Fundamentele Programarii

Tipuri de date definite de
utilizator

messssnssnsnnsnnngunnnnnn o susnsssnadannnnnnnnnnnnnnnnnnnnnnnnfunnnnnnnnnnnnnnnnnnnnnnnnd

e utilizator

...
8 R = = mmmm e e R NN R R R RN R R R R R R AN R RN R R R RN N R R RN R RN ARAEEEEEEEEEEEEEEEEEEEEREEgESEESEEEEESEEEEEsEEEEassEg
L T . T T TN EE PP PP TP T PR

e

Redenumiri de tipuri

Limbajul C/C++ da posibilitatea programatorului sa introduca denumiri personalizate pentru tipurile limbajului, cu
ajutorul cuvantului cheie typedef

Redenumirea unui anumit tip este realizata astfel: scriem declaratia fara initializare a unei date de tipul vizat si apoi
transformam aceasta declaratie de datd intr-o declaratie de tip scriind cuvantul cheie fypedef in fata sa. In acest fel,
numele datei devine numele tipului redenumit. Astfel, instructiunea
int Intreg;
declara variabila Intreg de tip int, iar instructiunea
typedef int Intreg;
declara tipul Intreg ca o redenumire a tipului int.

Prin conventie, denumirile de tipuri se scriu cu majuscula pe primul loc, sau numai cu majuscule, sau numai cu litere
mici dar cu sufixul ¢ 77 :
typedef unsigned Natural, UINT, size t;

Redenumiri de tipuri

Redenumirile uneori sunt utile in cazul tipurilor compuse:

#include<iostream>

using namespace std;

typedef int Tablou[5], Intreg;
typedef Tablou Matrice[2];

int main(){

Tablou tab={1,2,3,4,5};
for(Intreg i=0;i<5;i++)

cout<<tab[i]<<endl;
Matrice mat={{10,20,30,40,50}, {11,12,13,14,15}};
for(Intreg i=0;i<2;i++){

for(int j=0;j<5;j++)

cout<<mat[i][j]<<"' ¢;
cout<<endl;

¥

return 9;

Redenumari de tipuri

Atentie! O declaratie fypedef nu defineste un tip nou de data, ea introduce numai o noua denumire pentru un tip deja
existent.

Programatorul are totusi posibilitatea sa defineasca si tipuri noi de date, dar numai daca acestea se incadreaza in una din
urmatoarele patru categorii:

* enumerari,

* Structuri,

* uniuni,

* clase (vor fi studiate la POO) .

e Aceste patru tipuri sunt numite tipuri utilizator, deoarece programatorul este considerat ca fiind un utilizator al
limbajului.
» Aceste noi tipuri utilizator pot modela date si concepte din lumea reala!

Structuri

* O structura (structure) este un ansamblu format din una sau mai multe variabile (campuri) grupate impreund sub un
singur nume.

» Datele de tip structura au patruns in limbajele de programare in primul rand pentru facilitarea manipularii datelor
de gestiune economica.

» Utilizarea structurilor s-a extins considerabil odata cu dotarea lor, pe langda membrii de tip variabila (campuri),
cu membri de tip functie (mefode). Aceasta extindere a facut trecerea de la C la C++ s1, pentru a marca schimbarea
majora de viziune asupra structurilor, ele au fost redenumite cl/ase.

 In C++ nu sunt diferente esentiale intre structuri si clase.

» Vom prezenta structurile asa cum au fost ele implementate initial in limbajul C.

Structuri

Structurile se deosebesc de tablouri prin urmatoarele aspecte:
I. elementele membre ale unei structuri pot avea tipuri diferite;

II. structurile se comporta la alocare exact ca variabilele simple: daca sunt locale sunt alocate pe stiva, altfel sunt alocate
in zona variabilelor globale, functiile pot returna structuri;

III. elementele unui structuri nu sunt variabile anonime ci au cate un nume;

I'V. referirea unui element al unei structuri se realizeaza cu operatorul de selectie (.) si nu cu operatorul de indexare ([]).

Structuri

Structurile sunt definite cu ajutorul cuvantului cheie struct, iar o declaratie de structurad introduce un nou tip de data: cel
tocmai precizat. Exemplu, declaratia
struct Complex{
double x;
double y;
}s

defineste tipul Complex, fiecare data de tip Complex fiind un obiect de tip structurda compus din doud campuri membre, X si
y, ambele tip double. O variabila de acest tip se declara, in C, astfel:

struct Complex w;
In C++ nu mai este obligatorie utilizarea cuvantului cheie struct la declararea unei variabile (daca structura a fost deja

definitd), deci declaratia de mai sus poate fi scrisa astfel:
Complex w;

Accesul la campurile membre este dat de operatorul de selectie "punct":

cout<<w.x<<endl;

Structuri

Initializarea unei variabile de tip structura poate fi facuta odata cu declararea ei, respectand strict ordinea membrilor din
definitia structurii:
Complex w={1.5, 3.0};
sau dupa declarare:
Complex w;
w={1.5, 3.0}; // w.x=1.5; w.y=3.0;

De asemenea, variabilele pot fi declarate odata cu definitia structurii, astfel:
struct Complex{
double x;
double y;
} z1,z2, z3={1.5, 3.3};

Pot f1 declarate s1 structuri anonime, caz in care toate variabilele de acest tip trebuie declarate (nu neaparat s1 initializate) de la
inceput:
struct {
double x;
double vy;
} z1,z2,23={1.5, 3.3}; Vezi Programul Structuri

Uniuni

O data de tip uniune este o structura "colapsata* (comprimata): toti membrii ei sunt suprapusi in acelasi spatiu de memorie,
pentru ca nu exista spatiu pentru fiecare membru individual.

O uniune se declara exact la fel ca o structura, schimband doar cuvantul cheie struct cu union dar, spre deosebire de cazul
unei structuri, unei uniuni nu i se aloca decat spatiul de memorie strict necesar pentru a cuprinde cel mai expansiv
membru (cel care necesita cel mai mult spatiu de memorie), toti membrii uniunii urmand sa fie alocati, rand pe rand, in
aceasta zona comuna.

In consecinta, membrii unel uniuni nu pot fi folositi simultan c1 numai succesiv: ultimul alocat este utilizat in mod valid pana

la alocarea altuia. Programul trebuie sa stie permanent care membru al uniunii are reprezentarea corecta in memorie in
acel moment. Uniunile sunt utilizate pentru economisirea memoriei alocate programului.

Vezi Programul Uniuni

https://test-master.space

| EAE]

In:
Jpr L

Q““ﬁ

1

Functii

Prototip

Definitie

Parametrii
Instructiunea return

Apelul parametrilor prin valoare
Supraincarcarea functiilor
Parametrii functiilor- tablouri

Apelul parametrilor prin referinta
Vizibilitatea entitatilor

Cum functioneaza apelarea unei functii
Functii inline

Functii recursive

Ce este o functie?

O functie este un bloc de cod care executa o anumita sarcina, organizata intr-o structura
definita, ce poate fi apelata ori de cate ori este necesar in program. Functiile ajuta la
structurarea codului, la evitarea redundantei si la cresterea lizibilitatii si reutilizabilitatii.

