Operati1 de intrare/iesire. Fluxuri.

* Fluxuri (stream-uri) si operatiile de intrare/iesire (I/0)
* Manipulatori de fluxuri
 Citirea si scrierea fisierelor text

Fluxun.

» (C++ utilizeaza fluxurile ca o interfata intre program si dispozitivele de intrare/iesire (citire/afisare).

* Fluxurile sunt independente de dispozitivul actual folosit.

* Fluxurile (streams) reprezinta o modalitate de a gestiona transferul de date (sub forma de octeti sau obiecte) intre
diferite surse si destinatii. Mai concret:

1. Abstractie de nivel inalt: Un flux este o abstractie care ascunde detaliile tehnice ale dispozitivului cu care lucram
(fie el fisier pe disc, consola, retea sau alta sursa/destinatie de date)

2. Secventa de date: Datele sunt tratate ca o succesiune (sir) de octeti sau caractere, care pot fi citite (input stream) sau
scrise (output stream).

3.Gestionare simplificata a I/O: Prin utilizarea fluxurilor, programul nostru nu trebuie sa stie exact cum sunt stocate
datele in dispozitivul fizic si nici detalii legate de protocoalele de transfer; interactiunea devine mai ,,universala”.

Cele mai frecvente fisiere header

iostream -> asigura definitiile pentru operatiile de intrare/iesire (citire/afisare) ale fluxurilor (in consola);
fstream -> asigura definitiile pentru operatiile de intrare/iesire ale fluxurilor de fisiere;
iomanip = asigura defintiile manipulatorilor folositi pentru operatiile de intrare/iesire

Ele permit lucrul cu fluxuri si operatiile de intrare/iesire

Cele mai frecvente clase de fluxuri

Clasa Descriere

ios Ofera suport de baza pentru operatiile I/O formatate si
neformatate

Ifstream Ofera operatii de intrare la nivel inalt pentru fluxuri de
fisiere

ofstream Ofera operatii de iesire la nivel inalt pentru fluxuri de
fisiere

fstream Ofera operatii I/0 la nivel inalt pentru fluxuri de fisiere

stringstream Ofera operatii de I/0O la nivel inalt pentru pentru striguri

stocate in memorie

Obiecte de fluxuri globale

cin Flux de intrare standard — “conectat” implicit la
dispozitivul de intrare standard (tastatura);

cout Flux de iesire standard — “conectat” implicit la dispozitivul
de iesire standard (consola);

cerr Flux de erori standard — “conectat” implicit la dispozitivul
de standard de afisare a erorii (consola);

clog Flux de tip log standard — “conectat” implicit la
dispozitivul de afisare standard (consola);
(avertismente, mesaje de stare, de performanta s.a.)

* Obiecte globale — initializate inainte de executia functiei main();
e Suntincluse in fisierul header iostream, in clasa ios

Manipulatori de fluxuri

* Fluxurile au multe proprietati care ajuta la formatarea textului

* Manipulatorii de fluxuri pot fi folositi pentru fluxurile I/O

« Timpul efectului manipulatorilor de fluxuri variaza (poate afecta doar urmatorul flux sau toate fluxurile ce urmeaza in
program)

* Putem folosi proprietatile de formatare a textului fie ca functii, fie ca manipulatori (noi ne vom axa pe folosirea
manipulatorilor)

Exemplu:

std::cout.width(10); //functie
std: :cout<<std::setw(10); //manipulator

Cei1 mai frecventi manipulatori de fluxuri

* Pentru tipul de date bool - boolapha,noboolapha (in loc de 1/0 se afiseaza true/false)

« Pentru tipul de date int - dec, hex, showbase,noshowbase, showpos, noshowpos,
uppercase,nouppercase

e Pentru tipul de date float/double - fixed, scientific, setprecision,
showpoint,noshowpoint, showpos,noshowpos

* Pentru latime, aliniere si umplerea campurilor - setw,left,right,internal,setfill

#tinclude<iostream>

using namespace std;

int main() {

bool
cout
cout
cout
ok =
cout
cout
cout

ok=true;

<< "Valoarea lui
<{boolalpha)
<< "Valoarea lui

false;

<< "Valoarea 1lui
<<(noboolalpha
<< "Valoarea lui

return 0;

}

ok

ok

ok

ok

Pentru tipul de date bool

este :

este :

este :

este :

