


Expresii

« O expresie este o compunere de functii matematice scrisa in stil operatorial, operatorii fiind
functii, iar operanzii argumentele acestor functii.

* O expresie este cel mai simplu bloc al unui program

« Expresia calculeaza o valoare obtinuta dintr-un numar de operanzi

Exemple:

« 34 // expresie literala
 Nume_favorit // nume de variabila

« 1.443.2 // adunarea

¢ 2%*5 // produsul

« a>b // expresie relationala

e a=b // atribuirea



Propozitii

O propozitie este o linie completa de cod care realizeaza o anumita actiune.

", n

De obicei, sunt terminate cu “;
De obicei, contin expresii

C++ are multe tipuri de propozitii: expresii, declarari, propozitia nula, atribuiri, instructiuni,

iteratii, s.a.

Exemple:

int Xx;
Nume_favorit=5;
x=1.4+43.2;

X=2%5.:

if (a>b)

cout<<"a este mai mare decat b";

// declarare

// atribuire

// atribuirea lui x a valorii obtinute prin adunarea celor
doua constante literale

// atribuirea lui x a valorii obtinute prin produsul celor
doua constante literale

// instructiunea if
// propozitia nula
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Operatori

C++ contine un set bogat de operatori:
O unari (-),
U binari (operatorul de multiplicare *),
U ternari (operatorul conditional ?:)

Operatorii uzuali pot fi grupati in modul urmator:

De atribuire

Artimetici

De incrementare/decremenetare
Relationali /de comparare

Logici

Altii



Operatorul de atribuire

TS=TD

TD este o expresie care are o valoare
Valoarea lui TD este retinuta in TS

Valoarea lui TD trebuie sa fie compatibila cu TS
Lui TS trebuie sa putem sa ii asociem o valoare (nu poate fi o constanta)

Putem atribui mai multor variabile o anumita valoare printr-o singura expresie

In C++ avem conceptul de
l-value si r-value

In I-value (ce este la stanga operatorului =) se retine o adresa, iar in r-value (ce este la dreapta

operatorului =) se retine valoarea de la adresa respectiva (ceea ce se afla la adresa respectiva)
(Exemplu: scor=90)



Operatorul de atribuire

#include<iostream>

using name

num1

jint main(){

int numi{ :
int num2{

m

<< "numl este
<< "num2 este

<< numl << endl;
" << num2 << endl;
anumite variabile
inceput

numi
cout << “"numl este
cout << "num2 este

mw

<< numl << endl;
<< num2 << endl;

mw

return @,




Operatorul de atribuire

#include<iostream>

using namespace std;

num1
Flint main(){

int numl{ 10 }
\
]

int num2{ 20
cout << "numl este < numl << endl;

cout << "num2 este " << num2 << endl;

numl =
cout << "numl este " << numl << endl;
cout << "num2 este < num2 << endl;

return 8;




#include<iostream>
using namespace std;

Hint main(){

int numi{ 10 }; //
int num2{ 20 }; //

<< numl << endl;
<< num2 << endl;

cout << "numl este '
cout << "num2 este "

numl = num2 = 1000;
cout << “numl este '
cout << "num2 este "

<< numl << endl;
<< num2 << endl;

return @,

Operatorul de atribuire

Stanga<-----Dreapta

num1 = num2 = 1000

~__ 7

num2 = 1000

num1 = 1000




Operatorul de atribuire

#include<iostream>
using namespace std;

F1int main(){

int numi{ 1@ }; //initializare, nu

int num2{ 2@ }; //initializare, nu

<< numl << endl;
<< num2 << endl;

cout << "numl este
cout << "num2 este

fatribulirea unei
‘'ce a fost initializata la in
numl = "Simona™;

cout << “numl este

cout << "num2 este

<< numl << endl;
<< num2 << endl;

return @;

Compilatorul va genera o eroare!




Operatorul de atribuire

#include<iostream>

using name
int main(){

onst int numi{ 10 };
int numz{ 20 }; //ini

cout << "numl este " << numl << endl;
cout << "num2 este " << num2 << endl;

ori unei anumite variabile

zata la 1nceput

numl ;
cout << "numl este " << numl << endl;
cout << "num2 este " << num2 << endl;

Compilatorul va genera o eroare!



