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Tablouri (arrays)

❑ Un  tablou este un tip de date compus sau o structura de date

• Exemplu: colectie de elemente

❑ Toate elementele trebuie sa fie de acelasi tip!

❑ Fiecare element poate fi accesat direct!



De ce avem nevoie de tablouri?

int scor_1  {0};
int scor_2 {0};
int scor_3 {0};
…..

int scor_100 {0};

• Tablourile ne permit sa oferim compilatorului informatii despre anumite
colectii cu cate elemente dorim, dand colectiei un singur nume

Caracteristici:
• Au marime fixa
• Elementele trebuie sa aiba acelasi tip
• Toate elementele sunt stocate impreuna in memorie
• Fiecare element poate fi accesat prin pozitia sau indexul sau

• Primul element are indexul 0
• Ultimul element are indexul marimea colectiei-1

• Foarte eficiente
• Iteratia/ buclelele (looping) sunt foarte des intalnite
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Declararea si initializarea tablourilor

Declararea

Tipul_elementului numele_tabloului [numar constant de elemente];

• Exemple:
int scorElevi [5];
int noteElevi [10];
const int nrZileAn {365};
double temperatura[nrZileAn];

• Aceste tablouri nu sunt initializate! In acest moment, ele vor contine niste valori
aleatoare (garbage).



Declararea si initializarea tablourilor

Declararea

Ce se intampla daca scriem urmatorul cod?

int main(){
int numar_studenti{ 20 };
int note[numar_studenti];
cout << "Notele studentilor sunt: " << endl;
for (int i = 0; i < numar_studenti; i++) {

cout << note[i] << " ";
}
return 0;

}

EROARE!



Declararea si initializarea tablourilor

Declararea

Ce se intampla daca scriem urmatorul cod?

int main(){
const int numar_studenti{ 20 };
int note[numar_studenti];
cout << "Notele studentilor sunt: " << endl;
for (int i = 0; i < numar_studenti; i++) {

cout << note[i] << " ";
}
return 0;

}

• Initializeaza intotdeauna tablourile!

Avertizare!



Declararea si initializarea tablourilor

Initializarea:

Tipul_elementului numele_tabloului [numar constant de elemente] {init lista};

Sau

Tipul_elementului numele_tabloului [numar constant de elemente] = {init lista};

• Exemple:
int scorElevi [5] {100,95,99,67,87};
int noteElevi [10] {3,5};      

const int nrZileAn {365};
double temperatura[nrZileAn] {0};   

int altTablou [] {1,2,3,4,5} ; //marimea tabloului este automat calculata

//primele doua elemente sunt initializate cu 3 si 5 , iar restul cu 0

// toate elementele sunt initializate cu 0



Accesarea elementelor tablourilor

numeTablou [indexul_elementului]

• Exemplu:  scorElevi [1]

int scorElevi[5]{ 100,95,99,67,87 };
cout << "Primul scor la indexul 0 este: " << scorElevi[0] << endl;
cout << "Al doilea scor la indexul 1 este: " << scorElevi[1] << endl;
cout << "Al treilea scor la indexul 2 este: " << scorElevi[2] << endl;
cout << "Al patrulea scor la indexul 3 este: " << scorElevi[3] << endl;
cout << "Al cincilea scor la indexul 4 este: " << scorElevi[4] << endl;



Schimbarea continutului elementelor tablourilor

numeTablou [indexul_elementului]

int scorElevi[5]{ 100,95,99,67,87 };
cout << "Primul scor la indexul 0 se modifica in: " ;
cin >> scorElevi[0];
cout << "Al doilea scor la indexul 1 se modifica in: ";
cin >> scorElevi[1];
cout << "Al treilea scor la indexul 2 se modifica in: ";
cin >> scorElevi[2];
cout << "Al patrulea scor la indexul 3 se modifica in: ";
cin >> scorElevi[3];
cout << "Al cincilea scor la indexul 4 se modifica in: ";
cin >> scorElevi[4];

Sau, direct in program:

scorElevi[0]=90;



Cum functioneaza tablourile?

• Numele tabloului reprezinta locatia primului element din tablou (cel cu indexul 0)

• [indexul] reprezinta decalajul fata de inceputul tabloului. Astfel, C++ face un calcul
simplu pentru a identifica elementul corect

• Atentie la limitele tabloului! Daca avem un tablou de 5 elemente si noi vrem sa
afisam valoarea elementului cu indexul 5 atunci compilatorul nu va genera o eroare, se 
va genera doar o avertizare si se va afisa o valoare aleatorie!

