
Variabile si constante

Fundamentele Programarii

Variabile si constante

• Variabilele sunt concepte fundamentale in limbajele de programare
• Cum se declara variabilele
• Tipuri de date fundamentale C++
o Integer
o Float / Double
o Bool
o Character

• Operatorul sizeof

• Ce este o constanta?
• Cum se declara constantele
• Constantele literale
• Expresii cu constante

Ce este o variabila?

• Conceptual, o variabilă este un nume simbolic folosit pentru o
locație de memorie.

• Practic, variabila are o adresă, dar nu este adresa însăși.

• Ar fi mult mai dificil de programat daca ar trebui sa lucram
doar cu adresele de memorie si am putea genera erori mai
frecvent

• Majoritatea limbajelor de programare ne permit sa asociem un
nume unei adrese de memorie.

• Exemplu: Dorim sa folosim numarul “21” in programul nostru.

---> “Pune valoarea “21” la locatia 1002”

21

….
999

1000

1001

1002

1003

1004

1005

1006
….

Memoria

Ce este o variabila?

• Adresei 1002 ii putem asocia un nume varsta

--- > “Pune valoarea “21” in variabila varsta”

(nu ne intereseaza precis locatia)

• Daca compilam din nou, numelui varsta ii va

corespunde o alta adresa (nu este nici o problema,

codul va functiona in continuare).

• varsta este o variabila, deci continutul ei poate

varia. Prin urmare, putem schimba valoarea ei cu

“22”, de exemplu.

21

….
999

1000

1001

1002

1003

1004

1005

1006
….

Memoria

varsta

Ce este o variabila?

• O variabila este o abstractizare a locatiei din memoria calculatorului

• Variabilele permit programatorilor sa foloseasca nume relevante in locul adreselor din memorie

• Variabilele au doua proprietati importante

❖ Tipul --- categoria lor (numar intreg, numar real, persoana,…)

❖ Valoarea --- continutul lor (10; 3,14; “Simona”,…)

• Variabilele trebuie sa fie declarate inainte de a fi folosite

• Valoarea variabilelor poate fi schimbata

age = 21; // eroare a compilatorului
int age;

age=21;

Declararea si initializarea unei variabile

• Declararea Variabilelor

TipulVariabilei NumeleVariabilei

int varsta;
double rata;
string nume;

Persona simona;

• Numele variabilei este un identificator definit de utilizator!

Declararea si initializarea unei variabile

Regulile pe care trebuie sa le respectam atunci cand dam nume variabilelor

• Pot contine litere, numere si bara jos (underscore) “_”;
• Trebuie sa inceapa cu o litera sau cu bara jos (nu pot incepe cu un numar);
• Nu putem folosi cuvintele cheie sau identificatorii predefiniti ale C++;
• Nu putem redeclara un nume in acelasi scop;
• Atentie, C++ face diferenta intre litere majuscule si minuscule (case sensitive)

Declararea si initializarea unei variabile

Corect Incorect

Varsta int

varsta $varsta

_varsta 2021_varsta

Varsta_mea Varsta mea

Varsta_ta_in_2021 Varsta+1

INT cout

Int return

Nume de variabile

Declararea si initializarea unei variabile

• Fii consistent cu conventiile pe care le stabilesti
pentru numele variabilelor!

Exemplu: numeleVariabilei sau numele_variabilei

• Evita sa incepi numele variabilelor cu bara jos!

• Foloseste nume cu inteles (nu prea lungi, nu prea
scurte)!

• Incearca sa nu folosesti variabile fara sa le
initializezi!

• Declara variabilele in apropierea locului unde le
folosesti!

Declararea si initializarea unei variabile

Initializarea Variabilelor

int varsta; //variabila nu este initializata

int varsta = 21; //initializare in stilul C

int varsta(21); //constructor de initializare (POO)

int varsta{21}; //sintaxa de initializare C++11

Declararea si initializarea unei variabile

Exemplu

Declararea si initializarea unei variabile

Variabile globale si locale

• Variabilele folosite in exemplul anterior sunt variabile locale.

• Variabilele locale sunt cele declarate in interiorul unei functii; ele sunt sunt vizibile

doar in cadrul acelei functii.

• Variabilele globale sunt cele definite in afara oricarei functii si pot fi accesate din

orice parte a programului. Variabilele globale sunt automat initializate cu zero!

