă exact la fel că y dat de

formula (23) este soluţie. Pentru t→ +∞ se obţine de asemenea că

lim
t→+∞

y(t) =
k

γ
.

Dacă y0 =
k

γ
, atunci y(t) =

k

γ
, t ≥ 0, este soluţia căutată.
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Concluzia este că dacă y0 > 0, atunci soluţia y tinde (pentru t →
+∞) la soluţia staţionară

k

γ
a ecuaţiei (22).

Studiul modelului lui Verhulst infirmă predicţiile catastrofice ale
lui Malthus legate de evoluţia unei populaţii biologice.

3.5. Ecuaţii diferenţiale exacte

Considerăm ecuaţia

x′ =
a(t, x)

b(t, x)
, (24)

unde a, b : D −→ R sunt funcţii continue, cu b(t, x) ̸= 0, ∀(t, x) ∈ D
(D este un domeniu al lui R2). Ecuaţia (24) este echivalentă cu

a(t, x)dt− b(t, x)dx = 0. (25)

Dacă adt − bdx este o diferenţială totală exactă pe mulţimea D,
adică există F ∈ C1(D) astfel ı̂ncât

dF (t, x) = a(t, x)dt− b(t, x)dx,

atunci (24) se numeşte ecuaţie cu diferenţială totală sau
ecuaţie diferenţială exactă.

În acest caz, ecuaţia (24) este echivalentă cu

dF (t, x) = 0.

De aici se deduce că
F (t, x(t)) = c, (26)

unde c este o constantă arbitrară. Formula (26) ne dă soluţia generală
a ecuaţiei (24) sub formă implicită.

Reciproc, pentru orice constantă c reală, formula (26) defineşte
(conform teoremei funcţiilor implicite) o unică funcţie x definită pe
un interval (α, β). Diferenţiind (26) obţinem imediat că x este soluţie
pentru (25) şi deci şi pentru (24).

Ne interesează să vedem cum ne dăm seama dacă a(t, x)dt−b(t, x)dx
este o diferenţială totală exactă.
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În cazul ı̂n care forma diferenţială este o diferenţială totală, atunci
există F ∈ C1(D) astfel ca

∂F

∂t
(t, x) = a(t, x)

∂F

∂x
(t, x) = −b(t, x),

pentru orice (t, x) ∈ D. Dacă ı̂n plus a şi b sunt de clasă C1, atunci
rezultă conform teoremei lui Schwarz că

∂2F

∂t∂x
=

∂2F

∂t∂x
, ∀(t, x) ∈ D

şi de aici
∂a

∂x
= −∂b

∂t
, ∀(t, x) ∈ D. (27)

Reciproc, dacă a, b ∈ C1(D) şi dacă relaţia (27) are loc, atunci
există F ∈ C2(D) astfel ca

dF = a(t, x)dt− b(t, x)dx

şi deci forma diferenţială a(t, x)dt− b(t, x)dx este o diferenţială totală
exactă şi deci (24) este o ecuaţie diferenţială exactă.

Exemplu. Să se determine soluţia generală a ecuaţiei

x′ =
t+ x

x− t
. (28)

Soluţie. Ecuaţia are forma (24), unde a(t, x) = t+x, b(t, x) = x−t,
iar D = {(t, x) ∈ R2; x > t} sau D = {(t, x) ∈ R2; x < t}.

Pentru oricare din aceste două cazuri avem că a, b ∈ C1(D) şi
b(t, x) ̸= 0, ∀(t, x) ∈ D. Rescriem ecuaţia (28) ca

(t+ x)dt− (x− t)dx = 0.
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Cum
∂(t+ x)

∂x
= −∂(x− t)

∂t
,

rezultă că ecuaţia este cu diferenţiale exacte. Deci, există F ∈ C2(D)
astfel ca 

∂F

∂x
(t, x) = −x+ t

∀(t, x) ∈ D
∂F

∂t
(t, x) = t+ x .

(29)

Din prima relaţie din (29) rezultă că

F (t, x) = −1

2
x2 + tx+ h(t), (30)

unde h este o funcţie depinzând doar de t. Înlocuind pe F dat de (30)
ı̂n cea de a doua relaţie din (29) obţinem

x+ h′(t) = t+ x

şi de aici avem h(t) = 1
2
t2 verifică condiţia de mai sus (evident că nu

este singura astfel de funcţie). Rezultă că

F (t, x) =
1

2
t2 + tx− 1

2
x2

satisface (29) şi că

dF (t, x) = 0, (t, x) ∈ D.

În concluzie
dF (t, x) = 0 ⇐⇒ F (t, x) = c,

(unde c ∈ R) ne dă soluţia generală sub formă implicită. Adică

1

2
t2 + tx− 1

2
x2 = c,

c ∈ R, ne dă soluţia generală (pentru ambele cazuri pentru D).
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CURS 3

3.6. Ecuaţii diferenţiale Riccati

Sunt de forma
x′ = a(t)x+ b(t)x2 + c(t), (31)

unde a, b, c : (α, β) → R sunt funcţii continue.
Ecuaţiile de forma (31) nu sunt ı̂n general integrabile prin cuadra-

turi. Totuşi, dacă se cunoaşte o soluţie particulară x̃ a ecuaţiei (31),

atunci se poate afla soluţia generală x. În adevăr, avem

(x− x̃)′ = a(t)(x− x̃) + b(t)(x2 − x̃2)

şi de aici rezultă

(x− x̃)′ = a(t)(x− x̃) + b(t)(x− x̃)(x+ x̃)

⇔ (x− x̃)′ = (a(t) + 2b(t)x̃)(x− x̃) + b(t)(x− x̃)2.

În concluzie, prin substituţia y = x − x̃, ecuaţia (31) se reduce la
ecuaţia Bernoulli

y′ = (a(t) + 2b(t)x̃)y + b(t)y2.

Dacă a, b şi c sunt funcţii constante, atunci ecuaţia (31) este cu
variabile separabile.

Exemplu. Să se integreze ecuaţia Riccati

x′ = x2 − 4t2 + 2.

Soluţie. Observăm că funcţia x̃ = 2t este o soluţie a ecuaţiei date.
Făcând substituţia y = x− x̃, reducem studiul ecuaţiei date la studiul
ecuaţiei

y′ = x2 − 4t2 ⇐⇒ y′ = (x− 2t)(x+ 2t)
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⇔ y′ = y(y + 4t) ⇐⇒ y′ = 4ty + y2.

Aceasta este o ecuaţie Bernoulli şi se tratează după cum am arătat
mai sus.

3.7. Ecuaţii Lagrange şi ecuaţii Clairaut

Ecuaţia Lagrange are forma

x = t a(x′) + b(x′), (32)

unde a, b : (γ, δ) −→ R sunt funcţii de clasă C1 şi a(p) ̸= p, ∀p ∈
(γ, δ).

Dacă x este o soluţie a ecuaţiei (32) definită pe intervalul I, atunci
derivând termen cu termen ı̂n (32) obţinem

x′ = a(x′) + ta′(x′)x′′ + b′(x′)x′′.

Notând cu p = x′, avem că

p = a(p) + ta′(p)p′ + b′(p)p′ ⇐⇒ p′(ta′(p) + b′(p)) = p− a(p)

⇐⇒ dp

dt
(ta′(p) + b′(p)) = p− a(p).

Concluzionăm imediat că

dt

dp
=

a′(p)

p− a(p)
t+

b′(p)

p− a(p)
, (33)

care este o ecuaţie liniară (̂ın necunoscuta t, ca funcţie de argumentul
p).

Soluţia generală pentru (33) este

t = f(p, c),

unde c este o constantă arbitrară.
Din (32) obţinem {

t = f(p, c)
x = f(p, c)a(p) + b(p),



Curs 3 27

care ne dă soluţia parametrică generală a ecuaţiei (32).

Ecuaţia
x = t x′ + b(x′), (34)

unde b : (γ, δ) → R este de clasă C1, se numeşte ecuaţie Clairaut. Se
observă că are forma (32), cu a(p) = p, ∀p ∈ (γ, δ).

Cu toate acestea, ecuaţia Clairaut nu este un caz particular de
ecuaţie Lagrange.

Prin derivare a ecuaţiei (34) membru cu membru, se obţine

x′ = x′ + tx′′ + b′(x′)x′′

şi deci
x′′(t+ b′(x′)) = 0.

Primul tip de soluţie verifică

x′′ = 0

şi deci este de forma

x(t) = c1t+ c2, c1, c2 ∈ R.

Înlocuind ı̂n (34) găsim că c2 = b(c1) şi de aici soluţia

x(t) = c1t+ b(c1), c1 ∈ R.

Al doilea tip de soluţie verifică

t+ b(x′) = 0.

Notând x′ = p, obţinem o soluţie parametrică a ecuaţiei Clairaut{
t = −b′(p)
x = −b′(p)p+ b(p)

(numită soluţie singulară a acesteia).
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Exemplul 1. Să se integreze ecuaţia

x = t(1 + x′) + (x′)2. (35)

Soluţie. Aceasta este o ecuaţie Lagrange cu a(p) = 1+p, b(p) = p2,
a, b : R → R. Evident că a, b ∈ C1(R). Derivând membru cu
membru ı̂n (35) se obţine

x′ = 1 + x′ + tx′′ + 2x′x′′

⇐⇒ 1 + (t+ 2x′)x′′ = 0.

Notând x′ = p, ecuaţia devine

1 + (t+ 2p) · dp
dt

= 0

şi de aici avem
dt

dp
= −2p− t. (36)

Ecuaţia liniară (36) are soluţia generală

t = e−pc− 2
∫ p

0
e−(p−s)sds, c ∈ R

= e−pc− 2e−p
∫ p

0
essds.

Cum ∫ p

0
essds = ess

∣∣∣p
0
−
∫ p

0
esds = epp− ep + 1,

deducem că
t = e−pc− 2e−p · ep(p− 1)− 2e−p

= e−p(c− 2)− 2(p− 1).

În acest fel am obţinut pentru (35) soluţia generală{
t = e−pc− 2(p− 1)
x = (1 + p)[e−pc− 2(p− 1)] + p2
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⇐⇒
{
t = e−pc− 2(p− 1)
x = (1 + p)e−pc− p2 + 2, c ∈ R.

Exemplul 2. Să se integreze ecuaţia

x = tx′ + (x′)2. (37)

Soluţie. Aceasta este o ecuaţie Clairaut. Derivând se obţine

x′ = x′ + tx′′ + 2x′x′′

⇐⇒ x′′(t+ 2x′) = 0.

Din x′′ = 0 obţinem x(t) = c1t + c2, c1, c2 ∈ R. Înlocuind ı̂n (37)
rezultă

c1t+ c2 = c2t+ c21

de unde concluzionăm că

x(t) = c1t+ c21, c1 ∈ R

(soluţia generală a ecuaţiei Clairaut date).

Din t+ 2x′ = 0, obţinem făcând substituţia x′ = p:{
t = −2p
x = tp+ p2

(soluţia singulară parametrică) şi de aici se obţine această soluţie şi
sub formă explicită

x = −t
2

4
.

3.8. Ecuaţii de ordin superior

În anumite situaţii se poate reduce studiul acestor ecuaţii la ecuaţii
de ordin mai mic.
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În cazul ecuaţiei de ordin n:

F (t, x(k), x(k+1), ..., x(n)) = 0,

cu k, n ∈ N∗, k < n, se utilizează substituţia y = x(k) şi se obţine
astfel ecuaţia de ordinul n− k:

F (t, y, y′, ..., y(n−k)) = 0.

Soluţia x se obţine apoi din y prin integrări succesive.

Pentru ecuaţii de forma:

F (x, x′, ..., x(n)) = 0

se utilizează substituţia x′ = p şi se obţine o ecuaţie de forma

G(x, p,
dp

dx
, ...,

dn−1p

dxn−1
) = 0

(aici apare funcţia p şi derivatele acesteia, ı̂n raport cu x, până la
ordinul n− 1.

Exemplul 1. Să se găsească soluţia generală a ecuaţiei

tx′′ + x′ + t = 0, t > 0.

Soluţie. Notând x′ = y, putem rescrie ecuaţia ca

ty′ + y + t = 0

⇐⇒ y′ = −1

t
y − 1.

Soluţia generală a acestei ultime ecuaţii este

y(t) = e−
∫ t

1
1
s
dsc1 −

∫ t

1
e−
∫ t

s
1
τ
dτds, c1 ∈ R

= e− ln tc1 − e− ln t
∫ t

1
eln sds

=
c1
t
− 1

t
· 1
2
(t2 − 1)

=
c1 +

1
2

t
− 1

2
t.



Curs 3 31

Notăm c̃ = c1 +
1
2
. Cum x′ = y, rezultă

x′ = c̃
1

t
− 1

2
t

⇐⇒ x(t) = c̃ ln t− 1

4
t2 + d,

unde c̃, d ∈ R sunt constante oarecare.

Exemplul 2. Un corp de masă m este lansat de la suprafaţa
Pământului pe verticală cu viteza v0. Notăm cu x(t) altitudinea la
care se află corpul la momentul t (deci, momentul iniţial este t0 = 0
şi x(0) = 0). Ştiind că forţa de atracţie pe care o exercită Pământul
asupra corpului aflat la altitudinea x este egală cu mgR2/(x+R)2 (s-a
presupus că Pământul este o sferă de rază R şi că rezistenţa aerului
este 0), să se determine viteza iniţială minimă pentru care corpul nu
mai revine pe Pământ.

Soluţie. Din legea a doua a lui Newton se obţine că

mx′′ = −mgR2/(x+R)2. (38)

Ştim de asemenea din ipoteze că x(0) = 0 şi x′(0) = v0.
Notând x′ = p, obţinem

x′′ =
dp

dt
=
dp

dx
· dx
dt

=
dp

dx
· p.

Înlocuind ı̂n (38) obţinem

p
dp

dx
= − gR2

(x+R)2

(ecuaţie cu variabile separabile). Integrând ecuaţia de la 0 la x rezultă

1

2
p2 − 1

2
v20 = −gR2

∫ x

0

1

(y +R)2
dy

(p este o funcţie de x)

⇐⇒ 1

2
p2 − 1

2
v20 = −gR2(− 1

y +R
)
∣∣∣x
0
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⇐⇒ p2 − v20 =
2gR2

x+R
− 2gR. (39)

Dacă p(x) = v(t) = x′(t) rămâne permanent diferit de 0, atunci corpul
nu se ı̂ntoarce pe Pământ (altfel ar exista un t > 0 astfel ca v(t) = 0).

Dacă v0 ≥
√
2gR, atunci viteza va fi permanent pozitivă şi deci

corpul nu revine pe Pământ.

Observaţie. v0 =
√
2gR este prima viteză cosmică. O analiză

atentă a relaţiei (39) arată că de fapt dacă v0 <
√
2gR, atunci ı̂n mod

necesar corpul revine pe Pământ.
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CURS 4

4. Fenomene modelate de ecuaţii diferenţiale
ordinare

Vom prezenta ı̂n continuare câteva exemple de fenomene din fizică,
chimie şi biologie care sunt descrise de ecuaţii diferenţiale ordinare.

Răcirea (̂ıncălzirea) corpurilor

Conform legii lui Newton rata de răcire (̂ıncălzire) a suprafeţei
unui corp este direct proporţională cu diferenţa dintre temperatura
suprafeţei şi cea a mediului ı̂nconjurător.

Notăm cu T (t) temperatura unui corp (̂ın grade Celsius) la mo-
mentul t (se presupune că temperatura corpului este aceeaşi ı̂n orice
punct al său) şi fie T 0 (T 0 ∈ R) temperatura mediului ı̂nconjurător
(̂ın grade Celsius).

Legea lui Newton se transcrie matematic astfel:

T ′ = k(T − T 0),

unde k ∈ R este constanta de proporţionalitate, numită şi constantă
de transfer.
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Pendulul simplu

Considerăm un corp punctiform de masă m suspendat de un braţ
rigid, fără masă, de lungime l (figura I.1). Presupunem că masa se
mişcă ı̂ntr-un plan vertical. Notăm cu θ(t) unghiul (̂ın radiani) pe

care ı̂l face la momentul t braţul pendulului cu (0A. În cazul ı̂n care
masa m se află la dreapta faţă de poziţia de echilibru, atunci θ(t) > 0,
iar dacă se află la stânga, atunci θ(t) < 0.

Figura I.1

Asupra masei m acţionează forţa
−→
G de modul mg, care se descom-

pune ı̂ntr-o componentă activă după direcţia tangenţială, de mărime
egală cu−mg sin θ(t), şi ı̂ntr-o componentă pasivă, după direcţia braţului
rigid. Cum mărimea arcului Am este egală cu lθ(t), rezultă utilizând
legea a doua a lui Newton că

m(lθ(t))′′ = −mg sin θ(t).

În concluzie, obţinem ecuaţia de ordinul 2:

lθ′′ + g sin θ = 0.
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Oscilatorul armonic

Considerăm un corp punctiform de masă m suspendat de un resort
fără masă şi aflat ı̂n poziţie de echilibru. Alungirea resortului faţă de
poziţia resortului când m = 0 este l0 (figura I.2).

