
Tablouri si vectori.

Fundamentele Programarii

Tablouri si vectori.

• Tablouri

• Ce sunt tablourile?

• De ce folosim tablourile?

• Declararea si initializarea tablourilor

• Accesarea elementelor unui tablou

• Tablouri multidimensionale

• Vectori

• Ce sunt vectorii?

• Avantaje vs. tablouri

• Declararea si initializarea vectorilor

• Accesarea elementelor unui vector

Tablouri (arrays)

❑ Un tablou este un tip de date compus sau o structura de date

• Exemplu: colectie de elemente

❑ Toate elementele trebuie sa fie de acelasi tip!

❑ Fiecare element poate fi accesat direct!

De ce avem nevoie de tablouri?

int scor_1 {0};
int scor_2 {0};
int scor_3 {0};
…..

int scor_100 {0};

• Tablourile ne permit sa oferim compilatorului informatii despre anumite
colectii cu cate elemente dorim, dand colectiei un singur nume

Caracteristici:
• Au marime fixa
• Elementele trebuie sa aiba acelasi tip
• Toate elementele sunt stocate impreuna in memorie
• Fiecare element poate fi accesat prin pozitia sau indexul sau

• Primul element are indexul 0
• Ultimul element are indexul marimea colectiei-1

• Foarte eficiente
• Iteratia/ buclelele (looping) sunt foarte des intalnite

87

56

99

78

53

70

86

79

70

100

scor

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

⋮

Declararea si initializarea tablourilor

Declararea

Tipul_elementului numele_tabloului [numar constant de elemente];

• Exemple:
int scorElevi [5];
int noteElevi [10];
const int nrZileAn {365};
double temperatura[nrZileAn];

• Aceste tablouri nu sunt initializate! In acest moment, ele vor contine niste valori
aleatoare (garbage).

Declararea si initializarea tablourilor

Declararea

Ce se intampla daca scriem urmatorul cod?

int main(){
int numar_studenti{ 20 };
int note[numar_studenti];
cout << "Notele studentilor sunt: " << endl;
for (int i = 0; i < numar_studenti; i++) {

cout << note[i] << " ";
}
return 0;

}

EROARE!

Declararea si initializarea tablourilor

Declararea

Ce se intampla daca scriem urmatorul cod?

int main(){
const int numar_studenti{ 20 };
int note[numar_studenti];
cout << "Notele studentilor sunt: " << endl;
for (int i = 0; i < numar_studenti; i++) {

cout << note[i] << " ";
}
return 0;

}

• Initializeaza intotdeauna tablourile!

Avertizare!

Declararea si initializarea tablourilor

Initializarea:

Tipul_elementului numele_tabloului [numar constant de elemente] {init lista};

Sau

Tipul_elementului numele_tabloului [numar constant de elemente] = {init lista};

• Exemple:
int scorElevi [5] {100,95,99,67,87};
int noteElevi [10] {3,5};

const int nrZileAn {365};
double temperatura[nrZileAn] {0};

int altTablou [] {1,2,3,4,5} ; //marimea tabloului este automat calculata

//primele doua elemente sunt initializate cu 3 si 5 , iar restul cu 0

// toate elementele sunt initializate cu 0

Accesarea elementelor tablourilor

numeTablou [indexul_elementului]

• Exemplu: scorElevi [1]

int scorElevi[5]{ 100,95,99,67,87 };
cout << "Primul scor la indexul 0 este: " << scorElevi[0] << endl;
cout << "Al doilea scor la indexul 1 este: " << scorElevi[1] << endl;
cout << "Al treilea scor la indexul 2 este: " << scorElevi[2] << endl;
cout << "Al patrulea scor la indexul 3 este: " << scorElevi[3] << endl;
cout << "Al cincilea scor la indexul 4 este: " << scorElevi[4] << endl;

Schimbarea continutului elementelor tablourilor

numeTablou [indexul_elementului]

int scorElevi[5]{ 100,95,99,67,87 };
cout << "Primul scor la indexul 0 se modifica in: " ;
cin >> scorElevi[0];
cout << "Al doilea scor la indexul 1 se modifica in: ";
cin >> scorElevi[1];
cout << "Al treilea scor la indexul 2 se modifica in: ";
cin >> scorElevi[2];
cout << "Al patrulea scor la indexul 3 se modifica in: ";
cin >> scorElevi[3];
cout << "Al cincilea scor la indexul 4 se modifica in: ";
cin >> scorElevi[4];

Sau, direct in program:

scorElevi[0]=90;

Cum functioneaza tablourile?

