
Expresii. Propozitii. 
Operatori.

Fundamentele Programarii



Expresii

• O expresie este o compunere de funcţii matematice scrisă în stil operatorial, operatorii fiind 
funcţii, iar operanzii argumentele acestor funcţii.

• O expresie este cel mai simplu bloc al unui program
• Expresia calculeaza o valoare obtinuta dintr-un numar de operanzi

Exemple:
• 34 // expresie literala
• Nume_favorit // nume de variabila
• 1.4+3.2 // adunarea
• 2*5 // produsul
• a>b // expresie relationala
• a=b // atribuirea



Propozitii

• O propozitie este o linie completa de cod care realizeaza o anumita actiune.
• De obicei, sunt terminate cu “;”
• De obicei, contin expresii
• C++ are multe tipuri de propozitii: expresii, declarari, propozitia nula, atribuiri, instructiuni, 

iteratii, s.a.

Exemple:
• int x; // declarare
• Nume_favorit=5; // atribuire
• x=1.4+3.2; // atribuirea lui x a valorii obtinute prin adunarea celor

doua constante literale
• x=2*5 ;                                                           // atribuirea lui x a valorii obtinute prin produsul celor

doua constante literale
• if (a>b) 

cout<<“a este mai mare decat b”;     // instructiunea if
• ;                                                                        // propozitia nula



Operatori

• C++ contine un set bogat de operatori: 
❑ unari (-), 
❑ binari (operatorul de multiplicare *), 
❑ ternari (operatorul conditional ?: )

• Operatorii uzuali pot fi grupati in modul urmator:

o De atribuire
o Artimetici
o De incrementare/decremenetare
o Relationali /de comparare
o Logici
o Altii



Operatorul de atribuire

TS=TD

• TD este o expresie care are o valoare
• Valoarea lui TD este retinuta in TS

• Valoarea lui TD trebuie sa fie compatibila cu TS
• Lui TS trebuie sa putem sa ii asociem o valoare (nu poate fi o constanta)

• Putem atribui mai multor variabile o anumita valoare printr-o singura expresie

• In C++  avem conceptul de 
l-value  si r-value

• In l-value (ce este la stanga operatorului =) se retine o adresa, iar in r-value (ce este la dreapta
operatorului =) se retine valoarea de la adresa respectiva (ceea ce se afla la adresa respectiva) 
(Exemplu: scor=90)



Operatorul de atribuire

10num1 100



Operatorul de atribuire

10num1 20



Operatorul de atribuire

num1 = num2 = 1000

Stanga<-----Dreapta

num2 = 1000

num1 = 1000



Operatorul de atribuire

Compilatorul va genera o eroare!



Operatorul de atribuire

Compilatorul va genera o eroare!



Operatorul de atribuire

Compilatorul va genera o eroare!

literala,



Operatorii artimetici

• + adunarea
• - scaderea
• *  produsul
• / (div) impartirea
• % (modulo) restul functioneaza doar pentru numere intregi

• Atentie!
• 4/5 = 0
• 4.0/5 = 0.8
• 4/5.0 = 0.8
• 4.0/5.0 = 0.8
• (float) 4/5 = 0.8   //in stilul C
• (double) 4/5 = 0.8 //in stilul C
• static_cast<double> (4)/5  = 0.8 //in stilul C++11



Operatorii aritmetici



Operatorii de incrementare (++) si decremetare (--)

• i++ incrementarea operandului cu 1  (i+1)
• i-- decrementarea operandului cu 1   (i-1)

• Preincrementare:  ++numVar
• Postincrementare:    numVar++

• Predecrementare:  --numVar
• Postdecrementare:    numVar--

• Vezi programul “OperatoriIncrementareDecrementare”!



Testarea pentru egalitate

== si !=

• Compara valorile a doua expresii
• Rezultatul este o variabiala de tip bool (adevarat sau fals, 1 sau 0)
• De obicei este folosit in cadrul instructiunilor if, while

• Exemple:

• expr1 == expr2
• expr1 != expr2

• 100 == 200      //intotdeauna returneaza fals
• num1 !=num2



Testarea pentru egalitate

== si !=

rezultat = 1

rezultat = 1

0

false

true

• Este un manipulator definit in 
spatiul de nume standard

• Toate variabilele de tip bool ce
vor fi afisate dupa

cout<< boolalpha;
vor aparea in consola cu 
valoarea true sau false (in locul
lui 1 sau 0).

• Daca vrem sa revenim la 
afisarea variabilelor de tip bool
cu 1 si 0 vom folosi

cout<<noboolalpha;

Vezi programul “TestEgalitate”!



