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Tablouri (arrays)

U Un tablou este un tip de date compus sau o structura de date
* Exemplu: colectie de elemente

U Toate elementele trebuie sa fie de acelasi tip!
U Fiecare element poate fi accesat direct!



De ce avem nevoie de tablouri?

scor
« Tablourile ne permit sa oferim compilatorului informatii despre anumite 87 [0]
int scor_1 {0} colectii cu cate elemente dorim, dand colectiei un singur nume 56 [1]
int scor_2 {0}; 99 [2]
int scor_3{0}: Caracteristici:
* Au marime fixa /8 [3]
« Elementele trebuie sa aiba acelasi tip 53 [4]
int scor_100 {0}; « Toate elementele sunt stocate impreuna in memorie 70 5]
* Fiecare element poate fi accesat prin pozitia sau indexul sau o~ 6]
e Primul element are indexul O 79 [7]
« Ultimul element are indexul marimea colectiei-1 70 8]
* Foarte eficiente 100 [9]

 |teratia/ buclelele (looping) sunt foarte des intalnite



Declararea si initializarea tablourilor

Declararea

Tipul_elementului numele_tabloului [numar constant de elemente];

« Exemple:

int scorkElevi [5];

int noteElevi [10];

const int nrZileAn {365};
double temperatura[nrzZileAn];

e Aceste tablouri nu sunt initializate! In acest moment, ele vor contine niste valori
aleatoare (garbage).



Declararea si initializarea tablourilor

Declararea

Ce se intampla daca scriem urmatorul cod?

int main(){
int numar_studenti{ 20 };
int note[numar_studenti];
cout << "Notele studentilor sunt: " << endl; EROARE!
for (int i = @; i < numar_studenti; i++) {
cout << note[i] << " ";

¥

return 0;



Declararea si initializarea tablourilor

Declararea .
Avertizare!

Ce se intampla daca scriem urmatorul cod?

int main(){
const int numar_ studenti{ 20 };
int note[numar_studenti];
cout << "Notele studentilor sunt: " << endl;
for (int i = @; i < numar_studenti; i++) {

Cout < < note [ i ] < < n iy Microsoft Visual Studio Debu; X a7
) Notele studentilor sunt:
-858993460 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60
-858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60

D:\Facultate\Anul 2025-2026\Fundamentele programarii\Probleme\Probleme de afisare\Afisare\x6U\Debug\Afisare.exe (process

O 20052) exited with code ©.
r\etur\n @, exited with code

Press any key to close this window . . .|

* Initializeaza intotdeauna tablourile!




Declararea si initializarea tablourilor

Initializarea:
Tipul elementului numele tabloului [numar constant de elemente] {init lista};

Sau

Tipul _elementului numele_tabloului [numar constant de elemente] = {init lista};
« Exemple:

int scorEklevi [5] {100,95,99,67,87};

int noteEklevi [10] {3,5}; //primele doua elemente sunt initializate cu 3 si 5, iar restul cu 0

const int nrZileAn {365};
double temperatura[nrZileAn] {@}; //toate elementele suntinitializate cu 0

int altTablou [] {1,2,3,4,5} ; //marimea tabloului este automat calculata



Accesarea elementelor tablourilor

numeTablou [indexul_elementului]

« Exemplu: scorElevi [1]

int scorklevi[5]{ 100,95,99,67,87 };

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

<< scorklevi[@] << endl;

" << scorElevi[l] << endl;
<< scorklevi[2] << endl;
<< scorklevi[3] << endl;
<< scorklevi[4] << endl;

"Primul scor la indexul © este:
"Al doilea scor 1la indexul 1 este:
"Al treilea scor la indexul 2 este:
"Al patrulea scor la indexul 3 este:
"Al cincilea scor la indexul 4 este:



Schimbarea continutului elementelor tablourilor

numeTablou [indexul elementului]

int scorElevi[S]{ 100,95,99,67,87 };
cout << "Primul scor 1la indexul © se modifica in: M

cin >> scorElevi

cin >> scorElevi]

cout << "Al trellea
275

cin >> scorElevi

cout << "Al patrulea scor la indexul 3 se modifica in: ";
B
cout << "Al cincilea

a1

42

cin >> scorElevi

cin >> scorElevi

Sau, direct in program:

scorElevi[0]=90;

il
cout << "Al doilea
1 .

J

scor la indexul 1 se modifica in: ";

J

J

J

scor la indexul 2 se modifica in: ";

scor la indexul 4 se modifica in: ";



Cum functioneaza tablourile?

