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ON THE SPATIAL BEHAVIOR OF SOLUTIONS
FOR THE THREE-PHASE-LAG THERMAL MODEL

CIRO D’APICE AND STAN CHIRIT, Ă

We present an extensive analysis on the spatial behavior of the solutions within the three-phase-lags
model of a rigid heat conductor for a semi-infinite cylinder excited on its base. The relaxation time of
the temperature gradient has a special significance here, namely (i) in the absence of this relaxation time,
we manage to highlight a theorem of the domain of influence, that is, outside of a region adjacent to the
charged base of the cylinder, all the thermal activity is vanishing, (ii) instead, when the relaxation time of
the temperature gradient is present, then it is no longer possible to highlight the area of influence, but
we can notice the Saint-Venant’s effect. In this latter situation, we are able to describe the exponential
decay with respect to the distance from the charged base for a measure of the solution, having a suitable
time-dependent exponent to show the rapid decay of the effects when a small time leak has occurred.
For the situations when the base of the cylinder is excited for a longer time, both the result expressing
the domain of influence and the Saint-Venant type exponential decrease estimate provide insufficient
information regarding the spatial behavior along the generator of cylinder. To deal with this shortcoming,
we establish exponential decay estimates with a time-independent exponent that can be used to describe
the spatial behavior even inside the domain of influence.

1. Introduction

Recently, Ostoja-Starzewski and Quintanilla [19] reported interesting results concerning the spatial
behavior of solutions of a problem related to the Moore–Gibson–Thomson equation,

τ
...
u + ü − k1u̇ − k∗1u = 0, (1)

on a three-dimensional semi-infinite cylinder R = D × (0, ∞) subject to the homogeneous Dirichlet
boundary condition u(x, t) = 0 over the lateral boundary surface ∂ D ×(0, ∞). (Here τ > 0 is a relaxation
time, 1 is the Laplace operator and k and k∗ are positive parameters under restriction k > τk∗). More
specifically, a domain of influence result is obtained and some exponential decays are reported for the
solutions along certain space-time lines.

Moreover, the Moore–Gibson–Thompson equation or its versions have been intensively studied in
recent years in relation to the problems of uniqueness, continuous data dependence or exponential decay
of energy: Kaltenbacher et al. [16], Lasiecka and Wang [17; 18], Dell’Oro et al. [9], Dell’Oro and Pata [8],
Pellicer and Said-Houari [21], Chen and Ikehata [2].
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It was suggested for the first time by Quintanilla [22] and then by Ostoja-Starzewski and Quintanilla [19]
that the Moore–Gibson–Thomson equation (1) can be obtained as a particular case of the three-phase-lag
model proposed by Roy Choudhuri [6] by a convenient choice of the three times of relaxation (something
that would be equivalent to the fact that the relaxation times of the temperature gradient and the thermal
displacement gradient are negligible). Besides, there is recent rich and intense research activity of the third-
order in time differential equations, either separately or coupled with the elastic deformations of media,
leading to valuable results concerning the well-posedness: Quintanilla [22], Pellicer and Quintanilla [20],
Conti et al. [7], Bazarra et al. [1], Fernandez and Quintanilla [10; 11], Fernandez et al. [12].

Inspired by Quintanilla’s observation in [22] and that in the paper by Ostoja-Starzewski and Quintanilla
[19] concerning the spatial behavior of the solutions of the Moore–Gibson–Thomson equation, we were
interested to see how the solutions of the corresponding equation behave in the model presented by Roy
Choudhuri [6]. In this regard, we considered here a cylinder made of a three-phase-lag rigid conductor
material that is excited on its base by a prescribed thermal flux, and its lateral boundary surface being free
from thermal exchanges. Then we were interested in how the effects of the excited base are felt along the
semi-infinite cylinder generators.

Our analysis in this paper on the spatial behavior in the semi-infinite cylinder shows that there is a
consistent difference between what the particular three-phase-lag model indicated by Quintanilla predicts
and what Roy Choudhuri’s general model predicts. While in Ostoja-Starzewski and Quintanilla’s paper a
result expressing a so-called domain of influence is established, this is no longer possible in our present
analysis. An important role in our analysis is played by phase-lag τT of the temperature gradient: (i) if
τT is negligible then the considered model is of hyperbolic type and a theorem of domain of influence in
the cylinder is established, (ii) if τT is not negligible, then the considered model no longer allows the
description of a domain of influence, but instead it allows us to obtain appropriate exponential decrease
estimates of Saint-Venant type.