Figura I.2

Notăm cu y(t) elongaţia la momentul t (deplasarea faţă de poziţia
de echilibru). Conform legii lui Hooke (tensiunea = forţa elastică, este
proporţională cu elongaţia) avem

kl0 = mg,

unde k este constanta lui Hooke.
Corpul este tras ı̂n jos şi apoi i se dă drumul să oscileze. La mo-

mentul t, mărimea rezultantei forţelor care acţionează asupra corpului
de masă m este

mg − k(y(t) + l0)− γy′(t)
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(s-a presupus că apare şi o forţă de frecare proporţională cu viteza;
γ= coeficient de frecare) şi aceasta este egală cu my′′(t) (conform legii
a doua a lui Newton). Avem deci,

my′′ = mg − k(l0 + y)− γy′.

Cum kl0 = mg, concluzionăm că y este soluţie a ecuaţiei:

my′′ + γy′ + ky = 0.

În cazul ı̂n care asupra masei m acţionează o forţă verticală externă de
mărime f(t), atunci făcând bilanţul forţelor şi utilizând legea a doua
a lui Newton obţinem că y verifică ecuaţia:

my′′ + γy′ + ky = f(t).

Dezintegrarea radioactivă

Experimentele arată că viteza de dezintegrare a unei substanţe ra-
dioactive este proporţională cu cantitatea de substanţă. Notând cu
y(t) cantitatea dintr-o substanţă radioactivă la momentul t avem că:

y′(t) = −ky(t),

unde k > 0 este o constantă specifică substanţei. O mărime impor-
tantă ı̂n studiul procesului de dezintegrare al unei substanţe radioac-
tive este timpul ı̂n care jumătate din substanţă se dezintegrează şi se
numeşte timp de ı̂njumătăţire.

Dinamica populaţiei

Notăm cu y(t) numărul de indivizi ai unei populaţii biologice (la
momentul t). Rata de creştere a populaţiei datorată natalităţii este
proporţională cu y(t), cu constanta de proporţionalitate β, numită şi
rată a fertilităţii. Rata de descreştere a populaţiei, datorată mor-
talităţii, este de asemenea proporţională cu y(t), cu constanta de
proporţionalitate µ, numită şi rată a mortalităţii.
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Făcând bilanţul concluzionăm că

y′(t) = βy(t)− µy(t)

şi deci obţinem legea lui Malthus pentru dinamica unei populaţii:

y′ = ky,

unde k = β − µ este o constantă.

Sisteme de tip pradă-răpitor

Presupunem că ı̂ntr-o zonă geografică trăiesc două populaţii biolo-
gice, din care una se hrăneşte cu indivizi din cealaltă populaţie. Notăm
cu x(t) numărul indivizilor pradă şi cu y(t) numărul răpitorilor la
momentul t. Sistemul biologic descris este modelat de sistemul Lotka-
Volterra {

x′ = αx− βxy
y′ = −γy + δxy,

unde α, β, γ, δ > 0.

Modelarea reacţiilor chimice

Considerăm două substanţe A şi B de concentraţii (mol/l) a, re-
spectiv b, care reacţionează formând substanţa C, de concentraţie x(t)
la momentul t:

A+B −→k C.

Rata de creştere a lui x este dată de legea acţiunii masei:

x′(t) = k(a− x(t))(b− x(t))

(viteza de reacţie este proporţională cu produsul concentraţiilor
substanţelor care intră ı̂n reacţie; k este numită viteza de reacţie).
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Exerciţii

1. Să se arate că funcţia x(t) = e2t + t este soluţie a ecuaţiei

x′ = 2x− 2t+ 1.

2. Să se demonstreze că funcţiile x1(t) = cos t şi x2(t) = sin t sunt
soluţii ale ecuaţiei

x′′ + x = 0.

3. Arătaţi că x(t) = eγt este soluţie a ecuaţiei

ax′′ + bx′ + cx = 0,

unde a, b, c, γ sunt constante reale satisfăcând condiţia aγ2 +
bγ + c = 0.

4. Utilizaţi rezultatul de la exerciţiul 3 pentru a găsi o soluţie a
ecuaţiei

x′′ + 3x′ + 2x = 0

care satisface condiţiile iniţiale x(0) = 1, x′(0) = 0.

Indicaţie. Funcţia x(t) = c1e
−t+ c2e

−2t (c1, c2 ∈ R) este o soluţie
a ecuaţiei. Impunând ca x(0) = 1 şi x′(0) = 0 se obţin constantele
c1 şi c2.

Să se rezolve problemele Cauchy:

5. {
y′ = 2 sin t
y(0) = 0.

Indicaţie. Dacă y este o soluţie, atunci rezultă că

y(t)− y(0) =
∫ t

0
2 sin s ds.
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6. {
y′ = t(5− t)
y(1) = 1.

7. {
x(n) = f(t)
x(t0) = x10, x

′(t0) = x20, ..., x
(n−1)(t0) = xn0 ,

unde f : (α, β) → R este o funcţie continuă, t0 ∈ (α, β) şi
x10, x

2
0, ..., x

n
0 ∈ R.

Indicaţie. Se integrează ecuaţia succesiv de n ori.

8. 
y′′ = cos t+ 2
y(0) = 0
y′(0) = −1.

Să se rezolve ecuaţiile:

9.

x′ = t3x2

10.

x′ =
ctg x

tg t

11.

x′ =
x sin 2t

cos 2t

12.

x′ =
t2x

t3 − x3
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13.

x′ =
2x− t

2t− x

14.

x′ =
2x+ t2

t

15.
x′ = x+ 3et

16.

x′ = −x+ t2x4

t

17.

x′ = −1

t
x2 − 1

t
x

18. Să se afle soluţia generală a ecuaţiei Riccati

x′ = x2 + (1− 2t)x+ t2 − t+ 1,

observând faptul că x = t este o soluţie particulară a acesteia.

Să se rezolve ecuaţiile:

19.

x′ =
3t2 − 6tx

3t2 + 2x

20.

x′ =
1− x2

2tx− sinx
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21.
x = tx′ + (x′)3

22.
x = tx′ − 3(x′)4

23.
x′′′ + 8x = 0

24. O substanţă radioactivă are perioada de ı̂njumătăţire de 100 ore.
După cât timp va dispare 90% din radioactivitate ?

25. Ştiind că perioada de ı̂njumătăţire pentru radiu este de 1600 ani,
aflaţi ce procent de radiu va rămâne după 30 ani ?

26. Un corp aflat la 15◦C este adus ı̂ntr-o cameră cu temperatura de
23◦C. Ştiind că după 10 minute corpul ajunge la 18◦C, să se afle
după cât timp ajunge corpul la 22◦C ?

27. Într-un bazin se află 400 kg de apă ı̂n care s-au dizolvat 10 kg
sare. În bazin se introduce apă cu un debit de 10 kg/min şi ı̂n
acelaşi timp se evacuează soluţie cu acelaşi debit (se presupune
că soluţia este permanent omogenă). Care este concentraţia de
sare după 10 h ?

28. Un corp de masă 400 kg, aflat la suprafaţa apei, se scufundă ı̂ntr-
un lac adânc de 60 m. Ştiind că volumul obiectului este de 0.1
m3, iar forţa exercitată de apă este de 0.04 · v(t) (v(t) este viteza
la momentul t), să se afle după cât timp ajunge corpul pe fundul
apei ?

29. Ecuaţia mişcării ı̂n cazul căderii pe verticală a unui paraşutist
este descrisă de ecuaţia

mx′′ + kx′ = mg
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(x(t) este distanţa parcursă de la momentul iniţial până la mo-
mentul t, iar k este coeficientul de rezistenţă al aerului). Pre-
supunem că un om de 80 kg sare de la mare ı̂nălţime şi atinge
viteza de 70 km/h după o lungă perioadă de timp. Aproximaţi
valoarea constantei k.

30. În cazul exerciţiului 29 aflaţi ce distanţă a parcurs paraşutistul
ı̂n primele 10 s şi ce viteză a atins la acel moment.
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CURS 5

II. TEOREME DE EXISTENŢĂ ŞI
UNICITATE

În acest capitol vom prezenta o serie de rezultate de existenţă şi
unicitate pentru problema Cauchy, pentru ecuaţii şi sisteme diferenţiale
ordinare. Vom studia atât rezultate locale cât şi rezultate globale.

1. Teorema de existenţă şi unicitate pentru ecuaţii
diferenţiale de ordinul 1

În prima parte a acestei secţiuni vom prezenta două rezultate
auxiliare. Primul se referă la următoarea inegalitate:

x(t) ≤ a(t) +
∫ t

α
b(s)x(s)ds, t ∈ [α, β], (40)

unde x, a, b : [α, β] → R sunt funcţii continue şi verifică ı̂n plus
b(t) ≥ 0, ∀t ∈ [α, β].

Lemă (Gronwall). În condiţiile anterioare rezultă că x verifică

x(t) ≤ a(t) +
∫ t

α
a(s)b(s)e

∫ t

s
b(τ)dτds, ∀t ∈ [α, β]. (41)

Demonstraţie. Fie funcţia y : [α, β] → R,

y(t) =
∫ t

α
b(s)x(s)ds, t ∈ [α, β].

Evident are loc

y′(t) = b(t)x(t), ∀t ∈ [α, β]. (42)
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Înmulţind inegalitatea (40) cu b(t) şi ţinând cont de (42) obţinem:

y′(t) ≤ a(t)b(t) + b(t)y(t)

⇐⇒ y′(t)− b(t)y(t) ≤ a(t)b(t), ∀t ∈ [α, β].

Înmulţim ultima inegalitate cu e−
∫ t

α
b(s)ds şi deducem că

(y(t)e−
∫ t

α
b(s)ds)′ ≤ a(t)b(t)e−

∫ t

α
b(s)ds, ∀t ∈ [α, β].

Integrând de la α la t rezultă

y(t)e−
∫ t

α
b(s)ds − y(α) ≤

∫ t

α
a(s)b(s)e−

∫ s

α
b(τ)dτ

(iar y(α) = 0).

⇐⇒ y(t) ≤
∫ t

α
a(s)b(s)e

∫ t

s
b(τ)dτds, ∀t ∈ [α, β].

De aici şi din (40) deducem faptul că x verifică inegalitatea (41).

Observaţie. În cazul particular al unei funcţii a constante (a ≡ M)
obţinem că dacă x verifică inegalitatea

x(t) ≤M +
∫ t

α
b(s)x(s)ds, t ∈ [α, β],

unde x, b satisfac ipotezele din lema lui Gronwall, atunci

x(t) ≤Me
∫ t

α
b(s)ds, ∀t ∈ [α, β]

(inegalitatea lui Bellman).

Demonstraţie. În adevăr, din lema lui Gronwall avem

x(t) ≤M +M
∫ t

α
b(s)e

∫ t

s
b(τ)dτds

=M −M
∫ t

α

d

ds
(e
∫ t

s
b(τ)dτ )ds

=M −M(1− e
∫ t

α
b(τ)dτ )

=Me
∫ t

α
b(τ)dτ , ∀t ∈ [α, β].
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Al doilea este un rezultat clasic de analiză matematică. Îl vom
reaminti doar.

Teorema de punct fix a lui Banach. Fie (X, d) un spaţiu metric
complet şi F : X −→ X o contracţie, i.e.

∃L ∈ [0, 1) : d(F (x), F (y)) ≤ Ld(x, y), ∀x, y ∈ X .

Atunci, funcţia F admite un unic punct fix x∗, i.e.

∃∗x∗ ∈ X : F (x∗) = x∗ .

Demonstraţia teoremei este importantă prin faptul că furnizează o
metodă de aproximare a punctului fix x∗. Alegând un x0 ∈ X arbitrar
şi construind recurent xk+1 = F (xk), ∀k ∈ N, se poate demonstra că

xk −→ x∗ .

Mai mult, se poate chiar evalua d(xn, x
∗) ı̂n funcţie de d(x0, F (x0)), k

şi α.

Considerăm ecuaţia

x′ = f(t, x) (43)

cu condiţia iniţială

x(t0) = x0. (44)

Aici f : D = {(t, x) ∈ R2; |t− t0| ≤ α, |x− x0| ≤ β} → R, unde α şi
β sunt constante pozitive.

Teoremă. Dacă
(i) f este continuă pe D şi
(ii) lipschitziană ca funcţie de x pe D, adică

∃L ≥ 0 : |f(t, x)− f(t, y)| ≤ L · |x− y|, ∀(t, x), (t, y) ∈ D,
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atunci problema Cauchy (43)-(44) admite o soluţie unică x definită pe

intervalul [t0 − δ, t0 + δ], unde δ = min
{
α,

β

M

}
, iar M > 0 satisface

|f(t, x)| ≤M, ∀(t, x) ∈ D

(M este un majorant strict pozitiv pentru |f |).
Demonstraţie. Dacă x este o soluţie a problemei Cauchy (43)-

(44), atunci integrând de la t0 la t avem

x(t)− x(t0) =
∫ t

t0
f(s, x(s))ds

⇐⇒ x(t) = x0 +
∫ t

t0
f(s, x(s))ds, (45)

adică x este soluţie a ecuaţiei integrale (45).

Reciproc, dacă x este o funcţie continuă pe un interval I (care
conţine t0) şi verifică (45), atunci rezultă că ea este ı̂n plus de clasă
C1 pe acest interval şi derivând (45) obţinem

x′(t) = f(t, x(t)), ∀t ∈ I.

În plus, din (45) avem că x(t0) = x0.

Concluzia este că orice soluţie continuă a ecuaţiei integrale (45)
(definită pe un interval ce conţine t0) este şi soluţie a problemei Cauchy
(43)-(44) şi reciproc.

Astfel, ecuaţia (45) este echivalentă cu problema (43)-(44).

În continuare vom utiliza teorema de punct fix a lui Banach.
Folosim faptul că (C([t0 − δ, t0 + δ]), ∥ · ∥) (unde ∥ · ∥ este norma

convergenţei uniforme) este un spaţiu Banach. Considerând norma
echivalentă

∥|x|∥ = max {e−λ|t−t0||x(t)|; t ∈ [t0 − δ, t0 + δ]},

cu λ > 0 oarecare, dar fixat, concluzionăm că (C([t0−δ, t0+δ]), ∥| · |∥)
este de asemenea un spaţiu Banach.

Considerăm ı̂n continuare

X = {x ∈ C([t0 − δ, t0 + δ]); |x(t)− x0| ≤ β, ∀t ∈ [t0 − δ, t0 + δ]},
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o submulţime ı̂nchisă a lui (C([t0 − δ, t0 + δ]), ∥| · |∥). Rezultă deci
că (X, d), unde d este metrica indusă de norma ∥| · |∥, este un spaţiu
metric complet.

Considerăm operatorul T : (X, d) −→ (X, d), definit prin

(T x)(t) = x0 +
∫ t

t0
f(s, x(s))ds, x ∈ X .

Este evident că pentru orice x ∈ X avem că T x ∈ C([t0 − δ, t0 + δ]).
Pe de altă parte

|(T x)(t)− x0| =
∣∣∣ ∫ t

t0
f(s, x(s))ds

∣∣∣ ≤ ∫ max{t0,t}

min{t0,t}
|f(s, x(s))|ds

≤M δ ≤M
β

M
= β, ∀t ∈ [t0 − δ, t0 + δ] .

Avem deci că T x ∈ X pentru orice x ∈ X.
Să arătăm acum că pentru λ > 0 convenabil ales (suficient de mare)

T este o contracţie.
În adevăr, pentru orice x, y ∈ X avem că

d(T x, T y) = ∥|T x− T y|∥

= max
{
e−λ|t−t0|

∣∣∣ ∫ t

t0
(f(s, x(s))− f(s, y(s)))ds

∣∣∣; t ∈ [t0 − δ, t0 + δ]
}

≤ max
{
e−λ|t−t0|

∫ max{t0,t}

min{t0,t}
L |x(s)− y(s)|ds; t ∈ [t0 − δ, t0 + δ]

}
(am folosit lipschitzianeitatea lui f ı̂n raport cu x)

= max
{
e−λ|t−t0|

∫ max{t0,t}

min{t0,t}
Le−λ|s−t0||x(s)−y(s)|eλ|s−t0|ds; t ∈ [t0−δ, t0+δ]

}

≤ max
{
e−λ|t−t0|Ld(x, y)

∫ max{t0,t}

min{t0,t}
eλ|s−t0|ds; t ∈ [t0 − δ, t0 + δ]

}
= d(x, y)max

{
Le−λ|t−t0| 1

λ

(
eλ|t−t0| − 1

)
; t ∈ [t0 − δ, t0 + δ]

}
≤ L

λ
d(x, y) .
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Dacă fixăm un λ > L, obţinem că T este o contracţie şi deci T admite
un unic punct fix x∗.

Deducem că ecuaţia (45) are o unică soluţie x∗ ∈ X şi deci problema
Cauchy (43)-(44) admite o unică soluţie.

Observaţie. Faptul că am utilizat teorema de punct fix a lui Banach
ı̂nseamnă că obţinem imediat un şir, construit recurent, care converge
uniform la soluţia problemei (43)-(44):

x0(t) = x0, t ∈ [t0 − δ, t0 + δ]

x1(t) = x0 +
∫ t

t0
f(s, x0(s))ds, t ∈ [t0 − δ, t0 + δ]

.......

xk+1(t) = x0 +
∫ t

t0
f(s, xk(s))ds, t ∈ [t0 − δ, t0 + δ], (46)

pentru orice k ∈ N∗.
Şirul de mai sus (numit şi şirul aproximaţiilor Picard) este bine

definit, adică
|xk(t)− x0| ≤ β, ∀k ∈ N

(acest lucru rezultă prin inducţie matematică) şi satisface

xk −→ x∗ ı̂n C([t0 − δ, t0 + δ]) .

