

Ce este un pointer?

» Un pointer este o variabila a carui valoare este o adresa a unui obiect de un tip bine precizat, numit tinta
pointerului
« Ce poate fi la adresa respectiva?

* O alta variabila

« O functie
» Daca x este o variabila intreaga a carui valoare este 10, atunci putem declara un pointer care pointeaza la ea
lar pointerul respectiv este stocat la o anumita adresa, are tipul int, iar valoarea sa este data de adresa lui x
» Trebuie sa stim intotdeauna tipul catre care pointeaza pointerul

De ce sa folosim pointerii?

* Nu putem folosi doar variabilele sau functiile insisi?
« DA, dar nu mereu

 In cadrul functiilor, pointerii pot fi folositi pentru a accesa date care sunt definite in afara functiei. Acele variabile
pot sa nu fie accesibile prin numele lor

« Pointerii pot fi folositi pentru a lucra cu tablouri mai eficient

» Se pot aloca dinamic in memorie In zona HEAP: aceasta memorie nu contine nume de variabile, iar singurul mod
de a ne referi la ea este prin pointeri

e Putem accesa adrese specifice din memorie!

Declararea pointerilor

* Sintaxa:
tipul_variabilei *nume_pointer;

« Exemple:

int *int_pointer;

double* double_pointer;

char *char_pointer;

string *string_pointer;

« Daca nuiiinitializam, ei vor contine “garbage data” si ei “pot pointa oriunde”

Declararea pointerilor
* Initializarea pointerilor “care nu pointeaza nicaieri":

tipul_variabilei *nume_pointer {nullptr};

« Exemple:

int *int_pointer { };

double* double_pointer {nullptr};
char *char_pointer {nullptr};
string *string_pointer {nullptr};

* nullptr a fost introdus in C++11 si contine adresa zero

* Initializati intotdeauna pointerii!

Accesarea adreselor pointerilor
» Operatorul adresa &

* Fiecare variabila este memorata la o adresa unica
* Operator unar
« Rezultatul folosirii lui este adresa operandului sau (deci operandul nu poate fi o constanta)

int num{ 10 };

cout << "Valoarea luil num este: " << num << endl; //1©
cout << "Variabila num ocupa " << sizeof(num) << " bytes" << endl; //4
cout << "Adresa lui num este " << &num << endl; //OOAFFB68

Accesarea adreselor pointerilor

* Exemplu: (se va genera o eroare deoarece p nu este initializat)
int *p;

cout << "Valoarea lui p este: " << p << endl; //garbage CCCCCCCC
cout << “Pointerul p ocupa " << sizeof(p) << " bytes" << endl; //4
cout << "Adresa lui p este " << &p << endl; //0073F744

p = nullptr; //p nu pointeaza nicaieri

cout << "Valoarea lui p este: " << p << endl; //00000000

Accesarea adreselor pointerilor
« Operatorul sizeof aplicat unui pointer

* Sa nu confundam marimea pointerului cu marimea obiectului catre care pointeaza pointerul
 Toti pointerii din program au aceeasi marime
« Ei pot pointa cate tipuri foarte mari sau foarte mici

#include<iostream>

#include<string>

#include<vector>

using namespace std;

int main() {
int *pl{nullptr};
double *p2{ nullptr };
unsigned long long *p3{ nullptr };
vector <string> *p4{ nullptr };
string *p5{ nullptr };
cout << "Pointerul pl ocupa " << sizeof(pl) <<
cout << "Pointerul p2 ocupa " << sizeof(p2) <<
cout << "Pointerul p3 ocupa " << sizeof(p3) <<
cout << "Pointerul p4 ocupa " << sizeof(p4) <<
cout << "Pointerul p5 ocupa " << sizeof(p5) <<
return 0;

bytes" << endl;
bytes" << endl;
bytes" << endl;
bytes" << endl;
bytes" << endl;

BB DD

Accesarea adreselor pointerilor
 Tipul catre care pointeaza un pointer

« Compilatorul se asigura daca adresa memorata intr-un pointer are tipul corect

int scor{ 10 };
double temperatura{ 13.7 };

int *p{ nullptr };
p = &scor; p=0019FDDC

p = &temperatura; Eroare a compilatorului!!!