Operatorul de atribuire

#include<iostream>
using namespace std;

Eint main(){

int numil{ 10 };
int num2{ 20 };

r1l

cout << "numl este " << numl << endl;
cout << "num2 este ™ << num2 << endl;

186 = f'lumlj i wste o0 constanta
cout << "numl es numl << endl;
cout << "num2 es num2 << endl;

<
<

return @,

Compilatorul va genera o eroare!



Operatorii artimetici

+ adunarea

- scaderea

* produsul

/ (div) impartirea

% (modulo) restul functioneaza doar pentru numere intregi

Atentie!l

4/5 =0

4.0/5=0.8

4/5.0 =0.8

4.0/5.0=0.8

(float) 4/5 = 0.8 //in stilul C

(double) 4/5 = 0.8 //in stilul C
static_cast<double> (4)/5 = 0.8 //in stilul C++11



Operatorii aritmetici

Microsoft Visual Studio Debug Console

Bine ati venit la schimbul valutar din EURO in LEI
Introduceti suma pe care vreti sa o schimbati (in EURD): 2600
Pentru 200 EURO veti primi 996 LEI

C:\Users\nisto\source\repos\Project4\Debug\Projectd.exe (process 8204) exited with code @.
Press any key to close this window . . .




Operatorii de incrementare (++) si decremetare (--)

i++ incrementarea operandului cu 1 (i+1)
i-- decrementarea operanduluicu 1 (i-1)

Preincrementare: ++numVar
Postincrementare: numVar++

Predecrementare: --numVar
Postdecrementare: numVar--

Vezi programul “OperatorilncrementareDecrementare”!



Testarea pentru egalitate

== si =

Compara valorile a doua expresii
Rezultatul este o variabiala de tip bool (adevarat sau fals, 1 sau 0)
De obicei este folosit in cadrul instructiunilor if, while

Exemple:

exprl == expr2

exprl = expr2

100 == 200 //intotdeauna returneaza fals

numl !=num2



Testarea pentru egalitate

== g5 I=

#include<iostreamy

using namespace std;

« Este un manipulator definit in

1int main() { spatiul de nume standard
bool rezultat{ false };
rezultat = (100 == 50 + 50); » Toate variabilele de tip bool ce
cout << "rezultat = " << rezultat << endl; vor fi afisate dupa
cout<< boolalpha;
int numl{ 4 }; vor aparea in consola cu
int num2{ 10 }; valoarea true sau false (in locul
rezultat = (numl != num2); lui 1 sau 0).

cout << "rezultat = " << rezultat << endl;

* Daca vrem sarevenim la
cout << (numl == num2) << endl; afisarea variabilelor de tip bool
cout << hc:n:nlalpha; cu 1 S| o vom folosi

cout << (numi == num2) << endl; cout<<noboolalpha;
cout << (numl != num2) << endl;

return @;

III

Vezi programul “TestEgalitate






Operatorii relationali

#1nclude<iostream>
using namespace std;

[int main() {
double numl, num2;

cout << boolalpha;
cout << "Dati doua numere reale: ";
cin »>> numl >> num2;

m r

cout << numl << {= << num2 <<
cout << numl << " < " << num2 <<
cout << numl << " >= " << num2 <<
cout << numl << " > " << num2 <<

| m

este
este

este
este

<< (numl <= num2) << endl;
<< (numl < num2) << endl;
<< (numl >= num2) << endl;
<< (numl > num2) << endl;

m A}

r | m

m A}

return 9,

Ce va afisa programul daca num1=5 si num2=4.99999999999997?

numl= 3.4 num2=5.6

3.4. <= 5.6 este true
3.4 < 5.6 este true

3.4 >= 5.6 este false
3.4>5.6 este false




.....................................................................

sadsssasnsnsnnnnnnn

..............................................................................................