Există ı̂n literatura matematică o demonstraţie a teoremei de existenţă
şi unicitate numită metoda lui Picard (a aproximaţiilor succesive) ce
porneşte de la şirul de funcţii definit mai sus şi arată convergenţa lui
{Xk} la x∗ (soluţia problemei (45)) folosind argumente legate de seriile
de funcţii.

Menţionăm că metoda lui Picard (metoda aproximaţiilor succesive)
şi cea bazată pe teorema de punct fix a lui Banach sunt de fapt echiva-
lente.

Exemplu. Să se arate că soluţia problemei Cauchy{
x′ = x2 + t2

x(0) = −1
(47)
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există cel puţin pe intervalul [−1
5
, 1
5
] şi să se calculeze primele trei

iteraţii Picard ale acestei soluţii.

Soluţie. Alegem α = 1 şi β = 1. În acest caz

f : D = [−1, 1]× [0, 2] → R,

f(t, x) = x2 + t2.

Cum f este funcţie polinomială, ea este continuă pe D şi lipschitziană
ı̂n raport cu x pe D (de fapt f ∈ C∞(D)).

Mai mult,

|f(t, x)| = x2 + t2 ≤ 5 =M, ∀(t, x) ∈ D.

Aplicând teorema de existenţă şi unicitate rezultă că problema Cauchy
(47) admite o soluţie unică definită pe [−1

5
, 1
5
].

Prima iteraţie Picard este x0 : [−1
5
, 1
5
] → R,

x0(t) = −1.

A doua iteraţie Picard este x1 : [−1
5
, 1
5
] → R,

x1(t) = −1 +
∫ t

0
(1 + s2)ds

= −1 + t+
1

3
t3.

Cea de-a treia iteraţie Picard este x2 : [−1
5
, 1
5
] → R,

x2(t) = −1 +
∫ t

0
[(−1 + s+

1

3
s3)2 + s2]ds

= −1 +
∫ t

0
(1 + s2 +

1

9
s6 − 2s− 2

3
s3 +

2

3
s4 + s2)ds

= −1 + t− t2 +
2

3
t3 − 1

6
t4 +

2

15
t5 +

1

63
t7.
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Considerăm problema Cauchy (43)-(44), unde

f : D = {(t, x) ∈ R2; |t− t0| ≤ α, |x− x0| ≤ β} → R,

este o funcţie continuă (iar α şi β sunt constante pozitive) şi ı̂n plus

|f(t, x)| ≤M, ∀(t, x) ∈ D,

cu M > 0.
În aceste ipoteze mai puţin restrictive are loc următorul rezultat:

Teoremă (Peano). Problema Cauchy (43)-(44) admite cel puţin o

soluţie pe intervalul [t0 − δ, t0 + δ], unde δ = min
{
α,

β

M

}
.

Concluzia se obţine din teorema de punct fix a lui Schauder. O
altă demonstraţie utilizează metoda lui Euler numită şi metoda liniilor
poligonale şi este prezentată ı̂n [5].

Observaţie. În absenţa lipschitzianeităţii lui f ı̂n raport cu x
avem asigurată doar existenţa unei soluţii, nu şi unicitatea.

De exemplu, ı̂n cazul problemei Cauchy{
x′ = 2x

1
2

x(0) = 0

avem că x(t) = 0 şi y(t) =

{
t2, t ≥ 0
0, t < 0

, sunt ambele soluţii ale

acestei probleme.
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CURS 6

2. Teoreme de existenţă a soluţiei problemei Cauchy
ataşată sistemelor diferenţiale de ordinul 1 şi ecuaţiilor
diferenţiale de ordin superior

Considerăm problema Cauchy



x′1(t) = f1(t, x1(t), x2(t), ..., xn(t))
x′2(t) = f2(t, x1(t), x2(t), ..., xn(t))
.......
x′n(t) = fn(t, x1(t), x2(t), ..., xn(t))
x1(t0) = x10, x2(t0) = x20, ..., xn(t0) = xn0

(48)

(n ∈ N∗).

Vom utiliza scrierea vectorială ı̂n cazul problemei Cauchy (48).
Notăm

x(t) =


x1(t)
x2(t)
...

xn(t)


(care este o funcţie vectorială),

x0 =


x10
x20
...
xn0

 ∈ Rn,

f(t, x) =


f1(t, x)
f2(t, x)
...

fn(t, x)

 =


f1(t, x1, x2, ..., xn)
f2(t, x1, x2, ..., xn)

...
fn(t, x1, x2, ..., xn)


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unde f : D ⊂ Rn+1 −→ Rn şi

x =


x1
x2
...
xn

 .

Pe Rn se consideră norma

∥x∥ = max{|x1|, |x2|, ..., |xn|},

unde x = (x1, x2, ..., xn), care este echivalentă cu norma euclidiană.

Funcţia x este continuă ı̂n t dacă şi numai dacă x1, x2, ..., xn sunt
continue ı̂n t.

Funcţia x este derivabilă ı̂n t dacă şi numai dacă x1, x2, ..., xn sunt
derivabile ı̂n t. În caz de derivabilitate avem

x′(t) =


x1(t)
x2(t)
...

xn(t)

 .

Funcţia f este continuă ı̂n (t, x) ∈ D dacă şi numai dacă f1, f2, ..., fn
sunt toate continue ı̂n (t, x).

Funcţia f este lipschitziană ı̂n raport cu x = (x1, x2, ..., xn) dacă şi
numai dacă f1, f2, ..., fn sunt lipschitziene ı̂n raport cu x = (x1, x2, ..., xn).

Funcţia t 7→ g(t) = (g1(t), g2(t), ..., gn(t)) ∈ Rn este integrabilă pe

[a, b] dacă şi numai dacă g1, g2, ..., gn sunt integrabile pe [a, b]. În caz
de integrabilitate avem

∫ b

a
g(t)dt =



∫ b

a
g1(t)dt

∫ b

a
g2(t)dt

...∫ b

a
gn(t)dt


.
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Are loc următorul rezultat de existenţă şi unicitate:

Teoremă (Picard). Presupunem că f1, f2, ..., fn : D → R, unde
D = {(t, x1, x2, ..., xn) ∈ Rn+1; |t − t0| ≤ α, |xj − xj0| ≤ β, j = 1, n},
α, β ∈ (0,+∞) sunt funcţii continue pe D şi lipschitziene ca funcţii
de (x1, x2, ..., xn), adică ∃L ≥ 0:

|fj(t, x1, x2, ..., xn)− fj(t, y1, y2, ..., yn)|

≤ Lmax{|x1 − y1|, |x2 − y2|, ..., |xn − yn|}
∀j ∈ {1, 2, ..., n}, ∀(t, x1, x2, ..., xn), (t, y1, y2, ..., yn) ∈ D.

Atunci, există o unică soluţie a problemei Cauchy, definită pe in-

tervalul [t0 − δ, t0 + δ], unde δ = min
{
α,

β

M

}
, iar M > 0 satisface

|fj(t, x1, x2, ..., xn)| ≤M, ∀j ∈ {1, 2, ..., n},

∀(t, x1, x2, ..., xn) ∈ D.

Observaţie. O clasă importantă de funcţii lipschitziene ı̂n raport
cu (x1, x2, ..., xn) este cea a funcţiilor care admit derivate parţiale ı̂n
raport cu x1, x2, ..., xn şi acestea sunt continue.

Problema Cauchy (48) se poate scrie sub forma:{
x′ = f(t, x)
x(t0) = x0,

unde f = (f1, f2, ..., fn), x0 = (x10, x
2
0, ..., x

n
0 ).

Continuitatea funcţiilor f1, f2, ..., fn este echivalentă cu continui-
tatea funcţiei f : D = {(t, x) ∈ Rn+1; |t − t0| ≤ α, ∥x − x0∥ ≤
β} −→ Rn, iar lipschitzianeitatea lui f1, f2, ..., fn ı̂n raport cu x este
echivalentă cu lipschitzianeitatea lui f ı̂n raport cu x, care revine la
existenţa unui L ≥ 0 astfel ca

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥, ∀(t, x), (t, y) ∈ D.

Demonstraţia teoremei este analoagă celei pentru ecuaţii (cazul n =
1; vezi cursul 5). Se porneşte de la faptul că x este soluţie pentru (48)
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dacă şi numai dacă este soluţie pentru următoarea ecuaţie integrală

x(t) = x0 +
∫ t

t0
f(s, x(s)) ds.

Se consideră

X = {x : [t0−δ, t0+δ] −→ Rn continuă; ∥x(t)−x0∥ ≤ β, ∀t ∈ [t0−δ, t0+δ]}

ı̂nzestrată cu metrica

d(x, y) = min{e−λ|t−t0|∥x(t)− y(t)∥; t ∈ [t0 − δ, t0 + δ]}

unde λ > L este o constantă şi operatorul

T : X −→ X,

(T x)(t) = x0 +
∫ t

t0
f(s, x(s)) ds, s ∈ [t0 − δ, t0 + δ],

x ∈ X. Se aplică apoi teorema de punct fix a lui Banach şi se obţine
concluzia.

Exemplu. Găsiţi un interval pe care problema Cauchy
x′ = xy + y2

y′ = x2 + sin y
x(0) = 1
y(0) = 0

admite soluţie unică.

Soluţie. În acest caz avem t0 = 0, data iniţială (1, 0) şi funcţiile
f1(t, x, y) = xy+ x2, f2(t, x, y) = x2 + sin y. Alegem α = 1 , β = 1 (se
pot lua orice valori α, β > 0, deoarece f1 şi f2 sunt definite pe R3) şi
deci

D = {(t, x, y); |t| ≤ 1, |x− 1| ≤ 1, |y| ≤ 1} = [−1, 1]× [0, 2]× [−1, 1].

Următoarele evaluări au loc:

|f1(t, x, y)| ≤ 2 + 1 = 3, ∀(t, x, y) ∈ D
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|f2(t, x, y)| ≤ 4 + 1 = 5, ∀(t, x, y) ∈ D.

Deci, M = 5 satisface |f1(t, x, y)|, |f2(t, x, y)| ≤ M , ∀(t, x, y) ∈ D.
Cum funcţiile f1 şi f2 sunt de clasă C∞, rezultă că sunt continue şi
lipschitziene ı̂n raport cu (x, y) şi de aici deducem că problema Cauchy

dată admite o unică soluţie, definită pe
[
− 1

5
, 1
5

]
(δ = min

{
1, 1

5

}
).

Teoremă (Peano). Presupunem că f1, f2, ..., fn : D → R (D =
{(t, x1, x2, ..., xn) ∈ Rn+1; |t − t0| ≤ α, |xj − xj0| ≤ β, j = 1, n}, α, β ∈
(0,+∞)) sunt funcţii continue.

Atunci, problema Cauchy (48) admite cel puţin o soluţie, definită

pe intervalul [t0−δ, t0+δ], unde δ = min
{
α,

β

M

}
, iarM > 0 satisface

|fj(t, x1, x2, ..., xn)| ≤M, ∀j ∈ {1, 2, ..., n},

∀(t, x1, x2, ..., xn) ∈ D.

Se poate demonstra acest rezultat utilizând teorema de punct fix a
lui Schauder.

Considerăm acum problema Cauchy ataşată unei ecuaţii de ordin
superior: 

x(n) = f(t, x, x′, ..., x(n−1))

x(t0) = x10, x
′(t0) = x20, ..., x

(n−1)(t0) = xn0 ,
(49)

unde n ∈ N∗ \ {1}, iar f : D → R, cu D = {(t, x1, x2, ..., xn) ∈
Rn+1; |t− t0| ≤ α, |xj − xj0| ≤ β, j = 1, n}, α, β ∈ (0,+∞). Problema
se poate scrie echivalent sub forma

x′1(t) = x2(t)
x′2(t) = x3(t)
.......
x′n(t) = f(t, x1(t), x2(t), ..., xn(t))
x1(t0) = x10, x2(t0) = x20, ..., xn(t0) = xn0 .
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Fie M > 0 astfel ca

|f(t, x1, x2, ..., xn)| ≤M, ∀(t, x1, ..., xn) ∈ D.

Aplicând teoremele de existenţă pentru problema Cauchy ataşată
sistemelor diferenţiale de ordinul 1, rezultă

Teoremă. Dacă f este continuă pe D, atunci problema Cauchy
(49) admite cel puţin o soluţie definită pe intervalul [t0 − δ, t0 + δ],

unde δ = min
{
α,

β

M̃

}
, iar M̃ satisface

M̃ = max{M,β + |x10|, ..., β + |xn0 |}.

Dacă ı̂n plus f este şi lipschitziană ı̂n raport cu (x1, x2, ..., xn),
atunci soluţia este unică.

Exemplu. Găsiţi un interval pe care problema Cauchy
x′′ = tx′ + t2x+ t
x(0) = 1
x′(0) = 2

admite soluţie unică.

Soluţie. Fie α = 2 şi β = 1 şi

D = {(t, x, y) ∈ R3; |t| ≤ 2, |x− 1| ≤ 1, |y − 2| ≤ 1}

= [−2, 2]× [0, 2]× [−1, 3].

Funcţia f : D → R, f(t, x, y) = ty + t2x+ t este continuă şi
lipschitziană ı̂n raport cu (x, y) (este chiar de clasă C∞).

Avem
|f(t, x, y)| ≤ 2 · 3 + 22 · 2 + 2 = 16.

Aplicând teorema de mai sus rezultă că problema Cauchy dată admite
soluţie unică pe [−δ, δ], unde

δ = min
{
2,

1

16
} =

1

16
.
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CURS 7

3. Teorema de unicitate globală

Considerăm problema Cauchy{
x′ = f(t, x)
x(t0) = x0,

(50)

unde f : D ⊂ Rn+1 → Rn, iar D este un domeniu şi (t0, x0) ∈ D.

Definiţie. Funcţia f este local lipschitziană pe D ı̂n raport cu x
dacă ∀K ⊂ D, K compact, ∃LK ≥ 0 astfel ca

∥f(t, x)− f(t, y)∥ ≤ LK∥x− y∥, ∀(t, x), (t, y) ∈ K.

Dacă funcţia f este continuă şi local lipschitziană ı̂n raport cu x pe
D, atunci problema Cauchy (50) admite o unică soluţie definită pe un
interval centrat ı̂n t0.

Teorema de unicitate globală. Dacă x şi y sunt două soluţii
ale problemei (50) definite pe I, respectiv Ĩ, atunci

x(t) = y(t), ∀t ∈ I ∩ Ĩ .

Demonstraţie. I∩ Ĩ este un interval ce conţine t0. Dacă ar exista
t1 ∈ I ∩ Ĩ astfel ı̂ncât x(t1) ̸= y(t1), atunci am avea fie t1 < t0, fie
t1 > t0. Presupunem fără a restrânge generalitatea că t1 > t0.

Fie J = {t ∈ [t0, t1]; x(t) = y(t)}. Această mulţime este ı̂nchisă şi
are evident un cel mai mare element t̃.

Din teorema de existenţă şi unicitate locală rezultă că soluţia pro-
blemei (50) este unică pe o vecinătate a lui t̃: [t̃ − δ̃, t̃ + δ̃] ⊂ I ∩ Ĩ.
Dar soluţiile x şi y sunt definite şi pe această mulţime şi acesta ar
contrazice faptul că t̃ este cel mai mare element al lui J .
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Fie x o soluţie a problemei (50) definită pe intervalul I, care poate
fi de forma: (α, β), [α, β), (α, β] sau [α, β].

Definiţie. Soluţia x este prelungibilă la drepta dacă există y o
soluţie pentru (50) definită pe I ∪ [β, γ), cu β < γ şi astfel ı̂ncât

x(t) = y(t), ∀t ∈ I.

Soluţia x este saturată la dreapta dacă nu este prelungibilă la
dreapta.

Definiţie. Soluţia x este prelungibilă la stânga dacă există y o
soluţie pentru (50) definită pe I ∪ (γ, α], cu α > γ şi astfel ı̂ncât

x(t) = y(t), ∀t ∈ I.

Soluţia x este saturată la stânga dacă nu este prelungibilă la stânga.

Definiţie. Soluţia x este prelungibilă dacă este prelungibilă la
stânga sau la dreapta.

Soluţia x este saturată dacă este saturată atât la stânga cât şi la
dreapta.

Observaţie. Soluţia saturată este soluţia definită pe I, cel mai
mare interval de definiţie al vreunei soluţii a problemei (50). Soluţia
saturată este unică.

O consecinţă a teoremei de unicitate globală este:

Teoremă. Orice soluţie a problemei (50) admite o prelungire unică
la o soluţie saturată.

Soluţia saturată se notează: x(t; t0, x0).

Exemplul 1. Să se determine soluţia saturată a problemei{
x′ = x2 + 1
x(0) = 1

şi domeniul de definiţie al acesteia.
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Soluţie. Problema dată este de forma (50), unde f : R2 → R,
f(t, x) = x2 + 1 este continuă şi local lipschitziană ı̂n raport cu x, iar
t0 = 0, x0 = 1.

