

O O O O

Variabile si constante

Variabilele sunt concepte fundamentale in limbajele de programare
Cum se declara variabilele
Tipuri de date fundamentale C++

Integer

Float / Double

Bool

Character

Operatorul sizeof

Ce este o constanta?

Cum se declara constantele
Constantele literale
Expresii cu constante

Ce este o variabila?

« Conceptual, o variabila este un nume simbolic folosit pentru o
locatie de memorie.

» Practic, variabila are o adresa, dar nu este adresa insasi.
« Ar fi mult mai dificil de programat daca ar trebui sa lucram
doar cu adresele de memorie si am putea genera erori mai

frecvent

» Majoritatea limbajelor de programare ne permit sa asociem un
nume unei adrese de memorie.

» Exemplu: Dorim sa folosim numarul “21” in programul nostru.

---> "Pune valoarea “21" |la locatia 1002"

Memoria

21

999

1000
1001
1002
1003
1004
1005
1006

Ce este o variabila?

* Adresei 1002 11 putem asocia un nume varsta

--- > “Pune valoarea “21” 1in variabila varsta”
(nu ne intereseaza precis locatia)

* Daca compilam din nou, numelui varsta i1 va
corespunde o alta adresa (nu este nici o problema,
codul va functiona in continuare).

* varsta este o variabila, deci continutul e1 poate
varia. Prin urmare, putem schimba valoarea ei cu
“22”, de exemplu.

varsta

Memoria

21

999

1000
1001
1002
1003
1004
1005
1006

Ce este o variabila?

* O variabila este o abstractizare a locatiei din memoria calculatorului
* Variabilele permit programatorilor sa foloseasca nume relevante in locul adreselor din memorie
* Variabilele au doua proprietati importante

R/

1 Tipul --- categoria lor (numar intreg, numar real, persoana,...)

/7

X Valoarea --- continutul lor (10; 3,14; “Simona”,...)

e Variabilele trebuie sa fie declarate inainte de a fi folosite
* Valoarea variabilelor poate fi schimbata

Int age;

age = 21; // eroare a compilatorului

age=21;

Declararea si initializarea unei variabile

e Declararea Variabilelor

TipulVariabilei NumeleVariabilei
int varsta;
double rata;

string nume;

Persona simona;

e Numele variabilei este un identificator definit de utilizator!

Declararea si initializarea unei variabile

Regulile pe care trebuie sa le respectam atunci cand dam nume variabilelor

n o,

* Pot contine litere, numere si bara jos (underscore) “_";

« Trebuie sa inceapa cu o litera sau cu bara jos (nu pot incepe cu un numar);

* Nu putem folosi cuvintele cheie sau identificatorii predefiniti ale C++;

* Nu putem redeclara un nume in acelasi scop;

« Atentie, C++ face diferenta intre litere majuscule si minuscule (case sensitive)

------ Coect — lneoea |

Varsta int

varsta $varsta
_varsta 2021 varsta
Varsta_mea Varsta mea
Varsta_ta_in_2021 Varsta+1
INT cout

Int return

T

Declararea si initializarea unei variabile

Fii consistent cu conventiile pe care le stabilesti
pentru numele variabilelor!

Exemplu: numeleVariabilei sau numele_variabilei
Evita sa incepi numele variabilelor cu bara jos!

Foloseste nume cu inteles (nu prea lungi, nu prea
scurte)!

Incearca sa nu folosesti variabile fara sa le
initializezi!

Declara variabilele in apropierea locului unde le
folosestil

88 5 s e e R R R R RN AN R RN RN R R RN RN AR EEANEEEEREAEEERSNSEEASEAARAEFENGAEESEAsEASEEEEEEEEE

Bassssssssnsnsnunsnnnfunnnnsnnnannnnnnnnnnnnnnndunnnnnnnnnnnnnnnnnnnnnnnnehonnnnnnnnnnnnnunununnnnnaunnnnnnnnnnnnnn

e initializata

r\einstilulc

I izar'e (, POO)

8818 gt = o = 3 B G N RN RN R R RN RN R N R R RN NN ENEEEREREAREEREEEEER AR AR ERERRERE R

e

Declararea si initializarea unei variabile

Exemplu

#include<iostream
using namespace std;