<<

<<

<<

<<

ok <«

ok <«

ok <«

ok <<

endl; 1
endl; true
il false
endl; 0

Pentru tipul de date int

Implicit, cand afisam un tip de date intreg avem:
» dec (baza 10)
* noshowbase (nu se afiseaza prefixul pentru sistemul hexazecimal sau octal)
* nouppercase (daca afisam prefixul pentru valorile hexazecimale ele vor fi litere
mici)
* noshowpos (semnul “+” nu este afisat in fata numerelor pozitive)

Acesti manipulatori au efect pentru toate afisarile urmatoare din flux

Pentru tipul de date int

<iostream>
using namespace std;
int main() {

int num{ 255 }, num2{135};

cout << "Implicit: "<< num << endl;

cout << "Zecimal: "<< dec << num << endl;

cout << "Hexazecimal: " << hex << num << endl;
cout << "Octal: " << oct << num << endl;

cout << num2<<endl;

return 0;

}

Daca nu se precizeza explicit baza in care vrem sa apara numerele de tip intreg, baza folosita
ultima data se va folosi in continuare la afisarea tuturor numerelor intregi din continuare
programului!

Pentru tipul de date int

<iostream>
using namespace std;
int main() {

int num{ 255 }, num2{135};

cout <<¢Showbase>n<< num << endl;

cout <« scimal: "<< dec << num << endl;

cout << "Hexazecimal: " << hex << num << endl;
cout << "Octal: " << oct << num << endl;

cout << nu endl;

cout << << num2;

return 0;

}

i

* Prefixul pentru hexazecimal este “Ox”, iar pentru octal este “0”.

Pentru tipul de date int

<iostream>
using namespace std;
int main() {

int num{ 255 }, num2{135};
cout < << << num << endl;
cout << "Zecimal: "<< dec << num << endl;

cout << "Hexazecimal: " << hex << num << endl;
cout << "Octal: " << oct << num << endl;
cout <<

nu endl] ;
cout << << hex<<num<<endl;

return 0;

}

* Prefixul si numerele in baza 16 sunt scrise cu litere majuscule.

Pentru tipul de date int

<iostream>
using namespace std;
int main() {

int numl{ 255 }, num2{-255};
cout << "Implicit: " << endl;
cout << numl << endl;

cout << num2 << endl;
cout << ;

cout << n << endl;
cout << nunm endl;
cout <<
cout << num < endl;

cout << num2 << endl;
return 0;

}

Pentru tipul de date real

* Implicit, cand afisam un tip de date real (float, double) avem:
 setprecision (numarul de cifre afisate 6)
» fixed (nu este fixat un anumit numar de cifre dupa virgula)
* noshowpoint (daca dupa virgula avem cifra/cifrele “©” aceasta/acestea nu se
afiseaza)
* noshowpos (semnul “+” nu este afisat in fata numerelor pozitive)

* Acesti manipulatori au efect pentru toate afisarile urmatoare din flux

Pentru tipul de date real

<iostream>
using namespace std;
int main() {
double num{ 1234.5678 };
cout << num << endl;
return 0;

}

* Implicit, C++ afiseaza 6 cifre pentru un numar real, incepand cu cifra cea mai semnificativa
(prima cifra), si o rotunjeste pe ultima cifra

(daca a 7 cifra este >=5 atunci a 6 a cifra o rotunjeste prin adaos, in caz contrar a 6 a cifra

este rotunijita prin lipsa).

Pentru tipul de date real

<iostream>
using namespace std;
int main() {
double num{ 123456789.987654321 };
cout << num << endl;
return 0;

}

 C++ incearca sa faca afisarea obisnuita cu 6 cifre, dar pentru ca numarul dat si numarul afisat
nu au cum sa fie “aproximativ” egale, atunci C++ foloseste scrierea stiintifica (se pastreaza
precizia de 6, adica primele 6 cifre sunt afisate cu rotunjirea ultimei cifre).

