
Operatii de intrare/iesire. Fluxuri.

• Fluxuri (stream-uri) si operatiile de intrare/iesire (I/O)
• Manipulatori de fluxuri
• Citirea si scrierea fisierelor text

Fluxuri.

• C++ utilizeaza fluxurile ca o interfata intre program si dispozitivele de intrare/iesire (citire/afisare).

• Fluxurile sunt independente de dispozitivul actual folosit.

• Fluxurile (streams) reprezintă o modalitate de a gestiona transferul de date (sub formă de octeți sau obiecte) între

diferite surse și destinații. Mai concret:

1. Abstracție de nivel înalt: Un flux este o abstracție care ascunde detaliile tehnice ale dispozitivului cu care lucrăm

(fie el fișier pe disc, consolă, rețea sau altă sursă/destinație de date)

2. Secvență de date: Datele sunt tratate ca o succesiune (șir) de octeți sau caractere, care pot fi citite (input stream) sau

scrise (output stream).

3.Gestionare simplificată a I/O: Prin utilizarea fluxurilor, programul nostru nu trebuie să știe exact cum sunt stocate

datele în dispozitivul fizic și nici detalii legate de protocoalele de transfer; interacțiunea devine mai „universală”.

Cele mai frecvente fisiere header

• iostream → asigura definitiile pentru operatiile de intrare/iesire (citire/afisare) ale fluxurilor (in consola);

• fstream → asigura definitiile pentru operatiile de intrare/iesire ale fluxurilor de fisiere;

• iomanip → asigura defintiile manipulatorilor folositi pentru operatiile de intrare/iesire

• Ele permit lucrul cu fluxuri si operatiile de intrare/iesire

Cele mai frecvente clase de fluxuri

Clasa Descriere

ios Ofera suport de baza pentru operatiile I/O formatate si
neformatate

Ifstream Ofera operatii de intrare la nivel inalt pentru fluxuri de
fisiere

ofstream Ofera operatii de iesire la nivel inalt pentru fluxuri de
fisiere

fstream Ofera operatii I/O la nivel inalt pentru fluxuri de fisiere

stringstream Ofera operatii de I/O la nivel inalt pentru pentru striguri
stocate in memorie

Obiecte de fluxuri globale

Obiect Descriere

cin Flux de intrare standard – “conectat” implicit la
dispozitivul de intrare standard (tastatura);

cout Flux de iesire standard – “conectat” implicit la dispozitivul
de iesire standard (consola);

cerr Flux de erori standard – “conectat” implicit la dispozitivul
de standard de afisare a erorii (consola);

clog Flux de tip log standard – “conectat” implicit la
dispozitivul de afisare standard (consola);
(avertismente, mesaje de stare, de performanta s.a.)

• Obiecte globale – initializate inainte de executia functiei main();
• Sunt incluse in fisierul header iostream, in clasa ios

Manipulatori de fluxuri

• Fluxurile au multe proprietati care ajuta la formatarea textului

• Manipulatorii de fluxuri pot fi folositi pentru fluxurile I/O

• Timpul efectului manipulatorilor de fluxuri variaza (poate afecta doar urmatorul flux sau toate fluxurile ce urmeaza in

program)

• Putem folosi proprietatile de formatare a textului fie ca functii, fie ca manipulatori (noi ne vom axa pe folosirea

manipulatorilor)

Exemplu:

std::cout.width(10); //functie
std::cout<<std::setw(10); //manipulator

Cei mai frecventi manipulatori de fluxuri

• Pentru tipul de date bool – boolapha,noboolapha (in loc de 1/0 se afiseaza true/false)

• Pentru tipul de date int – dec, hex, showbase,noshowbase, showpos, noshowpos,
uppercase,nouppercase

• Pentru tipul de date float/double – fixed, scientific, setprecision,
showpoint,noshowpoint, showpos,noshowpos

• Pentru latime, aliniere si umplerea campurilor – setw,left,right,internal,setfill

Pentru tipul de date bool

#include<iostream>

using namespace std;

int main() {

bool ok=true;
cout << "Valoarea lui ok este :" << ok << endl;
cout <<boolalpha;
cout << "Valoarea lui ok este :" << ok << endl;
ok = false;
cout << "Valoarea lui ok este :" << ok << endl;
cout << noboolalpha;
cout << "Valoarea lui ok este :" << ok << endl;
return 0;
}

