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CURS 1

I. INTRODUCERE

Numeroase fenomene din fizica, chimie, biologie si din alte domenii
ale stiintei pot fi descrise cu ajutorul ecuatiilor diferentiale. Studiul
acestor ecuatii permite o mai buna intelegere si predictie a fenomenelor
descrise de acestea.

O ecuatie diferentiala este o ecuatie in care necunoscuta este o
functie si in care apar functia si derivatele acesteia pana la un anumit
ordin n € N*. Numarul n se numeste ordinul ecuatiei diferentiale.

Daca functia necunoscuta depinde de un singur argument, atunci
ecuatia diferentiala respectiva se numeste ordinara. In cazul in care
functia necunoscuta depinde de mai multe variabile, ecuatia se numeste
cu derivate partiale.

Prezentul curs este dedicat studierii ecuatiilor diferentiale ordinare.

1. Ecuatie diferentiala ordinara. Solutie a unei
ecuatii diferentiale ordinare

Forma generala a unei ecuatii diferentiale ordinare de ordin n este
urmatoarea:

F(t,z, o', ...,2™) =0, (1)
unde ¢ este variabila independenta, z este functia necunoscuta (este
o functie de variabila t), iar 2/, 2, ..., (™ sunt derivatele pana la
ordinul n € N* ale lui z.
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Functia F': D — R, unde D este un subdomeniu al lui R**2.

Definitie. Se numeste solufie pentru (1) o functie z definita pe
un interval I al axei reale (I poate fi un interval deschis («, 3), inchis
[a, B] sau de forma («, ] sau [, 8) ) cu valori in R, cu proprietatea
x € C"(I) §i care verifica

F(t,z(t),2'(t), ..., a™ @) =0, Vtel
(se subintelege deci ci (t,x(t),2'(t),...,z™(t)) € D pentru orice t €
I).

Multimea tuturor solutiilor ecuatiei (1) se numeste solutia generala
a acesteia.

v

In anumite situatii ecuatia (1) se poate scrie sub forma (normald)

2™ = f(t,x, 2 Y, (2)

Pentru n = 1 obtinem forma generala a unei ecuatii diferentiale
ordinare de ordinul 1:

F(t,x,2') =0, (3)

unde F : D — R, (D fiind un domeniu din R?), precum si forma
normala

2 = f(t,x). (4)

In general, o ecuatie diferentiala de ordinul 1 se studiaza impreuna
cu o conditie initiala
z(to) = o, (5)
unde ty € I §i 9 € R sunt date (si se numesc valori initiale).

Prin problema Cauchy asociata ecuatiei (3) (sau (4)) se intelege
gasirea solutiilor x ale ecuatiei (3) (sau (4)) care verifica conditia (5).
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In cazul in care functia f din (4) este independenta de x, atunci
problema Cauchy atagata ecuatiei (4) se scrie astfel

2'(t) = f(t)
(6)

I‘(to) = Xy,

unde f: (o, ) — Rsitg € (a, B).

Presupunem ca f este o functie continua. Problema Cauchy revine
la a gasi primitivele functiei f, definite pe subintervale ce contin ¢y,
care iau in punctul ¢y valoarea xy. Pentru a le gasi nu avem decat de
integrat de la ty la ¢ si obtinem

/t 7' (s)ds = /t f(s)ds.

to to

Aplicand formula Leibniz-Newton rezulta ca

(1) — 2(to) = /tt F(s)ds

si cum xz(tg) = o, concluzionam ca

t
z(t) =0+ | f(s)ds (7)
to
(care este functie de clasd C') este solutie a problemei (6) si este
definita pe intreg intervalul («, 3). De altfel, cum orice solutie a pro-
blemei (6) are forma data de (7), rezulta si unicitatea solutiei proble-
mei Cauchy (6).

2. Sisteme de ecuatii diferentiale de ordinul 1 si
ecuatii diferentiale de ordin superior

Vom studia in aceasta lucrare gi sisteme diferentiale de ordinul 1
de urmatoarea forma:

xll = fl(t,l‘l,l’g,...,xn)
ZEIQ = fg(t,l’l,l’g,...,l’n) (8)

x;; = fn<t,$17l’2, "'7$n)7
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unde fi, fo,..., fn sunt functii definite pe un domeniu din R"*!, cu
valori in R.

Definitie. Spunem ca x(t) = (x1(t), x2(t), ..., z,(t)) este o solutie
pentru (8) daci x1, T, ..., T, sunt functii de clasd C' pe un interval
I C R si verifica

() = fi(t, 1 (t), x2(t), ..., xn (1)), Vtel,

pentru orice i € {1,2,...,n}.
Multimea tuturor solutiilor sistemului (8) se numeste solutia ge-
nerala a acestuia.

Daca atagam sistemului (8) conditia initiala

1 (to) = x
a(to) = o
xn(t(J) = Zg,

vom obtine o problema Cauchy.

Consideram din nou ecuatia (2). Daca z este o solutie a ecuatiei
(2) si daca consideram functiile

/ n—1
1=, To2=2T, ... ZEn:l‘( ),

deducem ca (z1, x9, ..., ) este o solutie a urmatorului sistem de ecuatii
diferentiale de ordinul 1:

Ty = T2

xh = x3

....... (9)
=,

= f(t,x1, 29, ..., xp).

Reciproc, daca (z1,xs,...,x,) este o solutie pentru sistemul (9),
atunci functia z(t) = x1(t) este o solutie pentru (8).

Vom spune astfel ca ecuatia de ordinul n, (8) este echivalenta cu
sistemul (9). De asemenea este natural, in virtutea acestei echivalente,
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sa se studieze ecuatiile diferentiale de ordinul n impreuna cu conditia
initiala

x(to) = g

a'(to) = 23

unde ty, x), x3,..., ¥ sunt numere reale fixate.

3. Ecuatii diferentiale ordinare abordate prin metode
elementare

In aceasta sectiune vom discuta cateva tipuri de ecuatii diferentiale
ordinare pentru care se gasesc formule explicite de rezolvare sau metode
de reducere a acestora la ecuatii mai simple.

3.1. Ecuatii cu variabile separabile

Numeroase ecuatii diferentiale ordinare se pot reduce printr-un
numar finit de operatii algebrice la o ecuatie de forma:

o' = f(t) - g(x), (10)

unde f: (a, ) = R, g : (7,d) — R sunt functii continue cu g(x) # 0,
Vx € (v,0) (intervalele de definitie putand fi gi nemarginite). Ecuatia
(10) este o ecuatie cu variabile separabile.

De exemplu, ecuatia
1, sint

Tr =
t 2?2 +1
se reduce prin inmultire cu t la ecuatia:

x =tsint - .
2+ 1

Dorim sa gasim solutiile ecuatiei (10) care verifica conditia:

x(to) = 2o, (].].)
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unde ty € (a,f) si 2o € (7,6). Impértind ecuatia (10) prin g(z(t))
(care este diferit de 0) se obtine
(1)
g(x(t))
si integrand de la ty la t avem:

/t: gfal:((?))ds = /t: f(s)ds. (12)

= f(t)

Facand schimbarea de variabila y = x(s), (12) devine

/xj(t) gc(iz) = /t: f(s)ds. (13)

Notam cu

G(;c):/ng‘g), € (7,0). (14)

1
G este o primitiva a functiei continue —. Cum g este diferita de 0
g

pe (7, 9) si este si continua, concluzionam ca g este fie strict pozitiva
pe (v,9), fie strict negativa pe (7, 9). In prima situatie rezultd ca G
este strict crescatoare pe (7,6), iar in a doua situatie G este strict
descrescatoare pe (7, 0).

Deci, G este strict monotons si continud. Functia G~! are deci
aceleagi proprietati.

Relatia (13) se mai poate scrie ca

Ga(t)) = /t:f(S)dS-

De aici rezulta ca

=c"'( [ ' f(s)ds) (15)

to
si z este definita pe un subinterval al lui («, 3) care contine pe t; (este
t

definita doar pentru acei ¢t € (o, 3) cu proprietatea ca / f(s)ds €
to
G((a,8)))-
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Reciproc, functia = definita de (15) pe un subinterval al lui (o, 5),
este o functie de clasa C* si verifica

2(ty) = G t§° f(s)ds) = G7(0).

Cum G(zo) = 0 (din (15)), rezultd cad G1(0) = xg si deci  verifica
conditia initiala (11). Derivand (15) obtinem
iy
G'(G1(J}, f(s)ds)

] = J(t) - g(x(1)),

adica z este solutie a ecuatiei (10).

Exemplu. Sa se gaseasca solutia problemei Cauchy:

2tx
= —— te R
X 211 €
z(0) =c¢> 0.

. 2t
Solutie. In cazul acesta f: R — R, f(t) = o] este o functie
continua, iar g(z) = x. Pentru a avea ca g este diferita de 0 este
necesar sa o consideram fie g : (0, +00) — R, fie g : (—00,0) = R.. In
ambele cazuri g este o functie continua. Cum z(0) = ¢ > 0, este deci
necesar sa ne limitam la cazul cand g : (0, +00) — R.

Inseamna ca vom cauta solutii strict pozitive ale problemei Cauchy.

Impartind ambii membri ai ecuatiei prin x obtinem:

x’_ 2t

2 4+1

Integrand de la 0 la ¢ rezulta

/t x’(s)dsz/t 2s s
0o x(s) 0 s2+1
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si deci
z(t) d
/C ;’ = In(s® + 1),

Aceasta implica
Inz(t) —Inc = In(t* + 1)

— 2(t) = c(t* + 1), t € R.

INTRODUCERE
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CURS 2

3.2. Ecuatii omogene

Consideram ecuatia
;L (T
x _-h(?), (16)

unde h : (a,b) — R este o functie continua cu proprietatea ca h(u) #
u, Yu € (a,b).
Ecuatia (16) se numeste ecuatie diferentiala omogend. Facand
substitutia
x
u=—
t

se obtine imediat ca 2’ = tu’ 4+ u gi Inlocuind in (16) avem
tu' +u = h(u) < tu' = h(u) —u
care se reduce la o ecuatie cu variabile separabile.

Un exemplu de ecuatie care se reduce la o ecuatie omogena este

urmatorul:

—t
’:x—, t > 0.
x4+t

Ecuatia se mai poate scrie ca
x,:7t(%—1) :)x’:—%_l
t(Z 4 1) T3]

care este evident o ecuatie omogeni. In acest caz h(u) = Z—ﬁ, h :
(—o00,—1) = R sau h : (—1,400) — R, iar conditia h(u) # u este
echivalenta cu
u—1
u+1
care este evident adevarata.
Facand substitutia u = % se obtine
u—1 u—1

— tu' =
u—+1 u+1

fu<=u—1#u*+u,

ut+u =
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o u—1—u?—u , 1 1+4+u?
= tu = ==
u—+1 t u+1’

care este evident o ecuatie cu variabile separabile

Exemplul 2. Ecuatia
tra’ = t* + 22, t, v #0

se mal poate scrie ca
, P+t
tx

Y

z\2
) 1+(7)
z
t
care este o ecuatie omogena. In acest caz
1+ u?
U

h(u)

este o functie continua pe (0, +00) si pe (—o00,0) si satisface conditia
h(u) # u, Yu # 0. Facand substitutia u = 7, ecuatia devine

1+ u? 1
' +u = Y — tu' =~
u U
11
—au=-
t u

care este o ecuatie cu variabile separabile.

Observatie. Ecuatia diferentiala
at +bx + ¢
at + fx 4+

(a, b, ¢, a, B, v € R i satisfac conditia a5 # ab) se reduce la ecuatia

(s) = as + by
P s+ By

prin substitutia s =t — ¢y, y = = — xg, unde (o, o) este o solutie a

/

CLto+bZEO+C:0

sistemului
{ atg + Brg+ v =0.
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3.3. Ecuatii diferentiale liniare de ordinul 1

O ecuatie de forma
o' = a(t)z +b(t), (17)

unde a, b : (a, ) — R, se numeste ecuatie diferentiala liniara de
ordinul 1.

In cele ce urmeaza vom gasi solutia generala a ecuatiei (17).

Fie x( valoarea in ¢y a solutiei = (ty € (o, 8), zo € R sunt oarecare).
Ecuatia (17) este echivalenta cu

¥ —a(t)r = b(t).

inmul‘gim ultima ecuatie cu e Juy o) si obtinem
t t
(x(t)e_ fto a(s)ds>/ e fto a(s)dsb(t)‘

Integrand de la ¢y la t si utilizand formula lui Leibniz-Newton rezulta

t t s
z(t)e Jrg atedds _ ro= [ € S a(T)dTb(s)ds.
to
De aici deducem ca

t

t t
x(t) = efto a(s)dsxo + [ el oM 5)ds. (18)

to

Reciproc, functia x data de formula (18) (cu ¢y € (o, ) si 20 € R
oarecare) este de clasia C* pe («, 3). In plus, derivand (18) se obtine
ca x verifica (17).

Concluzia este ca solutia generala a ecuatiei (17) este data de for-
mula (18), iar intervalul maxim de definitie al acestor solutii este

(a, B).
In cazul particular al functiilor a si b constante, ecuatia (17) devine

¥ =ax+0, (19)
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cu a, b € R. Solutia generala a ecuatiei (19) este
t
o(t) = ™o + / tpds,  teR (20)
0

(formula variatiei constantelor), cu z; € R oarecare (l-am ales pe
t[) = O)

Exemplul 1. Ecuatia dinamicii populatiei este

Y =ky

(modelul lui Malthus; £ = 5 — p, unde [ este rata natalitatii, iar p
este rata mortalitatii). Aceasta este o ecuatie liniara (dar si una cu
variabile separabile). Aplicand formula (20) obtinem ca numarul de
indivizi la momentul ¢ este

y(t) = ey, >0,

unde yp € (0,400) este numarul initial de indivizi. Concluzia lui
Malthus era una catastrofica, anume ca pentru k& < 0 (rata natalitatii
este mai mica decat cea a mortalitatii) avem:

y(t) — 0, pentru t — 400

(populatia evolueaza spre extinctie).
Pentru k£ > 0 (rata natalitatii este mai mare decat cea a mor-
talitatii), avem:

y(t) — +oo, pentru t — 400,

ceea ce conduce la inmultirea necontrolata a populatiei gi implicit la
distrugerea resurselor mediului.
Doar pentru k = 0 (rata natalitatii este egala cu cea a mortalitatii),
avem ca
y(t) =yo, Yt €[0,+00),

deci populatia este stationara.
Aceasta concluzie finala a dus la cea mai importanta critica adusa

modelului lui Malthus: el nu tine cont de limitarea resurselor de hrana
si de suprapopulare.
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Exemplul 2. Sa se afle solutia problemei

to' = 2z + t2, t>1
z(1) = 0.

Solutie. impér‘gind prin ¢ obtinem:

x = 2x +t
== )
De aici deducem ca
t t t
x(t) = eh %dsx(l) +/ el 2475 ds
1
t 42
<~ x(t :/ —s ds

®) 1 82

<« (t) =t"Int,  Vte[l,+o0).

3.4. Ecuatii Bernoulli
O ecuatie de forma
o' = a(t)z +b(t)z", (21)

unde o € R\ {0,1} se numeste ecuatie Bernoulli. Daca o = 0 sau
a = 1, atunci (21) este o ecuatie liniara.

Prin substitutia y = 2'~%, ecuatia se reduce la o ecuatie diferentiala
liniara de ordinul 1.

Exemplu. Modelul propus de Malthus pentru dinamica unei populatii
a fost corectat de Verhulst prin luarea in considerare a suprapopularii.
Modelul propus de acesta este

Yy =ky—vyy®  (y>0), (22)

unde 7y este o rata suplimentara de mortalitate datorata suprapopularii
si proportionala cu y si se foloseste pentru situatia cand £ > 0.
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k
Presupunem pentru inceput ca y(0) = yo € (O, —).
Y

impér’gim ambii membri ai ecuatiei prin y si facem substitutia z =
y~!. Obtinem astfel:

vy =ky -y = - =kz—~
— 2= —kz+n.

