
Pointeri si referinte

Fundamentele Programarii

Pointeri si referinte

• Ce este un pointer?
• Cum se declara un pointer?
• Pastrarea adreselor pointerilor
• Alocarea dinamica a memoriei
• Aritmetica pointerilor
• Pointeri si tablouri
• Apelul prin referinta cu pointeri

• Ce este o referinta?

Ce este un pointer?

• Un pointer este o variabila a carui valoare este o adresa a unui obiect de un tip bine precizat, numit ţinta
pointerului
• Ce poate fi la adresa respectiva?

• O alta variabila
• O functie

• Daca x este o variabila intreaga a carui valoare este 10, atunci putem declara un pointer care pointeaza la ea;
iar pointerul respectiv este stocat la o anumita adresa, are tipul int, iar valoarea sa este data de adresa lui x
• Trebuie sa stim intotdeauna tipul catre care pointeaza pointerul

De ce sa folosim pointerii?

• Nu putem folosi doar variabilele sau functiile insisi?
• DA, dar nu mereu

• In cadrul functiilor, pointerii pot fi folositi pentru a accesa date care sunt definite in afara functiei. Acele variabile
pot sa nu fie accesibile prin numele lor

• Pointerii pot fi folositi pentru a lucra cu tablouri mai eficient
• Se pot aloca dinamic in memorie In zona HEAP: aceasta memorie nu contine nume de variabile, iar singurul mod
de a ne referi la ea este prin pointeri
• Putem accesa adrese specifice din memorie!

Declararea pointerilor

• Sintaxa:
tipul_variabilei *nume_pointer;

• Exemple:

int *int_pointer;
double* double_pointer;
char *char_pointer;
string *string_pointer;
• Daca nu ii initializam, ei vor contine “garbage data” si ei “pot pointa oriunde”

Declararea pointerilor

• Initializarea pointerilor “care nu pointeaza nicaieri”:

tipul_variabilei *nume_pointer {nullptr};

• Exemple:

int *int_pointer { };
double* double_pointer {nullptr};
char *char_pointer {nullptr};
string *string_pointer {nullptr};

• nullptr a fost introdus in C++11 si contine adresa zero

• Initializati intotdeauna pointerii!

Accesarea adreselor pointerilor

• Operatorul adresa &

• Fiecare variabila este memorata la o adresa unica
• Operator unar
• Rezultatul folosirii lui este adresa operandului sau (deci operandul nu poate fi o constanta)

int num{ 10 };

cout << "Valoarea lui num este: " << num << endl; //10
cout << "Variabila num ocupa " << sizeof(num) << " bytes" << endl; //4
cout << "Adresa lui num este " << &num << endl; //00AFFB68

Accesarea adreselor pointerilor

• Exemplu: (se va genera o eroare deoarece p nu este initializat)

int *p;

cout << "Valoarea lui p este: " << p << endl; //garbage CCCCCCCC
cout << “Pointerul p ocupa " << sizeof(p) << " bytes" << endl; //4
cout << "Adresa lui p este " << &p << endl; //0073F744
p = nullptr; //p nu pointeaza nicaieri
cout << "Valoarea lui p este: " << p << endl; //00000000

Accesarea adreselor pointerilor

• Operatorul sizeof aplicat unui pointer

• Sa nu confundam marimea pointerului cu marimea obiectului catre care pointeaza pointerul
• Toti pointerii din program au aceeasi marime
• Ei pot pointa cate tipuri foarte mari sau foarte mici

#include<iostream>
#include<string>
#include<vector>
using namespace std;
int main() {

int *p1{nullptr};
double *p2{ nullptr };
unsigned long long *p3{ nullptr };
vector <string> *p4{ nullptr };
string *p5{ nullptr };
cout << "Pointerul p1 ocupa " << sizeof(p1) << " bytes" << endl;
cout << "Pointerul p2 ocupa " << sizeof(p2) << " bytes" << endl;
cout << "Pointerul p3 ocupa " << sizeof(p3) << " bytes" << endl;
cout << "Pointerul p4 ocupa " << sizeof(p4) << " bytes" << endl;
cout << "Pointerul p5 ocupa " << sizeof(p5) << " bytes" << endl;
return 0;

}

4
4
4
4
4

Accesarea adreselor pointerilor

• Tipul catre care pointeaza un pointer

• Compilatorul se asigura daca adresa memorata intr-un pointer are tipul corect

int scor{ 10 };
double temperatura{ 13.7 };

int *p{ nullptr };
p = &scor;

p = &temperatura;

p=0019FDDC

Eroare a compilatorului!!!