The plan of the work is the following. Section 2 presents the basic system of differential equations
describing the evolutionary behavior of the heat flux and of the thermal displacement in the line described
by Roy Choudhuri [6]. The associated third-order in time differential equation in terms of thermal
displacement is explicitly written. Section 3 formulates the initial boundary value problem associated
with the model in concern and then describe its modified version that will be useful in the future
analysis. Section 4 is dedicated to a possible measure of the solution under common assumptions on the
thermal coefficients. Section 5 supposes that the phase-lag of the temperature gradient is negligible and,
consequently, a domain of influence is established. Section 6 considers the general model as proposed by
Roy Choudhuri [6] and establishes estimates describing the exponential decay of the excited base effects,
both with a time-dependent exponent and with a uniform exponent in time.

2. Three-phase-lag heat conducting model for a rigid conductor

Tzou [23] has proposed a two-phase-lag model by generalizing Fourier’s law of heat conduction qi (x, t) =

−ki jθ, j (x, t) in the following form,

qi (x, t + τq) = −ki j (x)T, j (x, t + τT ), (2)

where the qi are the components of the heat flux vector, T is the variation of the temperature from the
constant reference temperature T0 > 0, the ki j are the components of the thermal conductivity tensor and



ON THE SPATIAL BEHAVIOR OF SOLUTIONS FOR THE THREE-PHASE-LAG THERMAL MODEL 729

the delay time τq > 0 is the phase-lag of the heat flux and the delay time τT > 0 is the phase-lag of the
temperature gradient.

On the other hand, Green and Naghdi [13; 14; 15] have introduced the thermal displacement by
α(x, t) = Ṫ (x, t) and they have proposed a heat conduction law as

qi (x, t) = −
[
ki j (x)T, j (x, t) + k∗

i j (x)α, j (x, t)
]
, (3)

where the k∗

i j are the components of the conductivity rate tensor.
Roy Choudhuri [6] combined the two above models and he proposed the three-phase-lags for the heat

flux vector qi , that is he considers the following generalized constitutive equation for heat conduction in
order to describe the lagging behavior,

qi (x, t + τq) = −
[
ki j (x)T, j (x, t + τT ) + k∗

i j (x)α, j (x, t + τα)
]
, (4)

where τα > 0 is the phase-lag of the thermal displacement gradient.
Further, by taking Taylor’s series expansion of (4) up to the first-order terms in τq , τT and τα, Roy

Choudhuri proposes the following generalized heat conduction law valid at a point x at time t :

qi (x, t) + τq q̇i (x, t) = −k∗

i j (x)α, j (x, t) −
(
ki j (x) + ταk∗

i j (x)
)
α̇, j (x, t) − τT ki j (x)α̈, j (x, t). (5)

Equation (5) serves as a generalized constitutive heat conduction law in which the elastic deformation
term is ignored.

The three-phase-lags model for a rigid conductor as proposed by Roy Choudhuri [6] is based on the
constitutive equation (5) and the well-known heat equation

−qi,i (x, t) + r(x, t) = c(x)Ṫ (x, t), (6)

where r(x, t) represents the heat source acting per unit volume and c(x) is the specific heat per unit
volume.

In terms of the thermal displacement α, the three-phase-lags model for a rigid conductor as proposed
by Roy Choudhuri [6] is based upon the following differential equation

cτq
...
α + cα̈ − (k∗

i jα, j ),i − [(ki j + ταk∗

i j )α̇, j ],i − τT (ki j α̈, j ),i = 0, (7)

where we assumed the vanishing of the heat source and, moreover, the dependence on the independent
variables x and t was suppressed, but implicitly understood.

It can be easily seen that (7) generalizes the Moore–Gibson–Thompson equation in the sense that a
neglect of the terms containing the relaxation times τT and τα leads to equation (1). Consequently, all our
analysis in this paper will remain valid in the case of the simpler model used in the studies by Kaltenbacher
et al. [16], Lasiecka and Wang [17; 18], Pellicer and Said-Houari [21] and Chen and Ikehata [2].

The constitutive equation (5) is compatible with the second law of thermodynamic if [5]

R(i) the tensor ki j is positive semidefinite,

R(ii) the tensor κi j = ki j + (τα − τq)k∗

i j is positive semidefinite.
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3. Formulation of the initial boundary value problem and its modified form

Throughout this paper we shall assume that a semi-infinity cylindrical region B = D × (0, ∞) is filled by
a homogeneous and anisotropic conductor material with three-phase-lag times. We choose a Cartesian
coordinate system Ox1x2x3 in such a way that the base of the cylinder is contained in the plane x3 = 0, and
the axis Ox3 is parallel to the generators of the cylindrical surface. Throughout this paper we consider the
initial boundary value problem P defined by the heat equation (6), with null heat source, the constitutive
equation (5), the initial conditions