Cum y(0) = o, rezulta deci z(0) = y, . Utilizand formula variatiei
constantelor avem

¢
2(t) = e Myt +/ e M=% s
0

1
— e—ktyo—l + e—kt,y%(ekt _ 1)

—kt; -1 Y
= — )+ > >
e " (y, k;)+l<;>k’ Vi >0
Deci,
1 Y
y(t) = —e—kt(i Y + px vt > 0. (23)
Yo k

Facand pe t — +o0o rezulta
k
y(t) — —, pentru t — 400
Y
( % este solutie stationara a ecuatiei (22)).
. o k : y y
Observatie. Daca yy > —, atunci rezulta exact la fel ca y dat de

formula (23) este solutie. Pentru t — 400 se obtine de asemenea ca

k
lim y(t) = —.
t—+o00 y

k
Daca yo = —, atunci y(t) = —, t > 0, este solutia cautata.
Y Y
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Concluzia este ca daca yo > 0, atunci solutia y tinde (pentru ¢ —
k
+00) la solutia stationara — a ecuatiei (22).

Studiul modelului lui Verhulst infirma predictiile catastrofice ale
lui Malthus legate de evolutia unei populatii biologice.

3.5. Ecuatii diferentiale exacte

Consideram ecuatia
,_ alt,x)
= 24
unde a, b: D — R sunt functii continue, cu b(t,z) # 0, V(¢t,z) € D
(D este un domeniu al lui R?). Ecuatia (24) este echivalenti cu

a(t,x)dt — b(t, z)dz = 0. (25)

Daca adt — bdx este o diferentiala totala exacta pe multimea D,
adica exista F' € C'(D) astfel incat

dF (t,x) = a(t, z)dt — b(t, x)dx,
atunci (24) se numeste ecuatie cu diferentiald totald sau

ecuatie diferentiala exacta.
In acest caz, ecuatia (24) este echivalenta cu

dF(t,z) = 0.
De aici se deduce ca
F(t,z(t) =c, (26)

unde c este o constanta arbitrara. Formula (26) ne da solutia generala
a ecuatiei (24) sub forma implicita.

Reciproc, pentru orice constanta ¢ reald, formula (26) defineste
(conform teoremei functiilor implicite) o unica functie x definita pe
un interval («, 8). Diferentiind (26) obtinem imediat ca z este solutie
pentru (25) si deci si pentru (24).

Ne intereseaza sa vedem cum ne dam seama daca a(t, x)dt—b(t, x)dx
este o diferentiala totala exacta.
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In cazul in care forma diferentiala este o diferentiala totala, atunci
existda F' € C'(D) astfel ca

OF

E(t’ x) =al(t,x)
OF
%(t, x) = —b(t, ),

pentru orice (¢,x) € D. Daca in plus a si b sunt de clasia C!, atunci
rezulta conform teoremei lui Schwarz ca

O*F  O°F

b0~ oo Tbw €D
si de aici
da ob
— = D. 2

Reciproc, dacd a, b € C'(D) si daca relatia (27) are loc, atunci
exista, F' € C?(D) astfel ca

dF = a(t,z)dt — b(t, x)dx

si deci forma diferentiala a(t, z)dt — b(t, x)dx este o diferentiala totala
exacta si deci (24) este o ecuatie diferentiala exacta.

Exemplu. Sa se determine solutia generala a ecuatiei

t+x
I = . 28
e (28)

Solutie. Ecuatia are forma (24), unde a(t, x) = t+x, b(t, z) = z—t,
iar D ={(t,z) € R* x>t} sau D = {(t,z) € R* z < t}.

Pentru oricare din aceste dou& cazuri avem ci a, b € CY(D) i
b(t,x) # 0, ¥(t,z) € D. Rescriem ecuatia (28) ca

(t +z)dt — (x — t)de = 0.
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Cum

o(t+x) d(x —t)

ox ot
rezulta ci ecuatia este cu diferentiale exacte. Deci, existd F' € C?*(D)
astfel ca

8—F(t )=-—x+t
gy (L%) = —T
V(t,x) € D (29)
a—F(t r)=t+z
ot
Din prima relatie din (29) rezulta ca
1
F(t,z) = —§x2 + tx + h(t), (30)

unde h este o functie depinzand doar de ¢. Inlocuind pe F dat de (30)
in cea de a doua relatie din (29) obtinem

r+ht)=t+x
si de aici avem h(t) = 5t* verificd conditia de mai sus (evident ca nu

este singura astfel de functie). Rezulta ca

1 1
F(t,r) = 5152 + tx — 53:2

satisface (29) si ca
dF(t,z) =0, (t,z) € D.

In concluzie
dF(t,z) =0 <= F(t,z) =c,

(unde ¢ € R) ne da solutia generala sub forma implicita. Adica

1 1
§t2 +txr — 51’2 = C,

¢ € R, ne da solutia generala (pentru ambele cazuri pentru D).
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CURS 3

3.6. Ecuatii diferentiale Riccati

Sunt de forma
2" = a(t)r + b(t)z* + c(t), (31)

unde a, b, ¢: (a, ) — R sunt functii continue.
Ecuatiile de forma (31) nu sunt in general integrabile prin cuadra-
turi. Totusi, daca se cunoaste o solutie particulara & a ecuatiei (31),

atunci se poate afla solutia generala x. In adevar, avem
(x —3) =a(t)(zr — ) + b(t)(2* — 7%
si de aici rezulta
(z =) = a(t)(z = 2) + b(t)(z — T)(x + T)
& (z—2) = (a(t) + 2b(1))(z — &) + b(t)(z — 2)*.

In concluzie, prin substitutia y = = — Z, ecuatia (31) se reduce la
ecuatia Bernoulli

y' = (a(t) 4 2b(t)T)y + b(t)y*

Daca a,b si ¢ sunt functii constante, atunci ecuatia (31) este cu
variabile separabile.

Exemplu. Sa se integreze ecuatia Riccati

2 =2 — 42 + 2.

Solutie. Observam ca functia & = 2t este o solutie a ecuatiei date.
Facand substitutia y = x — z, reducem studiul ecuatiei date la studiul
ecuatiei

Y =22 —4t? =y = (v —2t)(z + 2t)
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@y’zy(y+4t)<:>y’:4ty+y2.

Aceasta este o ecuatie Bernoulli si se trateaza dupa cum am aratat
mal sus.

3.7. Ecuatii Lagrange si ecuatii Clairaut
Ecuatia Lagrange are forma
r =ta(a') +b(a), (32)
l(md(; a, b: (v,0) — R sunt functii de clasa C' si a(p) # p, Vp €
Y, .

Daca x este o solutie a ecuatiei (32) definita pe intervalul I, atunci
derivand termen cu termen in (32) obtinem

' =a(2") +ta' ()" + V' (2")2".
Notand cu p = 2/, avem ca

p=a(p)+td(p)p +V(p)p < p(td(p) +V(p)) =p—alp)

= Pl (p) + () = p  alp).

Concluzionam imediat ca
dt a v
e _ _dp) V(P
dp p—alp)  p—alp)
care este o ecuatie liniara (in necunoscuta t, ca functie de argumentul

p)-
Solutia generala pentru (33) este

= f(p,C),

unde ¢ este o constanta arbitrara.
Din (32) obtinem

{ t=f(p,c)
z = f(p,c)a(p) + b(p),

, (33)
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care ne da solutia parametricd generala a ecuatiei (32).
Ecuatia
z =tz +b(z'), (34)

unde b : (7,6) — R este de clasd C', se numeste ecuatie Clairaut. Se
observa ca are forma (32), cu a(p) = p, Vp € (v,9).

Cu toate acestea, ecuatia Clairaut nu este un caz particular de
ecuatie Lagrange.

Prin derivare a ecuatiei (34) membru cu membru, se obtine
x/ — x/ + t,r// + b/(xl)$//

si deci
2'(t+b' (') = 0.

Primul tip de solutie verifica
x// — 0
si deci este de forma
z(t) =cit +co, 1, c2 €R.
Inlocuind in (34) gisim cil ¢; = b(cy) si de aici solutia

z(t) =at+0b(c1), ¢ €R.

Al doilea tip de solutie verifica
t+0b(z") =0.
Notand z’ = p, obtinem o solutie parametrica a ecuatiei Clairaut

{t:—U@)

z = =V (p)p+ b(p)

(numita solutie singulara a acesteia).
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Exemplul 1. Sa se integreze ecuatia

r=t(1+2")+ (2') (35)

Solutie. Aceasta este o ecuatie Lagrange cu a(p) = 1+p, b(p) = p?,
a, b : R —» R. Evident ca a, b € C'(R). Derivand membru cu
membru in (35) se obtine

=1+ +ta" 4+ 22'2"
1+ (t+22")a" =0.
Notand 2’ = p, ecuatia devine

dp

1+ (t+2p)-— =0

+(t+2p) -

si de aici avem
dt
—=-2p—t 36
o p (36)

Ecuatia liniara (36) are solutia generala

4
t =ePc— 2/ e~ P 9sds, ceR
0

p
=e Pc— 26_p/ e’sds.
0

Cum
pS Sp
/esds:es
0 0

p
—/ e’ds = ePp — eP + 1,
0
deducem ca
t =ePc—2e P eP(p—1)—2e?
=eP(c—2)—2(p—1).

In acest fel am obtinut pentru (35) solutia generald

{ t=ePc—2(p—1)
v=(1+p)leFe—20p-1]+p’
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t=ePc—2(p—1)
v=(1+pePc—p*+2, c€R.

Exemplul 2. Sa se integreze ecuatia

r=tr + (2')°. (37)

Solutie. Aceasta este o ecuatie Clairaut. Derivand se obtine
x/ — ZL',—i-t[L’H +2x/x//
— 2"t +22") = 0.

Din 2” = 0 obtinem z(t) = 1t 4 ¢2, ¢1, ¢; € R. Inlocuind in (37)
rezulta
cit +c9 = cot + c%

de unde concluzionam ca
z(t)=cit+cf, c €R

(solutia generald a ecuatiei Clairaut date).

Din ¢ + 22’ = 0, obtinem facand substitutia ' = p:

t=—2p
T =tp+p?
(solutia singulara parametrica) si de aici se obtine aceasta solutie si
sub forma explicita
t2
-7

Tr =

3.8. Ecuatii de ordin superior

In anumite situatii se poate reduce studiul acestor ecuatii la ecuatii
de ordin mai mic.
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In cazul ecuatiei de ordin n:

F(t,a® D a0y =,
cu k, n € N*, k < n, se utilizeaza substitutia y = z*®
astfel ecuatia de ordinul n — k:

F(t7 y7 y/7 et y(n_k)) = 0'

si se obtine

Solutia x se obtine apoi din y prin integrari succesive.

Pentru ecuatii de forma:
F(z, o', ...,2™) =0

se utilizeaza substitutia 2’ = p si se obtine o ecuatie de forma

dp dlp

dx’ 7 dant

(aici apare functia p si derivatele acesteia, in raport cu z, pana la
ordinul n — 1.

G(z,p,

) =0

Exemplul 1. Sa se gaseasca solutia generala a ecuatiei

te" + a2+t =0, t > 0.

Solutie. Notand 2’ = y, putem rescrie ecuatia ca
ty' +y+t=0
vy = —13/ — 1.
Solutia generala a acestei ultime ecuatii este

t t t
y(t) =e h ey —/ e ). “ds, ¢ €R
1
t

:e—lntCl _e—lnt/ elnsds
1
11
)
t lt 2
_Cl‘f'i_}t
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Notam ¢ = ¢; + % Cum z' = y, rezulta

1

2

¥ =c

S

1
< z(t) =élnt — Z752+d,

unde ¢, d € R sunt constante oarecare.

Exemplul 2. Un corp de masa m este lansat de la suprafata
Pamantului pe verticala cu viteza vy. Notam cu x(t) altitudinea la
care se afla corpul la momentul ¢ (deci, momentul initial este to = 0
si £(0) = 0). Stiind ca forta de atractie pe care o exercita Pamantul
asupra corpului aflat la altitudinea x este egald cu mgR?/(x+ R)? (s-a
presupus ca Pamantul este o sfera de raza R si ca rezistenta aerului
este 0), sa se determine viteza initiala minima pentru care corpul nu
mai revine pe Pamant.

Solutie. Din legea a doua a lui Newton se obtine ca
ma” = —mgR*/(x + R)*. (38)
Stim de asemenea din ipoteze ca z(0) = 0 si 2/(0) = w.
Notand 2’ = p, obtinem

n_dp_dp dv_dp

T T de At de
Inlocuind in (38) obtinem

dp gR?

Piz = "z + R

(ecuatie cu variabile separabile). Integrand ecuatia de la 0 la x rezulta

12 ]‘2 2$ 1
0= i = —gR? [
p UO g 0(y+R>2y
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o= —2gR. (39)

Daca p(x) = v(t) = 2/(t) ramane permanent diferit de 0, atunci corpul
nu se intoarce pe Pamant (altfel ar exista un ¢ > 0 astfel ca v(t) = 0).

Daca vy > /2¢R, atunci viteza va fi permanent pozitiva i deci
corpul nu revine pe Pamant.

Observatie. vy = /2gR este prima viteza cosmica. O analiza
atenta a relatiei (39) arata ca de fapt daca vy < v/2¢gR, atunci in mod
necesar corpul revine pe Pamant.
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4. Fenomene modelate de ecuatii diferentiale
ordinare

Vom prezenta in continuare cateva exemple de fenomene din fizica,
chimie si biologie care sunt descrise de ecuatii diferentiale ordinare.

Racirea (incalzirea) corpurilor

Conform legii lui Newton rata de racire (incalzire) a suprafetei
unui corp este direct proportionala cu diferenta dintre temperatura
suprafetei si cea a mediului inconjurator.

Notam cu 7'(t) temperatura unui corp (in grade Celsius) la mo-
mentul ¢ (se presupune ca temperatura corpului este aceeasi in orice
punct al sdu) si fie T (T° € R) temperatura mediului inconjurator
(in grade Celsius).

Legea lui Newton se transcrie matematic astfel:

T = k(T — T,

unde k£ € R este constanta de proportionalitate, numita gi constanta
de transfer.
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Pendulul simplu

Consideram un corp punctiform de masa m suspendat de un brat
rigid, fara masa, de lungime [ (figura 1.1). Presupunem ca masa se
migca intr-un plan vertical. Notam cu 6(¢) unghiul (in radiani) pe
care 1l face la momentul ¢ bratul pendulului cu (0A. In cazul in care
masa m se afla la dreapta fata de pozitia de echilibru, atunci 6(t) > 0,

iar daca se afla la stanga, atunci 0(t) < 0.

Figura I.1

Asupra masei m actioneaza forta G de modul mg, care se descom-
pune intr-o componenta activa dupa directia tangentiala, de marime
egala cu —mgsin 0(t), si intr-o componenta pasiva, dupa directia bratului
rigid. Cum marimea arcului Am este egala cu [6(t), rezulta utilizand
legea a doua a lui Newton ca

m(l6(t))" = —mgsin6(t).
In concluzie, obtinem ecuatia de ordinul 2:

10" + gsin6 = 0.
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Oscilatorul armonic

Consideram un corp punctiform de masa m suspendat de un resort
fara masa gi aflat in pozitie de echilibru. Alungirea resortului fata de
pozitia resortului cand m = 0 este [y (figura 1.2).

Figura [.2

Notam cu y(t) elongatia la momentul ¢ (deplasarea fata de pozitia
de echilibru). Conform legii lui Hooke (tensiunea = forta elastica, este
proportionala cu elongatia) avem

klO = mg,

unde k este constanta lui Hooke.

Corpul este tras in jos si apoi i se da drumul sa oscileze. La mo-
mentul £, marimea rezultantei fortelor care actioneaza asupra corpului
de masa m este

mg — k(y(t) +1lo) — vy (1)
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(s-a presupus ca apare i o forta de frecare proportionala cu viteza,
= coeficient de frecare) si aceasta este egala cu my”(t) (conform legii
a doua a lui Newton). Avem deci,

my" =mg —k(lo+y) — vy
Cum kly = mg, concluzionam ca y este solutie a ecuatiei:
my” + vy + ky = 0.

In cazul in care asupra masei m actioneaza o forta verticala externa de
marime f(t), atunci facand bilantul fortelor si utilizand legea a doua
a lui Newton obtinem ca y verifica ecuatia:

my" + vy + ky = f(t).

Dezintegrarea radioactiva

Experimentele arata ca viteza de dezintegrare a unei substante ra-
dioactive este proportionala cu cantitatea de substanta. Notand cu
y(t) cantitatea dintr-o substanta radioactiva la momentul ¢ avem ca:

y'(t) = —ky(t),

unde k£ > 0 este o constanta specifica substantei. O marime impor-
tanta in studiul procesului de dezintegrare al unei substante radioac-
tive este timpul in care jumatate din substanta se dezintegreaza si se
numeste timp de injumatatire.