//Acest program calculeaza aria unui dreptunghi
fint main() {
cout << "Introduceti lungimea dreptunghiului ";
int lungimeaDreptunghiului{ @ };
cin >> lungimeaDreptunghiului;

cout << "Introduceti latimea dreptunghiului ",
int latimeaDreptunghiului{ @ };
cin >> latimeaDreptunghiului;

cout << "Aria dreptunghiului este " << lungimeaDreptunghiului * latimeaDreptunghiului << endl;

return @,

Declararea si initializarea unei variabile

Variabile globale si locale

» Variabilele folosite in exemplul anterior sunt variabile locale.

e Variabilele locale sunt cele declarate in interiorul unei functii; ele sunt sunt vizibile
doar in cadrul acelei functii.

* Variabilele globale sunt cele definite in afara oricarei functii si pot fi accesate din
orice parte a programului. Variabilele globale sunt automat initializate cu zero!

Declararea si initializarea unei variabile

Exemplu

#include<iostream
using namespace std,

Int varsta = 21;

Elint main() {
int varsta = 20;
cout << "Varsta este " << varsta << endl;
return o,

Ce va afisa programul de mai sus? Varsta este 20

Tipuri de date fundamentale in C++

Sunt implementate direct de limbajul C++

Caracter (char)
Intreg (int)
v Cu semn (signed)
v Fara semn (unsigned)
Real (float, double)
Boolean (bool)

Marimea si precizia lor sunt dependente de platforma si de compilatorul folosite!

<climits>

Tipuri de date fundamentale in C++

Marimea tipurilor de date

e Exprimata in biti
e Cu cat mai multi biti sunt alocati unui anumit tip de date cu atat mai multe

valori pot fi exprimate
e Cu cat mai multi biti sunt alocati unui anumit tip de date cu atat necesita o

memorie mai mare

..

(ETEY munn sesnmmm 88 8 5 e e e e e R R R R RN R R E N R R RN ERENE RN AR ENEEREERERSAREEREREEEEE

Marimea (in biti) Valori reprezentabile Formula de calcul

8 256 28
16 65 536 216
32 4 294 967 296 232
64 18446 744 073 709 551 615 264

...
. " .

R R RR & R = e nm = s s mm s nm s mannsfnanannnanannnunannnnnnnnfuannnn

Tipul de date caracter (char)

» Folosit pentru a reprezenta caractere singulare 'A’, ‘x’, ‘@’

« Marimea pe care o ocupa este 1 byte (8 biti) 2256 de valori

#include<iostream>
using namespace std;

int main()

char variabila;

variabila = 'a';

cout << "Caracterul declarat este: " << variabila;
return 0;

Caracterul declarat este: a

Tipul de date intreg (int)

» Folosit pentru a reprezenta numere intregi
* Versiuni: cu semn (signed) si fara semn (unsigned)

* In mod implicit, tipul de date int este signed (cu semn)!

Tipul de date intreg (int)

» Valorile marimilor variabilelor pot diferi de cele din tabelele urmatoare in functie de compilatorul si

calculatorul folosit

Numele tipului Marimea standard Interval de referinta

signed short int 16 biti
signed int 32 biti
signed long int 32 biti
signed long long int 64 biti

07 5=-32768, , 27 5-1= 32 767

0731=-2 147 483 648 ,....., 2/31-1=2 147 483 647
0/31=-2 147 483 648,, -2°31-1=2 147 483 647
2163, ... (2763)-1

Numele tipului Marimea standard Interval de referinta

unsigned short int 16 biti
unsigned int 32 biti
unsigned long int 32 biti
unsigned long long int 64 biti

0...., 2716-1=65 535

ceee s 2032-1=4294 967 295

0
0,....,2732-1=4 294 967 295
0

s aeee» 2°64-1=18 446 744 073 709 551 614

Tipul de date intreg (int)

#include<iostream>
using namespace std;

Hint main()