In programele C++ folosim o serie de functii (si clase) care sunt definite in Librariile
Standard C++

Exista si alte librarii care pot fi folosite

Putem face si functiile si clasele noastre

Functiile permit modularizarea unui program (divizarea programului in subprograme mai
mici)

Functiile permit structurarea programelor in secvente mai mici de cod care indeplinesc
anumite sarcini si care pot fi indepedente.

Aceste secvente pot fi folosite de mai multe ori

Ce este o functie?

Cod modularizat
int main(){

int main(){

//citire
Instructiunel; //citire
Instructiune2; functie citire();
Instructiunes3;

//procesul de prelucrare a datelor
//procesul de prelucrare a datelor functie prelucrare();
Instructiune4;
Instructiune5; //afisare
Instructiuneé6; functie afisare();
//afisare return 0;
Instructiune?; }
Instructiunes8;
Instructiune9;
return 9;

functie citire(){
Instructiunel;
Instructiune?;
Instructiune3;

}

functie_prelucrare(){
Instructiune4;
Instructiune5;
Instructiune6;

}

functie afisare(){
Instructiune7;
Instructiune8;
Instructiune9;

Ce este o functie?

int main(){
functie citire();
functie_prelucrare();
functie afisare();

return 0;

Ce este o functie?

« Analogia dintre functia main/celelalte functii cu seful/angajatii

Seful trebuie sa rezolve o anumita problema mai ampla, care poate fi impartita in mai multe probleme mai mici.
Rolul sefului nu este sa rezolve el toate problemele care apar ci

* sa coordoneze executia si rezolvarea acestor probleme,

* sa sintetizeze rezultatele si sa le prezinte propriului sau sef.

Seful angajeaza 3 experti care sa lucreze la cate una din problemele mai mici si le ofera toate informatiile de care
au nevoie pentru a-si duce fiecare din ei treaba la bun sfarsit.

Cum fiecare angajat stie foarte bine ce are de facut, dupa ce rezolva problema care i-a fost atribuita, raporteaza
indeplinirea cerintei sefului. Raportul poate fi unul scurt “Am rezolvat” sau poate fi unul mai complex, in care se
ofera mai multe informatii.

Seful primeste toate rapoartele, le sintetizeaza, apoi le trimite mai departe propriului sau sef.

Pare usor sa fii in pozitia sefului?

 trebuie sa stie precis ce sarcina sa ii atribuie fiecarui angajat,

 trebuie sa stie ordinea in care sintetizeaza raspunsurile primite,

« trebuie sa ofere toate informatiiile necesare angajatilor pentru ca acestia sa poate rezolva problema care i-a
fost data

« trebuie sa stie ce fel de raport va primi inapoi de la fiecare anagajat pentru a stii cum sa faca sinteza si

prezentarea solutiei problemei mai departe

Ce este o functie?

Functia main():

» Trebuie sa stie sa apeleze functiile pe care le foloseste

» Trebuie sa stie care este utilitatea fiecarei functiei utilizate

« Trebuie sa stie si sa inteleaga ce informatii sunt necesare pentru a crea acele functii
* Trebuie sa inteleaga ce va returna fiecare functie

* Trebuie sa inteleaga ce erori poate produce fiecare functie

* Trebuie sa inteleaga daca avem sau nu anumite constrangeri de performanta

» Daca folosim functii din librariile standard nu ne va interesa in mod special cum functioneaza ele intern,
Important e sa stim sa le folosim corect!

Ce este o functie?

« Exemplu <math.h>
e Calcule matematice uzuale
 Functii globale

Nume_functie (argument);
Nume_functie (argumentl, argument2,...);

cout<<sqrt(400.0)<<endl; //20.0
double rezultat;
rezultat=pow(2.0,3.0); //2.073.0

« Abstractizare= procesul care ofera doar detaliile esentiale, ascunzand detaliile implemantarii

« Exemplu: noi folosim ceasul pentru a vedea cat este ora, dar nu stim mecanismul din spate, cum functioneaza
pentru a afisa ora.

https://en.cppreference.com/w/cpp/header

Ce este o functie?

Functii definite de programator

» Putem defini propriile noastre functii

« Exemplu: Vrem sa cream o functie care sa adune doua numere intregi
int suma_numere (int a, int b){

return a+b;

¥

int main(){
cout<<suma numere(20,40);
return 0;

Ce este o functie?

« Exemplu: VVrem sa cream o functie care sa adune doua numere pozitive, si sa returneze 0 in cazul
in care cel putin unul dintre numere este negativ

int suma_numere (int a, int b){

if(a<@ || b<@)

return 0;
else
return a+b;
}
int main(){
cout<<suma_numere(20,40)<<endl; //60
cout<<suma_ numere(-20,40)<<endl; //0
return 0;

Cum definim o functie?

Pentru a defini o functie trebuie sa avem in vedere urmatoarele:

Numele functiei
* respecta aceleasi reguli ca si numele variabilelor
* trebuie sa fie potrivit cu ceea ce dorim sa facem in cadrul acelei functii
* nici prea lung, nici prea scurt

Lista parametrilor
* variabilele pe care trebuie sa le dam atunci cand apelam functia
* tipul lor trebuie specificat
« e posibil ca functia sa nu aiba parametrii

Tipul returnat
* tipul datei pe care functia o returneaza: bool, int, double, string, struct, enum
» e posibil ca functia sa nu returneze nimic si atunci spunem ca tipul functiei este void

Corpul functiei
* instructiunile care vor fi executate atunci cand apelam functia
e se scrieintre acolade{ }

Cum definim o functie?

Exemplu de functie fara parametrii:

int nume functie () {
instructiuni;
return 0;

}

1.Nume

2. Parametrii

3. Tipul returnat
4. Corpul functiei

* QO astfel de functie este functia main ()

Exemplu de functie cu 1 parametru:

int nume_functie (int a) {
instructiuni;
return 0;

}

1.Nume

2. Parametrii

3. Tipul returnat
4. Corpul functiei

Cum definim o functie?

Exemplu de functie care nu returneaza nimic
(void)

void nume functie () {
instructiuni;
return; //optional

}

1.Nume

2. Parametrii

3. Tipul returnat
4. Corpul functiei

Exemplu de functie cu mai multi parametrii:

void nume_functie (int a, string b) {
Instructiuni;
return ; //optional

1T.Nume

2. Parametrii

3. Tipul returnat
4. Corpul functiei

* Atentie, cand vom apela functia
trebuie sa dam parametrii exact in ordinea
in care apar atunci cand declaram functia!

Cum definim o functie?

Exemplu de functie care nu returneaza nimic (void) si nu are nici parametrii

void say hello () { 1.Nume
cout << “Hello” << endl; 2. Parametrii
} 3. Tipul returnat

4. Corpul functiei

int main () {
say _hello(); //Hello
return 0;

Cum apelam o functie?

« Putem avea oricate functii dorim intr-un program

void say world () {
cout << “World!” << endl;

}

void say hello () {
cout << “Hello” <<*“ ”;
say_world ();

}

int main () {
say_hello ();
return 0;

}

Hello World!

Cum apelam o functie?

e Putem avea oricate functii dorim intr-un program

void say world () {
cout << “World!” << endl;
cout << “Bye from say world” << endl; Hello World!

} Bye from say_world
Bye from say_hello

void say hello () {
cout << “Hello” <<
say_world ();
cout<<“Bye from say hello”<<endl;

}

int main () {
say_hello ();
return 0;

Cum apelam o functie?