Dinamica populatiei

Notam cu y(¢) numarul de indivizi ai unei populatii biologice (la
momentul t). Rata de cregtere a populatiei datorata natalitatii este
proportionala cu y(t), cu constanta de proportionalitate £, numita si
rata a fertilitatii. Rata de descrestere a populatiei, datorata mor-
talitatii, este de asemenea proportionala cu y(t), cu constanta de
proportionalitate p, numita si rata a mortalitatii.
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Facand bilantul concluzionam ca

y'(t) = By(t) — py(t)

si deci obtinem legea lui Malthus pentru dinamica unei populatii:

y = ky,

unde k = [ — pu este o constanta.

Sisteme de tip prada-rapitor

Presupunem ca intr-o zona geografica traiesc doua populatii biolo-
gice, din care una se hraneste cu indivizi din cealalta populatie. Notam
cu z(t) numarul indivizilor prada §i cu y(t) numarul rapitorilor la
momentul £. Sistemul biologic descris este modelat de sistemul Lotka-

Volterra
{ = ax — fry
/ —

y'=—yy +oxy,
unde «, 3, v, d > 0.

Modelarea reactiilor chimice

Consideram doua substante A si B de concentratii (mol/l) a, re-
spectiv b, care reactioneaza forméand substanta C, de concentratie x(t)
la momentul ¢:

A+ B —*C.

Rata de crestere a lui = este data de legea actiunii masei:

7'(t) = k(a — x(t)) (b — (1))

(viteza de reactie este proportionala cu produsul concentratiilor
substantelor care intra in reactie; k este numita viteza de reactjie).
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Exercitii

1. Si se arate ci functia z(t) = e* + t este solutie a ecuatiei

' =2x—2t+ 1.

2. Sa se demonstreze ca functiile z1(t) = cost §i x2(t) = sint sunt

solutii ale ecuatiei
2 +x=0.

. Aratati ca x(t) = €7 este solutie a ecuatjiei

ar” + bz’ 4+ cx =0,

unde a, b, ¢, v sunt constante reale satisficand conditia ay? +
by +c=0.

. Utilizati rezultatul de la exercitiul 3 pentru a gasi o solutie a

ecuatiei

"+ 32 +22 =0
care satisface conditiile initiale (0) = 1, 2/(0) = 0.
Indicatie. Functia z(t) = cie ' + e (c1, 2 € R) este o solutie
a ecuatiei. Impunand ca z(0) = 1 gi 2/(0) = 0 se obtin constantele
C1 §1 Co.

Sa se rezolve problemele Cauchy:

y = 2sint
y(0) = 0.

Indicatie. Daca y este o solutie, atunci rezulta ca

y(t) —y(0) = /OtQSiIlS ds.
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6.
Yy =tb-1t)
y(l) =1
7.
™ = f(t)
w(to) =z, o'(to) = 22, ..., 2V (ty) = a1,
unde f : (a,f) — R este o functie continua, t, € (o, ) si
xy, x3, ..., 20 € R.
Indicatie. Se integreaza ecuatia succesiv de n ori.
8.
y" = cost + 2
y(0) =0
y'(0) = -1
Sa se rezolve ecuatiile:
9.
10.
,  ctgx
o tgt
11. ‘
,  wsin2t
~ cos2t
12.
p t?z
I =

tg—:L‘S
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13.
o 20—t
A —x
14.
, 2x+t?
Tr =
t
15.
7' = x+ 3¢
16.
, x + 2zt
=
t
17. ] ]
¥ =2 —-x
t t

18. Sa se afle solutia generala a ecuatiei Riccati
=2t (1 =2 +t2—t+1,

observand faptul ca x =t este o solutie particulara a acesteia.

Sa se rezolve ecuatiile:

19.
, 3t —6tx
=
3t2 4 2z
20.
) 1—2?

- 2tr — sinx
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21.

22.

23.

24.

25.

26.

27.

28.

29.

r=tr + (2')?

r=tr' —3(2')*

2" 4+ 8x =0

O substanta radioactiva are perioada de injumatatire de 100 ore.
Dupa cat timp va dispare 90% din radioactivitate ?

Stiind ca perioada de injumatatire pentru radiu este de 1600 ani,
aflati ce procent de radiu va ramane dupa 30 ani ?

Un corp aflat la 15°C este adus intr-o camera cu temperatura de
23°C'. Stiind ca dupa 10 minute corpul ajunge la 18°C', sa se afle
dupa cat timp ajunge corpul la 22°C 7

intr—up bazin se afla 400 kg de apa in care s-au dizolvat 10 kg
sare. In bazin se introduce apa cu un debit de 10 kg/min si in
acelagi timp se evacueaza solutie cu acelagi debit (se presupune
ca solutia este permanent omogena). Care este concentratia de
sare dupa 10 h 7

Un corp de masa 400 kg, aflat la suprafata apei, se scufunda intr-
un lac adanc de 60 m. Stiind ca volumul obiectului este de 0.1
m3, iar forta exercitata de apa este de 0.04 - v(t) (v(t) este viteza
la momentul ), sa se afle dupa cat timp ajunge corpul pe fundul

apei ?

Ecuatia migcarii in cazul caderii pe verticala a unui parasutist
este descrisa de ecuatia

mx” + ka' = mg
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(x(t) este distanta parcursa de la momentul initial pana la mo-
mentul ¢, iar k este coeficientul de rezistenta al aerului). Pre-
supunem ca un om de 80 kg sare de la mare inaltime si atinge
viteza de 70 km/h dupa o lunga perioada de timp. Aproximati
valoarea constantei k.

In cazul exercitiului 29 aflati ce distanta a parcurs parasutistul
in primele 10 s si ce viteza a atins la acel moment.
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CURS 5

II. TEOREME DE EXISTENTA SI
UNICITATE

In acest capitol vom prezenta o serie de rezultate de existenta si
unicitate pentru problema Cauchy, pentru ecuatii si sisteme diferentiale
ordinare. Vom studia atat rezultate locale cat si rezultate globale.

1. Teorema de existenta si unicitate pentru ecuatii
diferentiale de ordinul 1

In prima parte a acestei sectiuni vom prezenta doua rezultate
auxiliare. Primul se refera la urmatoarea inegalitate:

o(t) <a(t) + | “b(s)e(s)ds,  t€ o B, (40)

unde z, a, b : [, 3] — R sunt functii continue si verifica in plus
b(t) >0, Vt € [a, f].

Lema (Gronwall). In conditiile anterioare rezulta ca = verifica

o(t) < alt) + [ Ca()b(s)el O ds e (o Bl (41)

Demonstratie. Fie functia y : [«, 5] — R,

ue) = [ “b(s)e(s)ds,  t€ o B,

67

Evident are loc

y'(t) = b(t)xz(t), vt € [a, A]. (42)
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Inmultind inegalitatea (40) cu b(t) si tinand cont de (42) obtinem:
Y () < a(t)b(t) + b(t)y(t)
=y (t) = b(t)y(t) < a(t)b(t), Vi€ [a,p].

s)ds

A t
Inmultim ultima inegalitate cu e~ Jot si deducem ca

(y(t)e J2O%Y < a(t)b(t)e "% vt e [a, 5]

Integrand de la « la t rezulta
y(t)e L%y () < [
(iar y(a) = 0).

<:>y(t)§/

«

t

a(s)b(s)e” Ju by

t

a(s)b(s)ef: bmdr g, Vit € [a, f].
De aici si din (40) deducem faptul ca x verifica inegalitatea (41).

Observatie. In cazul particular al unei functii a constante (a = M)
obtinem ca daca z verifica inegalitatea

t
x(t) <M —|—/ b(s)z(s)ds, t € la, B,
unde x, b satisfac ipotezele din lema lui Gronwall, atunci
2(t) < Meda®@4 vt o, §]

(inegalitatea lui Bellman).

Demonstratie. In adevar, din lema lui Gronwall avem

t t

z(t) <M+ M/ b(s)efs b g
N d t

—M-M /a (e ds

— M — M(1 — eJatry
— Mela b{rdr Vt € [a, f].
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Al doilea este un rezultat clasic de analizi matematicd. Il vom
reaminti doar.

Teorema de punct fix a lui Banach. Fie (X, d) un spatiu metric
complet si F': X — X o contractie, i.e.

dLe€[0,1): d(F(x),F(y)) < Ld(z,y), Vz,y € X.
Atunci, functia F' admite un unic punct fix x*, i.e.

FrreX: F(z")=a".

Demonstratia teoremei este importanta prin faptul ca furnizeaza o
metoda de aproximare a punctului fix z*. Alegand un zy € X arbitrar
si construind recurent x4 = F(z), Yk € N, se poate demonstra ca

T — "

Mai mult, se poate chiar evalua d(x,, z*) in functie de d(xq, F'(x¢)), k
si Q.

Consideram ecuatia
o' = f(t ) (43)
cu conditia initiala

Aici f: D ={(t,z) e R% |t —to] < a, |z — x| < B} = R, unde a si
[ sunt constante pozitive.

Teorema. Daca
(i) f este continua pe D si
(ii) lipschitziana ca functie de x pe D, adica

HLZO: |f(t,$)—f(t,y>|§L-|:L‘—y|, V(t,x), (t7y)ED7
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atunci problema Cauchy (43)-(44) admite o solutie unica x definita pe

intervalul [ty — d,to + 0], unde 0 = min {a, M}, iar M > 0 satisface

[f(t,x)| <M, V(tx)eD
(M este un majorant strict pozitiv pentru |f|).

Demonstratie. Daca z este o solutie a problemei Cauchy (43)-
(44), atunci integrand de la ¢y la t avem

aw—mmyiﬁf@@@mk

t
¢¢aw:%+/f@@@m& (45)
to
adica x este solutie a ecuatiei integrale (45).

Reciproc, daca z este o functie continua pe un interval I (care
contine ) si verifica (45), atunci rezulta ca ea este in plus de clasa
C' pe acest interval si derivand (45) obtinem

Z'(t) = f(t,z(t)), Vtel.
In plus, din (45) avem ci 2(ty) = .

Concluzia este ca orice solutie continua a ecuatiei integrale (45)
(definita pe un interval ce contine ty) este si solutie a problemei Cauchy
(43)-(44) si reciproc.

Astfel, ecuatia (45) este echivalenta cu problema (43)-(44).

In continuare vom utiliza teorema de punct fix a lui Banach.

Folosim faptul ca (C([to — d,to + d]), || - ||) (unde || - || este norma
convergentei uniforme) este un spatiu Banach. Considerand norma
echivalenta

]|l = max {2 (t)]; t € [to — 6.t + 0]},

cu A > 0 oarecare, dar fixat, concluzionam ca (C([to — 0,0 +46]), ||| - |I])
este de asemenea un spatiu Banach.
Consideram in continuare

X = {I S O([to — 9, +5]), |Jf(t) - I0| < B, Vte [to — 9, —f-(S]},
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o submultime inchisa a lui (C([to — J,t0 + d]), ||| - |||). Rezulta deci
ca (X,d), unde d este metrica indusa de norma ||| - |||, este un spatiu
metric complet.

Consideram operatorul T : (X,d) — (X, d), definit prin

(Tx)(t) =z + /t: f(s,x(s))ds, weX.

Este evident c& pentru orice z € X avem ca Tz € C([tg — 0, + J]).
Pe de alta parte

(T ol = | [ flsstonas < [0 (s, ato)las

min{to,t}

gMagMJ@:ﬁ, Vt € [to — b, tg + 4] .

Avem deci ca Tx € X pentru orice x € X.

Sa aratam acum ca pentru A > 0 convenabil ales (suficient de mare)
T este o contractie.

In adevar, pentru orice z,y € X avem ca

d(Tx, Ty) = [Tz = Tyll

o~ At—tol /t(f<8,$(8>> — f(s,y(s)))ds|; t € [ty — 0,t0 + 5]}

to

:max{

max{to,t}
< max {e"“t—to‘ L|z(s) —y(s)|ds; t € [to — 0, to + 5]}

min{to,t}
(am folosit lipschitzianeitatea lui f in raport cu x)

to,t
efA\tfto\ max{to,t}

= max{ Le Mol |z(s)—y ()Ml ds; t € [to—d, t0+§]}

min{to,t}

max{to,t}

< max {e’)"t’tolL d(zx, y)/ Nsblds: t € [ty — 6,10 + (5]}

min{to,t}

= d(z,y) max {Le“toi(e)‘“t"' - 1); telto—9,to+ (5]}

<

>|

d(z,y).
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Daca fixam un A > L, obtinem ca 7T este o contractie i deci 7 admite
un unic punct fix x*.

Deducem ca ecuatia (45) are o unica solutie 2* € X si deci problema
Cauchy (43)-(44) admite o unica solutie.

Observatie. Faptul ca am utilizat teorema de punct fix a lui Banach
inseamna ca obtinem imediat un gir, construit recurent, care converge
uniform la solutia problemei (43)-(44):

SL’(](t) = Xy, t e [to—é,to‘i‘é]

r1(t) =x0+ [ [f(s,70(5))ds, t € [to—9d,to+ 0]

e (f) = 20 + /ttf(s,xk(s))ds, telto—b.to+0],  (46)

pentru orice k € N*.
Sirul de mai sus (numit si sirul aproximatiilor Picard) este bine
definit, adica
|z (t) — 20| < 5, VE e N

(acest lucru rezulta prin inductie matematica) si satisface
zp — " in C([to — 6,1 +9]) .

Exista in literatura matematica o demonstratie a teoremei de existenta
gl unicitate numita metoda lui Picard (a aproximatiilor succesive) ce
porneste de la girul de functii definit mai sus i arata convergenta lui
{Xk} la z* (solutia problemei (45)) folosind argumente legate de seriile
de functii.

Mentionam ca metoda lui Picard (metoda aproximatiilor succesive)
si cea bazata pe teorema de punct fix a lui Banach sunt de fapt echiva-
lente.

Exemplu. Sa se arate ca solutia problemei Cauchy

{ v = 2%+t

2(0) = 1 (47)
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exista cel putin pe intervalul [—%, %] si sa se calculeze primele trei
iteratii Picard ale acestei solutii.

Solutie. Alegem o =1 i 8= 1. In acest caz
f:D=]-1,1] x [0,2] — R,

flt, ) =2 + ¢

Cum f este functie polinomiala, ea este continua pe D si lipschitziana
in raport cu z pe D (de fapt f € C>(D)).
Mai mult,

If(t,2)|=2>+t*<5=M, V(t,x)€D.

Aplicand teorema de existenta si unicitate rezulta ca problema Cauchy

(47) admite o solutic unica definitd pe [—1, 1.

Prima iteratie Picard este o : [-£,1] = R,

A doua iteratie Picard este z; : [-1, 1] = R,

x1(t) = -1+ /Ot(l + 5?%)ds

S .
- St
Cea de-a treia iteratie Picard este x5 : [-1,1] — R,
t 1
zo(t) = —1+ ; [(—1+4 s+ 533)2 + s%]ds

2., 1 2 1
=—1+t—t+ 23—t 5+ 7.
376 T 6
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Consideram problema Cauchy (43)-(44), unde
f:D={(tz)eR?* |t—ty| <@, |z — 20| < B} =R,
este o functie continua (iar a i § sunt constante pozitive) i in plus
|f(t,z)| <M,  V(tz) €D,

cu M > 0.

In aceste ipoteze mai putin restrictive are loc urmatorul rezultat:
Teorema (Peano). Problema Cauchy (43)-(44) admite cel putin o
solutie pe intervalul [tg — d,tg + d], unde 6 = min {a, —}

M

Concluzia se obtine din teorema de punct fix a lui Schauder. O
alta demonstratie utilizeaza metoda lui Euler numita si metoda liniilor
poligonale si este prezentata in [5].

Observatie. In absenta lipschitzianeitatii lui f in raport cu x
avem asigurata doar existenta unei solutii, nu si unicitatea.
De exemplu, in cazul problemei Cauchy

{16

9 . 2, t>0 ..
avem ca z(t) = 0 si y(t) = 0 ¢~ » Sunt ambele solutii ale

)
O =

acestei probleme.
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2. Teoreme de existenta a solutiei problemei Cauchy
atagata sistemelor diferentiale de ordinul 1 si ecuatiilor
diferentiale de ordin superior

Consideram problema Cauchy

....... (48)
l‘;l(t) = fn(tv xl(t)a 132(75), 8 xn(t))

$1(t0) = m(l), $2<t0) = :17(2), ey xn(to) =3

(n € N*).