Pentru tipul de date real

<iostream>
<iomanip>

using namespace std;
int main() {

double nu ‘ 89.987654321 };
cout << E

cout << num §

return 0;

}

* Atentie! Se afiseaza primele 9 cifre si se rotunjeste rezultatul

Pentru tipul de date real

<iostream>
<iomanip>

using namespace std;
int main() {

double num{ 123456789.987654321 };
cout << @

cout << num << endl;
return 0;

}
* Atentie! Se afiseaza cu 6 cifre zecimale si se rotunjeste ultima zecimala

Pentru tipul de date real

<iostream>
<iomanip>

using namespace std;

int main() {

double num{ 123456789.987654321 };
cout << setprecision(3) << fixed; >
cout << num << endl;

double num2{ 987654321.123456789 },;
cout << num2 << endl;

return 0;

}

e Se afiseaza cu 3 cifre zecimale si se rotunjeste ultima zecimala

Pentru tipul de date real

<iostream>
<iomanip>

using namespace std;

int main() {

double num{123456789.987654321 };
cout << scientific<<setprecision(4)
cout << num << endl;

return 0;

}

» Se afiseaza in forma stiintifica, pastrand primele 3 cifre si rotunjind-o pe a 4a cifra

Pentru tipul de date real

<iostream>
<iomanip>

using namespace std;

int main() {

double num{123456789.987654321 };

cout <<<§§i§££if§c<<setprecision(4) <<upé§E§§§§I:>
cout << num << endl;

return 0;

}

* Se afiseaza in forma stiintifica, pastrand primele 3 cifre si rotunjind-o pe a 4a cifra, litera “e”
devine “E”

Pentru tipul de date real

<iostream>
<iomanip>

using namespace std;

int main() {

double num{ 123456789.987654321 };

cout <<<Iig§§gg§§tprecision(3)<<showpos;i::::::::>
cout << num << endl;

return 0;

}

» Se afiseaza semnul “+” pentru numerele pozitive

Pentru tipul de date real

<iostream>
<iomanip>

using namespace std;
int main() {
double num{ 12.34 };

cout << num << endl;

cout <<
cout << num << endl;

num = 12.3;

cout << num << endl;

cout << setprecision(8);

cout << num << endl;
return 0;

}

» Afiseaza zerouri pentru zecimale pana se ajunge la precizia stabilita; implicit, precizia este 6,
ulterior am modificat-o in 8.

Pentru latime, aliniere si umplerea campurilor

* Implicit, atunci cand se afiseaza un anumit tip de date, avem:
* setw (latimea campului alocat tipului de date nu este setata implicit)
» left (cand nu este precizata latimea campului), right (cand este precizata latimea campului)
* fill (nu este setata implicit), este folosit spatiul gol.

* Unii din acesti manipulatori au efect doar pentru urmatorul element ce apare in flux

Pentru latime,

* Implicit,
<iostream>
<string>

using namespace std;

int main() {

double num{ 1234.5678 };
string text{ "Buna" };

cout << num << text << endl;
return 0;

}

aliniere si umplerea campurilor

Pentru latime, aliniere si umplerea campurilor

<iostream>
<string>
<iomanip>

using namespace std;

int main() {

double num{ 1234.5678 };

string text{ "Buna" };

cout << "12345678901234567890123456789" << endl;

cout << setw(1@)<<num << text << endl;

return 0;

}

* Se seteaza latimea campului de (cel putin) 10 caractere (alinierea implicita acum este la dreapta, observam ca “7” este
sub “0"); Daca textul/numarul are mai putin de 10 caractere, se vor folosi spatii libere in stinga pentru a completa. Daca are
mai mult, cdmpul se va ajusta, afisand intregul continut, dar pierzand eventualul efectul de aliniere.

* Urmatoroarele elemente afisate vor fi aliniate, implicit, la stanga, deoarece latimea campului nu este stabilit si pentru
acestea.

Pentru latime, aliniere si umplerea campurilor

#include<iostream>
#include<string>
#include<iomanip>

using namespace std;

int main() {

double num{ 1234.5678 };

string text{ "Buna" };

cout << "1234567890123456789012345678901234567890" << endl;

cout << setw(10) << num << setw(10) << text << setw(1l@)<<text << endl;
return 0;

}

Pentru latime, aliniere si umplerea campurilor

#include<iostream>
#include<string>
#include<iomanip>

using namespace std;

int main() {

double num{ 1234.5678 };

string text{ "Buna" };

cout << "1234567890123456789012345678901234567890" << endl;
cout << setw(1@)<<left << num<<setw(1l0) << text << endl;
return 0;

}

» Alinierea se pastreaza si pentru celelalte cantitati afisate!