« Functiile pot apela alte functii
« Compilatorul trebuie sa cunoasca toate informatiile despre functie inainte de a o apela

int main () {
say_hello (); Eroare
return O;

}

void say_hello () {
cout << "Hello” <<" "

}

* Vezi programul “AriaCercVolumCilindru”!

Prototipul functiilor

* |In urma cu cateva slide-uri am mentionat faptul ca atunci cand compilatorul foloseste o functie
trebuie sa cunosca deja toate informatiile despre acea functie. Pentru a respecta acest lucru putem
proceda in doua moduri:

« Sa defim functiile inainte de a le apela
* Ok pentru programe mici
* Nu e o solutie practica pentru programe mai mari

 Sa folosim prototipul functiilor
e Spunem compilatorului tot ce are nevoie sa cunoasca fara a da intreaga definitie a functiei
« Se scrie la inceputul programului
« Se pot scrie si intr-un fisier header (.h)

Prototipul functiilor

Exemple:

« Functie fara parametrii *. Functie cu parametril

int nume_functie (int); // prototipul
//sau

int nume_functie(inta); // prototipul

int nume_functie(); // prototipul

int nume_functie(X . ¢ -
etrlctinng int nume_functie(inta)

et O Instructiuni;
} | return O;

Prototipul functiilor

Exemple:

* Functie care nu returneaza nimic,

 Functie care nu returneaza nimic, cu parametrii

fara parametrii

void nume_functie (int a, string b);

void nume_functie (); // prototipul sau

// prototipul

void nume_functie (int, string);

rototipul
void nume_functie(){ & E

instructiuni;

: void nume_ functie(int a, string b){
return; //optional

instructiuni;
¥ return; //optional

Prototipul functiilor
Exemple:
void say hello();

int main () {

say_hello (); / /0K

say hello(100); //eroare
cout<<say hello (); //eroare
return 0;

¥

void say hello () {
cout << “Hello” <<*“ ”;

¥

Prototipul functiilor

Exemple:

void say_hello();
void say_world();

int main () {

say_hello (); Hello World!

cout<<“Bye from main“<<end]; Bye from say_world

return O; Bye from say_hello
} Bye from main

void say_hello () {
cout << “Hello” <<* "
say_world ();
cout<<“Bye from say_hello”"<<endl;

}

void say_world () {
cout << "World!"” << endl;

" " M 11 < " 11 M _h II!
cout << “Bye from say_world” << endl; Vezi programele “Prototip”, “Prototip-header

Parametrii functiilor

« Atunci cand apelam o functie putem sa ii transmitem niste date functiei respective

« Atunci cand apelam functia aceste date se numesc argumente

 In definitia functiei aceste date se numesc parametrii

« Trebuie sa fim atenti ca argumentele pe care le dam atunci cand apelam functia sa se potriveasca

cu parametrii functiei pe care i-am dat atunci cand am definit functia
(numarul lor sa fie acelasi, ordinea in care apar sa fie aceeasi, tipul lor sa fie acelasi)

Parametrii functiilor

« Exemplu
int suma_numerelor (int, int); //prototipul

int main () {
int rezultat{ };

rezultat = suma_numerelor (100, 200); //apelarea functiei
return O;

}

int suma_numerelor (int a, int b){ //definitia functiei
return a+b;

}

Parametrii functiilor

« Exemplu
int diferenta_numerelor (int, int); //prototipul

int main () {
int rezultat{ };
rezultat = diferenta_numerelor (100, 200); //apelarea functiei
rezultat = diferenta_numerelor (200, 100);
return O;

}

int diferenta_numerelor (int a, int b){ //definitia functiei
return a-b;

}

Parametrii functiilor

« Exemplu

void say_hello (string name){ //parametrul este un obiect de tip string C++
cout << "Hello " << name << endl;

}

int main () {
say_hello(“Simona”); //argumentul este un string literal C (compilatorul il converteste
//la un string C++)
string caine {"Horia"};
say_hello (caine);
return O;

Apelul prin valoare

« Aceasta inseamna ca, atunci cand se apeleaza o functie, ceea ce se transmite sunt valorile pe care le

au argumentele in momentul apelului, valori care sunt copiate in variabilele reprezentate de parametrii
functiei.

 Indiferent ce schimbari se fac asupra parametrilor functiei acestea nu influenteaza argumentele pe care
le transmitem

« Parametrii formali vs. acuali
« Parametrii formali - parametrii dati in definitia functiei
« Parametrii actuali - parametrii folositi cand apelam functia (argumentele)

» Parametrii formali nu sunt variabile. O variabila este caracterizata de nume, tip, si adresa. Legarea unui
parametru formal la o adresa se realizeaza in timpul executiei instructiunii de apelare a functiei.

» Deci, la apelul prin valoare se transmite o copie a parametrului actual. Valorile transmise la apelul unei
functii sunt memorate in stiva. Datorita faptului ca, dupa terminarea executiei functiei, stiva este eliberat3,
in cazul apelului prin valoare parametrul actual nu se modifica.

(se opereaza asupra unei copii a parametrului efectiv)

Apelul prin valoare

* Exemplu

void test_param (int formal) { //formal este o copie a lui actual

cout<<formal <<endl; //50
formal=100; //se va schimba doar copia
cout<<formal<<endl; //100

}

int main(){
int actual {50};

cout<<actual<<endl; /750

test_param (actual); // se transmite o copie a lui actual ca argument functiei test_param
cout<<actual<<endl;

return 0; //50 (actual nu isi schimba valoarea)

Instructiunea return

e Daca o functie returneaza o valoare atunci trebuie sa folosim instructiunea return care sa returneze acea
valoare

Daca o functie nu returneaza o valoare (void) atunci instructiunea return este optionala

Instructiunea return poate fi scrisa oriunde in corpul functiei
* Instructiunea return termina imediat functia

« Putem avea mai multe instructiuni return intr-o functie

» Valoarea returnata este rezultatul apelului functiei

» Vezi programul “ApelPrinValoare”

Valorile implicite ale argumentelor

Cand apelam o functie, toate argumentele trebuie furnizate

« Uneori anumite argumente au aceeasi valoarea in majoritatea timpului.

Putem sa ii spunem compilatorului sa foloseasca valorile implicite daca argumentele nu sunt furnizate

« Valorile implicite/ argumentele implicite pot fi date in prototipul functiilor sau in definitia functiilor,
nu in ambele

« Cea mai buna practica este sa dam valorile implicite in prototipul functiilor

« Apar la sfarsitul listei parametrilor

* Putem avea multiple valori implicite
» Prin urmare, toate valorile implicite trebuie sa apara la sfarsitul listei parametrilor

Valorile implicite ale argumentelor

. X u- V I ICl u
Exemplu - fara valori implicite ale argumentelor

//Vrem sa calculam pretul cu TVA pentru un anumit produs, al carui pret fara TVA se cunoaste si stiind ca
//TVA reprezinta 19% din valoarea produsului

#include<iostream>
using namespace std;
double calc_pret _cu TVA(double pret fara TVA, double taxa);

double calc _pret cu TVA(double pret fara TVA, double taxa) {
return pret fara TVA += (taxa*pret fara TVA);

}

int main() {
double pret{};
pret = calc pret cu TVA(100.0, 0.21);
cout << "Pretul cu TVA este " << pret << endl; 121

return 0;

