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Some characteristic properties of the solutions in the three- 
phase-lag heat conduction

Stan Chiriţ�a 

Faculty of Mathematics, Al. I. Cuza University of Iaşi, Iaşi, Romania 

ABSTRACT 
In this paper we consider the three-phase-lag model of heat conduction 
that involves second-order effects in phase lag of the heat flux vector. This 
model leads to a fourth-order in time equation of Moore–Gibson– 
Thompson type. We use the thermodynamic restrictions derived from the 
compatibility of the constitutive equation with the Second Law of 
Thermodynamics to study the properties of the solutions of the initial 
boundary value problems associated with the model in concern. In this 
connection we establish a series of well-posedness results concerning the 
related solutions like: uniqueness, continuous data dependence, exponen
tially stability or domain of influence. Furthermore, based on the thermo
dynamic restrictions, we show that the thermal model in question admits 
damped in time propagating waves as well as exponentially decaying 
standing modes. We also show that when the thermodynamic restrictions 
are not fulfilled, then wave solutions appear that cause the energy blows 
up as time goes to infinity.
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1. Introduction

Motivated mainly by the fact that the use of classical Fourier’s law leads to an infinite signal 
speed paradox, several other constitutive relations for the heat flux have been considered, cf. 
Chandrasekharaiah [1], Hetnarski and Ignaczak [2, 3], Straughan [4] or Tzou [5]. Among these is 
the Maxwell-Cattaneo-Vernotte’s law (see e.g. [6–8]) that included the heat flux, its time deriva
tive and its phase lag. As a consequence, the thermal model based on such a constitutive equation 
leads to a third-order in time equation in terms of temperature variation, known as the Moore- 
Gibson-Thompson equation (Cf. Moore and Gibson [9] and Jordan [10])

s&u þ €u − kD _u − k�Du ¼ 0, (1) 

where s > 0 is a relaxation time, D is the Laplace operator and k and k� are positive parameters 
under restriction k > sk�: This equation has attracted much attention in recent years in relation 
to the mathematical study of problems of uniqueness, continuous data dependence, exponential 
decay of energy or domain of influence: Kaltenbacher et al. [11], Kaltenbacher et al. [12], 
Marchand et al. [13], Conejer et al. [14], Lasiecka and Wang [15, 16], Dell’Oro et al. [17], 
Dell’Oro and Pata [18], Pellicer and Said-Houari [19], Jangid and Mukhopadhyay [20], Chen and 
Ikehata [21], Ostoja-Starzewski and Quintanilla [22], Fern�andez et al. [23], Abouelregal 
et al. [24].

Later, the Roy Choudhuri [25] proposed a constitutive law which involved three different 
phase delays in the heat flux vector, the temperature gradient and the gradient of thermal 
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displacement. The restrictions imposed by the compatibility of this constitutive equation with the 
Second Law of Thermodynamics, relating the relaxation times and the other thermal coefficients 
involved, were determined by Chiriţ�a et al. [26]. It must be said that the three-phase-lag model 
has been subjected to intense research in recent years, either from the point of view of the well- 
posedness of the model, as well as from the point of view of treating some practical problems in 
medicine or heat transfer. We mention here the results obtained by Quintanilla and Racke [27], 
Akbarzadeh et al. [28], Chiriţ�a et al. [26], D’Apice et al. [29], Biswas et al. [30], Chiriţ�a [31], 
Zhang et al. [32], Kumari and Singh [33] and Singh et al. [34].

A generalization of equation (1) was proposed and studied independently by Quintanilla and 
Racke [27] and by Dell’Oro and Pata [35] in the following form

s2
q

2
qcv

::::
T þ sq qcv&T þ qcv €T ¼ k�DT þ s��D

_T þ ksTD€T , (2) 

where the coefficients appearing are positive constant material parameters and s�� ¼ k�s� þ k: The 
authors obtain conditions on the material parameters to guarantee the exponential stability of sol
utions. As we will show below, the constitutive law proposed by Roy Choudhuri [25], in combin
ation with the usual heat equation, leads to a fourth-order in time differential equation in terms 
of the thermal displacement, that generalizes the Moore-Gibson-Thompson equation (1) as well 
as that described by (2), the latter being obtained as a particular case of a homogeneous and iso
tropic rigid conductor.

Our analysis in this paper is dedicated to studying the characteristic properties of the three- 
phase-lag model proposed by Roy Choudhuri [25], with second-order terms involved in the heat 
flux. In this sense, we use the thermodynamic restrictions imposed by the compatibility of the 
constitutive equation with the Second Law of Thermodynamics in order to study well-posedness 
of the model by establishing some results regarding the uniqueness of the solutions as well as 
their continuous data dependence. We also establish a domain of influence of the given data of 
the initial boundary value problem, a result that shows that outside the domain of influence no 
thermal activity is felt, in other words we obtain an upper bound of the speed of propagation of 
the effects of the given data.

Furthermore, under congruent restrictions with those of thermodynamics, we study the types 
of waves possible in a homogeneous and isotropic rigid conductor and show that there can be 
waves damped in time or standing modes that decrease exponentially with increasing time. We 
also show that when the thermodynamic restrictions are not fulfilled, some wave solutions can 
appear that cause the energy blows up when time increases to infinity. Moreover, we show that 
any solution of the model in question, which represents the effect of some initial conditions, is 
exponentially stable.

The plan of the work is the following. Section 2 presents the basic system of differential equa
tions describing the evolutionary behavior of the heat flux and of the thermal displacement in the 
line described by Roy Choudhuri [25]. The associated fourth-order in time differential equation 
in terms of thermal displacement is explicitly written. Section 3 formulates the initial boundary 
value problem associated with the model in concern and then describe its auxiliary version that 
will be useful in the future analysis. A law of conservation of energy is established and which 
introduces a measure of the solution in terms of thermal displacement. Section 4 is dedicated to 
the well-posedness of the model: there is established a uniqueness theorem and a continuous data 
dependence result under restrictions congruent with those imposed by Second Law. We also used 
the Lagrange identity and the logarithmic convexity methods to obtain the uniqueness under 
mild restrictions upon the material characteristics. Section 5 is related to the class of waves propa
gating in a three-phase-lag model. Section 6 considers the general model as proposed by Roy 
Choudhuri [25] and establishes the exponential decay in time of the solutions, that is the expo
nential stability. Section 7 presents the domain of influence theorem for a semi-infinite cylinder.
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2. Three-phase-lag heat conducting model for a rigid conductor

Starting from the Green-Naghdi model [36] and the Tzou model [37], Roy Choudhuri [25] pro
posed the following constitutive equation for the heat flux vector

qiðx, t þ sqÞ ¼ − kijðxÞT, jðx, t þ sTÞ þ k�ijðxÞa, jðx, t þ saÞ
h i

, (3) 

where qi are the components of the heat flux vector, a is the thermal displacement, T ¼ _a repre
sents the temperature variation from the constant reference temperature T0 > 0, kij are the com
ponents of the conductivity tensor and k�ij are the components of the conductivity rate tensor; 
moreover, t is the time variable, x is the spatial variable, while sq, sT and sa are the phase-lags 
(or delay times) of the heat flux vector, of the temperature gradient, and of thermal displacement 
gradient, respectively. In agreement with the Roy Choudhuri’s interpretation, the equation (3)
means that a temperature gradient and a thermal displacement gradient imposed across a volume 
element at times t þ sT and t þ sa, respectively, result in a heat flux flowing at a different time 
t þ sq: However, the constitutive equation (3) does not formulate any restriction regarding the 
three relaxation times and under this general form it does not seem possible to solve its compati
bility with the Second Law of Thermodynamics in order to determine the restrictions on the 
three relaxation times and the constitutive thermal coefficients. To solve this situation, Roy 
Choudhuri proposes the following generalized heat conduction law valid at a point x at time t

qiðx, tÞ þ sq _qiðx, tÞ þ
s2

q

2
€qiðx, tÞ ¼ −k�ijðxÞa, jðx, tÞ

− kijðxÞ þ sak�ijðxÞ
� �

_a , jðx, tÞ − sTkijðxÞ€a , jðx, tÞ:
(4) 

