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The present paper is dedicated to the structural stability of the linear model of a
mixture of two porous solids. It is shown that the variation of the characteristic
coefficients that describe the coupling of the various mechanical effects involved
in the model in concern does not destroy its structure. This means that any
small variation of these coefficients leads to small variations in the correspond-
ing solutions of the associated initial boundary value problems. For this purpose,
more mathematical estimates are presented describing precisely the continuous
dependence of the solutions with respect to all external given data of the ini-
tial boundary value problem, as well as with respect to appropriate measures
of the set of coupling parameters. This allows the conclusion that the model of
the mixture of porous materials is consistent. In particular, it is believed that
the estimates obtained in terms of structural stability are particularly meaning-
ful with regard to the materials used in building contexts and the related decay
phenomena.
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1 INTRODUCTION
Structural stability provides important information on the behavior of solutions when some constitutive coefficients
undergo alterations, especially in the sense of degradation or decay. It is well known that many materials used with
important structural functions in building contexts, even of a complex nature, can undergo phenomena of alteration
of their physical-chemical characteristics and therefore in terms of response to stress actions. We recall that such phe-
nomena almost always have an environmental origin and, if not limited through appropriate actions, are capable of
compromising the integrity of the single load-bearing element and also of the entire structural complex. In particular, it
is worth mentioning the oxidation processes of iron and steel, the carbonation processes of cement (a very relevant aspect
dealing with porous materials), the physical-chemical damages induced by acid rain, wind erosion, persistent states of
humidity, and so forth. Therefore, the study of structural stability allows us to know—in a deterministic way—the link
between the alterations of the constitutive coefficients of the material and the solutions of the elastodynamic problem,
observing whether “small” constitutive variations correspond to equally “small” variations of the solutions (stability), or
vice versa (instability).

The interest in the modeling of porous materials has been very high for decades—just think of application areas such
as soil mechanics or petroleum industry—but today the importance of such field of investigation is still growing if we
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2 DE CASTRO MOTTA ET AL.

also include, for instance, the bioengineering applications. An extensive historically based review of porous material
theories can be found in [1–4]. In order to describe the behavior of granular materials such as rocks, soils, or porous
bodies in general, it is useful to refer to the theory of elastic materials with voids, that is, endowed of an elastic matrix and
material-free interstices. For the description of this theory, whereby the bulk density is the product of the matrix material
density field and the volume fraction field, as well as of related developments, the reader is referred to [5–7]. It is worth
mentioning that, in particular, the linear theory for elastic materials with voids [7] applies to elastic bodies with small
voids that are distributed throughout the material.

Structural stability and continuous dependence on the model itself are very important as highlighted in the books of
Hirsch and Smale [8], Bellomo and Preziosi [9], Straughan [10, 11], and Flavin and Rionero [12]. Roughly speaking, they
are related to the fact that a small change in the coefficients involved in the differential equations or small changes of
boundary conditions or of the initial conditions result in a suitably small change in the solution of the associated initial
boundary value problems. Within the field of elasticity, continuous dependence on modeling has been comprehensively
analyzed by Knops and Payne [13, 14]. The issue of stability in porous media was presented extensively in Straughan's
book [10].

We have to outline that the structural stability is an important topic in the mathematical literature, and moreover, the
analyses of this subject in various fields of continuum mechanics may be found in many works like: Ames and Hughes
[15], Castro et al. [16], Celebi and Kalantarov [17], Celik and Hoang [18], Chiriţă et al. [19], Chiriţă and Ciarletta [20],
Eltayeb [21], Harfash [22], Hill et al. [23], Liu [24], Markowich et al. [25], Otani and Uchida [26], and Varsakelis and
Papalexandris [27].

On the other hand, the mathematical modeling of natural phenomena continues with even more intensity. In this
context appears also the mathematical modeling of mixtures, started by prestigious researchers such as Truesdell and
Toupin [28], Kelly [29], Eringen and Ingram [30, 31], Green and Naghdi [32, 33], Müller [34], Dunwoody and Müller [35],
and Bowen and Wiese [36], and it was based on the spatial description of the deformation of fluid or gas constituents. A
different point of view, namely, through the use of a Lagrangian description, was introduced by Bedford and Stern [37],
and further extensive reviews of the subject were given by Bowen [1], Atkin and Craine [38, 39], Bedford and Drumheller
[3], and Rajagopal and Tao [40].

In a series of works, Ieşan [41–43] has developed models of mixtures based on a Lagrangian description and by taking
into account the microporous structure of the material. Such a theory for binary mixtures of elastic solids involves the
following independent constitutive variables: the displacement gradients, displacement fields, volume fractions, and
volume fraction gradients. In the same line, a nonlinear theory is developed by Chiriţă and Galeş [44] for a heat-conducting
viscoelastic composite, which is modeled as a mixture consisting of a microstretch Kelvin-Voigt material and a
microstretch elastic solid.

The present paper considers the theory of mixtures as it was developed by Ieşan [41] and contributes to the study of
the well-posedness of the model itself. In fact, we show in a first phase the continuous dependence of the solutions with
respect to the external data (initial and Dirichlet boundary data, as well as mass loads) for the associated initial boundary
value problems. On this basis, we approach the problem of structural stability in the sense of the continuous dependence
of the solutions with respect to the changes that may occur in the coupling constitutive coefficients involved in the model
in concern. We have identified two sets of material coupling coefficients: (a) one that couples the classical mixture model
with the microporosity of the material and (b) another that connects the two material constituents taken into account in
the development of the model. For each of the two sets, we have established precise mathematical estimates that describe
continuous dependence with respect to possible variations of their coefficients. We also show how the solution to the
coupled system of mixture converges, in an appropriate measure, to the solution of the uncoupled systems as the coupling
coefficients tend to zero.

The plan of the work is the following. Section 2 presents the basic system of differential equations describing the
evolutionary behavior of the mixture of porous solids in the line described by Ieşan [41]. Section 3 introduces a class of
auxiliary problems and presents appropriate estimates of their solutions in terms of the boundary given data. Section 4
treats the continuous dependence of solution with respect to all external given data (initial and boundary data as well
as the external loads). Section 5 establishes appropriate estimates describing continuous dependence with respect to
the variation of coupling coefficients. Section 6 shows that the solution of the coupled initial boundary value problem
converges to the solution of the uncoupled initial boundary value problem when all the coupling coefficients tend to zero.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9825 by C

ochrane R
om

ania, W
iley O

nline L
ibrary on [15/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DE CASTRO MOTTA ET AL. 3

2 BASIC MODEL OF THE MIXTURE OF POROUS SOLIDS

We consider a mixture of two interacting porous continua s1 and s2. We assume that the body occupies at time t = 0 the
region B of Euclidean three-dimensional space which is bounded by the piecewise smooth surface 𝜕B. The configuration
of the body at time t = 0 is taken as the reference configuration. We refer the motion of each constituent to the refer-
ence configuration and a fixed system of rectangular Cartesian axes. We use vector and Cartesian tensor notation with
Latin indices having the values 1, 2, 3. Greek indices are understood to range over the integers (1, 2), and the summation
convention is not used for these indices. We suppose that 𝜕B is star-shaped with respect to the origin of the Cartesian
coordinate system, and therefore, we have

xknk ≥ h0 > 0, |xktk| ≤ 𝛿0 on 𝜕B, (1)

where h0 and 𝛿0 are appropriate positive constants, xk are the components of the vector x, nk are the components of unit
outward normal vector n to 𝜕B, and tk are the components of a unit tangent vector to 𝜕B.