Valorile implicite ale argumentelor

* Exemplu - cu o valoare implicita a unui argument

//Vrem sa calculam pretul cu TVA pentru un anumit produs, al carui pret fara TVA se cunoaste si stiind ca
//TVA reprezinta 19% din valoarea produsului

#include<iostream>
using namespace std;
double calc pret cu TVA(double pret fara TVA, double taxa=0.21);

double calc_pret cu TVA(double pret fara TVA, double taxa) {
return pret fara TVA += (taxa*pret fara TVA);

}

int main() {
double pret{};
pret = calc pret cu TVA(100.0);
cout << "Pretul cu TVA este " << pret << endl; 121

return 0;

Valorile implicite ale argumentelor

« Exemplu - cu o valoare implicita a unui argument
#include<iostream>

using namespace std;

double calc_pret cu TVA(double pret fara TVA, double taxa=0.21);

double calc_pret_cu TVA(double pret fara TVA, double taxa) {
return pret _fara TVA += (taxa*pret fara TVA);

}

int main() {
double pret{};
pret = calc pret cu TVA(100.0);

cout << “In Romania, pretul cu TVA este " << pret << endl; 121
pret = calc pret cu TVA(100.0, 0.20);
cout << “In Moldova, pretul cu TVA este " << pret << endl; 120

return 0;

Valorile implicite ale argumentelor

* Exemplu - cu doua valori implicite ale argumentelor
double calc_pret cu TVA si transport(double pret fara TVA, double transport=7.5, double taxa = 0.19);

double calc pret cu TVA si transport(double pret fara TVA, double transport, double taxa) {
return pret_fara TVA += (taxa*pret fara TVA)+transport;

}

int main() {
double pret{};
pret = calc pret cu TVA si transport(100.0); //valoarea transportului si a taxei sunt cele implicite
cout << "In Romania, pretul cu TVA si transport in tara este " << pret << endl; 126.5

pret = calc pret cu TVA si transport(100.0, 25.0); //valoarea taxei este implicita 144
cout << "In Romania, pretul cu TVA si transport in strainatate este " << pret << endl;

pret = calc pret cu TVA si transport(50.0, 5.5, 0.15); //nici o valoare implicita
cout << "In Moldova, pretul cu TVA si transport este " << pret << endl; 63

return 0;

Valorile implicite ale argumentelor

* Exemplu - cu toate valorile implicite ale argumentelor
double calc pret cu TVA si transport(double pret fara TVA=100.0, double transport=7.5, double taxa = 0.19);

double calc pret cu TVA si transport(double pret fara TVA, double transport, double taxa) {
return pret_fara TVA += (taxa*pret fara TVA)+transport;

}

int main() {
double pret{};
pret = calc _pret _cu TVA si transport(); //toate valorile sunt cele implicite
cout << "In Romania, pretul redus cu TVA si transport in tara este " << pret << endl; 124.5

pret = calc pret _cu TVA si transport(200.0); //valorile transportului si ale taxei sunt implicite
cout << "In Romania, noul pret cu TVA si transport in strainatate este " << pret << endl;

"245.5

return 0;

...

|%3"E}F€J{iF%}E}FWtEE+CéF % :

ssssssssdansnsnnnnnnnnnnnnnnnnnnnnfannnnnnnnnnnnnnnnnnnnnnnnd

.fana;IMAglaa.a, dbuhle"tnanépont,mdouﬁle taxa = 0.19);

t_fara TVAE double transport double taxa) {
~ TVA)-'I-'EI“E’EHSDU'f‘t .._.

...

|%}iaff3tﬂéqeﬂqt€H(iF % :

B8 m N R RN N R RN AN RN RN N R R R NN RN E R E N R A ARAENANEAEASEAARASRSAEAEpAEAAEAEESAEEEEEEEEEAs

Sesssssssssssnsasnnnnndunnanananananannnnnnnnnnndunnnnnnnnnnnnnnnnnnnnnnnnshonnnnnnnnnnnnnnnnnnnnnnnsfonnnsnsnnnnnnnnns

sufix) é

nyme+. +.S.u.-Fix.<.<.en.d1; L

Buna zi_'ua Dr. Sirﬁona Barna Ph.D

Buna ziua Profesor Adrian Popescu !

Buna ziua DI. Stefan Cristea !

T T T e T e T T E T T T T T T T D O T T T e T

Supraincarcarea functiilor

* Putem avea functii care sa aiba parametrii diferiti dar sa aiba acelasi nume

* Polimorfismul este capacitatea unor entitati de a lua forme diferite (este unul din conceptele esentiale din POO)
* Polimorfism parametric
* Polimorfism de mostenire

» Compilatorul este capabil sa depisteze functia pe care dorim sa o folosim in functie de argumentele furnizate si sa ne
determine rezultatul dorit.
* Este un mecanism de abstractizare.

Supraincarcarea functiilor

Exemplu

#include<iostream>
using namespace std;

int calc _suma(int, int);
double calc_suma(double, double);

int main() {

cout << calc_suma(10, 20)<<endl; //30 (fur“:ua int calc_suma)
cout << calc_suma(10.0, 20.0) << endl; //30.0 (functia double calc_suma)

cout << calc suma(10, 20.0) << endl; EROARE! Compilatorul nu este capabil sa aleaga una din cele

return 0; doua functii
Ii

int calc_suma(int a, int b) {
return a + b;

}

double calc_suma(double a, double b) {
return a + b;

}

Supraincarcarea functiilor

Atentie atunci cand folosim supraincarcarea functiilor si parametrii impliciti!

F#include<iostream>
#include<string>
#include<vector>
using namespace std;

EROARE!!!

//Atentie atunci cand folosim supraincararea functiilor si parametrii impliciti

void afisare(int n=10);
void afisare(double d=123.2);

Hvoid afisare(int n) {

L cout << "Afisare nr intreg: " << n << endl;
¥

Clvoid afisare(double d) {
L cout << "Afisare nr real: " << d << endl;
¥

Hint main() {

afisare();
return 0;

Supraincarcarea functiilor

» Exista o restrictie in ceea ce priveste supraincarcarea functiilor. Tipul returnat nu este considerat
Exemplul 1.

int suma(int a, int b) {
return + b;

¥

double suma(int a2, int b) {
return (2 + b) / 2.0;

}

cout<<suma(3,5)<<endl; //Eroare

Parametrii functiilor - tablouri

* Putem avea drept parametrii ai unei functii tablouri unidimensionale /multidimensionale
Exemplu:
void afiseaza tablou (int numere[|);
* Elementele tabloului nu sunt copiate!
* Din moment ce numele tabloului reprezinta adresa din memorie a tabloului (a primului element din tablou),
adresa este cea care este copiata

* Prin urmare, functia nu are nici o idee despre cate elemente sunt in tablou din moment ce tot ceea ce stie este
locatia primului element (numele tabloului)

Parametrii functiilor - tablouri

* Exemplu:
void afiseaza tablou(int numere[]);

int main() {
int numerele mele[]{ 1,2,3,4,5 };
afiseaza tablou(numerele mele);
return 9;

¥

void afiseaza tablou(int numere[]) {
// compilatorul nu stie cate elemente are tabloul
// trebuie sa ii transmitem compilatorului aceasta informatie,
// deci va trebui sa oferim ca argument si dimensiunea tabloului

Parametrii functiilor - tablouri

* Exemplu:
void afiseaza tablou(int numere[], size_ t dim);

int main() {

int numerele mele[]{ 1,2,3,4,5 };
afiseaza_tablou(numerele mele,5);
return 0;