α(x, 0) = 0, α̇(x, 0) = 0, qi (x, 0) = 0 for all x ∈ B ≡ D × (0, ∞), (8)

and the boundary conditions

qρ(x1, x2, x3, t)nρ = 0 for all (x1, x2, x3) ∈ [∂ D × (0, ∞)] and t ∈ (0, ∞),

q3(x1, x2, 0, t) = g(x1, x2, t) for all (x1, x2) ∈ D0 and t ∈ (0, ∞).
(9)

Here the nρ are the components of the outward normal to the lateral surface of the cylinder and g(x1, x2, t)
is a prescribed smooth function and D0 is the base section of the cylinder.

By a solution of the initial boundary value problem P , corresponding to the given data g(x1, x2, t) we
mean the ordered array S = {α, qi } defined on B × (0, ∞) with the properties that

α(x, t) ∈ C2,2(B × (0, ∞)), qi (x, t) ∈ C1,1(B × (0, ∞))

and which satisfy the field equations (5) and (6), the initial conditions (8) and the boundary conditions (9).
Throughout this paper we are interested in how the solution of the initial boundary value problem

P behaves with respect to the distance x3 at the loaded base x3 = 0. In this sense, we want to identify
appropriate measures associated with the solution S = {α, qi } of the problem in question P that describe
its behavior in terms of the distance x3 to the base acted by the specified load g(x1, x2, t).

In order to be able to conveniently deal with topics regarding the spatial behavior of solutions, it is
necessary to define a modified initial boundary value problem P̃ associated with the problem in question P .
In this sense we introduce the notation

q̃i = qi + τq q̇i , α̃ = α + τq α̇, (10)

and note that the heat equation (6) implies

−q̃i,i = c ¨̃α in B × (0, ∞), (11)

while the constitutive equation (5) becomes

q̃i = −k∗

i jα, j − (ki j + ταk∗

i j )α̇, j − τT ki j α̈, j in B × (0, ∞). (12)

Furthermore, in view of the initial conditions (8) and the heat equation (6), we have

α̃(x, 0) = 0, ˙̃α(x, 0) = 0, α̈(x, 0) = qi,i (x, 0) = 0 for all x ∈ B ≡ D × (0, ∞), (13)
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while the boundary conditions (9) furnishes

q̃ρ(x1, x2, x3, t)nρ = 0 for all (x1, x2, x3) ∈ [∂ D × (0, ∞)] and t ∈ (0, ∞),

q̃3(x1, x2, 0, t) = g̃(x1, x2, t) for all (x1, x2) ∈ D0 and t ∈ (0, ∞),
(14)

with g̃ = g + τq ġ.
It is useful for what follows to note that the constitutive equation (12) can be written in the form

q̃i = −k∗

i j α̃, j − κi j α̇, j − τT ki j α̈, j in B × (0, ∞), (15)

where
κi j = ki j + (τα − τq)k∗

i j . (16)

For future use, we write (15) as
q̃i = Q̃i + R̃i , (17)

where
Q̃i = −k∗

i j α̃, j − κi j α̇, j , (18)

and
R̃i = −τT ki j α̈, j . (19)

Further, we note the following estimates

|Q̃3| ≤ (k∗

3 j k
∗

3 j )
1/2(α̃,i α̃,i )

1/2
+ (κ3 jκ3 j )

1/2(α̇,i α̇,i )
1/2, (20)

|R̃3| ≤ τT (k3 j k3 j )
1/2(α̈,i α̈,i )

1/2. (21)

In our further analysis we will need some of the following hypotheses upon the characteristic material
coefficients:

(H1) The specific heat per unit volume is strictly positive, that is

c > 0. (22)

(H2) k∗

i j is a positive definite tensor as

k∗

rsξrξs ≥ k∗

mξiξi for all (ξ1, ξ2, ξ3) ̸= 0. (23)

(H3) ki j is a positive definite tensor as

krsξrξs ≥ kmξiξi for all (ξ1, ξ2, ξ3) ̸= 0. (24)

(H4) κi j = ki j + (τα − τq)k∗

i j is a positive definite tensor, that is

κrsξrξs ≥ κmξiξi for all (ξ1, ξ2, ξ3) ̸= 0, (25)

where k∗
m , km and κm are the smallest eigenvalues of the tensors k∗

i j , ki j and κi j , respectively.