Pastrarea unei adrese intr-o variabila

Operatorul adresa &

• Pointerii sunt variabile deci isi pot schimba valoarea pe parcursul programului
• Pointerii pot fi nuli
• Pointerii pot sa nu fie initializati (nu este recomandat)

double greutate { 10.4 };
double temperatura{ 13.7 };

double *p; //pointeaza oriunde

p = &greutate;
cout << p <<endl;

p = &temperatura;
cout << p << endl;

p = nullptr; //nu pointeaza nicaieri
cout << p << endl;

00DBF7B0

00DBF7A0

00000000

Accesarea datelor la care pointeaza pointerii

- Dereferentierea pointerilor-

• Daca p este un pointer si are ca valoare o adresa valida, atunci putem accesa entitatea care se
afla la adresa respectiva cu ajutorul operatorului de dereferentiere *

Exemplu:

int scor{ 10 };
int *p2{ &scor };

cout << *p2 << endl; //10
*p2 = 9;
cout << *p2 << endl; //9
cout << scor << endl; //9

Accesarea datelor la care pointeaza pointerii

- Dereferentierea pointerilor-

Exemplu:

double greutate { 10.4 };
double temperatura{ 13.7 };

double *p{ &greutate };

cout << *p << endl; // 10.4
cout << &greutate << endl; // 00AFFC70
cout << p << endl; // 00AFFC70

p = &temperatura;
cout << *p << endl; // 13.7
cout << &temperatura << endl; // 00AFFC60
cout << p << endl; // 00AFFC60

Accesarea datelor la care pointeaza pointerii

- Dereferentierea pointerilor-

Exemplu:

string nume{ "Simona" };

string *s{ &nume };
cout << *s << endl; //Simona
nume = "Elena";
cout << *s << endl; //Elena

Accesarea datelor la care pointeaza pointerii

- Dereferentierea pointerilor-

Exemplu:

int scor{ 100 };
int *p{ &scor };
cout << *p << endl;
*p = 200;
cout << scor << endl;
cout << *p << endl;

100

200

200

Accesarea datelor la care pointeaza pointerii

- Dereferentierea pointerilor-

Exemplu:

double temp_mare{ 28.4 };
double temp_mica{ 3.2 };
double *p{ &temp_mare };

cout << *p << endl;
p = &temp_mica;
cout << *p << endl;
*p = 14.3;
cout << temp_mare << endl;
cout << temp_mica << endl;

28.4

3.2

28.4

14.3

Alocarea dinamica a memoriei

• De multe ori nu stim de cata memorie avem nevoie de la inceput
• Putem aloca memorie pentru o variabila in timpul executiei

• Reamintim ca la tablouri dimensiunea maxima trebuie precizata si fixata de la inceput,
in timp ce in cazul vectorilor putem creste in mod dinamic dimensiunea

• Putem folosi pointerii pentru a aloca un spatiu nou in memoria heap

Alocarea dinamica a memoriei

• Folosirea cuvantului cheie new pentru alocarea memoriei

int *pointer_catre_int{ nullptr };

pointer_catre_int = new int; //se aloca spatiu in memoria heap pentru un intreg

cout << pointer_catre_int << endl; //007A0578

cout << *pointer_catre_int << endl; //-842150451 --gunoi

*pointer_catre_int = 100;

cout << *pointer_catre_int << endl; //100

Alocarea dinamica a memoriei

• Folosirea cuvantului cheie delete pentru stergerea din memorie

int *pointer_catre_int{ nullptr };

pointer_catre_int = new int; //se aloca spatiu in memoria heap pentru un intreg

cout << pointer_catre_int << endl; //007A0578

cout << *pointer_catre_int << endl; //-842150451 --gunoi

*pointer_catre_int = 100;

cout << *pointer_catre_int << endl; //100

delete pointer_catre_int;