Equation (4) serves as a generalized constitutive heat conduction law in which the elastic 
deformation term is ignored. The compatibility of the three-phase-lag constitutive equation (4)
with the Second Law of Thermodynamics was studied by Chiriţ�a et al. [26] and it requires that 
the following tensors

fij ¼ kij þ sa − sqð Þk�ij, Kij ¼ sT kij −
sq

2
kij þ sa k�ij
� �

, (5) 

to be positive semi-definite.
Throughout this paper we consider the three-phase-lags model for a rigid conductor as pro

posed by Roy Choudhuri [25] based on the constitutive equation (4) and the well-known energy 
conservation equation

−qi, iðx, tÞ þ rðx, tÞ ¼ cðxÞ€aðx, tÞ, (6) 

where rðx, tÞ represents the heat source acting per unit volume and cðxÞ is the specific heat per 
unit volume. Under the thermodynamic restrictions just described in (5), some results about the 
continuous dependence of the solutions with respect to the given initial data and to the supply 
term are established for the related initial boundary value problems in [26].

In terms of the thermal displacement a, the above three-phase-lags model for a rigid con
ductor is based upon the following differential equation

1
2

cs2
q
::::
a þ csq&a þ c€a − k�ija, j

� �

, i
− kij þ sak�ij
� �

_a , j

h i

, i   

− sT kij€a , j
� �

, i ¼ 0, (7) 

where we assumed the vanishing of the heat source and, moreover, the dependence on the inde
pendent variables x and t was suppressed, but implicitly understood.
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For an isotropic and homogeneous rigid thermal conductor, when kij ¼ kdij and k�ij ¼ k�dij, 
the equation (7) becomes

1
2

cs2
q
::::
a þ csq&a þ c€a − k� Da − kþ sak�ð ÞD _a − sTkD €a ¼ 0, (8) 

where D is the Laplace operator. Moreover, the thermodynamic restrictions described by (5) can 
be read as

f ¼ kþ sa − sqð Þ k� � 0, K ¼ sT k −
sq

2
kþ sa k�ð Þ � 0: (9) 

Equation (8) was proposed and studied by Quintanilla and Racke [27] in relation to the expo
nential stability of solutions under suitable Dirichlet boundary and initial conditions. An equation 
of like that described by (8) was obtained by Dell’Oro and Pata [35] by means of a Moore- 
Gibson-Thompson equation with memory in the presence of an exponential kernel. Under homo
geneous Dirichlet boundary condition, there are established some stability properties of the 
related solution semigroup and a necessary and sufficient condition for exponential stability is 
obtained, in terms of the values of certain stability numbers depending on the strictly positive 
coefficients involved.

3. Formulation of the initial boundary value problem and its auxiliary form

Throughout this paper we shall assume that a bounded three-dimensional region B is filled by an 
inhomogeneous and anisotropic conductor material with three-phase-lag times. We denote by @B 
the boundary surface of B and assume that it is sufficiently regular to allow application of the 
divergence theorem. Throughout this paper we consider the initial boundary value problem P
defined by the heat equation (6), the constitutive equation (4), the initial conditions

aðx, 0Þ ¼ 0, _aðx, 0Þ ¼ _a0ðxÞ,
qiðx, 0Þ ¼ q0

i ðxÞ, _qiðx, 0Þ ¼ _q0
i ðxÞ, for all x 2 B,

(10) 

and the following boundary conditions

aðx, tÞ ¼ Hðx, tÞ on R1 � ð0,1Þ,
qiðx, tÞni ¼ Qðx, tÞ on R2 � ð0,1Þ:

(11) 

Here _a0ðxÞ, q0
i ðxÞ and _q0

i ðxÞ, as well as Hðx, tÞ and Qðx, tÞ are prescribed smooth functions. 
Moreover, ni are the components of the outward normal vector to @B and R1 and R2 are subsets 
of the boundary @B so that �R1 [ R2 ¼ @B and R1 \ R2 ¼ ;: The initial conditions (10) and 
the boundary conditions (11) are presented in terms of the thermal displacement a only for 
mathematical reasons, but they can be easily expressed in terms of the temperature variation T (a 
fundamental physical quantity that can be measured by experiments) through the relation 
aðx, tÞ ¼

Ð t
0 Tðx, sÞds, that is, we have: _a0ðxÞ ¼ Tðx, 0Þ for x 2 B and Hðx, tÞ ¼

Ð t
0 Tðx, sÞds 

for ðx, tÞ 2 R1 � ð0,1Þ:
By a solution of the initial boundary value problem P, corresponding to the given data D ¼

fr; _a0, q0
i , _q0

i ; H, Qg we mean the ordered array S ¼ fa, qig defined on B� ð0,1Þ with the prop
erties that aðx, tÞ 2 C2, 2ðB� ð0,1ÞÞ, qiðx, tÞ 2 C1, 2ðB� ð0,1ÞÞ and which satisfy the field equa
tions (4) and (6), the initial conditions (10) and the boundary conditions (11). Throughout this 
paper we will assume the existence of such a solution! This means that we do not deal with the 
existence and regularity of the solutions of the initial boundary value problem.

Our further analysis requires to introduce an auxiliary initial boundary value problem ~P asso
ciated with the problem in question P: In this sense we introduce the notations
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~qi ¼ qi þ sq _qi þ
s2

q

2
€qi, ~a ¼ aþ sq _a þ

s2
q

2
€a, ~r ¼ r þ sq _r þ

s2
q

2
€r , (12) 

and note that the heat equation (6) implies

−~qi, i þ ~r ¼ c€~a in B� ð0,1Þ, (13) 

while the constitutive equation (4) becomes

~qi ¼ −k�ija, j − kij þ sak�ij
� �

_a , j − sTkij€a , j in B� ð0,1Þ: (14) 

Furthermore, in view of the initial conditions (10) and the heat equation (6), we have

~aðx, 0Þ ¼ sq _a0ðxÞ þ
s2

q

2
€aðx, 0Þ,

_~aðx, 0Þ ¼ _a0ðxÞ þ sq €aðx, 0Þ þ
s2

q

2
&aðx, 0Þ for all x 2 B,

(15) 

while the boundary conditions (11) furnishes

~aðx, tÞ ¼ ~Hðx, tÞ on R1 � ð0,1Þ,
~qiðx, tÞni ¼ ~Qðx, tÞ on R2 � ð0,1Þ,

(16) 

where €aðx, 0Þ and &aðx, 0Þ are calculated by means of the heat equation (6) as

€aðx, 0Þ ¼
1
c

rðx, 0Þ − q0
i, iðxÞ

h i
, &aðx, 0Þ ¼

1
c

_rðx, 0Þ − _q0
i, iðxÞ

h i
, (17) 

and

~H ¼ Hþ sq _H þ
s2

q

2
€H, ~Q ¼ Qþ sq _Q þ

s2
q

2
€Q: (18) 

For future convenience we write the constitutive equation (14) in the following form

