

Expresii

« O expresie este o compunere de functii matematice scrisa in stil operatorial, operatorii fiind
functii, iar operanzii argumentele acestor functii.

* O expresie este cel mai simplu bloc al unui program

« Expresia calculeaza o valoare obtinuta dintr-un numar de operanzi

Exemple:

« 34 // expresie literala
 Nume_favorit // nume de variabila

« 1.443.2 // adunarea

¢ 2%*5 // produsul

« a>b // expresie relationala

e a=b // atribuirea

Propozitii

O propozitie este o linie completa de cod care realizeaza o anumita actiune.

", n

De obicei, sunt terminate cu “;
De obicei, contin expresii

C++ are multe tipuri de propozitii: expresii, declarari, propozitia nula, atribuiri, instructiuni,

iteratii, s.a.

Exemple:

int Xx;
Nume_favorit=5;
x=1.4+43.2;

X=2%5.:

if (a>b)

cout<<"a este mai mare decat b";

// declarare

// atribuire

// atribuirea lui x a valorii obtinute prin adunarea celor
doua constante literale

// atribuirea lui x a valorii obtinute prin produsul celor
doua constante literale

// instructiunea if
// propozitia nula

O O O O O O

Operatori

C++ contine un set bogat de operatori:
O unari (-),
U binari (operatorul de multiplicare *),
U ternari (operatorul conditional ?:)

Operatorii uzuali pot fi grupati in modul urmator:

De atribuire

Artimetici

De incrementare/decremenetare
Relationali /de comparare

Logici

Altii

Operatorul de atribuire

TS=TD

TD este o expresie care are o valoare
Valoarea lui TD este retinuta in TS

Valoarea lui TD trebuie sa fie compatibila cu TS
Lui TS trebuie sa putem sa ii asociem o valoare (nu poate fi o constanta)

Putem atribui mai multor variabile o anumita valoare printr-o singura expresie

In C++ avem conceptul de
l-value si r-value

In I-value (ce este la stanga operatorului =) se retine o adresa, iar in r-value (ce este la dreapta

operatorului =) se retine valoarea de la adresa respectiva (ceea ce se afla la adresa respectiva)
(Exemplu: scor=90)

Operatorul de atribuire

#include<iostream>

using name

num1

jint main(){

int numi{ :
int num2{

m

<< "numl este
<< "num2 este

<< numl << endl;
" << num2 << endl;
anumite variabile
inceput

numi
cout << “"numl este
cout << "num2 este

mw

<< numl << endl;
<< num2 << endl;

mw

return @,

Operatorul de atribuire

#include<iostream>

using namespace std;

num1
Flint main(){

int numl{ 10 }
\
]

int num2{ 20
cout << "numl este < numl << endl;

cout << "num2 este " << num2 << endl;

numl =
cout << "numl este " << numl << endl;
cout << "num2 este < num2 << endl;

return 8;

#include<iostream>
using namespace std;

Hint main(){

int numi{ 10 }; //
int num2{ 20 }; //

<< numl << endl;
<< num2 << endl;

cout << "numl este '
cout << "num2 este "

numl = num2 = 1000;
cout << “numl este '
cout << "num2 este "

<< numl << endl;
<< num2 << endl;

return @,

Operatorul de atribuire

Stanga<-----Dreapta

num1 = num2 = 1000

~__ 7

num2 = 1000

num1 = 1000

Operatorul de atribuire

#include<iostream>
using namespace std;

F1int main(){

int numi{ 1@ }; //initializare, nu

int num2{ 2@ }; //initializare, nu

<< numl << endl;
<< num2 << endl;

cout << "numl este
cout << "num2 este

fatribulirea unei
‘'ce a fost initializata la in
numl = "Simona™;

cout << “numl este

cout << "num2 este

<< numl << endl;
<< num2 << endl;

return @;

Compilatorul va genera o eroare!

Operatorul de atribuire

#include<iostream>

using name
int main(){

onst int numi{ 10 };
int numz{ 20 }; //ini

cout << "numl este " << numl << endl;
cout << "num2 este " << num2 << endl;

ori unei anumite variabile

zata la 1nceput

numl ;
cout << "numl este " << numl << endl;
cout << "num2 este " << num2 << endl;

Compilatorul va genera o eroare!