Alocarea dinamica a memoriei

• Folosirea cuvantului cheie new pentru alocarea memoriei heap necesara unui tablou
si a cuvantului cheie delete pentru stergerea din memeoria heap a tabloului

int *pointer_catre_tablou{ nullptr };
int dim;

cout << "Care doriti sa fie lungimea tabloului? ";
cin >> dim;

pointer_catre_tablou = new int[dim];

cout << pointer_catre_tablou << endl; //adresa primului element din tablou

delete[] pointer_catre_tablou;

Relatia dintre tablouri si pointeri

• Valoarea numelui unui tablou este adresa primului element din tablou;
• Valoarea unui pointer este o adresa
• Daca pointerul pointeaza la acelasi tip de date ca un element din tablou atunci
pointerul si numele tabloului se pot interschimba (singura diferenta este ca numele
tabloului nu este o variabila, deci nu se poate schimba)

Relatia dintre tablouri si pointeri

• Exemplu:

int note[]{ 10,9,8 };
cout << note << endl; //00EFFB90 adresa primului element din tablou
cout << *note << endl; //10

int *pointer_catre_note{ note };

cout << pointer_catre_note << endl; ///00EFFB90
cout << *pointer_catre_note << endl; //10

Relatia dintre tablouri si pointeri

• Exemplu:

int note[]{ 10,9,8 };

int *pointer_catre_note{ note };

cout << pointer_catre_note[0] << endl; //10
cout << pointer_catre_note[1] << endl; //9
cout << pointer_catre_note[2] << endl; //8

Relatia dintre tablouri si pointeri

• Exemplu:

int note[]{ 10,9,8 };

int *pointer_catre_note{ note };

cout << pointer_catre_note << endl; //00BEF988
cout << (pointer_catre_note+1) << endl; //00BEF98C = 00BEF988 + 4
cout << (pointer_catre_note+2) << endl; //00BEF990 = 00BEF98C + 4

Relatia dintre tablouri si pointeri

• Exemplu:

int note[]{ 10,9,8 };

int *pointer_catre_note{ note };

cout << *pointer_catre_note << endl; //10
cout << *(pointer_catre_note+1) << endl; //9
cout << *(pointer_catre_note+2) << endl; //8

Relatia dintre tablouri si pointeri

int nume_tablou [] {1,2,3,4,5};
int *p {nume_tablou};

nume_tablou[index] *(nume_tablou+index)

p[index] *(p+index)

Aritmetica pointerilor

Operaţiile aritmetice cu pointeri au fost concepute în principal pentru parcurgerea tablourilor, mai
precis, pentru accesarea datelor stocate în zone de memorie organizate ca locaţii succesive de
aceeaşi mărime. Să reamintim că mărimea locaţiei de memorie a unei variabile sau a unui tip poate
fi aflată cu operatorul sizeof.

Avem următoarele reguli de calcul:
• mărimea unui tip simplu = sizeof(tip);
• mărimea unui tablou = nr.elemente*sizeof(tip_element);

• Operaţiile aritmetice sunt permise numai pentru pointeri care au mărimea ţintei bine definită (şi deci ţinta
poate fi element al unui tablou). Sunt definite numai următoarele operaţii:

Aritmetica pointerilor

I) Incrementare/decrementare.

Dacă p este o variabilă pointer pentru care este definită mărimea ţintei *p, atunci sunt permise operaţiile
p++, p--, ++p şi --p, care au aceeaşi interpretare ca în cazul variabilelor aritmetice, cu singura deosebire că
pasul incrementării este egal cu mărimea ţinei:

int a=12;

int *p=&a;

cout<<"p="<<p<<endl;//p=0012FF60

p++;

cout<<"p="<<p<<endl;//p=0012FF64

double *pp=NULL;

cout<<"pp="<<pp<<endl; //pp=00000000

pp++;

cout<<"pp="<<pp<<endl; //pp=00000008

Observăm că incrementarea se face cu pasul sizeof(*p).