~qi ¼ −k�ij~a , j − fij _a , j þ
sq

2
€a , j

� �

− Kij€a , j in B� ð0,1Þ: (19) 

Moreover, we note that the relations (12) and (19) furnish the following identity

−~qiðtÞ _~a , iðtÞ ¼
1
2
@

@t

�

k�ij~a , iðtÞ~a , jðtÞ þ Kij _a , iðtÞ _a , jðtÞ

þsqfij _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , jðtÞ þ
sq

2
€a , jðtÞ

� �

þ
sq

2
½fij _a , iðtÞ _a , jðtÞ

þsq Kij €a , iðtÞ€a , jðtÞ�
�

þ fij _a , iðtÞ _a , jðtÞ þ sq Kij €a , iðtÞ€a , jðtÞ
� �

:

(20) 

In our further analysis we will need some of the following hypotheses upon the characteristic 
material coefficients

(H1): the specific heat per unit volume is strictly positive in B, that is

cðxÞ > 0 for all x 2 B; (21) 

(H2): k�ij is a positive semi-definite tensor as

k�rsðxÞnrns � 0 for all ðn1, n2, n3Þ and for all x 2 B; (22) 

(H3): fij ¼ kij þ ðsa − sqÞk�ij is a positive semi-definite tensor as

frsðxÞnrns � 0 for all ðn1, n2, n3Þ and for all x 2 B; (23) 
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(H4): Kij ¼ sT kij − sq
2 ðkij þ sa k�ijÞ is a positive semi-definite tensor, that is

KrsðxÞnrns � 0 for all ðn1, n2, n3Þ and for all x 2 B: (24) 

The last two hypothesis proves that the Second Law of Thermodynamics is fulfilled as results 
from the relation (5). The first hypothesis proves that a genuine dynamic thermal situation is 
considered. While the hypothesis (H2) represents an extension of hypothesis (H3) for the con
ductivity rate tensor.

We can now establish a basic identity regarding the solutions of the initial boundary value prob
lem ~P and thereby for those of the initial boundary value problem P: For this purpose, we note that 
the heat equation (13), the divergence theorem and the boundary condition (11) provide

ð

B
c _~aðtÞ€~aðtÞdv ¼

ð

B
~rðtÞ _~aðtÞdv −

ð

@B
~qiðtÞni _~aðtÞdaþ

ð

B
~qiðtÞ _~a , iðtÞdv, (25) 

and so, by using the relation (20), we obtain the following identity

EðtÞ ¼ Eð0Þ þ
ðt

0

ð

B
~rðsÞ _~aðsÞdvds −

ðt

0

ð

@B
~qiðsÞni _~aðsÞdads, (26) 

where

EðtÞ ¼ E1ðtÞ þ
Ð t

0

Ð

B fij _a , iðsÞ _a , jðsÞ þ sq Kij€a , iðsÞ€a , jðsÞ
� �

dvds, (27) 

and

E1ðtÞ ¼
1
2

ð

B

�

c _~aðtÞ2 þ k�ij~a , iðtÞ~a , jðtÞ þ Kij _a , iðtÞ _a , jðtÞ

þsqfij _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , jðtÞ þ
sq

2
€a , jðtÞ

� �

þ
sq

2
fij _a , iðtÞ _a , jðtÞ þ sq Kij€a , iðtÞ€a , jðtÞ
� �

�

dv:

(28) 

By virtue of our hypotheses (H1) to (H4) we can see that

EðtÞ � 0 for all t > 0: (29) 

Furthermore, under the hypothesis of null initial conditions, it can be seen that EðtÞ can be 
considered a measure of the solution S ¼ a, qif g in the sense that if EðtÞ ¼ 0 for all t > 0, then 
Sðx, tÞ ¼ aðx, tÞ, qiðx, tÞ

� �
¼ 0 for any x 2 B and any t > 0: In fact, we see that in (27) and (28)

we have a sum of positive terms equal to zero and therefore each of the terms must be zero. 
Thus, we see that if EðtÞ ¼ 0 then it results that _~aðtÞ ¼ 0, that is

_aðx, tÞ þ sq €aðx, tÞ þ
s2

q

2
&aðx, tÞ ¼ 0, for all x 2 B, t > 0, (30) 

which, integrated with respect to t under zero initial conditions for a, provides

aðx, tÞ ¼ 0 for all x 2 B, t > 0: (31) 

Then, by taking into account this last relationship in the constitutive equation (4) we deduce

qiðx, tÞ þ sq _qiðx, tÞ þ
s2

q

2
€qiðx, tÞ ¼ 0 for all x 2 B, t > 0, (32) 

which, integrated with respect to t under the initial conditions qiðx, 0Þ ¼ 0 and _qiðx, 0Þ ¼ 0, fur
nishes
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qiðx, tÞ ¼ 0 for all x 2 B, t > 0: (33) 

Thus, it results that Sðx, tÞ ¼ 0 and hence we can conclude that EðtÞ is a measure of the solu
tion S ¼ a, qif g:

4. Well-posedness results

In this section, we deal with issues related to the well-setting of the related initial boundary value 
problems: uniqueness of solutions and their continuous dependence with respect to the given 
data, all under some assumptions on the thermal characteristics that are congruent with the 
established thermodynamic restrictions.

We will start with the following uniqueness result.

Theorem 1. (Uniqueness of solution) Suppose the hypotheses (H1) to (H4) to be fulfilled. Then the 
initial boundary value problem P admits at most one solution.  

Proof. Having a linear problem, proving the uniqueness of the solution is equivalent to proving 
that the initial boundary value problem P with null given data D ¼ 0; 0, 0, 0, 0; 0, 0f g, admits 
only the trivial solution S ¼ a, qif g ¼ 0: In this connection we note that from relations (15) to 
(17), we have

~aðx, 0Þ ¼ 0, _~aðx, 0Þ ¼ 0, _aðx, 0Þ ¼ 0, €aðx, 0Þ ¼ 0 for all x 2 B, (34) 

and hence, from (27) and (28), it follows that

Eð0Þ ¼ 0: (35) 

Moreover, the relations (12) and (18) give
~Hðx, tÞ ¼ 0 on R1 � ð0,1Þ, ~Qðx, tÞ ¼ 0 on R2 � ð0,1Þ,
~rðx, tÞ ¼ 0 for all ðx, tÞ 2 B� ð0,1Þ:

(36) 

Consequently, the identity (26) becomes

EðtÞ ¼ 0 for all t > 0, (37) 

that is Sðx, tÞ ¼ 0 for all x 2 B and t > 0 and so the proof is complete.                               w

Theorem 2. (Continuous dependence) Suppose the hypotheses (H1) to (H4) to be fulfilled. Let S ¼
a, qif g be a solution of the initial boundary value problem P corresponding to the given data 
D ¼ r; _a0, q0

i , _q0
i ; 0, 0

� �
. Then the following estimate holds true

ffiffiffiffiffiffiffiffiffi
EðtÞ

p
�

ffiffiffiffiffiffiffiffiffi
Eð0Þ

p
þ

1
ffiffiffi
2
p

ðt

0

ð

B

1
c

~rðsÞ2dv
� �1=2

ds, for all t > 0: (38)   

Proof. Under the given data of the problem, the identity (26) is written as

EðtÞ ¼ Eð0Þ þ
ðt

0

ð

B
~rðsÞ _~aðsÞdvds, (39) 

and therefore, by means of the Schwarz inequality, we find

EðtÞ � Eð0Þ þ
ðt

0
gðsÞ

ð

B
c _~aðsÞ2dv

� �1=2

ds, (40) 
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where

gðtÞ ¼
ð

B

1
c

~rðtÞ2dv
� �1=2

: (41) 