According with the linear theory of mixtures developed by Ieşan [41], the basic equations are as follows:

1. Equations of motion:

t𝑗i,𝑗 − pi + 𝜚0
1F(1)

i = 𝜚0
1üi, s𝑗i,𝑗 + pi + 𝜚0

2F(2)
i = 𝜚0

2ẅi, (2)

2. Equilibrated equations of motion:

h(1)
i,i + g(1) + 𝜚0

1L(1) = 𝜚0
1𝜅1𝜑̈, h(2)

i,i + g(2) + 𝜚0
2L(2) = 𝜚0

2𝜅2𝜓̈ , (3)

3. Constitutive equations:

t𝑗i = 𝜏𝑗i + ai𝑗kluk,l + bi𝑗klwk,l + (D𝑗i + M𝑗i)𝜑 + (E𝑗i + N𝑗i)𝜓,

s𝑗i = 𝜎𝑗i + bkli𝑗uk,l + di𝑗klwk,l + Mi𝑗𝜑 + Ni𝑗𝜓,

pi = ai𝑗d𝑗 + bi𝑗𝜑,𝑗 + ci𝑗𝜓,𝑗 ,

h(1)
i = 𝛼i𝑗𝜑,𝑗 + 𝛽i𝑗𝜓,𝑗 + b𝑗id𝑗 , h(2)

i = 𝛽𝑗i𝜑,𝑗 + 𝛾i𝑗𝜓,𝑗 + c𝑗id𝑗 ,

g(1) = − C − (Di𝑗 + Mi𝑗)u𝑗,i − Mi𝑗wi,𝑗 − 𝜉𝜑 − 𝜏𝜓,

g(2) = − D − (Ei𝑗 + Ni𝑗)u𝑗,i − Ni𝑗wi,𝑗 − 𝜏𝜑 − 𝜂𝜓,

(4)

in B × (0,T). We specify that in the above equations, we have used the following notations: ui and wi represent the
components of the displacement vector fields associated with the constituents s1 and s2, respectively, and moreover, we
have set di = ui − wi; 𝜑 and 𝜓 are the volume fraction fields of the constituent s1 and s2, respectively. The mass densities
𝜚0

1 and 𝜚0
2 and the equilibrated inertia coefficients 𝜅1 and 𝜅2 for the two constituents, as well as all the other constitutive

coefficients, are prescribed functions of x, supposed to be as smooth as required in our subsequent analysis and satisfying
the following symmetry relations:

ai𝑗kl = akli𝑗 , di𝑗kl = dkli𝑗 , 𝛼i𝑗 = 𝛼𝑗i, 𝛾i𝑗 = 𝛾𝑗i, ai𝑗 = a𝑗i. (5)

Furthermore, ti𝑗 and si𝑗 are the components of the partial stresses associated with the two constituents s1 and s2,
respectively, while h(𝛼)

i represents the components of the partial equilibrated stresses, g(𝛼) are the intrinsic equilibrated
body force, and pi expresses the interactions of the two constituents; F(𝛼)

i is the body force per unit mass acting on the
constituent s𝛼 , and L(𝛼) is the extrinsic equilibrated body force.

It should be noted that in [41], the internal energy of the mixture per unit mass is considered as a second degree
polynomial in the independent variables provided by the deformation measures. For this reason, the coefficients 𝜏i𝑗 , 𝜎i𝑗 , C
and D appear in the constitutive equations described by (4) with the meaning of initial values for ti𝑗 , si𝑗 ,−g(1) and
−g(2), respectively, in the unstrained state! Further, the group of coefficients ai𝑗kl, bi𝑗kl, di𝑗kl, ai𝑗 characterizes the
interdependence between the deformations of the two constituents of the mixture, and in particular, bi𝑗kl describes the
coupling between these two deformations. Then, the group of coefficients 𝛼i𝑗 , 𝛽i𝑗 , 𝛾i𝑗 , 𝜉, 𝜏, 𝜂 is characteristic considering
the porous structure of the mixture, with 𝛽i𝑗 and 𝜏 coupling coefficients of the porous deformation of the two constituents.
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4 DE CASTRO MOTTA ET AL.

Finally, the group of coefficients Di𝑗 , Ei𝑗 , Mi𝑗 , Ni𝑗 , bi𝑗 , ci𝑗 describes the coupling between the effects of deformation with
the porous ones!

Throughout this paper we will consider the initial boundary value problem  defined by the basic equations (2), (3),
and (4) and the following boundary conditions:

ui = u∗
i , wi = w∗

i , 𝜑 = 𝜑∗, 𝜓 = 𝜓∗ on 𝜕B × (0,T), (6)

and the following initial conditions:

ui(x, 0) = u(0)
i (x), .ui(x, 0) =

.u(0)
i (x), wi(x, 0) = w(0)

i (x), .wi(x, 0) =
.w(0)

i (x),

𝜑(x, 0) =𝜑(0)(x), .
𝜑(x, 0) = .

𝜑(0)(x), 𝜓(x, 0) = 𝜓 (0)(x), .
𝜓(x, 0) = .

𝜓 (0)(x),
(7)

for all x ∈ B.
By a solution of the initial boundary value problem  , corresponding to the given data  ={
F(1)

i ,F(2)
i ,L(1),L(2);u(0)

i , w(0)
i ,

.u(0)
i ,

.w(0)
i , 𝜑

(0), 𝜓 (0),
.
𝜑(0),

.
𝜓 (0);u∗

i ,w
∗
i , 𝜑

∗, 𝜓∗
}

, we mean the ordered array U = {ui,wr, 𝜑, 𝜓}
defined on B × (0,T) with the properties that ui(x, t) ∈ C2,2(B × (0,T)), wi(x, t) ∈ C2,2(B × (0,T)), 𝜑(x, t) ∈ C2,2(B × (0,T))
and 𝜓(x, t) ∈ C2,2(B × (0,T)) and which satisfy the field equations (2) to (4), the initial conditions (7) and the boundary
conditions (6). Throughout this paper, we will assume the existence of such solution! This means that we do not deal
with the existence and regularity of the solution of the initial boundary value problem.

The main problem considered in this work is that of the structural stability of the model of the considered mixture,
more precisely that of the continuous dependence of the model with respect to the variation (measurement errors) of the
characteristic coupling coefficients of the material. In this context, it will be useful to establish a quantitative estimate of
the solution to the initial boundary value problem  in terms of the external data of this problem (initial and boundary
data, as well as the mechanical loads).

For our subsequent analysis, we need to associate with the solution U = {ui,wr, 𝜑, 𝜓} of the initial boundary value
problem  the internal energy (U) defined by

2(U) = ai𝑗klui,𝑗uk,l + 2bi𝑗klui,𝑗wk,l + di𝑗klwi,𝑗wk,l + 2(D𝑗i + M𝑗i)ui,𝑗𝜑

+ 2(E𝑗i + N𝑗i)ui,𝑗𝜓 + 2Mi𝑗wi,𝑗𝜑 + 2Ni𝑗wi,𝑗𝜓 + ai𝑗did𝑗 + 𝛼i𝑗𝜑,i𝜑,𝑗

+ 𝛾i𝑗𝜓,i𝜓,𝑗 + 2𝛽i𝑗𝜑,i𝜓,𝑗 + 2bi𝑗di𝜑,𝑗 + 2ci𝑗di𝜓,𝑗 + 𝜉𝜑2 + 2𝜏𝜑𝜓 + 𝜂𝜓2,

(8)

and we note that
.(U(t)) =

(
t𝑗i − 𝜏𝑗i

) .ui,𝑗 +
(

s𝑗i − 𝜎𝑗i
) .wi,𝑗 + h(1)

i
.
𝜑,i + h(2)

i
.
𝜓,i

+ pi
.
di −

(
g(1) + C

) .
𝜑 −

(
g(2) + D

) .
𝜓,

(9)

and

2(U) =
(

t𝑗i − 𝜏𝑗i
)

ui,𝑗 +
(

s𝑗i − 𝜎𝑗i
)

wi,𝑗 + h(1)
i 𝜑,i + h(2)

i 𝜓,i

+ pidi −
(

g(1) + C
)
𝜑 −

(
g(2) + D

)
𝜓.