Declararea si initializarea unei variabile

Exemplu

//variabila globala

//variabila locala

Ce va afisa programul de mai sus? Varsta este 20

Tipuri de date fundamentale in C++

Sunt implementate direct de limbajul C++

• Caracter (char)
• Intreg (int)

✓ Cu semn (signed)
✓ Fara semn (unsigned)

• Real (float, double)
• Boolean (bool)

Marimea si precizia lor sunt dependente de platforma si de compilatorul folosite!

#include<climits>

Tipuri de date fundamentale in C++

Marimea tipurilor de date

• Exprimata in biti
• Cu cat mai multi biti sunt alocati unui anumit tip de date cu atat mai multe

valori pot fi exprimate
• Cu cat mai multi biti sunt alocati unui anumit tip de date cu atat necesita o

memorie mai mare

Tipuri de date fundamentale in C++

Marimea (in biti) Valori reprezentabile Formula de calcul

8 256 28

16 65 536 216

32 4 294 967 296 232

64 18 446 744 073 709 551 615 264

Tipul de date caracter (char)

• Folosit pentru a reprezenta caractere singulare ‘A’, ‘x’, ‘@’

• Marimea pe care o ocupa este 1 byte (8 biti) →256 de valori

Caracterul declarat este: a

Tipul de date intreg (int)

• Folosit pentru a reprezenta numere intregi

• Versiuni: cu semn (signed) si fara semn (unsigned)

• In mod implicit, tipul de date int este signed (cu semn)!

Tipul de date intreg (int)

• Valorile marimilor variabilelor pot diferi de cele din tabelele urmatoare in functie de compilatorul si
calculatorul folosit

Numele tipului Marimea standard Interval de referinta

signed short int 16 biti -2^15= -32 768, …… , 2^15-1= 32 767

signed int 32 biti -2^31= -2 147 483 648 ,….., 2^31-1=2 147 483 647

signed long int 32 biti -2^31= -2 147 483 648, ….., -2^31-1= 2 147 483 647

signed long long int 64 biti -2^63, …… ,(2^63)-1

Numele tipului Marimea standard Interval de referinta

unsigned short int 16 biti 0 …., 2^16-1= 65 535

unsigned int 32 biti 0 …. , 2^32-1= 4 294 967 295

unsigned long int 32 biti 0, …., 2^32-1= 4 294 967 295

unsigned long long int 64 biti 0, …. , 2^64-1=18 446 744 073 709 551 614

Tipul de date intreg (int)

variabila_1 = 10
variabila_2 = -5
variabila_3 = 200

Tipul de date intreg

variabila_1 = 2147483647
variabila_2 = -2147483648
variabila_3 = -2147483648

-2 147 483 648

2 147 483 647

⋮
2 147 483 650 --- > - 2 147 483 646
2 147 483 649 --- > - 2 147 483 647
2 147 483 648 --- > - 2 147 483 648

-2 147 483 649 --- > 2 147 483 647
-2 147 483 650 --- > 2 147 483 646
-2 147 483 651 --- > 2 147 483 647

⋮

MIN

MAX

Tipul de date intreg

0

4 294 967 295

⋮
4 294 967 298 --- > 2
4 294 967 297 --- > 1
4 294 967 296 --- > 0

-1 --- > 4 294 967 295
-2 --- > 4 294 967 294
-3 --- > 4 294 967 293

⋮

MIN

MAX

Tipul de date real

• Folosit pentru a reprezenta numere care nu sunt intregi

• Atunci cand numarul zecimalelor unui numar este infinit, computerul retine o aproximare a
numarului (deoarece are o memorie finita).

• IEEE 754 este standardul internațional pentru reprezentarea și calculul numerelor reale (în virgulă

mobilă) în calculatoare.

• A fost publicat de IEEE (Institute of Electrical and Electronics Engineers) și este folosit de toate

limbajele moderne: C, C++, Java, Python, etc.

• Practic, el definește cum se stochează și cum se calculează numerele reale în memorie — ca să existe

rezultate identice indiferent de sistemul de operare, procesor sau compilator.