* Numele tabloului reprezinta locatia primului element din tablou (cel cu indexul 0)

 [indexul] reprezinta decalajul fata de inceputul tabloului. Astfel, C++ face un calcul
simplu pentru a identifica elementul corect

« Atentie la limitele tabloului! Daca avem un tablou de 5 elemente si noi vrem sa
afisam valoarea elementului cu indexul 5 atunci compilatorul nu va genera o eroare, se
va genera doar o avertizare si se va afisa o valoare aleatorie!

Vezi programul “Tablouri”!



Cum functioneaza tablourile?

1000+4=1004
(1 int --->4 bytes)

int scorElevi[5]={100,95,99,67,87};

cout << "\nPrimul scor la indexul @ este: " << scorElevi[@] << endl;
cout << "Al doilea scor la indexul 1 este: " << (scorElevi[l] << endl;
cout << "Al treilea scor la indexul 2 este: " << scorklevi[2] << endl;
<< scorElevi[3] << endl;
<< scorElevi[4] << endl;

cout << "Al patrulea scor la indexul 3 este:
cout << "Al cincllea scor la indexul 4 este:

cout << "\nValoarea numelui tabloului este << scorElevi << endl;

1000
1004
1008

1012
1016

scorElevi

100

95

99

67/

37

~ow N



Tablouri multidimensionale

« Ne vom concentra atentia asupra tablourilor bidimensionale, dar se pot declara tablouri
de orice dimensiune

TipulElementului numeleTabloului [diml][dim2]
Exemplu: int matrice[3][4];

* Nu am initializat acest tablou, deci in acest moment tabloul va avea 12 valori aleatorii
"garbage” (gunoi)!
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Tablouri bidimensionale

Initializarea tablourilor bidimensionale

W[ Pbd

Slw|w]|

oo,

int matrice[3][4] = { {90,4,3,5},{2,3,3,5},{1,4,4,5} };
Sau

int matrice[3][4] { {9,4,3,5},{2,3,3,5},{1,4,4,5} };
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Vectori

* Presupunem ca vrem sa monitorizam rezultatele la admitere la o scoala

* Nu avem de unde sa stim cati studenti se vor inregistra la admitere

* Optiunt:
o Sa folosim un tablou cu o dimensiune suficient de mare astfel incat aceasta sa nu fie depasita
o Sa folosim un tablou dinamic asa cum este un vector



Vectori

Ce este un vector?

* Un vector este un tablou unidimensional a carui dimensiune poate f1 marita sau micsorata in timpul
executiel programului (obiecte C++)

* Este un container din Libraria Standard C++.
e Sintaxa s1 semantica vectorilor sunt asemanatoare cu ale tablourilor
* Putem face verificari asupra limitelor unui vector!

* Putem folosi multe functii foarte utile precum sortare, cautare, inversare si altele



Vectori

Declararea vectorilor
#include<vector>

vector <char> vocale;
//se creaza o colectie (vector) de caractere (nu stim cate caractere),

//care acum este goala, dar in care vom putea introduce caractere mai
tarziu

vector <int> scorElevi;
SAU

vector <char> vocale(5); // se creaza un vector si ii spunem compilatorului ca acesta
va contine 5 caractere vide(nule, ¢\0?)

vector <int> scorElevi(10); // se creaza un vector format din 10 nr intregi care
automat sunt initializate cu O



Vectori

Initializarea vectorilor
vector <char> vocale{ 'a','e','i','o','u'};
vector <int> scorElevi {100, 98, 89, 85, 93};

vector <double> temperaturi(365,90.0); //365 reprezinta dimensiunea vectorului si
toate elementele vectorului sunt initializate cu 90.0



Vectori

Caracteristici:

* Dimensiune dinamica

» Toate elementele lor sunt de acelasi tip

* Toate elementele sunt stocate impreuna in memorie

* Elementele individule pot fi accesate prin pozitia lor sau index

* Primul element are indexul ©
e Ultimul element are indexul dimensiuneVector-1

 Elementele sunt initializate automat cu © sau cu \0
* Foarte eficienti
 [teratia (looping) este foarte des folosita



Accesarea elementelor unui vector (sintaxa de la
tablouri)

numeVector [indexulElementului]

Exemplu: scorElevi[1l]

vector <int> scorklevi{ 100,95,99,67,87 };

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

"Primul scor la indexul © este:
"Al doilea scor la indexul 1 este:
"Al treilea scor la indexul 2 este:
"Al patrulea scor la indexul 3 este:
"Al cincilea scor la indexul 4 este:

<< scorklevi[@] << endl;
" << scorklevi[1l] << endl;
<< scorklevi[2] << endl;
<< scorklevi[3] << endl;
<< scorklevi[4] << endl;