{

int variabila_1;
signed int variabila_2;
unsigned int variabila_3;

variabila_1 = 10;
variabila_2 = -5;
variabila_3 = 200;
cout << "Variabila_l " << variabila_l << "\n";
cout << "Variabila_2 " << variabila_2 << "\n";
cout << "Variabila_3 " << variabila_3 << "\n";

variabila_1 =10
variabila 2 = -
variabila--3-=-200

Tipul de date intreg

#include<iostream>
using namespace std,;

| | 2 147 483 650 > - 2 147 483 646
e redE 2 147 483 649 - > -2 147 483 647
i 2 147 483 648 - > -2 147 483 648

int variabila_1;
signed int variabila_2, variabila_3;
variabila_l -2147u483649;

variabila_2 = 21474836U8; MAX

variabila_3 = -2147u4836U8;

cout << "Variabila_l = " << variabila_l << "\n";

cout << "Variabila_2 = " << variabila_2 << "\n";

cout << "Variabila_3 = " << variabila_3 << "\n";

return 0O;

MIN

variabila_1 =2147483647 P-4AF-483-6A9-ien>-2-447-483-647
variabila_2 = -2147483648 2 147 483 650 - > 2 147 483 646

variabila_3 = -2147483648 2147 483 651 > 2 147 483 647

Tipul de date intreg

#tinclude<iostream>
using namespace std,;

4294 967 298 - > 2
Sint main() 4294 967 297 > 1
{ 4294 967 296 > 0

unsigned int variabila_1, variabila_2, variabila_3,variabila_u;

variabila_l = -1;

variabila_2 = 4294967295; MAX
variabila_3 = 0;

variabila_u = 4294967296;

cout << "Variabila_l << variabila_l <<

cout << "Variabila_2 << variabila_2 <<

cout << "Variabila_3 << variabila_3 <<

cout << "Variabila_U << variabila_4 <<

return 0, MIN

ariabila_1 = 4294967295
ariabila 2 = 4294967295 -1 -—->4294 967 295

2 --->4294 967 294

ariabila 3 e

ariabila 4 = © 3--->4294 967 293

Tipul de date real

Folosit pentru a reprezenta numere care nu sunt intregi

Atunci cand numarul zecimalelor unui numar este infinit, computerul retine o aproximare a
numarului (deoarece are o memorie finita).

IEEE 754 este standardul international pentru reprezentarea si calculul numerelor reale (in virgula
mobilad) in calculatoare.

A fost publicat de IEEE (Institute of Electrical and Electronics Engineers) si este folosit de toate
limbajele moderne: C, C++, Java, Python, etc.

Practic, el defineste cum se stocheaza si cum se calculeaza numerele reale in memorie — ca sa existe
rezultate identice indiferent de sistemul de operare, procesor sau compilator.

Este standardul dominant; exista s1 alte reprezentari, dar nu la fel de mult folosite (reprezentarea fixa,
reprezentarea zecimala, reprezentarea Binary-Coded Decimal, reprezentari logaritmice, rationale,
reprezentatea Posit, s.am)

Tipul de date real

De ce a fost nevoie de acest standard?

Inainte de IEEE 754 (in anii *70), fiecare calculator sau compilator avea propriul mod de a memora numere
reale, ceea ce ducea la:

» erori diferite in calcule,

* rezultate incompatibile intre platforme,

 dificultati in schimbul de date binare.

IEEE 754 a uniformizat totul. De atunci, orice double sau float se comporta exact la fel pe orice sistem.

Structura unui numar IEEE 754
Forma matematica a unui numar real (care se poate normaliza) in sistem binar:

(—1)°°™ X (1 + mantisa_stocata) x 2é*ponent_stocat-bias

Aceasta formula e baza intregului standard.

Tipul de date real

Numele tipului Marimea standard Intervalul de referinta

float 32 biti 1.2 x 10738 —— — 3.4 x 1038

double 64 biti 2.2%x 107398 —— — 1.8 x 10398

long double 96 biti 3.3 X 1074932 —— — 1.2 x 10932
Pe Windows: 64 biti 2.2%x107398 —— — 1.8 x 10398

O Pentru tipul float, cei 32 biti sunt impartiti astfel:
* Pentru semn --- 1 bit (0 = pozitiv, 1= negativ)

* Pentru exponent_stocat --- 8 biti

e Pentru mantisa_stocata (fractiune) --- 23 biti

O Pentru tipul double, cei 64 biti sunt impartiti astfel:
* Pentru semn --- 1 bit

» Pentru exponent_stocat --- 11 biti

e Pentru mantisa_stocata (fractiune) --- 52 biti

Cum sunt memorate numerele reale in calculator?