Pentru latime, aliniere si umplerea campurilor

<iostream>
<string>
<iomanip>

using namespace std;

int main() {

double num{ 1234.5678 };

string text{ "Buna" };

cout << "1234567890123456789012345678901234567890" << endl;
cout << setfill('-");

cout << setw(10) << num<< setw(10)<<text << endl;

return 0;

}

* Setarea de umplere a campului liber cu un anumit caracter ramane valabila si pentru urmatoarele fluxuri.

Pentru latime, aliniere si umplerea campurilor

<iostream>
<string>
<iomanip>

using namespace std;

int main() {

double num{ 1234.5678 };

string text{ "Buna" };

cout << "1234567890123456789012345678901234567890" << endl;

cout << setfill('-");

cout << setw(10) << num<< setfill('*')<<setw(10) << text << endl;
return 0;

}

* Putem schimba pe parcursul programului caracterul cu care umplem campul liber.

Challenge Problem

» Realizati un program in care sa folositi urmatoarele structuri si folositi manipulatorii ca afisarea sa fie urmatoarea:

<iostream>
<string>
<iomanip>
<vector> Tara Oras Populatie Pret
struct Oras { Colombia Bogota 8773000 400.98
string nume; . Cali 2491000 424.12
long popoulatie; Medellin 2464000 350.98
;ouble cost; Cartagena 972000 345.34
3
Brazilia Rio De Janeiro 13500000 567.45
struct Tara { Sao Paulo 11310000 975.45
string nume; Salvador 18324000 855.99
vector<Oras> orase;
}s5 Chile Valdivia 260000 569.12
Santiago 7840000 520.00

struct Tur {

string titlu; Argentina Buenos Aires 3010000 723.77
vector<Tara> tari;

}s

Operatii de citire
* Pentru a putea citi din fisiere, cel mai des se folosesc fisierele header fstream si ifstream

1. Adaugam directiva #include <fstream>

2. Declaram un obiect de tipul fstream sau ifstream
3. Conectam fisierul cu stream-ul creat

4. Citim datele din fisier cu ajutorul stream-ului

5. Inchidem stream-ul

Clitirea fisierelor cu fstream

Declaram un obiect de tipul fstream

® std::fstream in_file {“test.txt”, std::i0s::in};
® Pe langa declararea obiectului (cu rosu) am facut si initializarea lui care contine 2 parametrii (cu
albastru); prin intermediul primului parametru dam calea catre fisier
® Poate fi foarte specifica in functie de sistemul de operare si chiar de programul folosit
Cu “..” urcam un nivel mai sus
Al doilea parametru specifica modul de deschidere al fisierului. Prin argumentul dat, specificam ca
deschidem fisierul in “input mode” (putem sa citim fisierul, dar nu putem scrie in el).

Modul default de deschidere a unui obiect de tip fstream este std::ios::in | std:io0s::out, deci si
pentru citire si pentru scriere (“|” operatorul bitwise OR pe biti); Daca dorim acest lucru, atunci
putem face simplu declararea std::fstream in_file {“test.txt”};

Pentru a citi un document care nu este text (imagine, de exemplu), al doilea argument ar trebui sa
fie in modul input si binar std::ios:in | std::ios::binary

Clitirea fisierelor cu fstream

Pentru a deschide un fisier din care dorim sa citim putem proceda in urmatorul mod

#tinclude<iostream>
#include<fstream>
#include<string>

using namespace std;

int main() {

//fstream in_file("test.txt", ios::in);

fstream in_file;

string file_name;

cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;

in_file.open(file_name, ios::in);

if (in_file.is open()) {

cout << "Fisierul este deschis cu succes" << endl;
}

else {

cerr << "Eroare la deschidere" << endl;

}

return 0;

}

Citirea fisierelor cu ifstream

* Declaram un obiect de tipul ifstream

O std::ifstream in_file {“test.txt”, std::ios::in};
B ifstream poate fi folosit doar pentru modul de citire
B Din moment ce std::i0s::in este modul implicit, acest argument este optional, prin urmare putem face
declararea cu:
® std:ifstream in_file {“test.txt”}

Pentru a citi un document care nu este text (imagine de exemplu), al doilea argument ar trebui sa fie in modul input si binar; cum modul
input este implicit, ar trebui doar mentionat modul binar std: :ios: :binary