Aritmetica pointerilor

II) Suma şi diferenţa dintre un pointer şi un întreg.

Dacă p este un pointer iar i este un întreg, expresiile p+i şi i+p au ca rezultat valoarea lui p mărită cu
i*sizeof(*p), iar diferenţa p-i are ca rezultat valoarea lui p micşorată cu i*sizeof(*p).

 int i=2;

int *pp=&i;

cout<<"pp ="<<pp <<endl; //pp =0033FDEC

cout<<"pp+i="<<pp+i<<endl; //pp+i=0033FDF4=0033FDEC+2*4

cout<<"pp-1="<<pp-1<<endl; //pp-1=0033FDE8=0033FDEC-1*4

//cout<<"i-pp="<<i-pp<<endl;

//error: pointer can only be subtracted from another pointer

pp+=5;

cout<<"pp ="<<pp <<endl; //pp =0033FE00=0033FDEC+5*4

Aritmetica pointerilor

III) Diferenţa a doi pointeri.

Este permisă scăderea a doi pointeri de acelaşi tip, rezultatul este de tip int, iar pasul operaţiei este egal cu
mărimea tipului ţintă.

 int a,b,*p=&a,*q=&b;

cout<<"p="<<p<<endl; //p=0012FF60

cout<<"q="<<q<<endl; //q=0012FF54

cout<<"p-q="<<p-q<<endl; //p-q=3=12/4

 (0012FF60-0012FF54=C=12(10))

Aritmetica pointerilor

III) Comparaţia a doi pointeri.

Doi pointeri de acelaşi tip pot fi comparaţi cu operatorii <, <=, ==, >= şi >.
Un caz particular îl reprezintă comparaţia cu zero, care este permisă, zero fiind asimilat cu pointerul nul.

int a, b, *p = &a, *q = &b;
double bb, *pp = &bb;
cout << p << endl; //010FFCA4 = 17824932 (in baza 10)
cout << q << endl; //010FFC98 = 17824920 (in baza 10)
if (p <= q) cout << "p<=q" << endl;//p>q
else cout << "p>q" << endl;
p = NULL;
if (p == 0) cout << "p==NULL" << endl; //p==NULL
//if(p<pp) cout<<"???"<<endl;//error: no conversion
//from 'double *' to 'int *'

Pointeri si constante

• Pointeri care tintesc catre constante
• Pointeri constanti
• Pointeri constanti care tintesc catre constante

Pointeri a caror tinte sunt constante

• Valoarea obiectului catre care pointeaza pointerul este constanta si deci nu poate fi schimbata
• Pointerul poate sa se schimbe si sa pointeze la alt obiect

int notaMare{ 10 };
int notaMica{ 4 };
const int *p{ ¬aMare };

*p = 9; //EROARE
p = ¬aMica;

Pointeri constanti

• Valoarea obiectului catre care pointeaza pointerul poate fi schimbata
• Pointerul nu poate sa pointeze la alt obiect

int notaMare{ 10 };
int notaMica{ 4 };
int *const p{ ¬aMare };

*p = 9; //OK
p = ¬aMica; //EROARE

Pointeri constanti care tintesc catre constante

• Valoarea obiectului catre care pointeaza pointerul nu poate fi schimbata
• Pointerul nu poate sa pointeze la alt obiect

int notaMare{ 10 };
int notaMica{ 4 };
const int *const p{ ¬aMare };

*p = 9; //EROARE
p = ¬aMica; //EROARE

Apelarea functiilor prin referinta cu ajutorul

pointerilor

Exemplu:

void dubleaza(int *p) {
*p *= 2;

}

int main(){
int a{ 10 };
int *p{nullptr};
cout << "a = " << a << endl;
dubleaza(&a);
cout<< "a = " << a << endl;

p = &a;
dubleaza(p);
cout<< "a = " << a << endl;

return 0;
}

10

20

40

Apelarea functiilor prin referinta cu ajutorul

pointerilor

Exemplu:

void schimba(int *a, int *b) {
int aux = *a;
*a = *b;
*b = aux;

