

Tablouri si vectori.

e Tablour
* (Ce sunt tablourile?
* De ce folosim tablourile?
* Declararea s1 initializarea tablourilor
» Accesarea elementelor unui tablou

e Tablour:i multidimensionale

e Vectori
e (Ce sunt vectori1?
* Avantaje vs. tablouri
* Declararea s1 initializarea vectorilor
e Accesarea elementelor unui vector

Tablouri (arrays)

U Un tablou este un tip de date compus sau o structura de date
* Exemplu: colectie de elemente

U Toate elementele trebuie sa fie de acelasi tip!
U Fiecare element poate fi accesat direct!

De ce avem nevoie de tablouri?

scor
« Tablourile ne permit sa oferim compilatorului informatii despre anumite 87 [0]
int scor_1 {0} colectii cu cate elemente dorim, dand colectiei un singur nume 56 [1]
int scor_2 {0}; 99 [2]
int scor_3{0}: Caracteristici:
* Au marime fixa /8 [3]
« Elementele trebuie sa aiba acelasi tip 53 [4]
int scor_100 {0}; « Toate elementele sunt stocate impreuna in memorie 70 5]
* Fiecare element poate fi accesat prin pozitia sau indexul sau o~ 6]
e Primul element are indexul O 79 [7]
« Ultimul element are indexul marimea colectiei-1 70 8]
* Foarte eficiente 100 [9]

 |teratia/ buclelele (looping) sunt foarte des intalnite

Declararea si initializarea tablourilor

Declararea

Tipul_elementului numele_tabloului [numar constant de elemente];

« Exemple:

int scorkElevi [5];

int noteElevi [10];

const int nrZileAn {365};
double temperatura[nrzZileAn];

e Aceste tablouri nu sunt initializate! In acest moment, ele vor contine niste valori
aleatoare (garbage).

Declararea si initializarea tablourilor

Declararea

Ce se intampla daca scriem urmatorul cod?

int main(){
int numar_studenti{ 20 };
int note[numar_studenti];
cout << "Notele studentilor sunt: " << endl; EROARE!
for (int i = @; i < numar_studenti; i++) {
cout << note[i] << " ";

¥

return 0;

Declararea si initializarea tablourilor

Declararea .
Avertizare!

Ce se intampla daca scriem urmatorul cod?

int main(){
const int numar_ studenti{ 20 };
int note[numar_studenti];
cout << "Notele studentilor sunt: " << endl;
for (int i = @; i < numar_studenti; i++) {

Cout < < note [i] < < n iy Microsoft Visual Studio Debu; X a7
) Notele studentilor sunt:
-858993460 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60
-858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60 -858993U60

D:\Facultate\Anul 2025-2026\Fundamentele programarii\Probleme\Probleme de afisare\Afisare\x6U\Debug\Afisare.exe (process

O 20052) exited with code ©.
r\etur\n @, exited with code

Press any key to close this window . . .|

* Initializeaza intotdeauna tablourile!

Declararea si initializarea tablourilor

Initializarea:
Tipul elementului numele tabloului [numar constant de elemente] {init lista};

Sau

Tipul _elementului numele_tabloului [numar constant de elemente] = {init lista};
« Exemple:

int scorEklevi [5] {100,95,99,67,87};

int noteEklevi [10] {3,5}; //primele doua elemente sunt initializate cu 3 si 5, iar restul cu 0

const int nrZileAn {365};
double temperatura[nrZileAn] {@}; //toate elementele suntinitializate cu 0

int altTablou [] {1,2,3,4,5} ; //marimea tabloului este automat calculata

Accesarea elementelor tablourilor

numeTablou [indexul_elementului]

« Exemplu: scorElevi [1]

int scorklevi[5]{ 100,95,99,67,87 };

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

<< scorklevi[@] << endl;

" << scorElevi[l] << endl;
<< scorklevi[2] << endl;
<< scorklevi[3] << endl;
<< scorklevi[4] << endl;

"Primul scor la indexul © este:
"Al doilea scor 1la indexul 1 este:
"Al treilea scor la indexul 2 este:
"Al patrulea scor la indexul 3 este:
"Al cincilea scor la indexul 4 este:

Schimbarea continutului elementelor tablourilor

numeTablou [indexul elementului]

int scorElevi[S]{ 100,95,99,67,87 };
cout << "Primul scor 1la indexul © se modifica in: M

cin >> scorElevi

cin >> scorElevi]

cout << "Al trellea
275

cin >> scorElevi

cout << "Al patrulea scor la indexul 3 se modifica in: ";
B
cout << "Al cincilea

a1

42

cin >> scorElevi

cin >> scorElevi

Sau, direct in program:

scorElevi[0]=90;

il
cout << "Al doilea
1 .

J

scor la indexul 1 se modifica in: ";

J

J

J

scor la indexul 2 se modifica in: ";

scor la indexul 4 se modifica in: ";

Cum functioneaza tablourile?

* Numele tabloului reprezinta locatia primului element din tablou (cel cu indexul 0)

 [indexul] reprezinta decalajul fata de inceputul tabloului. Astfel, C++ face un calcul
simplu pentru a identifica elementul corect

« Atentie la limitele tabloului! Daca avem un tablou de 5 elemente si noi vrem sa
afisam valoarea elementului cu indexul 5 atunci compilatorul nu va genera o eroare, se
va genera doar o avertizare si se va afisa o valoare aleatorie!

Vezi programul “Tablouri”!

Cum functioneaza tablourile?

1000+4=1004
(1 int --->4 bytes)

int scorElevi[5]={100,95,99,67,87};

cout << "\nPrimul scor la indexul @ este: " << scorElevi[@] << endl;
cout << "Al doilea scor la indexul 1 este: " << (scorElevi[l] << endl;
cout << "Al treilea scor la indexul 2 este: " << scorklevi[2] << endl;
<< scorElevi[3] << endl;
<< scorElevi[4] << endl;

cout << "Al patrulea scor la indexul 3 este:
cout << "Al cincllea scor la indexul 4 este:

cout << "\nValoarea numelui tabloului este << scorElevi << endl;

1000
1004
1008

1012
1016

scorElevi

100

95

99

67/

37

~ow N

Tablouri multidimensionale

« Ne vom concentra atentia asupra tablourilor bidimensionale, dar se pot declara tablouri
de orice dimensiune

TipulElementului numeleTabloului [diml][dim2]
Exemplu: int matrice[3][4];

* Nu am initializat acest tablou, deci in acest moment tabloul va avea 12 valori aleatorii
"garbage” (gunoi)!

...

ensmnale

ssssssssdansnsnnnnnnnnnnnnnnnnnnnnfannnnnnnnnnnnnnnnnnnnnnnnd

rlou b1d1men51onal

8 R = 5 e R R NN R R R R RN N R RN R R R AN R RN N R R RN R RN R R RN N R R EEAEEEEEEEEEERAAEEEEEFEEEASAEEEAEEEEEE

Sasssssssssnsnsssnsnnadunnnnnnnnnnnnnnnnnnnnnnnnfannnnnnnnnnnnnnnnnnil

T T T T T T T LTI LTI LTI T TTT T LT

Tablouri bidimensionale

Initializarea tablourilor bidimensionale

W[Pbd

Slw|w]|

oo,

int matrice[3][4] = { {90,4,3,5},{2,3,3,5},{1,4,4,5} };
Sau

int matrice[3][4] { {9,4,3,5},{2,3,3,5},{1,4,4,5} };

N en5|ona|e

mesafusnannnnnnnnnnnnnnnnnnns cusnmnsnsnnnsdananunnnnnnnnnnnnnnnnnnnnfonnnnnnnnnnnnnnnnnnnnnnnnd

SReRsne s nnnnsnnnnnnnnfunnnnnnnnnnnnnnnnnnnnnnnnfonnnnnnnnnnnnnnnnnnnnnnnnnhonnnnnnnnnnnnnnnnnnnnnnnnfonnnnnnnnnn

R RS o o o o i o mm s mm s nm s s a s na s nanannnanannnaannnannnnnannnnn

Vectori

* Presupunem ca vrem sa monitorizam rezultatele la admitere la o scoala

* Nu avem de unde sa stim cati studenti se vor inregistra la admitere

* Optiunt:
o Sa folosim un tablou cu o dimensiune suficient de mare astfel incat aceasta sa nu fie depasita
o Sa folosim un tablou dinamic asa cum este un vector

Vectori

Ce este un vector?