Further, we use the relation (27) and (28) into (40) to deduce

EðtÞ � Eð0Þ þ
ðt

0
gðsÞ

ffiffiffiffiffiffiffiffiffiffiffi
2EðsÞ

p
ds: (42) 

Now we set

WðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð0Þ þ
ðt

0
gðsÞ

ffiffiffiffiffiffiffiffiffiffiffi
2EðsÞ

p
ds

s

, (43) 

and note that

_WðtÞ �
1
ffiffiffi
2
p gðtÞ: (44) 

Concluding, an integration with respect to time variable in (44) and by taking into account that 
Wð0Þ ¼

ffiffiffiffiffiffiffiffiffi
Eð0Þ

p
and 

ffiffiffiffiffiffiffiffiffi
EðtÞ

p
� WðtÞ, we are led to the estimate (38) and the proof is complete.      w

Herewith, we present a theorem of the uniqueness of the solution under milder assumptions 
on the thermal coefficients and the three relaxation times. In fact, we can avoid the hypothesis 
(H2) either by means of the Lagrange identity method or by the logarithmic convexity method.

Theorem 3. (Uniqueness under mild assumptions) Suppose the hypotheses (H1), (H3) and (H4) 
to be fulfilled. Then the initial boundary value problem P admits at most one solution.  

Proof. 1: Lagrange identity method (see, e.g. Brun [38], Rionero and Chiriţ�a [39]). We start 
with the following identity

@

@z
~aðt þ zÞ _~aðt − zÞ þ ~aðt − zÞ _~aðt þ zÞ
� �

¼ ~aðt − zÞ€~aðt þ zÞ − ~aðt þ zÞ€~aðt − zÞ,
(45) 

and then an integration over z on [0, t], followed by the use of the heat equation (13) and the 
zero given data, gives

2
ð

B
c~aðtÞ _~aðtÞdv ¼

ðt

0

ð

B
~aðt − zÞ~qi, iðt þ zÞ − ~aðt þ zÞ~qi, iðt − zÞ
� �

dvdz: (46) 

Then we use the divergence theorem combined with the null data on the boundary to obtain

2
ð

B
c~aðtÞ _~aðtÞdv ¼

ðt

0

ð

B
~qiðt − zÞ~a , iðt þ zÞ − ~qiðt þ zÞ~a , iðt − zÞ
� �

dvdz: (47) 

Furthermore, we use the relation (12) and the constitutive equation (19) to get

~qiðt − zÞ~a , iðt þ zÞ − ~qiðt þ zÞ~a , iðt − zÞ

¼
@

@z

�

fija, iðt − zÞa, jðt þ zÞ þ Kij þ
sq

2
fij

� �

a, iðt − zÞ _a , jðt þ zÞ

þ Kij þ
sq

2
fij

� �

a, iðt þ zÞ _a , jðt − zÞ þ sqKij _a , iðt − zÞ _a , jðt þ zÞ
�

:

(48) 

Now, we use (48) into relation (47) and then by an integration combined with null given data 
we deduce
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ð

B
c~aðtÞ2 þ Kij þ

sq

2
fij

� �

a, iðtÞa, jðtÞ
� �

dv

þ

ðt

0

ð

B
fija, iðsÞa, jðsÞ þ sqKij _a , iðsÞ _a , jðsÞ
� �

dvds ¼ 0:
(49) 

As can be seen, by virtue of the constitutive hypotheses (H1), (H3) and (H4), in (49) we have 
a sum of positive terms and this can be equal to zero only if each term is vanishing. In particular, 
we deduce that

cðxÞ~aðx, tÞ2 ¼ 0 in B� ð0,1Þ: (50) 

Since cðxÞ > 0 in B, from (50) it follows that the relation (31) holds true and therefore it can 
be used to prove that S ¼ fa, qig ¼ 0 and the proof is completed. 

2: Logarithmic convexity method (see e.g. Knops and Payne [40]). Guided by the above 
proof we introduce now the following function

GðtÞ ¼
ð

B
c~aðtÞ2 þ Kij þ

sq

2
fij

� �

a, iðtÞa, jðtÞ
� �

dv

þ

ðt

0

ð

B
fija, iðsÞa, jðsÞ þ sqKij _a , iðsÞ _a , jðsÞ
� �

dvds,
(51) 

and note that

_GðtÞ ¼ 2
Ð

B c~aðtÞ _~aðtÞ þ Kij þ
sq

2
fij

� �

a, iðtÞ _a , jðtÞ
� �

dv

þ2
Ð t

0

Ð

B fija, iðsÞ _a , jðsÞ þ sqKij _a , iðsÞ€a , jðsÞ
� �

dvds,
(52) 

and moreover,

€GðtÞ ¼ 2
Ð

B

�

c _~aðtÞ2 þ Kij þ
sq

2
fij

� �

_a , iðtÞ _a , jðtÞ þ c~aðtÞ€~aðtÞ

þ Kij þ
sq

2
fij

� �

a, iðtÞ€a , jðtÞ þ fija, iðtÞ _a , jðtÞ þ sqKij _a , iðtÞ€a , jðtÞ
�

dv:
(53) 

Furthermore, in view of the basic equations (13) and (19) and by using the null given data, we 
have

ð

B
c~aðtÞ€~aðtÞdv ¼−

Ð

B

�

sqfij _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , jðtÞ þ
sq

2
€a , jðtÞ

� �

þk�ij~a , iðtÞ~a , jðtÞ þ
s2

q

2
Kij€a , iðtÞ€a , jðtÞ þ fija, iðtÞ _a , jðtÞ

þ Kij þ
sq

2
fij

� �

a, iðtÞ€a , jðtÞ þ sqKij _a , iðtÞ€a , jðtÞ
�

dv:

(54) 

Thus, relations (53) and (54) furnish

€GðtÞ ¼ 2
Ð

B

�

c _~aðtÞ2 þ Kij þ
sq

2
fij

� �

_a , iðtÞ _a , jðtÞ − k�ij~a , iðtÞ~a , jðtÞ

−sqfij _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , jðtÞ þ
sq

2
€a , jðtÞ

� �

−
s2

q

2
Kij€a , iðtÞ€a , jðtÞ

�

dv:
(55) 
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Finally, the conservation law EðtÞ ¼ 0 gives

−
ð

B

�

k�ij~a , iðtÞ~a , jðtÞ þ sqfij _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , jðtÞ þ
sq

2
€a , jðtÞ

� �

þ
s2

q

2
Kij€a , iðtÞ€a , jðtÞ

�

dv ¼
ð

B
c _~aðtÞ2 þ Kij þ

sq

2
fij

� �

_a , iðtÞ _a , jðtÞ
� �

dv

þ2
ðt

0

ð

B
fij _a , iðsÞ _a , jðsÞ þ sqKij€a , iðsÞ€a , jðsÞ
� �

dvds,

(56) 

so that the relation (55) becomes

€GðtÞ ¼ 4
�
Ð

B c _~aðtÞ2 þ Kij þ
sq

2
fij

� �

_a , iðtÞ _a , jðtÞ
� �

dv

þ
Ð t

0

Ð

B fij _a , iðsÞ _a , jðsÞ þ sqKij€a , iðsÞ€a , jðsÞ
� �

dvds
�

:

(57) 

Based on the Cauchy-Schwarz inequality, from relations (51), (52) and (57) we deduce that

GðtÞ€GðtÞ − _GðtÞ2 � 0, for all t > 0, (58) 

that proves that ln GðtÞ½ � is a convex function on ð0,1Þ: Thus, we conclude that

GðtÞ ¼ 0, (59) 

and the proof follows like the above Proof 1.                                                                w

Remark. The Lagrange identity method and the logarithmic convexity method also allow the 
study of continuous dependence with respect to the given data, under the same assumptions 
(H1), (H3) and (H4), following, for example, the analysis carried out in the works by Rionero 
and Chiriţ�a [34] and Knops and Payne [35]. However, giving up the hypothesis (H2) requires 
appropriate restrictions on the solutions under discussion! 