Pastrarea unei adrese intr-o variabila

Operatorul adresa &

* Pointerii sunt variabile deci isi pot schimba valoarea pe parcursul programului
» Pointerii pot fi nuli
» Pointerii pot sa nu fie initializati (nu este recomandat)

double greutate { 10.4 };
double temperatura{ 13.7 };

double *p; //pointeaza oriunde

00ODBF7BO
p = &greutate;
cout << p <<endl;
p = &temperatura; O0ODBF/7AO

cout << p << endl;

p = nullptr; //nu pointeaza nicaieri

cout << p << endl; 00000000

Accesarea datelor la care pointeaza pointerii

- Dereferentierea pointerilor-

» Daca p este un pointer si are ca valoare o adresa valida, atunci putem accesa entitatea care se
afla la adresa respectiva cu ajutorul operatorului de dereferentiere *

Exemplu:

int scor{ 10 };
int *p2{ &scor };

cout << *p2 << endl; //10
*p2 = 9;

cout << *p2 << endl; //9
cout << scor << endl; //9

Accesarea datelor la care pointeaza pointerii

- Dereferentierea pointerilor-

Exemplu:

double greutate { 10.4 };
double temperatura{ 13.7 };

double *p{ &greutate };

cout << *p << endl; // 10.4
cout << &greutate << endl; // OOAFFC70
cout << p << endl; // ©OAFFC70

p = &temperatura;

cout << *p << endl; // 13.7

cout << &temperatura << endl; // OOAFFC60
cout << p << endl; // ©OOAFFC60

re pointeaza pointerii

messssnsnssnnanennannnnnn o snsnsnsnaannnnnnnnnnnnnnnnnnnnnnnnfunnnnnnnnnnnnnnnnnnnnnnnnd

T T T T T T T T I T T TT T TTT T TTT T T

re pointeaza pointerii

messssnsnssnnanennannnnnn o snsnsnsnaannnnnnnnnnnnnnnnnnnnnnnnfunnnnnnnnnnnnnnnnnnnnnnnnd

T T T T T T T T I T T TT T TTT T TTT T T

Accesarea datelor la care pointeaza pointerii

- Dereferentierea pointerilor-

Exemplu:

double temp mare{ 28.4 };
double temp mica{ 3.2 };
double *p{ &temp mare };

cout << *p << endl; 28.4
p = &temp _mica;

cout << *p << endl; 3.2
*p = 14.3;

cout << temp mare << endl; 28.4

cout << temp mica << endl; 14.3

Alocarea dinamica a memoriei

e De multe ori nu stim de cata memorie avem nevoie de la inceput
e Putem aloca memorie pentru o variabila in timpul executiei

e Reamintim ca la tablouri dimensiunea maxima trebuie precizata si fixata de la inceput,
in timp ce in cazul vectorilor putem creste in mod dinamic dimensiunea

e Putem folosi pointerii pentru a aloca un spatiu nou in memoria heap

Alocarea dinamica a memoriei

e Folosirea cuvantului cheie new pentru alocarea memoriei

int *pointer catre int{ nullptr };

pointer_catre_int = new int; //se aloca spatiu in memoria heap pentru un intreg
cout << pointer_catre_int << endl; //007A0578

cout << *pointer_catre _int << endl; //-842150451 --gunoi

*pointer catre int = 100;

cout << *pointer _catre int << endl; //100

Alocarea dinamica a memoriei

* Folosirea cuvantului cheie delete pentru stergerea din memorie

int *pointer catre int{ nullptr };

pointer_catre_int = new int; //se aloca spatiu in memoria heap pentru un intreg
cout << pointer_catre_int << endl; //007A0578

cout << *pointer_catre _int << endl; //-842150451 --gunoi

*pointer catre int = 100;

cout << *pointer_catre_int << endl; //100

delete pointer_catre_int;