(10)

At this time, we recall that (see, e.g., Ieşan [41])

𝜚0
1 > 0, 𝜚0

2 > 0, 𝜅1 > 0, 𝜅2 > 0, 𝜏 ≥ 0, 𝜉 ≥ 0. (11)

Moreover, we assume that the internal energy is a positive definite quadratic form, that is,

𝜇m
[
ur,sur,s + wr,swr,s + 𝜑2 + 𝜓2 + 𝜒mdrdr + 𝜋m

(
𝜑,r𝜑,r + 𝜓,r𝜓,r

)] ≤ 2(U)

≤ 𝜇M
[
ur,sur,s + wr,swr,s + 𝜑2 + 𝜓2 + 𝜒Mdrdr + 𝜋M

(
𝜑,r𝜑,r + 𝜓,r𝜓,r

)]
,

(12)

where 𝜇m, 𝜒m and 𝜋m and 𝜇M , 𝜒M and 𝜋M are strictly positive constants. In the left side of (12), there is no summation
upon subscript m.
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DE CASTRO MOTTA ET AL. 5

To deal with the problem of the structural stability of the mixture model, we first need to establish some estimates
regarding the continuous dependence of the solution of the initial boundary value problem  with respect to its data
(initial and boundary data, as well as those given by load systems). If the boundary data of the problem  are zero, then
the required estimates can be obtained much more simply than in the case of non-zero boundary data. This latter case
requires the use of some auxiliary elliptic problems that allow estimates in terms of the non-zero boundary data.

3 SOME AUXILIARY PROBLEMS AND RELATED ESTIMATES

For our next analysis, we need to use some elliptic boundary value problems associated with the region B with the
boundary surface 𝜕B. In fact, we need to establish appropriate estimates of their solutions in terms of the boundary
given data.

We therefore consider the Dirichlet boundary value problem 0(𝜙∗) in terms of the unknown 𝜙, defined by

Δ𝜙 = 0 in B,

𝜙 = 𝜙∗ on 𝜕B,
(13)

where Δ is the Laplace operator. We note that the existence of the solution 𝜙 of the problem 0(𝜙∗) is assured by means
of the existence theory developed by Fichera [45].

To obtain convenient estimates regarding the solution 𝜙 in terms of 𝜙∗, let us multiply relation (13) by xk𝜙,k to obtain
the identity

0 = ∫B
xk𝜙,kΔ𝜙dv = 1

2 ∫B
𝜙,i𝜙,idv + ∫

𝜕B
nixk𝜙,k𝜙,ida − 1

2 ∫
𝜕B

xknk𝜙,i𝜙,ida. (14)

On the boundary surface 𝜕B, we use the following decomposition ∇𝜙 = (𝜕𝜙∕𝜕n)n+∇t𝜙t, where n is the outward unit
normal vector to 𝜕B, t is a unit tangent vector to the boundary surface, ∇ is the gradient operator, (𝜕∕𝜕n) is the normal
derivative and ∇t is the tangential derivative. Then the identity (14) becomes

1
2 ∫B

𝜙,i𝜙,idv + 1
2 ∫

𝜕B
xknk

(
𝜕𝜙

𝜕n

)2

da

= − ∫
𝜕B

xktk
𝜕𝜙

𝜕n
∇t𝜙da + 1

2 ∫
𝜕B

xknk(∇t𝜙)2da,
(15)

so that, by means of the relation (1) and the Cauchy-Schwarz and arithmetic-geometric mean inequalities, we obtain the
following estimate:

1
2 ∫B

𝜙,i𝜙,idv + h0

4 ∫
𝜕B

(
𝜕𝜙

𝜕n

)2

da ≤ 1
2 ∫

𝜕B

(
xknk +

2𝛿2
0

h0

)
(∇t𝜙)2da. (16)

At this instant, we recall the Poincaré inequality:

𝜆1∫B
𝜙2dv ≤ ∫B

𝜙,r𝜙,rdv + C1∫
𝜕B
𝜙∗2da, (17)

with 𝜆1 and C1 positive constants. Consequently, we can see that the estimates (16) and (17) furnish a priori bounds for
∫B𝜙

2dv, ∫B𝜙,i𝜙,idv and ∫
𝜕B (𝜕𝜙∕𝜕n)2da in terms of the given data 𝜙∗ on the boundary surface 𝜕B.

4 CONTINUOUS DATA DEPENDENCE WITH RESPECT TO THE EXTERNAL
GIVEN DATA FOR THE PROBLEM 
Let us first consider the boundary value problem 0(

.u∗
i ) and let us denote its solution by Gi. In view of the analysis of the

above section, it results that
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6 DE CASTRO MOTTA ET AL.

1
2 ∫B

Gi,rGi,rdv + h0

4 ∫
𝜕B

𝜕Gi

𝜕n
𝜕Gi

𝜕n
da ≤ 1

2 ∫
𝜕B

(
xknk +

2𝛿2
0

h0

)
(∇t

.u∗
i )(∇t

.u∗
i )da, (18)

and

𝜆1∫B
GiGidv ≤ ∫B

Gi,rGi,rdv + C1∫
𝜕B

.u∗
i

.u∗
i da. (19)

Then we multiply the equation (2)1 by Gi −
.ui to get

∫B

[(
t𝑗i − 𝜏𝑗i

)
,𝑗
− pi − 𝜚0

1üi +
(
𝜚0

1F(1)
i + 𝜏𝑗i,𝑗

)]
(Gi −

.ui) dv = 0 (20)

so that, by means of the divergence theorem and the boundary condition Gi −
.ui = 0 on 𝜕B, we get

∫B

[
𝜚0

1
.uiüi +

(
t𝑗i − 𝜏𝑗i

) .ui,𝑗 + pi
.ui
]

dv = d
dt ∫B

𝜚0
1

.uiGidv − ∫B
𝜚0

1
.uiĠidv

+ ∫B

[(
t𝑗i − 𝜏𝑗i

)
Gi,𝑗 + piGi

]
dv + ∫B

(
𝜚0

1F(1)
i + 𝜏𝑗i,𝑗

)
( .ui − Gi) dv.

(21)

Next, we consider the boundary value problem 0(
.w∗

i ) and let us denote its solution by Hi. In view of the analysis of the
above section, it results that

1
2 ∫B

Hi,rHi,rdv + h0

4 ∫
𝜕B

𝜕Hi

𝜕n
𝜕Hi

𝜕n
da ≤ 1

2 ∫
𝜕B

(
xknk +

2𝛿2
0

h0

)
(∇t

.w∗
i )(∇t

.w∗
i )da, (22)

and

𝜆1∫B
HiHidv ≤ ∫B

Hi,rHi,rdv + C1∫
𝜕B

.w∗
i

.w∗
i da. (23)

Further, we multiply the equation (2)2 by Hi −
.wi to get

∫B

[(
s𝑗i − 𝜎𝑗i

)
,𝑗
+ pi − 𝜚0

2ẅi +
(
𝜚0

2F(2)
i + 𝜎𝑗i,𝑗

)]
(Hi −

.wi) dv = 0 (24)

so that, by means of the divergence theorem, we get

∫B

[
𝜚0

2
.wiẅi +

(
s𝑗i − 𝜎𝑗i

) .wi,𝑗 − pi
.wi
]

dv = d
dt ∫B

𝜚0
2

.wiHidv − ∫B
𝜚0

2
.wi

.
Hidv

+ ∫B

[(
s𝑗i − 𝜎𝑗i

)
Hi,𝑗 − piHi

]
dv + ∫B

(
𝜚0

2F(2)
i + 𝜎𝑗i,𝑗

)
( .wi − Hi) dv.