Operatorii relationali

Expr1 op Expr2

> mai mare
>= mai mare sau egal
< mai mic
<= mai mic sau egal



Operatorii relationali

num1= 3.4    num2=5.6

3.4. <= 5.6 este true

3.4 < 5.6 este true

3.4 >= 5.6 este false

3.4>5.6 este false

Ce va afisa programul daca num1= 5  si num2=4.9999999999999?



Operatorii logici

Operator Sens

not
!

negatia

and
&&

si logic

or
||

sau logic

De evitat de folosit cuvintele cheie! Vom folosi operatorii corespunzatori.



Expresia a not a
!a

true false

false true

Expresia a Expresia b a and b
a && b

true true true

true false false

false true false

false false false

Expresia a Expresia b a or b
a || b

true true true

true false true

false true true

false false False

• ! este un operator unar

• && si || sunt operatori binari

• ! are prioritate in fata lui &&

• && are prioritate in fata lui ||



cout << boolalpha;

cout << endl << (!(3 < 4) || (2 >= 1) && (5 < 7))<<endl;

cout << endl << !((3<4) || (2>5) && (3<3))<<endl;

Exemple

true

false



Short-Circuit Evaluation

• Cand se evalueaza o expresie logica, C++ se opreste o data ce gaseste rezultatul expresiei

expr1 &&  expr2 && expr3

expr1 || expr2 || expr3

• Exemplu:

cout << (2 < 1) && (5 < 7)<<endl;
cout << (4<5)  || (6>3) || !(4>5)<< endl;  

Operatorii logici

0

1



Operatorii de atribuire compusi

Operator Exemplu Interpretare

+= TS += TD; TS = TS + TD;

-= TS  -= TD; TS = TS - TD;

*= TS *= TD; TS = TS * TD;

/= TS /= TD; TS = TS / TD;

%= TS %= TD; TS = TS % TD;



Operatorii de atribuire compusi

Exemple:

a+=1;            // a=a+1;
a/=5;            // a=a/5;
a*=b+c;          // a=a*(b+c);
a+=b*c;          // a=a+(b*c);
a%=5;            // a=a%5;



Precedenta operatorilor (nu este lista completa)

Operator Asociativitatea

[ ]    ( ) De la stanga la dreapta

++   -- ! - (unar) sizeof De la dreapta la stanga

*    /    % De la stanga la dreapta

+       - De la stanga la dreapta

<     <=      >    >= De la stanga la dreapta

==        != De la stanga la dreapta

&& De la stanga la dreapta

|| De la stanga la dreapta

=              ?: De la dreapta la stanga

https://en.cppreference.com/w/cpp/language/operator_precedence

https://en.cppreference.com/w/cpp/language/operator_precedence


Precedenta si asociativitatea operatorilor

• Presupunem ca avem o expresie cu doi operatori distincti cu nivel de precedenta diferit

expr1  op1 expr2   op2 expr3 // precedenta

• Presupunem ca avem o expresie cu doi operatori, fie aceiasi, fie diferiti dar cu acelasi nivel de 
precedenta

expr1  op1 expr2   op1 expr3 // asociativitatea

• Pentru a evita orice dubiu putem folosi intotdeauna parantezele!



Precedenta operatorilor

Exemplu:

Rezultat =  num1+num2*num3;
Rezultat =  (num1+(num2*num3));

Rezultat1 =  num1+num2-num3;
Rezultat1 = (( num1+num2)-num3);

int x = 2;
int y = 5;
int z;
z = x++ + --y;
cout << "x=" << x << endl;
cout << "y=" << y << endl;
cout << "z=" << z << endl;

x=3
y=4
z=6



Precedenta operatorilor

2
2

-3
2

Nu este ok! Comportament nedefinit!

2
3

1
1

Exemplu:

int i = 2;
cout << i++ + --i << endl;
cout << i << endl;

int x = 2;
cout << -x++ % 2 - --x * 2 << endl;
cout << x << endl;

int y = 3;
cout << (++y / 2 == y-- - (1 < 3) * 2 + y - 3)<<endl<<endl;
cout << "y= " << y << endl;
cout << "Membrul din stanga (evaluat prima data): "<< ++y / 2 << endl;
cout << "Membrul din dreapta: "<<y-- - (1 < 3) * 2 + y - 3<<endl<<endl;
cout << "y= "<<y << endl;
cout <<"Membrul din dreapta (evaluat prima data): "<< y-- - (1 < 3) * 2 + y-3<<endl;
cout << "Membrul din stanga: " << ++y / 2;



https://test-master.space
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