The last two hypotheses represent a strengthening of the two consequences of compatibility with the
second law of thermodynamics, while the second hypothesis (H2) is an extension of hypothesis (H3) for
the conductivity rate tensor. Finally, the first hypothesis proves that a genuine dynamic thermal situation
is considered.
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4. Possible measure associated with a solution of the initial boundary value problem P

We try to study our problem by using an associated “measure” of the solution S = {α, qi } like

F(x3, t) =

∫ t

0

∫ s

0

∫
Dx3

q̃3(z) ˙̃α(z) da dz ds, x3 > 0, t > 0, (26)

where Dx3 is the transverse section of the cylinder with the plane x3 = constant. We note that

∂ F
∂t

(x3, t) =

∫ t

0

∫
Dx3

q̃3(s) ˙̃α(s) da ds, x3 > 0, t > 0. (27)

In what follows we try to prove that F(x3, t) can be considered like a measure of the solution S ={α, qi }.
In this connection we note that

∂ F
∂x3

(x3, t) =

∫ t

0

∫ s

0

∫
Dx3

[
q̃3,3(z) ˙̃α(z) + q̃3(z) ˙̃α,3(z)

]
da dz ds. (28)

Furthermore, on the basis of (11), the lateral boundary condition (14) and the divergence theorem we
obtain

∂ F
∂x3

(x3, t) = −

∫ t

0

∫ s

0

∫
Dx3

c ˙̃α(z) ¨̃α(z) da dz ds +

∫ t

0

∫ s

0

∫
Dx3

q̃i (z) ˙̃α,i (z) da dz ds. (29)

The relation (10) and the constitutive equation (12) furnish

q̃i (z) ˙̃α,i (z) = −
1
2

∂

∂z
[
k∗

i j α̃,i (z)α̃, j (z) + τT ki j α̇,i (z)α̇, j (z) + τqκi j α̇,i (z)α̇, j (z)
]
− κi j α̇,i (z)α̇, j (z)

− τqτT ki j α̈,i (z)α̈, j (z), (30)

so that, from (29) and null initial data (13), we get

−
∂ F
∂x3

(x3, t) =
1
2

∫ t

0

∫
Dx3

[
c ˙̃α(s)2

+ k∗

i j α̃,i (s)α̃, j (s) + (τqκi j + τT ki j )α̇,i (s)α̇, j (s)
]

da ds

+

∫ t

0

∫ s

0

∫
Dx3

[
κi j α̇,i (z)α̇, j (z) + τqτT ki j α̈,i (z)α̈, j (z)

]
da dz ds. (31)

Consequently, in view of our hypotheses (H1) to (H4), we deduce

−
∂ F
∂x3

(x3, t) ≥
1
2

∫ t

0

∫
Dx3

[
c ˙̃α(s)2

+ k∗

m α̃,i (s)α̃,i (s) + (τqκm + τT km)α̇,i (s)α̇,i (s)
]

da ds

+

∫ t

0

∫ s

0

∫
Dx3

[
κm α̇,i (z)α̇,i (z) + τqτT km α̈,i (z)α̈,i (z)

]
da dz ds ≥ 0,

for all x3 > 0, t > 0, (32)

and hence F(x3, t) is a nonincreasing function with respect to x3 for all t > 0. As we will see later,
this last inequality suggests that F(x3, t) can lead to a measure of the solution S = {α, qi } of our initial
boundary value problem P .
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5. Model without phase-lag of the temperature gradient: domain of influence

Throughout this section we will suppose that there is no phase-lag of the temperature gradient, that is
there will vanish the terms containing the relaxation time τT . In what follows we will denote by FT (x3, t)
the corresponding function F(x3, t). Then the constitutive equation (15) becomes

q̃i = −k∗

i j α̃, j − κi j α̇, j in B × (0, ∞), (33)

while the inequality (32) is

−
∂ FT

∂x3
(x3, t) ≥

1
2

∫ t

0

∫
Dx3

[
c ˙̃α(s)2

+ k∗

m α̃,i (s)α̃,i (s) + τqκm α̇,i (s)α̇,i (s)
]

da ds

+

∫ t

0

∫ s

0

∫
Dx3

κm α̇,i (z)α̇,i (z) da dz ds ≥ 0, for all x3 > 0, t > 0. (34)

Moreover, the relations (18) and (20) imply

|q̃3| ≤ (k∗

3 j k
∗

3 j )
1/2(α̃,i α̃,i )

1/2
+ (κ3 jκ3 j )

1/2(α̇,i α̇,i )
1/2, (35)

so that we get
q̃2

3 ≤ 2M2[k∗

m α̃,i α̃,i + τqκm α̇,i α̇,i
]
, (36)

where

M = max
((k∗

3 j k
∗

3 j

k∗
m

)1/2

,

(
κ3 jκ3 j

τqκm

)1/2)
. (37)

