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ABSTRACT

In this paper we consider the three-phase-lag model of heat conduction
that involves second-order effects in phase lag of the heat flux vector. This
model leads to a fourth-order in time equation of Moore-Gibson-
Thompson type. We use the thermodynamic restrictions derived from the
compatibility of the constitutive equation with the Second Law of
Thermodynamics to study the properties of the solutions of the initial
boundary value problems associated with the model in concern. In this
connection we establish a series of well-posedness results concerning the
related solutions like: uniqueness, continuous data dependence, exponen-
tially stability or domain of influence. Furthermore, based on the thermo-
dynamic restrictions, we show that the thermal model in question admits
damped in time propagating waves as well as exponentially decaying
standing modes. We also show that when the thermodynamic restrictions
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are not fulfilled, then wave solutions appear that cause the energy blows
up as time goes to infinity.

1. Introduction

Motivated mainly by the fact that the use of classical Fourier’s law leads to an infinite signal
speed paradox, several other constitutive relations for the heat flux have been considered, cf.
Chandrasekharaiah [1], Hetnarski and Ignaczak [2, 3], Straughan [4] or Tzou [5]. Among these is
the Maxwell-Cattaneo-Vernotte’s law (see e.g. [6-8]) that included the heat flux, its time deriva-
tive and its phase lag. As a consequence, the thermal model based on such a constitutive equation
leads to a third-order in time equation in terms of temperature variation, known as the Moore-
Gibson-Thompson equation (Cf. Moore and Gibson [9] and Jordan [10])

T+ 1 — kA — kK*Au = 0, (1)

where 7 > 0 is a relaxation time, A is the Laplace operator and k and k* are positive parameters
under restriction k > tk*. This equation has attracted much attention in recent years in relation
to the mathematical study of problems of uniqueness, continuous data dependence, exponential
decay of energy or domain of influence: Kaltenbacher et al. [11], Kaltenbacher et al. [12],
Marchand et al. [13], Conejer et al. [14], Lasiecka and Wang [15, 16], Dell'Oro et al. [17],
Dell’Oro and Pata [18], Pellicer and Said-Houari [19], Jangid and Mukhopadhyay [20], Chen and
Ikehata [21], Ostoja-Starzewski and Quintanilla [22], Ferndndez et al. [23], Abouelregal
et al. [24].

Later, the Roy Choudhuri [25] proposed a constitutive law which involved three different
phase delays in the heat flux vector, the temperature gradient and the gradient of thermal
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displacement. The restrictions imposed by the compatibility of this constitutive equation with the
Second Law of Thermodynamics, relating the relaxation times and the other thermal coefficients
involved, were determined by Chirifd et al. [26]. It must be said that the three-phase-lag model
has been subjected to intense research in recent years, either from the point of view of the well-
posedness of the model, as well as from the point of view of treating some practical problems in
medicine or heat transfer. We mention here the results obtained by Quintanilla and Racke [27],
Akbarzadeh et al. [28], Chirifa et al. [26], D’Apice et al. [29], Biswas et al. [30], Chirifa [31],
Zhang et al. [32], Kumari and Singh [33] and Singh et al. [34].
A generalization of equation (1) was proposed and studied independently by Quintanilla and

Racke [27] and by Dell’Oro and Pata [35] in the following form

2

% pc‘,”T'Jr T pcﬁ“ + pcVT = K*AT + Tl*,AT + ktpAT, 2)

where the coefficients appearing are positive constant material parameters and 1}, = k"7, + k. The
authors obtain conditions on the material parameters to guarantee the exponential stability of sol-
utions. As we will show below, the constitutive law proposed by Roy Choudhuri [25], in combin-
ation with the usual heat equation, leads to a fourth-order in time differential equation in terms
of the thermal displacement, that generalizes the Moore-Gibson-Thompson equation (1) as well
as that described by (2), the latter being obtained as a particular case of a homogeneous and iso-
tropic rigid conductor.

Our analysis in this paper is dedicated to studying the characteristic properties of the three-
phase-lag model proposed by Roy Choudhuri [25], with second-order terms involved in the heat
flux. In this sense, we use the thermodynamic restrictions imposed by the compatibility of the
constitutive equation with the Second Law of Thermodynamics in order to study well-posedness
of the model by establishing some results regarding the uniqueness of the solutions as well as
their continuous data dependence. We also establish a domain of influence of the given data of
the initial boundary value problem, a result that shows that outside the domain of influence no
thermal activity is felt, in other words we obtain an upper bound of the speed of propagation of
the effects of the given data.

Furthermore, under congruent restrictions with those of thermodynamics, we study the types
of waves possible in a homogeneous and isotropic rigid conductor and show that there can be
waves damped in time or standing modes that decrease exponentially with increasing time. We
also show that when the thermodynamic restrictions are not fulfilled, some wave solutions can
appear that cause the energy blows up when time increases to infinity. Moreover, we show that
any solution of the model in question, which represents the effect of some initial conditions, is
exponentially stable.

The plan of the work is the following. Section 2 presents the basic system of differential equa-
tions describing the evolutionary behavior of the heat flux and of the thermal displacement in the
line described by Roy Choudhuri [25]. The associated fourth-order in time differential equation
in terms of thermal displacement is explicitly written. Section 3 formulates the initial boundary
value problem associated with the model in concern and then describe its auxiliary version that
will be useful in the future analysis. A law of conservation of energy is established and which
introduces a measure of the solution in terms of thermal displacement. Section 4 is dedicated to
the well-posedness of the model: there is established a uniqueness theorem and a continuous data
dependence result under restrictions congruent with those imposed by Second Law. We also used
the Lagrange identity and the logarithmic convexity methods to obtain the uniqueness under
mild restrictions upon the material characteristics. Section 5 is related to the class of waves propa-
gating in a three-phase-lag model. Section 6 considers the general model as proposed by Roy
Choudhuri [25] and establishes the exponential decay in time of the solutions, that is the expo-
nential stability. Section 7 presents the domain of influence theorem for a semi-infinite cylinder.
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2. Three-phase-lag heat conducting model for a rigid conductor

