
Expresii. Propozitii.
Operatori.

Fundamentele Programarii

Expresii

• O expresie este o compunere de funcţii matematice scrisă în stil operatorial, operatorii fiind
funcţii, iar operanzii argumentele acestor funcţii.

• O expresie este cel mai simplu bloc al unui program
• Expresia calculeaza o valoare obtinuta dintr-un numar de operanzi

Exemple:
• 34 // expresie literala
• Nume_favorit // nume de variabila
• 1.4+3.2 // adunarea
• 2*5 // produsul
• a>b // expresie relationala
• a=b // atribuirea

Propozitii

• O propozitie este o linie completa de cod care realizeaza o anumita actiune.
• De obicei, sunt terminate cu “;”
• De obicei, contin expresii
• C++ are multe tipuri de propozitii: expresii, declarari, propozitia nula, atribuiri, instructiuni,

iteratii, s.a.

Exemple:
• int x; // declarare
• Nume_favorit=5; // atribuire
• x=1.4+3.2; // atribuirea lui x a valorii obtinute prin adunarea celor

doua constante literale
• x=2*5 ; // atribuirea lui x a valorii obtinute prin produsul celor

doua constante literale
• if (a>b)

cout<<“a este mai mare decat b”; // instructiunea if
• ; // propozitia nula

Operatori

• C++ contine un set bogat de operatori:
❑ unari (-),
❑ binari (operatorul de multiplicare *),
❑ ternari (operatorul conditional ?:)

• Operatorii uzuali pot fi grupati in modul urmator:

o De atribuire
o Artimetici
o De incrementare/decremenetare
o Relationali /de comparare
o Logici
o Altii

Operatorul de atribuire

TS=TD

• TD este o expresie care are o valoare
• Valoarea lui TD este retinuta in TS

• Valoarea lui TD trebuie sa fie compatibila cu TS
• Lui TS trebuie sa putem sa ii asociem o valoare (nu poate fi o constanta)

• Putem atribui mai multor variabile o anumita valoare printr-o singura expresie

• In C++ avem conceptul de
l-value si r-value

• In l-value (ce este la stanga operatorului =) se retine o adresa, iar in r-value (ce este la dreapta
operatorului =) se retine valoarea de la adresa respectiva (ceea ce se afla la adresa respectiva)
(Exemplu: scor=90)

Operatorul de atribuire

10num1 100

Operatorul de atribuire

10num1 20

Operatorul de atribuire

num1 = num2 = 1000

Stanga<-----Dreapta

num2 = 1000

num1 = 1000

Operatorul de atribuire

Compilatorul va genera o eroare!

Operatorul de atribuire

Compilatorul va genera o eroare!

Operatorul de atribuire

Compilatorul va genera o eroare!

literala,

Operatorii artimetici

• + adunarea
• - scaderea
• * produsul
• / (div) impartirea
• % (modulo) restul functioneaza doar pentru numere intregi

• Atentie!
• 4/5 = 0
• 4.0/5 = 0.8
• 4/5.0 = 0.8
• 4.0/5.0 = 0.8
• (float) 4/5 = 0.8 //in stilul C
• (double) 4/5 = 0.8 //in stilul C
• static_cast<double> (4)/5 = 0.8 //in stilul C++11

Operatorii aritmetici

Operatorii de incrementare (++) si decremetare (--)

• i++ incrementarea operandului cu 1 (i+1)
• i-- decrementarea operandului cu 1 (i-1)

• Preincrementare: ++numVar
• Postincrementare: numVar++

• Predecrementare: --numVar
• Postdecrementare: numVar--

• Vezi programul “OperatoriIncrementareDecrementare”!

Testarea pentru egalitate

== si !=

• Compara valorile a doua expresii
• Rezultatul este o variabiala de tip bool (adevarat sau fals, 1 sau 0)
• De obicei este folosit in cadrul instructiunilor if, while

• Exemple:

• expr1 == expr2
• expr1 != expr2

• 100 == 200 //intotdeauna returneaza fals
• num1 !=num2

Testarea pentru egalitate

== si !=

rezultat = 1

rezultat = 1

0

false

true

• Este un manipulator definit in
spatiul de nume standard

• Toate variabilele de tip bool ce
vor fi afisate dupa

cout<< boolalpha;
vor aparea in consola cu
valoarea true sau false (in locul
lui 1 sau 0).

• Daca vrem sa revenim la
afisarea variabilelor de tip bool
cu 1 si 0 vom folosi

cout<<noboolalpha;

Vezi programul “TestEgalitate”!