Vezi programul “Tablouri”!



Cum functioneaza tablourile?
scorElevi
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Tablouri multidimensionale

• Ne vom concentra atentia asupra tablourilor bidimensionale, dar se pot declara tablouri
de orice dimensiune

TipulElementului numeleTabloului [dim1][dim2]

Exemplu: int matrice[3][4];

• Nu am initializat acest tablou, deci in acest moment tabloul va avea 12 valori aleatorii
“garbage” (gunoi)!



Tablouri bidimensionale

const int nrLinii{ 3 };
const int nrColoane{ 4 };
int matrice[nrLinii][nrColoane];
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Tablouri bidimensionale

Accesarea elementelor unui tablou bidimensional

cin >> matrice[1][2];
cout<< matrice[1][2];
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Tablouri bidimensionale

Initializarea tablourilor bidimensionale

int matrice[3][4] = { {0,4,3,5},{2,3,3,5},{1,4,4,5} };

sau

int matrice[3][4]  { {0,4,3,5},{2,3,3,5},{1,4,4,5} };
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Tablouri bidimensionale

int a[2][2] = { 1,2,3,4 };
cout << a[0][3] << endl;

Ce se va afisa?

4

int a[2][2] = { {1,2},{3,4} };
cout << a[0][3] << endl;

Avertizare!!!

4

• Vezi programul “TablouriBidemensionale”!



Vectori

• Presupunem ca vrem sa monitorizam rezultatele la admitere la o scoala

• Nu avem de unde sa stim cati studenti se vor inregistra la admitere

• Optiuni:

o Sa folosim un tablou cu o dimensiune suficient de mare astfel incat aceasta sa nu fie depasita

o Sa folosim un tablou dinamic asa cum este un vector



Vectori

Ce este un vector?

• Un vector este un tablou unidimensional a carui dimensiune poate fi marita sau micsorata in timpul

executiei programului (obiecte C++) 

• Este un container din Libraria Standard C++. 

• Sintaxa si semantica vectorilor sunt asemanatoare cu ale tablourilor

• Putem face verificari asupra limitelor unui vector!

• Putem folosi multe functii foarte utile precum sortare, cautare, inversare si altele



Vectori

Declararea vectorilor

#include<vector>

vector <char> vocale;
//se creaza o colectie (vector) de caractere (nu stim cate caractere),          
//care acum este goala, dar in care vom putea introduce caractere mai
tarziu
vector <int> scorElevi;

SAU

vector <char> vocale(5); // se creaza un vector si ii spunem compilatorului ca acesta 
va contine 5 caractere vide(nule, ‘\0’)

vector <int> scorElevi(10); // se creaza un vector format din 10 nr intregi care 
automat sunt initializate cu 0



Vectori

Initializarea vectorilor

vector <char> vocale{ 'a','e','i','o','u'};

vector <int> scorElevi {100, 98, 89, 85, 93};

vector <double> temperaturi(365,90.0); //365 reprezinta dimensiunea vectorului si
toate elementele vectorului sunt initializate cu 90.0



Vectori

Caracteristici:

• Dimensiune dinamica

• Toate elementele lor sunt de acelasi tip

• Toate elementele sunt stocate impreuna in memorie

• Elementele individule pot fi accesate prin pozitia lor sau index

• Primul element are indexul 0
• Ultimul element are indexul dimensiuneVector-1

• Elementele sunt initializate automat cu 0 sau cu \0
• Foarte eficienti

• Iteratia (looping) este foarte des folosita



Accesarea elementelor unui vector (sintaxa de la 

tablouri)

numeVector [indexulElementului]

Exemplu: scorElevi[1]

vector <int> scorElevi{ 100,95,99,67,87 };
cout << "Primul scor la indexul 0 este: " << scorElevi[0] << endl;
cout << "Al doilea scor la indexul 1 este: " << scorElevi[1] << endl;
cout << "Al treilea scor la indexul 2 este: " << scorElevi[2] << endl;
cout << "Al patrulea scor la indexul 3 este: " << scorElevi[3] << endl;
cout << "Al cincilea scor la indexul 4 este: " << scorElevi[4] << endl;