Starting from the Green-Naghdi model [36] and the Tzou model [37], Roy Choudhuri [25] pro-
posed the following constitutive equation for the heat flux vector

qi(x £+ 1q) = — |kij(x) T j(x t + 77) + kj(x)or (3, £ + 72) |5 (3)

where g; are the components of the heat flux vector, « is the thermal displacement, T = & repre-
sents the temperature variation from the constant reference temperature Ty > 0, k; are the com-
ponents of the conductivity tensor and kj; are the components of the conductivity rate tensor;

moreover, t is the time variable, x is the spatial variable, while 7,, 77 and 7, are the phase-lags
(or delay times) of the heat flux vector, of the temperature gradient, and of thermal displacement
gradient, respectively. In agreement with the Roy Choudhuri’s interpretation, the equation (3)
means that a temperature gradient and a thermal displacement gradient imposed across a volume
element at times ¢t + 77 and t + 74, respectively, result in a heat flux flowing at a different time
t + t4. However, the constitutive equation (3) does not formulate any restriction regarding the
three relaxation times and under this general form it does not seem possible to solve its compati-
bility with the Second Law of Thermodynamics in order to determine the restrictions on the
three relaxation times and the constitutive thermal coefficients. To solve this situation, Roy
Choudhuri proposes the following generalized heat conduction law valid at a point x at time ¢
2
9i(% 1) + 144, (6 1) + 51 (1) = —Kj(x);(x. 1)

_ (k,-j(x) + Tak;;(x)) 5,i(x, t) — Trky (%), (%, 1).

(4)

Equation (4) serves as a generalized constitutive heat conduction law in which the elastic
deformation term is ignored. The compatibility of the three-phase-lag constitutive equation (4)
with the Second Law of Thermodynamics was studied by Chirifa et al. [26] and it requires that
the following tensors

T
Gy =ky+ (= Tp)kyy =11 ky =2 (k,-j t1, k;;), (5)

to be positive semi-definite.

Throughout this paper we consider the three-phase-lags model for a rigid conductor as pro-
posed by Roy Choudhuri [25] based on the constitutive equation (4) and the well-known energy
conservation equation

—qi,i(% 1) + (% 1) = c(x)%(x, 1), (6)

where r(x,t) represents the heat source acting per unit volume and c(x) is the specific heat per
unit volume. Under the thermodynamic restrictions just described in (5), some results about the
continuous dependence of the solutions with respect to the given initial data and to the supply
term are established for the related initial boundary value problems in [26].

In terms of the thermal displacement o, the above three-phase-lags model for a rigid con-
ductor is based upon the following differential equation

e (5) (s

_TT(kij&,j)’i =0, (7)

where we assumed the vanishing of the heat source and, moreover, the dependence on the inde-
pendent variables x and t was suppressed, but implicitly understood.
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For an isotropic and homogeneous rigid thermal conductor, when k; = kd; and kj; = k™4,

the equation (7) becomes

% ct2 o+ ctgd + ¢ — k" Ao~ (k+ 1,k )A & —1rkA 5 =0, (8)
where A is the Laplace operator. Moreover, the thermodynamic restrictions described by (5) can
be read as

{=k+ (T—1g) K 20, %:er—% (k+ 1, k) >0. 9)

Equation (8) was proposed and studied by Quintanilla and Racke [27] in relation to the expo-
nential stability of solutions under suitable Dirichlet boundary and initial conditions. An equation
of like that described by (8) was obtained by Dell’Oro and Pata [35] by means of a Moore-
Gibson-Thompson equation with memory in the presence of an exponential kernel. Under homo-
geneous Dirichlet boundary condition, there are established some stability properties of the
related solution semigroup and a necessary and sufficient condition for exponential stability is
obtained, in terms of the values of certain stability numbers depending on the strictly positive
coefficients involved.

3. Formulation of the initial boundary value problem and its auxiliary form

Throughout this paper we shall assume that a bounded three-dimensional region B is filled by an
inhomogeneous and anisotropic conductor material with three-phase-lag times. We denote by 0B
the boundary surface of B and assume that it is sufficiently regular to allow application of the
divergence theorem. Throughout this paper we consider the initial boundary value problem P
defined by the heat equation (6), the constitutive equation (4), the initial conditions

a(x,0) =0, &(x0)=3d"x),

. -0 (10)
4(%0) = (), 3,(60) = @°(x), forall x¢ B,
and the following boundary conditions
a(x,t) = O(x,t) on Z; x (0,00), (an

qgi(x, t)n; = Q(x,t) on X, x (0,00).

Here ¢°(x), ¢°(x) and ¢%(x), as well as @(x,t) and Q(x,t) are prescribed smooth functions.
Moreover, n; are the components of the outward normal vector to OB and X, and X, are subsets
of the boundary 9B so that ¥, UX, = 0B and X, NX, = (. The initial conditions (10) and
the boundary conditions (11) are presented in terms of the thermal displacement o only for
mathematical reasons, but they can be easily expressed in terms of the temperature variation T (a
fundamental physical quantity that can be measured by experiments) through the relation
a(x,t) = [y T(x,s)ds, that is, we have: ¢°(x) = T(x,0) for x € B and O(x,t) = [, T(x,s)ds
for (x,t) € X, x (0,00).

By a solution of the initial boundary value problem P, corresponding to the given data D =
{r;4°,4%,47;©,Q} we mean the ordered array S = {o,q;} defined on B x (0,00) with the prop-
erties that o(x, f) € C*?(B x (0,00)), gi(x,t) € C**(B x (0,00)) and which satisfy the field equa-
tions (4) and (6), the initial conditions (10) and the boundary conditions (11). Throughout this
paper we will assume the existence of such a solution! This means that we do not deal with the
existence and regularity of the solutions of the initial boundary value problem.