Citirea fisierelor cu ifstream

Pentru a deschide un fisier din care dorim sa citim putem proceda in urmatorul mod

#tinclude<iostream>
#include<fstream>
#include<string>

using namespace std;

int main() {

//ifstream in_file("test.txt");

ifstream in_file;

string file_name;

cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;

in_file.open(file_name);

if (in_file.is open()) {

cout << "Fisierul este deschis cu succes" << endl;
}

else {

cerr << "Eroare la deschidere" << endl;

}

return 0;

}

Citirea fisierelor

O alta modalitate de verifica daca un fisier s-a deschis cu succes este

#tinclude<iostream>
#include<fstream>
#include<string>

using namespace std;

int main() {

//ifstream in_file("test.txt");

ifstream in_file;

string file_name;

cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file_name;

in_file.open(file_name);

if (in_file) {

cout << "Fisierul este deschis cu succes" << endl;
}

else {

cerr << "Eroare la deschidere" << endl;

}

return 0;

}

Citirea fisierelor

Dupa ce terminam de citit din fisier, trebuie sa inchidem fisierul. Daca in cazul fisierelor din care citim, inchiderea lor
dupa ce terminam de citit din ele nu este obligatorie, in cazul fisierelor in care scriem, inchiderea lor este esentiala;
omitand acest lucru se poate ajunge la pierderea informatiilor.

#include<iostream>

#include<fstream>

#include<string>

using namespace std;

int main() {

//ifstream in_file("test.txt");

ifstream in_file;

string file_name;

cout << "Dati numele fisierului din care vreti sa
cititi:";

cin >> file_name;

in_file.open(file_name);

if (in_file) {

cout << "Fisierul este deschis cu succes" << endl;
}

else {

cerr << "Eroare la deschidere" << endl;

in_file.close();

S n_9;

}

Modalitati de citire din fisiere txt

* Cu ajutorul operatorului de extractie “>>" (asa cum se foloseste la cin)

int num{}; 100
double total{}; 255.67

string name{}; i
Imona

in_file >> num;
in_file >> total >> name;

Atentie! In fisier trebuie sa fie scrise in ordine: un numar intreg, un numar real, apoi un cuvant. Pot fi scrise pe linii diferite sau pe aceesi linii,
separate de un spatiu sau mai multe spatii libere.

Modalitati de citire din fisiere txt

* Cuajutorul lui getline (cand dorim sa citim cate o linie o data)

strirjg 1::Lne{]:; _ 100 255.67
getline(in_file, line); Simona

Daca scriem apoi
cout<<line;
se va afisa “100 255.67”

Modalitati de citire din fisiere txt
* Cuajutorul lui getline (cand dorim sa citim cate o linie o data) putem afisa tot continutul fisierului — Metoda 1

#include<iostream>
#include<fstream>
#include<string>

using namespace std;

int main() {

//ifstream in_file("test.txt");
ifstream in_file; 100 255.67
string file_name; Simona
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file name;

in_file.open(file_name);

if(!in_file) {

cerr << "Eroare la deschidere" << endl;

return 1;

¥

while (in_file) {

string line{};

getline(in_file, line);

cout <<line << endl;

¥

in_file.close();

return 0;

}

Modalitati de citire din fisiere txt
* Cuajutorul lui getline (cand dorim sa citim cate o linie o data) putem afisa tot continutul fisierului — Metoda 2

#include<iostream>
#include<fstream>
#include<string>
using namespace std;
int main() {

//ifstream in_file("test.txt");
ifstream in_file; 100 255.67

string file_name; Simona
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file name;

in_file.open(file_name);

if(!in_file) {

cerr << "Eroare la deschidere" << endl;

return 1;

¥

string line;

while (getline(in_file, line)) {

cout <<line << endl;

¥

in_file.close();

return 0;

}

Modalitati de citire din fisiere txt

* Cu ajutorul lui get(cand dorim sa citim cate un caracter o data) putem afisa tot continutul fisierului

#include<iostream>
#include<fstream>
#include<string>
using namespace std;
int main() {

//ifstream in_file("test.txt");
ifstream in_file; 100 255.67

string file_name; Simona
cout << "Dati numele fisierului din care vreti sa cititi:";
cin >> file name;

in_file.open(file_name);

if(!in_file) {

cerr << "Eroare la deschidere" << endl;

return 1;