Problema admite deci o soluţie saturată unică x(·; 0, 1) definită pe
intervalul (α, β), cu α, β ∈ R, α < 0 < β. Intervalul de definiţie
al soluţiei saturate nu poate fi ı̂nchis la dreapta, deoarece soluţia s-ar
putea prelungi şi la dreapta lui β (din teorema de existenţă şi unicitate
locală) şi nici ı̂nchis la stânga deoarece s-ar putea prelungi soluţia şi
la stânga lui α. Acest lucru ar nega faptul că soluţia este saturată.

Ecuaţia dată este cu variabilele separabile şi ne conduce la

x′(t)

1 + x2(t)
= 1.

Integrând de la 0 la t se obţine

arc tg x(t)− arc tg 1 = t

⇐⇒ arc tg x(t) =
π

4
+ t.

Concluzionăm că π

4
+ t ∈ (− π

2
,
π

2
)

şi deci t ∈ (−3π
4
, π
4
).

De asemenea deducem că soluţia x :
(
− 3π

4
, π
4

)
−→ R este definită

prin

x(t) = tg
(
t+

π

4

)
.

Această soluţie verifică

lim
t→π

4
,t<π

4

x(t) = +∞

şi deci x nu este prelungibilă la dreapta. De asemenea

lim
t→− 3π

4
,t>− 3π

4

x(t) = −∞

şi deci x nu este prelungibilă la stânga.
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Concluzia este că soluţia saturată este definită pe
(
− 3π

4
, π
4

)
.

Exemplul 2. Să se demonstreze că soluţia saturată a problemei
Cauchy 

x′1 = sinx1 + sinx2

x′2 =
x1

1 + x21
+ cosx2

x1(0) = 1
x2(0) = 1

este definită pe R.

Soluţie. Problema se poate scrie sub forma (50), unde f : D =
R3 → R2,

f(t, x) =

 f1(t, x1, x2)
f2(t, x1, x2)

 ,
f1(t, x1, x2) = sin x1 + sinx2, f2(t, x1, x2) =

x1
1 + x21

+ cosx2,

x0 =

 1

1

 .
Există o unică soluţie saturată

x(t) =

x1(t)
x2(t)

 .
Dacă considerăm restricţia lui f la

D = {(t, x1, x2); |t| ≤ α, |x1 − 1| ≤ β, |x2 − 1| ≤ β},

unde α, β > 0 oarecare, atunci rezultă că soluţia saturată este definită

cel puţin pe [−δ, δ], unde δ = min
{
α, β

2

}
.

Putem alege β = 2α şi atunci avem evident δ = α. Concluzia
este că soluţia saturată este definită cel puţin pe [−α, α], oricare ar fi
α > 0. Rezultă deci că este definită pe R.
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4. Teorema de continuitate a soluţiei ı̂n raport cu
data iniţială

Fie

f : D ⊂ Rn+1 → Rn ,

continuă şi local lipschitziană ı̂n raport cu x. Considerăm

∆ = {(t, x) ∈ Rn+1; |t− t0| ≤ α, ∥x− x0∥ ≤ β} ⊂ D ,

unde α, β ∈ (0,+∞) şi M o constantă pozitivă a.̂ı.

|f(t, x)| ≤M, ∀(t, x) ∈ ∆ .

Pentru orice y0 ∈ Rn a.̂ı. ∥y0 − x0∥ ≤ β
2
, problema Cauchy x′(t) = f(t, x(t))

x(t0) = y0

admite o unică soluţie definită pe [t0−δ, t0+δ], unde δ = min
{
α, β

2M

}
.

Notăm cu y(t; t0, y0) soluţia problemei Cauchy definită pe [t0, t0+δ].

Teoremă. Funcţia y0 7→ y(·; t0, y0) de la

B

(
x0;

β

2

)
=

{
u ∈ Rn; ∥u− x0∥ ≤ β

2

}

la C([t0, t0 + δ];Rn) este continuă.

Demonstraţie. Pentru orice y0, z0 ∈ Rn, ∥y0−x0∥, ∥z0−x0∥ ≤ β
2

avem că

y(t) := y(t; t0, y0), z(t) := y(t; t0, z0)

verifică

y(t) = y0 +
∫ t

t0
f(s, y(s))ds, ∀t ∈ [t0, t0 + δ] ,

z(t) = z0 +
∫ t

t0
f(s, z(s))ds, ∀t ∈ [t0, t0 + δ] .
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De aici rezultă că

y(t)− z(t) = y0 − z0 +
∫ t

t0
[f(s, y(s))− f(s, z(s)]ds, ∀t ∈ [t0, t0 + δ]

şi deci

∥y(t)− z(t)∥ ≤ ∥y0 − z0∥+
∫ t

t0
L∥y(s)− z(s)∥ds, ∀t ∈ [t0, t0 + δ] ,

unde L este o constantă Lipschitz pentru f (̂ın raport cu x) pe mulţimea
∆.

Din inegalitatea lui Bellman rezultă că

∥y(t)− z(t)∥ ≤ ∥y0 − z0∥eL(t−t0) ≤ eLδ∥y0 − z0∥, ∀t ∈ [t0, t0 + δ] .

Deci, y0 7→ y(·; t0, y0) este lipschitziană şi deci continuă.
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Exerciţii

Să se demonstreze existenţa şi unicitatea soluţiei pentru fiecare
din următoarele probleme Cauchy şi să se găsească un interval pe
care aceasta este definită:

1.

x′ =
1

t2 + x2
, x(0) = 1

2.
x′ = t2 + x2, x(2) = 0

3.

x′ =
1 + t+ x

4 + t2 + x2
, x(0) = 0

4. Să se arate că ecuaţia x′ =
√
x− t + 1 admite soluţiile x(t) = t

şi x(t) =

{
t+ 1

4
t2, t ≥ 0

t, t < 0
.

5. Să se determine un interval pe care există soluţia problemei Cauchy
x′ = x+ x2 + y − 1
y′ = x+ y2 − y
x(1) = 2
y(1) = 0

şi să se determine primele 3 iteraţii Picard.

6. Să se arate că problema Cauchy{
x′ = sin t+ ln(1 + x2)
x(0) = 0

admite o soluţie unică definită pe R.
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Indicaţie. Se consideră D = {(t, x); |t| ≤ α, |x| ≤ β}. Se obţine

δ = min
{
α,

β

1 + ln(1 + β2)

}
.

Problema admite o soluţie definită cel puţin pe [−δ, δ].
Pentru orice t ∈ R, există α > 0 şi β > 0 astfel ı̂ncât

|t| ≤ α, |t| ≤ β

1 + ln(1 + β2)

şi deci soluţia saturată este definită şi pentru t.

7. Să se demonstreze că intervalul maxim de definiţie la dreapta al
soluţiei saturate a problemei Cauchy:

x′ = x2 + t2, x(0) = 1

este mărginit.

8. În teoria anizotropică a relativităţii (V.G. Boltyanski), ecuaţia de
propagare a razei de lumină ı̂n vecinătatea unei mase m situată
ı̂n origine este:

x′(t) = −η mx(t)

∥x(t)∥3e
+ f(t)

(aici ∥x∥e =
√
x21 + x22 + x23 este norma euclidiană a lui x =

(x1, x2, x3)), unde η este o constantă pozitivă, f = (f1, f2, f3)
este o funcţie continuă care satisface condiţia: ∥f(t)∥e ≤ C, iar
x(t) = (x1(t), x2(t), x3(t)) este vectorul de poziţie al fantei de
lumină la momentul t.

Să se arate că există r > 0 astfel ı̂ncât toate traiectoriile care
la momentul t = 0 pornesc din punctul x0 din sfera Sr = {x ∈
R3; ∥x∥e < r} rămân ı̂n această sferă (această sferă se numeşte
gaură neagră).

Soluţie. Se ı̂nmulţeşte scalar ecuaţia cu x(t) şi se obţine

(1
2
∥x(t)∥2e

)′
= −η m∥x(t)∥2e

∥x(t)∥3e
+ f(t) · x(t)
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≤ − η m

∥x(t)∥e
+ ∥f(t)∥e ∥x(t)∥e

(din inegalitatea lui Cauchy) şi de aici rezultă că

(1
2
∥x(t)∥2e

)′
≤ − η m

∥x(t)∥e
+ C ∥x(t)∥e, ∀t ≥ 0 . (51)

Dorim ca membrul drept sa fie negativ pentru t = 0, adică

− η m

∥x0∥e
+ C ∥x0∥e < 0 ⇔ ∥x0∥e <

√
η m

C

(unde x(0) = x0 ̸= 03). Considerăm r =

√
η m

C
. Să arătăm că Sr

este o gaură neagră.

Dacă 0 < ∥x0∥e < r rezultă din continuitatea lui ∥x(t)∥e că
∥x(t)∥e < r petru orice t dintr-o vecinătate [0, ε) (ε > 0) la
dreapta a lui 0.

Raţionăm mai departe prin reducere la absurd. Presupunem că
există cel puţin un punct t1 > 0 pentru care ∥x(t1)∥e = r. Con-
siderăm cel mai mic asemenea t1. Deci,

∥x(t)∥e < r, ∀t ∈ [0, t1).

Din (51) rezultă că

(1
2
∥x(t)∥2e

)′
< 0, ∀t ∈ [0, t1) .

Deci, funcţia 1
2
∥x(t)∥2e este strict descrescătoare pe [0, t1]

=⇒ 1

2
∥x(t1)∥2e <

1

2
∥x0∥2e

şi deci,

∥x(t1)∥e < ∥x0∥e < r; absurd

(deoarece ∥x(t1)∥e = r).

De aici rezultă concluzia.
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9. Să se determine un interval pe care există soluţia problemei Cauchy{
x′ = t2x2 + tx+ 1
x(0) = 1

şi să se determine primele 3 iteraţii Picard.

10. Acelaşi lucru se cere pentru problema:{
x′′ + tx′ + x = sin t
x(0) = 0, x′(0) = 1.

11. Să se arate că soluţia saturată a problemei Cauchy:
x′′ + sinx = 0
x(0) = x0
x′(0) = x1

este definită pe toată axa reală.
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CURS 8

III. SISTEME DIFERENŢIALE
LINIARE

În acest capitol vom discuta câteva din cele mai importante rezul-
tate legate de sistemele de ecuaţii diferenţiale liniare de ordinul 1 şi
de ecuaţiile diferenţiale de ordin superior.

1. Sisteme de ecuaţii diferenţiale liniare de
ordinul 1

În această secţiune vom studia sistemul:
x′1(t) = a11(t)x1(t) + a12(t)x2(t) + · · ·+ a1n(t)xn(t) + f1(t)
x′2(t) = a21(t)x1(t) + a22(t)x2(t) + · · ·+ a2n(t)xn(t) + f2(t)
.....
x′n(t) = an1(t)x1(t) + an2(t)x2(t) + · · ·+ ann(t)xn(t) + fn(t),

(52)
unde aij şi fi (i, j ∈ {1, 2, ..., n}) sunt funcţii definite pe intervalul I ⊂
R cu valori ı̂n R. Sistemul (52) se numeşte sistem neomogen. Dacă
f1, f2, ..., fn sunt identic nule, atunci sistemul se numeşte omogen.

Sistemul se scrie ı̂n mod echivalent, folosind notaţia vectorială, sub
forma:

x′(t) = A(t)x(t) + f(t), t ∈ I, (53)

unde A(t) = (aij(t))
n
i,j=1, iar

x(t) =


x1(t)
x2(t)
...

xn(t)

 , f(t) =


f1(t)
f2(t)
...
fn(t)

 .
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Cum proprietăţile matricei A(t) vor juca un rol foarte important
ı̂n studiul soluţiilor sistemului (52), vom introduce câteva definiţii ce
vor fi utilizate ı̂n cele ce urmează.

Definiţie. Dacă A = (aij)
n
i,j=1 ∈ Mn(C) este o matrice constantă,

atunci norma matricei A este:

∥A∥ = max
i∈{1,2,...,n}

n∑
j=1

|aij|.

Dacă A,B ∈ Mn(C) şi x ∈ Cn, atunci se arată cu uşurinţă pro-
prietăţile:

∥A+B∥ ≤ ∥A∥+ ∥B∥,

∥AB∥ ≤ ∥A∥ · ∥B∥,

∥Ax∥ ≤ ∥A∥ · ∥x∥,

unde x = (x1, x2, ..., xn) şi ∥x∥ = max{|x1|, |x2|, ..., |xn|}.

Definiţie. Derivata lui A(t) = (aij(t))i,j este notată cu A′(t) şi
este egală cu

A′(t) = (a′ij(t))i,j

(există atunci şi numai atunci când toate funcţiile aij sunt derivabile
ı̂n t).

Integrala lui A(t) pe [α, β] se notează cu
∫ β

α
A(t)dt şi este egală cu

(
∫ β

α
aij(t)dt)i,j

(este definită dacă şi numai dacă aij sunt toate integrabile de la α la
β).

Urma matricei pătratice A(t) se notează cu tr A(t) şi este egală cu

n∑
j=1

ajj(t).
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Presupunem ı̂n cele ce urmează că aij şi fi (i, j ∈ {1, 2, ..., n}) sunt
funcţii continue.

Aplicând rezultatele din capitolul precedent rezultă că pentru orice
t0 ∈ I şi orice x0 = (x10, x

2
0, ..., x

n
0 ) ∈ Rn există o soluţie saturată unică

pentru (52) (sau echivalent (53)) verificând condiţia iniţială

x(t0) = x0. (54)

Teoremă. Soluţia saturată a problemei (52)-(54) este definită pe
ı̂ntreg intervalul I.

Demonstraţie. Intervalul I este de forma (α, β), [α, β), (α, β],
sau [α, β].

Vom raţiona prin reducere la absurd. Presupunem că soluţia sa-
turată fie nu este definită ı̂ntr-o vecinătate a lui β, fie ı̂ntr-o vecinătate
a lui α. Vom face raţionamentul doar ı̂n primul caz (al doilea caz se
tratează analog).

Presupunem deci că soluţia saturată este definită pe J de forma
(γ, η) sau pe [γ, η) şi η < β. Soluţia saturată verifică:

x(t) = x0 +
∫ t

t0
A(s)x(s)ds+

∫ t

t0
f(s)ds, t ∈ J.

Ultima relaţie implică:

∥x(t)∥ ≤ ∥x0∥+
∫ t

t0
∥A(s)∥∥x(s)∥ds+

∫ t

t0
∥f(s)∥ds, t ∈ J. (55)

Deoarece funcţiile t 7→ ∥A(t)∥ şi t 7→ ∥f(t)∥ sunt continue pe I,
rezultă că ele sunt mărginite pe [t0, η]. Există deci o constantă M > 0
astfel ı̂ncât

∥A(t)∥, ∥f(t)∥ ≤M, ∀t ∈ [t0, η]. (56)

Din (55) şi (56) rezultă ı̂n baza lemei lui Bellman că:

∥x(t)∥ ≤ (∥x0∥+ (η − t0)M)e(η−t0)M , ∀t ∈ [t0, η).

De aici tragem concluzia că funcţiile x1, x2,..., xn au derivate mărginite
pe [t0, η). Aceste funcţii se pot deci prelungi prin continuitate ı̂n punc-
tul η (prelungirile se notează tot cu x1, x2,..., xn) şi folosind faptul că
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x = (x1, x2, ..., xn) verifică (55) deducem că x′(η) = A(η)x(η) + f(η).
Asta ı̂nseamnă că x este soluţie a problemei Cauchy (52)-(54) definită
pe J ∪ {η}. Soluţia aceasta se poate prelungi, ı̂n baza teoremei de
existenţă şi unicitate pe J ∪ [η, η ∪ δ] (cu un δ > 0). Deci, soluţia
iniţială nu era saturată; absurd.

În cele ce urmează, ori de câte ori vom vorbi despre
soluţie vom sub̂ınţelege soluţie saturată (asta dacă nu se
fac alte precizări).

Vom studia ı̂ntâi sistemul omogen asociat lui (52):
x′1(t) = a11(t)x1(t) + a12(t)x2(t) + · · ·+ a1n(t)xn(t)
x′2(t) = a21(t)x1(t) + a22(t)x2(t) + · · ·+ a2n(t)xn(t)
.....
x′n(t) = an1(t)x1(t) + an2(t)x2(t) + · · ·+ ann(t)xn(t),

(57)

care se scrie echivalent sub forma

x′ = A(t)x, t ∈ I. (58)

Teoremă. Mulţimea soluţiilor sistemului (57) formează un spaţiu
liniar de dimensiune n.

Demonstraţie. Cum sistemul (57) este liniar, rezultă prin verifi-
care directă că mulţimea S a soluţiilor sistemului (57) este un spaţiu
liniar (peste corpul R).

Fie t0 ∈ I oarecare, dar fixat. Considerăm aplicaţia T : Rn → S,
definită prin:

Tx0 = x(·; t0, x0).
Această aplicaţie este evident liniară, injectivă şi surjectivă. Deci, T
este un izomorfism de spaţii liniare şi ı̂n concluzie dimensiunea lui S
este egală cu dimensiunea lui Rn (care este n).