Vom utiliza scrierea vectoriala in cazul problemei Cauchy (48).
Notam

£C1<t)

o(t) = | 720

T (1)

(care este o functie vectoriald),
T
2
o = o c Rn,

o

f1(t,l’) fl(t,lj,l’g,...,xn)
fta) = | P2B2) | | faltior@e )

fn(t, x) fult, 1'1,;"2, ey Tp)
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unde f: D Cc R"™™ — R"si

a1
="
T
Pe R™ se considera norma
||| = max{|x1|, |z2|, ..., |zn|},

unde = = (z1, X2, ..., T, ), care este echivalenta cu norma euclidiana.

Functia = este continua in ¢ daca si numai daca x, xs, ..., x, sunt
continue 1n ¢.

Functia z este derivabila in ¢ daca si numai daca xq, za, ..., 2, sunt
derivabile in ¢. In caz de derivabilitate avem

1(t)
o) = | 70
T (t)
Functia f este continua in (¢, z) € D daca si numai daca fi, fa, ..., fn
sunt toate continue in (¢, x).

Functia f este lipschitziana in raport cu z = (1, x9, ..., z,,) daca si
numai daca fi, fs, ..., fn sunt lipschitziene in raport cu x = (1, g, ..., ).
Functia t — g(t) = (¢1(t), 92(t), ..., gn(t)) € R™ este integrabila pe
[a,b] daca si numai daca g1, ¢a, ..., g, sunt integrabile pe [a, b]. In caz

de integrabilitate avem

[ ot - [ mtre
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Are loc urmatorul rezultat de existenta si unicitate:

Teorema (Picard). Presupunem ca fi, fa, ..., f : D — R, unde
D = {(t,l'l,l'z, 7xn) € Rn+1; ’t - tO‘ S a, ‘xj - $€)| S ﬁ;] = 177”}7
a, € (0,400) sunt functii continue pe D si lipschitziene ca functii
de (z1, 9, ..., x,), adica 3L > 0:

|fj(t,l‘1,l'2, 71:71) - fj(taylvy% ayn)|

< Lmax{ley — v, [22 = Yo, s [2n = ynl}

Vie{1,2,...n}, Y(t, 1,20, ..., xn), (t, Y1, Y2, -, Yn) € D.
Atunci, exista o unica solutie a problemei Cauchy, definita pe in-

tervalul [to — d,to + d], unde 6 = min {a, M}’ iar M > 0 satisface

’fj(taxlax% 7xn)| S M, VJ < {1,2, ...,n},

V(t, x1, 22, ..., 2y) € D.

Observatie. O clasa importanta de functii lipschitziene in raport
cu (zq,xs, ..., T,) este cea a functiilor care admit derivate partiale in
raport cu x1, Ta, ..., T, S acestea sunt continue.

Problema Cauchy (48) se poate scrie sub forma:

{ v = f(t )

l’(to) = 2o,

unde f = (f1, fa, ., fu), o = (x(l)v l’%, ey T

Continuitatea functiilor fi, fo, ..., f, este echivalenta cu continui-
tatea functiei f : D = {(t,z) € R"™; |t —to| < a, ||z — 20| <
B} — R™, iar lipschitzianeitatea lui fi, fo, ..., f, In raport cu x este
echivalenta cu lipschitzianeitatea lui f in raport cu x, care revine la
existenta unui L > 0 astfel ca

||f(t,$)—f(t7y)|| SLHZE—y”, V(t,[)ﬁ),(t,y) eD.

Demonstratia teoremei este analoaga celei pentru ecuatii (cazul n =
1; vezi cursul 5). Se pornegte de la faptul ca z este solutie pentru (48)
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daca i numai daca este solutie pentru urmatoarea ecuatie integrala

x(t) = xo + /t: f(s,x(s)) ds.
Se considera
X ={z: [ty—6,to+56] — R" continug; ||x(t)—xo|| < B, Vt € [to—0, to+d]}
inzestrata cu metrica
d(z,y) = minf{e 1 (t) = y(0); ¢ € [to — 0,4 + 5]}
unde A > L este o constanta si operatorul

T:X — X,

(Tz)(t) =20+ /t: f(s,x(s))ds, s € [to—0,to+ 9],

x € X. Se aplica apoi teorema de punct fix a lui Banach si se obtine
concluzia.

Exemplu. Gasiti un interval pe care problema Cauchy

o' =y +y’
y = 2% +siny
z(0) =1

y(0) =0

admite solutie unica.

Solutie. In acest caz avem ¢, = 0, data initiald (1,0) si functiile
h(t x,y) =2y +a° folt,z,y) = 2% +siny. Alegem a =1, =1 (se
pot lua orice valori a, 3 > 0, deoarece fi si fo sunt definite pe R3) si
deci

Urmatoarele evaluari au loc:

\fi(t,z,y)| <2+1=3, VY(t,z,y) €D
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|fot,z,y)| <4+1=5 V(tz,y) €D.

Deci, M = 5 satisface |fi(t,z,y)|, |f2(t, 2, y)] < M, ¥Y(t,z,y) € D.
Cum functiile f; si fo sunt de clasa C°, rezulta ca sunt continue si
lipschitziene in raport cu (x,y) si de aici deducem ca problema Cauchy

data admite o unica solutie, definita pe { — %, %] (6 = min {1, %})

Teorema (Peano). Presupunem ca fi, fo,...,fn, : D = R (D =
RS

{(t,l’l,l’g, 7$n) S Rn+1; |t - t0| < a, |$] - $€)| < 6’] = 177”}7 a,
(0, +00)) sunt functii continue.
Atunci, problema Cauchy (48) admite cel putin o solutie, definita

pe intervalul [to — 4, to+d], unde 6 = min {a, ]@}, iar M > 0 satisface

’fj(taxlax% 7xn)| < M, VJ S {1,2, ...,n},

v<t,$1,$2, 7$n) eD.

Se poate demonstra acest rezultat utilizand teorema de punct fix a
lui Schauder.

Consideram acum problema Cauchy atagata unei ecuatii de ordin
superior:

) — flt,z, 2, .. I(”_l))
(49)
.fE(tO) = x(lb xl(to) — ZU(2), ey x(n 1)(t0

unde n € N*\ {1}, iar f : D - R, cu D =
R”+1;|t—t0|§a,|xj—xf)|Sﬂ,j:m},a 6
se poate scrie echivalent sub forma

b, X1, T,y ) €

) =
{(t,
(0, +00). Problema

J];l(t) = f(tv Il(t)v xQ(t)7 R l‘n(t))

x1(tg) = x}, wa(te) = 23, ..., x,(to) = 0.
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Fie M > 0 astfel ca
|f(t,z1, 29, ..., x| < M, V(t, z1,...,x,) € D.
Aplicand teoremele de existenta pentru problema Cauchy atagata
sistemelor diferentiale de ordinul 1, rezulta
Teorema. Daca f este continua pe D, atunci problema Cauchy
(49) admite cel putin o solutie definita pe intervalul [ty — 9§,y + ¢,

unde § = min {a, T}, iar M satisface
M

M = max{M, § + |zj], ..., B + |5}

Daca in plus f este si lipschitziana in raport cu (zy,x2, ..., T,),
atunci solutia este unica.

Exemplu. Gasiti un interval pe care problema Cauchy

2 =tx' +tPr +t
z(0) =1
2'(0) =2

admite solutie unica.

Solutie. Fiea=2gi f=15i
D={(t,z,y) eR%Jt| <2, |z -1 < 1|y —2[ <1}
=[-2,2] x [0,2] x [—1,3].

Functia f: D — R, f(t,z,y) = ty + t>x + t este continua si
lipschitziana in raport cu (x,y) (este chiar de clasa C*).
Avem

If(t,z,y)| <2-342%-2+2=16.

Aplicand teorema de mai sus rezulta ca problema Cauchy data admite
solutie unica pe [—4d,d], unde

6:min{2,116}:.
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3. Teorema de unicitate globala

Consideram problema Cauchy

{ ¥ = f(t,x) (50)

x(to) = Ty,
unde f: D Cc R"™ — R", iar D este un domeniu si (ty, ) € D.

Definitie. Functia f este local lipschitziana pe D in raport cu x
daca VK C D, K compact, 3Lk > 0 astfel ca

1t x) = f& )l < Lrlle =yl V(t2),(ty) € K.

Daca functia f este continua si local lipschitziana in raport cu x pe
D, atunci problema Cauchy (50) admite o unica solutie definita pe un
interval centrat in t;.

Teorema de unicitate globala. Dacd x si y sunt doua solutii
ale problemei (50) definite pe I, respectiv I, atunci

z(t) =yt), Vtelnl.

Demonstratie. 1N I este un interval ce contine t,. Daci ar exista
ty € I NI astfel incat xz(t;) # y(t1), atunci am avea fie t; < to, fie
t1 > to. Presupunem fara a restrange generalitatea ca t; > ;.

Fie J = {t € [to, t1]; x(t) = y(t)}. Aceasta multime este inchisa si
are evident un cel mai mare element .

Din teorema de existenta si unicitate locala rezulta ca solutia pro-
blemei (50) este unici pe o vecinatate a lui #: [t — 9, + 0] C TN 1.
Dar solutiile x si y sunt definite si pe aceasta multime si acesta ar
contrazice faptul ci ¢ este cel mai mare element al lui J.
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Fie x o solutie a problemei (50) definita pe intervalul I, care poate
fi de forma: (0475% [Oé, ﬁ)? (Q7ﬁ] sau {Oé, 6]

Definitie. Solutia x este prelungibila la drepta daca exista y o
solutie pentru (50) definita pe I U [5,7), cu < 7 si astfel incat

z(t) = y(t), vVt e I.

Solutia = este saturata la dreapta daca nu este prelungibila la
dreapta.

Definitie. Solutia x este prelungibila la stanga daca exista y o
solutie pentru (50) definita pe I U (v, al, cu a > 7 si astfel incat

z(t) = y(t), vVt el

Solutia x este saturata la stanga daca nu este prelungibila la stanga.

Definitie. Solutia x este prelungibila daca este prelungibila la
stanga sau la dreapta.

Solutia x este saturata daca este saturata atat la stanga cat si la
dreapta.

Observatie. Solutia saturata este solutia definita pe I, cel mai
mare interval de definitie al vreunei solutii a problemei (50). Solutia
saturata este unica.

O consecinta a teoremei de unicitate globala este:

Teorema. Orice solutie a problemei (50) admite o prelungire unica
la o solutie saturata.
Solutia saturata se noteaza: x(t;to, o).

Exemplul 1. Sa se determine solutia saturata a problemei

r=2+1
z(0) =1

si domeniul de definitie al acesteia.
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Solutie. Problema datd este de forma (50), unde f : R* — R,
f(t,r) = 2® + 1 este continua si local lipschitziana in raport cu z, iar
to = 0, Ty — 1.

Problema admite deci o solutie saturata unica z(-;0, 1) definita pe
intervalul (a, ), cu o, € R, @ < 0 < . Intervalul de definitie
al solutiei saturate nu poate fi inchis la dreapta, deoarece solutia s-ar
putea prelungi si la dreapta lui § (din teorema de existenta si unicitate
locala) si nici inchis la stanga deoarece s-ar putea prelungi solutia si
la stanga lui a. Acest lucru ar nega faptul ca solutia este saturata.

Ecuatia data este cu variabilele separabile gi ne conduce la

(1)

14 2%(¢)

Integrand de la 0 la ¢ se obtine
arctg x(t) —arctg 1 =t

m
< arctg z(t) = 1 +t.

Concluzionam ca
Zite (— z E)
4 272
si decit € (—2F, 2.
De asemenea deducem ca solutia x : ( — %”, %) — R este definita
prin
x(t) = tg(t + E)
4

Aceasta solutie verifica

lim z(t) = +o0

t—Tt<t
si deci & nu este prelungibila la dreapta. De asemenea

lim  z(t) = —
t——37 >3

si deci & nu este prelungibila la stanga.
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Concluzia este ca solutia saturata este definita pe ( — ?jf, %)
Exemplul 2. Sa se demonstreze ca solutia saturata a problemei
Cauchy
x] = sinx; + sin xq

o = 1 +cosx
= 2
2 143

este definita pe R.

Solutie. Problema se poate scrie sub forma (50), unde f : D =
R3 — R?,

fl(ta'rlux2>
f(t7x) = )
f2(t7w1ax2)
fi(t,x1, 20) = sinay +sinag, folt, 21, 22) = u 5 T COS X,
1+ 27
1
o =
1
Exista o unica solutie saturata
[E1<t>
x(t) =
o (t)

Daca consideram restrictia lui f la
D = {<t7x17x2); |t| < o, |l'1 - 1| < B, |$2 - 1| < 6}7

unde «, 8 > 0 oarecare, atunci rezulta ca solutia saturata este definita
cel putin pe [—4, ], unde § = min {a, g}

Putem alege f = 2a gi atunci avem evident 6 = a. Concluzia
este ca solutia saturata este definita cel putin pe [—«, a], oricare ar fi

a > 0. Rezulta deci ca este definita pe R.
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4. Teorema de continuitate a solutiei in raport cu
data initiala

Fie
f:DCR" - R",
continua si local lipschitziana in raport cu z. Consideram
A={(t,r) e R |t —ty| <, ||z — | < B} C D,
unde «, 5 € (0,+00) si M o constanta pozitiva a.i.
lf(t,x)| < M, V(t,x)e€A.

Pentru orice yy € R™ al. ||yo — zo| < £, problema Cauchy
Y Y 2

{ 2'(t) = f(t,2(t))

z(to) = Yo

admite o unica solutie definita pe [to—J,to+4], unde § = min {a, %}

Notam cu y(t; tg, yo) solutia problemei Cauchy definita pe [to, to+9].

Teorema. Functia yo — y(+;to, o) de la

B (a:o; g) = {u eR"; fJu— x| < g}

la C([to, to + 0]; R") este continua.

Demonstratie. Pentru orice yo, 20 € R", ||yo — zol|, || 20 — 2o|| < g
avem ca

y(t) = y<t;t07y0>7 Z(t) = y(t,tO,Z())
verifica

o0 = o+ [ Fop(s)ds, Ve ftost+9),

z@:%+éy@4m%,w€m@+ﬂ.
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De aici rezulta ca
t
o(t) = 20 =0 — 20+ [ [F(s.9() = (s, 2(s))ds, Vit € [to,to + 0]
0

si deci
t
ly(t) = 2O < llyo — =l +/t Llly(s) — z(s)[lds, 'Vt € [to, to + 6],
0

unde L este o constanta Lipschitz pentru f (in raport cu ) pe multimea
A.

Din inegalitatea lui Bellman rezulta ca
ly(t) = 2] < llyo — 20/le" ™) < ePllyo — 2oll, V€ [to, o + 4]

Deci, yo — y(+;to, yo) este lipschitziana si deci continua.
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Exercitii

Sa se demonstreze existenta si unicitatea solutiei pentru fiecare
din urmatoarele probleme Cauchy si sa se gaseasca un interval pe
care aceasta este definita:

1
- 0) =1
2 + 2%’ (©)
2.
o =t*+2% 2(2)=0
3.

, l+t+2x

e 0) =0
v 44+ 12 4 22’ z(0)

4. Sa se arate ca ecuatia &’ = y/x —t + 1 admite solutiile z(t) = ¢

. t+ 12, >0
§1jr(t):{t )

5. Sa se determine un interval pe care exista solutia problemei Cauchy

¥=r+a*+y—1
y=z+y’—y
z(l) =2

y(1) =0

si sa se determine primele 3 iteratii Picard.

6. Sa se arate ca problema Cauchy

2’ =sint + In(1 + 2?)
z(0) =0

admite o solutie unica definita pe R.
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Indicatie. Se considera D = {(t,z); |t| < «, |z| < B}. Se obtine
: s
§ = T
-

Problema admite o solutie definita cel putin pe [, d].

Pentru orice t € R, exista a > 0 si 8 > 0 astfel incat

p
)

si deci solutia saturata este definita si pentru .

It <,

. Sa se demonstreze ca intervalul maxim de definitie la dreapta al

solutiei saturate a problemei Cauchy:
=2+t 2(0)=1

este marginit.

