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Abstract
Assuming the hypothesis of local thermal non-equilibrium, this work investigates the propagation of Rayleigh surface
waves in a thermoelastic half-space, isotropic, homogeneous and structured with a triple level of porosity. Its surface is
supposed to be stress-free, thermally insulated and characterized by null pressure boundary conditions. A class of wave
solutions is highlighted for the differential system of the model, each solution satisfying suitable asymptotic conditions in
the depth of the considered half-space. Then, the Rayleigh wave solution is sought as a linear combination of the elements
of this class, and, moreover, by means of the selected boundary conditions, the associated secular equation is found. By
solving the secular equation, the characteristics of the wave solution are determined: the propagation speed as well as
the damping in time. With the purpose of clearly highlighting the characteristics of the model, the secular equation is
solved numerically and significant graphical representations are provided, using the software packages Mathematica and
MATLAB. This suggests an increase of the Rayleigh wave propagation speed, corroborated with the appearance of the
damping in time of its amplitude.

Keywords
Triple porous media, local thermal non-equilibrium, Rayleigh surface waves, secular equation, propagation speed, time
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1. Introduction

The main feature of the model investigated, with regard to its elastic component, is undoubtedly the
presence of a triple level of porosity. On the basis of the pore sizes, it is possible to label porous media
into three categories, namely, micro-porous materials (for which the pore sizes are less than 2nm), meso-
porous materials (for which the pore sizes are 2–50 nm), and macro-porous materials (for which the pore
sizes are greater than 50nm). A good example of mineral structure showing simultaneously macro-,
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meso-, and micro-pores is given by clay, in which a coarser matrix of macro- and meso-pores can be
detected at the level of interactions between particles while, in order to identify the micro-pores, it is nec-
essary to go into more deep details of the material structure. Further explanations in this regard can be
found in Heller-Kallai [1, see p. 415], where the relationship between water content in clay mineral
aggregates and their (changing) porosity is well specified, as well as the effect of acid treatments able to
increase the porosity.

The scope of applicability of porous materials certainly cannot be summed up in a few lines: thermal
insulation, tissue engineering, and water purification represent just a few examples. Over the past
decade, porous materials have been extensively studied, and various theories describing their thermody-
namic behavior have been developed. Based on Darcy’s law, and considering a single porosity structure,
Biot [2–5] formulated the first deformation theory involving a porous elastic solid and a viscous com-
pressible fluid. For the basic results, as well as for historical information about this founding theory,
the reader can refer to the books by Cheng [6], Straughan [7], and Svanadze [8]. However, thinking
about geological formations—for instance—it is easy to realize that they often show a variety of hetero-
geneous levels of porosity: fractures, fissures, cracks, and so on. Over the years, the porous matrix struc-
ture has thus evolved: Barenblatt and co-workers [9,10], resorting to the mixtures theory for modeling a
fluid flow in a (rigid) fractured porous medium, have developed the double porosity model. As a natural
consequence, the deformable skeleton with double porosity has been developed in the previous studies
[11–16], while more recent results on double porous materials can be found in the previous studies [17–
21]. As anticipated, a triple porous medium shows three contiguous levels of porosity: a main matrix,
micro-fractures (less permeable), and macro-fractures (more permeable), coexisting and interacting with
each other [22–25]. This is particularly interesting, e.g., in the context of fractured reservoirs. From the
works by Shackelford [26], Gwo et al. [27], and Moutsopoulos et al. [28], one can get an idea of the dif-
ferent conductance and storage features exhibited by a triple porous material in each pore domain.
Macro-pores are identifiable as primary flow paths, in which dispersion and convection are both preva-
lent; meso-pores locate the intermediate flow paths, where a predominance of the convection is
observed; micro-pores define supplemental flow paths, as well as mass storage spaces where only the dif-
fusive flow is meaningful. We must also mention the modeling of some biomechanical systems in clinical
situations relating the bone, where several levels of porosity can exist: collagen-apatite porosity,
lacunar–canalicular porosity, and intertrabecular porosity (see, e.g., Giorgio et al. [29,30]).