Operatorii relationali

Expr1 op Expr2

> mai mare
>= mai mare sau egal
< mai mic
<= mai mic sau egal

Operatorii relationali

num1= 3.4 num2=5.6

3.4. <= 5.6 este true

3.4 < 5.6 este true

3.4 >= 5.6 este false

3.4>5.6 este false

Ce va afisa programul daca num1= 5 si num2=4.9999999999999?

Operatorii logici

Operator Sens

not
!

negatia

and
&&

si logic

or
||

sau logic

De evitat de folosit cuvintele cheie! Vom folosi operatorii corespunzatori.

Expresia a not a
!a

true false

false true

Expresia a Expresia b a and b
a && b

true true true

true false false

false true false

false false false

Expresia a Expresia b a or b
a || b

true true true

true false true

false true true

false false False

• ! este un operator unar

• && si || sunt operatori binari

• ! are prioritate in fata lui &&

• && are prioritate in fata lui ||

cout << boolalpha;

cout << endl << (!(3 < 4) || (2 >= 1) && (5 < 7))<<endl;

cout << endl << !((3<4) || (2>5) && (3<3))<<endl;

Exemple

true

false

Short-Circuit Evaluation

• Cand se evalueaza o expresie logica, C++ se opreste o data ce gaseste rezultatul expresiei

expr1 && expr2 && expr3

expr1 || expr2 || expr3

• Exemplu:

cout << (2 < 1) && (5 < 7)<<endl;
cout << (4<5) || (6>3) || !(4>5)<< endl;

Operatorii logici

0

1

Operatorii de atribuire compusi

Operator Exemplu Interpretare

+= TS += TD; TS = TS + TD;

-= TS -= TD; TS = TS - TD;

*= TS *= TD; TS = TS * TD;

/= TS /= TD; TS = TS / TD;

%= TS %= TD; TS = TS % TD;

Operatorii de atribuire compusi

Exemple:

a+=1; // a=a+1;
a/=5; // a=a/5;
a*=b+c; // a=a*(b+c);
a+=b*c; // a=a+(b*c);
a%=5; // a=a%5;

Precedenta operatorilor (nu este lista completa)

Operator Asociativitatea

[] () De la stanga la dreapta

++ -- ! - (unar) sizeof De la dreapta la stanga

* / % De la stanga la dreapta

+ - De la stanga la dreapta

< <= > >= De la stanga la dreapta

== != De la stanga la dreapta

&& De la stanga la dreapta

|| De la stanga la dreapta

= ?: De la dreapta la stanga

https://en.cppreference.com/w/cpp/language/operator_precedence

https://en.cppreference.com/w/cpp/language/operator_precedence

Precedenta si asociativitatea operatorilor

• Presupunem ca avem o expresie cu doi operatori distincti cu nivel de precedenta diferit

expr1 op1 expr2 op2 expr3 // precedenta

• Presupunem ca avem o expresie cu doi operatori, fie aceiasi, fie diferiti dar cu acelasi nivel de
precedenta

expr1 op1 expr2 op1 expr3 // asociativitatea

• Pentru a evita orice dubiu putem folosi intotdeauna parantezele!

Precedenta operatorilor

Exemplu:

Rezultat = num1+num2*num3;
Rezultat = (num1+(num2*num3));

Rezultat1 = num1+num2-num3;
Rezultat1 = ((num1+num2)-num3);

int x = 2;
int y = 5;
int z;
z = x++ + --y;
cout << "x=" << x << endl;
cout << "y=" << y << endl;
cout << "z=" << z << endl;

x=3
y=4
z=6

Precedenta operatorilor

2
2

-3
2

Nu este ok! Comportament nedefinit!

2
3

1
1

Exemplu:

int i = 2;
cout << i++ + --i << endl;
cout << i << endl;

int x = 2;
cout << -x++ % 2 - --x * 2 << endl;
cout << x << endl;

int y = 3;
cout << (++y / 2 == y-- - (1 < 3) * 2 + y - 3)<<endl<<endl;
cout << "y= " << y << endl;
cout << "Membrul din stanga (evaluat prima data): "<< ++y / 2 << endl;
cout << "Membrul din dreapta: "<<y-- - (1 < 3) * 2 + y - 3<<endl<<endl;
cout << "y= "<<y << endl;
cout <<"Membrul din dreapta (evaluat prima data): "<< y-- - (1 < 3) * 2 + y-3<<endl;
cout << "Membrul din stanga: " << ++y / 2;

https://test-master.space

	Slide 1: Expresii. Propozitii. Operatori.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