Our further analysis requires to introduce an auxiliary initial boundary value problem 7 asso-
ciated with the problem in question P. In this sense we introduce the notations
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72 72 72

Zji:qu‘qu,»wLEq i NZOCJrquCJr?q ., ?:r+rq%+5‘1 7,

K

and note that the heat equation (6) implies
-3, +7=ca in Bx(0,00),
while the constitutive equation (4) becomes
= —kjo; (k,] + Tk ) J—trki; in B x (0,00).

Furthermore, in view of the initial conditions (10) and the heat equation (6), we have

’L'2

a(x,0) = 7, &°(x) —|—?q &(x,0),
2
. T
& (x,0) = &°(x) + 14 %(x,0) +Eq %(x,0) for all x € B,
while the boundary conditions (11) furnishes
a(x,t) = O(x,t) on X, x (0,00),
3,(xtn = Q(x,t) on T, x (0,00),

where (x,0) and &(x,0) are calculated by means of the heat equation (6) as

5(5,0) =+ [r0s0) = ()], 6,0 = = [1(x.0) = 42,3

and

2
©=0+7,0+- 6, Q= Q+qu+—‘1Q

For future convenience we write the constitutive equation (14) in the following form

- Tg .. .. .
q; = -k, CU( 7‘1 oc,]-) — ;0 in B x (0,00).
Moreover, we note that the relations (12) and (19) furnish the following identity
SN 1 0 . -
=4i(0)%,i(t) =5 o Kyai(0)a,(8) + x8,i()a, (1)

ey (0 + 5 500) (35004 5 5500) + 3 G0 0
- &,i<t>'oz,j<t>1} Gy (0055(6) + 7 7y G(0)55(0)]

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

In our further analysis we will need some of the following hypotheses upon the characteristic

material coefficients
(H1): the specific heat per unit volume is strictly positive in B, that is
c(x) >0 for all xe€ B;

(H2): k;} is a positive semi-definite tensor as
K (x)E,& >0 for all (&,&,,¢;) and for all x € B;

(H3): {;j = k; + (14 — rq)k; is a positive semi-definite tensor as
(s(x)EE, >0 for all (&,&,,&;) and for all x € B;

(21)

(22)

(23)
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(H4): »jj = 17 kij — %’7 (kij + 74 k;) is a positive semi-definite tensor, that is
#rs(x)E.E, >0 for all (&,&,,&3) and for all x € B. (24)

The last two hypothesis proves that the Second Law of Thermodynamics is fulfilled as results
from the relation (5). The first hypothesis proves that a genuine dynamic thermal situation is
considered. While the hypothesis (H2) represents an extension of hypothesis (H3) for the con-
ductivity rate tensor.

We can now establish a basic identity regarding the solutions of the initial boundary value prob-
lem P and thereby for those of the initial boundary value problem 7. For this purpose, we note that
the heat equation (13), the divergence theorem and the boundary condition (11) provide

L ca(t)a(t)dv = J (t)a (t)dv — J

B OB

q,(t)no(t)da + J 3,(H)a,:(t)dv, (25)

B

and so, by using the relation (20), we obtain the following identity

£(t) = £(0) + J; JB 7(5)3 (s)dveds — J; LB 3.(s)ni%(s)dads, (26)
where
E(t) = Ex(t) + [y Jp [C2,i(8)6(s) + tq 258,1(5)dk, j(s)] dvds, (27)
and
Ei(t) :% L {c&(t)z Ky, i(£)3,5() 4 i, i (£),5(0)
+1,45 <dc,,~(t) +5’1 8 i(t)) <a,,(t) + 8 ,(t)) (28)

+%q [Cijd,i(t)d,j(t) + 14 %ij'o'c,i(t)b'c)j(t)]}dv.

By virtue of our hypotheses (H1) to (H4) we can see that

E(t)>0 foral t>0. (29)
Furthermore, under the hypothesis of null initial conditions, it can be seen that £(¢) can be
considered a measure of the solution S = {2, q;} in the sense that if £(t) = 0 for all ¢ > 0, then
S(x,t) = {a(x,1),gi(x, 1)} = 0 for any x € B and any ¢ > 0. In fact, we see that in (27) and (28)
we have a sum of positive terms equal to zero and therefore each of the terms must be zero.

Thus, we see that if £(¢) = 0 then it results that &(t) = 0, that is

2

a(x,t) + 14 0(x, 1) +Eq G(x,t) =0, foral xe€B, >0, (30)

which, integrated with respect to t under zero initial conditions for o, provides
o(x,t) =0 forall x€B, t>0. (31)
Then, by taking into account this last relationship in the constitutive equation (4) we deduce
2
qi(x,t) + 14 4;(x,t) +Eq G (x,t)=0 forall xeB, t>0, (32)

which, integrated with respect to t under the initial conditions g;(x,0) = 0 and §,(x,0) = 0, fur-
nishes
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qi(x,t) =0 forall x€B, ¢t>0. (33)

Thus, it results that S(x, ) = 0 and hence we can conclude that £(¢) is a measure of the solu-
tion § = {0, q;}.

4. Well-posedness results

In this section, we deal with issues related to the well-setting of the related initial boundary value
problems: uniqueness of solutions and their continuous dependence with respect to the given
data, all under some assumptions on the thermal characteristics that are congruent with the
established thermodynamic restrictions.

We will start with the following uniqueness result.

Theorem 1. (Uniqueness of solution) Suppose the hypotheses (H1) to (H4) to be fulfilled. Then the
initial boundary value problem P admits at most one solution.