Din teorema de mai sus rezultă că S admite o bază formată din
n elemente x1, x2, ..., xn. Cu alte cuvinte x1, x2, ..., xn sunt n soluţii
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liniar independente (numit şi sistem fundamental de soluţii pentru
(57)). Aici

xj(t) =


xj1(t)
xj2(t)
...

xjn(t)

 .
Matricea

X(t) = [x1(t) x2(t) ... xn(t)]

=


x11(t) x21(t) ... xn1 (t)
x12(t) x22(t) ... xn2 (t)
... ... ... ...

x1n(t) x2n(t) ... xnn(t)

 , t ∈ I

(ale cărei coloane sunt funcţiile vectoriale x1, x2, ..., xn) se numeşte
matrice fundamentală a sistemului (57).

Cum
(xj)′(t) = A(t)xj(t), ∀t ∈ I,

rezultă că
X ′(t) = A(t)X(t), ∀t ∈ I.

Matricea fundamentalăX nu este unică. Este suficient să observăm
că pentru orice matrice nesingulară B ∈ Mn(R) avem că Y (t) =
X(t)B este de asemenea matrice fundamentală a sistemului (57) (sau
echivalent (58)).

Fie un sistem de n soluţii {x1, x2, ..., xn} ale sistemului (57). Vom
numi wronskian al acestui sistem, determinantul (notat W (t)):

W (t) = det X(t),

unde
X(t) = [x1(t) x2(t) ... xn(t)].
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CURS 9

Teoremă. Sistemul de n soluţii {x1, x2, ..., xn} ale sistemului (57)
este fundamental dacă şi numai dacă wronskianul lor W (t) este nenul
ı̂ntr-un punct al intervalului I (echivalent, pe ı̂ntregul interval I).

Demonstraţie. Fie {x1, x2, ..., xn} un sistem fundamental de soluţii
pentru (57). Dorim să arătăm că pentru orice t0 ∈ I avem W (t0) ̸= 0.

Raţionăm prin reducere la absurd. Dacă ar exista un t0 ∈ I astfel
ca W (t0) ̸= 0, atunci există c = (c1, c2, ..., cn) ̸= 0 din Rn astfel ı̂ncât

c1x
1(t0) + c2x

2(t0) + · · ·+ cnx
n(t0) = 0.

Din teorema de existenţă şi unicitate va rezulta că

c1x
1(t) + c2x

2(t) + · · ·+ cnx
n(t) = 0, ∀t ∈ I

şi deci {x1, x2, ..., xn} nu ar fi un sistem fundamental de soluţii pentru
(57); absurd.

Reciproc, dacă W (t0) ̸= 0 (pentru un t0 ∈ I), atunci vom demon-
stra prin reducere la absurd că {x1, x2, ..., xn} este un sistem funda-
mental de soluţii pentru (57).

Dacă nu ar fi aşa, atunci ar exista c ∈ Rn, c = (c1, c2, ..., cn) ̸=
(0, 0, ..., 0) astfel ı̂ncât

c1x
1 + c2x

2 + · · ·+ cnx
n = 0.

De aici rezultă că

c1x
1(t0) + c2x

2(t0) + cdots+ cnx
n(t0) = 0.

Cum W (t0) ̸= 0 rezultă c1 = c2 = ... = cn = 0; absurd.

O consecinţă a teoremei este că X : I → Mn(R) este o matrice
fundamentală pentru (57) dacă şi numai dacă

X ′(t) = A(t)X(t), ∀t ∈ I
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şi
detX(t) ̸= 0, ∀t ∈ I

(echivalent pentru un t0 ∈ I).

De fapt teorema de mai sus se poate rafina:

Teoremă (Liouville). Fie n soluţii {x1, x2, ..., xn} ale sistemului
(57) şi W (t) wronskianul acestui sistem. Atunci

W (t) = W (t0)e
∫ t

t0
tr A(s)ds

, ∀t ∈ I.

Demonstraţie. Fie

X(t) = [x1(t) x2(t) ... xn(t)].

Din teorema creşterilor finite avem:

X(t+ s) = X(t) + sX ′(t) +G(s), ∀t ∈ I şi ∀s ∈ R

astfel ca t+ s ∈ I, unde lim
s→0

G(s) = 0.

De aici se deduce că

W (t+ s) = det(X(t) + sA(t)X(t) +G(s)).

Dacă W (t) = 0, atunci rezultă evident concluzia teoremei.
Dacă W (t) ̸= 0, atunci

W (t+ s) = det(X(t)(I + sA(t) +G(s)X−1(t))

= W (t) det(I + sA(t) +G(s)X−1(t)).

Avem că
det(I + sA(t) +G(s)) = 1 + sA(t) + o(s).

În concluzie
W (t+ s) = W (t)(1 + sA(t) + o(s))

şi de aici rezultă că

W ′(t) = A(t)W (t), ∀t ∈ I,
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ceea ce ne conduce la concluzia teoremei.

Să revenim acum la problema Cauchy (52)-(54).

Teoremă. Fie X(t) o matrice fundamentală pentru (53). Atunci,
soluţia problemei (52)-(54) este

x(t) = X(t)X−1(t0)x0 +
∫ t

t0
X(t)X−1(s)f(s)ds, ∀t ∈ I. (59)

Demonstraţie. Funcţia x dată de (59) satisface:

x′(t) = X ′(t)X−1(t0)x0 +X ′(t)
∫ t

t0
X−1(s)f(s)ds

+X(t)X−1(t)f(t)

= A(t)X(t)X−1(t0)x0 + A(t)X(t)
∫ t

t0
X−1(s)f(s)ds

+ f(t)

= A(t)x(t) + f(t), ∀t ∈ I

şi x(t0) = x0. De aici rezultă concluzia teoremei.

O atenţie specială vom acorda ı̂n continuare cazului sistemului (52)
cu coeficienţi constanţi. Deci, cazul când

A(t) = A = (aij)
n
i,j=1, ∀t ∈ R,

unde aij ∈ R, ∀i, j ∈ {1, 2, ..., n}.

Vom discuta ı̂ntâi câteva chestiuni legate de seriile de matrice pătratice
n-dimensionale.

Considerăm şirul de matrice pătratice n-dimensionale: {Ak}k∈N.
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Definiţie. Spunem că seria
∞∑
k=0

Ak este convergentă la A dacă şirul

sumelor parţiale SN =
N∑
k=0

Ak converge ı̂n normă la matricea A, adică

∥SN − A∥ −→ 0, atunci când N → +∞. (SC)

În caz de convergenţă scriem:

∞∑
k=0

Ak = A

şi spunem că A este suma seriei.

Ţinând cont de definiţia normei unei matrice rezultă echivalenţa
dintre convergenţa (SC) şi cea după componente, adică

sNij → aij, pentru N → +∞,

∀i, j, unde
SN = (sNij ), A = (aij).

De aici urmează imediat că criteriul lui Cauchy pentru serii numerice
rămâne adevărat şi ı̂n cazul seriilor de matrice.

În particular rezultă că dacă seria numerică
∞∑
k=0

∥Ak∥ este conver-

gentă, atunci şi seria de matrice
∞∑
k=0

Ak este convergentă.

Vom considera funcţia etA : R → Mn(R), definită prin

etA =
∞∑
k=0

tk

k!
Ak, ∀t ∈ R.

Convergenţa seriei de mai sus este o consecinţă a faptului că seria
numerică

∞∑
k=0

∥ t
k

k!
Ak∥
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este convergentă (suma acestei serii este mai mică sau egală cu et∥A∥).

Prin verificare directă se demonstrează că:

etAesA = e(t+s)A, ∀t, s ∈ R.

(etA)′ = AetA, ∀t ∈ R.

Cum e0·A = I (deci det e0·A = det I = 1), deducem că etA este matrice
fundamentală pentru (53).

În concluzie, soluţia problemei (52)-(54) este ı̂n acest caz particular

x(t) = e(t−t0)Ax0 +
∫ t

t0
e(t−s)Af(s)ds, ∀t ∈ I.

Vom indica ı̂n continuare o altă foarte utilă formulă de calcul a
matricei etA, unde A ∈ Mn(R).

Pentru aceasta se consideră ecuaţia

det(λI − A) = 0

(este o ecuaţie de grad n), care admite rădăcinile complexe λ1, λ2,...,
λk, de multiplicităţi m1, m2, ..., mk, respectiv (m1, m2, ..., mk ∈ N∗).
Avem deci

det(λI − A) = (λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λk)
mk .

λ1, λ2,..., λk se numesc autovalorile matricei A.

Vom prezenta o altă formulă de calcul pentru etA:

Teoremă.

etA =
k∑

j=1

1

(mj − 1)!
· d

mj−1

dλmj−1

(
eλt(λ− λj)

mj(λI − A)−1
)
λ=λj

,
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Demonstraţiile cele mai ı̂ntâlnite ale acestui rezultat fac apel fie la
teorema reziduurilor, fie la matricele Jordan (a se vedea [3], [5]).

Exemplul 1. Să se rezolve sistemul:{
x′ = y
y′ = −x+ 2y.

Soluţie. În acest caz matricea A este:

A =
(

0 1
−1 2

)
.

Să calculăm autovalorile acestei matrice.

det(λI − A) =

∣∣∣∣∣∣∣
λ −1

1 λ− 2

∣∣∣∣∣∣∣
= λ2 − 2λ+ 1 = (λ− 1)2.

Matricea A are autovaloarea : λ1 = 1 (de multiplicitate 2). Avem

(λI − A)−1 =
1

(λ− 1)2

λ− 2 1

−1 λ


şi deci

etA =
d

dλ

(
(λ− 1)2

eλt

(λ− 1)2

λ− 2 1

−1 λ

)
λ=1

=

 (1− t)et tet

−tet (1 + t)et

 .
Soluţia generală a sistemului este decix(t)

y(t)

 = etA

 c1
c2

 =

 (1− t)etc1 + tetc2

−tetc1 + (1 + t)etc2

 ,
c1, c2 ∈ R.
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CURS 10

2. Ecuaţii diferenţiale liniare de ordin superior

Considerăm ecuaţia diferenţială liniară omogenă de ordinul n:

x(n) + a1(t)x
(n−1) + · · ·an−1(t)x

′ + an(t)x = 0, t ∈ I, (60)

unde a1, a2, ..., an ∈ C(I), n ∈ N, n ≥ 2. Această ecuaţie este echiva-
lentă cu sistemul diferenţial de ordinul 1:

x′1 = x2
x′2 = x3
.......
x′n−1 = xn
x′n = −an(t)x1− an−1(t)x2− · · ·− a1(t)xn.

(61)

Dacă notăm cu

A(t) =


0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1

−an(t) −an−1(t) −an−2(t) ... −a1(t)

 ,

x(t) =


x1(t)
x2(t)
...

xn(t)

 ,
atunci sistemul (61) se poate scrie sub forma

x′ = A(t)x.

Notăm cu S mulţimea soluţiilor ecuaţiei (60) şi cu S̃ mulţimea
soluţiilor pentru (61).

Am demonstrat deja că orice soluţie (saturată) pentru (61) este
definită pe I. Dacă x este o soluţie saturată pentru (60), atunci
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(x, x′, ..., x(n−1)) este o soluţie saturată pentru (61), care este definită
pe I.

Deci, x este şi ea definită pe I. Cu alte cuvinte elementele din S
sunt funcţii definite pe I, cu valori ı̂n R.

Mulţimea S formează un spaţiu liniar de dimensiune n. Mai mult,

Teoremă. Funcţia T : S → S̃, definită prin

Tx =


x
x′

...
x(n−1)


este un izomorfism de spaţii liniare.

Acest lucru rezultă prin verificare directă (utilizând definiţia izomor-
fismului de spaţii liniare).

Conform celor arătate ı̂n secţiunea precedentă S̃ este un spaţiu
liniar de dimensiune n. Utilizând ultima teoremă deducem şi că S
este un spaţiu liniar de aceeaşi dimensiune n.

Definiţie. Dacă x1, x2, ..., xn formează o bază pentru S, atunci
vom spune că {x1, x2, ..., xn} formează un sistem fundamental de soluţii
pentru (60).

Dacă {x1, x2, ..., xn} este un sistem fundamental de soluţii pen-
tru (60), atunci pentru orice x ∈ S există şi sunt unice constantele
c1, c2, ..., cn ∈ R astfel ı̂ncât

x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t), ∀t ∈ I.

Definiţie. Dacă {x1, x2, ..., xn} este un sistem fundamental de
soluţii pentru (60), atunci

W (t) = det(Tx1(t) Tx2(t) ... Txn(t))
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=

∣∣∣∣∣∣∣∣∣
x1(t) x2(t) ... xn(t)
x′1(t) x′2(t) ... x′n(t)
... ... ... ...

x
(n−1)
1 (t) x

(n−1)
2 (t) ... x(n−1)

n (t)

∣∣∣∣∣∣∣∣∣
se numeşte wronskianul sistemului de soluţii ı̂n t.

Teoremă (Liouville). Dacă x1, x2, ..., xn sunt n soluţii ale ecuaţiei
(60) şi dacă t0 ∈ I, atunci wronskianul acestora satisface

W (t) = W (t0)e
−
∫ t

t0
a1(s)ds

, ∀t ∈ I. (62)

Demonstraţie. În adevăr, utilizând teorema lui Liouville din
cazul sistemelor se obţine relaţia (62).

Teoremă. Fie x1, x2, ..., xn n soluţii pentru (60). Acestea formează
un sistem fundamental de soluţii pentru (60) dacă şi numai dacă wron-
skianul acestora este nenul peste tot pe I (echivalent cu faptul că
wronskianul este nenul ı̂ntr-un punct din I).

Demonstraţie. Se aplică pentru (61) rezultatul similar din cazul
sistemelor şi se obţine concluzia.

Exemplu. Să se arate că funcţiile cos t2 şi sin t2 formează un sistem
fundamental de soluţii pentru

x′′ − 1

t
x′ + 4t2x = 0, t > 0.

Soluţie. Fie x1(t) = cos t2, x2(t) = sin t2, t > 0. Avem:

x′1(t) = −2t sin t2

x′′1(t) = −2 sin t2 − 4t2 cos t2

şi deci

x′′1(t) =
1

t
x′1(t)− 4t2x1(t), ∀t > 0.
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De asemenea
x′2(t) = 2t cos t2

x′′2(t) = 2 cos t2 − 4t2 sin t2

şi deci

x′′2(t) =
1

t
x′2(t)− 4t2x2(t), ∀t > 0.

Rezultă că x1, x2 sunt soluţii ale ecuaţiei date. Rămâne să arătăm
că acestea formează un sistem fundamental de soluţii pentru ecuaţia
dată. Wronskianul acestora este

W (t) =

∣∣∣∣∣∣∣
cos t2 sin t2

−2t sin t2 2t cos t2

∣∣∣∣∣∣∣ = 2t ̸= 0,

∀t > 0. Concluzia este acum evidentă.

Considerăm ı̂n cele ce urmează ecuaţia diferenţială liniară ne-
omogenă

x(n) + a1(t)x
(n−1) + · · ·an−1(t)x

′ + an(t)x = f(t), t ∈ I, (63)

unde a1, a2, ..., an, f ∈ C(I), n ∈ N, n ≥ 2. Această ecuaţie este
echivalentă cu sistemul diferenţial de ordinul 1:

x′1 = x2
x′2 = x3
.......
x′n−1 = xn
x′n = −an(t)x1− an−1(t)x2− · · ·− a1(t)xn + f(t),

(64)

t ∈ I.

Dacă z este o soluţie saturată particulară a ecuaţiei (63), atunci

z(n)(t) + a1(t)z
(n−1)(t) + · · ·+ an(t)z(t) = f(t), t ∈ I.

Orice soluţie a problemei (64) este definită pe I. Deci, orice soluţie
saturată pentru (63) este definită pe I.
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Putem concluziona că orice soluţie x pentru (63) se scrie sub forma

x(t) = y(t) + z(t), t ∈ I,

unde y este o soluţie a ecuaţiei omogene asociată (60).

În adevăr, x este soluţie pentru (63) dacă şi numai dacă x− z = y
verifică (60) şi de aici concluzia.

Dacă x1, x2, ..., xn este un sistem fundamental de soluţii pentru (60)
şi z este o soluţie particulară pentru (63), atunci soluţia generală a
ecuaţiei (63) este dată de formula

x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) + z(t), t ∈ I,

unde c1, c2, ..., cn ∈ R.

Iată deci că găsirea soluţiei generale revine la găsirea unui sistem
fundamental de soluţii pentru (60) şi a unei soluţii particulare pentru
(64).

În cazul ı̂n care se cunoaşte deja un sistem fundamental de soluţii
pentru (60): x1, x2, ..., xn, vom determina o soluţie particulară pentru
(64) prin metoda variaţiei constantelor:

Se caută soluţia particulară pentru (64) de forma:

z(t) = c̃1(t)x1(t) + c̃2(t)x2(t) + · · ·+ c̃n(t)xn(t),

unde c̃1, c̃2, ..., c̃n ∈ C1(I) sunt funcţii ce vor fi determinate.
Derivând se obţine:

z′(t) = c̃1(t)x
′
1(t) + c̃2(t)x

′
2(t) + · · ·+ c̃n(t)x

′
n(t)

+c̃′1(t)x1(t) + c̃′2(t)x2(t) + · · ·+ c̃′n(t)xn(t), t ∈ I

şi impunem condiţia

c̃′1(t)x1(t) + c̃′2(t)x2(t) + · · ·+ c̃′n(t)xn(t) = 0, t ∈ I.