Accesarea elementelor unui vector (sintaxa
caracteristica vectorilor)

numeVector.at(indexulElementului)

Exemplu: scorElevi.at(1)

vector <int> scorklevi{ 100,95,99,67,87 };

cout <«
cout <«
endl;
cout <«
endl;
cout <«
endl;
cout <«
endl;

"Al treilea scor la indexul 2 este:
"Al patrulea scor la indexul 3 este:

"Al cincilea scor la indexul 4 este:

"Primul scor la indexul @ este: " << scorElevi.at(®) << endl;
"Al doilea scor la indexul 1 este:

<< scorElevi.at(1l) <«

<< scorElevi.at(2) <«

<< scorElevi.at(3) <«

<< scorElevi.at(4) <<



Schimbarea elementelor unui vector (sintaxa
caracteristica vectorilor)

numeVector.at(indexulElementului)

vector <int> scorElevi{ 100,95,99,67,87 };
cin >> scorElevi.at(9);
cin >> scorElevi.at(1);
cin >> scorElevi.at(2);
cin >> scorElevi.at(3);
cin >> scorElevi.at(4);

scorElevi.at(@) = 90; //atribuirea valorii 90 elementului de pe
indexul ©



Cum putem mari dimensiunea vectorului atunci
cand dorim acest lucru?

numeVector.push_back(element)

vector <int> scorklevi{ 100,95,99}; //dimensiunea vectorului este 3

scorElevi.push _back(80); // 100,95,99,80
scorElevi.push _back(90); //100,95,99,80,90

Vectorul va aloca automat spatiul necesar!



Ce se intampla daca depasim dimensiunea?

vector <int> scorElevi{ 100,95,99}; //dimensiunea vectorului este 3

cout<<scorElevi.at(5);

 Compilatorul va genera eroare sau o exceptie (spre deosebire de
cazul cand aveam tablouri si se genera doar o avertizare)!



Metode/ functii folosite pentru vectori

vector <int> scorklevi{ 100,95,99}; //dimensiunea vectorului este 3

std: :vector<int>::iterator it = scorElevi.begin();
// Afisam primul element utilizand iteratorul

std::cout << "Primul element: << *it << std::endl;

it = scorElevi.end()-1;
// Afisam ultimul element utilizand iteratorul

std::cout << “Ultimul element: << *it << std::endl;

Un iterator in C++ este un obiect special care permite accesul secvential la elementele unei colectii (cum ar fi
un vector), fara a expune detaliile interne ale structurii de date. Practic, iteratorii iti permit sa parcurgi si sa
manipulezi elementele dintr-o colectie intr-un mod similar cu pointerii despre care vom discuta intr-un curs
ulterior.



Metode/ functii folosite pentru vectori

» sort(scorElevi.begin(), scorElevi.end()); //sorteaza crescator vectorul; sort este o
functie din biblioteca algorithm si ea lucreaza pe intervalul [begin,end);

begin() -> iterator la primul element din vector;
end()->iterator la “un element dupa ultimul”

reverse(scorElevi.begin(), scorElevi.end()); // inverseaza elementele intr-un vector
» scorElevi.pop back(); //elimina ultimul element din vector

» scorElevi.erase(scorElevi.begin() + i) ;// sterge elementul de pe pozitia i

« scorElevi.clear (); goleste vectorul

* n=scorElevi.size(); // numarul de elemente din vector

* find(scorElevi.begin(), scorElevi.end(), x); //returneaza iteratorul/adresa unde il

gaseste prima data pe x in vector, iar daca nu il gaseste returneaza un iterator care
indica “dupa ultimul element”; find lucreaza pe intervalul [begin, end)

Vezi programul “Vectori”!



#include<iostream>
#include<vector> . o]
#include<algorithm> Frogramul.-Vectari:!

using namespace std;

int main() {
vector <char>®Vocalel 'a','e","d",'0",:'u’ };

cout << "vocale[@]="<< vocale[0@] << endl;
cout << "vocale[4]= "<< vocale[4] << endl;
//cout << vocale[10] << endl; // vom avea o eroare

//char v[3] { 'a','b','c' };
//cout << v[3]; //nu vom avea o eroare, ci va fi afisat un "gunoi"

vector <int> scorElevi (3); //toate trei elementele sunt intializate cu ©

//vector <int> scorElevi(3, 100); // toate trei elementele sunt initializate cu 100
//vector <int> scorElevi{ 100,99,87 };

cout << "\nScorul elevilor folosind sintaxa de la tablouri: "

cout << scorElevi[@] << endl;

cout << scorElevi[l] << endl;

cout << scorElevi[2] << endl;

<< endl;