}

void afiseaza tablou(int numere[], size t dim) {
for (size t i{ © }; i < dim;i++)
cout << numere[i] << endl;

¥

apPrpwON -

Parametrii functiilor - tablouri

* Trebuie sa fim atenti la faptul ca din moment ce atunci cand dam ca parametru un
tablou, ceea ce se copiaza este de fapt, adresa tabloului, no1 putem modifica in cadrul
functie1 valorile elementelor tabloului, asa cum se poate observa si in exemplul urmator:

Parametrii functiilor - tablouri

void afiseaza_tablou(int numere[], size t dim);
void tablou nul(int numere[], size_ t dim);
Tabloul initial este:
int main() {
int numerele mele[]{ 1,2,3,4,5 };
cout << "Tabloul initial este : "
afiseaza tablou(numerele mele,5);
tablou nul(numerele mele, 5);
cout << "\nTabloul dupa apelul functiei tablou nul este:
" << endl;
afiseaza tablou(numerele mele, 5); Tabloul dupa apelul functiei
tablou_nul este:

<< endl;

aprowN -

return 0;

}

void afiseaza_tablou(int numere[], size t dim) {
for (size t i{ @ }; i < dim;i++)
cout << numere[i] << endl;

O OO OO

}

void tablou nul(int numere[], size t dim) {
for (size t i{ @ }; i < dim;i++)
numere[i] = ©;

Parametrii functiilor - tablouri

* Daca nu dorim sa schimbam valorile elementelor din tablou avem urmatoarea posibilitate
* Putem spune compilatorului ca parametrii functiilor sunt constanti

void afiseaza tablou(const int numere[], size t dim) {
for (size t i{ @ }; i < dim;i++)

i
cout << numere[i] << endl;
numere[i] = @; // orice incercare de a modifica tabloul va
// genera o eroare a compilatorului
}

* Vezi programul “Parametrii-tablouri”!

Parametrii functiilor - tablouri

e Aplicatii -- Cautarea secventiala

Cautarea secventiala este unul dintre cei mai simpli algoritmi studiati. El urmareste sa verifice apartenenta unui
element la un sir de elemente de aceeasi naturd, in speta a unui numar la un sir de numere. Pentru aceasta:

* Se parcurge sirul de la un capat la celalalt si se compara numarul cautat cu fiecare numar din sir.

* In cazul in care s-a gasit corespondenta (egalitate), un indicator flag este pozifionat.

» La sfarsitul parcurgerii sirului, indicatorul ne va arata daca numarul cautat apartine sau nu sirului.

Parametrii functiilor - tablouri

#include<iostream>
using namespace std;

Flvoid CautareSecventiala(int tab[], int n, int x) {
bool gasit{ 0 };
for (int i{ 0 }; i < n; i++) {
if (tab[i] == x) gasit = 1;
3
if (gasit == 0)
cout << "Numarul nu apartine sirului !" << endl;
else cout << "Numarul apartine sirului !" << endl;

main()

int n, x, tab[50];
cout << "Dati numarul de elemente ale sirului : "; cin >> n;
cout << "Dati numarul de cautat : "; cin >> Xx;
cout << "Dati elementele sirului" << endl;
for (int i{ 0 }; i < n; i++) {
cout << "tab[" << i << "]=";
cin >> tabl[i];

}

CautareSecventiala(tab, n, x);
return 0O;

Parametrii functiilor - tablouri

Aplicatii -- Cautare binara

Algoritmul de cautare binara ofera performante mai bune decat algoritmul de cdutare secventiala. El

functioneaza astfel:

* Se compara numarul cautat cu elementul aflat la mijlocul sirului (element care se mai numeste si pivot).

e In cazul in care cele doud elemente coincid ciutarea s-a incheiat cu succes. Dacd numirul ciutat este mai
mare decat pivotul, se continua cautarea in aceeasi maniera in subsirul delimitat de pivot si capatul sirului
initial. Daca numarul cautat este mai mic decat pivotul se continua cautarea in aceeasi maniera in subsirul
delimitat de pivot s1 inceputul sirului mitial.

Algoritmul prezentat se incadreaza in clasa algoritmilor elaborati conform tehnicii de programare Divide et

Impera. Unul din dezavantajele acestui algoritm este ca sirul in care se face cautarea trebuie sa fie initial

sortat.

#include<iostream>

using namespace std; Parametrii funCtiilor -

void cautareBinara(int tab[], int n, int x) {
int st, dr, mijl, gasit; I
st = 0; dr = n - 1; gasit = 0; tablourl
while (st <= dr && gasit != 1) {
mijl = (st + dr) / 2;
if (tab[mijl] == x)
gasit = 1;
else
if (x < tab[mijll)
dr = mijl - 1;
else
st = mijl + 1;
}
if (st > dr)
cout << "Nu s-a gasit elementul cautat !" << endl;
else
cout << "Elementul cautat apartine sirului !" << endl,

main()

int n,x, tab[50];
cout << "Introduceti numarul elementelor vectorului : ";
cin >> n;

cout << "Introduceti elementul de cautat : ";

I

cin >> x;

cout << "Introduceti elementele vectorului (in ordine crescatoare):" <<

for (int i = @; i < n; i++) {
cout << "tab[" << i << "]= ";
cin >> tab[il;

}

cautareBinara(tab, n, x); Deb ‘135791013 x=13

e ug' ! ! ! ! ! i I X

return 0;

Parametrii functiilor - tablouri

Aplicatii -- Sortarea prin metoda bulelor

* Acest algoritm se mai numeste si "sortarea prin selectie si interschimbare", "sortarea prin propagare"
sau "metoda lenta de sortare" datorita numarului mare de operatii care trebuie efectuate. Succesul
algoritmului este asigurat de trecerea succesiva prin tablou, pand cand acesta este sortat, cu specificatia ca,
la fiecare trecere, elementele succesive 1 si 1+1 pentru care tab[i]>tab[i+1], vor fi interschimbate.

* Metoda poate f1 imbunatatita daca, dupa fiecare trecere, se va refine ultima pozitie din tablou in care a avut
loc o interschimbare, iar trecerea urmitoare se va efectua doar pani la acea pozitie. In cazul in care la o
trecere nu a avut loc nici o interschimbare algoritmul se va incheia.

* Pentru o s1 mai buna optimizare se poate inlocui trecerea prin tablou intr-un sens cu trecerea in dublu sens.
In acest caz, daci la doud treceri succesive, intre doud elemente i si i+1 nu a avut loc o interschimbare,
atunci nici la trecerile urmatoare nu se vor inregistra interschimbari.

* (Cu toate optimizarile aduse acestei sortari, ea se dovedeste a fi cu mult mai lenta decat sortarea prin
insertie, fiind insa preferata de unu datorita simplitatii, ce nu ridica probleme de implementare. Pentru
valori suficient de mari ale dimensiunii vectorului ce urmeaza a fi sortat se recomanda utilizarea unor
algoritmi ce au o complexitate mai redusa si, prin urmare, ofera un timp de calcul mai mic.