1

true

false

0

Pentru tipul de date int

• Implicit, cand afisam un tip de date intreg avem:
• dec (baza 10)
• noshowbase (nu se afiseaza prefixul pentru sistemul hexazecimal sau octal)
• nouppercase (daca afisam prefixul pentru valorile hexazecimale ele vor fi litere

mici)
• noshowpos (semnul “+” nu este afisat in fata numerelor pozitive)

• Acesti manipulatori au efect pentru toate afisarile urmatoare din flux

Pentru tipul de date int

#include<iostream>
using namespace std;
int main() {

int num{ 255 }, num2{135};
cout << "Implicit: "<< num << endl; //255
cout << "Zecimal: "<< dec << num << endl; //255
cout << "Hexazecimal: " << hex << num << endl; //ff
cout << "Octal: " << oct << num << endl; //377
cout << num2<<endl;
return 0;
}

//207

Daca nu se precizeza explicit baza in care vrem sa apara numerele de tip intreg, baza folosita
ultima data se va folosi in continuare la afisarea tuturor numerelor intregi din continuare
programului!

Pentru tipul de date int

#include<iostream>
using namespace std;
int main() {

int num{ 255 }, num2{135};
cout << showbase << num << endl; //255
cout << "Zecimal: "<< dec << num << endl; //255
cout << "Hexazecimal: " << hex << num << endl; //0xff
cout << "Octal: " << oct << num << endl; //0377
cout << num2<<endl; //0207
cout << noshowbase << num2; //207
return 0;
}

• Prefixul pentru hexazecimal este “0x”, iar pentru octal este “0”.

Pentru tipul de date int

#include<iostream>
using namespace std;
int main() {

int num{ 255 }, num2{135};
cout << showbase << uppercase << num << endl; //255
cout << "Zecimal: "<< dec << num << endl; //255
cout << "Hexazecimal: " << hex << num << endl; //0XFF
cout << "Octal: " << oct << num << endl; //0377
cout << num2<<endl; //0207
cout << nouppercase << hex<<num<<endl; //0xff
return 0;
}

• Prefixul si numerele in baza 16 sunt scrise cu litere majuscule.

Pentru tipul de date int

#include<iostream>
using namespace std;
int main() {

int num1{ 255 }, num2{-255};
cout << "Implicit: " << endl;
cout << num1 << endl; //255
cout << num2 << endl; //-255
cout << showpos;
cout << num1 << endl; //+255
cout << num2 << endl; //-255
cout << noshowpos;
cout << num1 << endl; //255
cout << num2 << endl; //-255
return 0;
}

Pentru tipul de date real

• Implicit, cand afisam un tip de date real (float, double) avem:
• setprecision (numarul de cifre afisate 6)
• fixed (nu este fixat un anumit numar de cifre dupa virgula)
• noshowpoint (daca dupa virgula avem cifra/cifrele “0” aceasta/acestea nu se

afiseaza)
• noshowpos (semnul “+” nu este afisat in fata numerelor pozitive)

• Acesti manipulatori au efect pentru toate afisarile urmatoare din flux

Pentru tipul de date real

#include<iostream>
using namespace std;
int main() {
double num{ 1234.5678 };
cout << num << endl; //1234.57
return 0;
}

• Implicit, C++ afiseaza 6 cifre pentru un numar real, incepand cu cifra cea mai semnificativa
 (prima cifra), si o rotunjeste pe ultima cifra
(daca a 7 cifra este >=5 atunci a 6 a cifra o rotunjeste prin adaos, in caz contrar a 6 a cifra
este rotunjita prin lipsa).

Pentru tipul de date real

#include<iostream>
using namespace std;
int main() {
double num{ 123456789.987654321 };
cout << num << endl; // 1.23457e+08
return 0;
}

• C++ incearca sa faca afisarea obisnuita cu 6 cifre, dar pentru ca numarul dat si numarul afisat
nu au cum sa fie “aproximativ” egale, atunci C++ foloseste scrierea stiintifica (se pastreaza
precizia de 6, adica primele 6 cifre sunt afisate cu rotunjirea ultimei cifre).