}

int main() {
int x{ 100 }, y{ 200 };
cout << "x = " << x << endl;
cout << "y = " << y << endl;
schimba(&x, &y);
cout << "x = " << x << endl;
cout << "y = " << y << endl;
return 0;

}

100

200

200

100

Returnarea unui pointer de catre o functie

• Functiile pot returna pointeri (acestia nu trebuie sa pointeze
catre variabile locale declarate in cadrul functiei)

type *functie();

int *max(int *p1, int *p2) {
if (*p1 > *p2)
return p1;
else
return p2;

}

int main() {
int a{ 100 };
int b{ 200 };
int *maxim{ nullptr };
maxim = max(&a, &b);
cout << *maxim << endl;
return 0;

}

Ce este o referinta?

• Un alias pentru o variabila
• Trebuie sa se refere la o anumita variabila atunci cand este declarata
• Nu poate fi nula
• O data ce au fost initializate nu se pot referi la o alta variabila
• Foarte folositoare ca parametru de functii
• Putem gandi o referinta ca un pointer constant care este in mod automat

dereferentiat.

Ce este o referinta?

• Exemplu:

int num{ 100 };
int &ref{ num };

cout << num << endl;
cout << ref << endl<<endl;

num = 200;
cout << num << endl;
cout << ref << endl<<endl;

ref = 300;
cout << num << endl;
cout << ref << endl;

100
100

200
200

300
300

L-values si R-values

• L-values

• Valori care au nume si admit o adresa
• Se pot modifica daca nu sunt constante

int x{ 100 }; //x este o l-value
x = 1000;
x = 1000 + 20;

string nume; // nume este o l-value
nume = "Simona";

100 = x; //100 NU este o l-value

(1000 + 20) = x; // (1000+20) NU este o l-value (nu are o adresa)

"Simona" = nume; //"Simona" NI este o l-value

L-values si R-values

• R-values

• Valori care nu admit o adresa si nu li se poate asocia o valoare
• R-value este o valoare care nu este o l-value

• Ce se afla in partea dreapta a operatorului de atribuire
• Un literal
• O variabila temporara (care nu admite o adresa)

int x{ 100 }; //100 este o r-value
x = 1000; //1000 este o r-value
int y;
y= x + 20; // (x+20) este o r-value

string nume;
nume = "Simona"; // "Simona" este o r-value

int num_max = max(20, 30); //max(20,30) este o r-value

L-values si R-values

• R-values pot fi atribuite lui l-values in mod explicit

int x{ 100 }; //100 este o r-value
int y{ 0 };
y= x + 20; // (x+20) este o r-value

y=100; // r-value 100 este atribuita lui l-value y

x=x+y; // r-value x+y este atribuita lui l-value x

L-values si R-values

• Referintele se refera la l-values

• Exemplul1:

int x{ 100 }; //x este o l-value
int &ref1 = x; // ref1 este referinta la l-value x
ref1=1000;

int &ref2 = 100; // Eroare: 100 este o r-value

• Exemplul2:
int patratul_unui_numar(int &n) {
return n * n;
}
int main() {
int num{ 10 }; //num este l-value
patratul_unui_numar(num); //OK

patratul_unui_numar(10); //EROARE: 10 este o r-value
}

	Slide 1: Pointeri si referinte
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5:
	Slide 6:
	Slide 7:
	Slide 8:
	Slide 9:
	Slide 10:
	Slide 11:
	Slide 12:
	Slide 13:
	Slide 14:
	Slide 15:
	Slide 16:
	Slide 17:
	Slide 18:
	Slide 19:
	Slide 20:
	Slide 21:
	Slide 22:
	Slide 23:
	Slide 24:
	Slide 25:
	Slide 26:
	Slide 27:
	Slide 28:
	Slide 29:
	Slide 30:
	Slide 31:
	Slide 32:
	Slide 33:
	Slide 34:
	Slide 35:
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