5. Wave solutions 

In this section we will study possible waves that can propagate in a rigid thermal conductor with 
triple-phase-lags. To simplify the mathematical calculations we will consider the case of an iso-
tropic and homogeneous material conductor where kij ¼ kdij and k�ij ¼ k�dij: According with the 
hypotheses (H1) to (H4) we assume now that

c > 0, k� > 0, f ¼ kþ sa − sqð Þk� > 0, K ¼ sTk −
sq

2
kþ sak�ð Þ > 0: (60)  

We try to find wave solutions of the basic equations in the form of a wave propagating in the 
direction of x1 axis as

aðx1, tÞ ¼ Re A eiv x1−vtð Þf g, (61) 

where i ¼
ffiffiffiffiffiffi
−1
p

is the imaginary unit, Ref�g is the real part, v > 0 is the real wave number and A 
is a complex nonzero number. Further, x1 is the spatial coordinate in the propagation direction 
and v is a complex parameter so that ReðvÞ � 0 will represent the wave speed and ImðvÞ � 0 will 
be related to the rate of decaying in time. We must note that for ReðvÞ > 0 there is a genuine 
wave, while for ReðvÞ ¼ 0 there is a standing mode. Moreover, when ImðvÞ < 0 there is the phe-
nomenon of damping in time, while for ImðvÞ ¼ 0 there is an undamped in time wave.

When we replace the expression (61) in the equation (8) we are led to the following algebraic 
equation for determining parameter v:
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1
2

cs2
qv

2 v4 þ icsqv v3 − cþ sTkv2
� �

v2 − iv kþ sa k�ð Þvþ k� ¼ 0, (62) 

which can be written in terms of the parameter

x ¼ −i v, (63) 

as the following four-degree algebraic equation with positive coefficients

PðxÞ � x4 þ a3x
3 þ a2x

2 þ a1xþ a0 ¼ 0, (64) 

where

a3 ¼
2

sqv
, a2 ¼

2
cs2

qv
2 cþ sTkv2
� �

,

a1 ¼
2

cs2
qv

kþ sa k�ð Þ, a0 ¼
2k�

cs2
qv

2 :

(65) 

According to the Routh-Hurwitz criterion the polynomial PðxÞ will have all the roots in the 
open left half-plane if and only if

a3a2a1 − a2
1 − a2

3a0 > 0: (66) 

In view of relation (65), we have

a3a2a1 − a2
1 − a2

3a0 ¼
8

c2s5
qv

4 cfþ v2 kþ sa k�ð ÞK
� �

, (67) 

that is strictly positive based on the hypotheses described by the relationship (60). Therefore, the 
fourth-degree polynomial PðxÞ has all four roots with negative real part.

For a generic root x ¼ −�6ig, with � > 0, g > 0, of the polynomial PðxÞ, we are led to 
wave solutions of the form

aðx1, tÞ ¼ Re A eiv x1−gtð Þf ge−v�t , (68) 

when a genuine complex root is considered, or

aðx1, tÞ ¼ Re A eivx1f ge−v�t , (69) 

when there is a real root.
Concluding, we can see that the restrictions described in (60) show that one can have genuine 

wave solutions whose amplitude decreases exponentially in time (in the case of a complex root) 
or wave solutions in form of standing mode exponentially decaying in time (when there is a 
negative real root).

It is important to note that if the thermodynamic restrictions (9) are not fulfilled (i.e., f < 0 
or K < 0) then inequality (66) can no longer be fulfilled and then one of the solutions presented 
in (68) or (69) contains a term of the form ev�t with � > 0 which becomes infinite when time 
increases to infinity. In such a case the energy blows up as time goes to infinity. We are then led 
to unrealistic wave solutions, with infinite energy, which expresses exponential instability.

6. Exponential stability

Guided by the results of the previous section as well as by the exponential decrease present in the 
classic theory of heat conduction based on Fourier’s law, we think that this exponential decrease 
in time could also be present in the three-phase-lag model in the study. With this in our mind, 
just to simplify the reasoning, we suppose a homogeneous material and then we proceed to estab-
lish the exponential decay in time result.
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To develop our analysis in the remainder of this paper we need to strengthen our previous 
hypotheses (H1) to (H4) in the sense that:

( ~H1): the specific heat per unit volume is strictly positive, that is

c > 0; (70) 

( ~H2): k�ij is a positive definite tensor as

k�rsnrns � k�mnini for all ðn1, n2, n3Þ 6¼ 0; (71) 

( ~H3): fij ¼ kij þ ðsa − sqÞk�ij is a positive definite tensor as

frsnrns � fmnini for all ðn1, n2, n3Þ 6¼ 0; (72) 

( ~H4): Kij ¼ sT kij − sq
2 ðkij þ sa k�ijÞ is a positive definite tensor, that is

Krsnrns � Kmnini for all ðn1, n2, n3Þ 6¼ 0, (73) 

where k�m, fm and Km are the smallest eigenvalues of the tensors k�ij, fij and Kij, respectively.

Theorem 4. (Exponential stability) Suppose the hypotheses ð~H1Þ to ð~H4Þ to be fulfilled. Also we 
assume that measðR1Þ 6¼ 0. Let S ¼ a, qif g be a solution of the initial boundary value problem P
corresponding to the given data D ¼ 0; _a0, q0

i , _q0
i ; 0, 0

� �
. Then S ¼ a, qif g is exponentially stable.  

Proof. Since measðR1Þ 6¼ 0 and by using the boundary condition u ¼ 0 on R1, we will have occa-
sion to use the Poincar�e inequality

ð

B
u, iu, idv � k

ð

B
u2dv, (74) 

where k is the minimal eigenvalue of the (negative) Laplace operator in the space W1, 2
0 ðBÞ: In 

this connection we note that the identity (26) implies
dE1

dt
ðtÞ ¼ −

ð

B
fij _a , iðtÞ _a , jðtÞ þ sqKij€a , iðtÞ€a , jðtÞ
� �

dv, (75) 

so that, by means of the inequalities (72), (73) and (74), we deduce
dE1

dt
ðtÞ � −k

ð

B
fm _aðtÞ2 þ sqKm€aðtÞ2
h i

dv, (76) 

and therefore, we have
dE1

dt
ðtÞ �−

1
2

ð

B
fm _a , iðtÞ _a , iðtÞ þ sqKm€a , iðtÞ€a , iðtÞ
� �

dv

−
k

2

ð

B
fm _aðtÞ2 þ sqKm€aðtÞ2
h i

dv:
(77) 

Moreover, from the relations (28), (71) to (74), we have

E1ðtÞ �
1
2

ð

B

�

c _~aðtÞ2 þ k�mk~aðtÞ2 þ ksqfm _aðtÞ þ
sq

2
€aðtÞ

� �2

þkKm _aðtÞ2 þ
sq

2
fm _a , iðtÞ _a , iðtÞ þ sqKm€a , iðtÞ€a , iðtÞ
� �

�

dv,
(78) 

and therefore E1ðtÞ appears like a measure L2ðBÞ for a, a, i, _a, €a, _a , i, €a , i, &af g and hence there exist 
the computable constants cm > 0 and cM > 0, so that

0 < cm meas a, a, i, _a, €a, _a , i, €a , i, &af g � E1ðtÞ � cM meas a, a, i, _a, €a, _a , i, €a , i, &af g: (79) 

12 S. CHIRIŢĂ



At this point it is useful to remember that, in the situation when the three relaxation times 
could be negligible, then the two relations (28) and (75) could be coupled to give the differential 
inequality

dE0
1

dt
ðtÞ � −

2kkm

c
E0

1ðtÞ, (80) 

which integrated implies the following exponential decay estimate

E0
1ðtÞ � E0

1ð0Þe
ð−2kkmtÞ=c, (81) 

that is the exponential decay estimate corresponding to the classical heat equation based on the 
Fourier law for the heat flux. Here E0

1ðtÞ is the expression of E1ðtÞ when the three relaxation 
times are neglected.