(25)

Subsequently, we consider the boundary value problem 0(
.
𝜑∗) and let us denote its solution by Φ. Therefore, we have

1
2 ∫B

Φ,rΦ,rdv + h0

4 ∫
𝜕B

(
𝜕Φ
𝜕n

)2
da ≤ 1

2 ∫
𝜕B

(
xknk +

2𝛿2
0

h0

)
(∇t

.
𝜑∗)2da, (26)
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DE CASTRO MOTTA ET AL. 7

and

𝜆1∫B
Φ2dv ≤ ∫B

Φ,rΦ,rdv + C1∫
𝜕B

.
𝜑∗2da. (27)

Now, we multiply the equation (3)1 by Φ − .
𝜑 to get

∫B

[
h(1)

i,i +
(

g(1) + C
)
+
(
𝜚0

1L(1) − C
)
− 𝜚0

1𝜅1𝜑̈
]
(Φ − .

𝜑) dv = 0, (28)

so that, we get

∫B

[
𝜚0

1𝜅1
.
𝜑𝜑̈ + h(1)

i
.
𝜑,i −

(
g(1) + C

) .
𝜑

]
dv = d

dt ∫B
𝜚0

1𝜅1
.
𝜑Φdv − ∫B

𝜚0
1𝜅1

.
𝜑

.
Φdv

+ ∫B

[
h(1)

i Φ,i −
(

g(1) + C
)
Φ
]

dv + ∫B

(
𝜚0

1L(1) − C
)
( .
𝜑 − Φ) dv.

(29)

Finally, we consider the boundary value problem 0(
.
𝜓∗) and denote its solution by Ψ and note that

1
2 ∫B

Ψ,rΨ,rdv + h0

4 ∫
𝜕B

(
𝜕Ψ
𝜕n

)2
da ≤ 1

2 ∫
𝜕B

(
xknk +

2𝛿2
0

h0

)
(∇t

.
𝜓∗)2da, (30)

and

𝜆1∫B
Ψ2dv ≤ ∫B

Ψ,rΨ,rdv + C1∫
𝜕B

.
𝜓∗2da. (31)

Further, we start with the identity

∫B

[
h(2)

i,i +
(

g(2) + D
)
+
(
𝜚0

2L(2) − D
)
− 𝜚0

2𝜅2𝜓̈
]
(Ψ − .

𝜓) dv = 0, (32)

in order to get

∫B

[
𝜚0

2𝜅2
.
𝜓𝜓̈ + h(2)

i
.
𝜓,i −

(
g(2) + D

) .
𝜓

]
dv = d

dt ∫B
𝜚0

2𝜅2
.
𝜓Ψdv − ∫B

𝜚0
2𝜅2

.
𝜓

.
Ψdv

+ ∫B

[
h(2)

i Ψ,i −
(

g(2) + D
)
Ψ
]

dv + ∫B

(
𝜚0

2L(2) − D
)
( .
𝜓 − Ψ) dv.

(33)

The next step is to add the equations (21), (25), (29), and (33) and to use the relations (9) and (10) to see that

d
dt ∫B

[1
2
(
𝜚0

1
.ui

.ui + 𝜚0
2

.wi
.wi + 𝜚0

1𝜅1
.
𝜑2 + 𝜚0

2𝜅2
.
𝜓2) + (U)

]
dv − d

dt ∫B

(
𝜚0

1
.uiGi + 𝜚0

2
.wiHi + 𝜚0

1𝜅1
.
𝜑Φ + 𝜚0

2𝜅2
.
𝜓Ψ

)
dv

= − ∫B

(
𝜚0

1
.uiĠi + 𝜚0

2
.wi

.
Hi + 𝜚0

1𝜅1
.
𝜑

.
Φ + 𝜚0

2𝜅2
.
𝜓

.
Ψ
)

dv

+ ∫B

[(
t𝑗i − 𝜏𝑗i

)
Gi,𝑗 +

(
s𝑗i − 𝜎𝑗i

)
Hi,𝑗 + h(1)

i Φ,i + h(2)
i Ψ,i + pi (Gi − Hi) − (g(1) + C)Φ − (g(2) + D)Ψ

]
dv

+ ∫B

[(
𝜚0

1F(1)
i + 𝜏𝑗i,𝑗

) .ui +
(
𝜚0

2F(2)
i + 𝜎𝑗i,𝑗

) .wi +
(
𝜚0

1L(1) − C
) .
𝜑 +

(
𝜚0

2L(2) − D
) .
𝜓

]
dv

− ∫B

[(
𝜚0

1F(1)
i + 𝜏𝑗i,𝑗

)
Gi +

(
𝜚0

2F(2)
i + 𝜎𝑗i,𝑗

)
Hi +

(
𝜚0

1L(1) − C
)
Φ +

(
𝜚0

2L(2) − D
)
Ψ
]

dv.

(34)
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8 DE CASTRO MOTTA ET AL.

At this instant, we introduce the notations:

 (t) = ∫B(t)

[1
2
(
𝜚0

1
.ui

.ui + 𝜚0
2

.wi
.wi + 𝜚0

1𝜅1
.
𝜑2 + 𝜚0

2𝜅2
.
𝜓2) + (U)

]
dv, (35)

I1(t) = ∫B(t)

[(
t𝑗i − 𝜏𝑗i

)
Gi,𝑗 +

(
s𝑗i − 𝜎𝑗i

)
Hi,𝑗 + h(1)

i Φ,i + h(2)
i Ψ,i + pi (Gi − Hi) − (g(1) + C)Φ − (g(2) + D)Ψ

]
dv, (36)

I2(t) = ∫B(t)

[(
𝜚0

1F(1)
i + 𝜏𝑗i,𝑗

) .ui +
(
𝜚0

2F(2)
i + 𝜎𝑗i,𝑗

) .wi +
(
𝜚0

1L(1) − C
) .
𝜑 +

(
𝜚0

2L(2) − D
) .
𝜓

]
dv, (37)

I3(t) = − ∫B(t)

[(
𝜚0

1F(1)
i + 𝜏𝑗i,𝑗

)
Gi +

(
𝜚0

2F(2)
i + 𝜎𝑗i,𝑗

)
Hi +

(
𝜚0

1L(1) − C
)
Φ +

(
𝜚0

2L(2) − D
)
Ψ
]

dv, (38)

where ∫B(t) means that the integrand is evaluated at time t.
Then the identity (34) implies that

 (t) = ∫B(t)

(
𝜚0

1
.uiGi + 𝜚0

2
.wiHi + 𝜚0

1𝜅1
.
𝜑Φ + 𝜚0

2𝜅2
.
𝜓Ψ

)
dv − ∫

t

0 ∫B(s)

(
𝜚0

1
.uiĠi + 𝜚0

2
.wi

.
Hi + 𝜚0

1𝜅1
.
𝜑

.
Φ + 𝜚0

2𝜅2
.
𝜓

.
Ψ
)

dvds

+ ∫
t

0
I1(s)ds + ∫

t

0
I2(s)ds + ∫

t

0
I3(s)ds +  (0) − ∫B(0)

(
𝜚0

1
.uiGi + 𝜚0

2
.wiHi + 𝜚0

1𝜅1
.
𝜑Φ + 𝜚0

2𝜅2
.
𝜓Ψ

)
dv.