* Un vector este un tablou unidimensional a carui dimensiune poate f1 marita sau micsorata in timpul
executiel programului (obiecte C++)

* Este un container din Libraria Standard C++.
e Sintaxa s1 semantica vectorilor sunt asemanatoare cu ale tablourilor
* Putem face verificari asupra limitelor unui vector!

* Putem folosi multe functii foarte utile precum sortare, cautare, inversare si altele

Vectori

Declararea vectorilor
#include<vector>

vector <char> vocale;
//se creaza o colectie (vector) de caractere (nu stim cate caractere),

//care acum este goala, dar in care vom putea introduce caractere mai
tarziu

vector <int> scorElevi;
SAU

vector <char> vocale(5); // se creaza un vector si ii spunem compilatorului ca acesta
va contine 5 caractere vide(nule, ¢\0?)

vector <int> scorElevi(10); // se creaza un vector format din 10 nr intregi care
automat sunt initializate cu O

Vectori

Initializarea vectorilor
vector <char> vocale{ 'a','e','i','o','u'};
vector <int> scorElevi {100, 98, 89, 85, 93};

vector <double> temperaturi(365,90.0); //365 reprezinta dimensiunea vectorului si
toate elementele vectorului sunt initializate cu 90.0

Vectori

Caracteristici:

* Dimensiune dinamica

» Toate elementele lor sunt de acelasi tip

* Toate elementele sunt stocate impreuna in memorie

* Elementele individule pot fi accesate prin pozitia lor sau index

* Primul element are indexul ©
e Ultimul element are indexul dimensiuneVector-1

 Elementele sunt initializate automat cu © sau cu \0
* Foarte eficienti
 [teratia (looping) este foarte des folosita

Accesarea elementelor unui vector (sintaxa de la
tablouri)

numeVector [indexulElementului]

Exemplu: scorElevi[1l]

vector <int> scorklevi{ 100,95,99,67,87 };

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

"Primul scor la indexul © este:
"Al doilea scor la indexul 1 este:
"Al treilea scor la indexul 2 este:
"Al patrulea scor la indexul 3 este:
"Al cincilea scor la indexul 4 este:

<< scorklevi[@] << endl;
" << scorklevi[1l] << endl;
<< scorklevi[2] << endl;
<< scorklevi[3] << endl;
<< scorklevi[4] << endl;

Accesarea elementelor unui vector (sintaxa
caracteristica vectorilor)

numeVector.at(indexulElementului)

Exemplu: scorElevi.at(1)

vector <int> scorklevi{ 100,95,99,67,87 };

cout <«
cout <«
endl;
cout <«
endl;
cout <«
endl;
cout <«
endl;

"Al treilea scor la indexul 2 este:
"Al patrulea scor la indexul 3 este:

"Al cincilea scor la indexul 4 este:

"Primul scor la indexul @ este: " << scorElevi.at(®) << endl;
"Al doilea scor la indexul 1 este:

<< scorElevi.at(1l) <«

<< scorElevi.at(2) <«

<< scorElevi.at(3) <«

<< scorElevi.at(4) <<

Schimbarea elementelor unui vector (sintaxa
caracteristica vectorilor)

numeVector.at(indexulElementului)

vector <int> scorElevi{ 100,95,99,67,87 };
cin >> scorElevi.at(9);
cin >> scorElevi.at(1);
cin >> scorElevi.at(2);
cin >> scorElevi.at(3);
cin >> scorElevi.at(4);

scorElevi.at(@) = 90; //atribuirea valorii 90 elementului de pe
indexul ©

Cum putem mari dimensiunea vectorului atunci
cand dorim acest lucru?

numeVector.push_back(element)

vector <int> scorklevi{ 100,95,99}; //dimensiunea vectorului este 3

scorElevi.push _back(80); // 100,95,99,80
scorElevi.push _back(90); //100,95,99,80,90

Vectorul va aloca automat spatiul necesar!

