
Structura unui program
C++

Fundamentele Programării

Structura unui program C++

• Componentele de baza: cuvintele cheie, identificatori, semnele de punctuatie, sintaxa

• Directivele preprocesare (sunt introduse de “#”)

• Functia principala main() si alte functii

• Spatiile de nume

• Comentariile

• Operatiile de citire/ scriere (sau intrare/iesire sau input/output). Identificatiorii cin si cout.

Cuvintele cheie ale C++

• Cuvintele cheie fac parte din vocabularul limbajului de programare/ sintaxa limbajului.

• Programatorul nu poate folosi aceste cuvinte decat cu scopul pentru care au fost ele create

• C++ ~ 80 de cuvinte cheie

• Java ~ 68 de cuvinte cheie

• C ~ 54 de cuvinte cheie

• Pyton ~ 35 de cuvinte cheie

Cuvintele cheie ale C++

• https://en.cppreference.com/w/cpp/keyword

https://en.cppreference.com/w/cpp/keyword
https://en.cppreference.com/w/cpp/keyword

Identificatori ai C++
• Identificatori definiti de utilizator

• Identificatori predefiniti (main, cout, std, endl, s.a) -- au o semnificatie rezervata

• Identificatorii definiti de utilizator sunt nume alfanumerice folosite în C++ pentru a identifica

(denumi) elementele programului, cum ar fi variabilele, constantele, funcțiile, clasele, obiectele,

tipurile de date, spațiile de nume etc.

• Cu alte cuvinte, un identificator este numele atribuit unei entități din program, prin care aceasta

poate fi recunoscută și utilizată ulterior în cod.

• Reguli pentru identificatorii definiti de utilizator:

❖ Pot conține litere (A–Z, a–z), cifre (0–9) și underscore (_).

❖ Primul caracter nu poate fi o cifră.

❖ Sunt sensibili la majuscule/minuscule (C++ este case-sensitive).

❖ Nu pot fi cuvinte cheie rezervate (ex. if, class, for etc.).

❖ Nu trebuie să coincidă cu identificatori predefiniți din bibliotecile standard, pentru a evita confuziile.

• Identificatorii predefiniți sunt nume de entități (funcții, clase, obiecte, constante, spații de nume etc.)

definite deja în biblioteca standard.

• Ei nu fac parte din sintaxa limbajului propriu-zis (ca „if” sau „while”), dar sunt gata definiți pentru

utilizatori, astfel încât sa ii putem folosi fără să îi declaram.

Identificatori ai C++

Operatori ai C++

• Operatori artimetici: +, x, -, /, %

• Operatori logici ! (negatia), || (disjunctia), && (conjunctia)

• Operatori relationari: <, =, >, <=, >=, ==, !=

• Operatori pe biti &, |, ^,~

• Operatorul de conversie explicita

• Operatorul sizeof

• Alti operatori:

o Operatori de incrementare ++

o Operatori de decrementare --

o Operatorul conditional ?

o Operatorul ,

Operatori ai C++

Operator de inserare

Operator de extragere

Operator de rezolutie

o Operatorul de inserare in flux << se foloseste pentru afisare –insereaza (trimite) date din fluxul de intrare

o Operatorul de extragere din flux >> se foloseste pentru citire –extrage (preia) date din fluxul de intrare

o Operatorul de rezolutie :: indica apartenenta unui nume la un anumit spatiu de nume sau clasa

Semne de punctuatie in C++

Click to add text

Semnele de punctuație în C++ sunt simbolurile care delimitează, separă sau structurează instrucțiunile dintr-un program.

Exemple: ; , : . () { } # ‘ “ //

Sintaxa limbajului C++

In cazul limbajelor de programare, succesiunile de cuvinte

construite după anumite reguli, formează propoziții, numite

instrucțiuni, iar acestea se finalizeaza cu “;”

Sintaxa unui limbaj de programare reprezinta ansamblul de

reguli prin care se stabileste forma corecta a instructiunilor din

acel limbaj.

Sintaxa cuprinde toate regulile privind structura

programului

• Cuvintele cheie

• Identificatori

• Semnele de punctuatie

• Operatori

• Instructiuni

Ce este un preprocesor C++?

• Este un program care proceseaza codul sursa inainte de a fi vazut de catre compilator

• Detecteaza toate comentariile si le inlocuieste cu un spatiu

• Identifica directivele preprocesor si le executa (liniile din codul sursa care incep cu ‘#’)

• Prepocesorul C++ nu intelege codul C++ (doar cauta in cod directivele prepocesor si

pregateste codul sursa pentru compilator) !