(39)

Our goal now is to obtain from the identity (39) an estimate of the solution U = {ui,wr, 𝜑, 𝜓} of the initial boundary
value problem  in terms of the given data. For this purpose, using the arithmetic-geometric mean inequality and the
Cauchy-Schwarz inequality, we note that

∫B(t)

(
𝜚0

1
.uiGi + 𝜚0

2
.wiHi + 𝜚0

1𝜅1
.
𝜑Φ + 𝜚0

2𝜅2
.
𝜓Ψ

)
dv

≤ 1
4 ∫B(t)

(
𝜚0

1
.ui

.ui + 𝜚0
2

.wi
.wi + 𝜚0

1𝜅1
.
𝜑2 + 𝜚0

2𝜅2
.
𝜓2) dv

+ max
t∈[0,T]∫B(t)

(
𝜚0

1GiGi + 𝜚0
2HiHi + 𝜚0

1𝜅1Φ2 + 𝜚0
2𝜅2Ψ2) dv;

(40)

− ∫
t

0 ∫B(s)

(
𝜚0

1
.uiĠi + 𝜚0

2
.wi

.
Hi + 𝜚0

1𝜅1
.
𝜑

.
Φ + 𝜚0

2𝜅2
.
𝜓

.
Ψ
)

dvds

≤ ∫
t

0
P(s)

(
∫B(s)

(
𝜚0

1
.ui

.ui + 𝜚0
2

.wi
.wi + 𝜚0

1𝜅1
.
𝜑2 + 𝜚0

2𝜅2
.
𝜓2) dv

)1∕2

ds

≤ ∫
t

0
P(s)

√
2 (s)ds,

(41)

where

P(t) =
(
∫B(t)

(
𝜚0

1ĠiĠi + 𝜚0
2

.
Hi

.
Hi + 𝜚0

1𝜅1
.
Φ2 + 𝜚0

2𝜅2
.
Ψ2) dv

)1∕2

. (42)

Furthermore, from the relation (36), we have

|I1(t)| ≤ Q(t)
(
∫B(t)

[ (
t𝑗i − 𝜏𝑗i

) (
t𝑗i − 𝜏𝑗i

)
+
(

s𝑗i − 𝜎𝑗i
) (

s𝑗i − 𝜎𝑗i
)

+ 1
𝜋m

(
h(1)

i h(1)
i + h(2)

i h(2)
i

)
+ 1
𝜒m

pipi + (g(1) + C)2 + (g(2) + D)2
]

dv
)1∕2

≤ Q(t)
√

2𝜇M  (t),

(43)
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DE CASTRO MOTTA ET AL. 9

with

Q(t) =
(
∫B(t)

[
Gi,𝑗Gi,𝑗 + Hi,𝑗Hi,𝑗 + 𝜋m

(
Φ,iΦ,i + Ψ,iΨ,i

)
+ 𝜒m (Gi − Hi) (Gi − Hi) + Φ2 + Ψ2] dv

)1∕2

; (44)

While from (37), we get

|I2(t)| ≤ R(t)
(
∫B(t)

(
𝜚0

1
.ui

.ui + 𝜚0
2

.wi
.wi + 𝜚0

1𝜅1
.
𝜑2 + 𝜚0

2𝜅2
.
𝜓2) dv

)1∕2

≤ R(t)
√

2 (t), (45)

with

R(t) =

(
∫B(t)

[
1
𝜚0

1

(
𝜚0

1F(1)
i + 𝜏ri,r

)(
𝜚0

1F(1)
i + 𝜏si,s

)
+ 1
𝜚0

2

(
𝜚0

2F(2)
i + 𝜎ri,r

)

×
(
𝜚0

2F(2)
i + 𝜎si,s

)
+ 1
𝜚0

1𝜅1

(
𝜚0

1L(1) − C
)2 + 1

𝜚0
2𝜅2

(
𝜚0

2L(2) − D
)2
]

dv

)1∕2

.

(46)

Finally, we use the estimates (40), (41), (43), and (45) into identity (39) to obtain the following integral inequality:

 (t) ≤ ∫
t

0
𝜉(s)

√ (s)ds + , (47)

where

𝜉(t) = 2
√

2
[
P(t) +

√
𝜇MQ(t) + R(t)

]
,

 = 2 (0) + 2
|||||∫B(0)

(
𝜚0

1
.uiGi + 𝜚0

2
.wiHi + 𝜚0

1𝜅1
.
𝜑Φ + 𝜚0

2𝜅2
.
𝜓Ψ

)
dv
|||||

+ 2 max
t∈[0,T]∫B(t)

(
𝜚0

1GiGi + 𝜚0
2HiHi + 𝜚0

1𝜅1Φ2 + 𝜚0
2𝜅2Ψ2) dv + 2∫

T

0
|I3(t)| dt.

(48)

We now handle the integral inequality (47) to obtain the sought continuous dependence estimate. In this connection,
we introduce the function

Λ(t) =

√
∫

t

0
𝜉(s)

√ (s)ds + , t ∈ [0,T], (49)

and note that we have √ (t) ≤ Λ(t) for all t ∈ [0,T]. (50)

Moreover, we get

2Λ(t)
.
Λ(t) = 𝜉(t)

√ (t) ≤ 𝜉(t)Λ(t) for all t ∈ [0,T], (51)

so that we obtain

Λ(t) ≤ 1
2 ∫

t

0
𝜉(s)ds + Λ(0) for all t ∈ [0,T]. (52)

Consequently, from the relations (50) and (52), we obtain the expected continuous dependence estimate

√ (t) ≤ 1
2 ∫

t

0
𝜉(s)ds +

√ for all t ∈ [0,T]. (53)
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10 DE CASTRO MOTTA ET AL.

It is important to note that, based on the assumptions described in relations (11) and (12), it can be seen that represents
a measure of the solution U = {ui,wr, 𝜑, 𝜓} of the initial boundary value problem  in the sense that  (U(t)) ≥ 0 for all
U(t), and  (U(t)) = 0 implies U(t) = 0. On the other hand, through relations (18), (19), (22), (23), (26), (27), (30), and (31)
as well as (42), (44), (46), and (48), we can see that the right member of the estimate (53) represents a measure of all data
of the initial boundary value problem  .

It should be mentioned that when all external data are null, the estimate (53) becomes

√ (t) ≤ t
√

2

(
∫B

(
1
𝜚0

1
𝜏ri,r𝜏si,s +

1
𝜚0

2
𝜎ri,r𝜎si,s +

1
𝜚0

1𝜅1
C2 + 1

𝜚0
2𝜅2

D2

)
dv

)1∕2

, t ∈ [0,T] (54)

and it expresses the continuous dependence of solution with respect to the set of characteristic coefficients 1 =
{𝜏𝑗i, 𝜎rs,C,D}.

In view of the relations (8) and (35) and the hypotheses (11) and (12), we can see that the inequality (53) furnishes a
priori estimates for the following quantities

∫B

.ui
.uidv, ∫B

.wi
.widv, ∫B

.
𝜑2dv, ∫B

.
𝜓2dv, ∫B

ur,sur,sdv, ∫B
wr,swr,sdv,

∫B
𝜑2dv, ∫B

𝜓2dv, ∫B
drdrdv, ∫B

𝜑,i𝜑,idv, ∫B
𝜓,i𝜓,idv.

(55)

Furthermore, it is worth to outline that the above procedure allows us to obtain a priori bounds for

∫B

.ur,s
.ur,sdv, ∫B

.wr,s
.wr,sdv, ∫B

.
𝜑,i

.
𝜑,idv, ∫B

.
𝜓,i

.
𝜓,idv. (56)

We have to outline that the estimates described by relations (55) and (56) will be useful in the next sections in connection
with the evaluation of appropriate supply terms involving the variations of the coupling coefficients.

5 CONTINUOUS DEPENDENCE ON THE COUPLING COEFFICIENTS

In this section we study the structural stability of the mathematical model of the mixture of poroelastic solids. One of
the most important tasks in the study of the structural stability is to prove that the solutions of the initial boundary
value problems depend continuously on the material characteristic coefficients, which may be subjected to measurement
errors, perturbations in the mathematical modeling process, or even decay and degradation phenomena. The structural
stability is related to the continuous dependence of solutions on changes in the model itself rather than on the given data.
That means changes in coefficients in the constitutive equations and changes in the system of differential equations may
be reflected physically by changes in the constitutive parameters (as, for example, the coefficients obtained in a small
deformation superposed to a finite one). Moreover, the estimates of continuous dependence play a central role in obtaining
numerical approximations to these kinds of problems.