Proof. Having a linear problem, proving the uniqueness of the solution is equivalent to proving
that the initial boundary value problem P with null given data D = {0;0,0,0,0;0,0}, admits
only the trivial solution S = {o,qi} = 0. In this connection we note that from relations (15) to
(17), we have

a(x,0) =0, a(x,0)=0, &(x0)=0, &(x0)=0 forall x¢B, (34)
and hence, from (27) and (28), it follows that
£(0) =o. (35)

Moreover, the relations (12) and (18) give

O(x,t)=0 on X x(0,00), Q(x,t)=0 on X, x (0,00),

F(x,t) =0 for all (x,t) € B x (0,00). (36)

Consequently, the identity (26) becomes
E(t)=0 forall t>0, (37)
that is S(x,¢) = 0 for all x € B and ¢ > 0 and so the proof is complete. O

Theorem 2. (Continuous dependence) Suppose the hypotheses (H1) to (H4) to be fulfilled. Let S =
{o,qi} be a solution of the initial boundary value problem P corresponding to the given data

D= {r; ao,q?,q?; 0,0}. Then the following estimate holds true

VE() < VE©O) +% Jt <L % ?(s)zdv> l/zds, for all t>0. (38)

0

Proof. Under the given data of the problem, the identity (26) is written as

£(t) = £(0) + J

0

t

JB 7(s)a(s)dvds, (39)

and therefore, by means of the Schwarz inequality, we find

E(t) < &(0) + Ji g(s) (JBC &(s)zdv) l/zds, (40)

0
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where
1 1/2
g(t) = (J - ?(t)zdv> . (41)
B C
Further, we use the relation (27) and (28) into (40) to deduce
t
£(t) < £(0) + J 2(5)\/2E()ds. (42)
0
Now we set

W(t) = \/ £(0) + J; 2(5)\/2E()ds, (43)

and note that

¥ (1) (44)

<= g0
= \/E g\1).
Concluding, an integration with respect to time variable in (44) and by taking into account that

Y(0) = /£(0) and /E(t) < P(t), we are led to the estimate (38) and the proof is complete. O
Herewith, we present a theorem of the uniqueness of the solution under milder assumptions

on the thermal coefficients and the three relaxation times. In fact, we can avoid the hypothesis

(H2) either by means of the Lagrange identity method or by the logarithmic convexity method.

Theorem 3. (Uniqueness under mild assumptions) Suppose the hypotheses (H1), (H3) and (H4)
to be fulfilled. Then the initial boundary value problem P admits at most one solution.

Proof. 1: Lagrange identity method (see, e.g. Brun [38], Rionero and Chirita [39]). We start
with the following identity

% [a(t+ 2)a(t —z) + a(t — 2)a(t +z)]

= a(t—2)a(t+2) — a(t + 2)a(t - z),

(45)

and then an integration over z on [0, t], followed by the use of the heat equation (13) and the
zero given data, gives

zJB ca(t)a(t)dv = J

0

t

J [a(t = 2)q, ,(t +2) — &(t + 2)q, ,(t — z)] dvdz. (46)

Then we use the divergence theorem combined with the null data on the boundary to obtain

zL ca()3(1)dv = J’ JB [4:( = 231t + 2) — (¢ + 2)a.1(t — 2)] dvdz. (47)

Furthermore, we use the relation (12) and the constitutive equation (19) to get

qi(t = 2)a,i(t +2) = 4,(t + 2)i(t - 2)
0

=5 {C,»joc,,-(t —2z)o(t+z) + <x,j +% C,»]) o,i(t — z)a j(t + z) (48)

T . . .
+ (7,] + Eq Cij> o, i(t 4 z)o j(t = 2) + Tgno i(t — z)o j(t + z)}

Now, we use (48) into relation (47) and then by an integration combined with null given data
we deduce
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L {c&(t)z—i— (/,Jz—q Cy)fx,i(t)oc,j(t)}dv

t (49)
+J J [C,joc,,-(s)oc,j(s) + Tq%ijdc,i(s)dc,j(s)]dvds =0.
0JB

As can be seen, by virtue of the constitutive hypotheses (H1), (H3) and (H4), in (49) we have

a sum of positive terms and this can be equal to zero only if each term is vanishing. In particular,
we deduce that

c(x)&(xt)> =0 in B x (0,00). (50)

Since ¢(x) > 0 in B, from (50) it follows that the relation (31) holds true and therefore it can
be used to prove that S = {«, ¢;} = 0 and the proof is completed.

2: Logarithmic convexity method (see e.g. Knops and Payne [40]). Guided by the above
proof we introduce now the following function

G(t) :J {c&(t)z_i_ (xij-f-% {ij>oc,i(t)oc)j(t)} dv
, B (51)
+ L JB [Cijor (), j(s) + Tgije, i(s) 8, j(s)] dvds,
and note that
¢ = a(t)a Kii Ya g o i (t)a v
6(0) =2, x50+ (45 G )us(00y(0] o
+2 fg J5 [0 i(5)a () 4 g2t i), j(s) | dvds,
and moreover,
G(1) = S0+ (5 + 20 ¢ Va0 5()i
G(t)= 2[; [c (t) +< ]+2 CJ> Li(t)oc () + ca(t)o(t) -

+ <le +Tz—" 4’,-]-) o i (1)a,j(8) + Cijoei(8)er j(8) + Tomoe,i(8)a () }dv.

Furthermore, in view of the basic equations (13) and (19) and by using the null given data, we
have

JB ca (1) (t)dv = — |, [rqéij (d,i(l‘) +;—q &,i(t)> (d,j(l‘) +% &,j(f))
ke (1)a,(0) +%q s, ()35 (8) + Lyos i (£)3,5(8) (54)
+ (W +% g,,.) o (£)5,5(t) + qu,.jd,i(t)'oz,j(t)] dv.

Thus, relations (53) and (54) furnish

(55)
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Finally, the conservation law £(t) = 0 gives

_L {ki}&,i(t)&,j(t)ﬂqcfj <d""(t)+% E’.""(ﬂ) (d’j(t)jﬂ &’j(t)>

+4 %ijaz,i(t)&,j(t)]dv - JB [c&(t)z + (%1 +% C,) d,i(t)o.‘,j(t):|dv (56)

—|—2J JB [Cijd,i(5)6,5(5) + Tqiith, i(s) 8, j(s)] dvds,

0

so that the relation (55) becomes

6(6)=a{ 07 + (s + 2 4y) 0,00 .
57
+ f(; Js [Cijet,i(5)6,5(s) + Tgiith, i(s)d, i(s)] dvds}.