Exemple directive preprocesor

include <iostream> # ifdef
include ”myfile.h” # ifndef

define
if # undef
elif # line
else # error
endif # pragma

• Cand prepocesorul detecteaza aceasta directiva, inlocuieste linia de cod respectiva cu fisierul la care

se refera (in acest caz, fisierul iostream.h) si apoi reproceseaza acel fisier.

• Astfel, atunci cand compilatorul va vedea codul sursa, toate directivele prepocesor vor fi inlocuite si

procesate si toate comentariile vor fi eliminate

• Se pot crea programe si fara directiva #include<iostream>, de exemplu cand nu facem scriere

sau citire din consola!

Ce sunt comentariile intr-un limbaj de
programare?

• Sunt explicatii scrise de catre programator in codul sursa

• Nu sunt niciodata citite de catre compilator

Tipuri de comentarii

1. // comentariu scris pe o singura linie

2. /* comentariu scris

pe mai

multe linii */

Tipuri utile de comentarii

• Mentionam autorul

/****************************

author Simona

*****************************/

• Mentionam de ce am dorit sa folosim o anumita abordare

/****************************

Folosim Teorema lui Pitagora pentru a calcula lungimea ipotenuzei

*****************************/

Comentarii in C++
• Comentariile trebuie evitate pe cat posibil pentru ca:

o Nu trebuie sa comentam ceva evident

o Codul trebuie sa fie inteles si fara comentarii

o Sunt greu de intretinut (deseori se intampla ca un cod sa fie schimbat dupa ce a

fost adaugata o nota explicativa ca si comentariu, dupa care comentariul sa nu

mai fie reactualizat)

o Un comentariu bun nu scuza un cod scris gresit!

o Shortcuts:

o Selectati textul pe care doriti sa il puneti in comentariu si folositi

combinatia de taste Ctrl+K+C

o Selectati textul pe care doriti sa il scoateti din comentariu si folositi

combinatia de taste Ctrl+K+U

Functia main()

• Fiecare program C++ trebuie sa contina exact 1 functie main()
• Cuvantul main trebuie scris cu litere mici

• Cand un program C++ este executat, sistemul de operare apeleaza functia main() si se executa codul din

interiorul acoladelor {…}.

• Cand executia ajunge la linia “return 0;”, programul returneaza catre sistemul de operare un numar intreg.

Daca acest numar este “0” atunci programul s-a finalizat cu succes, iar daca numarul este diferit de “0”

sistemul de operare poate verifica valoarea returnata si sa identifice ce nu a functionat bine

Functia main()

• Ambele variante sunt valide

o In primul exemplu nu este necesar de niciun input de la utilizator

o In al doilea exemplu, trebuie sa adaugam unul sau mai multe argumente

in momentul in care rulam programul

Functia main()

• Numele parametrilor din exemplul 2 sunt aleatorii

o argc -> argument count

o argv -> argument vector (ignorati *, o sa aflam mai multe despre ea ulterior)

Functia main()

• Trebuie intotdeauna sa returneze un numar intreg

• Este o functie speciala, ea fiind apelata automat la inceputul rularii programului.

• In cadrul acestui curs, vom scrie programe care vor contine si alte functii pe langa functia principala main()

Spatiile de nume

• De ce trebuie sa folosim std::cout si nu doar cout pentru a printa un text?

o Libraria iostream foloseste elemente care sunt definite in spatiul de nume std

(cout, cin, endl, s.a.)

• Daca libraria iostream si o alta librarie externa contin functii sau obiecte diferite cu

acelasi nume, de exemplu cout, compilatorul nu va stii daca ne referim la std::cout
sau la cout din librarie externa. Prin urmare, vom avea un conflict de nume. Astfel,

putem crea o functie noua cout intr-un spatiu de nume denumit myNameSpace, dupa

care putem folosi myNameSpace::cout, iar compilatorul va stii care dintre cele doua

functii dorim sa fie apelata

Spatiile de nume

• Un spatiu de nume (namespace) este un mecanism C++ care organizeaza si

grupeaza elemente precum functii, variabile, clase si obiecte pentru a preveni

conflictele de nume.

• ‘::’ este operatorul de rezolutie cu ajutorul caruia definim ce spatiu de lucru dorim

sa folosim

• Deseori, programatorii nu doresc ca de fiecare data cand folosesc o functie din spatiu

de nume standard, sa fie nevoiti sa scrie std::numeFunctie.

Spatiile de nume

Spatiile de nume

• Foloseste tot spatiul de nume standard (chiar daca nu folosim toate metodele
din acesta)

Spatiile de nume

• Este mult mai optim deoarece utilizam doar metodele de care avem nevoie reducand astfel
riscul de conflicte de nume

Spatiile de nume

0
4

5
4

5
7

10

EROARE!