Returning to the model considered by us, it can be seen from the relations (77) and (78) that the 
terms aðtÞ2 and &aðtÞ3 are missing in the second member of the relation (77). To fix this inconvenience 
we have to use other identities found through the basic equations to help add the missing terms.

Consequently, if we multiply the heat equation (13), with null heat source, by a and &a, 
respectively, and then we use the relations (12) and (14), we obtain the following identities

dE2

dt
ðtÞ ¼

Ð

B

h
c _aðtÞ2 þ csq _aðtÞ€aðtÞ þ sTkij _a , iðtÞ _a , jðtÞ

þ cs2
q=2

� �
_aðtÞ&aðtÞ − k�ija, iðtÞa, jðtÞ

i
dv,

(82) 

dE3

dt
ðtÞ ¼

ð

B
k�ij _a , iðtÞ€a , jðtÞ þ kij þ sak�ij

� �
€a , iðtÞ€a , jðtÞ − csq &aðtÞ2

h i
dv, (83) 

where

E2ðtÞ ¼
ð

B
caðtÞ _~aðtÞ þ sTkija, iðtÞ _a , jðtÞ þ ð1=2Þ kij þ sak�ij

� �
a, iðtÞa, jðtÞ

h i
dv, (84) 

and

E3ðtÞ ¼
1
2

ð

B

h
c€aðtÞ2 þ ð1=2Þcs2

q&aðtÞ2 þ sTkij€a , iðtÞ€a , jðtÞ

þ2 kij þ sa k�ij
� �

_a , iðtÞ€a , jðtÞ þ 2k�ija, iðtÞ€a , jðtÞ
i

dv:
(85) 

Therefore, if we set
F1ðtÞ ¼ E2ðtÞ þ s3

qE3ðtÞ, (86) 

then we have
dF1

dt
ðtÞ ¼

Ð

B

h
ð9c=8Þ _aðtÞ2 þ csq _aðtÞ€aðtÞ þ sTkij _a , iðtÞ _a , jðtÞ

þs3
q k�ij _a , iðtÞ€a , jðtÞ þ s3

q kij þ sa k�ij
� �

€a , iðtÞ€a , jðtÞ

−ðc=8Þ 2s2
q&aðtÞ − _aðtÞ

� �2
− k�ija, iðtÞa, jðtÞ − ðcs4

q=2Þ&aðtÞ2
i

dv,

(87) 

Now we use the Cauchy-Schwarz and arithmetic-geometric mean inequalities in order to 
obtain the estimate

dF1

dt
ðtÞ �

Ð

B

"
13c
8

_aðtÞ2 þ
cs2

q

2
€aðtÞ2 þ K1sqfm _a , iðtÞ _a , iðtÞ

þK2s
2
qKm€a , iðtÞ€a , iðtÞ

#

dv −
Ð

B k�ija, iðtÞa, jðtÞ þ ðcs4
q=2Þ&aðtÞ2

h i
dv,

(88) 
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where

K1 ¼
1

sqfm
sTkrs þ

s2
q

2
k�rs

� �

sTkrs þ
s2

q

2
k�rs

� �� �1=2

,

K2 ¼
sq

Km
krs þ sa þ

sq

2

� �

k�rs

� �

krs þ sa þ
sq

2

� �

k�rs

� �� �1=2

:

(89) 

Furthermore, we want to dominate the first integral term from relation (88) with the help of 
relation (77). For this purpose we choose the non-dimensional parameter d > 0 and then we 
introduce the following function

FðtÞ ¼ sqE1ðtÞ þ dF1ðtÞ, (90) 

so that, by means of the relations (77) and (88), we have
dF
dt
ðtÞ �−

1
2

ð

B
c1c _aðtÞ2 þ c2cs2

q€aðtÞ2
h i

dv −
1
2

ð

B
½c3sqfm _a , iðtÞ _a , iðtÞ

þc4s
2
qKm€a , iðtÞ€a , iðtÞ�dv −

d

2

ð

B
2k�ija, iðtÞa, jðtÞ þ cs4

q &aðtÞ2
h i

dv,
(91) 

where

c1 ¼
ksqfm

c
−

13d

4
, c2 ¼

kKm

c
− d, c3 ¼ 1 − 2dK1, c4 ¼ 1 − 2dK2: (92) 

At this moment, we choose the parameter d so small in such a way as to make positive the 
four coefficients c1 to c4, that is, we put

0 < d < dm, dm ¼ min
4ksqfm

13c
,
kjm

c
,

1
2K1

,
1

2K2

� �

, (93) 

so that there is a positive computable constant fm in order to have
dF
dt
ðtÞ � −fm meas a, a, i, _a, €a, _a , i, €a , i, &af g: (94) 

Next, we present an evaluation of the expression F1ðtÞ: In this sense, we use relations (84) to 
(86) to write

F1ðtÞ ¼
Ð

B

"
c

2sq
aðtÞ þ sq _~aðtÞ
� �2

þ
1
2

kij a, iðtÞ þ sT _a , iðtÞð Þ a, jðtÞ þ sT _a , jðtÞ
� �

þ
cs3

q

2
€aðtÞ2 þ

cs5
q

4
&aðtÞ2 þ

s2
q

2
kij þ sak�ij
� �

_a , iðtÞ þ sq€a , iðtÞ
� �

_a , jðtÞ þ sq€a , jðtÞ
� �

þsq k�ij ea, iðtÞ þ
1
2e

s2
q€a , iðtÞ

� �

ea, jðtÞ þ
1
2e

s2
q€a , jðtÞ

� �

þ
1
2

sTs3
qkij€a , iðtÞ€a , jðtÞ

#

dv

−
Ð

B

"
c

2sq
aðtÞ2 þ

csq

2
_~aðtÞ2 þ

1
2

s2
Tkij þ s2

q kij þ sak�ij
� �� �

_a , iðtÞ _a , jðtÞ

þ sq kij þ sak�ij
� �

þ
s2

q

2e2 k�ij

� �

€a , iðtÞ€a , jðtÞ

#

dvþ
sa

2
− sqe

2
� �

Ð

Bk�ijaiðtÞa, jðtÞdv,

(95) 

where e is a positive parameter at our hand. Now we choose e so that

e ¼

ffiffiffiffiffiffiffi
sa

2sq

r

, (96) 
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and note that

F1ðtÞ �−
Ð

B

"
c

2sq
aðtÞ2 þ

csq

2
_~aðtÞ2 þ

1
2

s2
Tkij þ s2

q kij þ sak�ij
� �� �

_a , iðtÞ _a , jðtÞ

þ sq kij þ sak�ij
� �

þ
s2

q

2e2 k�ij

� �

€a , iðtÞ€a , jðtÞ

#

dv
(97) 

and

F1ðtÞ �
Ð

B

"
c

2sq
aðtÞ þ sq _~aðtÞ
� �2

þ
1
2

kij a, iðtÞ þ sT _a , iðtÞð Þ a, jðtÞ þ sT _a , jðtÞ
� �

þ
cs3

q

2
€aðtÞ2 þ

cs5
q

4
&aðtÞ2 þ

s2
q

2
kij þ sak�ij
� �

_a , iðtÞ þ sq€a , iðtÞ
� �

_a , jðtÞ þ sq€a , jðtÞ
� �

þsq k�ij ea, iðtÞ þ
1
2e

s2
q€a , iðtÞ

� �

ea, jðtÞ þ
1
2e

s2
q€a , jðtÞ

� �

þ
1
2

sTs3
qkij€a , iðtÞ€a , jðtÞ

#

dv:

(98) 

It can be seen from (97) that one can determine a positive constant hm so that

F1ðtÞ � −hmmeas a, a, i, _a, €a, _a , i, €a , i, &af g, (99) 

and therefore, by means of relation (79), we will have

FðtÞ ¼ sqE1ðtÞ þ dF1ðtÞ � sqcm − dhm
� �

meas a, a, i, _a, €a, _a , i, €a , i, &af g > 0, (100) 

provided we choose the parameter d so that

0 < d < d�m, d�m ¼
sqcm

hm
: (101) 

On the other side, by using the Cauchy-Schwarz and arithmetic-geometric mean inequalities 
and the relation (98), we can get a positive computable constant C so that

F1ðtÞ � Cmeas a, a, i, _a, €a, _a , i, €a , i, &af g, (102) 

and hence we have

FðtÞ ¼ sqE1ðtÞ þ dF1ðtÞ � sqcM þ dC
� �

meas a, a, i, _a, €a, _a , i, €a , i, &af g: (103) 

Consequently, from the relations (94) and (103), we get
dF
dt
ðtÞ � −

fm

sqcM þ dC
FðtÞ, (104) 

provided 0 < d < min dm, d�m
� �

: The differential inequality (104) shows the expected exponential 
decrease in time of the solution like in (81).                                                                 w

7. Domain of influence

Throughout this section we shall assume that a semi-infinite cylindrical region B ¼ D� ð0,1Þ is 
filled by a homogeneous and anisotropic conductor material with three-phase-lag times. We 
choose a Cartesian coordinate system Ox1x2x3 in such a way that the base of the cylinder is con-
tained in the plane x3 ¼ 0, and the axis Ox3 is parallel to the generators of the cylindrical 
surface.

Throughout this section we consider the initial boundary value problem PC defined by the 
heat equation (6), with null heat source, the constitutive equation (4), the initial conditions
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aðx, 0Þ ¼ 0, _aðx, 0Þ ¼ 0, qiðx, 0Þ ¼ 0, _qiðx, 0Þ ¼ 0, for all x 2 B, (105) 

and the following boundary conditions

qqðx1, x2, x3, tÞnq ¼ 0 for all ðx1, x2, x3Þ 2 @D� ð0,1Þ½ �,
q3ðx1, x2, 0, tÞ ¼ gðx1, x2, tÞ for all ðx1, x2Þ 2 D0 and t 2 ð0,1Þ:

(106) 

Here nq are the components of the outward normal to the lateral surface of the cylinder and 
gðx1, x2, tÞ is a prescribed smooth function, while D0 is the base section of the cylinder. Throughout 
this section we are interested in how the solution of the initial boundary value problem PC behaves 
with respect to the distance x3 at the loaded base x3 ¼ 0: In this sense, we want to identify appropri-
ate measures associated with the solution S ¼ fa, qig of the problem in question PC that describe its 
behavior in terms of the distance x3 to the base acted by the specified load gðx1, x2, tÞ:

We try to study our problem by using an associated ”measure” of the solution S ¼ a, qif g like

Hðx3, tÞ ¼
ðt

0

ð

Dx3

~q3ðzÞ _~aðzÞdadz, x3 > 0, t > 0, (107) 

where Dx3 is the transverse section of the cylinder with the plane x3 ¼ constant: We note that

@H
@t
ðx3, tÞ ¼

ð

Dx3

~q3ðtÞ _~aðtÞda, x3 > 0, t > 0, (108) 

and moreover,

@H
@x3
ðx3, tÞ ¼

ðt

0

ð

Dx3

~q3, 3ðzÞ _~aðzÞ þ ~q3ðzÞ _~a , 3ðzÞ
h i

dadz: (109) 

Furthermore, on the basis of the equation (13) (with null heat source), the lateral boundary 
condition (106) and the divergence theorem we obtain

@H
@x3
ðx3, tÞ ¼ −

ðt

0

ð

Dx3

c _~aðzÞ€~aðzÞdadz þ
ðt

0

ð

Dx3

~qiðzÞ _~a , iðzÞdadz: (110) 

The relation (20), when substituted in relation (110), coupled with the use of the initial condi-
tions (105), provides

−
@H
@x3
ðx3, tÞ ¼

1
2

ð

Dx3

�

c _~aðtÞ2 þ k�ij~a , iðtÞ~a , jðtÞ

þsqfij _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , jðtÞ þ
sq

2
€a , jðtÞ

� �

þKij _a , iðtÞ _a , jðtÞ þ
sq

2
fij _a , iðtÞ _a , jðtÞ þ sqKij€a , iðtÞ€a , jðtÞ
� �

�

da

þ
Ð t

0

Ð

Dx3
fij _a , iðzÞ _a , jðzÞ þ sqKij€a , iðzÞ€a , jðzÞ
� �

dadz:

(111) 

Consequently, in view of our hypotheses ð~H1Þ to ð~H4Þ, we deduce

−
@H
@x3
ðx3, tÞ �

1
2

ð

Dx3

�

c _~aðtÞ2 þ k�m~a , iðtÞ~a , iðtÞ þ
s2

q

2
jm€a , iðtÞ€a , iðtÞ

þsqfm _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , iðtÞ þ
sq

2
€a , iðtÞ

� ��

da � 0,
(112) 

and hence Hðx3, tÞ is a non-increasing function with respect to x3 for all t > 0: As we will see 
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later, this last inequality suggests that Hðx3, tÞ can lead to a measure of the solution S ¼ a, qif g

of our initial boundary value problem PC:

Further, we use the Cauchy-Schwarz and the arithmetic-geometric mean inequalities into rela-
tion (108) in order to obtain

@H
@t

�
�
�
�

�
�
�
�ðx3, tÞ �

1
2

ð

Dx3

ec _~aðtÞ2 þ
1
ec

~q3ðtÞ
2

� �

da, (113) 

for any positive parameter e: Now from the constitutive relation (19) we deduce

~q3

�
�
�
�ðtÞ � k�3rk�3rð Þ

1=2 ~a , iðtÞ~a , iðtÞ½ �
1=2
þ K3rK3rð Þ

1=2 €a , iðtÞ€a , iðtÞ½ �
1=2

þ f3rf3rð Þ
1=2

_a , iðtÞ þ
sq
2 €a , iðtÞ

� �
_a , iðtÞ þ

sq
2 €a , iðtÞ

� �h i1=2
,

(114) 

and hence we get

~q3ðtÞ
2
� 3M2

�

k�m~a , iðtÞ~a , iðtÞ þ sqfm _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