Accesarea elementelor unui vector (sintaxa

caracteristica vectorilor)

numeVector.at(indexulElementului)

Exemplu: scorElevi.at(1)

vector <int> scorElevi{ 100,95,99,67,87 };
cout << "Primul scor la indexul 0 este: " << scorElevi.at(0) << endl;
cout << "Al doilea scor la indexul 1 este: " << scorElevi.at(1) <<
endl;
cout << "Al treilea scor la indexul 2 este: " << scorElevi.at(2) <<
endl;
cout << "Al patrulea scor la indexul 3 este: " << scorElevi.at(3) <<
endl;
cout << "Al cincilea scor la indexul 4 este: " << scorElevi.at(4) <<
endl;



Schimbarea elementelor unui vector (sintaxa

caracteristica vectorilor)

numeVector.at(indexulElementului)

vector <int>  scorElevi{ 100,95,99,67,87 };
cin >> scorElevi.at(0);
cin >> scorElevi.at(1);
cin >> scorElevi.at(2);
cin >> scorElevi.at(3);
cin >> scorElevi.at(4);

scorElevi.at(0) = 90; //atribuirea valorii 90 elementului de pe 
indexul 0



Cum putem mari dimensiunea vectorului atunci

cand dorim acest lucru?

numeVector.push_back(element)

vector <int> scorElevi{ 100,95,99};  //dimensiunea vectorului este 3

scorElevi.push_back(80); // 100,95,99,80
scorElevi.push_back(90); //100,95,99,80,90

Vectorul va aloca automat spatiul necesar!



Ce se intampla daca depasim dimensiunea?

vector <int> scorElevi{ 100,95,99};  //dimensiunea vectorului este 3

cout<<scorElevi.at(5);

• Compilatorul va genera eroare sau o exceptie (spre deosebire de 
cazul cand aveam tablouri si se genera doar o avertizare)!



Metode/ functii folosite pentru vectori

vector <int> scorElevi{ 100,95,99};  //dimensiunea vectorului este 3

std::vector<int>::iterator it = scorElevi.begin();   
// Afișăm primul element utilizând iteratorul

std::cout << "Primul element: " << *it << std::endl;

it = scorElevi.end()-1;   
// Afișăm ultimul element utilizând iteratorul

std::cout << “Ultimul element: " << *it << std::endl;

Un iterator în C++ este un obiect special care permite accesul secvențial la elementele unei colecții (cum ar fi 
un vector), fără a expune detaliile interne ale structurii de date. Practic, iteratorii îți permit să parcurgi și să
manipulezi elementele dintr-o colecție într-un mod similar cu pointerii despre care vom discuta intr-un curs 
ulterior.



Metode/ functii folosite pentru vectori

• sort(scorElevi.begin(), scorElevi.end()); //sorteaza crescator vectorul; sort este o 
functie din biblioteca algorithm si ea lucreaza pe intervalul [begin,end); 

begin() -> iterator la primul element din vector; 
end()->iterator la “un element dupa ultimul”

• reverse(scorElevi.begin(), scorElevi.end()); // inverseaza elementele intr-un vector

• scorElevi.pop_back(); //elimina ultimul element din vector

• scorElevi.erase(scorElevi.begin() + i) ;// sterge elementul de pe pozitia i

• scorElevi.clear (); goleste vectorul

• n=scorElevi.size(); // numarul de elemente din vector
• find(scorElevi.begin(), scorElevi.end(), x); //returneaza iteratorul/adresa unde il 

gaseste prima data pe x in vector, iar daca nu il gaseste returneaza un iterator care 
indica “dupa ultimul element”; find lucreaza pe intervalul [begin, end)

Vezi programul “Vectori”!



Programul “Vectori”!