The model in our study represents a coupling of the classical elastic mixtures with the consideration of the volume
fraction microstructure. Therefore, we have the set of coefficients 2 = {Di𝑗 ,Ei𝑗 ,Mi𝑗 ,Ni𝑗 , bi𝑗 , ci𝑗} coupling the mechanical
deformations (of classical mixture model) with the poroelastic effects. We can also consider the model in question as
a coupling of the two porous material constituents and hence we have the following set of characteristic coefficients
3 = {bi𝑗kl,Ei𝑗 + Ni𝑗 ,Mi𝑗 , 𝛽i𝑗 , ai𝑗 , bi𝑗 , ci𝑗 , 𝜏}.

5.1 Continuous dependence on the set of coupling characteristic coefficients2 = {Di𝑗 ,Ei𝑗 ,Mi𝑗 ,Ni𝑗 , bi𝑗 , ci𝑗}
Throughout this section, we investigate the continuous dependence of the solution of the initial boundary value problem
 in the situation when all the characteristic coefficients of the mixture remain unchanged, and only the coupling charac-
teristic coefficients 2 = {Di𝑗 ,Ei𝑗 ,Mi𝑗 ,Ni𝑗 , bi𝑗 , ci𝑗} undergo a variation. The set 2 characterizes the coupling of the effects
of the classical mixture with those of porosity.
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DE CASTRO MOTTA ET AL. 11

Therefore, in what follows, we consider that U (𝛼) = {u(𝛼)
i ,w(𝛼)

r , 𝜑(𝛼), 𝜓 (𝛼)}, 𝛼 = 1, 2, is the solution of the initial boundary
value problem corresponding to the same initial, boundary and body loads data, and to the same material characteristics
excepting the coupling material parameters (𝛼)

2 = {D(𝛼)
i𝑗 ,E

(𝛼)
i𝑗 ,M

(𝛼)
i𝑗 ,N

(𝛼)
i𝑗 , b

(𝛼)
i𝑗 , c

(𝛼)
i𝑗 }, 𝛼 = 1, 2.

If we set

U = {ui,wi, 𝜑, 𝜓} = U (1) − U (2) =
{

u(1)
i − u(2)

i ,w
(1)
i − w(2)

i , 𝜑
(1) − 𝜑(2), 𝜓 (1) − 𝜓 (2)

}
,

2 = {Di𝑗 ,Ei𝑗 ,Mi𝑗 ,Ni𝑗 , bi𝑗 , ci𝑗} = (1)
2 − (2)

2

=
{

D(1)
i𝑗 − D(2)

i𝑗 ,E
(1)
i𝑗 − E(2)

i𝑗 ,M
(1)
i𝑗 − M(2)

i𝑗 ,N
(1)
i𝑗 − N(2)

i𝑗 , b
(1)
i𝑗 − b(2)

i𝑗 , c
(1)
i𝑗 − c(2)i𝑗

}
,

di = ui − wi,

(57)

then the following initial conditions

ui(x, 0) = 0, .ui(x, 0) = 0, wi(x, 0) = 0, .wi(x, 0) = 0,

𝜑(x, 0) = 0, .
𝜑(x, 0) = 0, 𝜓(x, 0) = 0, .

𝜓(x, 0) = 0, for all x ∈ B,
(58)

and the boundary conditions

ui = 0, wi = 0, 𝜑 = 0, 𝜓 = 0 on 𝜕B × (0,T), (59)

are fulfilled.
The basic system of differential equations is

𝜚0
1üi −

[
ai𝑗kluk,l + bi𝑗klwk,l +

(
D(1)
𝑗i + M(1)

𝑗i

)
𝜑 +

(
E(1)
𝑗i + N(1)

𝑗i

)
𝜓

]
,𝑗

+ ai𝑗d𝑗 + b(1)
i𝑗 𝜑,𝑗 + c(1)i𝑗 𝜓,𝑗 = 𝜚0

1F̃(1)
i ,

(60)

𝜚0
2ẅi −

(
bkli𝑗uk,l + di𝑗klwk,l + M(1)

i𝑗 𝜑 + N(1)
i𝑗 𝜓

)
,𝑗
− ai𝑗d𝑗 − b(1)

i𝑗 𝜑,𝑗 − c(1)i𝑗 𝜓,𝑗 = 𝜚0
2F̃(2)

i , (61)

𝜚0
1𝜅1𝜑̈ −

(
𝛼i𝑗𝜑,𝑗 + 𝛽i𝑗𝜓,𝑗 + b(1)

𝑗i d𝑗
)
,i
+
(

D(1)
𝑗i + M(1)

𝑗i

)
ui,𝑗 + M(1)

i𝑗 wi,𝑗 + 𝜉𝜑 + 𝜏𝜓 = 𝜚0
1𝜅1L̃(1), (62)

𝜚0
2𝜅2𝜓̈ −

(
𝛽𝑗i𝜑,𝑗 + 𝛾i𝑗𝜓,𝑗 + c(1)

𝑗i d𝑗
)
,i
+
(

E(1)
𝑗i + N(1)

𝑗i

)
ui,𝑗 + N(1)

i𝑗 wi,𝑗 + 𝜏𝜑 + 𝜂𝜓 = 𝜚0
2𝜅2L̃(2), (63)

with

𝜚0
1F̃(1)

i =
[(

D𝑗i + M𝑗i
)
𝜑(2) +

(
E𝑗i + N𝑗i

)
𝜓 (2)]

,𝑗
− bi𝑗𝜑

(2)
,𝑗

− ci𝑗𝜓
(2)
,𝑗
, (64)

𝜚0
2F̃(2)

i =
(

Mi𝑗𝜑
(2) + Ni𝑗𝜓

(2))
,𝑗
+ bi𝑗𝜑

(2)
,𝑗

+ ci𝑗𝜓
(2)
,𝑗
, (65)

𝜚0
1𝜅1L̃(1) =

(
b𝑗id(2)

𝑗

)
,i
−
(

D𝑗i + M𝑗i
)

u(2)
i,𝑗 − Mi𝑗w(2)

i,𝑗 , (66)

𝜚0
2𝜅2L̃(2) =

(
c𝑗id(2)

𝑗

)
,i
−
(

E𝑗i + N𝑗i
)

u(2)
i,𝑗 − Ni𝑗w(2)

i,𝑗 . (67)

We multiply equation (60) by .ui, then multiply equation (61) by .wi, multiply equation (62) by .
𝜑, multiply equation (63)

by .
𝜓 , and then add the results and integrate over B and finally use the boundary conditions (59), to find

.1(t) = ∫B(t)

(
𝜚0

1F̃(1)
i

.ui + 𝜚0
2F̃(2)

i
.wi + 𝜚0

1𝜅1L̃(1) .
𝜑 + 𝜚0

2𝜅2L̃(2) .
𝜓

)
dv, (68)
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12 DE CASTRO MOTTA ET AL.

where

1(t) =
1
2 ∫B(t)

[(
𝜚0

1
.ui

.ui + 𝜚0
2

.wi
.wi + 𝜚0

1𝜅1
.
𝜑2 + 𝜚0

2𝜅2
.
𝜓2

)
+ ai𝑗klui,𝑗uk,l + 2bi𝑗klui,𝑗wk,l

+ di𝑗klwi,𝑗wk,l + 2
(

D(1)
𝑗i + M(1)

𝑗i

)
ui,𝑗𝜑 + 2

(
E(1)
𝑗i + N(1)

𝑗i

)
ui,𝑗𝜓 + 2M(1)

i𝑗 wi,𝑗𝜑

+ 2N(1)
i𝑗 wi,𝑗𝜓 + ai𝑗did𝑗 + 𝛼i𝑗𝜑,i𝜑,𝑗 + 𝛾i𝑗𝜓,i𝜓,𝑗 + 2𝛽i𝑗𝜑,i𝜓,𝑗 + 2b(1)

i𝑗 di𝜑,𝑗

+ 2c(1)i𝑗 di𝜓,𝑗 + 𝜉𝜑2 + 2𝜏𝜑𝜓 + 𝜂𝜓2
]

dv.