Ce se intampla daca depasim dimensiunea?

vector <int> scorElevi{ 100,95,99}; //dimensiunea vectorului este 3

cout<<scorElevi.at(5);

 Compilatorul va genera eroare sau o exceptie (spre deosebire de
cazul cand aveam tablouri si se genera doar o avertizare)!

Metode/ functii folosite pentru vectori

vector <int> scorklevi{ 100,95,99}; //dimensiunea vectorului este 3

std: :vector<int>::iterator it = scorElevi.begin();
// Afisam primul element utilizand iteratorul

std::cout << "Primul element: << *it << std::endl;

it = scorElevi.end()-1;
// Afisam ultimul element utilizand iteratorul

std::cout << “Ultimul element: << *it << std::endl;

Un iterator in C++ este un obiect special care permite accesul secvential la elementele unei colectii (cum ar fi
un vector), fara a expune detaliile interne ale structurii de date. Practic, iteratorii iti permit sa parcurgi si sa
manipulezi elementele dintr-o colectie intr-un mod similar cu pointerii despre care vom discuta intr-un curs
ulterior.

Metode/ functii folosite pentru vectori

» sort(scorElevi.begin(), scorElevi.end()); //sorteaza crescator vectorul; sort este o
functie din biblioteca algorithm si ea lucreaza pe intervalul [begin,end);

begin() -> iterator la primul element din vector;
end()->iterator la “un element dupa ultimul”

reverse(scorElevi.begin(), scorElevi.end()); // inverseaza elementele intr-un vector
» scorElevi.pop back(); //elimina ultimul element din vector

» scorElevi.erase(scorElevi.begin() + i) ;// sterge elementul de pe pozitia i

« scorElevi.clear (); goleste vectorul

* n=scorElevi.size(); // numarul de elemente din vector

* find(scorElevi.begin(), scorElevi.end(), x); //returneaza iteratorul/adresa unde il

gaseste prima data pe x in vector, iar daca nu il gaseste returneaza un iterator care
indica “dupa ultimul element”; find lucreaza pe intervalul [begin, end)

Vezi programul “Vectori”!

#include<iostream>
#include<vector> . o]
#include<algorithm> Frogramul.-Vectari:!

using namespace std;

int main() {
vector <char>®Vocalel 'a','e","d",'0",:'u’ };

cout << "vocale[@]="<< vocale[0@] << endl;
cout << "vocale[4]= "<< vocale[4] << endl;
//cout << vocale[10] << endl; // vom avea o eroare

//char v[3] { 'a','b','c' };
//cout << v[3]; //nu vom avea o eroare, ci va fi afisat un "gunoi"

vector <int> scorElevi (3); //toate trei elementele sunt intializate cu ©

//vector <int> scorElevi(3, 100); // toate trei elementele sunt initializate cu 100
//vector <int> scorElevi{ 100,99,87 };

cout << "\nScorul elevilor folosind sintaxa de la tablouri: "

cout << scorElevi[@] << endl;

cout << scorElevi[l] << endl;

cout << scorElevi[2] << endl;

<< endl;

Programul “Vectori”l-continuare

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

"“\nScorul elevilor folosind sintaxa de la vector: << endl;
scorElevi.at(@) << endl;
scorElevi.at(1l) << endl;
scorElevi.at(2) << endl;

"\nExista " << scorElevi.size() <<

scoruri in vector" << endl;

//size este o metoda din clasa vector

cout << "\nIntroduceti trei scoruri: "<<endl;
cin >> scorElevi.at(9);
cin >> scorElevi.at(1);
cin >> scorElevi.at(2);

cout
cout
cout
cout

<<
<<
<<
<<

"\n Scorurile modificate sunt: "<<endl;
scorElevi.at(0) << endl;
scorElevi.at(1) << endl;
scorElevi.at(2) << endl;