Further, we use the Cauchy–Schwarz and the arithmetic-geometric mean inequalities into relation (27)
in order to obtain∣∣∣∣∂ FT

∂t

∣∣∣∣(x3, t) ≤
1
2

∫ t

0

∫
Dx3

[
εc ˙̃α(s)2

+
1
εc

q̃3(s)2
]

da ds

≤
1
2

∫ t

0

∫
Dx3

{
εc ˙̃α(s)2

+
2M2

εc
[
k∗

m α̃,i (s)α̃,i (s) + τqκm α̇,i (s)α̇,i (s)
]}

da ds, (38)

for any positive parameter ε. Now we choose ε to be

ε = M

√
2
c
, (39)

so that, in view of the estimate (34), we obtain

1
ε

∣∣∣∣∂ FT

∂t

∣∣∣∣(x3, t) ≤ −
∂ FT

∂x3
(x3, t) for all x3 > 0, t > 0. (40)

This last inequality is equivalent to the differential inequalities

1
ε

∂ FT

∂t
(x3, t) +

∂ FT

∂x3
(x3, t) ≤ 0 for all x3 > 0, t > 0, (41)

and

−
1
ε

∂ FT

∂t
(x3, t) +

∂ FT

∂x3
(x3, t) ≤ 0 for all x3 > 0, t > 0. (42)
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Let us first choose t0 > 0 and x0
3 ≥ εt0. If we set t = t0 + (x3 − x0

3)/ε in (41) it results in

d
dx3

[
FT

(
x3, t0 +

x3 − x0
3

ε

)]
≤ 0, (43)

and hence FT (x3, t0 + (x3 − x0
3)/ε) is a nonincreasing function with respect to x3. Thus, if we recall that

0 ≤ x0
3 − εt0 ≤ x0

3 , it results that

FT (x0
3 , t0) ≤ FT (x0

3 − εt0, 0) = 0. (44)

Further, we set t = t0 − (x3 − x0
3)/ε in (42) so that it follows that

d
dx3

[
FT

(
x3, t0 −

x3 − x0
3

ε

)]
≤ 0, (45)

and hence FT (x3, t0 − (x3 − x0
3)/ε) is a nonincreasing function with respect to x3. Since x0

3 ≤ x0
3 + εt0 it

results that
FT (x0

3 , t0) ≥ FT (x0
3 + εt0, 0) = 0. (46)

Consequently, from the relations (44) and (46), we deduce that

FT (∞, t0) = lim
x3→∞

FT (x3, t0) = 0 for all t0 > 0, (47)

and hence, by an integration of the relation (34) over (x3, ∞), we deduce that

FT (x3, t) ≥
1
2

∫ t

0

∫
Bx3

[
c ˙̃α(s)2

+ k∗

m α̃,i (s)α̃,i (s) + τqκm α̇,i (s)α̇,i (s)
]

dv ds

+

∫ t

0

∫ s

0

∫
Bx3

κm α̇,i (z)α̇,i (z) dv dz ds ≥ 0, for all x3 > 0, t > 0, (48)

where Bx3 ≡ D × (x3, ∞). Thus, FT (x3, t) appears like a measure of the solution S = {α, qi } of our
initial boundary value problem P .

Finally, we set x3 = εt in (41) to obtain

d
dt

[FT (εt, t)] ≤ 0, (49)

so that FT (εt, t) is a nonincreasing function with respect to t . Thus, we deduce

FT (εt, t) ≤ FT (0, 0) = 0. (50)

Since FT (x3, t) is a nonincreasing function with respect x3, it follows that for x3 ≥ εt we will have

FT (x3, t) ≤ FT (εt, t) ≤ 0, (51)

which in conjunction with (48) proves

FT (x3, t) = 0 for all x3 ≥ εt, t > 0. (52)

In view of the relations (48) and (52), we deduce that

˙̃α(x1, x2, x3, t) = α̇(x1, x2, x3, t) + τq α̈(x1, x2, x3, t) = 0, (x1, x2) ∈ Dx3, x3 ≥ εt, t > 0, (53)
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which integrated under zero initial conditions gives

α(x1, x2, x3, t) = 0, (x1, x2) ∈ Dx3, x3 ≥ εt, t > 0. (54)

If we substitute this last relation in the constitutive equation (5), we obtain

qi + τq q̇i = 0, (x1, x2) ∈ Dx3, x3 ≥ εt, t > 0, (55)

which furnishes qi (x1, x2, x3, t) = 0 for all (x1, x2) ∈ Dx3 , x3 ≥ εt and t > 0. Thus, there is the following
domain of influence result:

S(x1, x2, x3, t) = 0, (x1, x2) ∈ Dx3, x3 ≥ εt, t > 0. (56)

6. Model with phase-lag of the temperature gradient: exponential decay result

We return to the initially considered general thermal model (when τT > 0) and notice that it is no longer
possible to estimate ∂ F/∂t in terms of the first integral in the second member of the inequality (32),
and therefore, it is no longer possible to get a result of the domain of influence type like that in the
previous section. This is due to the presence of the term α̈,i in the constitutive equation (5) appeared
as a consequence of taking into account the phase-lag of the temperature gradient. For this reason we
will follow the path described by Chirit,ă [3] and Chirit,ă and Ciarletta [4] for the parabolic equations of
classical linear thermoelasticity.