. In teoria anizotropicd a relativititii (V.G. Boltyanski), ecuatia de

propagare a razei de lumina in vecinatatea unei mase m situata
in origine este:

(aici [|z]le = \/2}+ 23 + 23 este norma euclidiand a lui z =

(x1,29,x3)), unde n este o constanta pozitiva, f = (fi, fe, f3)
este o functie continua care satisface conditia: || f(¢)||. < C, iar
z(t) = (x1(t),z2(t), z3(t)) este vectorul de pozitie al fantei de
lumina la momentul ¢.

Sa se arate ca exista r > 0 astfel incat toate traiectoriile care
la momentul ¢ = 0 pornesc din punctul zy din sfera S, = {x €
R3; ||x|le < 7} rdman in aceastd sferd (aceasta sfera se numeste

[

gaurd neagra)

Solutie. Se inmulteste scalar ecuatia cu z(t) si se obtine

(la012) = =IO ¢ o) a0
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nm
< 177
= @)l

(din inegalitatea lui Cauchy) si de aici rezulta ca

+ LS @ 1) le

_am
()l

Dorim ca membrul drept sa fie negativ pentru ¢ = 0, adica

(;Hx(t)lli)lﬁ +Cz@®)le, Yt>0. (51

nm

lo]le

(unde z(0) = x¢ # 03). Consideram r = ,/%. Sa aratam ca S,

este o gaura neagra.

m
+ O |zolle <0 < ||zl < %

Daca 0 < ||zolle < 7 rezulta din continuitatea lui ||z(t)[|. ca
|z(t)|le < r petru orice ¢ dintr-o vecinatate [0,e) (¢ > 0) la
dreapta a lui 0.

Rationam mai departe prin reducere la absurd. Presupunem ca
exista cel putin un punct ¢; > 0 pentru care ||z(¢;)||. = . Con-
sideram cel mai mic asemenea t;. Deci,

|lz(t)|le <r, Vte]0,t).
Din (51) rezulta ca
1 2\/
(3le2) <0, vie o).
Deci, functia ||z (t)||? este strict descresctoare pe [0, ;]
1 1
= §\|x(t1)||3 < §||$0||z

si deci,
lz(t)|le < ||zolle < r; absurd
(deoarece ||z(t1)|le =1).

De aici rezulta concluzia.
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10.

11.

TEOREME DE EXISTENTA

. Sa se determine un interval pe care exista solutia problemei Cauchy

v =t +tr+1
z(0) =1

si sa se determine primele 3 iteratii Picard.
Acelasi lucru se cere pentru problema:

" +tx' + x =sint
z(0) =0, 2/(0)=1.

Sa se arate ca solutia saturata a problemei Cauchy:

2" +sinx =0
z(0) = xg
'(0) = x4

este definita pe toata axa reala.
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CURS 8

II1. SISTEME DIFERENTIALE
LINIARE

In acest capitol vom discuta cateva din cele mai importante rezul-
tate legate de sistemele de ecuatii diferentiale liniare de ordinul 1 si
de ecuatiile diferentiale de ordin superior.

1. Sisteme de ecuatii diferentiale liniare de
ordinul 1

In aceasta sectiune vom studia sistemul:

) (t) = a1 (t)x1(t) + ar2(t)z2(t) + - - - + ar(t)xn(t) + f1(t)
xh(t) = a9 (£)x1(t) + age(t)za(t) + - - - + agn(t)x,(t) + folt)
2 (t) = an1 ()21 (t) + ana(t)xe(t) + - - - + apn (), (t) + fult),
(52)
unde a;; si f; (4,7 € {1,2,...,n}) sunt functii definite pe intervalul I C
R cu valori in R. Sistemul (52) se numeste sistem neomogen. Daca
f1, f2, -y fn sunt identic nule, atunci sistemul se numeste omogen.
Sistemul se scrie in mod echivalent, folosind notatia vectoriala, sub
forma:

Z'(t) = A@t)x(t) + f(t), tel, (53)
unde A(t) = (ai(t))7,=,, iar
(1) S(t)

)= | =0 = | 2O
xn(t) fn(t)



68 SISTEME DIFERENTIALE LINIARE

Cum proprietatile matricei A(t) vor juca un rol foarte important
in studiul solutiilor sistemului (52), vom introduce cateva definitii ce
vor fi utilizate in cele ce urmeaza.

Definitie. Daca A = (a;;)};—; € M,(C) este o matrice constanta,
atunci norma matricei A este:

n

Al =
1] 5 s

Daca A, B € M,(C) si x € C", atunci se arata cu usurinta pro-
prietatile:

1A+ Bl < [|A[l + |B]],
[AB| < [[All- 1B,
[Az]| < [|A[} - flll,

unde = = (z1, X2, ..., T,) si ||z]| = max{|x1], |2l ..., |Ta|}-

Definitie. Derivata lui A(t) = (a;;(t));; este notata cu A'(t) si
este egala cu
A'(t) = (aj;(t))iy
(exista atunci si numai atunci cand toate functiile a;; sunt derivabile
in t).

g
Integrala lui A(t) pe [«, 8] se noteaza cu / A(t)dt i este egala cu

(e}

8
( oy (t)dt);

(este definita daca si numai daca a;; sunt toate integrabile de la a la

B).

Urma matricei patratice A(t) se noteaza cu tr A(t) si este egala cu

i aj;(t).
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Presupunem in cele ce urmeaza ca a;; si fi (4,5 € {1,2,...,n}) sunt
functii continue.

Aplicand rezultatele din capitolul precedent rezulta ca pentru orice
to € I si orice g = (z}, 22, ..., x)) € R" exista o solutie saturatd unica
pentru (52) (sau echivalent (53)) verificand conditia initiala

Teorema. Solutia saturata a problemei (52)-(54) este definita pe
intreg intervalul I.

Demonstratie. Intervalul I este de forma («, ), [, (), («, ],
sau [a, f].

Vom rationa prin reducere la absurd. Presupunem ca solutia sa-
turata fie nu este definita intr-o vecinatate a lui 3, fie intr-o vecinatate
a lui a. Vom face rationamentul doar in primul caz (al doilea caz se
trateaza analog).

Presupunem deci ca solutia saturata este definita pe J de forma

(v,7n) sau pe [y,n) i n < . Solutia saturata verifica:
t t
x(t) =xo+ | A(s)x(s)ds+ [ f(s)ds, teJ

to to

Ultima relatie implica:

@l < lloll + [ NAGN las)ds + [ 176)]ds, € (5

Deoarece functiile t +— ||A(¢)]| si ¢ — ||f(¢)|| sunt continue pe I,
rezulta ca ele sunt marginite pe [to,n]. Exista deci o constanta M > 0
astfel incat

JA@I N F@ON < M, Yt € [to,n). (56)

Din (55) si (56) rezulta in baza lemei lui Bellman ca:
lz(@)[F < (loll + (1 — to) M)e™ ™M, vt € [to, ).

De aici tragem concluzia ca functiile x1, xs,..., ,, au derivate marginite
pe [to,n). Aceste functii se pot deci prelungi prin continuitate in punc-
tul n (prelungirile se noteaza tot cu xy, s,..., x,) si folosind faptul ca
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xr = (21,2, ..., x,) verifica (55) deducem ca z'(n) = A(n)x(n) + f(n).
Asta inseamna ca x este solutie a problemei Cauchy (52)-(54) definita
pe J U {n}. Solutia aceasta se poate prelungi, in baza teoremei de
existenta si unicitate pe J U [n,n U d] (cu un § > 0). Deci, solutia
initiala nu era saturata; absurd.

In cele ce urmeaza, ori de cate ori vom vorbi despre
solutie vom subintelege solutie saturata (asta daca nu se
fac alte precizari).

Vom studia intai sistemul omogen asociat lui (52):

2y (t) = a1 (t)x1(t) + a2 (t)za(t) + - - - + a1, (), (¢)
xh(t) = ag1 (t)x1(t) + age(t)za(t) + - - - + agn(t)x,(¢)

(57)
() = am (D21(t) + ana()72(8) + - - - + dn(t)2a(D),
care se scrie echivalent sub forma
¥ = A(t)z, tel (58)

Teorema. Multimea solutiilor sistemului (57) formeaza un spatiu
liniar de dimensiune n.

Demonstratie. Cum sistemul (57) este liniar, rezulta prin verifi-
care directa ca multimea S a solutiilor sistemului (57) este un spatiu
liniar (peste corpul R).

Fie tyg € I oarecare, dar fixat. Consideram aplicatia 7' : R™ — S,
definita prin:

TiIZ'O = iIZ’(, to, $0).

Aceasta aplicatie este evident liniara, injectiva gi surjectiva. Deci, T
este un izomorfism de spatii liniare gi in concluzie dimensiunea lui S
este egala cu dimensiunea lui R" (care este n).

Din teorema de mai sus rezulta ca S admite o baza formata din

n elemente z!', 22, ..., 2". Cu alte cuvinte z', 2%, ..., 2" sunt n solutii
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liniar independente (numit si sistem fundamental de solutii pentru
(57)). Aici

(1)
o — | 0
3 (1)
Matricea
X)) =[z'(t) 2*@) ... 2"(t)]
) R )
o e T owmn)| .
() 22() .. an(t)
(ale cérei coloane sunt functiile vectoriale z!, 2%, ..., 2) se numeste

matrice fundamentala a sistemului (57).

Cum
(:pj)’(t) = A(t):pj(t), vVt e 1,
rezulta ca
X'(t) = A(t)X (¢), vVt e 1.

Matricea fundamentala X nu este unica. Este suficient sa observam
ca pentru orice matrice nesingulara B € M,(R) avem ca Y (t) =
X (t)B este de asemenea matrice fundamentala a sistemului (57) (sau
echivalent (58)).

Fie un sistem de n solutii {z', 2%, ..., 2"} ale sistemului (57). Vom

numi wronskian al acestui sistem, determinantul (notat W (t)):
W(t) = det X(t),

unde
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CURS 9

Teorema. Sistemul de n solutii {x!, 22, ..., 2"} ale sistemului (57)
este fundamental daca si numai daca wronskianul lor W (t) este nenul
intr-un punct al intervalului I (echivalent, pe intregul interval I).

Demonstratie. Fie {z!, 2%, ..., 2"} un sistem fundamental de solutii
pentru (57). Dorim sa aratam ca pentru orice ty € I avem W (ty) # 0.

Rationam prin reducere la absurd. Daca ar exista un tq € I astfel
ca W(ty) # 0, atunci exista ¢ = (cy, cg, ..., ¢,) # 0 din R™ astfel incat

et (to) + cox®(to) + - - + cpa™(tg) = 0.
Din teorema de existenta si unicitate va rezulta ca
1zt (t) + e (t) + -+ cpa™(t) = 0, Vtel

si deci {z', 2%, ...,2"} nu ar fi un sistem fundamental de solutii pentru
(57); absurd.

Reciproc, daca W (ty) # 0 (pentru un ¢y € I), atunci vom demon-
stra prin reducere la absurd c& {x!, 22, ...,2"} este un sistem funda-
mental de solutii pentru (57).

Daca nu ar fi aga, atunci ar exista ¢ € R", ¢ = (¢1,¢9,...,¢,) #
(0,0, ...,0) astfel incat

Cll’l + 021‘2 + i F ™ = 0.
De aici rezulta ca
c12' (tg) + cox®(to) + cdots + c,x™(tg) = 0.

Cum W (ty) # 0 rezultd ¢; = ¢3 = ... = ¢, = 0; absurd.

O consecinta a teoremei este ca X : I — M, (R) este o matrice
fundamentala pentru (57) daca gi numai daca

X'(t) = A@t)X (¢), Vtel
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si
det X () # 0, Vtel

(echivalent pentru un ¢y € I).
De fapt teorema de mai sus se poate rafina:

Teorema (Liouville). Fie n solutii {z!, 2%, ...,2"} ale sistemului
(57) si W (t) wronskianul acestui sistem. Atunci

W(t) = W(to)effo " A(S)ds, vVt e I.

Demonstratie. Fie
X(t) = [z'(t) 2*(t) ... 2"(t)].
Din teorema cresterilor finite avem:
X(t+s)=X(@)+sX'(t)+G(s), VtelsiVseR

astfel ca t 4+ s € I, unde hi% G(s) = 0.

De aici se deduce ca
W(t+s)=det(X(t) +sA)X(t) + G(s)).

Daca W (t) = 0, atunci rezulta evident concluzia teoremei.
Daca W (t) # 0, atunci

W(t+s) =det(X () + sAlt) + G(s)X ()

= W (t)det(I + sA(t) + G(s) X 1(t)).

Avem ca

det(I + sA(t) + G(s)) = 1+ sA(t) + o(s).

In concluzie

W(t+s) = W)L+ sA() + o(s))

si de aici rezulta ca

W'(t) = A(t)W(t), vVt e,



Curs 9 75

ceea ce ne conduce la concluzia teoremei.
Sa revenim acum la problema Cauchy (52)-(54).

Teorema. Fie X(¢) o matrice fundamentala pentru (53). Atunci,
solutia problemei (52)-(54) este

z(t) = X)X to)wo + tX(t)X_l(s)f(s)ds, vtel.  (59)

to

Demonstratie. Functia x data de (59) satisface:

() = XX (to)wo + X'(1) [ X1(s) f(s)ds

to

+ XX @) f(1)

+ (1)
= A(t)x(t) + f(t), Vtel
si x(tp) = x¢. De aici rezulta concluzia teoremei.

O atentie speciala vom acorda in continuare cazului sistemului (52)
cu coeficienti constanti. Deci, cazul cand

unde a;; € R, Vi, j € {1,2,...,n}.
Vom discuta intai cateva chestiuni legate de seriile de matrice patratice

n-dimensionale.
Consideram sirul de matrice patratice n-dimensionale: {Ay}ren.
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[e.e]
Definitie. Spunem ca seria Z Ay este convergenta la A daca girul

k=0
N

sumelor partiale Sy = Z Ay converge In norma la matricea A, adica
k=0

|Sy — Al — 0, atunci cand N — +o0. (SC)

In caz de convergenta scriem:

S A=A
k=0

si spunem ca A este suma seriei.

Tinand cont de definitia normei unei matrice rezulta echivalenta
dintre convergenta (SC) si cea dupa componente, adica

sf-}[ — 45, pentru N — 400,

Vi, j, unde
Sy=1(s)), A= (ay).
De aici urmeaza imediat ca criteriul lui Cauchy pentru serii numerice
ramane adevarat si in cazul seriilor de matrice.
[e.e]

In particular rezultd cd dacd seria numericd » _ || Ay este conver-

k=0
oo

genta, atunci gi seria de matrice Z Ay, este convergenta.
k=0

Vom considera functia ¢4 : R — M,,(R), definita prin
o 4k
eth = Z HA’“, vt € R.
k=0
Convergenta seriei de mai sus este o consecinta a faptului ca seria

numerica
LAk
pors k!
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este convergentd (suma acestei serii este mai mica sau egala cu efl4l),

Prin verificare directa se demonstreaza ca:
et = )4y g e R.

(e) = At VteR.
Cum %4 = I (deci det 4 = det I = 1), deducem ca e este matrice

fundamentala pentru (53).
In concluzie, solutia problemei (52)-(54) este in acest caz particular

t
w(t) = etz 1 [ DA f(s)ds, Vtel.

to

Vom indica in continuare o alta foarte utila formula de calcul a
matricei e, unde 4 € M, (R).
Pentru aceasta se considera ecuatia

det(A\I —A) =0
(este o ecuatie de grad n), care admite radacinile complexe Ay, Ag,...,
Ak, de multiplicitati mq, mao, ..., my, respectiv (mq, ma, ..., my € N*).
Avem deci

detAT — A) = (A= A)™ (A= A)™ « -+ (A — Agp)™.

A1, Ag,..., Ap se numesc autovalorile matricei A.

Vom prezenta o altd formuld de calcul pentru e*4:

Teorema.

k 1 dmjfl
tA __ .
© = Z (mj — 1)' d\mi—1

J=1

(A =A™ (A — A)*l)A:Aj,
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Demonstratiile cele mai intalnite ale acestui rezultat fac apel fie la
teorema reziduurilor, fie la matricele Jordan (a se vedea [3], [5]).