#include<iostream>
using namespace std;
Pa rametrii funCtlllor tablourl void SortareMetodaBulelor(int tab[], int n) {
int aux, terminat = 0;
while (terminat==0) {
terminat = 1;
for (int 1 = 0; i < n - 1; i++)
if (tab[i] > tab[i + 11) {
aux = tab[il];
tab[i] = tab[i + 1];
tab[i + 1] = aux;
terminat = O;

Aplicatii -- Sortarea prin metoda bulelor

}
}
cout << "Vectorul ordonat este : ";
for (int i = 0; i <= n - 1; it++)
cout << tab[i] << " ";
cout << endl;

}

int main(){

int n, i, tab[50];
cout << "Introduceti dimensiunea vectorului : ";
cin >> n;
for (1 = 0; i <=n - 1; i++) {
cout << "tab[" << i << "]=";
cin >> tab[i];

}
SortareMetodaBulelor(tab, n);

return 0;

Debug pentru tab={3,8,5,4,1} }

Parametrii functiilor - tablouri
Aplicatii -- Sortarea prin insertie

* se bazeaza pe aceleasi principii ca si cele aplicate de majoritatea jucatorilor de carti, adica dupa ridicarea
unei cartl de pe masa, aceasta se aseaza in pachetul din mana la locul potrivit. Cu alte cuvinte, consideram
ca avem vectorul sortat tab, iar la 1virea unui nou element care se va adauga vectorului, el va fi pus pe
locul potrivit printr-o insertie in interiorul vectorului.

* Insertia/inserarea directa. Este cea mai simpla implementare a algoritmului s1 se face in felul urmator:
Se considera ca primele 1 elemente al vectorului sunt deja sortate. Pentru elementul al (1+1)-lea, din tabloul
initial, se va cauta secvential pozitia in care trebuie inserat printre primele 1 elemente. Toate elementele
tabloului de la aceasta pozitie s1 pana la 1 vor fi deplasate cu o pozitie mai la dreapta 1ar pozifia eliberata va
f1 ocupata de elementul 1+1.

* Insertia /inserarea rapida. Deoarece vectorul destinatie este un vector ordonat crescator, cautarea
pozifiei in care va fi inserat tab[i] se poate face nu secvential (ca in cazul inserarii directe) ci prin
algoritmul de cautare binara. Subvectorul destinatie este impartit in do1 subvectori, se examineaza relatia
de ordine dintre elementul de la mijlocul subvectorului si elementul tab[j] si1 se stabileste daca elementul
tab[1] va fi inserat in prima jumatate sau in a doua jumatate. Operatia de divizare a subvectorului continua
pana se gaseste pozitia in care urmeaza sa fie inserat tab[i].

#include<iostream>
using namespace std;

Pa rametl’ii funCtiilor T tablouri [T]void SortarePrinInsertie(int tab[], int n) {
int aux,i;
Aplicatii -- Sortarea prin insertie directa BHi for (int j =1; j < n; j++) {

aux = tab[j];
i=3-1;
while (aux < tab[i] && i >= 0) {
tab[i + 1] = tab[i];
i=1i-1;
3
tab[i + 1] = aux;
¥
cout << "Sirul ordonat este: ";
for (i = 0; i < n; itt+)
cout << tab[i] << " ";
cout << endl;

main() {

int n, i, tab[50]{};
cout << "Introduceti dimensiunea vectorului :

cin >> n;

for (1 =0; i <=n-1; it+) {
cout << "tab[" << i << "]=";
cin >> tab[i];

¥

SortarePrinInsertie(tab, n);

return 0;

Debug pentru tab={3,8,5,4,1}

Parametrii functiilor - tablouri

Aplicatii -- Sortarea prin insertie rapida

void QuickSort(int v[], int st, int dr)
i
if (st < dr)
{
//pivotul este initial v[st]
int m = (st + dr) / 2;
int aux = v[st];
vist] = vim];
vim] = aux;
int i = st, j =dr, d = 0;
while (i < j)
{

if (v[il > v[31)

1
aux = v[i];
v[il = v[j];
v[j]l = aux;
d=1-d;
¥
i =i+ d;
j =3 -4d);
¥
QuickSort(v, st, i - 1);
QuickSort(v, i + 1, dr);

int n, i, tab[50]{};

cout << "Introduceti dimensiunea vectorului :

cin >> n;

for (1 =0; i <=n - 1; i++) {
cout << "tab[" << i << "]=";
cin >> tab[i];

¥
QuickSort(tab, 0,n-1);

cout << "Sirul ordonat este: ";

for (int 41 = 0; i < n; it+t+)
cout << tab[i] << " ";

cout << endl;

return 0;

Debug pentru tab={3,8,5,4,1}

Parametrii functiilor - tablouri

Aplicatii -- Sortarea prin numarare

Aceasta metoda necesita spatiu suplimentar de memorie. Ea foloseste urmatorii vectorti:
- vectorul sursa (vectorul nesortat) a;

- vectorul destinatie (vectorul sortat) b;

- vectorul numarator (vectorul de contoare) k.

Elementele vectorului sursa afi] se copie in vectorul destinafie prin inserarea in pozifia corespunzatoare,
astfel incat, in vectorul destinatie sa fie respectata relatia de ordine. Pentru a se cunoaste pozifia in care se va
insera fiecare element, se parcurge vectorul sursa si se numara in vectorul k (vector de frecventa), pentru
fiecare element a[i], cate elemente au valoarea mai mica decat a lui. Fiecare element al vectorului k este un
contor pentru elementul a[i1]. Valoarea contorului k[1] pentru elementul a[1] reprezinta cate elemente sunt mai
mici decat el s1 arata de fapt pozitia in care trebuie copiat in vectorul b.

#include<iostream>
using namespace std;

.. .. N : -void SortarePrinNumarare(int a[], int n) {
Parametrii functiilor - tablouri e g3 bL50] kLSOl 3.

for (i1 =0; i<n-1; i++)
for (j=i+1;j<n; j+)
. o >
Aplicatii -- Sortarea prin numarare o (iEﬂH;a[JD
else k[jl++;
for (i = 0; i < n; i++)
b[k[il] = a[il;
cout << "Vectorul ordonat este : ";
for (i = 0; i < n; i+)
cout << b[i] << " ";
cout << endl;

main() {

int n, i, tab[5€];
cout << "Introduceti dimensiunea vectorului : ":

I
cin >> n;

for (i =0; i <=n-1; it+) {
cout << "tab[" << i << "]=";
cin >> tab[il;

}

SortarePrinNumarare(tab, n);

return 0;

Debug pentru tab={3,8,5,4,1}

Apelul prin referinta

Am vazut ca atunci cand apelam o functie, in mod 1mplicit apelarea se face prin valoare, adica se face o
copie a parametrului

De asemenea, am vazut ca atunci cand parametrii sunt niste tablouri nu se mai creaza copii ale
parametrilor, in schimb se foloseste locatia tablourilor si prin urmare putem schimba valorile elementelor
tabloului in cadrul functiei

Uneori dorim sa putem fi capabili sa schimbam parametrii actuali (argumentele) in corpul functiei
Pentru a putea face acest lucru avem nevoie de locatia (adresa) parametrului actual

Am vazut cum se desfasoara lucrurile in cazul tablourilor, dar ce se intampla cand avem alte tipuri de
variabile?