Pentru tipul de date real

#include<iostream>
#include<iomanip>

using namespace std;
int main() {
double num{ 123456789.987654321 };
cout << setprecision(9); //123456790
cout << num << endl;
return 0;
}

• Atentie! Se afiseaza primele 9 cifre si se rotunjeste rezultatul

Pentru tipul de date real

#include<iostream>
#include<iomanip>

using namespace std;
int main() {
double num{ 123456789.987654321 };
cout << fixed;
cout << num << endl;//123456789.987654
return 0;
}

• Atentie! Se afiseaza cu 6 cifre zecimale si se rotunjeste ultima zecimala

Pentru tipul de date real

#include<iostream>
#include<iomanip>

using namespace std;
int main() {
double num{ 123456789.987654321 };
cout << setprecision(3) << fixed;
cout << num << endl; //123456789.988
double num2{ 987654321.123456789 };
cout << num2 << endl; //987654321.123
return 0;
}

• Se afiseaza cu 3 cifre zecimale si se rotunjeste ultima zecimala

Pentru tipul de date real

#include<iostream>
#include<iomanip>

using namespace std;
int main() {
double num{123456789.987654321 };
cout << scientific<<setprecision(4);
cout << num << endl; // 1.235e+08
return 0;
}

• Se afiseaza in forma stiintifica, pastrand primele 3 cifre si rotunjind-o pe a 4a cifra

Pentru tipul de date real

#include<iostream>
#include<iomanip>

using namespace std;
int main() {
double num{123456789.987654321 };
cout << scientific<<setprecision(4) <<uppercase;
cout << num << endl; // 1.235E+08
return 0;
}

• Se afiseaza in forma stiintifica, pastrand primele 3 cifre si rotunjind-o pe a 4a cifra, litera “e”
devine “E”

Pentru tipul de date real

#include<iostream>
#include<iomanip>

using namespace std;
int main() {
double num{ 123456789.987654321 };
cout << fixed<<setprecision(3)<<showpos;
cout << num << endl; //+123456789.988
return 0;
}

• Se afiseaza semnul “+” pentru numerele pozitive

Pentru tipul de date real

#include<iostream>
#include<iomanip>

using namespace std;
int main() {
double num{ 12.34 };
cout << num << endl; //12.34
cout << showpoint;
cout << num << endl; //12.3400
num = 12.3;
cout << num << endl; //12.3000
cout << setprecision(8);
cout << num << endl; //12.300000
return 0;
}

• Afiseaza zerouri pentru zecimale pana se ajunge la precizia stabilita; implicit, precizia este 6,
ulterior am modificat-o in 8.

Pentru latime, aliniere si umplerea campurilor

• Implicit, atunci cand se afiseaza un anumit tip de date, avem:
• setw (latimea campului alocat tipului de date nu este setata implicit)
• left (cand nu este precizata latimea campului), right (cand este precizata latimea campului)
• fill (nu este setata implicit), este folosit spatiul gol.

• Unii din acesti manipulatori au efect doar pentru urmatorul element ce apare in flux

Pentru latime, aliniere si umplerea campurilor

• Implicit,
#include<iostream>
#include<string>

using namespace std;
int main() {
double num{ 1234.5678 };
string text{ "Buna" };
cout << num << text << endl; //1234.57Buna
return 0;
}

Pentru latime, aliniere si umplerea campurilor

#include<iostream>
#include<string>
#include<iomanip>

using namespace std;
int main() {
double num{ 1234.5678 };
string text{ "Buna" };
cout << "12345678901234567890123456789" << endl;
cout << setw(10)<<num << text << endl;
return 0;
}
• Se seteaza latimea campului de (cel putin) 10 caractere (alinierea implicita acum este la dreapta, observam ca “7” este

sub “0”); Dacă textul/numărul are mai puțin de 10 caractere, se vor folosi spații libere în stânga pentru a completa. Dacă are

 mai mult, câmpul se va ajusta, afișând întregul conținut, dar pierzând eventualul efectul de aliniere.

• Urmatoroarele elemente afisate vor fi aliniate, implicit, la stanga, deoarece latimea campului nu este stabilit si pentru

acestea.

//12345678901234567890123456789
 1234.57Buna

Pentru latime, aliniere si umplerea campurilor

#include<iostream>
#include<string>
#include<iomanip>

using namespace std;
int main() {
double num{ 1234.5678 };
string text{ "Buna" };
cout << "1234567890123456789012345678901234567890" << endl;
cout << setw(10) << num << setw(10) << text << setw(10)<<text << endl;
return 0;
}

//1234567890123456789012345678901234567890
 1234.57 Buna Buna

Pentru latime, aliniere si umplerea campurilor

#include<iostream>
#include<string>
#include<iomanip>

using namespace std;
int main() {
double num{ 1234.5678 };
string text{ "Buna" };
cout << "1234567890123456789012345678901234567890" << endl;
cout << setw(10)<<left << num<<setw(10) << text << endl;
return 0;
}

//1234567890123456789012345678901234567890
 1234.57 Buna

• Alinierea se pastreaza si pentru celelalte cantitati afisate!