Alocarea dinamica a memoriei

* Folosirea cuvantului cheie new pentru alocarea memoriei heap necesara unui tablou
si a cuvantului cheie delete pentru stergerea din memeoria heap a tabloului

int *pointer_catre tablou{ nullptr };
int dim;

cout << "Care doriti sa fie lungimea tabloului? ";
cin >> dim;

pointer catre_tablou = new int[dim];
cout << pointer_catre_tablou << endl;

delete[] pointer _catre_tablou;

Relatia dintre tablouri si pointeri

e Valoarea numelui unui tablou este adresa primului element din tablou;

e Valoarea unui pointer este o adresa
e Daca pointerul pointeaza la acelasi tip de date ca un element din tablou atunci
pointerul si numele tabloului se pot interschimba (singura diferenta este ca numele

tabloului nu este o variabila, deci nu se poate schimba)

Relatia dintre tablouri si pointeri

e Exemplu:

int note[]{ 10,9,8 };
cout << note << endl; //OOEFFB9@ adresa primului element din tablou
cout << *note << endl; //10

int *pointer_catre_note{ note };

cout << pointer_catre_note << endl; ///©OEFFBS©
cout << *pointer_catre note << endl; //10

Relatia dintre tablouri si pointeri

e Exemplu:

int note[]{ 10,9,8 };

int *pointer_catre_note{ note };

cout << pointer_catre _note[@] << endl; //10

cout << pointer_catre _note[l] << endl; //9
cout << pointer_catre note[2] << endl; //8

Relatia dintre tablouri si pointeri

e Exemplu:

int note[]{ 10,9,8 };

int *pointer_catre_note{ note };

cout << pointer catre note << endl; //©OBEF988

cout << (pointer_catre note+l) << endl; //©GOBEF98C
cout << (pointer_catre note+2) << endl; //©OBEF990

OOBEF988 + 4
OOBEF98C + 4

Relatia dintre tablouri si pointeri

e Exemplu:

int note[]{ 10,9,8 };

int *pointer_catre_note{ note };

cout << *pointer_catre_note << endl; //10

cout << *(pointer_catre_note+l) << endl; //9
cout << *(pointer_catre_note+2) << endl; //8

sadassssssssssssssssssnssssnsshonsnssansssnnnnnnnnnnnnnnnfunsnannnnsnnnnsnnnnsnnnnnnd

..

louri si pointeri

Besssssssssssssnssssansfunn ssssssssssssshasssssssssnsansnsnnsasnnsafannannnnnnnnnnnnnnnnnnnnnnd

. N NN NN RN RN RN RN EEEEEEEEEEEEEfErEEEEEEEEEEEEEEEEEEEes

...

..

T

e EEEEEEEEEEEEEEEEEEEfEEEEEEEEEsEEEsEsEsEsEsEsEsfEEsEsEsEsEsEsEsEsEsEaEes

Aritmetica pointerilor

Operatiile aritmetice cu pointeri au fost concepute in principal pentru parcurgerea tablourilor, mai
precis, pentru accesarea datelor stocate in zone de memorie organizate ca locatii succesive de
aceeasi marime. Sa reamintim ca marimea locatiei de memorie a unei variabile sau a unui tip poate
fi aflata cu operatorul sizeof.

Avem urmatoarele reguli de calcul:
* marimea unui tip simplu = sizeof{(tip);
* marimea unui tablou = nr.elemente*sizeof(tip_element);

» Operatiile aritmetice sunt permise numai pentru pointeri care au marimea tintei bine definita (si deci tinta
poate fi element al unui tablou). Sunt definite numai urmatoarele operatii:

Aritmetica pointerilor

|) Incrementare/decrementare.