• Este standardul dominant; exista si alte reprezentari, dar nu la fel de mult folosite (reprezentarea fixa,

reprezentarea zecimala, reprezentarea Binary-Coded Decimal, reprezentari logaritmice, rationale,

reprezentatea Posit, s.am)

Tipul de date real

De ce a fost nevoie de acest standard?

Înainte de IEEE 754 (în anii ’70), fiecare calculator sau compilator avea propriul mod de a memora numere

reale, ceea ce ducea la:

• erori diferite în calcule,

• rezultate incompatibile între platforme,

• dificultăți în schimbul de date binare.

IEEE 754 a uniformizat totul. De atunci, orice double sau float se comportă exact la fel pe orice sistem.

Structura unui număr IEEE 754

Forma matematica a unui numar real (care se poate normaliza) in sistem binar:

(−1)𝑠𝑒𝑚𝑛 × 1 +𝑚𝑎𝑛𝑡𝑖𝑠𝑎_𝑠𝑡𝑜𝑐𝑎𝑡𝑎 × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡_𝑠𝑡𝑜𝑐𝑎𝑡−𝑏𝑖𝑎𝑠

Această formulă e baza întregului standard.

Tipul de date real

Numele tipului Marimea standard Intervalul de referinta

float 32 biti 1.2 × 10−38 −− − 3.4 × 1038

double 64 biti 2.2 × 10−308 −− − 1.8 × 10308

long double 96 biti
Pe Windows: 64 biti

3.3 × 10−4932 −− − 1.2 × 104932

2.2 × 10−308 −− − 1.8 × 10308

❑ Pentru tipul float, cei 32 biti sunt impartiti astfel:
• Pentru semn --- 1 bit (0 = pozitiv, 1= negativ)
• Pentru exponent_stocat --- 8 biti
• Pentru mantisa_stocata (fractiune) --- 23 biti

❑ Pentru tipul double, cei 64 biti sunt impartiti astfel:
• Pentru semn --- 1 bit
• Pentru exponent_stocat --- 11 biti
• Pentru mantisa_stocata (fractiune) --- 52 biti

Cum sunt memorate numerele reale in calculator?

Exemple:

1. double a= 7034.012 (in baza 10)

Pasul 1. Separam partea intreaga de partea fractionara: 7034.012 = 7034 + 0.012

Pasul 2. Convertim partea intreaga in baza 2: 7034 (in baza 10) = 1101101111010 (in baza 2)

Pasul 3. Convertim partea fractionara in baza 2: 0.012 (in baza 10) ~ 0.0000001100….. (in baza 2)

Pasul 4. Combinam cele doua parti: 7034.012 (in baza 10) ~ 1101101111010. 0000001100…. (in baza 2)

Pasul 5. Normalizam (forma stiintifica binara): mutam virgula astfel incat sa avem un singur “1” inaintea ei

1101101111010. 0000001100 = 1.1011011110100000001100… x 212

Am mutat virgula cu 12 pozitii la stanga, deci exponentul_real este 12 (daca ar fi trebuit sa mutam virgula spre

dreapta cu 12 pozitii atunci exponentul_real ar fi fost -12)

Inainte de virgula, intotdeauna vom avea “1” si de aceea el nu se mai stocheaza in memorie si in formula

matematica, cand reconsituim numarul real avem “1+mantisa” (vezi slide anterior)

Forma normalizata a numerelor reale memorate in C++

Pasul 6. Calculam campurile IEEE 754 (pentru double)

❑ Semn: numarul este pozitiv, deci semn = 0

❑ Exponent:

Exponent_real = 12. Standardul IEEE 754 pentru double foloseste un bias (deplasare) de 1023.

Exponent_ stocat = 12+1023=1035 (in baza 10)=10000001011 (in baza 2) (standardul aloca 11 biti; daca mai

trebuie adaugati biti atunci se mai adauga la stanga bitul 0, de cate ori este nevoie)

❑ Mantisa_stocata: luam doar partea de dupa virgula din forma normalizata,

Mantisa_stocata = 1011011110100000001100000010010011010110100011000100 (standardul retine primii 52

de biti ai aceste secvente; daca sunt mai putini biti de 52, atunci se mai adauga la dreapta bitul 0, de cate ori este

nevoie)

Pasul 7. Forma finala in memorie

[Semn][Exponent_stocat (11 biți)][Mantisa_stocata (52 biți)]
0 10000001011 1011011110100000001100000010010011010110100011000100