6.1. Spatial decaying result with exponent depending on time. By means of the Cauchy–Schwarz and
the arithmetic-geometric means inequalities, from (26) we obtain

|F(x3, t)| ≤
1
2

∫ t

0

∫ s

0

∫
Dx3

[
ε1c ˙̃α(z)2

+
1

ε1c
q̃3(z)2

]
da dz ds, (57)

for every positive parameter ε1. But, the relation (17) implies

q̃2
3 ≤ (1 + ϵ)Q̃2

3 +

(
1 +

1
ϵ

)
R̃2

3, (58)

for every positive parameter ϵ. Thus, by means of the estimates (20) and (21), we obtain

q̃2
3 ≤ (1 + ϵ)2M2

1
[
k∗

m α̃,i α̃,i + (τqκm + τT km)α̇,i α̇,i
]
+

(
1 +

1
ϵ

)τT

τq
M2

2 (τqτT km α̈,i α̈,i ), (59)

where

M1 = max
((

k∗

3r k∗

3r

k∗
m

)1/2

,

(
k3r k3r

τqκm + τT km

)1/2)
, M2 =

(
k3r k3r

km

)1/2

. (60)

Therefore, from (57) and (59), we deduce

|F(x3, t)| ≤
1
2

∫ t

0

∫ s

0

∫
Dx3

{
ε1c ˙̃α(z)2

+
2M2

1 (1+ϵ)

ε1c

[
k∗

m α̃,i (z)α̃,i (z)+(τT km+τqκm)α̇,i (z)α̇,i (z)
]}

da dz ds

+
τT (1+ϵ)M2

2

2ε1cϵτq

∫ t

0

∫ s

0

∫
Dx3

τqτT km α̈,i (z)α̈,i (z) da dz ds, (61)
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so that, by setting

ε1 = M1

√
2(1 + ϵ)

c
, (62)

we get

|F(x3, t)| ≤
ε1t
2

∫ t

0

∫
Dx3

[
c ˙̃α(z)2

+ k∗

m α̃,i (z)α̃,i (z) + (τqκm + τT km)α̇,i (z)α̇,i (z)
]

da dz

+
τT (1 + ϵ)M2

2

2ε1cϵτq

∫ t

0

∫ s

0

∫
Dx3

τqτT km α̈,i (z)α̈,i (z) da dz ds. (63)

Now we equate the coefficients of the two integral terms in (63)

ε1t =
τT (1 + ϵ)M2

2

2ϵε1cτq
, (64)

that is we set

ϵ =
τT M2

2

4τq M2
1 t

. (65)

Consequently, from (62) and (65) we have

ε1 =
M3(t)
√

t
, M3(t) =

√
τT M2

2 + 4τq M2
1 t

2τqc
(66)

and, therefore, by means of relations (32) and (63) we obtain

1
M3(t)

√
t
|F(x3, t)| + ∂ F

∂x3
(x3, t) ≤ 0, for all x3 > 0, t > 0. (67)

In order to discuss the consequences of the differential inequality (67), we recall that (32) proves
that F(x3, t) is a nonincreasing function with respect to x3 on (0, ∞) and therefore, there is one of the
following situations: (i) let F(x3, t) > 0 for any x3 ∈ (0, ∞) and for any t > 0, or (ii) there is a x∗

3 > 0
such that F(x3, t) < 0 for any x3 > x∗

3 and for any t > 0.
Let us consider the point (i). Then the differential inequality (67) becomes

∂

∂x3

[
exp

(
x3

M3(t)
√

t

)
F(x3, t)

]
≤ 0, for all x3 > 0, t > 0, (68)

and hence we have

0 ≤ F(x3, t) ≤ F(0, t) exp
(

−
x3

M3(t)
√

t

)
, for all x3 > 0, t > 0, (69)

that is an exponential decaying Saint-Venant’s estimate. With this in mind, we can integrate with respect
to x3 variable over (x3, ∞) in (32) to obtain

F(x3, t) ≥
1
2

∫ t

0

∫
Bx3

[
c ˙̃α(s)2

+ k∗

m α̃,i (s)α̃,i (s) + (τqκm + τT km)α̇,i (s)α̇,i (s)
]

dv ds

+

∫ t

0

∫ s

0

∫
Bx3

[
κm α̇,i (z)α̇,i (z) + τqτT km α̈,i (z)α̈,i (z)

]
dv dz ds ≥ 0,

for all x3 > 0, t > 0, (70)
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a relation showing that F(x3, t) can be considered like a measure of the solution S = {α, qi } of our initial
boundary value problem P .