Exemplul 1. Sa se rezolve sistemul:

=y
Yy = —x+2y.
Solutie. In acest caz matricea A este:

A=Y 5)

Sa calculam autovalorile acestei matrice.
A =1
det(A — A) =
1 AN=2
=N -2 +1=(\-1)>~

Matricea A are autovaloarea : A\; = 1 (de multiplicitate 2). Avem

1 A—2 1
MN—-A) = ——
A=D1 )
si deci
A—=2 1
etA—f((/\—l)Q A - )
dA (A=1) IR e

(1—t)e te!

—te! (1 +4t)e
Solutia generala a sistemului este deci
x(t) e (1 —t)etey + tefey

= € = y
y(t) Ca —teley + (1 +t)eley
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CURS 10

2. Ecuatii diferentiale liniare de ordin superior
Consideram ecuatia diferentiala liniara omogena de ordinul n:
2™ 4 a ()Y 4 gy (D)2 + an () =0, tel, (60)

unde ay, as, ...,a, € C(I), n € N, n > 2. Aceasta ecuatie este echiva-
lenta cu sistemul diferential de ordinul 1:

Ty = To
xh = T3
....... (61)
Ll'lnf = Tn
= —a,()x1— an_q1(t)xe— — a1(t)z,
Daca notam cu
0 1 0 0
0 0 1 0
A(t) = :
0 0 0 1
—ap(t) —an_1(t) —an_o(t) —aq (t)
(1)
oy = | 20,
Tn(t)
atunci sistemul (61) se poate scrie sub forma
¥ = A(t)x.

Notam cu S multimea solutiilor ecuatiei (60) si cu S multimea
solutiilor pentru (61).

Am demonstrat deja ca orice solutie (saturatd) pentru (61) este
definita pe I. Daca x este o solutie saturata pentru (60), atunci
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(z,2/,..., 2 ) este o solutie saturata pentru (61), care este definita

pe I.
Deci, = este si ea definita pe I. Cu alte cuvinte elementele din S

sunt, functii definite pe I, cu valori in R.

Multimea § formeaza un spatiu liniar de dimensiune n. Mai mult,

Teoremi. Functia T: S — S, definitd prin

T

x/

Ty =
x(n_l)
este un izomorfism de spatii liniare.

Acest lucru rezulta prin verificare directa (utilizand definitia izomor-
fismului de spatii liniare).

Conform celor aratate in sectiunea precedenta S este un spatiu
liniar de dimensiune n. Utilizand ultima teorema deducem si ca S
este un spatiu liniar de aceeagi dimensiune n.

Definitie. Daca x1, 2o, ..., z, formeaza o baza pentru §, atunci
vom spune ca {1, za, ..., T, } formeaza un sistem fundamental de solutii
pentru (60).

Daca {x1,,...,x,} este un sistem fundamental de solutii pen-
tru (60), atunci pentru orice € S exista si sunt unice constantele
c1,Ca, ..., ¢, € R astfel incat

z(t) = crwi(t) + coma(t) 4+ - - - + cury(t), Vt e 1.

Definitie. Daca {z1,xs,...,x,} este un sistem fundamental de
solutii pentru (60), atunci

W (t) = det(Txy(t) Tao(t) ... Tx,(t))
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x1(t) o(t) .. xu(t)
B A . )
V0 0@ A D)

se numeste wronskianul sistemului de solutii in .

Teorema (Liouville). Daca x1, xo, ..., z,, sunt n solutii ale ecuatjiei
(60) si daca ty € I, atunci wronskianul acestora satisface

’ 1(s)ds

W(t) = Wito)e o™ vier (62)

Demonstratie. In adevir, utilizand teorema lui Liouville din
cazul sistemelor se obtine relatia (62).

Teorema. Fie xq, s, ..., x, n solutii pentru (60). Acestea formeaza
un sistem fundamental de solutii pentru (60) daca si numai daca wron-
skianul acestora este nenul peste tot pe I (echivalent cu faptul ca
wronskianul este nenul Intr-un punct din 7).

Demonstratie. Se aplica pentru (61) rezultatul similar din cazul
sistemelor si se obtine concluzia.

Exemplu. Si se arate ca functiile cos 2 si sin t? formeazd un sistem
fundamental de solutii pentru

1
x’ — Ew’+4t2x =0, t>0.

Solutie. Fie x1(t) = cost?, x5(t) =sint? ¢ > 0. Avem:
rh(t) = —2tsint?
2 (t) = —2sint? — 4t% cos t?

si deci
1
o (t) = ;:E’l(t) — 422, (), V¥t > 0.
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De asemenea
xh(t) = 2t cos t*
T4 (t) = 2 cost? — 4t sin t*
si deci
1
xy(t) = ;x’Q(t) — 4t%x4(t), ¥t > 0.
Rezulta ca x1, o sunt solutii ale ecuatiei date. Ramane sa aratam

ca acestea formeaza un sistem fundamental de solutii pentru ecuatia
data. Wronskianul acestora este

cos t? sin t2
W(t) = — 2t 40,

—2tsint?  2tcost?
vVt > 0. Concluzia este acum evidenta.
Consideram in cele ce urmeaza ecuatia diferentiala liniara ne-
omogena
2"+ ay ()" 4 an o ()2 + an(t) = f(t), tel,  (63)

unde ag, ag, ...,a,, f € C(I), n € N, n > 2. Aceasta ecuatie este
echivalenta cu sistemul diferential de ordinul 1:

) = T2

xh = Z3

....... (64)
x = Tn

N PR P oy 1 A (1)

tel

Daca z este o solutie saturata particulara a ecuatiei (63), atunci
2+ ar ()2 (@E) 4 an(t)2(t) = f(1), tel

Orice solutie a problemei (64) este definita pe I. Deci, orice solutie
saturata pentru (63) este definita pe 1.
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Putem concluziona ca orice solutie x pentru (63) se scrie sub forma
x(t) =y@t) +2(t), tel
unde y este o solutie a ecuatiei omogene asociata (60).

In adevir, z este solutie pentru (63) daca si numai daca x — z =y
verifica (60) si de aici concluzia.

Daca w1, xg, ..., T, este un sistem fundamental de solutii pentru (60)
i z este o solutie particulara pentru (63), atunci solutia generala a
ecuatiei (63) este data de formula

w(t) = c1w1(t) + coma(t) 4+ - - - + cuwp(t) + 2(8), tel,
unde ¢, o, ..., ¢, € R.

[ata deci ca gasirea solutiei generale revine la gasirea unui sistem
fundamental de solutii pentru (60) si a unei solutii particulare pentru

(64).

In cazul in care se cunoaste deja un sistem fundamental de solutii
pentru (60): z1, z, ..., x,, vom determina o solutie particulara pentru
(64) prin metoda variatiei constantelor:

Se cauta solutia particulara pentru (64) de forma:

2(t) = er()x1(t) + Ca(t)aa(t) + - - - + Enlt)an(t),

unde ¢y, o, ..., ¢, € CH(I) sunt functii ce vor fi determinate.
Derivand se obtine:

Z(t) = ()i (t) + e (t)ry(t) + - - - + En(t)z, ()
+& )z () + (L) za(t) + - - - + E(H)xn(t), tel
si impunem conditia
&)z (t) + &)z (t) + - -+ &, (H)x,(t) =0, tel.
Astfel
Z(t) = (b)) (t) + G (t)ay(t) + - - - + Eu(t)a,(t), tel.
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Derivam din nou si obtinem

21(t) = ()i () + a(H)as(t) + - - + Ca(t)ay (1)

+& () () + &) ah(t) + - - -+ e, (t)al(t), tel
si impunem conditia
Gty (t) + &t)zy(t) + - - -+ 6,(t)z,(t) =0, tel.
Astfel
2'(t) = ()] (t) + ca(t)zy(t) + - - -+ Eu(t)al(t), te L
Se repeta acest procedeu pana se obtine
20(t) = & ()2 () + E(t)as” (6) + - -+ & ()l (1)

+& (0" @) + SO + -+ (O I(1), tel

si impunem conditia
&)t + &)y V) + -+ (02 = f(1), tel
Astfel
(1) = & (O (1) + Gtz (1) + -+ E () + f(1), tel
Am obtinut deci sistemul:

& (B)21(t) + A(D)za() + - -+ ()
&2y (1) + A(Dh(1) + - - -+ (1),

=3
—~
~
~—
I
o O

(0200 + B0 + -+ 2D (E) = £,

t € I si in concluzie

2(t)  =ci(t)xr(t) + Ca(t)za(t) + - - - + En(t)zn(t)
Z(t) =) (t) + E(t)as(t) + - -+ Enlt)a,(f)
20 = a0 + B+t e
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tel.

Daca ar exista ¢y, ¢y, ...,¢, € CY(I) astfel incat (65) s& aiba loc,
atunci iInmultind prima ecuatie din (66) cu a,, a doua cu a,_1, ..., si
penultima cu a; si adunand relatiile se obtine

2 a2 b = & ()2 () +ar ()T () 4 an (B2 (1))

+ e ()@ () + a (e + - an(t)a () + f(1)
si de aici rezulta ca z este solutie pentru (63).

Sistemul (65) are determinantul W (t) # 0, ¥Vt € I (este un sistem
Cramer). Rezolvand se obtine solutia aq, ag, ..., a,, toate fiind functii

continue pe I. Orice familie de n primitive ale acestora ¢y, ¢, ..., ¢y,
(acestea sunt functii de clasd C"! pe I) va satisface deci sistemul (65).

Observatie. Functiile ¢, ¢s, ..., ¢, determinate prin metoda variatiei
constantelor nu sunt unic determinate.

Exemplu. Sa se gaseasca solutia generala ecuatiei

!
z" 4+ x = cost, teR (67)

folosind metoda variatiei constantelor.

Solutie. Consideram ecuatia omogena asociata

" +x=0.

Este evident ca x;(t) = cost si xo(t) = sint sunt solutii ale acesteia si
sunt i liniar independente. Solutia generala a ecuatiei (67) are forma

z(t) = cicost + cosint + 2(t), t€R,

unde z este o solutie particulara a ecuatiei (67).
Vom cauta solutia z de forma

z(t) = ¢1(t) cost + Go(t) sint, t e R.
C1 8l ¢ satisfac sistemul:

& (t)cost + éo(t)sint = 0

—¢1(t) sint + &(t) cost = cost.
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Acesta este un sistem compatibil determinat si are solutia

& (t) = —sintcost

&y (t) = cos?t

~ cos 2t

C1 (t) = 4 + ap
<

~ t sin2t

Cg(t) = 5 -+ 4 -+ as,

aj,as € R. Alegand a; §i as oarecare (de exemplu a; = ay = 0) se
obtine solutia generala pentru (67):

. cos 2t t sin2t. .
:lr(t):clcost+czsmt+Tcost+(§+ 1 )sint,

t € R, unde ¢q, ¢y € R sunt constante oarecare.
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CURS 11

3. Ecuatii diferentiale liniare cu coeficienti constanti

Vom analiza pentru inceput ecuatia omogena cu coeficienti constanti:
™ a4 a2 far =0, teR, (68)

unde aq,as,...,a, € R,ne N, n>1.
Dorim sa gasim un sistem fundamental de solutii pentru (68). Pen-
tru aceasta vom atasa intai asa numita ecuafie caracteristica:

AN+ a N 4 A+ a, =0, (69)

Aceasta ecuatie are k radacini distincte complexe: A; de multiplicitate
my1 € N*, Ay de multiplicitate my € N*, ..., A\x de multiplicitate my €
N*. Aceste radacini se numesc radacini caracteristice sau autovalori.
Cum (69) este o ecuatie de gradul n rezulta ca m; +ma+---+my = n.

Se poate vorbi de solutii ale ecuatiei (68) definite pe un interval din
R si cu valori in C. O asemenea solutie este o funtie x definita pe un
interval J, cu valori in C, de clasa C™ si astfel incat

2™ (1) + arz" V(@) 4 - -+ ap1 2 () + anx(t) =0, Vit E .

Exact ca in cazul solutiilor reale se poate arata ca orice solutie com-
plexa saturata este definita pe R.

Se poate demonstra ca multimea solutiilor ecuatiei (68) formeaza
un spatiu liniar de dimensiune n peste corpul C. Demonstratia se face
exact la fel ca in cazul real.

Deci, se pot defini exact la fel gi in aceasta situatie notiunile de
sistem fundamental de solutii, matrice fundamentala, etc.

Notam cu

L(D)x =z™ + a2 Y 4. a2’ + anzx
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(acesta este un polinom diferential; exponentii sunt inlocuiti cu ordine
de derivare);

L) = X"+ a N+t an A+ a,
LDz =n(n—1)---(n—p+ 1)z"P

+(n—=1n—=2) - (n—plaaz"PH ...

Este evident ca

LA) = (A= A)™ (A= Ag)"™ - (A= Ap)™

Vom demonstra pentru inceput:

Lema lui Leibniz generalizata. Pentru orice y, z de clasa C"

e n [P . ()
L(D)(ys) = 3 LD

Observatie. Acest rezultat generalizeaza rezultatul clasic al lui
Leibniz:

Z ynp)

Demonstratia lemei. Utilizand rezultatul clasic al lui Leibniz se

obtine

L(D)(yz) = 3 Ly(D)y - 2, (70)

p=0

unde L,(D) este un polinom diferential de un anumit ordin. Dorim
sa demonstram ca:
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In adevir, pentru y = eM si z = € obtinem din (70):

n

L(D)eY™t =N~ L (D)eMAPer, Vit € R,

p=0

VA, v € C. Cum

L(D)e* = e*L(a), VteR,Vae C,
rezulta ca

e(’\ﬂ)tL()\ +q) = ANt Z L,(M)"?, VA, yeC.

p=0
Utilizand formula lui Taylor avem:
n [P (\)~P
LA+7v) = Z;')fy, YA,y e C

p=0

si de aici concluzia

1
L,(\) = HL(”)()\), VA € C.

Cu aceasta demonstratia lemei este incheiata.

Teorema. Urmatorul sistem de solutii (cu valori complexe) este
fundamental:

eMt teMt L pmTleMt
eret et L pmeTlelet
et et e LMkt

Demonstratie. Observam pentru inceput ca functiile indicate
mai sus sunt cu valori complexe.

Vom arata intai ca tleM?
l e {0, 1, e,y — 1}
Utilizand lema de mai sus se obtine

este solutie a ecuatiei (68), pentru orice

n_ 1P eMt) () ()
L(D)(tle)qt) — ZO L (D)(p' )(t )
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_ e’\ltzn: L(p)<)\1)(tl)(p)
P

—0 P!
(p) 1 (p) (p) H(p)
I S OGN IS TG

l 1
0<p<mi—1 p: m1<p<n p:

).

Cea de-a doua suma din ultimul membru este egala cu 0 deoarece
(tl)(”) =0, Vp > my, iar prima suma este 0 deoarece \; este radacina
de multiplicitate m; pentru (69) si deci L(\) = L'(A\) = ... =
Lim=D()\)) = 0.

Sa demonstram ca sistemul de solutii indicat este liniar independent
peste C.
Fie ¢q, ca, ..., c, € C astfel incat:

1Mt ocgteMt 4o f et e =0, Wt e R.
De aici rezulta
Mg (t) + €A2t92(t) 4+t 6’\kt9k(t) =0, VteR,

unde g1, ga, ..., gr sunt functii polinomiale de grade cel mult m,, ms,
.., My, Tespectiv.
De aici rezulta ca

gi(t) + e Mgy (1) 4o BTG (1) 10, V€ R.
Derivand de my ori se obtine
P2 (1) 4o NN (1) 40, VE € R,

unde hs, ..., hy sunt functii polinomiale si grad hey = grad g, ...,
grad hy = grad g. De aici deducem ca

ho(t) + ePs22t G2ty (1 L0Vt € R.
Repetand procedeul se obtine in final
ety (1) =0, Vit eR,
unde grad u, = - - - = grad hy = grad gi. De aici rezulta ca

Uk<t) =0, VteR
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si concluzia este ca u, = 0 si deci g = 0. Aceasta arata ca

Cn—my+1 = " = Cp = 0.
Analog se arataca gy =0, go =0, ..., gr_1 = 0. In concluzie rezulta
ca
cp=cp=---=c¢,=0

si deci sistemul de solutii este liniar independent.

Remarca. Problema este acum faptul ca functiile din sistemul
fundamental de solutii (din teorema anterioara) sunt cu valori com-
plexe (pot exista autovalori complexe fara a fi reale).