Based on the Cauchy-Schwarz inequality, from relations (51), (52) and (57) we deduce that

G()G(t) = G(t)> >0, forall t>0, (58)

that proves that In [G(¢)] is a convex function on (0, 00). Thus, we conclude that
G(t) =0, (59)
and the proof follows like the above Proof 1. ]

Remark. The Lagrange identity method and the logarithmic convexity method also allow the
study of continuous dependence with respect to the given data, under the same assumptions
(H1), (H3) and (H4), following, for example, the analysis carried out in the works by Rionero
and Chirifa [34] and Knops and Payne [35]. However, giving up the hypothesis (H2) requires
appropriate restrictions on the solutions under discussion!

5. Wave solutions

In this section we will study possible waves that can propagate in a rigid thermal conductor with
triple-phase-lags. To simplify the mathematical calculations we will consider the case of an iso-
tropic and homogeneous material conductor where kj = kd; and kj; = k*d;;. According with the

hypotheses (H1) to (H4) we assume now that

T
>0, kK'>0, (=k+(u—t)k’>0, %= er—gq (k4 1,k*) > 0. (60)
We try to find wave solutions of the basic equations in the form of a wave propagating in the
direction of x; axis as

a(x1,t) = Re{A €170}, (61)

where i = \/—1 is the imaginary unit, Re{-} is the real part, y > 0 is the real wave number and A
is a complex nonzero number. Further, x; is the spatial coordinate in the propagation direction
and v is a complex parameter so that Re(v) > 0 will represent the wave speed and Im(v) < 0 will
be related to the rate of decaying in time. We must note that for Re(v) > 0 there is a genuine
wave, while for Re(v) = 0 there is a standing mode. Moreover, when Im(v) < 0 there is the phe-
nomenon of damping in time, while for Im(v) = 0 there is an undamped in time wave.

When we replace the expression (61) in the equation (8) we are led to the following algebraic
equation for determining parameter v:
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1
3 créxz vt +ictyy v — (c+ trky?)v? —ixg(k + 1, K)v+ k" =0, (62)
which can be written in terms of the parameter
w=—-iv, (63)
as the following four-degree algebraic equation with positive coefficients
P(w) = o* + a3 + a,* + a0 + ag = 0, (64)
where
2
a3 =—, o (c 4 trky?),
Tax cTox
. (65)
2 . 2k
a —2(k+T1 k"), ag= 3
o cTox

According to the Routh-Hurwitz criterion the polynomial P(w) will have all the roots in the
open left half-plane if and only if

asa,a; — af - agao > 0. (66)
In view of relation (65), we have
8
43,0, — @ — asay = pErc [l + 12 (k + Ty K)x], (67)
q ~

that is strictly positive based on the hypotheses described by the relationship (60). Therefore, the
fourth-degree polynomial P(w) has all four roots with negative real part.

For a generic root @ = —v=*iy, with v >0, y >0, of the polynomial P(w), we are led to
wave solutions of the form

a(x1,t) = Re{A a1}t (68)
when a genuine complex root is considered, or
a(x;,t) = Re{A e }e, (69)

when there is a real root.

Concluding, we can see that the restrictions described in (60) show that one can have genuine
wave solutions whose amplitude decreases exponentially in time (in the case of a complex root)
or wave solutions in form of standing mode exponentially decaying in time (when there is a
negative real root).

It is important to note that if the thermodynamic restrictions (9) are not fulfilled (ie., { <0
or % < 0) then inequality (66) can no longer be fulfilled and then one of the solutions presented
in (68) or (69) contains a term of the form e* with v > 0 which becomes infinite when time
increases to infinity. In such a case the energy blows up as time goes to infinity. We are then led
to unrealistic wave solutions, with infinite energy, which expresses exponential instability.

6. Exponential stability

Guided by the results of the previous section as well as by the exponential decrease present in the
classic theory of heat conduction based on Fourier’s law, we think that this exponential decrease
in time could also be present in the three-phase-lag model in the study. With this in our mind,
just to simplify the reasoning, we suppose a homogeneous material and then we proceed to estab-
lish the exponential decay in time result.
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To develop our analysis in the remainder of this paper we need to strengthen our previous
hypotheses (H1) to (H4) in the sense that:

(H1): the specific heat per unit volume is strictly positive, that is

c>0; (70)
(H2): k};. is a positive definite tensor as
k& & > k& for all (&),8,,8) #0; (71)
(H3): G = kij + (12— rq)k;‘j is a positive definite tensor as
(&8s = (n&i€i forall (&1, 65, 8) #0; (72)
(H4): nij = T kij — %q (kij + 74 k;) is a positive definite tensor, that is
#1568 = #mi€; for all (&, 65,65) #0, (73)

*

Ij)
Theorem 4. (Exponential stability) Suppose the hypotheses (H1) to (H4) to be fulfilled. Also we
assume that meas(X,) # 0. Let S = {o,q;} be a solution of the initial boundary value problem P

where k;,, {,, and x,, are the smallest eigenvalues of the tensors k;, {; and »x;, respectively.

corresponding to the given data D = {0;3°,¢%,4%;0,0}. Then S = {o, qi} is exponentially stable.