Putem folosi operatorul de referinta & pentru a-1 spune compilatorului sa foloseasca locatia
parametrului actual
Parametrul formal va fi1 acum un alias al parametrului actual

Apelul prin referinta

* Exemplu:
void test numar(int &num);

void test numar(int &num) {
if (num > 100)

hum = 100;
else
num = 50;

}

int main() {
int numar{ 1000 };
cout << "Numarul initial este:
test _numar(numar);
cout << "Numarul dupa apelul functiei este:

<< numar << endl; 1000

<< numar << endl; 100

return 0;

}

...

refe.nnta :

...
8 R = 5 e R R NN R R R R RN N R RN R R R AN R RN N R R RN R RN R R RN N R R EEAEEEEEEEEEERAAEEEEEFEEEASAEEEAEEEEEE
L T e T T E R P PR E P T

Exemplu vector --- apel prin valoare

void afisare(vector <int> v);

int main() {
vector<int> note{ 10,9,8 };
afisare(note);
return 9;

}

void afisare(vector <int> v) {
for (auto num : v)
cout << num << endl;

» De ce sa cream o copie a parametrului si sa folosim un spatiu din memorie pentru aceasta copie?

Exemplu vector --- apel prin referinta

void afisare(vector <int> &v);

int main() {
vector<int> note{ 10,9,8 };
afisare(note);
return 9;

}

void afisare(vector <int> &v) {
for (auto num : v)
cout << num << endl;

* Nu ne convine totusi faptul ca in functia de afisare putem modifica valorile elementelor vectorului!

...

.E.pr*nre‘feﬂntacenst :

...
= . . .
..
L T T F TR TR T PR

T T T T T T T LTI LTI LTI T TTT T LT

Vizibilitatea entitatilor

e Vrem sa determinam cat timp si unde putem folosi identificatori declarati in program

e Partea din program in care o anumita entitate este valida poate fi:
e Locala -> Locala statica
 Globala

Vizibilitatea locala

Identificatorii sunt declarati intr-un bloc { }

Parametrii functiilor sunt vizibili doar acolo unde este declarata
functia

Variabilele locale declarate in cadrul unei functii sunt active doar
cat timp se executa functia

Variabilele locale nu se pastreaza intre apelurile functiilor
Cand avem blocuri imbricate, cele din interior pot “vedea” entitatile

declarate in cele din exterior, dar cele din exterior nu pot “vedea”
in cele din interior

Variabile locale statice

Se declara cu ajutorul cuvantului cheie static
static int valoare {10};

Valoarea lor se pastreaza intre apelurile functiilor

“Viata® acestor variabile este pe durata intregului program, dar sunt
vizibile doar in cadrul functiei in care sunt declarate

Se initializeaza cand functia este apelata pentru prima data, iar
daca nu se initializeaza explicit 1li se atribuie automat valoarea 0.

Sunt foarte folositoare atunci cand vrem sa stim valorile lor
precedente, fara a trebui sa transmitem de fiecare data aceste
informatii.

Vizibilitatea globala

Identificatorii sunt declarati in afara oricarei functii (sau clase)

Dupa ce sunt declarati, identificatorii globali sunt vizibili in
toate partile programului

Constante globale - ok
Recomandare: nu folositi variabile globale

Vezi programul “Vizibilitatea™!

MEMORIA UNUI PROGRAM

G +
Cod (Text) | <- Contine instructiunile programului
e +
Date initializate | <- Variabile globale/statice initializate explicit
A +
Date neinitializate (BSS) | <- Variabile globale/statice neinitializate explicit
R +
Heap | <- Alocare dinamica (creste n sus)
i +
|
Zona rezervata pentru OS | <-Zona libera
e + |
Stiva/Stack | <-Variabile locale, parametri functii (creste in jos)

Memoria unui program

Segmentul de cod (Text Segment) contine codul executabil al programului, adica instructiunile
masinii generate de compilator.

Segmentul de date statice (Data Segment) contine datele statice si variabilele globale care au fost
initializate inainte de rularea programului. Este impartit in:
- Sectiunea de date initializate: pentru variabilele globale si statice care au valori initiale
explicite.
« Sectiunea de date neinitializate (BSS - Block Started by Symbol): pentru variabile globale si
statice care nu au fost initializate explicit. Acestea sunt initializate implicit la O.

Segmentul de rezervare (Reserves/OS Reserved): este o zona rezervata de sistemul de operare
pentru gestionarea interna a proceselor si comunicatiei.

Memoria unui program

Stiva (stack) este o zona de memorie utilizata pentru gestionarea automata a variabilelor si a informatiilor
asociate executiei unui program, cum ar fi apelurile de functii. Este o structura organizata in mod LIFO
(Last In, First Out), ceea ce inseamna ca ultima variabila sau functie introdusa este si prima care este
eliminata.

Analogul unei stive de carti. De fiecare data cand o functie este apelata se adauga in stiva o noua
inregistrare, iar cand functia se termina, inregistrarea este scoasa din stiva.

Dimensiunea stivei este finita, deci daca se apeleaza prea multe functii atunci se poate depasi acesta
dimensiune (Stack overflow)

Memoria heap este o zona din memorie utilizata pentru de date in timpul executiei unui program. Spre
deosebire de stiva (stack), unde alocarea si eliberarea memoriei sunt gestionate automat (de exemplu,
pentru variabile locale si apeluri de functii), memoria heap ofera control programatorului pentru alocarea si
eliberarea manuala a spatiului necesar.

Memoria heap este accesata prin pointeri. in general, heap-ul este mai mare decét stiva si poate gestiona
volume mari de date.

Cum functioneaza apelul functiilor?

#include<iostream> ;
using namespace std; Stiva

void functie2(int &x, int vy, int z) {
X += y + Z;

}

int functiel(int a, int b) {
int rezultat{};
rezultat = 2 + b;
functie2(rezultat, a2, b);
return rezultat;

}
int main() {
int x{ 10 };
int y{ 20 };
int z{};
cout < endl;
return 0;

} main

Cum functioneaza apelul functiilor?

#include<iostream> Stiva
using namespace std;

void functie2(int &x, int y, int z) {
X += y + z;

}

int functiel(int a, int b) {
int rezultat{};

@3‘; >
functie2(rezultat, 2, b);

return rezultat;

}

int main() {
int x{ 10 };
int y{ 20 };
int z{};
z = functiel(x, y); rezultat=0
cout << z << endl; functie1 b=20
return 0; a=10

main

Cum functioneaza apelul functiilor?

#include<iostream> Stiva
using namespace std;

void functie2(int &x, int y, int z) {
X += y + z;

}

int functiel(int a, int b) {
int rezultat{};
rez 3
nctie2(rezultat, a, b);
return rezultat;

}
int main() {
int x{ 10 };
int y{ 20 };
int z{}; rezultat=30

z = functiel(x, y);) =
cout << z << endl; functie b=20

return 0; a=10

main

Cum functioneaza apelul functiilor?

#include<iostream> Stiva
using namespace std;

void functie2(int &x, int y, int z) {
X += y + Z;

}

int functiel(int a, int b) {
int rezultat{};
rezultat = 2 + b;
functie2(rezultat, 2, b);
return rezultat;

} functie?
int main() { rezultat=30
int x{ 10 }; b=20
int y{ 20 }; i =1
int 2{}: functiel = 0
z = functiel(x, y);
cout << z << endl; 7z =0
} return 0; y=20

x=10

main

Cum functioneaza apelul functiilor?