Forma normalizata a numerelor reale memorate in C++

[Semn][Exponent_stocat (11 biți)][Mantisa_stocata (52 biți)]
0 10000001011 1011011110100000001100000010010011010110100011000100

Cum se reconstruieste valoarea din memorie?

a = (−1)𝑠𝑒𝑚𝑛 × 1 +𝑚𝑎𝑛𝑡𝑖𝑠𝑎_𝑠𝑡𝑜𝑐𝑎𝑡𝑎 × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡_𝑠𝑡𝑜𝑐𝑎𝑡−𝑏𝑖𝑎𝑠

= (−1)0 × 1 + 0.1011011110100000001100000010010011010110100011000100

× 210000001011−1111111111

= 1 x 1. 1011011110100000001100000010010011010110100011000100 x 212

= 1101101111010.0000001100000010010011010110100011000100 (in baza 2)

~ 7034. 0117538 (in baza 10)

Observatie! In calculator se pastreaza o aproximare a numarului 7034.012.

De ce apare acel bias?

Problema este că exponentul poate fi negativ (de exemplu, pentru numere mai mici decât 1).

Dar în memorie, toți biții din câmpul exponent sunt biți fără semn (unsigned).

Adică nu avem un bit de semn pentru exponent.

Exemplu:

2³ are exponent = +3

2⁻⁴ are exponent = −4

Calculatorul trebuie să poată reprezenta ambele valori (pozitive și negative) folosind doar biți pozitivi.

Soluția: folosim un bias (deplasare/translatie)

Ideea este simplă: se adaugă o constantă fixă (bias) la exponentul real, astfel încât toți exponenții să devină

numere pozitive, deci ușor de stocat.

exponent_stocat = exponent_real + bias

In float: bias=127

In double: bias=1023

Gasiti reprezentarea lui “float a=5.75;” pe calculator!

Cum sunt memorate numerele reale in calculator?

Exemple: 2. float 𝑎 = 5.75 (in baza 10)

Pasul 1. 5.75 = 5 + 0.75

Pasul 2. 5 (in baza 10) = 101 (in baza 2)

Pasul 3. 0.75 (in baza 10) ~ 0.11 (in baza 2)

Pasul 4. 5.75 (in baza 10) ~ 101.11 (in baza 2)

Pasul 5. 101.11 = 1.0111 x 22

Pasul 6. exponent_real= 2; bias=127 (pentru float)

exponent_stocat = 2+127=129 (in baza 10)= 10000001 (in baza 2) (8 biti)

Semn= 0

Mantisa_stocata= 01110000000000000000000 (23 biti pentru float)
Pasul 7. Forma finala in memorie

[Semn][Exponent_stocat (8 biți)][Mantisa_stocata (23 biți)]
0 10000001 01110000000000000000000

Cum sunt memorate numerele reale in calculator?

[Semn][Exponent_stocat (8 biți)][Mantisa_stocata (23 biți)]
0 10000001 01110000000000000000000

a = (−1)𝑠𝑒𝑚𝑛 × 1 +𝑚𝑎𝑛𝑡𝑖𝑠𝑎_𝑠𝑡𝑜𝑐𝑎𝑡𝑎 × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡_𝑠𝑡𝑜𝑐𝑎𝑡−𝑏𝑖𝑎𝑠

a= 1 x 1.0111 x 22=101.11 (in baza 2) = 5.75 (in baza 10)

Exemple: 3. float 𝑎 = −5.75 (in baza 10)

[Semn][Exponent_stocat (8 biți)][Mantisa_stocata (23 biți)]
1 10000001 01110000000000000000000

Cum sunt memorate numerele reale in calculator?

Exemple: 4. float 𝑎 = 0.125 (in baza 10)

Pasul 1. 0.25 = 0 + 0.125

Pasul 2. 0 (in baza 10) = 0 (in baza 2)

Pasul 3. 0.125 (in baza 10) ~ 0.001 (in baza 2)

Pasul 4. 0.125 (in baza 10) ~ 0.001 (in baza 2)

Pasul 5. 0.001 = 1.0 x 2−3

Pasul 6. exponent_real= -3; bias=127 (pentru float)

exponent_stocat = -3+127=124 (in baza 10)= 1111100 (in baza 2) = 01111100 (8 biti)

Semn= 0

Mantisa_stocata= 00000000000000000000000 (23 biti pentru float)
Pasul 7. Forma finala in memorie

[Semn][Exponent_stocat (8 biți)][Mantisa_stocata (23 biți)]
0 01111100 00000000000000000000000

Cand nu se poate normaliza un numar?