(69)

Now, we integrate (68) with respect to time variable on (0, t) and take into consideration the null initial conditions (58),
in order to obtain the following identity

1(t) = ∫
t

0 ∫B(s)

(
𝜚0

1F̃(1)
i

.ui + 𝜚0
2F̃(2)

i
.wi + 𝜚0

1𝜅1L̃(1) .
𝜑 + 𝜚0

2𝜅2L̃(2) .
𝜓

)
dvds. (70)

By applying the Cauchy-Schwarz inequality in (70), we obtain

1(t) ≤ ∫
t

0

(
∫B(s)

(
𝜚0

1
.ui

.ui + 𝜚0
2

.wi
.wi + 𝜚0

1𝜅1
.
𝜑2 + 𝜚0

2𝜅2
.
𝜓2) dv

)1∕2

(s)ds, (71)

and hence, by (69), we have

1(t) ≤ ∫
t

0

√
21(s)(s)ds, (72)

where

(t) =
(
∫B(t)

(
𝜚0

1F̃(1)
i F̃(1)

i + 𝜚0
2F̃(2)

i F̃(2)
i + 𝜚0

1𝜅1L̃(1)L̃(1) + 𝜚0
2𝜅2L̃(2)L̃(2)

)
dv
)1∕2

. (73)

Furthermore, we can treat the inequality by the same procedure like that for (47), to obtain

√1(t) ≤ 1√
2 ∫

t

0
(s)ds, t ≥ 0. (74)

It is a straightforward way to show that, by means of Cauchy-Schwarz and arithmetic-geometric mean inequalities and
by using the estimates of type described by relations (55) and (56), as well as the relations (64)–(67), (73), together with (8)
and (12), there exists a computable constant K to have

(t) ≤ K2(2)∫B(t)
(U (2))dv, (75)

with 2(2) = measB {2} an appropriate measure of the coupling parameters. Then, recalling (35), the relation (74)
implies

√1(t) ≤
(

K√
2 ∫

t

0
 (U (2))ds

)
2(2), t ≥ 0. (76)

In view of the analysis of the Section 4, namely, the estimate (53), this last estimate mathematically shows that a small
variation of the material coupling coefficients in the set 2 produces a sufficiently small variation of the corresponding
solutions.
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DE CASTRO MOTTA ET AL. 13

5.2 Continuous dependence on the set of coupling characteristic coefficients3 = {bi𝑗kl,Ei𝑗 + Ni𝑗 ,Mi𝑗 , 𝛽i𝑗 , ai𝑗 , bi𝑗 , ci𝑗 , 𝜏}
We proceed now to investigate the continuous dependence of the solution of the initial boundary value problem  in the
situation when all the characteristic coefficients of the mixture remain unchanged, excepting the coupling characteristic
coefficients 3 = {bi𝑗kl,Ei𝑗 + Ni𝑗 ,Mi𝑗 , 𝛽i𝑗 , ai𝑗 , bi𝑗 , ci𝑗 , 𝜏} which undergo a variation. This set of coefficients represents the
coupling between the two constituent materials of the mixture.

Let U (𝛼) = {u(𝛼)
i ,w(𝛼)

r , 𝜑(𝛼), 𝜓 (𝛼)}, 𝛼 = 1, 2, be the solution of the initial boundary value problem  corresponding to
the same initial, boundary and body loads data, and to the same material characteristics excepting the coupling material
parameters (𝛼)

3 = {b(𝛼)
i𝑗kl,E

(𝛼)
i𝑗 + N(𝛼)

i𝑗 ,M
(𝛼)
i𝑗 , 𝛽

(𝛼)
i𝑗 , a

(𝛼)
i𝑗 , b

(𝛼)
i𝑗 , c

(𝛼)
i𝑗 , 𝜏

(𝛼)}, 𝛼 = 1, 2.
Further, we set

U = {ui,wr, 𝜑, 𝜓} =
{

u(1)
i − u(2)

i ,w
(1)
i − w(2)

i , 𝜑
(1) − 𝜑(2), 𝜓 (1) − 𝜓 (2)

}
, di = ui − wi,

3 = {bi𝑗kl,Ei𝑗 + Ni𝑗 ,Mi𝑗 , 𝛽i𝑗 , ai𝑗 , bi𝑗 , ci𝑗 , 𝜏} = (1)
3 − (2)

3 =
{

b(1)
i𝑗kl − b(2)

i𝑗kl,E
(1)
i𝑗 + N(1)

i𝑗

− E(2)
i𝑗 − N(2)

i𝑗 ,M
(1)
i𝑗 − M(2)

i𝑗 , 𝛽
(1)
i𝑗 − 𝛽(2)i𝑗 , a

(1)
i𝑗 − a(2)

i𝑗 , b
(1)
i𝑗 − b(2)

i𝑗 , c
(1)
i𝑗 − c(2)i𝑗 , 𝜏

(1) − 𝜏 (2)
}
,

(77)

and therefore, we have the following null initial conditions

ui(x, 0) = 0, .ui(x, 0) = 0, wi(x, 0) = 0, .wi(x, 0) = 0,

𝜑(x, 0) = 0, .
𝜑(x, 0) = 0, 𝜓(x, 0) = 0, .

𝜓(x, 0) = 0, for all x ∈ B,
(78)

and null boundary conditions:

ui = 0, wi = 0, 𝜑 = 0, 𝜓 = 0 on 𝜕B × (0,T). (79)

Then the basic system of differential equations is

𝜚0
1üi −

[
ai𝑗kluk,l + b(1)

i𝑗klwk,l +
(

D𝑗i + M𝑗i
)
𝜑 +

(
E(1)
𝑗i + N(1)

𝑗i

)
𝜓

]
,𝑗
+ a(1)

i𝑗 d𝑗 + b(1)
i𝑗 𝜑,𝑗 + c(1)i𝑗 𝜓,𝑗 = 𝜚0

1G̃(1)
i , (80)

𝜚0
2ẅi −

(
b(1)

kli𝑗uk,l + di𝑗klwk,l + M(1)
i𝑗 𝜑 + Ni𝑗𝜓

)
,𝑗
− a(1)

i𝑗 d𝑗 − b(1)
i𝑗 𝜑,𝑗 − c(1)i𝑗 𝜓,𝑗 = 𝜚0

2G̃(2)
i , (81)

𝜚0
1𝜅1𝜑̈ −

(
𝛼i𝑗𝜑,𝑗 + 𝛽(1)i𝑗 𝜓,𝑗 + b(1)

𝑗i d𝑗
)
,i
+
(

D𝑗i + M𝑗i
)

ui,𝑗 + M(1)
i𝑗 wi,𝑗 + 𝜉𝜑 + 𝜏 (1)𝜓 = 𝜚0

1𝜅1M̃(1), (82)

𝜚0
2𝜅2𝜓̈ −

(
𝛽
(1)
𝑗i 𝜑,𝑗 + 𝛾i𝑗𝜓,𝑗 + c(1)

𝑗i d𝑗
)
,i
+
(

E(1)
𝑗i + N(1)

𝑗i

)
ui,𝑗 + Ni𝑗wi,𝑗 + 𝜏 (1)𝜑 + 𝜂𝜓 = 𝜚0

2𝜅2M̃(2), (83)

where

𝜚0
1G̃(1)

i =
[

bi𝑗klw(2)
k,l +

(
E𝑗i + N𝑗i

)
𝜓 (2)

]
,𝑗
− ai𝑗d(2)

𝑗
− bi𝑗𝜑

(2)
,𝑗

− ci𝑗𝜓
(2)
,𝑗
, (84)

𝜚0
2G̃(2)

i =
(

bkli𝑗u(2)
k,l + Mi𝑗𝜑

(2)
)
,𝑗
+ ai𝑗d(2)

𝑗
+ bi𝑗𝜑

(2)
,𝑗

+ ci𝑗𝜓
(2)
,𝑗
, (85)

𝜚0
1𝜅1M̃(1) =

(
𝛽i𝑗𝜓

(2)
,𝑗

+ b𝑗id(2)
𝑗

)
,i
− Mi𝑗w(2)

i,𝑗 − 𝜏𝜓
(2), (86)

𝜚0
2𝜅2M̃(2) =

(
𝛽𝑗i𝜑

(2)
,𝑗

+ c𝑗id(2)
𝑗

)
,i
−
(

E𝑗i + N𝑗i
)

u(2)
i,𝑗 − 𝜏𝜑

(2). (87)
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14 DE CASTRO MOTTA ET AL.