______ Operator | Sems

not negatia
!

and si logic
&&

sau logic



Expresia a not a
la

true false
e | este un operator unar
false true
Expresia a Expresia b aand b
a &b
true true true
. ...l true false false
« && si || sunt operatori binari
false true false
« ! are prioritate in fata lui 8& false false false
. ioritate in fata lui :
o
true true true
true false true
false true true

false false False






Operatoriilogici

Short-Circuit Evaluation

* Cand se evalueaza o expresie logica, C++ se opreste o data ce gaseste rezultatul expresiei

exprl && expr2 && expr3
exprl || expr2 || expr3
* Exemplu:

cout << (2 < 1) && (5 < 7)<<endl; 0
cout << (4<5) || (6>3) || !'(4>5)<< endl;



.........................................................................

= atribuire compusi

e TEL L LTI

____ Operator | ___Exemplu | Interpretare

+= TS += TD; TS = TS + TD;
-= TS -= TD; TS = TS - TD;
*= TS *= TD; TS = TS * TD;
/= TS /= TD; TS = TS / TD;
7%= TS %= TD; TS = TS % TD;

.......................................................................................
. " . .

R e e R e a3 = o nm s s nm s nmnsnanasfnananananannnannnnnunnnnnfuannnn



'tnbu{recempug ..... |

fansannnnnnnnnnnnnnnnnnnnn s sassmssssdansssssssnsnsnnnnsnnsnnnsfunnnnnnnnnnnnnnnnnnnnnnnngons

R Rt R e e o e ae = = nesmmannsnnanmnnnafannnanannnnnnnns

BRsasRssnnnnnsnnnnfennnnsannnnannnnnnnnnnnnnfunnnnnnnnnnnnnnnnnnnnnnnnndonnnnnnnnnnnnnnnnnnnnnnnnfunonnnnnnnnnnne

T T T T T T T T T LTI IR TTTT - L TTTT I I T I LT TIT



Precedenta operatorilor(nu este lista completa)

Asociativitatea

[ ] () De la stanga la dreapta
++  -- | - (unar) sizeof De ladreapta lastanga
& / % De la stanga la dreapta
+ - De la stanga la dreapta

< <= > >= De la stanga la dreapta
—— I= De la stanga la dreapta
&& De la stanga la dreapta
| | De la stanga la dreapta
= P De la dreapta la stanga

https://en.cppreference.com/w/cpp/language/operator precedence



https://en.cppreference.com/w/cpp/language/operator_precedence

Precedenta si asociativitatea operatorilor

* Presupunem ca avem o expresie cu doi operatori distincti cu nivel de precedenta diferit
exprl opl expr2 op2 expr3 //precedenta

» Presupunem ca avem o expresie cu doi operatori, fie aceiasi, fie diferiti dar cu acelasi nivel de
precedenta

exprl opl expr2 opl expr3 //asociativitatea

« Pentru a evita orice dubiu putem folosi intotdeauna parantezele!



Precedenta operatorilor

Exemplu:

Rezultat = numl+num2*num3;
Rezultat = (numl+(num2*num3));
Rezultatl = numl+num2-num3;

Rezultatl = (( numl+num2)-num3);

int x = 2;

int y = 5;

int z;

Z = X++ + --y;

cout << "x=" << X << endl;
cout << "y=" << y << endl;

cout << "z=" << z << endl;

N“ﬁx
(O) NLNN V)



Precedenta operatorilor

Exemplu:

int 1 = 2;

cout << 1++ + --1i << endl;
cout << 1 << endl;

N N

IAC X =N
cout << -X++ % 2 - --X * 2 << endl; -3
cout << x << endl; 2

FAE-y-=-3 Nu este ok! Comportament nedefinit!
cout << (++y / 2 == y-- - (1 < 3) * 2 +y - 3)<<endl<<endl;

cout << "y= " << y << endl;

cout << "Membrul din stanga (evaluat prima data): "<< ++y / 2 << endl; 2
cout << "Membrul din dreapta: "<<y-- - (1 < 3) * 2 + y - 3<<endl<<endl; .
cout << "y= "<<y << endl;

cout <<"Membrul din dreapta (evaluat prima data): "<< y-- - (1 < 3) * 2 + y-3<<endl;

cout << "Membrul din stanga: << ++y /[ 2; 1



https://test-master.space

| EAE]

In:
Jpr L

Q““ﬁ

1
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