Astfel

z′(t) = c̃1(t)x
′
1(t) + c̃2(t)x

′
2(t) + · · ·+ c̃n(t)x

′
n(t), t ∈ I.
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Derivăm din nou şi obţinem

z′′(t) = c̃1(t)x
′′
1(t) + c̃2(t)x

′′
2(t) + · · ·+ c̃n(t)x

′′
n(t)

+c̃′1(t)x
′
1(t) + c̃′2(t)x

′
2(t) + · · ·+ c̃′n(t)x

′
n(t), t ∈ I

şi impunem condiţia

c̃′1(t)x
′
1(t) + c̃′2(t)x

′
2(t) + · · ·+ c̃′n(t)x

′
n(t) = 0, t ∈ I.

Astfel

z′′(t) = c̃1(t)x
′′
1(t) + c̃2(t)x

′′
2(t) + · · ·+ c̃n(t)x

′′
n(t), t ∈ I.

Se repetă acest procedeu până se obţine

z(n)(t) = c̃1(t)x
(n)
1 (t) + c̃2(t)x

(n)
2 (t) + · · ·+ c̃n(t)x

(n)
n (t)

+c̃′1(t)x
(n−1)
1 (t) + c̃′2(t)x

(n−1)
2 (t) + · · ·+ c̃′n(t)x

(n−1)
n (t), t ∈ I

şi impunem condiţia

c̃′1(t)x
(n−1)
1 (t) + c̃′2(t)x

(n−1)
2 (t) + · · ·+ c̃′n(t)x

(n−1)
n (t) = f(t), t ∈ I.

Astfel

z(n)(t) = c̃1(t)x
(n)
1 (t) + c̃2(t)x

(n)
2 (t) + · · ·+ c̃n(t)x

(n)
n (t) + f(t), t ∈ I.

Am obţinut deci sistemul:
c̃′1(t)x1(t) + c̃′2(t)x2(t) + · · ·+ c̃′n(t)xn(t) = 0
c̃′1(t)x

′
1(t) + c̃′2(t)x

′
2(t) + · · ·+ c̃′n(t)x

′
n(t) = 0

.......

c̃′1(t)x
(n−1)
1 (t) + c̃′2(t)x

(n−1)
2 (t) + · · ·+ c̃′n(t)x

(n−1)
n (t) = f(t),

(65)

t ∈ I şi ı̂n concluzie

z(t) = c̃1(t)x1(t) + c̃2(t)x2(t) + · · ·+ c̃n(t)xn(t)
z′(t) = c̃1(t)x

′
1(t) + c̃2(t)x

′
2(t) + · · ·+ c̃n(t)x

′
n(t)

z′′(t) = c̃1(t)x
′′
1(t) + c̃2(t)x

′′
2(t) + · · ·+ c̃n(t)x

′′
n(t)

.......

z(n)(t) = c̃1(t)x
(n)
1 (t) + c̃2(t)x

(n)
2 (t) + · · ·+ c̃n(t)x

(n)
n (t) = f(t),

(66)
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t ∈ I.
Dacă ar exista c̃1, c̃2, ..., c̃n ∈ C1(I) astfel ı̂ncât (65) să aibă loc,

atunci ı̂nmulţind prima ecuaţie din (66) cu an, a doua cu an−1, ..., şi
penultima cu a1 şi adunând relaţiile se obţine

z(n)+a1z
(n−1)+···+anz = c̃1(t)(x

(n)
1 (t)+a1(t)x

(n−1)
1 (t)+···+an(t)x1(t))

+ · · ·+c̃n(t)(x(n)n (t) + a1(t)x
(n−1)
n (t) + · · ·+ an(t)xn(t)) + f(t)

şi de aici rezultă că z este soluţie pentru (63).
Sistemul (65) are determinantul W (t) ̸= 0, ∀t ∈ I (este un sistem

Cramer). Rezolvând se obţine soluţia α1, α2, ..., αn, toate fiind funcţii
continue pe I. Orice familie de n primitive ale acestora c̃1, c̃2, ..., c̃n
(acestea sunt funcţii de clasă C1 pe I) va satisface deci sistemul (65).

Observaţie. Funcţiile c̃1, c̃2, ..., c̃n determinate prin metoda variaţiei
constantelor nu sunt unic determinate.

Exemplu. Să se găsească soluţia generală ecuaţiei

x′′ + x = cos t, t ∈ R (67)

folosind metoda variaţiei constantelor.

Soluţie. Considerăm ecuaţia omogenă asociată

x′′ + x = 0.

Este evident că x1(t) = cos t şi x2(t) = sin t sunt soluţii ale acesteia şi
sunt şi liniar independente. Soluţia generală a ecuaţiei (67) are forma

x(t) = c1 cos t+ c2 sin t+ z(t), t ∈ R,

unde z este o soluţie particulară a ecuaţiei (67).
Vom căuta soluţia z de forma

z(t) = c̃1(t) cos t+ c̃2(t) sin t, t ∈ R.

c̃1 şi c̃2 satisfac sistemul:
c̃′1(t) cos t+ c̃2(t) sin t = 0

−c̃1(t)′ sin t+ c̃′2(t) cos t = cos t.



86 SISTEME DIFERENŢIALE LINIARE

Acesta este un sistem compatibil determinat şi are soluţia
c̃′1(t) = − sin t cos t

c̃′2(t) = cos2 t

⇐⇒


c̃1(t) =

cos 2t

4
+ a1

c̃2(t) =
t

2
+

sin 2t

4
+ a2,

a1, a2 ∈ R. Alegând a1 şi a2 oarecare (de exemplu a1 = a2 = 0) se
obţine soluţia generală pentru (67):

x(t) = c1 cos t+ c2 sin t+
cos 2t

4
cos t+ (

t

2
+

sin 2t

4
) sin t,

t ∈ R, unde c1, c2 ∈ R sunt constante oarecare.
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CURS 11

3. Ecuaţii diferenţiale liniare cu coeficienţi constanţi

Vom analiza pentru ı̂nceput ecuaţia omogenă cu coeficienţi constanţi:

x(n) + a1x
(n−1) + · · ·+ an−1x

′ + anx = 0, t ∈ R, (68)

unde a1, a2, ..., an ∈ R, n ∈ N, n ≥ 1.
Dorim să găsim un sistem fundamental de soluţii pentru (68). Pen-

tru aceasta vom ataşa ı̂ntâi aşa numita ecuaţie caracteristică:

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0. (69)

Această ecuaţie are k rădăcini distincte complexe: λ1 de multiplicitate
m1 ∈ N∗, λ2 de multiplicitate m2 ∈ N∗, ..., λk de multiplicitate mk ∈
N∗. Aceste rădăcini se numesc rădăcini caracteristice sau autovalori.
Cum (69) este o ecuaţie de gradul n rezultă că m1+m2+ · · ·+mk = n.

Se poate vorbi de soluţii ale ecuaţiei (68) definite pe un interval din
R şi cu valori ı̂n C. O asemenea soluţie este o funţie x definită pe un
interval J , cu valori ı̂n C, de clasă Cn şi astfel ı̂ncât

x(n)(t) + a1x
(n−1)(t) + · · ·+ an−1x

′(t) + anx(t) = 0, ∀t ∈ J.

Exact ca ı̂n cazul soluţiilor reale se poate arăta că orice soluţie com-
plexă saturată este definită pe R.

Se poate demonstra că mulţimea soluţiilor ecuaţiei (68) formează
un spaţiu liniar de dimensiune n peste corpul C. Demonstraţia se face
exact la fel ca ı̂n cazul real.

Deci, se pot defini exact la fel şi ı̂n această situaţie noţiunile de
sistem fundamental de soluţii, matrice fundamentală, etc.

Notăm cu

L(D)x = x(n) + a1x
(n−1) + · · ·+ an−1x

′ + anx



88 SISTEME DIFERENŢIALE LINIARE

(acesta este un polinom diferenţial; exponenţii sunt ı̂nlocuiţi cu ordine
de derivare);

L(λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an,

L(p)(D)x = n(n− 1) · · · (n− p+ 1)x(n−p)

+(n− 1)(n− 2) · · · (n− p)a1x
(n−p−1) + · · ·

Este evident că

L(λ) = (λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λk)
mk .

Vom demonstra pentru ı̂nceput:

Lema lui Leibniz generalizată. Pentru orice y, z de clasă Cn

avem:

L(D)(yz) =
n∑

p=0

L(p)(D)y · z(p)

p!
.

Observaţie. Acest rezultat generalizează rezultatul clasic al lui
Leibniz:

(yz)(n) =
n∑

p=0

Cp
ny

(n−p) · z(p).

Demonstraţia lemei. Utilizând rezultatul clasic al lui Leibniz se
obţine

L(D)(yz) =
n∑

p=0

Lp(D)y · z(p), (70)

unde Lp(D) este un polinom diferenţial de un anumit ordin. Dorim
să demonstrăm că:

Lp(D) =
1

p!
L(p)(D).
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În adevăr, pentru y = eλt şi z = eγt obţinem din (70):

L(D)e(λ+γ)t =
n∑

p=0

Lp(D)eλtγpeγt, ∀t ∈ R,

∀λ, γ ∈ C. Cum

L(D)eαt = eαtL(α), ∀t ∈ R,∀α ∈ C,

rezultă că

e(λ+γ)tL(λ+ γ) = e(λ+γ)t
n∑

p=0

Lp(λ)γ
p, ∀λ, γ ∈ C.

Utilizând formula lui Taylor avem:

L(λ+ γ) =
n∑

p=0

L(p)(λ)γp

p!
, ∀λ, γ ∈ C

şi de aici concluzia

Lp(λ) =
1

p!
L(p)(λ), ∀λ ∈ C.

Cu aceasta demonstraţia lemei este ı̂ncheiată.

Teoremă. Următorul sistem de soluţii (cu valori complexe) este
fundamental: 

eλ1t, teλ1t, ....., tm1−1eλ1t

eλ2t, teλ2t, ....., tm2−1eλ2t

.....
eλkt, teλkt, ....., tmk−1eλkt.

Demonstraţie. Observăm pentru ı̂nceput că funcţiile indicate
mai sus sunt cu valori complexe.

Vom arăta ı̂ntâi că tleλ1t este soluţie a ecuaţiei (68), pentru orice
l ∈ {0, 1, ...,m1 − 1}.

Utilizând lema de mai sus se obţine

L(D)(tleλ1t) =
n∑

p=0

L(p)(D)(eλ1t)(tl)(p)

p!
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= eλ1t
n∑

p=0

L(p)(λ1)(t
l)(p)

p!

= eλ1t[
∑

0≤p≤m1−1

L(p)(λ1)(t
l)(p)

p!
+

∑
m1≤p≤n

L(p)(λ1)(t
l)(p)

p!
].

Cea de-a doua sumă din ultimul membru este egală cu 0 deoarece
(tl)(p) = 0, ∀p ≥ m1, iar prima sumă este 0 deoarece λ1 este rădăcină
de multiplicitate m1 pentru (69) şi deci L(λ1) = L′(λ1) = ... =
L(m1−1)(λ1) = 0.

Să demonstrăm că sistemul de soluţii indicat este liniar independent
peste C.

Fie c1, c2, ..., cn ∈ C astfel ı̂ncât:

c1e
λ1t + c2te

λ1t + · · ·+ cnt
mk−1eλkt = 0, ∀t ∈ R.

De aici rezultă

eλ1tg1(t) + eλ2tg2(t) + · · ·+ eλktgk(t) = 0, ∀t ∈ R,

unde g1, g2, ..., gk sunt funcţii polinomiale de grade cel mult m1, m2,
..., mk, respectiv.

De aici rezultă că

g1(t) + e(λ2−λ1)tg2(t) + · · ·+ e(λk−λ1)tgk(t) + 0, ∀t ∈ R.

Derivând de m1 ori se obţine

e(λ2−λ1)th2(t) + · · ·+ e(λk−λ1)thk(t) + 0, ∀t ∈ R,

unde h2, ..., hk sunt funcţii polinomiale şi grad h2 = grad g2, ...,
grad hk = grad gk. De aici deducem că

h2(t) + e(λ3−λ2)t · · ·+e(λk−λ2)thk(t) + 0, ∀t ∈ R.

Repetând procedeul se obţine ı̂n final

e(λk−λk−1)tuk(t) = 0, ∀t ∈ R,

unde grad uk = · · · = grad hk = grad gk. De aici rezultă că

uk(t) = 0, ∀t ∈ R
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şi concluzia este că uk ≡ 0 şi deci gk ≡ 0. Aceasta arată că

cn−mk+1 = · · · = cn = 0.

Analog se arată că g1 ≡ 0, g2 ≡ 0, ..., gk−1 ≡ 0. În concluzie rezultă
că

c1 = c2 = · · · = cn = 0

şi deci sistemul de soluţii este liniar independent.

Remarcă. Problema este acum faptul că funcţiile din sistemul
fundamental de soluţii (din teorema anterioară) sunt cu valori com-
plexe (pot exista autovalori complexe fără a fi reale).

Fie a+ ib o asemenea autovaloare (a, b ∈ R, b ̸= 0). Atunci a− ib
este de asemenea autovaloare şi are aceeaşi multiplicitate m ca a lui
a+ ib. Cum {

e(a+ib)t, te(a+ib)t, ....., tm−1e(a+ib)t,
e(a−ib)t, te(a−ib)t, ....., tm−1e(a−ib)t

sunt soluţii pentru (68), rezultă şi că{
eat cos bt, teat cos bt, ....., tm−1eat cos bt,
eat sin bt, teat sin bt, ....., tm−1eat sin bt

(care sunt funcţii reale) sunt de asemenea soluţii pentru (68) şi ele
generează acelaşi subspaţiu liniar ca primele (peste corpulC). Aplicând
acelaşi procedeu pentru toate autovalorile din C \R se va obţine un
sistem fundamental de soluţii peste C. De aici rezultă că acestea sunt
liniar independente şi peste R.

Exemplu. Să se găsească soluţia generală pentru ecuaţia

x(4) − x = 0.

Soluţie. Ecuaţia caracteristică este

λ4 − 1 = 0,



92 SISTEME DIFERENŢIALE LINIARE

care are soluţiile 1, −1, i şi −i.
Un sistem fundamental de soluţii va fi deci:

et, e−t, cos t, sin t.

Soluţia generală a ecuaţiei este deci:

x(t) = c1e
t + c2e

−t + c3 cos t+ c4 sin t, ∀t ∈ R,

unde c1, c2, c3, c4 sunt constante reale oarecare.

Observaţie. În cazul ecuaţiei neomogene cu coeficienţi constanţi:

x(n) + a1x
(n−1) + · · ·+ an−1x

′ + anx = f(t), t ∈ R, (71)

ı̂n care f(t) = eatP (t), unde a ∈ R, iar P este o funcţie polinomială,
ecuaţia (71) are o soluţie particulară de forma

z(t) = eattlQ(t),

unde Q este o funcţie polinomială având acelaşi grad cu P . Aici l este
multiplicitatea lui a ca rădăcină a ecuaţiei caracteristice.

Dacă a nu este rădăcină a acestei ecuaţii atunci convenim ca l = 0.

Dacă f(t) = eatP (t) cos bt sau f(t) = eatP (t) sin bt, unde a, b ∈ R,
iar P este o funcţie polinomială, ecuaţia (71) are o soluţie particulară
de forma

z(t) = eattl(Q1(t) cos bt+Q2(t) sin bt),

unde Q1, Q2 sunt funcţii polinomiale de acelaşi grad cu P . Aici l este
multiplicitatea lui a+ ib ca rădăcină a ecuaţiei caracteristice.

Pentru demonstraţie recomandăm [11].

Exemplu. Să reluăm exemplul din secţiunea precedentă.

x′′ + x = cos t

Ecuaţia caracteristică este λ2 + 1 = 0 şi are rădăcinile i şi −i.
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Deci, soluţia generală a ecuaţiei omogene asociate este

y(t) = c1 cos t+ c2 sin t, t ∈ R,

unde c1, c2 sunt constante reale oarecare.
Vom căuta o soluţie particulară a ecuaţiei neomogene date de forma

z(t) = t (A cos t+B sin t), t ∈ R.

Avem
z′(t) = (A+Bt) cos t+ (B − At) sin t, t ∈ R,

z′′(t) = (2B − At) cos t− (2A+Bt) sin t, t ∈ R

şi de aici obţinem

z′′(t) + z(t) = 2B cos t− 2A sin t = cos t.

Concluzia este că B = 1
2
, A = 0. Deci,

z(t) =
1

2
t sin t

este o soluţie particulară şi deci soluţia generală

x(t) = c1 cos t+ c2 sin t+
1

2
t sin t, t ∈ R.

Deşi această formă pare diferită de cea din secţiunea precedentă, de
fapt nu este aşa. Se poate verifica că diferenţa celor două “tipuri” de
soluţii verifică ecuaţia x′′ + x = 0.

Ecuaţii de ordinul 2 cu coeficienţi constanţi

Considerăm ecuaţia

x′′ + αx′ + βx = γ sin νt,

unde α, β, γ, ν ∈ R, α, γ ≥ 0, β, ν > 0.