Pentru latime, aliniere si umplerea campurilor

#include<iostream>
#include<string>
#include<iomanip>

using namespace std;
int main() {
double num{ 1234.5678 };
string text{ "Buna" };
cout << "1234567890123456789012345678901234567890" << endl;
cout << setfill('-');
cout << setw(10) << num<< setw(10)<<text << endl;
return 0;
}

//1234567890123456789012345678901234567890
 ---1234.57------Buna

• Setarea de umplere a campului liber cu un anumit caracter ramane valabila si pentru urmatoarele fluxuri.

Pentru latime, aliniere si umplerea campurilor

#include<iostream>
#include<string>
#include<iomanip>

using namespace std;
int main() {
double num{ 1234.5678 };
string text{ "Buna" };
cout << "1234567890123456789012345678901234567890" << endl;
cout << setfill('-');
cout << setw(10) << num<< setfill('*')<<setw(10) << text << endl;
return 0;
}

//1234567890123456789012345678901234567890
 ---1234.57******Buna

• Putem schimba pe parcursul programului caracterul cu care umplem campul liber.

Challenge Problem

• Realizati un program in care sa folositi urmatoarele structuri si folositi manipulatorii ca afisarea sa fie urmatoarea:
#include<iostream>
#include<string>
#include<iomanip>
#include<vector>

struct Oras {
string nume;
long popoulatie;
double cost;
};

struct Tara {
string nume;
vector<Oras> orase;
};

struct Tur {
string titlu;
vector<Tara> tari;
};

Tara Oras Populatie Pret
--
Colombia Bogota 8773000 400.98

Cali 2491000 424.12
Medellin 2464000 350.98
Cartagena 972000 345.34

Brazilia Rio De Janeiro 13500000 567.45
Sao Paulo 11310000 975.45
Salvador 18324000 855.99

Chile Valdivia 260000 569.12
Santiago 7840000 520.00

Argentina Buenos Aires 3010000 723.77

Operatii de citire

• Pentru a putea citi din fisiere, cel mai des se folosesc fisierele header fstream si ifstream

1. Adaugam directiva #include <fstream>
2. Declaram un obiect de tipul fstream sau ifstream
3. Conectam fisierul cu stream-ul creat
4. Citim datele din fisier cu ajutorul stream-ului
5. Inchidem stream-ul

Citirea fisierelor cu fstream

• Declaram un obiect de tipul fstream

• std::fstream in_file {“test.txt”, std::ios::in};
• Pe langa declararea obiectului (cu rosu) am facut si initializarea lui care contine 2 parametrii (cu

albastru); prin intermediul primului parametru dam calea catre fisier
• Poate fi foarte specifica in functie de sistemul de operare si chiar de programul folosit
• Cu “..” urcam un nivel mai sus

Al doilea parametru specifica modul de deschidere al fisierului. Prin argumentul dat, specificam ca
deschidem fisierul in “input mode” (putem sa citim fisierul, dar nu putem scrie in el).

Modul default de deschidere a unui obiect de tip fstream este std::ios::in | std:ios::out, deci si
pentru citire si pentru scriere (“|” operatorul bitwise OR pe biti); Daca dorim acest lucru, atunci
putem face simplu declararea std::fstream in_file {“test.txt”};

Pentru a citi un document care nu este text (imagine, de exemplu), al doilea argument ar trebui sa
fie in modul input si binar std::ios:in | std::ios::binary

Citirea fisierelor cu fstream

 Pentru a deschide un fisier din care dorim sa citim putem proceda in urmatorul mod

#include<iostream>
#include<fstream>
#include<string>

using namespace std;

int main() {
//fstream in_file("test.txt", ios::in);
fstream in_file;
string file_name;
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;
in_file.open(file_name, ios::in);
if (in_file.is_open()) {
cout << "Fisierul este deschis cu succes" << endl;
}
else {
cerr << "Eroare la deschidere" << endl;
}

return 0;
}

Citirea fisierelor cu ifstream

• Declaram un obiect de tipul ifstream

○ std::ifstream in_file {“test.txt”, std::ios::in};
■ ifstream poate fi folosit doar pentru modul de citire
■ Din moment ce std::ios::in este modul implicit, acest argument este optional, prin urmare putem face

declararea cu:
● std::ifstream in_file {“test.txt”}

Pentru a citi un document care nu este text (imagine de exemplu), al doilea argument ar trebui sa fie in modul input si binar; cum modul
input este implicit, ar trebui doar mentionat modul binar std::ios::binary