Exemple:

1. double a= 7034.012 (in baza 10)

Pasul 1. Separam partea intreaga de partea fractionara: 7034.012 = 7034 + 0.012

Pasul 2. Convertim partea intreaga in baza 2: 7034 (in baza 10) = 1101101111010 (in baza 2)
Pasul 3. Convertim partea fractionara in baza 2: 0.012 (in baza 10) ~ 0.0000001100..... (in baza 2)

Pasul 4. Combinam cele doua parti: 7034.012 (in baza 10) ~ 1101101111010. 0000001100.... (in baza 2)

Pasul 5. Normalizam (forma stiintifica binara): mutam virgula astfel incat sa avem un singur “1” inaintea ei
1101101111010. 0000001100 =1.1011011110100000001100... x 212

Am mutat virgula cu 12 pozitii la stanga, deci exponentul real este 12 (daca ar fi1 trebuit sa mutam virgula spre

dreapta cu 12 pozitii atunci exponentul real ar fi1 fost -12)

Inainte de virgula, intotdeauna vom avea “1” si de aceea el nu se mai stocheaza in memorie si in formula

matematica, cand reconsituim numarul real avem ““1+mantisa” (vezi slide anterior)

Forma normalizata a numerelor reale memorate in C++
Pasul 6. Calculam campurile IEEE 754 (pentru double)
U Semn: numarul este pozitiv, deci semn = 0

L Exponent:
Exponent real = 12. Standardul IEEE 754 pentru double foloseste un bias (deplasare) de 1023.
Exponent_ stocat = 12+1023=1035 (in baza 10)=10000001011 (in baza 2) (standardul aloca 11 biti; daca mai

trebuie adaugati biti atunci se mai adauga la stanga bitul 0, de cate or1 este nevoie)

L Mantisa_stocata: luam doar partea de dupa virgula din forma normalizata,
Mantisa_stocata =1011011110100000001100000010010011010110100011000100 (standardul retine primii 52
de biti a1 aceste secvente; daca sunt mai putini biti de 52, atunci se mai adauga la dreapta bitul 0, de cate ori este

nevoie)
Pasul 7. Forma finala in memorie

[Semn][Exponent stocat (11 biti)][Mantisa stocata (52 biti)]
(%] 10000001011 1011011110100000001100000010010011010110100011000100

Forma normalizata a numerelor reale memorate in C++

[Semn][Exponent stocat (11 biti)][Mantisa stocata (52 biti)]
(%] 10000001011 1011011110100000001100000010010011010110100011000100

Cum se reconstruieste valoarea din memorie?

a = (—1)°"" x (1 + mantisa_stocata) x 2¢6xponent_stocat=bias

= (—1)0 X (1+0.1011011110100000001100000010010011010110100011000100)
% 21000000101 1-1111111111

=1x 1.1011011110100000001100000010010011010110100011000100 x 212
=1101101111010.0000001100000010010011010110100011000100 (in baza 2)

~7034. 0117538 (in baza 10)

Observatie! In calculator se pastreaza o aproximare a numarului 7034.012.

De ce apare acel bias?

Problema este ca exponentul poate fi negativ (de exemplu, pentru numere mai mici decat 1).
Dar in memorie, toti bitii din campul exponent sunt biti fara semn (unsigned).
Adica nu avem un bit de semn pentru exponent.

Exemplu:
2> are exponent = +3
2% are exponent = —4

Calculatorul trebuie sa poata reprezenta ambele valori (pozitive si negative) folosind doar biti pozitivi.

Solutia: folosim un bias (deplasare/translatie)
Ideea este simpla: se adauga o constanta fixa (bias) la exponentul real, astfel incat toti exponentii sa devina
numere pozitive, deci usor de stocat.

exponent stocat = exponent real + bias

In float: bias=127
In double: bias=1023

Gasiti reprezentarea lui “float a=5.75;" pe calculator!