Proof. Since meas(X;) # 0 and by using the boundary condition u = 0 on X;, we will have occa-
sion to use the Poincaré inequality

J wudv > A J wldv, (74)
B B

where / is the minimal eigenvalue of the (negative) Laplace operator in the space Wy *(B). In
this connection we note that the identity (26) implies

dE . ) .. ..
d—tl(t) = —L (L, i (£)65(8) + oo, i(£)3,5(£)] v, (75)
so that, by means of the inequalities (72), (73) and (74), we deduce
%y < —AJ [Cmo'c(t)z +fq%ma(t)2} v, (76)
dt B
and therefore, we have
0 <=3 | [ 0ilo) + w010
A . 2 N2
_EJB [Cmoc(t) + Tgamai(t) }dv.
Moreover, from the relations (28), (71) to (74), we have
2
Ei(f) > J (1) + K A1)+ gl 3(1) + 22 a(0)

+/'t%mdc(t)2 +% [gmdc,,'(t)dc,i(t) + rq%m’o'c>i(t)oc,i(t)] }dv,

and therefore E;(t) appears like a measure L,(B) for {o, o ;, 6, ,0, ;& 8} and hence there exist
the computable constants ¢,, > 0 and ¢y > 0, so that

0 < ¢,y meas{o, o0, 0, 0,0 5,0 5,0 < Ey(t) < ey meas{o, o, &, 0, & 1, 0 5,6 }. (79)
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At this point it is useful to remember that, in the situation when the three relaxation times
could be negligible, then the two relations (28) and (75) could be coupled to give the differential
inequality

dE? 22k,

—(t) < = t), 80

h(n) < (1) (30)
which integrated implies the following exponential decay estimate

E2(t) < E9(0)e 20/, (81)

that is the exponential decay estimate corresponding to the classical heat equation based on the
Fourier law for the heat flux. Here EY(f) is the expression of E;j(t) when the three relaxation
times are neglected.

Returning to the model considered by us, it can be seen from the relations (77) and (78) that the
terms o(¢)* and %(t)’ are missing in the second member of the relation (77). To fix this inconvenience
we have to use other identities found through the basic equations to help add the missing terms.

Consequently, if we multiply the heat equation (13), with null heat source, by o and &,
respectively, and then we use the relations (12) and (14), we obtain the following identities

% () = Ji |30 + crgn(t)in(e) + rkye (£)3(1)

(82)
+(m; /z) G(0E(E) - Kooi(1)a, j(t)} v,
%(t} = JB [k;a,i(t)ac,j(t) + (k,»j +rak;;)az,,-(t)az,j(t) — c1, &'(t)z} dv, (83)
where
Ez(t):L [en(1)5(0) + ok (0030) + (1/2) (K k) 2400310 (84)
and
Ba(t) =5 || [eb 0+ (1/2)esi0 + erky o) (o)
B (85)
2 (ki T k)i (05,5(0) + 2K5201(8) (1) .
Therefore, if we set
Fi(t) = Eo(t) + T Es(t), (86)
then we have
dFl =, [9c/8 2 crga(0)(t) + trkioi(£)a(1)
+15 ko i(1)a;(t) + ) (ki + o k) ai(t)e () (87)

—(¢/8) (zfqaz(t) - dc(t)) — ko(£)ouj(£) = (et /2)i(r)? | dv,

Now we use the Cauchy-Schwarz and arithmetic-geometric mean inequalities in order to
obtain the estimate

2
%m <Jy [léc (0 52 50 + Kreglode (1) (1)
(88)

"’KZT mbl,i(£)3,1( 1 IB[ i(1) + (C7~'4/2) ()2 dv,
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where

1 T T v
Ky =—+— TTkrs + k* Trkys + k* >
Tqém
12
K, = 2 ( |:kr5 + (fo + Tq) k:s] [krs + (Tx + Tq) kjs:| ) :
Ko 2 2

Furthermore, we want to dominate the first integral term from relation (88) with the help of
relation (77). For this purpose we choose the non-dimensional parameter 6 > 0 and then we
introduce the following function

(89)

F(t) = 14E:(t) 4 6F (1), (90)
so that, by means of the relations (77) and (88), we have

d;t:( t) < —% JB [ylco'c(t)z erzcr;&(t)z} dv—% JB[y3qumd,i(t)d,i(t)

(1)
T ()5 ()] — EJB [k 02 (0) + (0] e
where
A 136 A7 m
yI:@—T, P, = ’C‘ -6, p;=1-20K;, 7,=1-20K;. (92)

At this moment, we choose the parameter ¢ so small in such a way as to make positive the
four coefficients y, to y,, that is, we put

4t,C,, Ak 1 1
0<0<m Op=min{—2, =2, — — 93
e ( 13c ~ ¢ 2K, 2K, ©3)
so that there is a positive computable constant f,, in order to have
dF e
r (t) < —fu meas{o, o ;, 0,0, 0, 0,6 }. (94)

Next, we present an evaluation of the expression F;(¢). In this sense, we use relations (84) to
(86) to write

= s [ (O‘ )+ Tq0 ot ))2 "‘% Kij(o,i(t) + Tréi(2)) (o0, (8) + Tréei(t)
S (0 + 50 80+ (K k) (50 + 5 (0) (5,00 + (1)
g kg <ga,i(t) +% T;&,i(t)) <ga,j(t) +i r;a,j(t)) +% rngk,-j&,,-(t)az,j(t)] & (o)

qu K

_‘JHB lzi ot ) +— (t)z Jr% (‘E%kij + T; (kij + Tak;))d,i(t)d,j(f)

2
+<rq(k,~j+rxk;‘j) 2‘12 k;) i(t)ej(t) [ dv+ <% )ka o () ;(t)dv,

where ¢ is a positive parameter at our hand. Now we choose ¢ so that

e= |2, (96)
Z’Eq
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and note that

c Ty - 1 AN - .
Ei(1) > -, [2—% (1) + 58 G0 + 5 (Thky + i (ky  ky ) ) s (0 (0)
2 (97)
+(rq(kij +1,k5) +2—; k;.;.) 5 i(t)a (1) | dv
and
Cc L 2 1 . .
Fi0) < | g, (20 +53(0)) 5 Ry(oa(0) + xra))(10) + 7 (0)
T L T N . . .
+t a(e) + =t a0+ (kl + rak,.j) (6,1(8) + Tg.i()) (3,1(8) + 748,5(1)) (98)
k* 1 2. 1 2. 1 3k . . d
+19 ki | eoi(t) + % T,%,i(t) ) | e j(t) + % T,0,(1) ) + 5 T o, i (£)o(t) | dv.
It can be seen from (97) that one can determine a positive constant h,, so that
Fl(t) 2 _hmmeas{a7 “,i) d; 5‘3 O.C,ia &,is&‘}a (99)
and therefore, by means of relation (79), we will have
F(t) = t4Ei(t) + 6F1(t) > (tqcm — Ol )meas{o, o i, 6, 8, 0 1, & 1,6} > 0, (100)
provided we choose the parameter ¢ so that
0<d<d, 5;:2&. (101)