In parallel, we would like to mention that, dealing with petroleum engineering and hydrogeology, the
knowledge of attenuation and dispersion of seismic waves linked to a wave-induced flow in porous
rocks represents a fundamental tool in the assessment of reservoirs porosity and permeability (see, e.g.,
[31,32]). A variation in pore pressure, in the context of oil extraction or CO2 storage, may induce a sud-
den seismicity or even slow subsidence and uplift phenomena. More generally, the pore pressure diffu-
sion seems to be a triggering mechanism for earthquake swarms [33]. There is a huge interest toward
the research in wave propagation in porous media, starting with Biot’s early works [5,34,35], continuing
with the studies by Wilson and Aifantis [12], Beskos et al. [14], Beskos and Papadakis [15], Shankland
et al. [36], Berryman and Wang [37], and with more recent studies by Olny and Boutin [18], Müller et al.
[31], Svanadze [38], Ciarletta et al. [39], Straughan [40], Davis et al. [41], Galesx and Chiritxă [42], Chiritxă
and Arusoaie [43], and Chiritxă and Galesx [44]. Based on the results by Nield [45], Franchi et al. [46],
and Svanadze [47], Chiritxă [48] develops a mathematical model able to describe the evolutive behavior
of triple porous media under local thermal non-equilibrium hypothesis: taking into account anisotropic
and inhomogeneous materials, the constitutive equations are given, showing the terms connecting pres-
sures and temperatures at the different pore scales. The Lagrange identity method and the logarithmic
convexity method are employed to investigate the basic initial boundary value problem; uniqueness and
continuous dependence results are provided. For basic results and the current state of art for elastic
Rayleigh surface waves, including the derivation of the classical Rayleigh equation as well as analysis of
a surface wave of arbitrary profile, we recommend the recent work by Kaplunov and Prikazchikov [49].

Following Chiritxă [48], in this work, we drop the problem of Rayleigh surface wave propagation
within the above triple porous matrix model in the framework of local thermal non-equilibrium. In this
connection, we assume the half-space x2 . 0, filled by a thermoelastic triple porous medium in local ther-
mal non-equilibrium, to be free of supply loads, its surface x2 = 0 to be free of mechanical traction, ther-
mally insulated and with the pressure of pore network vanishing. In order to highlight the existence of
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Rayleigh waves, we follow two steps: (1) first, we determine a class of wave solutions for the system of
basic equations which satisfy suitable asymptotic conditions in the depth of the half-space, and then (2)
we look for the Rayleigh surface wave solution as a linear combination of elements of the above-
mentioned class that satisfy the assumed boundary conditions. In this way, we receive the secular equa-
tion that determines the features of the Rayleigh wave (propagation velocity and attenuation in time).
The results obtained in this paper may be considered as more general in the sense that some other
important formulas previously established by different authors may be deduced from our result as spe-
cial cases. The results obtained are then applied to a specific triple porous material, namely, the Berea
sandstone, solving the secular equation. We are able to show, both numerically and graphically, that the
coupling between mechanical deformation, triple porous structure, and local thermal non-equilibrium
results in an increase of the propagation velocity for the Rayleigh wave, as well as in the appearance of
the damping in time of its amplitude.

We outline here that the methodology we are developing in solving the Rayleigh wave propagation
problem includes mathematical results applicable to the general thermo-mechanical model, based on
the search for wave solutions with assigned wavelength, and which leads to the general secular equation.
But it also includes numerical methods for solving the secular equation involving the software packages
Wolfram Mathematica and MathWorks MATLAB and the corresponding graphical methods.

We summarize the structure of the work. In section 2, under the assumption of local thermal non-
equilibrium and following Chiritxă [48], the system of differential equations depicting the evolutive beha-
vior of an isotropic, homogeneous triple porous medium is given, together with the main hypotheses on
the characteristic coefficients. Section 3.1 defines the class of wave solutions of the basic differential sys-
tem that satisfy the asymptotic conditions in the depth of the half-space. Section 3.2 is dedicated to find-
ing the solution of the Rayleigh wave problem and, therefore, to establish the secular equation. Finally,
in section 4, a numerical simulation of the results given in section 3.2 is proposed.

2. The triple porous model in local thermal non-equilibrium

The starting point is represented by the thermoelastic triple porous model under local thermal non-
equilibrium given by Chiritxă [48]. We denote by p1(x, t) the fluid pressure at the macro-pores level;
p2(x, t) is the fluid pressure at the level of meso-pores, while at the micro-pores level, the fluid pressure is
labeled p3(x, t). Moreover, the three levels are assumed in local thermal non-equilibrium, so each of the
three phases is characterized by its own temperature: u1(x, t) denotes the temperature in the macro-pores,
the temperature in the meso-pores is given by u2(x, t) while that in the micro-pores is named u3(x, t). All
of them are measured from the constant reference absolute temperature T0 . 0. We identify a material
point by its Cartesian coordinates, i.e., we set x = (x1, x2, x3). The common conventions for summation
and differentiation are used. Latin subscripts and superscripts range in the set {1, 2, 3}, a sum is implied
in case of repeated subscripts, and subscripts preceded by a comma mean partial differentiation with
respect to that Cartesian coordinate; finally, superposed dots denote the time differentiation.