• Numele tabloului reprezinta locatia primului element din tablou (cel cu indexul 0)

• [indexul] reprezinta decalajul fata de inceputul tabloului. Astfel, C++ face un calcul
simplu pentru a identifica elementul corect

• Atentie la limitele tabloului! Daca avem un tablou de 5 elemente si noi vrem sa
afisam valoarea elementului cu indexul 5 atunci compilatorul nu va genera o eroare, se
va genera doar o avertizare si se va afisa o valoare aleatorie!

Vezi programul “Tablouri”!

Cum functioneaza tablourile?
scorElevi

100

95

99

67

87

1000

1004

1008

1012
1016

0

1

2

3
4

1000

1000+4=1004
(1 int --->4 bytes)

Tablouri multidimensionale

• Ne vom concentra atentia asupra tablourilor bidimensionale, dar se pot declara tablouri
de orice dimensiune

TipulElementului numeleTabloului [dim1][dim2]

Exemplu: int matrice[3][4];

• Nu am initializat acest tablou, deci in acest moment tabloul va avea 12 valori aleatorii
“garbage” (gunoi)!

Tablouri bidimensionale

const int nrLinii{ 3 };
const int nrColoane{ 4 };
int matrice[nrLinii][nrColoane];

0 4 3 5

2 3 3 5

1 4 4 5

0

1

2

0 1 2 3

Tablouri bidimensionale

Accesarea elementelor unui tablou bidimensional

cin >> matrice[1][2];
cout<< matrice[1][2];

0 4 3 5

2 3 3 5

1 4 4 5

0

1

2

0 1 2 3

Tablouri bidimensionale

Initializarea tablourilor bidimensionale

int matrice[3][4] = { {0,4,3,5},{2,3,3,5},{1,4,4,5} };

sau

int matrice[3][4] { {0,4,3,5},{2,3,3,5},{1,4,4,5} };

0 4 3 5

2 3 3 5

1 4 4 5

0

1

2

0 1 2 3

Tablouri bidimensionale

int a[2][2] = { 1,2,3,4 };
cout << a[0][3] << endl;

Ce se va afisa?

4

int a[2][2] = { {1,2},{3,4} };
cout << a[0][3] << endl;

Avertizare!!!

4

• Vezi programul “TablouriBidemensionale”!

Vectori

• Presupunem ca vrem sa monitorizam rezultatele la admitere la o scoala

• Nu avem de unde sa stim cati studenti se vor inregistra la admitere

• Optiuni:

o Sa folosim un tablou cu o dimensiune suficient de mare astfel incat aceasta sa nu fie depasita

o Sa folosim un tablou dinamic asa cum este un vector

Vectori

Ce este un vector?

• Un vector este un tablou unidimensional a carui dimensiune poate fi marita sau micsorata in timpul

executiei programului (obiecte C++)

• Este un container din Libraria Standard C++.

• Sintaxa si semantica vectorilor sunt asemanatoare cu ale tablourilor

• Putem face verificari asupra limitelor unui vector!

• Putem folosi multe functii foarte utile precum sortare, cautare, inversare si altele

Vectori

Declararea vectorilor

#include<vector>

vector <char> vocale;
//se creaza o colectie (vector) de caractere (nu stim cate caractere),
//care acum este goala, dar in care vom putea introduce caractere mai
tarziu
vector <int> scorElevi;

SAU

vector <char> vocale(5); // se creaza un vector si ii spunem compilatorului ca acesta
va contine 5 caractere vide(nule, ‘\0’)

vector <int> scorElevi(10); // se creaza un vector format din 10 nr intregi care
automat sunt initializate cu 0

Vectori

Initializarea vectorilor

vector <char> vocale{ 'a','e','i','o','u'};

vector <int> scorElevi {100, 98, 89, 85, 93};

vector <double> temperaturi(365,90.0); //365 reprezinta dimensiunea vectorului si
toate elementele vectorului sunt initializate cu 90.0

Vectori

Caracteristici:

• Dimensiune dinamica

• Toate elementele lor sunt de acelasi tip

• Toate elementele sunt stocate impreuna in memorie

• Elementele individule pot fi accesate prin pozitia lor sau index

• Primul element are indexul 0
• Ultimul element are indexul dimensiuneVector-1

• Elementele sunt initializate automat cu 0 sau cu \0
• Foarte eficienti

• Iteratia (looping) este foarte des folosita

Accesarea elementelor unui vector (sintaxa de la

tablouri)

numeVector [indexulElementului]