On the other side, by using the Cauchy-Schwarz and arithmetic-geometric mean inequalities
and the relation (98), we can get a positive computable constant C so that

Fi(t) < Cmeas{o, o ;, 0, 8,0 ;, % ;0 }, (102)
and hence we have
F(t) = t4E1(t) + OF, (1) < (tgem + 0C)meas{ot, ot 1, &, 8, 6 3,8 i, 5} (103)
Consequently, from the relations (94) and (103), we get

dF < S

ar —m , 104
a = rec W (104

provided 0 < 6 < min{d,,,9;,}. The differential inequality (104) shows the expected exponential
decrease in time of the solution like in (81). O

7. Domain of influence

Throughout this section we shall assume that a semi-infinite cylindrical region B = D x (0,00) is
filled by a homogeneous and anisotropic conductor material with three-phase-lag times. We
choose a Cartesian coordinate system Oxjx,x3; in such a way that the base of the cylinder is con-
tained in the plane x; =0, and the axis Ox; is parallel to the generators of the cylindrical
surface.

Throughout this section we consider the initial boundary value problem P¢ defined by the
heat equation (6), with null heat source, the constitutive equation (4), the initial conditions
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o(x,0) =0, a(x,0)=0, gi(x0)=0, ¢,(x0) =0, foral xeB, (105)
and the following boundary conditions

qp(x1, %0, x3,t)n, =0 for all  (x1,x2,%3) € [0D x (0,00)],

106
q3(x1,%2,0,1) = g(x1,%x,t) for all (x1,x) €Dy and ¢t € (0,00). (106)

Here n, are the components of the outward normal to the lateral surface of the cylinder and
g(x1,x,,1) is a prescribed smooth function, while Dy is the base section of the cylinder. Throughout
this section we are interested in how the solution of the initial boundary value problem P behaves
with respect to the distance x3 at the loaded base x; = 0. In this sense, we want to identify appropri-
ate measures associated with the solution S = {, g;} of the problem in question P¢ that describe its
behavior in terms of the distance x; to the base acted by the specified load g(x;, x2, t).

We try to study our problem by using an associated "measure” of the solution § = {o, q;} like

H(xs, ) = J; JD 3,(2)i(2)dadz, x3 >0, >0, (107)
where D,, is the transverse section of the cylinder with the plane x;3 = constant. We note that
%:I(xg,t) = JDXS 35(a(t)da, x3 >0, t>0, (108)
and moreover,
o (asat) = J; JD (3,320 (2) + 8, (2)i 5(2) | dad. (109)

Furthermore, on the basis of the equation (13) (with null heat source), the lateral boundary
condition (106) and the divergence theorem we obtain

t

gfi (e t) = - Jt JD@ ¢i(2)5 (2)dadz + J

0 0

J 3,(2),i(z)dadz. (110)
D.

X3

The relation (20), when substituted in relation (110), coupled with the use of the initial condi-
tions (105), provides

ot = | {0t kom0

+%zjd,i(t)d‘,j(t) + ﬁ [Cijdﬂ,i(t)d’j(t) + ‘cq%,-jb'c,,-(t)'a'c,j(t)] }da

+ fo J‘D [, i(2)6(2) + t4%ii0,i(2)d j(2) | dadz.

(111)

Consequently, in view of our hypotheses (H1) to (H4), we deduce
. o
J {c&(t)z R A(0RA) + 2 s (1) (1)
Dy (112)

gl <a,i(t) +% az,,@)) <a,,-(t) +% &,i(t)ﬂ da >0,

_6_H( t)>l
Oy " =5

and hence H(xs,t) is a non-increasing function with respect to x; for all ¢+ > 0. As we will see
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later, this last inequality suggests that H(x3,t) can lead to a measure of the solution S = {o,g;}
of our initial boundary value problem Pc.

Further, we use the Cauchy-Schwarz and the arithmetic-geometric mean inequalities into rela-
tion (108) in order to obtain

OH

o (x3,1) g% JD [scﬁ'c(t)z-i-i 213(t)2]da, (113)

X3

for any positive parameter ¢. Now from the constitutive relation (19) we deduce

135](6) < (ks ks,) 21600 (8)8,:(6)] % + (ears) V2 (1), ()]

. T, . . T . 1/2 (114)
+(€3rC3r)1/2 K“,i(t) +3 Of,i(t)) (Of,i(t) +3 O‘,i(t))} >
and hence we get
3,(1)* <302 {k;&,i(t)&,i(t) + Tyl (&,,(r) +2 'oz,i<t)> x
, (115)
. Tq .. Tq .. ..
x| & i(1) + o, ;(t) ey w0 (1), (1) |,
where
% 1k 1/2 2 1/2 1/2
M = max <k3r—i€3r> , Ajr%.’yr i C3r€3r ) (116)
Kz, To%m TqCom
Therefore, the relations (113) and (115) lead to
OH 1 . 3MP .
- (1) <3 JDX {eax(t)z +— {kmoc,i(t)a,i(t)
. , (117)
. Tq . . Tq . Tq . .
+‘5qu OC,,'(t) +? OC,,'(t) O(,,'(t) +? OC,,'(t) +? %mCX,,'(t)OC‘i(t) da,
from which, putting
&= M\/i (118)
c
and by using the estimate (112), we get
1 |OH OH
E E (X3, t) +87x3()€3,t) S 0, for all X3 > 0,t > 0. (119)
This last inequality is equivalent to the following differential inequalities
1 0H OH
E E(X:),,t) —|—a—x3(X3, t) <0 for all x3 > 0,t >0, (120)
and
1 OH OH
- o (x, —(x3,t) <0 for all , . 121
. 8t<x3t)+8x3(x3t)_0 orall x3>0,t>0 (121)
Let us first choose ty > 0 and xJ > efy. If we set t = £y + (x3 —x3)/¢ in (120) it results
d _ 40
2 {H(xg,to +2 x3)] <o, (122)
dxs £
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and hence H(x3,t + (x3 —x3)/¢) is a non-increasing function with respect to x3. Thus, if we
recall that 0 < xJ — &tp < x3, it results