The basic equations in the case of an isotropic, homogeneous, triple porous thermoelastic medium in
local thermal non-equilibrium (again, described in Chiritxă [48]) are the following. There, the elastic dis-
placement components are ur, the pressures in the macro-, meso- and micro-pores are pr, and the tem-
peratures ur are referred to the three phases:

.€un = mun,mm + l + mð Þum,mn � bmpm, n � vmum, n, ð1Þ

anm _pm + bnm
_um = knmpm, ll � bn _um,m � Dnmpm, ð2Þ

bnm _pm + cnm
_um = 1

T0
Knmum, ll � vn _um,m � 1

T0
dnmum, ð3Þ

for each (x, t) = (x1, x2, x3, t) 2 B× (0,‘). The constant . defines the reference mass density, while l and
m are the first Lamé modulus and the shear modulus, respectively; bn are Biot’s parameters giving the
pores compressibility, vn define the coefficients of thermal expansion for the three different phases,
amn = anm give a measure of the compressibility of the pore system, representing the components of the
cross-coupling compressibility for the fluid flow at the level of interface between the three pore systems.
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Again, bmn = bnm are the components of the constitutive thermal tensor, cmn = cnm give the heat capacity,
and (dmn) represents the internal heat transfer tensor defined as follows:

d[ dmnð Þ[
d1 + d2 �d1 �d2

�d1 d1 + d3 �d3

�d2 �d3 d2 + d3

0
@

1
A: ð4Þ

Furthermore, (Dmn) is defined as follows:

D[ (Dmn) [

g1 + g2 �g1 �g2

�g1 g1 + g3 �g3

�g2 �g3 g2 + g3

0
@

1
A, ð5Þ

where g1, g2, and g3 are the leakage parameters, or even internal transport coefficients. Moreover,
kmn = k0mn=m0, where m0 is the viscosity of the fluid and k0mn = k0nm indicate the (macroscopic) intrinsic
permeability connected to the three pore systems; Kmn = Knm are the components of the tensor of ther-
mal conductivity.

Our analysis needs the following hypotheses on the above material coefficients:

H1. Elasticity set of hypotheses:

m . 0, l + 2m . 0, . . 0: ð6Þ

H2. Pores set of hypotheses:

kmnjmjn . 0, for all (j1, j2, j3) 6¼ 0; ð7Þ

g1 ø 0, g2 ø 0, g3 ø 0: ð8Þ

H3. Thermal set of hypotheses:

Kmnjmjn . 0, for all (j1, j2, j3) 6¼ 0; ð9Þ

d1 ø 0, d2 ø 0, d3 ø 0: ð10Þ

H4. Inertia/thermal capacity hypothesis: f (p, u) defines a positive definite quadratic form:

f (p, u) [ amnpmpn + 2bmnpmun + cmnumun . 0, for all
p = (p1, p2, p3) 6¼ 0 or u = (u1, u2, u3) 6¼ 0:

ð11Þ

This last hypothesis implies that:

amnjmjn . 0, for all (j1, j2, j3) 6¼ 0, ð12Þ

cmnjmjn . 0, for all (j1, j2, j3) 6¼ 0: ð13Þ

We prefer to introduce now the following notations, whose usefulness will be evident in the following:

c1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 2m

.

s
, c2 =

ffiffiffiffi
m

.

r
, ð14Þ

where c1 and c2 can represent, in the context of the classical elasticity, the propagation speeds of longitu-
dinal and shear waves, respectively.
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3. Rayleigh surface waves

The focus of the work is the study of the Rayleigh wave propagation problem applied to the model
defined by the differential system (1)–(3). We then consider the half-space x2 . 0 filled by a thermoelastic
triple porous medium in local thermal non-equilibrium. The half-space is free of supply loads, and its
surface x2 = 0 is assumed free of any mechanical traction, thermally insulated and such that the pore sys-
tem pressure is vanishing; furthermore, the surface wave is assumed to propagate in the half-space x2 ø 0
and in the x1-axis direction. In the case of a triple porous, isotropic and homogeneous thermoelastic
material in local thermal non-equilibrium, the Rayleigh wave propagation problem consists of finding
wave-form solutions for the boundary value problem defined by the equations (1)–(3), the boundary
conditions:

t2n(x1, 0, x3, t) = 0,
pn(x1, 0, x3, t) = 0,
un(x1, 0, x3, t) = 0, for all x1, x3 2 R, t ø 0,