Exemplu: scorElevi[1]

vector <int> scorElevi{ 100,95,99,67,87 };
cout << "Primul scor la indexul 0 este: " << scorElevi[0] << endl;
cout << "Al doilea scor la indexul 1 este: " << scorElevi[1] << endl;
cout << "Al treilea scor la indexul 2 este: " << scorElevi[2] << endl;
cout << "Al patrulea scor la indexul 3 este: " << scorElevi[3] << endl;
cout << "Al cincilea scor la indexul 4 este: " << scorElevi[4] << endl;

Accesarea elementelor unui vector (sintaxa

caracteristica vectorilor)

numeVector.at(indexulElementului)

Exemplu: scorElevi.at(1)

vector <int> scorElevi{ 100,95,99,67,87 };
cout << "Primul scor la indexul 0 este: " << scorElevi.at(0) << endl;
cout << "Al doilea scor la indexul 1 este: " << scorElevi.at(1) <<
endl;
cout << "Al treilea scor la indexul 2 este: " << scorElevi.at(2) <<
endl;
cout << "Al patrulea scor la indexul 3 este: " << scorElevi.at(3) <<
endl;
cout << "Al cincilea scor la indexul 4 este: " << scorElevi.at(4) <<
endl;

Schimbarea elementelor unui vector (sintaxa

caracteristica vectorilor)

numeVector.at(indexulElementului)

vector <int> scorElevi{ 100,95,99,67,87 };
cin >> scorElevi.at(0);
cin >> scorElevi.at(1);
cin >> scorElevi.at(2);
cin >> scorElevi.at(3);
cin >> scorElevi.at(4);

scorElevi.at(0) = 90; //atribuirea valorii 90 elementului de pe
indexul 0

Cum putem mari dimensiunea vectorului atunci

cand dorim acest lucru?

numeVector.push_back(element)

vector <int> scorElevi{ 100,95,99}; //dimensiunea vectorului este 3

scorElevi.push_back(80); // 100,95,99,80
scorElevi.push_back(90); //100,95,99,80,90

Vectorul va aloca automat spatiul necesar!

Ce se intampla daca depasim dimensiunea?

vector <int> scorElevi{ 100,95,99}; //dimensiunea vectorului este 3

cout<<scorElevi.at(5);

• Compilatorul va genera eroare sau o exceptie (spre deosebire de
cazul cand aveam tablouri si se genera doar o avertizare)!

Metode/ functii folosite pentru vectori

vector <int> scorElevi{ 100,95,99}; //dimensiunea vectorului este 3

std::vector<int>::iterator it = scorElevi.begin();
// Afișăm primul element utilizând iteratorul

std::cout << "Primul element: " << *it << std::endl;

it = scorElevi.end()-1;
// Afișăm ultimul element utilizând iteratorul

std::cout << “Ultimul element: " << *it << std::endl;

Un iterator în C++ este un obiect special care permite accesul secvențial la elementele unei colecții (cum ar fi
un vector), fără a expune detaliile interne ale structurii de date. Practic, iteratorii îți permit să parcurgi și să
manipulezi elementele dintr-o colecție într-un mod similar cu pointerii despre care vom discuta intr-un curs
ulterior.

Metode/ functii folosite pentru vectori

• sort(scorElevi.begin(), scorElevi.end()); //sorteaza crescator vectorul; sort este o
functie din biblioteca algorithm si ea lucreaza pe intervalul [begin,end);

begin() -> iterator la primul element din vector;
end()->iterator la “un element dupa ultimul”

• reverse(scorElevi.begin(), scorElevi.end()); // inverseaza elementele intr-un vector

• scorElevi.pop_back(); //elimina ultimul element din vector

• scorElevi.erase(scorElevi.begin() + i) ;// sterge elementul de pe pozitia i

• scorElevi.clear (); goleste vectorul

• n=scorElevi.size(); // numarul de elemente din vector
• find(scorElevi.begin(), scorElevi.end(), x); //returneaza iteratorul/adresa unde il

gaseste prima data pe x in vector, iar daca nu il gaseste returneaza un iterator care
indica “dupa ultimul element”; find lucreaza pe intervalul [begin, end)

Vezi programul “Vectori”!

Programul “Vectori”!