Fie a + ib o asemenea autovaloare (a,b € R, b # 0). Atunci a — ib
este de asemenea autovaloare si are aceeasi multiplicitate m ca a lui
a + 1b. Cum

e(aJrib)t, te(a+ib)t’ .... 7 tmfle(aJrib)t7
e(a—ib)t’ te(a—ib)t’ ''''' ’ tm—le(a—ib)t
sunt solutii pentru (68), rezulta si ca
e cosbt, tecosbt,....., t" e cos bt,
eYsinbt, tesinbt, ..., t" e sin bt

(care sunt functii reale) sunt de asemenea solutii pentru (68) si ele
genereaza acelasi subspatiu liniar ca primele (peste corpul C). Aplicand
acelagi procedeu pentru toate autovalorile din C \ R se va obtine un
sistem fundamental de solutii peste C. De aici rezulta ca acestea sunt
liniar independente si peste R.

Exemplu. Sa se gaseasca solutia generala pentru ecuatia

W — 2 =0.

Solutie. Ecuatia caracteristica este

M —1=0,
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care are solutiile 1, —1, 7 si —.
Un sistem fundamental de solutii va fi deci:

e', e7', cost, sint.
Solutia generala a ecuatiei este deci:

x(t) = cre’ + coe™" + cycost + cysint, Vt € R,

unde c¢q, ¢, 3, ¢4 sunt constante reale oarecare.

Observatie. In cazul ecuatiei neomogene cu coeficienti constanti:
2™ a4 pa, 2+ anr = f(t), tER, (71)

in care f(t) = e™P(t), unde a € R, iar P este o functie polinomiala,
ecuatia (71) are o solutie particulara de forma

2(t) = e"t'Q(t),

unde () este o functie polinomiala avand acelasi grad cu P. Aici [ este
multiplicitatea lui a ca radacina a ecuatiei caracteristice.
Daca a nu este radacina a acestei ecuatii atunci convenim ca [ = 0.

Daca f(t) = e P(t) cosbt sau f(t) = e P(t)sinbt, unde a,b € R,
iar P este o functie polinomiala, ecuatia (71) are o solutie particulara
de forma

2(t) = e (Q1(t) cos bt + Q(t) sin bt),

unde @)1, Q2 sunt functii polinomiale de acelasi grad cu P. Aici [ este
multiplicitatea lui a + b ca radacina a ecuatiei caracteristice.

Pentru demonstratie recomandam [11].

Exemplu. Sa reluam exemplul din sectiunea precedenta.

2" +x = cost

Ecuatia caracteristica este A2 + 1 = 0 si are radacinile i si —i.
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Deci, solutia generala a ecuatiei omogene asociate este
y(t) = cicost + cosint, te€R,

unde ¢y, co sunt constante reale oarecare.
Vom cauta o solutie particulara a ecuatiei neomogene date de forma

z(t) =t(Acost + Bsint), teR.

Avem
Z'(t) = (A+ Bt)cost + (B — At)sint, teR,

2"(t) = (2B — At)cost — (2A + Bt)sint, t€R

si de aici obtinem

2"(t) + 2(t) = 2B cost — 2Asint = cost.
Concluzia este ca B = %,

A = 0. Dedi,
(t) = Ltsint
z(t) = —tsin
2
este o solutie particulara si deci solutia generala
1
x(t) = ¢y cost + cysint + itsint, teR.

Desi aceasta forma pare diferita de cea din sectiunea precedenta, de
fapt nu este aga. Se poate verifica ca diferenta celor doua “tipuri” de
solutii verifica ecuatia =" + = = 0.

Ecuatii de ordinul 2 cu coeficienti constanti

Consideram ecuatia
2" + azr’ + Bxr = ysinvt,
unde o, B,v,v € R, a,v >0, B, v > 0.

1) Daca vy = 0 se obtine ca ecuatia omogena asociata este

2 +oax' + fxr =0,
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iar ecuatia caracteristica este

N4+ar+p5=0.

Daca a? — 43 > 0, atunci solutia generald a ecuatiei omogene este
z(t) = cre™M 4 cpe™

unde c1,co € R g1 Aq, A2 sunt solutiile ecuatiei caracteristice, adica:

Este evident ca

Daca a? — 43 = 0, atunci
z(t) = c,eM 4 cpte™?,

unde ¢, ¢y € R g1 Ay = —% este radacina dubla a ecuatiei caracteris-
tice. Rezulta imediat ca

Daca o? — 43 < 0, atunci

—a + /48 — o?
2

Ao =

sunt radacinile ecuatiei caracteristice si deci solutia generala a ecuatiei
omogene este

VAB = a? e, VIB=2
{4 e 2'sin ————

1) = ce— 2t
x(t) = cre” 2" cos 5 5

t,

unde ¢, ¢ € R.
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Este evident ca daca o > 0, atunci:

lim z(t) =0,

t—-+o00
iar daca a = 0, atunci solutia este marginita.
2) S& considerdam acum cazul in care v > 0 i a? — 48 < 0.
Dacid o > 0 sau  # v? atunci se cauti o solutie particulara de

forma:
z(t) = ¢ cosvt + ¢y sinvt.

Inlocuind in ecuatie se obtine:
—&1% cos vt — Gov? sin vt + o —¢& v sin vt + Gyr cos vt)
+5(¢1 cosvt + épsinvt) = ysinvt

si de aici

ei(—av) + &8 —v°) =

Rezolvand sistemul se obtine

{ ci(—=v% + B) + éav =0

C1 =

—ayv
(B —12)? 4+ a?v?’

a2
2= (B —12) + o212

Se obtine deci solutia particulara

—aryv cos vt Y(B — v?)sinvt
B-—122+a2? ' (B—12)2+a2?

2(t) =

Solutia generala a ecuatiei neomogene este deci

VAF— o VAF— o
2

aj(t) — cle_%t CcOS #t + 626_%t sin t+ Z(t),

unde ¢y, co € R. Este clar ca

lim (z(t) — 2(t)) = 0.

t—4o00
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Daci a = 0 si 8 # 1%, atunci

2(t)

_ ysinvt

O situatie extrem de interesants este aceea in care v = 0 i 3 = /2.
Se cauta o solutie particulara de forma
2(t) =t (Acosvt + Bsinvt),

unde A si B sunt constante reale. Facand calculele rezulta ca
v
z(t) = ——t cosvt
()=~

si deci
x(t) = ¢y cosvt + cosinvt — Qlt cos vt.
v
Se vede ca exista t,, — +oo astfel ca

lim |z(t,)| = 4o0.
im_a(t,)|
Acesta este fenomenul de rezonanta.
In cazul oscilatorului armonic fara frecare, modelat de ecuatia
ma” + kx = vysinvt,

se obtine fenomenul de rezonanta atunci cand

In cazul circuitului serie LC, descris de ecuatia

1
LI" + 51 = ysinvt,

se obtine fenomenul de rezonanta pentru
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Exercitii

1. Gasiti solutia generala a ecuatiei omogene:

2+ 22 — 3z =0.

2. Sa se rezolve ecuatia omogena:

2" — 62" + 112" — 62 = 0.

3. Sa se rezolve problema Cauchy:

' +42"+5x =0
z(0) =1
2'(0) = —3.

4. Sa se rezolve problema Cauchy:

" — 32" +42' — 22 =0

z(0) =1
2'(0) =2
2" (0) = 3.

5. Sa se gaseasca solutia generala a ecuatiei neomogene:

2" + 252 =1+ sint.

6. Sa se determine solutia generala a ecuatiei:
" .
"+ x =sint,

utilizand metoda variatiei constantelor.

Sa se rezolve:
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8.
2" +4x = tg 2t.

9.
2+ 2 =tgt.

10.

2" — 8x' + 9x = sin 5t.

11. O bobina de inductanta L = 4 H, un rezistor de rezistenta R =
20 Q si un condensator de capacitate C' = 0,01 F sunt legati in
serie cu o baterie cu tensiunea U = 500 V. Stiind ca la momentul
initial t =0, Q = 0si [ =0, sa se afle () si I la momentul ¢ > 0.
Sa se rezolve urmatoarele probleme:

12.

32" + 42’ + x = e 'sint.

13.
¥=2r—y—z+t
y =2 —y—2z+¢
Z=—r+y+2z
14. Sa se arate ca ecuatia Euler-Cauchy:
"™ () + ayt" V() 4+ - anx(t) = f(t)
se reduce prin substitutia ¢ = e® la o ecuatie liniara.

15. Sa se afle solutia generala a ecuatiei:

22" — 3ta’ + 22 = 0.
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16. Sa se rezolve ecuatia:

22" +tz' = tnt.

Sa se rezolve urmatoarele probleme:

17.
x| = 2x1 + 629,
xh = —2x1 — bxs.
18.
x) = 3x1 — 4as,
xh =11 — T3
19.
x) = =3z — 29,
xh = 2x1 + 9.
20.
Ty =11 — Ty,
xh = x1 + 3.
21.
xy(t) = xo(t) + ¢,
xh(t) = —z1(t) + 2x2(1).
22.

x) = 3z — w3,

xh = =211 + 239 + 3,

xly = 8xy — 3x,

£C1<O) = 1, %2(0) = —1, 33'3(0) =0.
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CURS 12

IV. ELEMENTE DE TEORIA
STABILITATII

Notiunea de solutie stabila a unei ecuatii diferentiale, precum si
primele rezultate ale teoriei moderne a stabilitatii ecuatiilor diferentiale
sunt datorate matematicianului rus A.M. Liapunov.

Vom prezenta in continuare cateva din notiunile si rezultatele de
baza ale acestei teorii.

Consideram sistemul diferential
v = f(twr)a (72)
unde
Aici
Q={(t,x) e R"™; t€[0,+00), x € R",||lz|| < a} (a>0)

(iar ||z|| = max{|z|, |x2|, ..., |xn|}, pentru z = (xq, 29, ..., z,) € R™).
Presupunem ca f este continua pe 2 si local lipschitziana in raport cu
x pe €.

Pentru orice t, > 0 si orice g € R”, ||z9]| < «, exista o unica
solutie saturata la dreapta a sistemului (72), care satisface conditia
initiala

x(ty) = .

Notam aceasta solutie z(t; to, zo).

Fie & o solutie a problemei (72) definita pe semiaxa [ty, +00).
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Definitie. Solutia & se numeste stabild (in sens Liapunov ) daca:
Ve > 0,30(s) > 0,Vzy € R™, |lzg — Z(to)|| < d(¢), rezulta ca
x(t; to, x) este definita pe toata semiaxa [ty,+00) si

la(tito, 7o) — F()| <&, V> to.

Solutia T este instabila daca nu este stabila.

Stabilitatea inseamna ca daca data xz este “suficient de aproape”
de Z(tg), atunci solutia x(t; g, x¢) este definita pe [tg, +00) gi ramane
la orice moment t > t, “aproape” de Z(t).

Definitie. Solutia x este asimptotic stabila daca este stabila si
daca exista n > 0 astfel incat

i (tto, z0) — #(1) = 0
de indata ce ||xg — Z(to)|| < 7.

Observatie. Stabilitatea este o proprietate a solutiei i nu a sis-
temului.

Exemplu. Consideram ecuatia pendulului simplu:

9" = — 9 gin 0,
L
care se poate scrie iIn mod echivalent astfel:
0=
/ g .
= —=sinf.
4 L

Astfel, se cunoaste ca solutia banala: (0,1) = (0, 0) este stabila, fara a
fi asimptotic stabila. In schimb solutia (6,1) = (7,0) nu este stabila.

Daca ¥ este solutie a ecuatiei (72) definita pe [to, +00), atunci pen-
tru orice solutie = pentru (72) avem:

(x —2)'(t) = f(t, &(t) + x(t) — Z(t)) — f (¢, Z(t)).
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Facand substitutia y = x — x, obtinem
y'(t) = f(62(t) +y(t) — f(L,2(1)).
Notand g(t,y) = f(t,z(t) + y) — f(t,&(t)) rezulta
y =g(ty) (73)

si astfel stabilitatea solutiei Z a ecuatiei (72) s-a redus la stabilitatea
solutiei nule pentru (73).

La fel, asimptotica stabilitate a lui & pentru (72) este echivalenta
cu asimptotica stabilitate a solutiei nule pentru (73).

Observatie. Avem astfel ca:

Solutia nula a ecuatiei (73) este stabila daca

Ve > 0,30(e) > 0,Vyo € R™ : |lyo|| < d(g), rezulta ca solutia
ecuatiei (73) y(t;to,yo) (ce verifica y(ty) = yo) este definita pe toata
semiaxa [to, +00) si

ly(t;to,vo)l| <e,  Vt>to.

Solutia nula a ecuatiei (73) este asimptotic stabila daca este stabila
si daca exista n > 0 astfel incat

tEeroo ly(t;to, o)l =0

de indata ce |lyo] < -

1. Criterii de stabilitate a solutiei nule pentru sis-
teme diferentiale liniare

Ne vom ocupa de studiul stabilitatii solutiei nule a sistemului
¥ = A(t)z, (74)
unde A(t) = (aij(t»lgi,jgn, t 2 0 §1 Qg5 c C([O, +OO)), VZ,j = 1, n.

Teorema. Daca solutia banala a sistemului (74) este stabila (re-
spectiv asimptotic stabild), atunci orice solutie a sistemului este stabila
(respectiv asimptotic stabila).
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Demonstratie. Daca & este o solutie oarecare pentru (74), atunci
prin transformarea y = xr — T avem:

y = Aty

si de aici deducem ca daca solutia banala a sistemului (74) este stabila,
atunci solutia 7 este stabila.

In cazul stabilitatii asimptotice se rationeaza la fel.

Observatie. Ultimul rezultat arata ca in cazul sistemelor diferentiale
liniare, stabilitatea (respectiv asimptotica stabilitate) este chiar o pro-
prietate a sistemului (nu doar a solutjiei).

De aceea sistemele liniare se numesc stabile, sau instabile, dupa
cum solutia banala este sau nu stabila.

Teorema. Sistemul (74) este stabil daca si numai daca exista
o matrice fundamentala a sa X (t) care este marginita pe [0, +00).
Acest lucru este echivalent cu faptul ca orice matrice fundamentala
este marginita pe [0, +00).

Sistemul (74) este asimptotic stabil daca si numai daca exista o
matrice fundamentala X (¢) astfel incat:

Jim_[[X(5)] = 0.

Demonstratie. Presupunem ca exista o matrice fundamentala

X (t) astfel incat
IXl<c, vz,

unde C' > 0 este o constanta.

Notam cu z(t;tg, zo) solutia sistemului (74) ce satisface conditia
x(to) = wo.

Vom demonstra ca solutia nula este stabila.

Pornim de la faptul ca

x(t;ty, m0) = X ()X Yto)zo, VYt >0. (75)
De aici deducem ca

et o, o) | < XX (o) l[[loll < CIX T (Eo)lllwoll, Yt > to.
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] Deci, Ve > 0,30(¢) = ot > 0> Voo € R™ cu |zo]| < 0 avem
ca:
|x(t;t, x0)|| < e, Yt > tp.
Daca, tlgrn | X (¢)]| = 0, atunci din (75) deducem ca
i fa(t; to,a0)]| = 0.

Reciproc, daca solutia nula este stabila, atunci sa aratam ca exista
o matrice fundamentala marginita.
In definitia stabilitatii solutiei nule alegem: ¢ = 1. Fie

5/2 0 0
0 5/2 0
0 0
Tol — s Lo = s . Xop =
0 0 0
0 0 5/2

din R™ gi notam cu 27 (t) = x(¢; ty, o;). Consideram matricea funda-
mentala:

X(t) = [2'(t) 2%(t) ... 2™(t)].
Cum [|27(t)]| < 1, Vt > tg, atunci deducem ca || X (t)|| < n, Vt > t.
Deci, matricea X (t) este marginita pe [0, 400).

Daca solutia nula este asimptotic stabila, atunci

; J —
Jdim_ 22 (1)] = 0
si deci
lim || X(¢)|| = 0.
t—-+o0

Vom discuta in continuare cazul particular cand A(t) = A (A este
o matrice constanta). Sistemul (74) devine

' = Ax. (76)



106 TEORIA STABILITATII

Definitie. Matricea A este hurwitziand daca toate autovalorile
sale au partea reala negativa.

Teorema. Sistemul (76) este asimptotic stabil daca i numai daca
A este hurwitziana.