Citirea fisierelor cu ifstream

 Pentru a deschide un fisier din care dorim sa citim putem proceda in urmatorul mod

#include<iostream>
#include<fstream>
#include<string>

using namespace std;

int main() {
//ifstream in_file("test.txt");
ifstream in_file;
string file_name;
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;
in_file.open(file_name);
if (in_file.is_open()) {
cout << "Fisierul este deschis cu succes" << endl;
}
else {
cerr << "Eroare la deschidere" << endl;
}

return 0;
}

Citirea fisierelor

 O alta modalitate de verifica daca un fisier s-a deschis cu succes este

#include<iostream>
#include<fstream>
#include<string>

using namespace std;

int main() {
//ifstream in_file("test.txt");
ifstream in_file;
string file_name;
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;
in_file.open(file_name);
if (in_file) {
cout << "Fisierul este deschis cu succes" << endl;
}
else {
cerr << "Eroare la deschidere" << endl;
}

return 0;
}

Citirea fisierelor

 Dupa ce terminam de citit din fisier, trebuie sa inchidem fisierul. Daca in cazul fisierelor din care citim, inchiderea lor

dupa ce terminam de citit din ele nu este obligatorie, in cazul fisierelor in care scriem, inchiderea lor este esentiala;
omitand acest lucru se poate ajunge la pierderea informatiilor.

#include<iostream>
#include<fstream>
#include<string>
using namespace std;
int main() {
//ifstream in_file("test.txt");
ifstream in_file;
string file_name;
cout << "Dati numele fisierului din care vreti sa
cititi:";
cin >> file_name;
in_file.open(file_name);
if (in_file) {
cout << "Fisierul este deschis cu succes" << endl;
}
else {
cerr << "Eroare la deschidere" << endl;
}
in_file.close();
return 0;
}

Modalitati de citire din fisiere txt

• Cu ajutorul operatorului de extractie “>>” (asa cum se foloseste la cin)

int num{};
double total{};
string name{};

in_file >> num;
in_file >> total >> name;

100
255.67
Simona

Atentie! In fisier trebuie sa fie scrise in ordine: un numar intreg, un numar real, apoi un cuvant. Pot fi scrise pe linii diferite sau pe aceesi linii,
separate de un spatiu sau mai multe spatii libere.

Modalitati de citire din fisiere txt

• Cu ajutorul lui getline (cand dorim sa citim cate o linie o data)

string line{};
getline(in_file, line);

100 255.67
Simona

Daca scriem apoi
cout<<line;
se va afisa “100 255.67”

Modalitati de citire din fisiere txt

• Cu ajutorul lui getline (cand dorim sa citim cate o linie o data) putem afisa tot continutul fisierului – Metoda 1

#include<iostream>
#include<fstream>
#include<string>
using namespace std;
int main() {
//ifstream in_file("test.txt");
ifstream in_file;
string file_name;
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;
in_file.open(file_name);
if(!in_file) {
cerr << "Eroare la deschidere" << endl;
return 1;
}
while (in_file) {
string line{};
getline(in_file, line);
cout <<line << endl;
}
in_file.close();
return 0;
}

100 255.67
Simona

Modalitati de citire din fisiere txt

• Cu ajutorul lui getline (cand dorim sa citim cate o linie o data) putem afisa tot continutul fisierului – Metoda 2

#include<iostream>
#include<fstream>
#include<string>
using namespace std;
int main() {
//ifstream in_file("test.txt");
ifstream in_file;
string file_name;
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;
in_file.open(file_name);
if(!in_file) {
cerr << "Eroare la deschidere" << endl;
return 1;
}
string line;
while (getline(in_file, line)) {
cout <<line << endl;
}
in_file.close();
return 0;
}

100 255.67
Simona

Modalitati de citire din fisiere txt

• Cu ajutorul lui get(cand dorim sa citim cate un caracter o data) putem afisa tot continutul fisierului

#include<iostream>
#include<fstream>
#include<string>
using namespace std;
int main() {
//ifstream in_file("test.txt");
ifstream in_file;
string file_name;
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;
in_file.open(file_name);
if(!in_file) {
cerr << "Eroare la deschidere" << endl;
return 1;
}
char c;
while (in_file.get(c)) {
cout <<c;
}
in_file.close();
return 0;
}