¥

char c;

while (in_file.get(c)) {

cout <<c;

¥

in_file.close();

return 0;

}

Scrierea in fisiere

e Cele mai frecvente fisiere header folosite sunt fstream si ofstream

1. Adaugam directiva #include <fstream>

2. Declaram un obiect de tipul fstream sau ofstream

3. Conectam fisierul cu stream-ul creat (daca fisierul nu exista, va fi creat. Daca exista, continutul lui va fi sters in cazul in
care nu specificam altceva)

4. Scriem datele din fisier cu ajutorul stream-ului (in mod text sau binar)

5. Inchidem stream-ul (foarte important deoarece in acest moment fisierul este salvat)

® Fisierele vor fi suprascrise daca se foloseste modul default
® Fisierele pot fi deschise pentru a adauga continut la continutul existent
[J

Fisierele pot fi deschise in mod text si binar

Deschiderea unui fisier

» std::fstream out_file {“test..txt”, std::ios::out} //mod text

 std::fstream out_file {“test.jpg”, std::ios::out | std::ios::binary} //mod binar
* std::ofstream out_file {“test.txt”, std::ios::out}
Din moment ce ofstream foloseste modul out ca implicit putem sa nu mai adaugam ultimul parametru:

std::ofstream out_file {“test.txt”}
 std::ofstream out_file {“test.jpg”, std::ios::binary} //mod binar

Tipuri de deschidere a fisierelor pentru scriere

// stergem continutul fisierului in momentul deschiderii
std::ofstream out_file{“test.txt”, std::ios::trunc}

// adaugam text la continutul existent
std::ofstream out_file {“test.txt”, std::ios::app}

// deschidem fisierul si setam cursorul la finalul fisierului
std::ofstream out_file {“test.txt”, std:ios::ate};

> |a tastatura in fisier

3sta calea fisierului

Verificam daca fisierul a fost deschis cu succes

if (out_file.is open()) {

// scriem in fisier
} else {

// deschiderea nu a fost realizata cu succes
}

Alta metoda de verificare daca fisierul a fost deschis cu succes
if (out file) { //stream-ul va returna true daca fisierul a fost deschis
// scriem in fisier

} else {
// fisierul nu a fost deschis cu succes
}

Inchiderea fisierului
® Pentru modul output este critic deoarece atunci continutul fisierului este salvat.

out_file.close();

Scrierea fisierelor cout << "Dati numele fisierului in care vreti sa scrieti:";

h cin >> file name;
Dorim sa obtinem fisierul ce contine = ?

un integer, un double si un string: out_file.open(file name);
100 B P
255.67 if(lout_file) {
Simona)
* Folosim operatorul de insertie cerr << "Eroare la deschidere"” << endl;
“<<" (se foloseste ca si la cout); |
return 1;
Ji
else{
#include<iostream>)
int num{ 100 };
#include<fstream>
double total{ 255.67 };
#include<string>

string name{"Simona"};

out_file << num << "\n" << total << "\n" << name << endl;

}

out_file.close();

using namespace std;

int main() { return 9;
)

}

ofstream out_file;

string file _name;

#include<iostream>
#include<fstream> . . . S . .
#include<strings Copierea continutului unui fisier in alt fisier

using namespace std;

int main() {

ifstream in_file("test.txt");

ofstream out_file("copie_test.txt");

if(!'in_file) {

cerr << "Eroare la deschiderea fisierului test.txt" << endl;
return 1;

}

if(lout_file) {

cerr << "Eroare la crearea fisierului copie test.txt" << endl;
return 1;

}

string line{};

while (getline(in_file, line))

out _file << line << endl;

in_file.close();

out_file.close();

return 0;

}

Copierea continutului unui fisier in alt fisier caracter cu caracter (get/put)

#include<iostream>
#include<fstream>

#include<string>

using namespace std;

int main() {

ifstream in_file("test.txt");
ofstream out_file("copie_test.txt");
if(lin_file) {

cerr << "Eroare la deschiderea fisierului test.txt" << endl;
return 1;

}

if(lout_file) {

cerr << "Eroare la crearea fisierului copie_test.txt" << endl;
return 1;

}

char c;

while (in_file.get(c))
out_file.put(c);

in_file.close();

out_file.close();

return 9;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