Spatiile de nume

Operatiile de citire/scriere in C++

• Sunt metodele prin care primim si dam date prin intermediul tastaturii si a consolei

• cout este identificatorul de afisare/scriere a datelor pe consola sau pe ecran

• cerr este identificatorul prin care afisam o eroare

• cin este identificatorul prin care citim date de la tastatura

• << este operatorul de inserare/ scriere (folosit pentru afisare/scriere)

• >> este operatorul de extragere/ citire (folosit pentru citire)

Identificatorul cout si operatorul de inserare <<

cout << “valoare de iesire”;
o Operatorul de inserare “<<“ insereaza datele din partea dreapta a operatorului in fluxul de iesire al

datelor, fiind astfel afisat pe ecran

cout << “Valoarea de iesire este “ << “aabbcc”;
o Operatia poate fi inlantuita dupa cum se poate vedea mai sus, afisand in consola mesajul

“Valoarea de intrare este aabbcc”

cout << “Valorea de iesire este “ << “aabbcc” << endl;
cout << “Un text” << “\n”;

o Pentru a afisa datele pe linii separate trebuie utilizat endl (care se regaseste in
spatiul de nume standard) ori “\n” ori ‘\n’

cout << “Valorea de iesire este “ << “aabbcc” << endl<< “Un text” << “\n”;
o Textul este afisat tot pe doua linii ca si mai sus!

Identificatorul endl si caracterul de linie noua \n

• “\n” sau ‘\n’ este un caracter special care reprezinta o noua linie. Este interpretat ca un salt la urmatoarea
linie si este pur si simplu inserat in fluxul de iesire.

1. Nu face altceva decat sa insereze o linie noua.
2. Nu forteaza golirea (flush) bufferului de iesire, deci poate fi mai rapid decat endl in situatii in care nu
este necesara golirea bufferului.

• endl este un manipulator din C++ care face doua lucruri:
1. Insereaza o linie noua (ca si “\n”)
2. Forteza golirea (flush) bufferului de iesire, adica se asigura ca toate datele din bufferul de iesire sunt
trimise imediat catre destinatia finala (de exemplu, ecranul)

Identificatorul endl si caracterul de linie noua \n

Ce este un buffer?

Un buffer este o zonă temporară de memorie unde sunt stocate date înainte de a fi procesate sau trimise

către destinația finală. În cazul ieșirii în C++, cum ar fi atunci când folosim std::cout, bufferul colectează

datele care urmează să fie afișate pe ecran și le trimite când:

• bufferul este plin,

• programul termină execuția,

• sau când este făcut un flush explicit (std::flush) sau se foloseste std::endl.

Când să folosești fiecare?

• Foloseste \n cand nu ai nevoie de golirea imediată a bufferului și vrei să obții performanță maximă.

• Foloseste endl atunci când ai nevoie să te asiguri că datele sunt scrise imediat (de exemplu, în

programe interactive sau la lucrul cu fișiere unde vrei să te asiguri că datele sunt salvate imediat).

Identificatorul cin si operatorul de extragere >>

cin >> Variable;

o Operatorul de extragere “>>“ extrage datele din fluxul de intrare al datelor in Variable

cin >> variable1>> variable2;

o Operatia poate fi inlantuita dupa cum se poate vedea mai sus
o Se tasteaza valoarea primei variabile, dupa care se apasa enter urmand ca mai apoi sa

setam a doua variabila
o Daca tipul datelor de intrare nu se potriveste cu tipul variabilei, va rezulta o eroare

semantica, adica ceea ce interpreteaza compilatorul nu este correct
o Daca introducem de la tastatura sirul de caractere ” text”, valoarea stocata in

variabila nu mai contine spatiile sau tab-urile de la inceput si va fi text
o Similar “ text1 text2” va fi citit doar text1 oprindu-se la primul spatiu

Exemple

Exemple

Exemple

Exemple
Tastatura

Zona buffer
123

123

Zona buffer
123 456

123

Exemple

Ce va afisa
programul
daca vom
introduce
de la
tastatura
“2 3”?

Exemple

• Daca introducem de la tastatura numerele “2 3” separate prin spatiu, urmate un singur Enter
va atribui ambelor variabile cele 2 valori, neasteptand al doilea Enter, deoarece primul input deja contine
2 valori de tipul integer

Exemple

Ai introdus 100 si 200

Exemple

Ai introdus 100 si 200

Exemple

Exemple

Exemple

Ce se va afisa?

Exemple

Ce se va afisa daca introducem de la tastatura “Informatica”? Ai introdus 0

Ce se va afisa daca introducem de la tastatura “Informatica 10”? Ai introdus 0

Ce se va afisa daca introducem de la tastatura “10Informatica”? Ai introdus 10

https://test-master.space

	Slide 1: Structura unui program C++
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