#include<iostream> Stiva
using namespace std;

void_-FunctieZ(int int y, int z) {

X 4=V + Z;
}

int functiel(int a, int b) {
int rezultat{};
rezultat = 2 + b;
functie2(, 2 ;

return rezultat; functie2
}
e (T rezultat=x=30
int main -

int x{ 10 }; b=20

int y{ 20 }; :

int z{}; functie

z = functiel(x, y);
cout << z << endl;

return 0; main

Cum functioneaza apelul functiilor?

#include<iostream> Stiva
using namespace std;

void functie2 't int y, int z) {
) 6

int functiel(int a, int b) {
int rezultat{};

rezultat = o b;
functiez a, b);
return rezultat;

} functie?
int main() { rezultat=x=60
int x{ 10 }; b=20
int y{ 20 }; . -
int z{}; functiel "
z = functiel(x, y);
cout << z << endl; 7 =
return 0;

y=20

. x=10
main

Cum functioneaza apelul functiilor?

#include<iostream>
using namespace std;

void functie2(int &x, int y, int z) {
X += y + z;

}

int functiel(int a, int b) {
int rezultat{};
rezultat = 2 + b;

functie2¢rezuttat, 2, b);
retur .

}

int main() {
int x{ 10 };
int y{ 20 };

int ; |
= functiel(x, :

cout << z << endl;
return 0;

functie

main

Stiva

rezultat=60
b=20
a=10

Cum functioneaza apelul functiilor?

#include<iostream> Stiva
using namespace std;

void functie2(int &x, int vy, int z) {
X += y + Z;

}

int functiel(int a, int b) {
int rezultat{};
rezultat = 2 + b;
functie2(rezultat, a2, b);
return rezultat;

}

int main() {
int x{ 10 };
int y{ 20 };
int z{};
z = functie ; main
cout << z << endl;
return o;

Functii inline

* Am vazut ca apelul unei functii presupune o serie de mecanisme complicate, fiind, pentru functii scurte,
mai eficient sa inseram codul corespunzator decat sa facem un apel propriu-zis al functiei.

 Lucrul acesta se poate realiza prin precedarea functiei de cuvantul inline, informand, astfel,
compilatorul ca se doreste inserarea codului generat de functie peste tot unde se face apelul ei.

* Cuvantul cheie inline se foloseste doar la declararea functiei, nu si la apel. Multe compilatoare
modificd, in mod implicit codul, generand cod inline atunci cand considera ca pot, astfel, sa optimizeze
programul.

Exemplu:

inline int suma_numere(int a, int b) { //definitie
return + b;

}

int main() {
int rezultat{};
rezultat = suma_numere(100, 200); //apel
return 9;

Functii recursive

O functie recursiva este o functie care se autopeleaza
» Fie direct, fie indirect prin intermediul altei functii

Daca apelam aceeasi functie de doua sau mai multe ori pentru a rezolva o problema, spunem ca
rezolvam problema in mod recursiv

» Cazul de baza

» Cazul recursiv: impartirea restului problemei in subprobleme si apelarea recursiva
Sunt multe probleme care se pot rezolva in mod recursiv

Probleme matematice: calculul factorialului, generarea sirului lui Fibonacci, fractali, etc.

Cautare si sortare

Functii recursive

» Exemplu: Calculul factorialului

0l =1
nl=n*(n-1)!

Cazul de baza: factorial (0)=1
Cazul recursiv: factorial (n)=n * factorial(n-1)

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() {
cout << factorial(8) << endl; //40320
return 0;

Functii recursive

« Exemplu: Sirul lui Fibonacci

» Cazurile de baza:
Fib(0)=0
Fib(1)=1

* Cazul recursiv:
Fib(n)=Fib(n-1)+Fib(n-2)

unsigned long fibonacci(unsigned long n) {

if (n <= 1)
return n; //cazurile de baza
return fibonacci(n - 1) + fibonacci(n - 2); //cazul recursiv

}

int main() {
cout << fibonacci(30) << endl; //832040
return 0;

Functii recursive

» Exemplu: Calculul factorialului (memorarea in stiva)

STIVA

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() {
cout << factorial(3) << endl; //6
return 0;

UEIN £ ctorial(3)

Functii recursive

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) { STIVA

if (n == 0)
- return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() {
cout << factorial(3) << endl; //6

return 0; factorial(3)

factorial(3)

main

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() { factorial(2)
cout << factorial(3) << endl; //6

y return ©; factorial(3)

factorial(3)

main

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
- return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

o

int main() { factorial(1)
cout << factorial(3) << endl; //6
return 0;

} factorial(2)

factorial(3) §,&e

e (actorial(s)

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

) factorial(0)
int main() { factorial(1)
cout << factorial(3) << endl; //6
return 0;
}

factorial(2)

factorial(3)

main

| factorial(3)

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

) factorial(0)
int main() { factorial(1)
cout << factorial(3) << endl; //6
return 0;
}

factorial(2)

factorial(3)

main

| factorial(3)

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
- return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

o

int main() { factorial(1)
cout << factorial(3) << endl; //6
return 0;

}

factorial(1)

factorial(2)

factorial(3)

main ' factorial(3)

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() {
cout << factorial(3) << endl; //6
return 0;

factorial(2)

=3
factorial(3) !

factorial(3)

main

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() {
cout << factorial(3) << endl; //6
return 0;

factorial(2)

factorial(3) =00 factorial(2)

UEIUE factorial(3)

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
- return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() {
cout << factorial(3) << endl; //6
return 0;

factorial(3)

main BEEHEL®)

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() {
cout << factorial(3) << endl; //6
return 0;

factorial(3)

main

Functii recursive STIVA

» Exemplu: Calculul factorialului (memorarea in stiva)

unsigned long factorial(unsigned long n) {
if (n == 0)
return 1; //cazul de baza
return n * factorial(n - 1); //cazul recursiv

}

int main() {
cout << factorial(3) << endl; //6
return 0;

main

Functii recursive

« Exemplu: Algoritmul de cautare binara (recursiv)

void cautareBinaraRecursiv(int [], int st, int dr, int x) {
int gasit = O;
int mijl = (st + dr) / 2;
if (tab[mijl] == x)
gasit = 1;
else
if (x < [mijl])
return cautareBinaraRecursiv(, , mijl - 1,

else
return cautareBinaraRecursiv(, mijl + 1, 5
if(st>dr)
cout << "Nu s-a gasit elementul cautat !" << endl;
else
cout << "Elementul cautat apartine sirului !" << endl;
}
int main()
{.mm

cautareBinaraRecursiv(tab, o,n-1, x);

}

)s
)s

Functii recursive

Observatii importante!

» Recursivitatea este o forma de iteratie, deci tot ce se poate face recursiv se poate face si iterativ si
viceversa

» Folositi recursivitatea doar atunci cand are sens (cand problema in cauza admite o solutie recursiva).
De exemplu, nu folositi recursivitatea cand vreti sa numarati de la 1 la 10.

» Recursivitatea poate necesita multe resurse, in unele cazuri preferandu-se metoda iterativa (chiar daca
este mai putin eleganta si uneori mai greu de inteles) in schimbul celei recursive.

* Nu uitati cazul/cazurile de baza
» Cu ajutorul lor se termina recursivitatea
» Daca nu opiriti recursivitatea atunci veti avea o recursivitate infinita

https://test-master.space

| EAE]

In:
Jpr L

Q““ﬁ

1

	Slide 1: Tipuri de date definite de utilizator
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Functii
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