Operatorul de atribuire

#include<iostream>
using namespace std;

Eint main(){

int numil{ 10 };
int num2{ 20 };

r1l

cout << "numl este " << numl << endl;
cout << "num2 este ™ << num2 << endl;

186 = f'lumlj i wste o0 constanta
cout << "numl es numl << endl;
cout << "num2 es num2 << endl;

<
<

return @,

Compilatorul va genera o eroare!

Operatorii artimetici

+ adunarea

- scaderea

* produsul

/ (div) impartirea

% (modulo) restul functioneaza doar pentru numere intregi

Atentie!l

4/5 =0

4.0/5=0.8

4/5.0 =0.8

4.0/5.0=0.8

(float) 4/5 = 0.8 //in stilul C

(double) 4/5 = 0.8 //in stilul C
static_cast<double> (4)/5 = 0.8 //in stilul C++11

Operatorii aritmetici

Microsoft Visual Studio Debug Console

Bine ati venit la schimbul valutar din EURO in LEI
Introduceti suma pe care vreti sa o schimbati (in EURD): 2600
Pentru 200 EURO veti primi 996 LEI

C:\Users\nisto\source\repos\Project4\Debug\Projectd.exe (process 8204) exited with code @.
Press any key to close this window . . .

Operatorii de incrementare (++) si decremetare (--)

i++ incrementarea operandului cu 1 (i+1)
i-- decrementarea operanduluicu 1 (i-1)

Preincrementare: ++numVar
Postincrementare: numVar++

Predecrementare: --numVar
Postdecrementare: numVar--

Vezi programul “OperatorilncrementareDecrementare”!

Testarea pentru egalitate

== si =

Compara valorile a doua expresii
Rezultatul este o variabiala de tip bool (adevarat sau fals, 1 sau 0)
De obicei este folosit in cadrul instructiunilor if, while

Exemple:

exprl == expr2

exprl = expr2

100 == 200 //intotdeauna returneaza fals

numl !=num2

Testarea pentru egalitate

== g5 I=

#include<iostreamy

using namespace std;

« Este un manipulator definit in

1int main() { spatiul de nume standard
bool rezultat{ false };
rezultat = (100 == 50 + 50); » Toate variabilele de tip bool ce
cout << "rezultat = " << rezultat << endl; vor fi afisate dupa
cout<< boolalpha;
int numl{ 4 }; vor aparea in consola cu
int num2{ 10 }; valoarea true sau false (in locul
rezultat = (numl != num2); lui 1 sau 0).

cout << "rezultat = " << rezultat << endl;

* Daca vrem sarevenim la
cout << (numl == num2) << endl; afisarea variabilelor de tip bool
cout << hc:n:nlalpha; cu 1 S| o vom folosi

cout << (numi == num2) << endl; cout<<noboolalpha;
cout << (numl != num2) << endl;

return @;

III

Vezi programul “TestEgalitate

Operatorii relationali

#1nclude<iostream>
using namespace std;

[int main() {
double numl, num2;

cout << boolalpha;
cout << "Dati doua numere reale: ";
cin »>> numl >> num2;

m r

cout << numl << {= << num2 <<
cout << numl << " < " << num2 <<
cout << numl << " >= " << num2 <<
cout << numl << " > " << num2 <<

| m

este
este

este
este

<< (numl <= num2) << endl;
<< (numl < num2) << endl;
<< (numl >= num2) << endl;
<< (numl > num2) << endl;

m A}

r | m

m A}

return 9,

Ce va afisa programul daca num1=5 si num2=4.99999999999997?

numl= 3.4 num2=5.6

3.4. <= 5.6 este true
3.4 < 5.6 este true

3.4 >= 5.6 este false
3.4>5.6 este false

...

sadsssasnsnsnnnnnnn

..