Let us now consider the point (ii). Then the differential inequality (67) implies

∂

∂x3

[
exp

(
−

x3

M3(t)
√

t

)
F(x3, t)

]
≤ 0, for all x3 > x∗

3 , t > 0, (71)

and hence we get

−F(x3, t) ≥ −F(x∗

3 , t) exp
(

x3 − x∗

3

M3(t)
√

t

)
≥ 0, for all x3 > x∗

3 , t > 0, (72)

when we can conclude that there is a solution with infinite energy.

6.2. Spatial decaying result with exponent independent of time. Let us fix a parameter λ > 0 and let us
define the following function

G(x3, t) =

∫ t

0

∫
Dx3

e−λz q̃3(z) ˙̃α(z) da dz, (73)

so that we obtain

−
∂G
∂x3

(x3, t) =

∫
Dx3

1
2 e−λt [

c ˙̃α(t)2
+ k∗

i j α̃,i (t)α̃, j (t) + (τT ki j + τqκi j )α̇,i (t)α̇, j (t)
]

da

+

∫ t

0

∫
Dx3

e−λz
{
κi j α̇,i (z)α̇, j (z) + τqτT ki j α̈,i (z)α̈, j (z)

+
λ

2
[
c ˙̃α(z)2

+ k∗

i j α̃,i (z)α̃, j (z) + (τT ki j + τqκi j )α̇,i (z)α̇, j (z)
]}

da dz. (74)

In view of our hypotheses (H1) to (H4), from (74) we get

−
∂G
∂x3

(x3, t) ≥

∫
Dx3

1
2 e−λt[c ˙̃α(t)2

+ k∗

m α̃,i (t)α̃,i (t) + (τT km + τqκm)α̇,i (t)α̇,i (t)
]

da

+

∫ t

0

∫
Dx3

e−λz
{

λ

2
[
c ˙̃α(z)2

+ k∗

m α̃,i (z)α̃,i (z)
]
+

[
κm +

λ

2
(τT km + τqκm)

]
α̇,i (z)α̇,i (z)

+ τqτT km α̈,i (z)α̈,i (z)
}

da dz ≥ 0, for all x3 > 0, t > 0, (75)

and hence G(x3, t) is a nonincreasing function with respect to x3 on (0, ∞) for all t > 0.
In the present context we use relations (20), (21) and (58) to obtain the convenient estimate

q̃2
3 ≤ 2(1 + δ)M2

3

{
λ

2
k∗

m α̃,i α̃,i +

[
κm +

λ

2
(τT km + τqκm)

]
α̇,i α̇,i

}
+

(
1 +

1
δ

)τT M2
2

τq
(τqτT km α̈,i α̈,i ), (76)

for any positive parameter δ and with M3 given by

M3 = max
((

2k∗

3r k∗

3r

λk∗
m

)1/2

,

(
2κ3rκ3r

2κm + λ(τT km + τqκm)

)1/2)
. (77)
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Therefore, we have

|G(x3, t)| ≤
1
2

∫ t

0

∫
Dx3

e−λz
[
ε3λc ˙̃α(z)2

+
1

λε3c
q̃3(z)2

]
da dz

≤

∫ t

0

∫
Dx3

e−λz
{
ε3

(
λc
2

˙̃α(z)2
)

+
(1 + δ)M2

3

ε3λc

[
λ

2
k∗

m α̃,i (z)α̃,i (z) +

(
κm +

λ

2
(τqκm + τT km)

)
α̇,i (z)α̇,i (z)

]
+

τT (1 + δ)M2
2

2ε3δλcτq
(τqτT km α̈,i (z)α̈,i (z))

}
da dz, (78)

for any positive parameter ε3. Then we set

ε3 = M3

√
1+δ

λc
, δ =

τT M2
2

2τq M2
3
, (79)

so that, by means of relation (75), we obtain the following differential inequality

|G(x3, t)| + ε3
∂G
∂x3

(x3, t) ≤ 0, for all x3 > 0, t > 0. (80)

This last inequality can be treated like the differential inequality (67) to obtain (i) let G(x3, t) > 0 for
any x3 ∈ (0, ∞) and for any t > 0, or (ii) there is a x∗

3 > 0 such that G(x3, t) < 0 for any x3 > x∗

3 and for
any t > 0. In the case (i) it results that

0 ≤ G(x3, t) ≤ G(0, t)e−x3/ε3, for all x3 > 0, t > 0, (81)

that is an exponential decaying Saint-Venant’s estimate, while in the case (ii) there is the estimate

−G(x3, t) ≥ −G(x∗

3 , t)e(x3−x∗

3 )/ε3 ≥ 0, for all x3 > x∗

3 , t > 0, (82)

when we can conclude that there is a solution with infinite energy.