#include<iostream>
#include<vector>
#include<algorithm>

using namespace std;

int main() {
vector <char> vocale{ 'a','e','i','o','u' };

cout << "vocale[0]="<< vocale[0] << endl;
cout << "vocale[4]= "<< vocale[4] << endl;
//cout << vocale[10] << endl; // vom avea o eroare

//char v[3] { 'a','b','c' };
//cout << v[3];   //nu vom avea o eroare, ci va fi afisat un "gunoi"

vector <int> scorElevi (3); //toate trei elementele sunt intializate cu 0
//vector <int> scorElevi(3, 100); // toate trei elementele sunt initializate cu 100

//vector <int> scorElevi{ 100,99,87 };

cout << "\nScorul elevilor folosind sintaxa de la tablouri: " << endl;
cout << scorElevi[0] << endl;
cout << scorElevi[1] << endl;
cout << scorElevi[2] << endl;



Programul “Vectori”!-continuare1

cout << "\nScorul elevilor folosind sintaxa de la vector: " << endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;
cout << "\nExista " << scorElevi.size() << " scoruri in vector" << endl; 
//size este o metoda din clasa vector

cout << "\nIntroduceti trei scoruri: "<<endl;
cin >> scorElevi.at(0);
cin >> scorElevi.at(1);
cin >> scorElevi.at(2);

cout << "\n Scorurile modificate sunt: "<<endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;



Programul “Vectori”!-continuare2

cout << "\n Adaugati un scor in vector ";

int scorNou;
cin >> scorNou;
scorElevi.push_back(scorNou);

cout << "\n Mai adaugati un alt scor in vector ";
cin >> scorNou;
scorElevi.push_back(scorNou);

cout << "\nScorurile sunt acum:" << endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;
cout << scorElevi.at(3) << endl;
cout << scorElevi.at(4) << endl;

cout << "\nExista " << scorElevi.size() << " scoruri in vector" << endl; 
//determinam numarul de elemente din vector



Programul “Vectori”!-continuare3

cout << "Elementul de pe prima pozitie din scorElevi este: " << *scorElevi.begin() << 
endl;
cout << "Elementul de pe ultima pozitie din scorElevi este: " << *(scorElevi.end()-1) 
<< endl;

//ordonam crescator elementele vectorului

sort(scorElevi.begin(), scorElevi.end()); 

cout << "\nScorurile ordonate crescator sunt:" << endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;
cout << scorElevi.at(3) << endl;
cout << scorElevi.at(4) << endl;



Programul “Vectori”!-continuare4

//le inversam ordinea

reverse(scorElevi.begin(), scorElevi.end()); 

cout << "\nScorurile ordonate descrescator sunt:" << endl;
cout << scorElevi.at(0) << endl;
cout << scorElevi.at(1) << endl;
cout << scorElevi.at(2) << endl;
cout << scorElevi.at(3) << endl;
cout << scorElevi.at(4) << endl;



Programul “Vectori”!-continuare5

//cautarea unui element dat intr-un vector

vector <int>::iterator it; 
//interatorii sunt folositi pentru a face referire la adresa de memorie 
// la care sunt stocate elementele vectorului
int x{ 20};

it=find(scorElevi.begin(), scorElevi.end(), x); 
// adresa unde se gaseste x prima data in vectorul nostru
if (it != scorElevi.end()) {
cout << "Elementul " << x << " este pe pozitia " << it - scorElevi.begin() << endl;
}
else
cout << "Elementul " << x << " nu a fost gasit!" << endl;

//cout << "Acesta va genera o eroare! " << scorElevi.at(10);



Programul “Vectori”!-continuare6
//Exemplu de vector 2-dimensional

vector <vector <int>> matrice{ {1,2,3,4},{9,1,4,4},{3,6,4,5} };
cout << "\nElementele matricei de pe linia 1 (folosind sintaxa de la tablouri) sunt: " << 
endl;
cout << matrice[0][0] << " ";
cout << matrice[0][1] << " ";
cout << matrice[0][2] << " ";
cout << matrice[0][3] << " ";
cout << "\nElementele matricei de pe linia 1 (folosind sintaxa de la vector) sunt: " << endl;
cout << matrice.at(0).at(0) << " ";
cout << matrice.at(0).at(1) << " ";
cout << matrice.at(0).at(2) << " ";
cout << matrice.at(0).at(3) << " ";
cout << endl << "Matricea noastra este " << endl;
cout << matrice[0][0] << " "<< matrice[0][1] << " "<<matrice[0][2] << " " << matrice[0][3] << 
endl;
cout << matrice[1][0] << " " << matrice[1][1] <<" "<< matrice[1][2] << " " << matrice[1][3] 
<< endl;
cout << matrice.at(2).at(0) << " " << matrice.at(2).at(1) <<" "<< matrice.at(2).at(1) << " "
<< matrice.at(2).at(3) << endl;

return 0;
}



https://test-master.space
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