1) Dacă γ = 0 se obţine că ecuaţia omogenă asociată este

x′′ + αx′ + βx = 0,



94 SISTEME DIFERENŢIALE LINIARE

iar ecuaţia caracteristică este

λ2 + αλ+ β = 0.

Dacă α2 − 4β > 0, atunci soluţia generală a ecuaţiei omogene este

x(t) = c1e
λ1t + c2e

λ2t,

unde c1, c2 ∈ R şi λ1, λ2 sunt soluţiile ecuaţiei caracteristice, adică:

λ1,2 =
−α±

√
α2 − 4β

2
.

Este evident că
lim

t→+∞
x(t) = 0.

Dacă α2 − 4β = 0, atunci

x(t) = c1e
λ1t + c2te

λ1t,

unde c1, c2 ∈ R şi λ1 = −α
2
este rădăcina dublă a ecuaţiei caracteris-

tice. Rezultă imediat că

lim
t→+∞

x(t) = 0.

Dacă α2 − 4β < 0, atunci

λ1,2 =
−α± i

√
4β − α2

2

sunt rădăcinile ecuaţiei caracteristice şi deci soluţia generală a ecuaţiei
omogene este

x(t) = c1e
−α

2
t cos

√
4β − α2

2
t+ c2e

−α
2
t sin

√
4β − α2

2
t,

unde c1, c2 ∈ R.
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Este evident că dacă α > 0, atunci:

lim
t→+∞

x(t) = 0,

iar dacă α = 0, atunci soluţia este mărginită.

2) Să considerăm acum cazul ı̂n care γ > 0 şi α2 − 4β < 0.
Dacă α > 0 sau β ̸= ν2 atunci se caută o soluţie particulară de

forma:
z(t) = c̃1 cos νt+ c̃2 sin νt.

Înlocuind ı̂n ecuaţie se obţine:

−c̃1ν2 cos νt− c̃2ν
2 sin νt+ α(−c̃1ν sin νt+ c̃2ν cos νt)

+β(c̃1 cos νt+ c̃2 sin νt) = γ sin νt

şi de aici {
c̃1(−ν2 + β) + c̃2αν = 0
c̃1(−αν) + c̃2(β − ν2) = γ

Rezolvând sistemul se obţine

c̃1 =
−αγν

(β − ν2)2 + α2ν2
,

c̃2 =
γ(β − ν2)

(β − ν2)2 + α2ν2
.

Se obţine deci soluţia particulară

z(t) =
−αγν cos νt

(β − ν2)2 + α2ν2
+

γ(β − ν2) sin νt

(β − ν2)2 + α2ν2
.

Soluţia generală a ecuaţiei neomogene este deci

x(t) = c1e
−α

2
t cos

√
4β − α2

2
t+ c2e

−α
2
t sin

√
4β − α2

2
t+ z(t),

unde c1, c2 ∈ R. Este clar că

lim
t→+∞

(x(t)− z(t)) = 0.
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Dacă α = 0 şi β ̸= ν2, atunci

z(t) =
γ sin νt

β − ν2
.

O situaţie extrem de interesantă este aceea ı̂n care α = 0 şi β = ν2.
Se caută o soluţie particulară de forma

z(t) = t (A cos νt+B sin νt),

unde A şi B sunt constante reale. Făcând calculele rezultă că

z(t) = − γ

2ν
t cos νt

şi deci

x(t) = c1 cos νt+ c2 sin νt−
γ

2ν
t cos νt.

Se vede că există tn → +∞ astfel ca

lim
n→+∞

|x(tn)| = +∞.

Acesta este fenomenul de rezonanţă.

În cazul oscilatorului armonic fără frecare, modelat de ecuaţia

mx′′ + kx = γ sin νt,

se obţine fenomenul de rezonanţă atunci când

ν =

√
k

m
.

În cazul circuitului serie LC, descris de ecuaţia

LI ′′ +
1

C
I = γ sin νt,

se obţine fenomenul de rezonanţă pentru

ν =
1√
LC

.



Exerciţii 97

Exerciţii

1. Găsiţi soluţia generală a ecuaţiei omogene:

x′′ + 2x′ − 3x = 0.

2. Să se rezolve ecuaţia omogenă:

x′′′ − 6x′′ + 11x′ − 6x = 0.

3. Să se rezolve problema Cauchy:
x′′ + 4x′ + 5x = 0
x(0) = 1
x′(0) = −3.

4. Să se rezolve problema Cauchy:
x′′′ − 3x′′ + 4x′ − 2x = 0
x(0) = 1
x′(0) = 2
x′′(0) = 3.

5. Să se găsească soluţia generală a ecuaţiei neomogene:

x′′ + 25x = 1 + sin t.

6. Să se determine soluţia generală a ecuaţiei:

x′′ + x = sin t,

utilizând metoda variaţiei constantelor.

Să se rezolve:

7.
x′′ − x = et.
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8.

x′′ + 4x = tg 2t.

9.

x′′′ + x′ = tg t.

10.

x′′ − 8x′ + 9x = sin 5t.

11. O bobină de inductanţă L = 4 H, un rezistor de rezistenţă R =
20 Ω şi un condensator de capacitate C = 0, 01 F sunt legaţi ı̂n
serie cu o baterie cu tensiunea U = 500 V. Ştiind că la momentul
iniţial t = 0, Q = 0 şi I = 0, să se afle Q şi I la momentul t ≥ 0.

Să se rezolve următoarele probleme:

12.

3x′′ + 4x′ + x = e−t sin t.

13. 
x′ = 2x− y − z + t
y′ = 2x− y − 2z + et

z′ = −x+ y + 2z.

14. Să se arate că ecuaţia Euler-Cauchy:

tnx(n)(t) + a1t
n−1x(n−1)(t) + · · ·+ anx(t) = f(t)

se reduce prin substituţia t = es la o ecuaţie liniară.

15. Să se afle soluţia generală a ecuaţiei:

t2x′′ − 3tx′ + 2x = 0.
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16. Să se rezolve ecuaţia:

t2x′′ + tx′ = t ln t.

Să se rezolve următoarele probleme:

17. {
x′1 = 2x1 + 6x2,
x′2 = −2x1 − 5x2.

18. {
x′1 = 3x1 − 4x2,
x′2 = x1 − x2.

19. {
x′1 = −3x1 − 2x2,
x′2 = 2x1 + x2.

20. {
x′1 = x1 − x2,
x′2 = x1 + 3x2.

21. {
x′1(t) = x2(t) + t,
x′2(t) = −x1(t) + 2x2(t).

22. 
x′1 = 3x1 − x3,
x′2 = −2x1 + 2x2 + x3,
x′3 = 8x1 − 3x3,
x1(0) = 1, x2(0) = −1, x3(0) = 0.
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Curs 12 101

CURS 12

IV. ELEMENTE DE TEORIA
STABILITĂŢII

Noţiunea de soluţie stabilă a unei ecuaţii diferenţiale, precum şi
primele rezultate ale teoriei moderne a stabilităţii ecuaţiilor diferenţiale
sunt datorate matematicianului rus A.M. Liapunov.

Vom prezenta ı̂n continuare câteva din noţiunile şi rezultatele de
bază ale acestei teorii.

Considerăm sistemul diferenţial

x′ = f(t, x), (72)

unde
f : Ω −→ Rn.

Aici

Ω = {(t, x) ∈ Rn+1; t ∈ [0,+∞), x ∈ Rn, ∥x∥ < α} (α > 0)

(iar ∥x∥ = max{|x1|, |x2|, ..., |xn|}, pentru x = (x1, x2, ..., xn) ∈ Rn).
Presupunem că f este continuă pe Ω şi local lipschitziană ı̂n raport cu
x pe Ω.

Pentru orice t0 ≥ 0 şi orice x0 ∈ Rn, ∥x0∥ < α, există o unică
soluţie saturată la dreapta a sistemului (72), care satisface condiţia
iniţială

x(t0) = x0.

Notăm această soluţie x(t; t0, x0).

Fie x̃ o soluţie a problemei (72) definită pe semiaxa [t0,+∞).
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Definiţie. Soluţia x̃ se numeşte stabilă (̂ın sens Liapunov ) dacă:
∀ε > 0,∃δ(ε) > 0,∀x0 ∈ Rn, ∥x0 − x̃(t0)∥ < δ(ε), rezultă că

x(t; t0, x0) este definită pe toată semiaxa [t0,+∞) şi

∥x(t; t0, x0)− x̃(t)∥ < ε, ∀t ≥ t0.

Soluţia x̃ este instabilă dacă nu este stabilă.

Stabilitatea ı̂nseamnă că dacă data x0 este “suficient de aproape”
de x̃(t0), atunci soluţia x(t; t0, x0) este definită pe [t0,+∞) şi rămâne
la orice moment t ≥ t0 “aproape” de x̃(t).

Definiţie. Soluţia x̃ este asimptotic stabilă dacă este stabilă şi
dacă există η > 0 astfel ı̂ncât

lim
t→+∞

∥x(t; t0, x0)− x̃(t)∥ = 0

de ı̂ndată ce ∥x0 − x̃(t0)∥ < η.

Observaţie. Stabilitatea este o proprietate a soluţiei şi nu a sis-
temului.

Exemplu. Considerăm ecuaţia pendulului simplu:

θ′′ = − g

L
sin θ,

care se poate scrie ı̂n mod echivalent astfel:
θ′ = ψ

ψ′ = − g

L
sin θ.

Astfel, se cunoaşte că soluţia banală: (θ, ψ) = (0, 0) este stabilă, fără a

fi asimptotic stabilă. În schimb soluţia (θ, ψ) = (π, 0) nu este stabilă.

Dacă x̃ este soluţie a ecuaţiei (72) definită pe [t0,+∞), atunci pen-
tru orice soluţie x pentru (72) avem:

(x− x̃)′(t) = f(t, x̃(t) + x(t)− x̃(t))− f(t, x̃(t)).
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Făcând substituţia y = x− x̃, obţinem

y′(t) = f(t, x̃(t) + y(t))− f(t, x̃(t)).

Notând g(t, y) = f(t, x̃(t) + y)− f(t, x̃(t)) rezultă

y′ = g(t, y) (73)

şi astfel stabilitatea soluţiei x̃ a ecuaţiei (72) s-a redus la stabilitatea
soluţiei nule pentru (73).

La fel, asimptotica stabilitate a lui x̃ pentru (72) este echivalentă
cu asimptotica stabilitate a soluţiei nule pentru (73).

Observaţie. Avem astfel că:
Soluţia nulă a ecuaţiei (73) este stabilă dacă
∀ε > 0,∃δ(ε) > 0, ∀y0 ∈ Rn : ∥y0∥ < δ(ε), rezultă că soluţia

ecuaţiei (73) y(t; t0, y0) (ce verifică y(t0) = y0) este definită pe toată
semiaxa [t0,+∞) şi

∥y(t; t0, y0)∥ < ε, ∀t ≥ t0.

Soluţia nulă a ecuaţiei (73) este asimptotic stabilă dacă este stabilă
şi dacă există η > 0 astfel ı̂ncât

lim
t→+∞

∥y(t; t0, y0)∥ = 0

de ı̂ndată ce ∥y0∥ < η.

1. Criterii de stabilitate a soluţiei nule pentru sis-
teme diferenţiale liniare

Ne vom ocupa de studiul stabilităţii soluţiei nule a sistemului

x′ = A(t)x, (74)

unde A(t) = (aij(t))1≤i,j≤n, t ≥ 0 şi aij ∈ C([0,+∞)), ∀i, j = 1, n.

Teoremă. Dacă soluţia banală a sistemului (74) este stabilă (re-
spectiv asimptotic stabilă), atunci orice soluţie a sistemului este stabilă
(respectiv asimptotic stabilă).
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Demonstraţie. Dacă x̃ este o soluţie oarecare pentru (74), atunci
prin transformarea y = x− x̃ avem:

y′ = A(t)y

şi de aici deducem că dacă soluţia banală a sistemului (74) este stabilă,
atunci soluţia x̃ este stabilă.

În cazul stabilităţii asimptotice se raţionează la fel.

Observaţie. Ultimul rezultat arată că ı̂n cazul sistemelor diferenţiale
liniare, stabilitatea (respectiv asimptotica stabilitate) este chiar o pro-
prietate a sistemului (nu doar a soluţiei).

De aceea sistemele liniare se numesc stabile, sau instabile, după
cum soluţia banală este sau nu stabilă.

Teoremă. Sistemul (74) este stabil dacă şi numai dacă există
o matrice fundamentală a sa X(t) care este mărginită pe [0,+∞).
Acest lucru este echivalent cu faptul că orice matrice fundamentală
este mărginită pe [0,+∞).

Sistemul (74) este asimptotic stabil dacă şi numai dacă există o
matrice fundamentală X(t) astfel ı̂ncât:

lim
t→+∞

∥X(t)∥ = 0.

Demonstraţie. Presupunem că există o matrice fundamentală
X(t) astfel ı̂ncât

∥X(t)∥ ≤ C, ∀t ≥ 0,

unde C > 0 este o constantă.
Notăm cu x(t; t0, x0) soluţia sistemului (74) ce satisface condiţia

x(t0) = x0.
Vom demonstra că soluţia nulă este stabilă.
Pornim de la faptul că

x(t; t0, x0) = X(t)X−1(t0)x0, ∀t ≥ 0. (75)

De aici deducem că

∥x(t; t0, x0)∥ ≤ ∥X(t)∥∥X−1(t0)∥∥x0∥ ≤ C∥X−1(t0)∥∥x0∥, ∀t ≥ t0.
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Deci, ∀ε > 0,∃δ(ε) = ε
C∥X−1(t0)∥ > 0, ∀x0 ∈ Rn cu ∥x0∥ < δ avem

că:
∥x(t; t, x0)∥ < ε, ∀t ≥ t0.

Dacă, lim
t→+∞

∥X(t)∥ = 0, atunci din (75) deducem că

lim
t→+∞

∥x(t; t0, x0)∥ = 0.

Reciproc, dacă soluţia nulă este stabilă, atunci să arătăm că există
o matrice fundamentală mărginită.

În definiţia stabilităţii soluţiei nule alegem: ε = 1. Fie

x01 =



δ/2
0
0
...
0
0

 , x02 =



0
δ/2
0
...
0
0

 , ... x0n =



0
0
0
...
0
δ/2


din Rn şi notăm cu xj(t) = x(t; t0, x0j). Considerăm matricea funda-
mentală:

X(t) = [x1(t) x2(t) ... xn(t)].

Cum ∥xj(t)∥ < 1, ∀t ≥ t0, atunci deducem că ∥X(t)∥ < n, ∀t ≥ t0.
Deci, matricea X(t) este mărginită pe [0,+∞).

Dacă soluţia nulă este asimptotic stabilă, atunci

lim
t→+∞

∥xj(t)∥ = 0

şi deci
lim

t→+∞
∥X(t)∥ = 0.

Vom discuta ı̂n continuare cazul particular când A(t) = A (A este
o matrice constantă). Sistemul (74) devine

x′ = Ax. (76)
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Definiţie. Matricea A este hurwitziană dacă toate autovalorile
sale au partea reală negativă.

Teoremă. Sistemul (76) este asimptotic stabil dacă şi numai dacă
A este hurwitziană.

Dacă măcar una dintre autovalorile lui A are partea reală strict
pozitivă, atunci sistemul este instabil.

Dacă autovalorile lui A au partea reală mai mică sau egală cu 0,
iar cele care au partea reală 0 sunt simple, atunci sistemul (76) este
stabil, fără a fi asimptotic stabil.

Demonstraţie (schiţă). Vom demonstra prima parte a acestei
teoreme. Se utilizează pentru aceasta teorema anterioară. Asimptot-
ica stabilitate a sistemului este astfel echivalentă cu faptul că

lim
t→+∞

etA = 0.

Utilizând teorema de structură a lui etA (din capitolul precedent)
se deduce că

etA = (
k∑

r=1

pijr(t)e
λrt)1≤i,j≤k,

unde {λr}kr=1 sunt autovalorile lui A, iar pijr sunt polinoame de grad
egal cu mr − 1 (mr este multiplicitatea autovalorii λr).

Dacă A este hurwitziană, atunci există θ > 0 a.̂ı. Re λr ≤ −θ < 0.
De aici deducem că

lim
t→+∞

k∑
r=1

pijr(t)e
λrt = 0

şi deci
lim

t→+∞
∥etA∥ = 0.

Dacă
lim

t→+∞
∥etA∥ = 0,
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atunci rezultă prin reducere la absurd că Re λr < 0, ∀r ∈ {1, 2, .., k}.

Demonstraţiile celorlalte părţi se bazează de asemenea pe teorema
de structură a lui etA. Pentru detalii a se vedea [5].

Observaţie. În studiul stabilităţii sistemului (76) este esenţial
deci să se evalueze partea reală a fiecărei autovalori a lui A, adică a
rădăcinilor polinomului caracteristic

p(λ) = det(λI − A).

Polinomul p este hurwitzian dacă rădăcinile sale au partea reală
negativă.

În cazul ı̂n care n = 2 sau n = 3 există două criterii datorate lui
Hurwitz:

Polinomul λ2 + a1λ + a2 (cu a1, a2 ∈ R) este hurwitzian dacă şi
numai dacă a1, a2 > 0.