Când numărul este prea mic, adică este mai aproape de zero decât cea mai mică valoare
normalizată care poate fi reprezentată.

Pentru tipul float (32 biți): exponentul minim normalizat = 1 - bias = 1 - 127 = -126.
Asta înseamnă că:

𝑥𝑚𝑖𝑛,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡 = 1.02 × 2−126 ≈ 1.175 × 10−38

In acest caz, standardul IEEE 754, precizeaza ca un numar real, care nu se poate normaliza, se obtine prin

(−1)𝑠𝑒𝑚𝑛 × 0 +𝑚𝑎𝑛𝑡𝑖𝑠𝑎_𝑠𝑡𝑜𝑐𝑎𝑡𝑎 × 21−𝑏𝑖𝑎𝑠

Vezi programul “Vizualizare_biti”!

Tipul de date real

Variabila_1 = 3.14569
Variabila_2 = -4.57891

Tipul de date real

Variabila_1 = 3.14568901 //se afiseaza cu 8 zecimale, dar doar primele 6 cifre sunt identice

Variabila_2 = -4.5789065431999996 // se afiseaza cu 16 zecimale, dar ultima cifra a numarului declarat in
program nu este afisata corect

Care este rezultatul acestui program?

0.1 +0.2 este diferit de 0.3!

Tipul de date boolean

• Folosit pentru a reprezenta valorile adevarat (true) si fals (false).
• Valoarea 0 reprezinta false;
• Orice valoare nenula este true

Numele tipului Marimea/precizia

bool De obicei 8 biti
true sau false (cuvinte cheie ale C++)

• Vezi programul “TipuriDeDate”!

Marimea unei variabile

Utilizarea operatorului sizeof

• Operatorul sizeof determina marimea in bytes a unui tip de date

• Exemple:

sizeof(int)
sizeof(double)

sizeof(numeVariabila)
sizeof numeVariabila

Utilizarea operatorului sizeof

• Operatorul sizeof primeste informatii de la doua fisiere C++ care sunt incluse in program
<climits> <cfloat>

• In versiunile mai vechi, aceste biblioteci trebuiau incluse explicit, acum nu mai este necesar.

• Aceste bibiloteci contin informatii despre marimea si precizia variabilelor

INT_MAX valoarea maxima care poate fi stocata intr-o variabila de tip int
INT_MIN valoarea minima care poate fi stocata intr-o variabila de tip int
LONG_MIN valoarea minima care poate fi stocata intr-o variabila de tip long int
LONG_MAX valoarea maxima care poate fi stocata intr-o variabila de tip long int
….

• Vezi programul “OperatorulSizeOf”!

Ce este o constanta?

• Constantele seamana foarte mult cu variabilele
• Au nume
• Ocupa spatiu
• Valorile lor sunt date de programator

Valoarea lor nu se mai poate modifica odata ce au fost declarate!

Exemplu: numarul lunilor intr-un an este o constanta

Tipuri de constante in C++

• Constante literale

• Constante declarate (folosind cuvantul cheie const)

• Expresii constante (folosind cuvantul cheie constexpr)

• Constante definite (#define)

• Enumerari (folosind cuvantul cheie enum)

Tipuri de constante in C++

Constante literale

• Constante literale intregi

12 - un intreg
12U –un intreg fara semn
12L – un intreg long
12LL – un intreg long long

• Constante literale reale

12.1 - un double
12.1F – un float
12.1L – un long double

• Constante literale caracter
sunt cele scrise intre
ghilimele simple ‘ ‘ si
caracterele speciale

\n - linie noua
\r - return
\t - tab
\b - backspace

Exemplu:

cout << "Hello\tthere\nmy friend\n";

Hello there
my friend

Tipuri de constante in C++

Constante declarate

• Sunt constantele declarate folosind cuvantul cheie const

• Constantele trebuie initializate atunci cand sunt declarate sau in momentul executiei pentru ca altfel
compilatorul va genera o eroare

• Daca incercam sa modificam valoarea unei constante atunci compilatorul va gerenera o eroare.