#include<iostream>
#include<vector>
#include<algorithm>

using namespace std;

int main() {
vector <char> vocale{ 'a','e','i','o','u' };

cout << "vocale[0]="<< vocale[0] << endl;
cout << "vocale[4]= "<< vocale[4] << endl;
//cout << vocale[10] << endl; // vom avea o eroare

//char v[3] { 'a','b','c' };
//cout << v[3]; //nu vom avea o eroare, ci va fi afisat un "gunoi"

vector <int> scorElevi (3); //toate trei elementele sunt intializate cu 0
//vector <int> scorElevi(3, 100); // toate trei elementele sunt initializate cu 100

//vector <int> scorElevi{ 100,99,87 };

cout << "\nScorul elevilor folosind sintaxa de la tablouri: " << endl;
cout << scorElevi[0] << endl;
cout << scorElevi[1] << endl;
cout << scorElevi[2] << endl;

Programul “Vectori”!-continuare1

cout << "\nScorul elevilor folosind sintaxa de la vector: " << endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;
cout << "\nExista " << scorElevi.size() << " scoruri in vector" << endl;
//size este o metoda din clasa vector

cout << "\nIntroduceti trei scoruri: "<<endl;
cin >> scorElevi.at(0);
cin >> scorElevi.at(1);
cin >> scorElevi.at(2);

cout << "\n Scorurile modificate sunt: "<<endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;

Programul “Vectori”!-continuare2

cout << "\n Adaugati un scor in vector ";

int scorNou;
cin >> scorNou;
scorElevi.push_back(scorNou);

cout << "\n Mai adaugati un alt scor in vector ";
cin >> scorNou;
scorElevi.push_back(scorNou);

cout << "\nScorurile sunt acum:" << endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;
cout << scorElevi.at(3) << endl;
cout << scorElevi.at(4) << endl;

cout << "\nExista " << scorElevi.size() << " scoruri in vector" << endl;
//determinam numarul de elemente din vector

Programul “Vectori”!-continuare3

cout << "Elementul de pe prima pozitie din scorElevi este: " << *scorElevi.begin() <<
endl;
cout << "Elementul de pe ultima pozitie din scorElevi este: " << *(scorElevi.end()-1)
<< endl;

//ordonam crescator elementele vectorului

sort(scorElevi.begin(), scorElevi.end());

cout << "\nScorurile ordonate crescator sunt:" << endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;
cout << scorElevi.at(3) << endl;
cout << scorElevi.at(4) << endl;

Programul “Vectori”!-continuare4

//le inversam ordinea

reverse(scorElevi.begin(), scorElevi.end());

cout << "\nScorurile ordonate descrescator sunt:" << endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;
cout << scorElevi.at(3) << endl;
cout << scorElevi.at(4) << endl;

Programul “Vectori”!-continuare5

//cautarea unui element dat intr-un vector

vector <int>::iterator it;
//interatorii sunt folositi pentru a face referire la adresa de memorie
// la care sunt stocate elementele vectorului
int x{ 20};

it=find(scorElevi.begin(), scorElevi.end(), x);
// adresa unde se gaseste x prima data in vectorul nostru
if (it != scorElevi.end()) {
cout << "Elementul " << x << " este pe pozitia " << it - scorElevi.begin() << endl;
}
else
cout << "Elementul " << x << " nu a fost gasit!" << endl;

//cout << "Acesta va genera o eroare! " << scorElevi.at(10);

Programul “Vectori”!-continuare6
//Exemplu de vector 2-dimensional

vector <vector <int>> matrice{ {1,2,3,4},{9,1,4,4},{3,6,4,5} };
cout << "\nElementele matricei de pe linia 1 (folosind sintaxa de la tablouri) sunt: " <<
endl;
cout << matrice[0][0] << " ";
cout << matrice[0][1] << " ";
cout << matrice[0][2] << " ";
cout << matrice[0][3] << " ";
cout << "\nElementele matricei de pe linia 1 (folosind sintaxa de la vector) sunt: " << endl;
cout << matrice.at(0).at(0) << " ";
cout << matrice.at(0).at(1) << " ";
cout << matrice.at(0).at(2) << " ";
cout << matrice.at(0).at(3) << " ";
cout << endl << "Matricea noastra este " << endl;
cout << matrice[0][0] << " "<< matrice[0][1] << " "<<matrice[0][2] << " " << matrice[0][3] <<
endl;
cout << matrice[1][0] << " " << matrice[1][1] <<" "<< matrice[1][2] << " " << matrice[1][3]
<< endl;
cout << matrice.at(2).at(0) << " " << matrice.at(2).at(1) <<" "<< matrice.at(2).at(1) << " "
<< matrice.at(2).at(3) << endl;

return 0;
}

https://test-master.space

	Slide 1: Tablouri si vectori.
	Slide 2: Tablouri si vectori.
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