Daca macar una dintre autovalorile lui A are partea reala strict
pozitiva, atunci sistemul este instabil.

Daca autovalorile lui A au partea reala mai mica sau egala cu 0,
iar cele care au partea reala 0 sunt simple, atunci sistemul (76) este
stabil, fara a fi asimptotic stabil.

Demonstratie (schita). Vom demonstra prima parte a acestei
teoreme. Se utilizeaza pentru aceasta teorema anterioara. Asimptot-
ica stabilitate a sistemului este astfel echivalenta cu faptul ca

lim " = 0.
t——+oo

Utilizand teorema de structura a lui e (din capitolul precedent)
se deduce ca

k
et = (O piir()eM ) 1<ij<n,
r=1

unde {\,}*_, sunt autovalorile lui A, iar p;;, sunt polinoame de grad
egal cu m, — 1 (m, este multiplicitatea autovalorii A,.).

Daca A este hurwitziana, atunci exista 6 > 0 a.l. Re A\, < —60 < 0.
De aici deducem ca

k
: 2 : Art
tlg-noo —1 Pijr (t)e =0

si deci

lim |le]| = 0.
t—-+o0

Daca

lim [l =0,
t—-+o0
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atunci rezulta prin reducere la absurd ca Re A\, < 0, Vr € {1,2,..,k}.

Demonstratiile celorlalte parti se bazeaza de asemenea pe teorema
de structurd a lui e, Pentru detalii a se vedea [5].

Observatie. In studiul stabilitatii sistemului (76) este esential
deci sa se evalueze partea reala a fiecarei autovalori a lui A, adica a
radacinilor polinomului caracteristic

p(A) = det(A] — A).

Polinomul p este hurwitzian daca radacinile sale au partea reala
negativa.

In cazul in care n = 2 sau n = 3 existd doud criterii datorate lui
Hurwitz:

Polinomul A\? + a;\ + ay (cu a;,as € R) este hurwitzian daci si
numai daca aq,as > 0.

Polinomul A\* + a;A\? + ao\ + a3 (cu ay, as, az € R) este hurwitzian
daca si numai daca a,as,a3 > 0 si ajas > as.

Toata teoria de mai sus se aplica si in cazul ecuatiilor liniare de
ordin superior.
Consideram ecuatia

2™ = flt,x, 2 Y, (77)

Definitie. Fie Z o solutie a problemei (77) definita pe semiaxa
[to, +00). Solutia & se numeste stabild, respectiv asimptotic stabild
daca (7,7, ..., 27V este stabila, respectiv asimptotic stabild pentru
sistemul
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Exemplu. Vom studia stabilitatea solutiei nule a ecuatiei oscila-
torului armonic.
Ecuatia oscilatorului armonic fara frecare este:

mx” + kx =0,

unde m, k > 0. Atagam ecuatia caracteristica

k
N+ — =0,
m

care are solutiile A\ o = £¢ % (fiecare de multiplicitate 1). Concluzia
este ca solutia nula este stabila, dar nu este asimptotic stabila.

Ecuatia oscilatorului armonic cu frecare este
ma” + vz’ + kx =0,
unde m, v, k > 0. Ecuatia caracteristica este
mA2 + Y\ + k=0,

care are doar solutii cu partea reala negativa (polinomul caracteristic
este hurwitzian). Concluzia este ca solutia nula este asimptotic stabila.

Observatie. Studiul stabilitatii solutiei Z a sistemului liniar neo-
mogen

o = A(t)x + f(t),

se reduce (prin substitutia y = = — &) la studiul stabilitatii solutiei
nule a sistemului omogen
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2. Stabilitatea sistemelor liniare perturbate. Metoda
primei aproximatii

Vom studia stabilitatea solutiei nule a sistemului diferential
o' = Az + g(t, x), (78)
unde A = (a;;)1<ij<n este o matrice constanta, iar
g:D={(t,r) e R"™; t>0,||z]| <a} CR" x R" — R"

(o > 0), este o functie continua pe D, local lipschitziana in raport cu
x pe D si verifica conditia ¢(t,0) = 0, ¥Vt > 0.

Teorema (Poincaré-Liapunov). Daca A este matrice hurwitziana,
iar g verifica
lg(t, )| < Lifzll, V(¢ 2) € D,
cu L suficient de mica, atunci solutia nula a sistemului (78) este asimp-
totic stabila.

Demonstratie. Pentru orice ty > 0 si orice zg € R™ a.d. [|zo]] < a,
sistemul (78) are o unica solutie saturata la dreapta x(t; to, o) definita

pe [to, T).
Cum A este hurwitziana, va rezulta ca exista M, a > 0 astfel ca

e < Me™%, vt >0.
Functia x(t; g, zo) fiind solutie pentru

{ ¥ =Ar+g(t,z(t)), teR
x(to) = 2o,

verifica

¢
z(t;tg, xo) = etz + [ (s, x(s:t0, 20))ds, Vit € [to, T).
to
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De aici deducem ca

t
e (t; to, o) | < [le" ™ - [l +/t 1= - Nlg(s, x(s: to, o)) || ds
0

a(t—

tg) t _
: Ha:OH—I—LM/te
0

a(t

< Me™ = |2 (55 to, 20) || ds,  VE € [to, T).
Aplicand lema lui Gronwall deducem ca

|2 (t; to, 20)|| < M||zo|e M2t vt e [t, T). (79)
Daca L < ﬁ, atunci notam cu 6 = % — LM > 0 si obtinem

|l (t; to, z0)|| < MHxOHe_G(t_tO), Vt € [to, T).

In concluzie, Ve > 0, 36(c) > 0, astfel incat Vo € R™, ||zo < 6(¢):
z(t; to, o) este definita pe toata semiaxa [to, +00) si ||z (t; to, zo)|| < €,
Vt > to. Trecand la limita in (79) obtinem ca

tngloo x(t; ty, xo) = 0.

Deci, solutia nula este asimptotic stabila.

Teorema (Perron). Daca A este hurwitziana si g verifica

lg(t, 2)[ < h(llzl)),  V(t,2) e D, (80)

h(s)

unde lim,_,q
totic stabila.

= 0, atunci solutia nula a sistemului (78) este asimp-

Demonstratie. Fie L > 0 din demonstratia teoremei anterioare.
Avem ca

lg(t, )| < Lif

pentru orice x € R" ce satisface ||z|| < /. Consideram restrictia lui
g la
D' ={(t,r) e Rt >0, |z| < '}

Aplicand teorema Poincaré-Liapunov obtinem concluzia.
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Exemplu. Sa se studieze stabilitatea solutiei nule a sistemului

I 2 &
T] = 22+ x7sInt
rh = —xy — X9 + T3 cost.

Solutie. Evident sistemul dat este de forma (78), unde n = 2,

0 1
A= ,
-1 -1

iar g : {(t,z) e R%t >0, |z|| <1} = R?,
r?sint

g(t7 L1, 1’2) -
x3cost

Avem

det(M — A) = A2+ A+ 1

(care este polinom hurwitzian) si deci A este hurwitziana. De aseme-
nea g este evident continua, local lipschitziana in raport cu z si sat-
isface ¢(¢,0) = 0,¥t > 0. Functia ¢ mai verifica conditia (80), cu
h(s) = s*. Aplicand teorema lui Perron deducem c& solutia nula este
asimptotic stabila.

Ne vom ocupa in continuare de sistemul autonom

¥ = f(x), (81)

unde
fi{xr e R"|z|]| <a} — R"

(> 0). Deci, f = (f1, f2,.-s fn), unde
fr Az e RY[lz]] <a} — R,
Vk e {1,2,...,n}.

Definitie. O solutie stationara pentru (81) este o solutie constanta
¢ (c € R") a sistemului (81). Aceasta verifica deci f(c) = 0.
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Studiul stabilitatii solutiei stationare z se reduce la studiul sta-
bilitatii solutiei nule pentru sistemul

v =[fly+3) - f(7).

Din acest motiv ne vom ocupa doar de studiul stabilitatii solutiei
stationare nule (aceasta este solutie daca f(0) = 0).

Notam on  oh of
o1 Oz OTn

Ofs  9f2 9fs

fz = ox1 Oxo e Oxn

Ofn  Ofn Ofn

o1 O0xa OTn

Teorema. Dacd f este de clasia C! (adica fi, este de clasa C*
pentru orice k € {1,2,...,n}), f(0) = 0 (este vorba despre 0 din R")
si daca matricea

A= f2(0)

este hurwitziana, atunci solutia nula a sistemului (81) este asimptotic
stabila.

Demonstratie. Din teorema lui Taylor rezulta ca

f(x) = f(0) + Az + g(x),

unde
lg(2)[l < h(llz]),
iar
iy 0.

Aplicand teorema lui Perron urmeaza concluzia.

Exemplul 1. Sa se studieze stabilitatea solutiei nule pentru ecuatia
pendulului cu frecare:
g

x"+bx’+jsin:z::0
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(b,9,1>0).
Solutie. Ecuatia data este echivalenta cu sistemul
I‘ll = T2
Ty = —% sin z, — bxs.

Acest sistem are forma (81), unde

T2

f(xleQ) -

—9sinx; — bry

Vom utiliza teorema anterioard. Functia f este de clasa C! pe {z €
R™; ||z|| < 1}. De asemenea

A=ro=("5% 1)

l

Polinomul caracteristic al lui A este A2 4+ b\ + ¥, care este evident

un polinom hurwitzian. Deci, A este hurwitziana. Concluzia este ca
solutia nula este asimptotic stabila.

Din teorema anterioara se obtine:

Teorema de stabilitate dupa prima aproximatie. Daca f
este de clasa C', c € R" a.i. f(c) = 0 si dacd matricea

A= fx(c)

este hurwitziana, atunci solutia stationara z = ¢ a sistemului (81) este
asimptotic stabila.

Exemplul 2. Consideram ecuatia

1 1
Li" + Ra' + —x = — f(2),
care descrie un circuit oscilant RLC' cu trioda (care este element de
amplificare). Se cere sa se studieze stabilitatea solutiilor stationare
stiind ca f este de clasa C*! pe R.
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Solutie. Ecuatia se poate scrie echivalent astfel:

Solutiile stationare verifica:

(%

Deci, singura solutie stationara este (f(0),0). Matricea A este in acest

caz
0 1

1 f'(0)—RC

T CL CL
Polinomul caracteristic al matricei A este
'(0) — RC 1
— L)\ + —.
CL CL
Daca avem RC > f’(0) (conditia de reglaj), atunci solutia stationara
este asimptotic stabila.

)\2

Observatie. Ultimul rezultat admite o completare:

Daca f este de clasa C1, c € R" ai. f(c) = 0 si dacd matricea A =
fz(c) admite cel putin o autovaloare cu partea reala strict pozitiva,
atunci solutia stationara x = ¢ a sistemului (81) este instabila.

Pentru demonstratie recomandam [5].

Stabilitatea sistemelor hamiltoniene

Un sistem mecanic cu n grade de libertate este complet determinat

de wvectorul de pozitie q(t) = (q1(t), qa(t), ..., ¢u(t)) (unde q1,qo, ..., Gn
sunt coordonatele generalizate ale sistemului) si de

q(t) = (qy(t), ¢5(1), ..., 4, (t)) (viteza generalizata).
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Migcarea sistemului este data de o functie scalara L(q, ¢'), numita
lagrangean. Conform principiului lui Hamilton, pe orice traiectorie,
integrala din L ia o valoare extrema. De aici deducem ca L verifica
ecuatiile lui Lagrange:

d ;0L oL

d*(y) 50 U (82)
t\dg; 4

Vie{l,2,...,n}.

Notam cu (-, -) produsul scalar uzual in R" (daca p = (p1,p2, ..., Pn)
51 Y = (Y1, Yo, -, Yn), atunci (p,y) = D pjy;)-

j=1

Functia H(q,p) = sup{(p,y) — L(¢,y);y € R"}, (p,q) € R" x R",
se numeste hamiltonianul sistemulus.

Din definitia hamiltonianului avem ca pentru

oL
p= afy(q, y)
are loc
H(g,p) + L(g.y) = (p,y)- (83)
Aici s-a notat
0G 0G 0G 0G

2" g 00 o)
si

9 =6 9 9,

8y q7y ay17 ayQ?"‘? ayn °

OL
Definind impulsul generalizat p = ?(q, q') si utilizand (82) si (83)
q

p(t) = —%Z%q(t),p(t))

rezulta ca:

(84)
(1) = %f<q<t>,p<t>>.

Sistemul (84) se numeste sistem hamiltonian atagat migcarii.
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Functia H este de clasa C'. Hamiltonianul sistemului, H, este o
integrala prima a sistemului (84) (adica, daca (p(t), q(t)) este o solutie
oarecare a sistemului (84), definita pe intervalul real I, atunci ex-
ista o constanta reala c astfel ca H(q(t),p(t)) = ¢, Yt € I). Pentru
prezentare pe larg a sistemelor hamiltoniene recomandam [10].

Teorema. Daca (G(t),p(t)) este o solutie a sistemului (84), atunci
ea nu este asimptotic stabila.

Demonstratie. Vom rationa prin reducere la absurd. Presupunem
ca ar exista o solutie (¢(t),p(t)) a sistemului (84) care este asimptotic
stabila. Atunci, ar rezulta ca exista tg > 0 si 0 > 0 astfel incat daca
(q(t), p(t)) este o solutie a sistemului (84) i daca

la(to) — a(to) |l + llp(to) — p(to)|| <6, (85)
atunci
JAim [llg(t) =@l + llp(t) = p(0)]]] = 0. (86)

Inmultind prima ecuatie din (84) cu ¢'(t) si a doua cu p'(t) si
scazandu-le obtinem:

SO0, p0) =0, Vet

<= H(q(t),p(t)) = H(q(to), p(to)),  Vt>to.

Analog avem
H(q(t),5(t)) = H(q(to), B(to)), vt = to.
Din (86) deducem ca
H{(q(to), p(to)) = H(q(to), (to))-
Concluzia este ca functia H este constanta pe multimea

{(q,p) € R |lg — 4(to)|| + |lg — B(to)|| < 6}

(care este o vecinatate a lui (G(tg), p(to))).
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De aici rezulta ca pe aceasta vecinatate, toate derivatele de ordinul
1 ale lui H sunt nule si deci ¢(t) = q(to), p(t) = p(to), ¥Vt > ty si
q(t) = q(to), p(t) = p(to), Vt > to. Din relatia (86) deducem ca

q(to) = G(to), p(to) = B(to),

ceea ce este absurd, deoarece (o) si p(tp) sunt oarecare satisfacand
conditia (85).
Astfel, rezulta concluzia teoremei.

De altfel are loc chiar un rezultat mai general (a se vedea [11]):

Teorema. Daca H : R*™ — R?' este de clasa C! si satisface
H(0,0) = 0, H(q,p) > 0, pentru orice (¢,p) € R*"\ {(0,0)}, atunci
solutia nula a sistemului (84) este stabila, fara a fi asimptotic stabila.

Demonstratia utilizeaza metoda functiei Liapunov.
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Exercitii

1. Studiati stabilitatea solutiilor ecuatiei
¥ = —2x +t,
utilizand definitia.
2. Sa se studieze stabilitatea solutiilor stationare ale sistemului:

x| = sin(zy + x9)
xh=e" —1.

3. Sa se studieze stabilitatea solutiei banale (nule) a sistemului:

¥=—-x+y
Y =—x—2y.

4. Sa se studieze stabilitatea solutiei banale a ecuatiei:

2" +2(2))? + 22" + 2 =0.

5. Sa se studieze stabilitatea solutiilor stationare ale sistemului Lotka-
Volterra:
v = a(a—y)
Yy =—y(b—1x)
(a,b>0).

6. Sa se studieze stabilitatea solutiei banale a sistemului

/

v =y — a’siny
Yy = —x — 2x cosy.

Indicatie. Sistemul este hamiltonian, cu
1

H(z,y) = 5(.732 + 9% + 2% cos y.
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7. Sa se studieze stabilitatea solutiilor stationare: pentru

2+ 32 +x+ 22 =0.

Studiati stabilitatea solutiei nule pentru:

8.
¥ =z +sinx + 9>
y = 2%+ cosy — 1.
9.
' =x —siny
y =sinx + In(y* + 1).
10.

¥ =x—y*+yz
y = x? —sinyz
2= —y+z.

119
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