Cum sunt memorate numerele reale in calculator?
Exemple: 2. float a = 5.75 (in baza 10)

Pasul 1. 5.75 =5+ 0.75

Pasul 2. 5 (in baza 10) = 101 (in baza 2)
Pasul 3. 0.75 (in baza 10) ~ 0.11 (in baza 2)
Pasul 4. 5.75 (in baza 10) ~ 101.11 (in baza 2)

Pasul 5. 101.11 =1.0111 x 22

Pasul 6. exponent_real=2; bias=127 (pentru float)

exponent stocat = 2+127=129 (in baza 10)= 10000001 (in baza 2) (8 biti)
Semn= 0

Mantisa_stocata= 01110000000000000000000 (23 biti pentru float)

Pasul 7. Forma finala in memorie

[Semn][Exponent stocat (8 biti)][Mantisa stocata (23 biti)]
%) 10000001 01110000000000000000000

Cum sunt memorate numerele reale in calculator?

[Semn][Exponent_stocat (8 biti)][Mantisa stocata (23 biti)]
5 10000001 01110000000000000000000

a = (—1)°*™" x (1 + mantisa_stocata) x 2¢xponent_stocat=bias

a=1x 1.0111 x 22=101.11 (in baza 2) = 5.75 (in baza 10)

Exemple: 3. float a = —5.75 (in baza 10)

[Semn][Exponent _stocat (8 biti)][Mantisa stocata (23 biti)]
1 10000001 01110000000000000000000

Cum sunt memorate numerele reale in calculator?
Exemple: 4. float a = 0.125 (in baza 10)

Pasul 1. 0.25 =0 + 0.125

Pasul 2. 0 (in baza 10) = 0 (in baza 2)

Pasul 3. 0.125 (in baza 10) ~ 0.001 (in baza 2)
Pasul 4. 0.125 (in baza 10) ~ 0.001 (in baza 2)

Pasul 5.0.001 =1.0x 273

Pasul 6. exponent_real=-3; bias=127 (pentru float)

exponent_stocat = -3+127=124 (in baza 10)= 1111100 (in baza 2) = 01111100 (8 biti)
Semn= ()

Mantisa_stocata= 00000000000000000000000 (23 biti pentru float)

Pasul 7. Forma finala in memorie

[Semn][Exponent stocat (8 biti)][Mantisa stocata (23 biti)]
0 01111100 00000000000000000000000

Cand nu se poate normaliza un numar?

Cand numarul este prea mic, adica este mai aproape de zero decat cea mai mica valoare
normalizata care poate fi reprezentata.

Pentru tipul float (32 biti): exponentul minim normalizat = 1 - bias =1-127 =-126.

Asta inseamna ca:
= —126 —38
Xminnormalizat = 1.0; X 2 ~ 1.175 X 10

In acest caz, standardul IEEE 754, precizeaza ca un numar real, care nu se poate normaliza, se obtine prin

(—1)°°"™ x (0 + mantisa_stocata) x 21-btas

7"

Vezi programul “Vizualizare biti

Tipul de date real

#include<iostream>
using namespace std;

Hint main()

float variabila_1l;

double variabila_2;

variabila_1 = 3.1456898;

variabila_2 = -4.5789065U32;

cout << "Variabila_l = " << variabila_l << "\n";
cout << "Variabila_2 = " << variabila_2 << "\n";
return 0;

Variabila_1 = 3.14569
Variabila_2 = -4.57891

Tipul de date real

H#include<iostream>
— . .

| #include<iomanip>
using namespace std,;

Hint main()
{

float variabila_1;
double variabila_2;
variabila_1 = 3.145689;
variabila_2 = -4.5789065132;
cout << "Variabila_1l = " << setprecision(9)<<variabila_1l << "\n";
cout << "Variabila_2 = " << setprecision(1l7)<<variabila_2 << "\n";
return 0;

Variabila_1 = 3.14568901 //se afiseaza cu 8 zecimale, dar doar primele 6 cifre sunt identice

Variabila 2 = -4.5789065431999996 // se afiseaza cu 16 zecimale, dar ultima cifra a numarului declarat in
program nu este afisata corect

Care este rezultatul acestui program?