On the basis of the relations (78) to (87), we can obtain the following identity:

2(t) = ∫
t

0 ∫B(s)

(
𝜚0

1G̃(1)
i

.ui + 𝜚0
2G̃(2)

i
.wi + 𝜚0

1𝜅1M̃(1) .
𝜑 + 𝜚0

2𝜅2M̃(2) .
𝜓

)
dvds, (88)

where

2(t) =
1
2 ∫B(t)

[(
𝜚0

1
.ui

.ui + 𝜚0
2

.wi
.wi + 𝜚0

1𝜅1
.
𝜑2 + 𝜚0

2𝜅2
.
𝜓2) + ai𝑗klui,𝑗uk,l + 2b(1)

i𝑗klui,𝑗wk,l

+ di𝑗klwi,𝑗wk,l + 2
(

D𝑗i + M𝑗i
)

ui,𝑗𝜑 + 2
(

E(1)
𝑗i + N(1)

𝑗i

)
ui,𝑗𝜓 + 2M(1)

i𝑗 wi,𝑗𝜑

+ 2Ni𝑗wi,𝑗𝜓 + a(1)
i𝑗 did𝑗 + 𝛼i𝑗𝜑,i𝜑,𝑗 + 𝛾i𝑗𝜓,i𝜓,𝑗 + 2𝛽(1)i𝑗 𝜑,i𝜓,𝑗 + 2b(1)

i𝑗 di𝜑,𝑗

+ 2c(1)i𝑗 di𝜓,𝑗 + 𝜉𝜑2 + 2𝜏 (1)𝜑𝜓 + 𝜂𝜓2
]

dv.

(89)

Following the analysis of the previous section, we arrive at the following estimate

√2(t) ≤
(

K√
2 ∫

t

0
 (U (2))ds

)
3(3), t ≥ 0, (90)

where 3(3) = measB {3} is an appropriate measure of the coupling parameters included into 3.

6 CONVERGENCE RESULT

We investigate here how the solution of the basic initial boundary value problem behaves as the coupling coefficients
tend to zero. In this connection, we take in Section 5.1 U (1) = {u(1)

i ,w
(1)
r , 𝜑

(1), 𝜓 (1)} to be the solution of the coupled
initial boundary value problem  corresponding to the same initial, boundary, and body loads data and to the same
material characteristics excepting the coupling material parameters (1)

2 = {D(1)
i𝑗 ,E

(1)
i𝑗 ,M

(1)
i𝑗 ,N

(1)
i𝑗 , b

(1)
i𝑗 , c

(1)
i𝑗 }. While we take

U (2) = {u(2)
i ,w

(2)
r , 𝜑

(2), 𝜓 (2)} to be the solution of the uncoupled initial boundary value problem  , that is with the same
initial, boundary and body loads data, and the same material characteristics, but with the null coupling coefficients (2)

2 =
{D(2)

i𝑗 ,E
(2)
i𝑗 ,M

(2)
i𝑗 ,N

(2)
i𝑗 , b

(2)
i𝑗 , c

(2)
i𝑗 } = 0. Consequently, we have 2 = (1)

2 − (2)
2 = (1)

2 .
We are interested in how the solution U (1) = {u(1)

i ,w
(1)
r , 𝜑

(1), 𝜓 (1)} of the coupled initial boundary value problem 
behaves when the coupling coefficients in the set (1)

2 = {D(1)
i𝑗 ,E

(1)
i𝑗 ,M

(1)
i𝑗 , N(1)

i𝑗 , b
(1)
i𝑗 , c

(1)
i𝑗 } tend to zero.

To this end, we note that, according to the results of Section 5.1, for the difference solution U = U (1) − U (2) ={
u(1)

i − u(2)
i ,w

(1)
i − w(2)

i , 𝜑
(1) − 𝜑(2), 𝜓 (1) − 𝜓 (2)

}
the estimate (76) is valid, which in the present context is read as

√1(t) ≤
(

K√
2 ∫

T

0
 (U (2))ds

)
2((1)

2 ), t ≥ 0, (91)

where 1(t), as given by the relation (69), represents a measure of the difference solution U = U (1) − U (2), and 2((1)
2 )

represents an appropriate measure of the coupling coefficients given in the set (1)
2 = {D(1)

i𝑗 ,E
(1)
i𝑗 ,M

(1)
i𝑗 ,N

(1)
i𝑗 , b

(1)
i𝑗 , c

(1)
i𝑗 }, and,

in view of the relations (8), (35), and (53), the term ∫ T
0  (U (2))ds is bounded in terms of the external given data of the

uncoupled initial boundary value problem  .
It follows clearly from the estimate (91) that, when 2((1)

2 ) tends to zero, 1(t) tends to zero for any t ∈ (0,T). That
means, the solution U (1) = {u(1)

i ,w
(1)
r , 𝜑

(1), 𝜓 (1)} of the coupled initial boundary value problem  converges to U (2) =
{u(2)

i ,w
(2)
r , 𝜑

(2), 𝜓 (2)}, the solution of the uncoupled initial boundary value problem  , when all the coupling coefficients
in the set (1)

2 = {D(1)
i𝑗 ,E

(1)
i𝑗 ,M

(1)
i𝑗 ,N

(1)
i𝑗 , b

(1)
i𝑗 , c

(1)
i𝑗 } tend to zero. We have to recall that, when the coupling coefficients (1)

2 tend
to zero, the effects of the mixture deformation measured from the reference configuration are decoupled, and the two
constituents deform independently of each other.
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7 FINAL CONCLUSIONS

Our analysis in this paper demonstrates, under minimal assumptions on the material characteristics, that the porous
mixture model, as developed by Ieşan [41], is consistent in the sense that:

(i) the estimate (53) provides a continuous dependence result for the solution of the initial boundary value problem
 in terms of the external given data;

(ii) the estimates (76) and (90) furnish continuous dependence of solution with respect to the two sets of coupling
parameters 2 and 3, respectively. This shows that suitably small variations of the coupling coefficients do not
destroy the well definiteness of the mixture model, that is the structural stability of the system is established;

(iii) the estimate (91) shows that the solution U (1) = {u(1)
i ,w

(1)
r , 𝜑

(1), 𝜓 (1)} of the coupled initial boundary value problem
 converges to U (2) = {u(2)

i ,w
(2)
r , 𝜑

(2), 𝜓 (2)}, the solution of the uncoupled initial boundary value problem  , when
all the coupling coefficients in the set (1)

2 = {D(1)
i𝑗 ,E

(1)
i𝑗 ,M

(1)
i𝑗 ,N

(1)
i𝑗 , b

(1)
i𝑗 , c

(1)
i𝑗 } tend to zero.

On the other hand, all the estimates of continuous dependence presented in the paper can be very useful in experimental
measurements of both external data and material coefficients, because the propagation of a small error in a measurement
of data internal or external to the mixture, does not lead to chaos.

Finally, the authors think that their estimates can be very useful in the numerical treatment of the initial boundary
value problems associated with the porous mixtures. This is because, for instance, a possible numerical approximation in
the treatment of the problem leads to a solution sufficiently close to its exact value. More generally, the structural stability
estimates obtained can be particularly helpful in areas such as construction with regard to important degradation and
decay phenomena, as better detailed in the Introduction.
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