100 255.67
Simona

Scrierea in fisiere

• Cele mai frecvente fisiere header folosite sunt fstream si ofstream

1. Adaugam directiva #include <fstream>
2. Declaram un obiect de tipul fstream sau ofstream
3. Conectam fisierul cu stream-ul creat (daca fisierul nu exista, va fi creat. Daca exista, continutul lui va fi sters in cazul in
care nu specificam altceva)
4. Scriem datele din fisier cu ajutorul stream-ului (in mod text sau binar)
5. Inchidem stream-ul (foarte important deoarece in acest moment fisierul este salvat)

• Fisierele vor fi suprascrise daca se foloseste modul default
• Fisierele pot fi deschise pentru a adauga continut la continutul existent
• Fisierele pot fi deschise in mod text si binar

Deschiderea unui fisier

• std::fstream out_file {“test..txt”, std::ios::out} //mod text

• std::fstream out_file {“test.jpg”, std::ios::out | std::ios::binary} //mod binar

• std::ofstream out_file {“test.txt”, std::ios::out}

Din moment ce ofstream foloseste modul out ca implicit putem sa nu mai adaugam ultimul parametru:

std::ofstream out_file {“test.txt”}
• std::ofstream out_file {“test.jpg”, std::ios::binary} //mod binar

Tipuri de deschidere a fisierelor pentru scriere

// stergem continutul fisierului in momentul deschiderii
std::ofstream out_file{“test.txt”, std::ios::trunc}

// adaugam text la continutul existent
std::ofstream out_file {“test.txt”, std::ios::app}

// deschidem fisierul si setam cursorul la finalul fisierului
std::ofstream out_file {“test.txt”, std:ios::ate};

Scrierea unui text de la tastatura in fisier

std::ofstream out_file;
std::string file_name;
std::cin >> file_name; //user-ul va tasta calea fisierului
out_file.open (file_name);

Verificam daca fisierul a fost deschis cu succes

if (out_file.is_open()) {
// scriem in fisier

} else {
// deschiderea nu a fost realizata cu succes

}

Alta metoda de verificare daca fisierul a fost deschis cu succes

if (out_file) { //stream-ul va returna true daca fisierul a fost deschis
// scriem in fisier

} else {
// fisierul nu a fost deschis cu succes

}

Inchiderea fisierului
● Pentru modul output este critic deoarece atunci continutul fisierului este salvat.

out_file.close();

Scrierea fisierelor
Dorim sa obtinem fisierul ce contine
un integer, un double si un string:
100
255.67
Simona
• Folosim operatorul de insertie

“<<“ (se foloseste ca si la cout);

cout << "Dati numele fisierului in care vreti sa scrieti:";

cin >> file_name;

out_file.open(file_name);

if(!out_file) {

cerr << "Eroare la deschidere" << endl;

return 1;

}

else{

int num{ 100 };

double total{ 255.67 };

string name{"Simona"};

out_file << num << "\n" << total << "\n" << name << endl;

}

out_file.close();

return 0;

}

#include<iostream>

#include<fstream>

#include<string>

using namespace std;

int main() {

ofstream out_file;

string file_name;

Copierea continutului unui fisier in alt fisier

#include<iostream>
#include<fstream>
#include<string>

using namespace std;

int main() {
ifstream in_file("test.txt");
ofstream out_file("copie_test.txt");
if(!in_file) {
cerr << "Eroare la deschiderea fisierului test.txt" << endl;
return 1;
}
if(!out_file) {
cerr << "Eroare la crearea fisierului copie_test.txt" << endl;
return 1;
}
string line{};
while (getline(in_file, line))
out_file << line << endl;
in_file.close();
out_file.close();
return 0;
}

Copierea continutului unui fisier in alt fisier caracter cu caracter (get/put)

#include<iostream>
#include<fstream>
#include<string>
using namespace std;
int main() {
ifstream in_file("test.txt");
ofstream out_file("copie_test.txt");
if(!in_file) {
cerr << "Eroare la deschiderea fisierului test.txt" << endl;
return 1;
}
if(!out_file) {
cerr << "Eroare la crearea fisierului copie_test.txt" << endl;
return 1;
}
char c;
while (in_file.get(c))
out_file.put(c);
in_file.close();
out_file.close();
return 0;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