______ Operator | Sems

not negatia
!

and si logic
&&

sau logic

Expresia a not a
la

true false
e | este un operator unar
false true
Expresia a Expresia b aand b
a &b
true true true
. ...l true false false
« && si || sunt operatori binari
false true false
« ! are prioritate in fata lui 8& false false false
. ioritate in fata lui :
o
true true true
true false true
false true true

false false False

Operatoriilogici

Short-Circuit Evaluation

* Cand se evalueaza o expresie logica, C++ se opreste o data ce gaseste rezultatul expresiei

exprl && expr2 && expr3
exprl || expr2 || expr3
* Exemplu:

cout << (2 < 1) && (5 < 7)<<endl; 0
cout << (4<5) || (6>3) || !'(4>5)<< endl;

...

= atribuire compusi

e TEL L LTI

____ Operator | ___Exemplu | Interpretare

+= TS += TD; TS = TS + TD;
-= TS -= TD; TS = TS - TD;
*= TS *= TD; TS = TS * TD;
/= TS /= TD; TS = TS / TD;
7%= TS %= TD; TS = TS % TD;

...
. " . .

R e e R e a3 = o nm s s nm s nmnsnanasfnananananannnannnnnunnnnnfuannnn

'tnbu{recempug |

fansannnnnnnnnnnnnnnnnnnnn s sassmssssdansssssssnsnsnnnnsnnsnnnsfunnnnnnnnnnnnnnnnnnnnnnnngons

R Rt R e e o e ae = = nesmmannsnnanmnnnafannnanannnnnnnns

BRsasRssnnnnnsnnnnfennnnsannnnannnnnnnnnnnnnfunnnnnnnnnnnnnnnnnnnnnnnnndonnnnnnnnnnnnnnnnnnnnnnnnfunonnnnnnnnnnne

T T T T T T T T T LTI IR TTTT - L TTTT I I T I LT TIT

Precedenta operatorilor(nu este lista completa)

Asociativitatea

[] () De la stanga la dreapta
++ -- | - (unar) sizeof De ladreapta lastanga
& / % De la stanga la dreapta
+ - De la stanga la dreapta

< <= > >= De la stanga la dreapta
—— I= De la stanga la dreapta
&& De la stanga la dreapta
| | De la stanga la dreapta
= P De la dreapta la stanga

https://en.cppreference.com/w/cpp/language/operator precedence

https://en.cppreference.com/w/cpp/language/operator_precedence

Precedenta si asociativitatea operatorilor

* Presupunem ca avem o expresie cu doi operatori distincti cu nivel de precedenta diferit
exprl opl expr2 op2 expr3 //precedenta

» Presupunem ca avem o expresie cu doi operatori, fie aceiasi, fie diferiti dar cu acelasi nivel de
precedenta

exprl opl expr2 opl expr3 //asociativitatea

« Pentru a evita orice dubiu putem folosi intotdeauna parantezele!

Precedenta operatorilor

Exemplu:

Rezultat = numl+num2*num3;
Rezultat = (numl+(num2*num3));
Rezultatl = numl+num2-num3;

Rezultatl = ((numl+num2)-num3);

int x = 2;

int y = 5;

int z;

Z = X++ + --y;

cout << "x=" << X << endl;
cout << "y=" << y << endl;

cout << "z=" << z << endl;

N“ﬁx
(O) NLNN V)

Precedenta operatorilor

Exemplu:

int 1 = 2;

cout << 1++ + --1i << endl;
cout << 1 << endl;

N N

IAC X =N
cout << -X++ % 2 - --X * 2 << endl; -3
cout << x << endl; 2

FAE-y-=-3 Nu este ok! Comportament nedefinit!
cout << (++y / 2 == y-- - (1 < 3) * 2 +y - 3)<<endl<<endl;

cout << "y= " << y << endl;

cout << "Membrul din stanga (evaluat prima data): "<< ++y / 2 << endl; 2
cout << "Membrul din dreapta: "<<y-- - (1 < 3) * 2 + y - 3<<endl<<endl; .
cout << "y= "<<y << endl;

cout <<"Membrul din dreapta (evaluat prima data): "<< y-- - (1 < 3) * 2 + y-3<<endl;

cout << "Membrul din stanga: << ++y /[2; 1

https://test-master.space

| EAE]

In:
Jpr L

Q““ﬁ

1

	Slide 1: Expresii. Propozitii. Operatori.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