H(x3, 1) < H(xJ — ety,0) = 0. (123)
Further, we set t = £y — (x3 — x3) /¢ in (121) so that it follows
d _ 40
e [H<x3,to — x3>] <o, (124)
dX3 &

and hence H(xs,f — (x3 —x3)/¢) is a non-increasing function with respect to x3. Since xJ <
x + &ty it results

H(x3,t0) > H(x3 + &ty,0) = 0. (125)
Consequently, from the relations (123) and (125), we deduce that
H(oo,ty) = lim H(xs,ty) =0 for all #, >0, (126)

and hence, by an integration of the relation (112) over (x3,00), we obtain

’62

H(X3, t) Z% J |:CO~'C(t)2 + k;&,i(t)&)i(t) + Eq %m&,i(t)&,i(t)

By,

(127)
. Tq .. . Tq ..
+7Cm | 2,i(2) +E ai(t) ) a,:(8) +7 a(t) ) |dv >0,
for all x3 > 0, t > 0 and By, = D X (x3,00). Thus, H(x3,t) appears like a measure of the solution

§ = {a,q;} of our initial boundary value problem Pc.
Finally, we set x3 = &t in (120) to obtain

d
—[H(et,1)] <0, (128)
dt
so that H(et, t) is a non-increasing function with respect to t. Thus, we deduce
H(et,t) < H(0,0) = 0. (129)

Since H(x3,t) is a non-increasing function with respect x3, it follows that for x; > &t we will have
H(xs,t) < H(et,t) < 0, (130)
which in conjunction with (127) proves
H(xs;,t) =0 for all x3 >et,t>0. (131)
In view of the relations (127) and (131), we deduce that
é:c(xl,xz,x3,t) =0, (x,%) € Dy,, x3>c¢t,t>0, (132)
which integrated under zero initial conditions gives
o(x1, %2, x3,8) =0, (x1,%) € Dy,,  x3 > &b, t > 0. (133)
If we substitute this last relation in the constitutive equation (4), we obtain
2
qi + 149; +?q 4; =0, (x1,%) €Dy, x3>¢t,t>0, (134)

which furnishes g;(x,x2,%3,¢) = 0 for all (x;,x,) € D,,, x3 > ¢t and ¢ > 0. Thus, we have estab-
lished the following result
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Theorem 5. (Domain of influence) Suppose the hypotheses (H1) to (H4) to be fulfilled. Let S =
{o,qi} be a solution of the initial boundary value problem Pc corresponding to the given data

D = {0;0,0,0;0,g}. Then the following domain of influence result holds true
S(x1,%2,%3,8) =0, (x1,%) € Dy,, x3 > ¢t,t>0, (135)

that is, in the part of the cylinder located at a distance x3 > ¢t, t > 0, from the base of the cylin-
der, all thermal activity stops, that is, the prescribed action on the base of the cylinder is not felt
there.

8. Final comments

Our present analysis establishes a series of results that highlight characteristic properties of the
three-phase-lag model proposed by Roy Choudhury [25], as: uniqueness, continuous data depend-
ence, domain of influence, damped in time wave solutions, standing modes, exponential stability.
It generalizes, improves and completes some existing results in the specialized literature, but also
presents new information on the model. Thus, we have:

(i)  the results described in the manuscript refer to the solution (a, g;) of the system of equa-
tions (4) and (6), while the results in Refs. [27] and [35] refer to the stability of solutions
o of the differential equation (8). This means quite different boundary and initial condi-
tions in the two ways of approaching the considered thermal model;

(ii)  we have to note that the prescription of the initial conditions (10) in this manuscript can-
not be made equivalent to the initial conditions (2.2) in Ref. [27];

(iii)  the present model leads to the fourth-order in time equation (7), which for a homoge-
neous and isotropic rigid conductor takes the form of the equation (8) considered by
Quintanilla and Racke [27] and by Dell'Oro and Pata [35]. Thus, the results presented in
our work, regarding exponential stability of solutions, also apply to these particular cases,
although here we also include, as normally, the boundary conditions in terms of the heat
flux, and, moreover, the initial conditions also include the values of the heat flux vector;

(iv)  unlike the results presented in [27] and [35], the restrictions under which our results are
obtained have a clear mechanical meaning, that of compatibility of the constitutive equa-
tion (4) with the Second Law of Thermodynamics;

(v) our results regarding uniqueness and continuous data dependence improve those
described in [26] and [29]. By using the Lagrange identity method (see, for example, Brun
[38] and Rionero and Chirita [39]), as well as that of logarithmic convexity method (see,
e.g. Knops and Payne [40]), allows to remove the hypothesis regarding the semi-positive
definiteness of the conductivity rate tensor;

(vi)  unlike Fourier’s classical law for heat flux, in Ray Choudhuri’s model it is possible to have
both standing modes and damped in time waves;

(vii) Theorem 5 provides an upper bound of the propagation speed of the excitation effects on
the base of the cylinder, along its generators. Although the results presented in section 7
refer to a particular domain, here a cylinder, they can be obtained for any domain, as pre-
sented in [41].
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