#tinclude<iostream>

using namespace std;

int main() {

double a = 0.1, b = 0.2, c = 0.3;
if (a + b == c)

cout << "0.1+0.2 = 0.3" << endl;
else

cout<< "0.1+0.2 este diferit de 0.3!" <<

0.1 +0.2 este diferit de 0.3!

return 0;

Tipul de date boolean

« Folosit pentru a reprezenta valorile adevarat (true) si fals (false).
« Valoarea 0 reprezinta false;
* Orice valoare nenula este true

Numele tipului

bool De obicei 8 biti
true sau false (cuvinte cheie ale C++)

» Vezi programul “TipuriDeDate"!

Marimea unei variabile

Utilizarea operatorului sizeof

* Operatorul sizeof determina marimea in bytes a unui tip de date
« Exemple:

sizeof(int)
sizeof(double)

sizeof(numeVariabila)
sizeof numeVariabila

Utilizarea operatorului sizeof
» Operatorul sizeof primeste informatii de la doua fisiere C++ care sunt incluse in program
<climits> <cfloat>

 In versiunile mai vechi, aceste biblioteci trebuiau incluse explicit, acum nu mai este necesar.
« Aceste bibiloteci contin informatii despre marimea si precizia variabilelor

INT_MAX valoarea maxima care poate fi stocata intr-o variabila de tip int

INT_MIN valoarea minima care poate fi stocata intr-o variabila de tip int

LONG_MIN valoarea minima care poate fi stocata intr-o variabila de tip long int
LONG_MAX valoarea maxima care poate fi stocata intr-o variabila de tip long int

« Vezi programul “OperatorulSizeOf"!

Ce este o constanta?

Constantele seamana foarte mult cu variabilele
Au nume

Ocupa spatiu

Valorile lor sunt date de programator

Valoarea lor nu se mai poate modifica odata ce au fost declarate!

Exemplu: numarul lunilor intr-un an este o constanta

Tipuri de constante in C++

Constante literale

Constante declarate (folosind cuvantul cheie const)
Expresii constante (folosind cuvantul cheie constexpr)
Constante definite (#define)

Enumerari (folosind cuvantul cheie enum)

Tipuri de constante in C++

Constante literale

« Constante literale intregi « Constante literale reale
12 - unintreg 12.1 - un double

12U -un intreg fara semn 12.1F - un float

12L - un intreg long 12.1L -unlong double

12LL - unintreg long long

Hello there

Exemplu: my friend

cout << "Hello\tthere\nmy friend\n";

\n
\r
\t
\b

Constante literale caracter
sunt cele scrise intre
ghilimele simple * ’ si
caracterele speciale

- linie noua
- return
- tab

- backspace

Tipuri de constante in C++

Constante declarate

e« Sunt constantele declarate folosind cuvantul cheie const

« Constantele trebuie initializate atunci cand sunt declarate sau in momentul executiei pentru ca altfel
compilatorul va genera o eroare

« Daca incercam sa modificam valoarea unei constante atunci compilatorul va gerenera o eroare.

« const double pi {3.1415926};
e const int nrLuniAn {12};

Tipuri de constante in C++

Expresii constante

« Au fostintroduse in C++11 si imbunatatite in C++14.

« Se introduc cu ajutorul cuvantului cheie constexpr

« Trebuie initializate atunci cand sunt declarate pentru ca altfel compilatorul va genera o eroare

» Spre deosebire de variabilele const, variabilelele constexpr trebuie sa fie initializate in
momentul compilarii; Variabilele const pot fi initializate in momentul compilarii sau in timpul
expecutiei programului.