• const double pi {3.1415926};
• const int nrLuniAn {12};

Tipuri de constante in C++

Expresii constante
• Au fost introduse in C++11 si imbunatatite in C++14.
• Se introduc cu ajutorul cuvantului cheie constexpr
• Trebuie initializate atunci cand sunt declarate pentru ca altfel compilatorul va genera o eroare
• Spre deosebire de variabilele const, variabilelele constexpr trebuie sa fie initializate in

momentul compilarii; Variabilele const pot fi initializate in momentul compilarii sau in timpul
expecutiei programului.

• Tipul de date in expresiile constante trebuie sa fie constante literale
• Toate tipurile constexpr sunt const

constexpr float x = 43.0;
constexpr int y{ 108 };

constexpr int z; //Eroare

Tipuri de constante in C++

Expresii constante

• Exemplul 1
int m = 0;
const int n = m + 1;

• Exemplul 2

int m = 0;
constexpr int w = m+1;

• Exemplul 3

constexpr int w = 0+1;

n=1

Eroare

w=1

Tipuri de constante in C++

Constante definite

• Sunt constantele date cu ajutorul unei directive de precompilare

#define pi 3.1415926;

• Prepocesorul inlocuieste pi cu valoarea respectiva oriunde o intalneste in cod (inlocuire
“oarba”), dar cum preprocesorul nu intelege codul C++, este posibil ca uneori sa se
genereze erori

• Recomandare: Nu folosi prea des constante definite in C++!

Declararea si utilizarea constantelor in

C++
Problema:

Avem o firma care ofera servicii de menaj, cu urmatorul tarif:

Pret: 30 lei pe camera
Alte taxe (transport): 6%
Estimarea este valabila 30 zile.

In consola dorim ca posibilul client sa abia posibilitatea sa introduca numarul de camere in care doreste sa
se faca menaj, dupa care sa se afiseze o aproximare a pretului acestor servicii:

Estimare:

Numar de camere: 3 Vezi programul “ServiciiMenaj”!
Pret pe camera: 30 lei
Cost: 90 lei
Alte taxe:5.4 lei
=============================
Cost total estimat: 95.4 lei
Estimarea este valabila 30 zile.

Enumerari

• O enumerare este un tip de dată definit de programator prin care un şir de constante
întregi, bine precizate, capată un tip comun, introdus prin cuvântul cheie enum.

• De exemplu, declaraţia

enum Logic {indecis, fals, adev};

defineşte un nou tip de dată, tipul Logic, fiecare variabilă de acest tip având numai una dintre
cele trei valori: indecis, fals sau adev. O variabilă de tip Logic se declară, la fel ca orice alt
tip de variabilă:

Logic omega;

şi poate fi initializată astfel:

omega=fals;

Enumerari

• Avem şi urmatoarea variantă de declaraţie:

enum Logic {indecis, fals, adev} omega;

şi chiar şi varianta cu iniţializare:

enum Logic {indecis, fals, adev} omega=fals;

• Enumerările sunt utilizate pentru a da mai multă claritate programului. Ele sunt de fapt nişte
codificari numerice. In exemplul precedent, cele trei valori, indecis, fals şi adev, sunt tratate
de compilator drept identificatori de constante întregi cu trei valori implicite în ordine:

indecis=0, fals=1 şi adev=2.

Enumerari

• Programatorul poate impune alte valori, dar numai în momentul declaraţiei, în modul urmator:

enum Fuzzy{imposibil,neverosimil,incert=5,plauzibil,sigur=10};

Acum avem

imposibil=0, neverosimil=1, incert=5, plauzibil=6, sigur=10.

Valorile care nu sunt impuse de programator se obţin prin incrementarea celor precedente cu
câte o unitate. Prima valoare este în mod implicit zero.

• Programatorul trebuie să se asigure că valorile obţinute sunt distincte, altfel utilitatea
codificării este îndoielnică.

• In expresii aritmetice orice dată de tip enumerare este tratată ca un număr întreg, conversia
către int fiind implicită, dar conversia unui întreg către un tip enumerat trebuie cerută
explicit. Vezi programul Enumerari-Exemplul1!

https://test-master.space

	Slide 1: Variabile si constante
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