Programul “Vectori”l-continuare?2

cout << "\n Adaugati un scor in vector “;

int scorNou;
cin >> scorNou;
scorElevi.push _back(scorNou);

cout << "\n Mai adaugati un alt scor in vector ";

cin >> scorNou;
scorElevi.push back(scorNou);

cout
cout
cout
cout
cout
cout

cout

//determinam numarul de elemente din vector

<<
<<
<<
<<
<<
<<

<<

"\nScorurile sunt acum:
.at(0) << endl;
.at(1l) << endl;
.at(2) << endl;
.at(3) << endl;
.at(4) << endl;

scorElevi
scorElevi
scorElevi
scorElevi
scorElevi

"\nExista

<< endl;

<< scorElevi.size() <<

scoruri in vector" << endl;

Programul “Vectori”l-continuare3

cout << "Elementul de pe prima pozitie din scorElevi este: << *scorElevi.begin() <«
endl;
cout << "Elementul de pe ultima pozitie din scorElevi este:

<< endl;

<< *(scorElevi.end()-1)

//ordonam crescator elementele vectorului

sort(scorElevi.begin(), scorElevi.end());

cout << "\nScorurile ordonate crescator sunt:" << endl;
cout << scorElevi.at(@) << endl;
cout << scorElevi.at(1l) << endl;
cout << scorElevi.at(2) << endl;
cout << scorElevi.at(3) << endl;

cout << scorElevi.at(4) << endl;

Programul “Vectori”l-continuare4

//le inversam ordinea

reverse(scorElevi.begin(), scorElevi.end());

cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<

"\nScorurile ordonate descrescator sunt:
.at(9)
.at(1)
.at(2)
.at(3)
.at(4)

scorElevi
scorElevi
scorElevi
scorElevi
scorElevi

<<
<<
<<
<<
<<

endl;
endl;
endl;
endl;
endl;

<< endl;

Programul “Vectori”l-continuare5

//cautarea unui element dat intr-un vector

vector <int>::iterator it;

//interatorii sunt folositi pentru a face referire la adresa de memorie
// la care sunt stocate elementele vectorului

int x{ 20};

it=find(scorElevi.begin(), scorElevi.end(), x);

// adresa unde se gaseste x prima data in vectorul nostru
if (it != scorElevi.end()) {
cout << "Elementul " << x <X
}

else

cout << "Elementul " << x <X

este pe pozitia " << it - scorElevi.begin() << endl;

nu a fost gasit!" << endl;

//cout << "Acesta va genera o eroare! << scorElevi.at(10);

//Exemplu de vector 2-dimensional

vector <vector <int>>
"\nElementele

cout
endl;
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
endl;
cout

<< endl;
cout << matrice.at(2).at(®) << " " << matrice.at(2).at(1l) <«
<< matrice.at(2).at(3) << endl;

<<

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

<<

matrice[0][09]
matrice[0][1]
matrice[0][2]
matrice[0][3]
"\nElementele

matrice.
matrice.
matrice.
matrice.

endl <<

at(9).
at(9).
at(9).
at(9).

"Matricea noastra este
matrice[0][0] << " "<< matrice[0][1l] <<

matriceq{

matricei de pe linia 1 (folosind sintaxa de la tablouri) sunt:

<< 1] II;
<< 1] ll;
<< 1] Il;

<< ;

matricei

at(9) <«
at(1l) <<
at(2) <<
at(3) <«

Programul “Vectori”l-continuare6

{1J2J3.’4}.’{9J1.’4.’4}){316.’4)5} }.;

<<

de pe linia 1 (folosind sintaxa de la vector) sunt: "

J
non,

J
nmon,

J
non,

J

<< endl;

<< endl;
" "<<matrice[0][2] <«

<< matrice[0@][3] <«

matrice[1][0] << " " << matrice[l][1] <<" "<< matrice[1l][2] << " " << matrice[1][3]

return 9;

}

<< matrice.at(2).at(1l) <«

https://test-master.space

| EAE]

In:
Jpr L

Q““ﬁ

1

	Slide 1: Tablouri si vectori.
	Slide 2: Tablouri si vectori.
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