Daca p este o variabila pointer pentru care este definita marimea tintei *p, atunci sunt permise operatiile
p++, p--, ++p si --p, care au aceeasi interpretare ca in cazul variabilelor aritmetice, cu singura deosebire ca
pasul incrementarii este egal cu marimea tinei:

int a=12;

int *p=&a;

cout<<"p="<<p<<endl; //p=0012FF60
pt+t+t;

S e nicl. /. =001 2FF64
double *pp=NULL;

cout<<"pp="<<pp<<endl; //pp=00000000
pp++;
cout<<"pp="<<pp<<endl; //pp=00000008

Observam ca incrementarea se face cu pasul sizeof(*p).

Aritmetica pointerilor

1) Suma si diferenta dintre un pointer si un intreg.

Daca p este un pointer iar i este un intreg, expresiile p+i si i+p au ca rezultat valoarea lui p marita cu
i*sizeof(*p), iar diferenta p-i are ca rezultat valoarea lui p micsorata cu i*sizeof(*p).

int 1=2;

SR R e e]

cout<<"pp ="<<pp <<endl; //pp =0033FDEC
cout<<"pp+i="<<pp+i<<endl; //pp+i=0033FDF4=0033FDEC+2*4
cout<<"pp-1="<<pp-1l<<endl; //pp-1=0033FDE8=0033FDEC-1*4
//cout<<"i-pp="<<i-pp<<endl;

//error: pointer can only be subtracted from another pointer

pp+=5;
cout<<"pp ="<<pp <<Kendl; //pp =0033FE00=0033FDEC+5*4

Aritmetica pointerilor

IIl) Diferenta a doi pointeri.

Este permisa scaderea a doi pointeri de acelasi tip, rezultatul este de tip int, iar pasul operatiei este egal cu
marimea tipului tinta.

int a,b, *p=&a, *g=&b;

cout<<"p="<<p<<endl; //p=0012FF60

cout<<"g="<<g<<endl; //g=0012FF54

cout<<"p-g="<<p-g<<endl; //p-g=3=12/4
(0012FF60-0012FF54=C=12)

Aritmetica pointerilor

lIl) Comparatia a doi pointeri.

Doi pointeri de acelasi tip pot fi comparati cu operatorii <, <=, ==, >= si >,
Un caz particular 1l reprezinta comparatia cu zero, care este permisa, zero fiind asimilat cu pointerul nul.

int a, b, *p = &, *q = &b;

double bb, *pp = &bb;

cout << p << endl; //@10FFCA4 = 17824932 (in baza 10)
cout << g << endl; //O©1OFFC98 = 17824920 (in baza 10)
if (p <= q) cout << "p<=q" << endl;//p>q

else cout << "p>q" << endl;

p = NULL;

if (p == @) cout << "p==NULL" << endl; //p==NULL
//if(p<pp) cout<<"???"<<endl;//error: no conversion
//from 'double *' to 'int *'

ynstante

sEEmmmsssnnnnnnnn e e sesssnsnshunnnnnnnnnnnnnnnnnnnnnnnnunnnnnnnnnnnnnnnnnnnnnnnnfuonsn
..

Pointeri a caror tinte sunt constante

» Valoarea obiectului catre care pointeaza pointerul este constanta si deci nu poate fi schimbata
» Pointerul poate sa se schimbe si sa pointeze la alt obiect

int notaMare{ 10 };
int notaMica{ 4 };
const int *p{ ¬aMare };

*p = 9; //EROARE
p = ¬aMica;

Pointeri constanti

» Valoarea obiectului catre care pointeaza pointerul poate fi schimbata
» Pointerul nu poate sa pointeze la alt obiect

int notaMare{ 10 };
int notaMica{ 4 };
int *const p{ ¬aMare };

p = ¬aMica; //EROARE

Pointeri constanti care tintesc catre constante

* Valoarea obiectului catre care pointeaza pointerul nu poate fi schimbata
» Pointerul nu poate sa pointeze la alt obiect

int notaMare{ 10 };
int notaMica{ 4 };
const int *const p{ ¬aMare };