Polinomul λ3 + a1λ
2 + a2λ+ a3 (cu a1, a2, a3 ∈ R) este hurwitzian

dacă şi numai dacă a1, a2, a3 > 0 şi a1a2 > a3.

Toată teoria de mai sus se aplică şi ı̂n cazul ecuaţiilor liniare de
ordin superior.

Considerăm ecuaţia

x(n) = f(t, x, x′, ..., x(n−1)). (77)

Definiţie. Fie x̃ o soluţie a problemei (77) definită pe semiaxa
[t0,+∞). Soluţia x̃ se numeşte stabilă, respectiv asimptotic stabilă
dacă (x̃, x̃′, ..., x̃(n−1)) este stabilă, respectiv asimptotic stabilă pentru
sistemul 

x′1 = x2
x′2 = x3
...
x′n = f(t, x1, x2, ..., xn).
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Exemplu. Vom studia stabilitatea soluţiei nule a ecuaţiei oscila-
torului armonic.

Ecuaţia oscilatorului armonic fără frecare este:

mx′′ + kx = 0,

unde m, k > 0. Ataşăm ecuaţia caracteristică

λ2 +
k

m
= 0,

care are soluţiile λ1,2 = ±i
√

k
m

(fiecare de multiplicitate 1). Concluzia
este că soluţia nulă este stabilă, dar nu este asimptotic stabilă.

Ecuaţia oscilatorului armonic cu frecare este

mx′′ + γx′ + kx = 0,

unde m, γ, k > 0. Ecuaţia caracteristică este

mλ2 + γλ+ k = 0,

care are doar soluţii cu partea reală negativă (polinomul caracteristic
este hurwitzian). Concluzia este că soluţia nulă este asimptotic stabilă.

Observaţie. Studiul stabilităţii soluţiei x̃ a sistemului liniar neo-
mogen

x′ = A(t)x+ f(t),

se reduce (prin substituţia y = x − x̃) la studiul stabilităţii soluţiei
nule a sistemului omogen

y′ = A(t)y.
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CURS 13

2. Stabilitatea sistemelor liniare perturbate. Metoda
primei aproximaţii

Vom studia stabilitatea soluţiei nule a sistemului diferenţial

x′ = Ax+ g(t, x), (78)

unde A = (aij)1≤i,j≤n este o matrice constantă, iar

g : D = {(t, x) ∈ Rn+1; t ≥ 0, ∥x∥ < α} ⊂ R+ ×Rn −→ Rn

(α > 0), este o funcţie continuă pe D, local lipschitziană ı̂n raport cu
x pe D şi verifică condiţia g(t, 0) = 0, ∀t ≥ 0.

Teoremă (Poincaré-Liapunov). DacăA este matrice hurwitziană,
iar g verifică

∥g(t, x)∥ ≤ L∥x∥, ∀(t, x) ∈ D,

cu L suficient de mică, atunci soluţia nulă a sistemului (78) este asimp-
totic stabilă.

Demonstraţie. Pentru orice t0 ≥ 0 şi orice x0 ∈ Rn a.̂ı. ∥x0∥ < α,
sistemul (78) are o unică soluţie saturată la dreapta x(t; t0, x0) definită
pe [t0, T ).

Cum A este hurwitziană, va rezulta că există M,a > 0 astfel ca

∥etA∥ ≤Me−
at
2 , ∀t ≥ 0.

Funcţia x(t; t0, x0) fiind soluţie pentru{
x′ = Ax+ g(t, x(t)), t ∈ R
x(t0) = x0,

verifică

x(t; t0, x0) = e(t−t0)Ax0 +
∫ t

t0
e(t−s)Ag(s, x(s; t0, x0))ds, ∀t ∈ [t0, T ).
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De aici deducem că

∥x(t; t0, x0)∥ ≤ ∥e(t−t0)A∥ · ∥x0∥+
∫ t

t0
∥e(t−s)A∥ · ∥g(s, x(s; t0, x0))∥ds

≤Me−
a(t−t0)

2 ∥x0∥+ LM
∫ t

t0
e−

a(t−s)
2 ∥x(s; t0, x0)∥ds, ∀t ∈ [t0, T ).

Aplicând lema lui Gronwall deducem că

∥x(t; t0, x0)∥ ≤M∥x0∥e(LM−a
2
)(t−t0), ∀t ∈ [t0, T ). (79)

Dacă L <
a

2M
, atunci notăm cu θ =

a

2
− LM > 0 şi obţinem

∥x(t; t0, x0)∥ ≤M∥x0∥e−θ(t−t0), ∀t ∈ [t0, T ).

În concluzie, ∀ε > 0, ∃δ(ε) > 0, astfel ı̂ncât ∀x0 ∈ Rn, ∥x0∥ < δ(ε):
x(t; t0, x0) este definită pe toată semiaxa [t0,+∞) şi ∥x(t; t0, x0)∥ < ε,
∀t ≥ t0. Trecând la limită ı̂n (79) obţinem că

lim
t→+∞

x(t; t0, x0) = 0.

Deci, soluţia nulă este asimptotic stabilă.

Teoremă (Perron). Dacă A este hurwitziană şi g verifică

∥g(t, x)∥ ≤ h(∥x∥), ∀(t, x) ∈ D, (80)

unde lims→0
h(s)
s

= 0, atunci soluţia nulă a sistemului (78) este asimp-
totic stabilă.

Demonstraţie. Fie L > 0 din demonstraţia teoremei anterioare.
Avem că

∥g(t, x)∥ ≤ L∥x∥,

pentru orice x ∈ Rn ce satisface ∥x∥ < α′. Considerăm restricţia lui
g la

D′ = {(t, x) ∈ Rn+1; t ≥ 0, ∥x∥ < α′}.

Aplicând teorema Poincaré-Liapunov obţinem concluzia.
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Exemplu. Să se studieze stabilitatea soluţiei nule a sistemului{
x′1 = x2 + x21 sin t
x′2 = −x1 − x2 + x22 cos t.

Soluţie. Evident sistemul dat este de forma (78), unde n = 2,

A =

 0 1

−1 −1

 ,
iar g : {(t, x) ∈ R3; t ≥ 0, ∥x∥ ≤ 1} → R2,

g(t, x1, x2) =

 x
2
1 sin t

x22 cos t

 .
Avem

det(λI − A) = λ2 + λ+ 1

(care este polinom hurwitzian) şi deci A este hurwitziană. De aseme-
nea g este evident continuă, local lipschitziană ı̂n raport cu x şi sat-
isface g(t, 0) = 0,∀t ≥ 0. Funcţia g mai verifică condiţia (80), cu
h(s) = s2. Aplicând teorema lui Perron deducem că soluţia nulă este
asimptotic stabilă.

Ne vom ocupa ı̂n continuare de sistemul autonom

x′ = f(x), (81)

unde
f : {x ∈ Rn; ∥x∥ < α} −→ Rn

(α > 0). Deci, f = (f1, f2, ..., fn), unde

fk : {x ∈ Rn; ∥x∥ < α} −→ R,

∀k ∈ {1, 2, ..., n}.

Definiţie. O soluţie staţionară pentru (81) este o soluţie constantă
c (c ∈ Rn) a sistemului (81). Aceasta verifică deci f(c) = 0.
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Studiul stabilităţii soluţiei staţionare x̃ se reduce la studiul sta-
bilităţii soluţiei nule pentru sistemul

y′ = f(y + x̃)− f(x̃).

Din acest motiv ne vom ocupa doar de studiul stabilităţii soluţiei
staţionare nule (aceasta este soluţie dacă f(0) = 0).

Notăm

fx =


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xn

... ... ... ...
∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn

 .

Teoremă. Dacă f este de clasă C1 (adică fk este de clasă C1

pentru orice k ∈ {1, 2, ..., n}), f(0) = 0 (este vorba despre 0 din Rn)
şi dacă matricea

A = fx(0)

este hurwitziană, atunci soluţia nulă a sistemului (81) este asimptotic
stabilă.

Demonstraţie. Din teorema lui Taylor rezultă că

f(x) = f(0) + Ax+ g(x),

unde
∥g(x)∥ ≤ h(∥x∥),

iar

lim
s→0

h(s)

s
= 0.

Aplicând teorema lui Perron urmează concluzia.

Exemplul 1. Să se studieze stabilitatea soluţiei nule pentru ecuaţia
pendulului cu frecare:

x′′ + bx′ +
g

l
sinx = 0
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(b, g, l > 0).

Soluţie. Ecuaţia dată este echivalentă cu sistemul
x′1 = x2

x′2 = −g
l
sinx1 − bx2.

Acest sistem are forma (81), unde

f(x1, x2) =

 x2

−g
l
sinx1 − bx2

 .
Vom utiliza teorema anterioară. Funcţia f este de clasă C1 pe {x ∈
Rn; ∥x∥ ≤ 1}. De asemenea

A = fx(0) =
(

0 1
−g

l
−b

)
.

Polinomul caracteristic al lui A este λ2 + bλ + g
l
, care este evident

un polinom hurwitzian. Deci, A este hurwitziană. Concluzia este că
soluţia nulă este asimptotic stabilă.

Din teorema anterioară se obţine:

Teorema de stabilitate după prima aproximaţie. Dacă f
este de clasă C1, c ∈ Rn a.̂ı. f(c) = 0 şi dacă matricea

A = fx(c)

este hurwitziană, atunci soluţia staţionară x = c a sistemului (81) este
asimptotic stabilă.

Exemplul 2. Considerăm ecuaţia

Lx′′ +Rx′ +
1

C
x =

1

C
f(x′),

care descrie un circuit oscilant RLC cu triodă (care este element de
amplificare). Se cere să se studieze stabilitatea soluţiilor staţionare
ştiind că f este de clasă C1 pe R.
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Soluţie. Ecuaţia se poate scrie echivalent astfel:
x′1 = x2

x′2 = − 1

CL
x1 +

1

CL
f(x2)−

R

L
x2.

Soluţiile staţionare verifică:{
x2 = 0
x1 = f(0).

Deci, singura soluţie staţionară este (f(0), 0). Matricea A este ı̂n acest
caz

A = fx(0) =

 0 1

− 1
CL

f ′(0)−RC
CL

 .
Polinomul caracteristic al matricei A este

λ2 − f ′(0)−RC

CL
λ+

1

CL
.

Dacă avem RC > f ′(0) (condiţia de reglaj), atunci soluţia staţionară
este asimptotic stabilă.

Observaţie. Ultimul rezultat admite o completare:
Dacă f este de clasă C1, c ∈ Rn a.̂ı. f(c) = 0 şi dacă matricea A =

fx(c) admite cel puţin o autovaloare cu partea reală strict pozitivă,
atunci soluţia staţionară x = c a sistemului (81) este instabilă.

Pentru demonstraţie recomandăm [5].

Stabilitatea sistemelor hamiltoniene

Un sistem mecanic cu n grade de libertate este complet determinat
de vectorul de poziţie q(t) = (q1(t), q2(t), ..., qn(t)) (unde q1, q2, ..., qn
sunt coordonatele generalizate ale sistemului) şi de
q′(t) = (q′1(t), q

′
2(t), ..., q

′
n(t)) (viteza generalizată).
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Mişcarea sistemului este dată de o funcţie scalară L(q, q′), numită
lagrangean. Conform principiului lui Hamilton, pe orice traiectorie,
integrala din L ia o valoare extremă. De aici deducem că L verifică
ecuaţiile lui Lagrange:

d

dt

( ∂L
∂q′j

)
− ∂L

∂qj
= 0, (82)

∀j ∈ {1, 2, ..., n}.
Notăm cu ⟨·, ·⟩ produsul scalar uzual ı̂n Rn (dacă p = (p1, p2, ..., pn)

şi y = (y1, y2, ..., yn), atunci ⟨p, y⟩ =
n∑

j=1

pjyj).

Funcţia H(q, p) = sup{⟨p, y⟩ − L(q, y); y ∈ Rn}, (p, q) ∈ Rn ×Rn,
se numeşte hamiltonianul sistemului.

Din definiţia hamiltonianului avem că pentru

p =
∂L

∂y
(q, y)

are loc
H(q, p) + L(q, y) = ⟨p, y⟩. (83)

Aici s-a notat
∂G

∂q
(q, y) = (

∂G

∂q1
,
∂G

∂q2
, ...,

∂G

∂qn
)

şi
∂G

∂y
(q, y) = (

∂G

∂y1
,
∂G

∂y2
, ...,

∂G

∂yn
).

Definind impulsul generalizat p =
∂L

∂q′
(q, q′) şi utilizând (82) şi (83)

rezultă că: 
p′(t) = −∂H

∂q
(q(t), p(t))

q′(t) =
∂H

∂p
(q(t), p(t)).

(84)

Sistemul (84) se numeşte sistem hamiltonian ataşat mişcării.
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Funcţia H este de clasă C1. Hamiltonianul sistemului, H, este o
integrală primă a sistemului (84) (adică, dacă (p(t), q(t)) este o soluţie
oarecare a sistemului (84), definită pe intervalul real I, atunci ex-
istă o constantă reală c astfel ca H(q(t), p(t)) = c, ∀t ∈ I). Pentru
prezentare pe larg a sistemelor hamiltoniene recomandăm [10].

Teoremă. Dacă (q̃(t), p̃(t)) este o soluţie a sistemului (84), atunci
ea nu este asimptotic stabilă.

Demonstraţie. Vom raţiona prin reducere la absurd. Presupunem
că ar exista o soluţie (q̃(t), p̃(t)) a sistemului (84) care este asimptotic
stabilă. Atunci, ar rezulta că există t0 ≥ 0 şi δ > 0 astfel ı̂ncât dacă
(q(t), p(t)) este o soluţie a sistemului (84) şi dacă

∥q(t0)− q̃(t0)∥+ ∥p(t0)− p̃(t0)∥ < δ, (85)

atunci

lim
t→+∞

[∥q(t)− q̃(t)∥+ ∥p(t)− p̃(t)∥] = 0. (86)

Înmulţind prima ecuaţie din (84) cu q′(t) şi a doua cu p′(t) şi
scăzându-le obţinem:

d

dt
(H(q(t), p(t)) = 0, ∀t ≥ t0

⇐⇒ H(q(t), p(t)) = H(q(t0), p(t0)), ∀t ≥ t0.

Analog avem

H(q̃(t), p̃(t)) = H(q̃(t0), p̃(t0)), ∀t ≥ t0.

Din (86) deducem că

H(q(t0), p(t0)) = H(q̃(t0), p̃(t0)).

Concluzia este că funcţia H este constantă pe mulţimea

{(q, p) ∈ R2n; ∥q − q̃(t0)∥+ ∥q − p̃(t0)∥ < δ}

(care este o vecinătate a lui (q̃(t0), p̃(t0))).
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De aici rezultă că pe această vecinătate, toate derivatele de ordinul
1 ale lui H sunt nule şi deci q(t) = q(t0), p(t) = p(t0), ∀t ≥ t0 şi
q̃(t) = q̃(t0), p̃(t) = p̃(t0), ∀t ≥ t0. Din relaţia (86) deducem că

q(t0) = q̃(t0), p(t0) = p̃(t0),

ceea ce este absurd, deoarece q(t0) şi p(t0) sunt oarecare satisfăcând
condiţia (85).

Astfel, rezultă concluzia teoremei.

De altfel are loc chiar un rezultat mai general (a se vedea [11]):

Teoremă. Dacă H : R2n → R+ este de clasă C1 şi satisface
H(0, 0) = 0, H(q, p) > 0, pentru orice (q, p) ∈ R2n \ {(0, 0)}, atunci
soluţia nulă a sistemului (84) este stabilă, fără a fi asimptotic stabilă.

Demonstraţia utilizează metoda funcţiei Liapunov.
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Exerciţii

1. Studiaţi stabilitatea soluţiilor ecuaţiei

x′ = −2x+ t,

utilizând definiţia.

2. Să se studieze stabilitatea soluţiilor staţionare ale sistemului:{
x′1 = sin(x1 + x2)
x′2 = ex1 − 1.

3. Să se studieze stabilitatea soluţiei banale (nule) a sistemului:{
x′ = −x+ y
y′ = −x− 2y.

4. Să se studieze stabilitatea soluţiei banale a ecuaţiei:

x′′ + 2(x′)2 + 2x′ + x = 0.

5. Să se studieze stabilitatea soluţiilor staţionare ale sistemului Lotka-
Volterra: {

x′ = x(a− y)
y′ = −y(b− x)

(a, b > 0).

6. Să se studieze stabilitatea soluţiei banale a sistemului{
x′ = y − x2 sin y
y′ = −x− 2x cos y.

Indicaţie. Sistemul este hamiltonian, cu

H(x, y) =
1

2
(x2 + y2) + x2 cos y.
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7. Să se studieze stabilitatea soluţiilor staţionare: pentru

x′′ + 3x′ + x+ x2 = 0.

Studiaţi stabilitatea soluţiei nule pentru:

8. {
x′ = x+ sinx+ y3

y′ = x2 + cos y − 1.

9. {
x′ = x− sin y
y′ = sinx+ ln(y2 + 1).

10. 
x′ = x− y2 + yz
y′ = x2 − sin yz
z′ = −y + z.
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[4] V. Barbu, Ecuaţii diferenţiale, Editura Junimea, Iaşi (1985).
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