Remark. For a cylinder of finite length, be it L , under the boundary condition q3(x1, x2, L , t) = 0 on the
upper end, it results that F(L , t) = 0 or G(L , t) = 0; a situation in which we obtain only the exponential
decaying estimates (69) or (81). It can be seen from our analysis that the estimates in question remain
valid whether τT is negligible or not! This means that they can also be used in conjunction with the result
of the domain of influence expressed by the relation (56)!

7. Final comments

Our study highlights some important aspects in the analysis of the mechanical model in concern, which
can be summarized as follows:

(a) For a homogeneous and isotropic rigid thermal conductor, when ki j = kδi j , k∗

i j = k∗δi j , equation (7)
becomes

cτq
...
α + cα̈ − k∗1α − (k + ταk∗)1α̇ − τT k1α̈ = 0, (83)
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and the restrictions concerning the compatibility of the constitutive equation with the second law of
thermodynamics are (i) k ≥ 0, (ii) k + (τα − τq)k∗

≥ 0. If we set c = 1, τα = 0 and τT = 0 in (83) we
obtain the Moore–Gibson–Thompson equation (1). Consequently, the results concerning the domain of
influence reported in Section 5 can be applied also for equation (1), already treated by Ostoja-Starzewski
and Quintanilla [19] under homogeneous Dirichlet boundary condition on the lateral surface.

However, when the base of the cylinder is excited for a longer time, then the domain of influence
theorem described by (56) is less informal because it says nothing about the behavior of the solution
inside this domain. Estimates are then needed to describe the behavior of the solution in this part of the
cylinder and these estimates are of the (81) type, which, as we said, are also valid in the situation when
τT is negligible. This aspect was not discussed in [19].

(b) Our analysis shows that by taking into consideration all three relaxation times we are led to a situation
totally different from that used to obtain the Moore–Gibson–Thompson equation. In essence, the main
position in this consideration is given by the phase-lag of the temperature gradient, on whose presence or
absence depends the way of describing the spatial behavior of the solution.

(c) In fact, when the relaxation time τT is absent, our analysis provides the result of the domain of
influence described by the relation (56). While when its presence is consistent, then it is no longer possible
to establish the domain of influence, but it is possible to establish some exponential decrease estimates of
Saint-Venant type. Thus, instead of the domain of influence, we establish exponential decay estimate
with a time-dependent exponent as described in (69), in such a way that when short time elapses a rapid
exponential decreasing of the excited base effects is described.

(d) For long time flows, neither the domain of influence described by (56), nor the spatial estimation
(69) provide valuable information about how the effects of the excited base of the cylinder are felt along
the generators. This is because (i) either the interior of the influence domain becomes large enough and
the domain described by the inequality x3 > εt is no longer significant and (ii) the exponential decrease
described by (69) is too slow for long times. For both of these situations, it is convenient to use the
estimate described by the relation (81).

(e) Our study takes into account both the lateral boundary data for the thermal displacement and the
lateral boundary data regarding the heat flux, that is, we study both the problem of the cylinder for which
the lateral surface can have free heat exchanges with the outside, as well as that with thermally insulated
lateral surface.
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A double coated circular elastic inhomogeneity with internal uniform deviatoric

stresses XU WANG and PETER SCHIAVONE 741
Nonlinear oscillations in dielectric viscoelastomer generators

JIAMENG LI and YU-XIN XIE 751

JournalofM
echanics

ofM
aterials

and
Structures

2023
V

ol.18,N
o.5


	1. Introduction
	2. Three-phase-lag heat conducting model for a rigid conductor
	3. Formulation of the initial boundary value problem and its modified form
	4. Possible measure associated with a solution of the initial boundary value problem P
	5. Model without phase-lag of the temperature gradient: domain of influence
	6. Model with phase-lag of the temperature gradient: exponential decay result
	6.1. Spatial decaying result with exponent depending on time
	6.2. Spatial decaying result with exponent independent of time

	7. Final comments
	References
	
	