*p = 9; //EROARE
p = ¬aMica; //EROARE

Apelarea functiilor prin referinta cu ajutorul

pointerilor
Exemplu:
void dubleaza(int *p) {
*p k — 2;
}
int main(){
int a{ 10 };
int *p{nullptr}; 10
cout << "a = " << a << endl;
dubleaza(&a);
cout<< "a = " << a << endl; 20
p = &a;
dubleaza(p);
cout<< "a = " << a << endl; 40
return 0;

Apelarea functiilor prin referinta cu ajutorul

pointerilor
Exemplu:
void schimba(int *a, int *b) {
int aux = *a;
*a = *b;
*b = aux;
}
int main() {
int x{ 100 }, y{ 200 }; 100
cout << "x = " << X << endl;
cout << "y = " << y << endl; 200
schimba(&x, &y);
cout << "X = " << X << endl; 200
cout << "y = " << y << endl;
return 0; 100

Returnarea unui pointer de catre o functie

* Functiile pot returna pointeri (acestia nu trebuie sa pointeze
catre variabile locale declarate in cadrul functiei)

type *functie();

int *max(int *pl, int *p2) {
if (* > *p2)
return 5
else
return F

}

int main() {
int a{ 100 };
int b{ 200 };
int *maxim{ nullptr };
maxim = max(&a, &b);
cout << *maxim << endl;
return 0;

Ce este o referinta?

Un alias pentru o variabila

Trebuie sa se refere la 0 anumita variabila atunci cand este declarata

Nu poate fi nula

O data ce au fost initializate nu se pot referi la o alta variabila

Foarte folositoare ca parametru de functii

Putem gandi o referinta ca un pointer constant care este in mod automat
dereferentiat.

| -values si R-values

 L-values

* Valori care au nume si admit o adresa
» Se pot modifica daca nu sunt constante

int x{ 100 }; //x este o l-value
X = 1000;
X = 1000 + 20;

string nume; // nume este o l-value
nhume = "Simona";

100 = x; //100 NU este o 1l-value
(1600 + 20) = x; // (1000+20) NU este o l-value (nu are o adresa)

"Simona" = nume; //"Simona" NI este o 1l-value

| -values si R-values

e R-values

» Valori care nu admit o adresa si nu li se poate asocia o valoare
* R-value este o valoare care nu este o |-value

» Ce se afla in partea dreapta a operatorului de atribuire

« Un literal

* O variabila temporara (care nu admite o adresa)

int x{ 100 }; //100 este o r-value
X = 1000; //1000 este o r-value
int y;

y= X + 20; // (x+20) este o r-value

string nume;
nume = "Simona"; // "Simona" este o r-value

int num_max = max(20, 30); //max(20,30) este o r-value

| -values si R-values

« Referintele se refera la l-values
* Exemplul1:

int x{ 100 }; //x este o l-value
int &refl = x; // refl este referinta la 1l-value x
refl1=1000;

int &ref2 = 100; // Eroare: 100 este o r-value

+ Exemplul2:

int patratul_unui_numar(int &n) {
return n * n;

}

int main() {

int num{ 10 }; //num este 1l-value
patratul unui_numar(num); //O0K

patratul_unui_numar(10); //EROARE: 10 este o r-value
}

	Slide 1: Pointeri si referinte
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5:
	Slide 6:
	Slide 7:
	Slide 8:
	Slide 9:
	Slide 10:
	Slide 11:
	Slide 12:
	Slide 13:
	Slide 14:
	Slide 15:
	Slide 16:
	Slide 17:
	Slide 18:
	Slide 19:
	Slide 20:
	Slide 21:
	Slide 22:
	Slide 23:
	Slide 24:
	Slide 25:
	Slide 26:
	Slide 27:
	Slide 28:
	Slide 29:
	Slide 30:
	Slide 31:
	Slide 32:
	Slide 33:
	Slide 34:
	Slide 35:
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