�

� _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

þ
s2

q

2
Km€a , iðtÞ€a , iðtÞ

�

,
(115) 

where

M ¼ max
k�3rk�3r

k�m

� �1=2
,

2K3rK3r

s2
qKm

 !1=2

,
f3rf3r

sqfm

 !1=2
0

@

1

A: (116) 

Therefore, the relations (113) and (115) lead to

@H
@t

�
�
�
�

�
�
�
�ðx3, tÞ �

1
2

ð

Dx3

�

ec _~aðtÞ2 þ
3M2

ec

�

k�m~a , iðtÞ~a , iðtÞ

þsqfm _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , iðtÞ þ
sq

2
€a , iðtÞ

� �

þ
s2

q

2
Km€a , iðtÞ€a , iðtÞ

��

da,
(117) 

from which, putting

e ¼ M
ffiffiffi
3
c

r

, (118) 

and by using the estimate (112), we get

1
e

@H
@t

�
�
�
�

�
�
�
�ðx3, tÞ þ

@H
@x3
ðx3, tÞ � 0, for all x3 > 0, t > 0: (119) 

This last inequality is equivalent to the following differential inequalities
1
e

@H
@t
ðx3, tÞ þ

@H
@x3
ðx3, tÞ � 0 for all x3 > 0, t > 0, (120) 

and

−
1
e

@H
@t
ðx3, tÞ þ

@H
@x3
ðx3, tÞ � 0 for all x3 > 0, t > 0: (121) 

Let us first choose t0 > 0 and x0
3 � et0: If we set t ¼ t0 þ ðx3 − x0

3Þ=e in (120) it results

d
dx3

H x3, t0 þ
x3 − x0

3
e

� �� �

� 0, (122) 

JOURNAL OF THERMAL STRESSES 17



and hence Hðx3, t0 þ ðx3 − x0
3Þ=eÞ is a non-increasing function with respect to x3: Thus, if we 

recall that 0 � x0
3 − et0 � x0

3, it results

Hðx0
3, t0Þ � Hðx0

3 − et0, 0Þ ¼ 0: (123) 

Further, we set t ¼ t0 − ðx3 − x0
3Þ=e in (121) so that it follows

d
dx3

H x3, t0 −
x3 − x0

3
e

� �� �

� 0, (124) 

and hence Hðx3, t0 − ðx3 − x0
3Þ=eÞ is a non-increasing function with respect to x3: Since x0

3 �

x0
3 þ et0 it results

Hðx0
3, t0Þ � Hðx0

3 þ et0, 0Þ ¼ 0: (125) 

Consequently, from the relations (123) and (125), we deduce that

Hð1, t0Þ ¼ lim
x3!1

Hðx3, t0Þ ¼ 0 for all t0 > 0, (126) 

and hence, by an integration of the relation (112) over ðx3,1Þ, we obtain

Hðx3, tÞ �
1
2

ð

Bx3

�

c _~aðtÞ2 þ k�m~a , iðtÞ~a , iðtÞ þ
s2

q

2
Km€a , iðtÞ€a , iðtÞ

þsqfm _a , iðtÞ þ
sq

2
€a , iðtÞ

� �

_a , iðtÞ þ
sq

2
€a , iðtÞ

� ��

dv � 0,
(127) 

for all x3 > 0, t > 0 and Bx3 � D� ðx3,1Þ: Thus, Hðx3, tÞ appears like a measure of the solution 
S ¼ a, qif g of our initial boundary value problem PC:

Finally, we set x3 ¼ et in (120) to obtain
d
dt

Hðet, tÞ½ � � 0, (128) 

so that Hðet, tÞ is a non-increasing function with respect to t. Thus, we deduce

Hðet, tÞ � Hð0, 0Þ ¼ 0: (129) 

Since Hðx3, tÞ is a non-increasing function with respect x3, it follows that for x3 � et we will have

Hðx3, tÞ � Hðet, tÞ � 0, (130) 

which in conjunction with (127) proves

Hðx3, tÞ ¼ 0 for all x3 � et, t > 0: (131) 

In view of the relations (127) and (131), we deduce that
_~aðx1, x2, x3, tÞ ¼ 0, ðx1, x2Þ 2 Dx3 , x3 � et, t > 0, (132) 

which integrated under zero initial conditions gives

aðx1, x2, x3, tÞ ¼ 0, ðx1, x2Þ 2 Dx3 , x3 � et, t > 0: (133) 

If we substitute this last relation in the constitutive equation (4), we obtain

qi þ sq _qi þ
s2

q

2
€qi ¼ 0, ðx1, x2Þ 2 Dx3 , x3 � et, t > 0, (134) 

which furnishes qiðx1, x2, x3, tÞ ¼ 0 for all ðx1, x2Þ 2 Dx3 , x3 � et and t > 0: Thus, we have estab-
lished the following result
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Theorem 5. (Domain of influence) Suppose the hypotheses ð~H1Þ to ð~H4Þ to be fulfilled. Let S ¼
a, qif g be a solution of the initial boundary value problem PC corresponding to the given data 
D ¼ 0; 0, 0, 0; 0, gf g. Then the following domain of influence result holds true

Sðx1, x2, x3, tÞ ¼ 0, ðx1, x2Þ 2 Dx3 , x3 � et, t > 0, (135) 

that is, in the part of the cylinder located at a distance x3 � et, t > 0, from the base of the cylin-
der, all thermal activity stops, that is, the prescribed action on the base of the cylinder is not felt 
there.

8. Final comments

Our present analysis establishes a series of results that highlight characteristic properties of the 
three-phase-lag model proposed by Roy Choudhury [25], as: uniqueness, continuous data depend-
ence, domain of influence, damped in time wave solutions, standing modes, exponential stability. 
It generalizes, improves and completes some existing results in the specialized literature, but also 
presents new information on the model. Thus, we have:

(i) the results described in the manuscript refer to the solution ða, qiÞ of the system of equa-
tions (4) and (6), while the results in Refs. [27] and [35] refer to the stability of solutions 
a of the differential equation (8). This means quite different boundary and initial condi-
tions in the two ways of approaching the considered thermal model;

(ii) we have to note that the prescription of the initial conditions (10) in this manuscript can-
not be made equivalent to the initial conditions (2.2) in Ref. [27];

(iii) the present model leads to the fourth-order in time equation (7), which for a homoge-
neous and isotropic rigid conductor takes the form of the equation (8) considered by 
Quintanilla and Racke [27] and by Dell’Oro and Pata [35]. Thus, the results presented in 
our work, regarding exponential stability of solutions, also apply to these particular cases, 
although here we also include, as normally, the boundary conditions in terms of the heat 
flux, and, moreover, the initial conditions also include the values of the heat flux vector;

(iv) unlike the results presented in [27] and [35], the restrictions under which our results are 
obtained have a clear mechanical meaning, that of compatibility of the constitutive equa-
tion (4) with the Second Law of Thermodynamics;

(v) our results regarding uniqueness and continuous data dependence improve those 
described in [26] and [29]. By using the Lagrange identity method (see, for example, Brun 
[38] and Rionero and Chiriţ�a [39]), as well as that of logarithmic convexity method (see, 
e.g. Knops and Payne [40]), allows to remove the hypothesis regarding the semi-positive 
definiteness of the conductivity rate tensor;

(vi) unlike Fourier’s classical law for heat flux, in Ray Choudhuri’s model it is possible to have 
both standing modes and damped in time waves;

(vii) Theorem 5 provides an upper bound of the propagation speed of the excitation effects on 
the base of the cylinder, along its generators. Although the results presented in section 7
refer to a particular domain, here a cylinder, they can be obtained for any domain, as pre-
sented in [41].
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