« Tipul de date in expresiile constante trebuie sa fie constante literale

» Toate tipurile constexpr sunt const

constexpr float x = 43.0;
constexpr int y{ 108 };

constexpr int z; //Eroare

Tipuri de constante in C++

Expresii constante

e Exemplul 1
int m = 0;
const int n =m + 1; 1

e Exemplul 2

int m = 9; Eroare
constexpr int w = m+1;

e Exemplul 3

constexpr int w = 0+1;

Tipuri de constante in C++

Constante definite

« Sunt constantele date cu ajutorul unei directive de precompilare
#define pi 3.1415926;

» Prepocesorul inlocuieste pi cu valoarea respectiva oriunde o intalneste in cod (inlocuire
“oarba”), dar cum preprocesorul nu intelege codul C++, este posibil ca uneori sa se
genereze erori

« Recomandare: Nu folosi prea des constante definite in C++!

Declararea si utilizarea constantelor in
C++

Problema:
Avem o firma care ofera servicii de menaj, cu urmatorul tarif:

Pret: 30 lei pe camera
Alte taxe (transport): 6%
Estimarea este valabila 30 zile.

In consola dorim ca posibilul client sa abia posibilitatea sa introduca numarul de camere in care doreste sa
se faca menaj, dupa care sa se afiseze o aproximare a pretului acestor servicii:

Estimare:

Numar de camere: 3 Vezi programul “ServiciiMenaj"!
Pret pe camera: 30 lei

Cost: 90 lei

Alte taxe:5.4 lei

Cost total estimat: 95.4 lei
Estimarea este valabila 30 zile.

Microsoft Visual Studio Debug Console

In cate camere mari doriti sa facem curatenie? 2
(In cate camere mici doriti sa facem curatenie? 3

‘Estimarea pretului serviciilor noastre este urmatoarea:
Numarul de camere mari: 2

Numarul de camere mici: 3

Pretul pentru o camera mare: 35 lei

‘Pretul pentru o camera mica: 25 lei

Costul estimat pentru camerele mari:

Costul estimat pentru camerele mici:

Alte taxe: 8.7 lei

Estimarea totala: 153.7 leil
Estimarea aceasta este valabila pentru 30 zile

fC:\Users\nisto\OneDrive\Desktop\Curs C++\Curs4\Programe\Project3\Debug\Project3.exe (process 19252) exited with code @.
Press any key to close this window .

Enumerari

« O enumerare este un tip de data definit de programator prin care un sir de constante
intregi, bine precizate, capata un tip comun, introdus prin cuvantul cheie enum.

 De exemplu, declaratia

enum Logic {indecis, fals, adev};
defineste un nou tip de data, tipul Logic, fiecare variabila de acest tip avand numai una dintre
cele trei valori: indecis, fals sau adev. O variabila de tip Logic se declara, la fel ca orice alt
tip de variabila:

Logic omega;

si poate fi initializata astfel:

omega=fals;

Enumerari

« Avem si urmatoarea varianta de declaratie:
enum Logic {indecis, fals, adev} omega;
si chiar si varianta cu initializare:
enum Logic {indecis, fals, adev} omega=fals;
e Enumerarile sunt utilizate pentru a da mai multa claritate programului. Ele sunt de fapt niste
codificari numerice. In exemplul precedent, cele trei valori, indecis, fals si adev, sunt tratate

de compilator drept identificatori de constante intregi cu trei valori implicite in ordine:

indecis=0, fals=1 si adev=2.

Enumerari

* Programatorul poate impune alte valori, dar numai in momentul declaratiei, in modul urmator:
enum Fuzzy{imposibil,neverosimil,incert=5,plauzibil,sigur=10};

Acum avem
imposibil=0, neverosimil=1, incert=5, plauzibil=6, sigur=10.

Valorile care nu sunt impuse de programator se obtin prin incrementarea celor precedente cu
cate o unitate. Prima valoare este in mod implicit zero.

« Programatorul trebuie sa se asigure ca valorile obtinute sunt distincte, altfel utilitatea
codificarii este indoielnica.

* In expresii aritmetice orice data de tip enumerare este tratata ca un numar intreg, conversia
catre int fiind implicita, dar conversia unui intreg catre un tip enumerat trebuie ceruta

explicit. Vezi programul Enumerari-Exemplul1!

https://test-master.space

| EAE]

In:
Jpr L

Q““ﬁ

1

	Slide 1: Variabile si constante
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