Programul “Vectori”l-continuare

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

"“\nScorul elevilor folosind sintaxa de la vector: << endl;
scorElevi.at(@) << endl;
scorElevi.at(1l) << endl;
scorElevi.at(2) << endl;

"\nExista " << scorElevi.size() <<

scoruri in vector" << endl;

//size este o metoda din clasa vector

cout << "\nIntroduceti trei scoruri: "<<endl;
cin >> scorElevi.at(9);
cin >> scorElevi.at(1);
cin >> scorElevi.at(2);

cout
cout
cout
cout

<<
<<
<<
<<

"\n Scorurile modificate sunt: "<<endl;
scorElevi.at(0) << endl;
scorElevi.at(1) << endl;
scorElevi.at(2) << endl;



Programul “Vectori”l-continuare?2

cout << "\n Adaugati un scor in vector “;

int scorNou;
cin >> scorNou;
scorElevi.push _back(scorNou);

cout << "\n Mai adaugati un alt scor in vector ";

cin >> scorNou;
scorElevi.push back(scorNou);

cout
cout
cout
cout
cout
cout

cout

//determinam numarul de elemente din vector

<<
<<
<<
<<
<<
<<

<<

"\nScorurile sunt acum:
.at(0) << endl;
.at(1l) << endl;
.at(2) << endl;
.at(3) << endl;
.at(4) << endl;

scorElevi
scorElevi
scorElevi
scorElevi
scorElevi

"\nExista

<< endl;

<< scorElevi.size() <<

scoruri in vector" << endl;



Programul “Vectori”l-continuare3

cout << "Elementul de pe prima pozitie din scorElevi este: << *scorElevi.begin() <«
endl;
cout << "Elementul de pe ultima pozitie din scorElevi este:

<< endl;

<< *(scorElevi.end()-1)

//ordonam crescator elementele vectorului

sort(scorElevi.begin(), scorElevi.end());

cout << "\nScorurile ordonate crescator sunt:" << endl;
cout << scorElevi.at(@) << endl;
cout << scorElevi.at(1l) << endl;
cout << scorElevi.at(2) << endl;
cout << scorElevi.at(3) << endl;

cout << scorElevi.at(4) << endl;



Programul “Vectori”l-continuare4

//le inversam ordinea

reverse(scorElevi.begin(), scorElevi.end());

cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<

"\nScorurile ordonate descrescator sunt:
.at(9)
.at(1)
.at(2)
.at(3)
.at(4)

scorElevi
scorElevi
scorElevi
scorElevi
scorElevi

<<
<<
<<
<<
<<

endl;
endl;
endl;
endl;
endl;

<< endl;



Programul “Vectori”l-continuare5

//cautarea unui element dat intr-un vector

vector <int>::iterator it;

//interatorii sunt folositi pentru a face referire la adresa de memorie
// la care sunt stocate elementele vectorului

int x{ 20};

it=find(scorElevi.begin(), scorElevi.end(), x);

// adresa unde se gaseste x prima data in vectorul nostru
if (it != scorElevi.end()) {
cout << "Elementul " << x <X
}

else

cout << "Elementul " << x <X

este pe pozitia " << it - scorElevi.begin() << endl;

nu a fost gasit!" << endl;

//cout << "Acesta va genera o eroare! << scorElevi.at(10);



//Exemplu de vector 2-dimensional

vector <vector <int>>
"\nElementele

cout
endl;
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
endl;
cout

<< endl;
cout << matrice.at(2).at(®) << " " << matrice.at(2).at(1l) <«
<< matrice.at(2).at(3) << endl;

<<

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

<<

matrice[0][09]
matrice[0][1]
matrice[0][2]
matrice[0][3]
"\nElementele

matrice.
matrice.
matrice.
matrice.

endl <<

at(9).
at(9).
at(9).
at(9).

"Matricea noastra este
matrice[0][0] << " "<< matrice[0][1l] <<

matriceq{

matricei de pe linia 1 (folosind sintaxa de la tablouri) sunt:

<< 1] II;
<< 1] ll;
<< 1] Il;

<< ;

matricei

at(9) <«
at(1l) <<
at(2) <<
at(3) <«

Programul “Vectori”l-continuare6

{1J2J3.’4}.’{9J1.’4.’4}){316.’4)5} }.;

<<

de pe linia 1 (folosind sintaxa de la vector) sunt: "

J
non,

J
nmon,

J
non,

J

<< endl;

<< endl;
" "<<matrice[0][2] <«

<< matrice[0@][3] <«

matrice[1][0] << " " << matrice[l][1] <<" "<< matrice[1l][2] << " " << matrice[1][3]

return 9;

}

<< matrice.at(2).at(1l) <«
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