ð15Þ

and the following asymptotic conditions:

lim
x2!‘

un(x1, x2, x3, t) = 0, lim
x2!‘

tmn(x1, x2, x3, t) = 0,

lim
x2!‘

pn(x1, x2, x3, t) = 0,

lim
x2!‘

un(x1, x2, x3, t) = 0, for all x1, x3 2 R, t ø 0,

ð16Þ

where tmn, defined as follows:

tmn = 2memn + lelldmn � blpldmn � vluldmn, emn =
1

2
um, n + un,mð Þ, ð17Þ

are the components of the stress tensor.
In what follows, we proceed to solve the Rayleigh wave propagation problem. For this purpose, we

highlight a class of wave solutions for the basic system (1)–(3) which, in addition, satisfy the asymptotic
conditions (16). Then, we express the solution of our problem in terms of elements of this class.

3.1. A class of wave solutions for the basic differential system

We assume waves propagating along the x1-axis. Solutions in wave form (of assigned wavelength) are
then sought for the differential system (1)–(3), i.e.,

u1(x1, x2, x3, t) =Re i
ß

U1 eiß x1�yt + rx2ð Þ� �
,

u2(x1, x2, x3, t) =Re i
ß

U2 eiß x1�yt + rx2ð Þ� �
,

u3(x1, x2, x3, t) = 0,

p1(x1, x2, x3, t) =Re c1

ffiffiffiffiffi
.

a11

q
P1 eiß x1�yt + rx2ð Þ

n o
,

p2(x1, x2, x3, t) =Re c1

ffiffiffiffiffi
.

a22

q
P2 eiß x1�yt + rx2ð Þ

n o
,

p3(x1, x2, x3, t) =Re c1

ffiffiffiffiffi
.

a33

q
P3 eiß x1�yt + rx2ð Þ

n o
,

un(x1, x2, x3, t) =Re T0 Tn eiß x1�yt + rx2ð Þ� �
,

ð18Þ

where i =
ffiffiffiffiffiffiffi
�1
p

represents the imaginary unit, Ref�g stands for the real part, ß . 0 is the wave number
(assumed real), and fU1,U2,P1,P2,P3, T1, T2, T3g denotes a non-zero complex constant vector; more-
over, y is a parameter (assumed complex) such that the wave speed is given by Re(y) ø 0 and the damp-
ing in time of the wave is given by exp½ßIm(y)t�, provided that Im(y) ł 0 in order to ensure wave
solutions with finite internal energy. We are then interested in wave solutions of the form (18) with:

Re(y) ø 0, ð19Þ
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and

Im(y) ł 0: ð20Þ

It is easy to infer that the condition Re(y) = 0 denotes a standing wave; in contrast, when Re(y) . 0,
we have a genuine harmonic in time wave. In addition, Im(y) = 0 returns a wave undamped in time,
while the damping in time is highlighted by the condition Im(y) . 0.

We point out that the asymptotic conditions (16) give the following constraint on the complex para-
meter r:

Im(r) . 0: ð21Þ

Therefore, we have to determine the complex parameter r = r(y) in such a way that the restriction (21)
is fulfilled, and equation (18) satisfies the differential system (1)–(3).

By substituting equation (18) in system (1), we receive the algebraic system:

(l + 2m� .y2 + mr2)U1 + (l + m)rU2 + b1c1

ffiffiffiffiffi
.

a11

q
P1 + b2c1

ffiffiffiffiffi
.

a22

q
P2 + b3c1

ffiffiffiffiffi
.

a33

q
P3

+ v1T0T1 + v2T0T2 + v3T0T3 = 0,
ð22Þ

and

(l + m)rU1 + (l + 2m)r2 + m� .y2½ �U2 + b1c1

ffiffiffiffiffi
.

a11

q
rP1 + b2c1

ffiffiffiffiffi
.

a22

q
rP2 + b3c1

ffiffiffiffiffi
.

a33

q
rP3

+ v1T0rT1 + v2T0rT2 + v3T0rT3 = 0:
ð23Þ

By appropriate combinations of the above two equations and using the following notations:

s2 = 1 + r2, V = rU1 � U2, W = U1 + rU2,

w =� y

c1

i,
ð24Þ

we get:

s2 +
c2

1

c2
2

w2

� �
V = 0, ð25Þ

and

s2 + w2
� �

W +
b1

c1
ffiffiffiffiffiffiffiffiffi
.a11
p s2P1 +

b2

c1
ffiffiffiffiffiffiffiffiffi
.a22
p s2P2 +

b3

c1
ffiffiffiffiffiffiffiffiffi
.a33
p s2P3

+
v1T0

.c2
1

s2T1 +
v2T0

.c2
1

s2T2 +
v3T0

.c2
1

s2T3 = 0:

ð26Þ

Again, from equations (2), (3), and (18) and resorting to the variable w given in equation (24), we
obtain the following algebraic systems, useful for the determination of the unknown quantities W ,
P1,P2,P3, T1, T2, T3:

� b1w

ßk11

ffiffiffiffiffiffi
a11

.

r
W + s2 +

D11

ß2k11
+

a11c1

ßk11
w

� �
P1 +

k12

k11
s2 +

D12

ß2k11

�

+
a12c1

ßk11
w
	 ffiffiffiffiffiffi

a11

a22

r
P2 +

k13

k11
s2 +

D13

ß2k11
+

a13c1

ßk11
w

� � ffiffiffiffiffiffi
a11

a33

r
P3

+
b11T0

ßk11

ffiffiffiffiffiffi
a11

.

r
wT1 +

b12T0

ßk11

ffiffiffiffiffiffi
a11

.

r
wT2 +

b13T0

ßk11

ffiffiffiffiffiffi
a11

.

r
wT3 = 0,
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� b2w

ßk22

ffiffiffiffiffiffi
a22

.

r
W +

k21

k22
s2 +

D21

ß2k22
+

a21c1

ßk22
w

� � ffiffiffiffiffiffi
a22

a11

r
P1 + s2 +

D22

ß2k22

�

+
a22c1

ßk22
w
	

P2 +
k23

k22
s2 +

D23

ß2k22
+

a23c1

ßk22
w

� � ffiffiffiffiffiffi
a22

a33

r
P3

+
b21T0

ßk22

ffiffiffiffiffiffi
a22

.

r
wT1 +

b22T0

ßk22

ffiffiffiffiffiffi
a22

.

r
wT2 +

b23T0

ßk22

ffiffiffiffiffiffi
a22

.

r
wT3 = 0,

� b3w

ßk33

ffiffiffiffiffiffi
a33

.

r
W +

k31

k33
s2 +

D31

ß2k33
+

a31c1

ßk33
w

� � ffiffiffiffiffiffi
a33

a11

r
P1 +

k32

k33
s2 +

D32

ß2k33

�

+
a32c1

ßk33
w
	 ffiffiffiffiffiffi

a33

a22

r
P2 + s2 +

D33

ß2k33
+

a33c1

ßk33
w

� �
P3

+
b31T0

ßk33

ffiffiffiffiffiffi
a33

.

r
wT1 +

b32T0

ßk33

ffiffiffiffiffiffi
a33

.

r
wT2 +

b33T0

ßk33

ffiffiffiffiffiffi
a33

.

r
wT3 = 0,

ð27Þ

and

�v1c1w

ßK11
W +

b11c2
1

ßK11

ffiffiffiffiffiffi
.

a11

r
wP1 +

b12c2
1

ßK11

ffiffiffiffiffiffi
.

a22

r
wP2 +

b13c2
1

ßK11

ffiffiffiffiffiffi
.

a33

r
wP3

+ s2 +
d11

ß2K11
+

c11c1T0

ßK11
w

� �
T1 +

K12

K11
s2 +

d12

ß2K11
+

c12c1T0

ßK11
w

� �
T2

+
K13

K11
s2 +

d13

ß2K11
+

c13c1T0

ßK11
w

� �
T3 = 0,

�v2c1w

ßK22
W +

b21c2
1

ßK22

ffiffiffiffiffiffi
.

a11

r
wP1 +

b22c2
1

ßK22

ffiffiffiffiffiffi
.

a22

r
wP2 +

b23c2
1

ßK22

ffiffiffiffiffiffi
.

a33

r
wP3

+
K21

K22
s2 +

d21

ß2K22
+

c21c1T0

ßK22
w

� �
T1 + s2 +

d22

ß2K22
+

c22c1T0

ßK22
w

� �
T2

+
K23

K22
s2 +

d23

ß2K22
+

c23c1T0

ßK22
w

� �
T3 = 0,

�v3c1w

ßK33
W +

b31c2
1

ßK33

ffiffiffiffiffiffi
.

a11

r
wP1 +

b32c2
1

ßK33

ffiffiffiffiffiffi
.

a22

r
wP2 +

b33c2
1

ßK33

ffiffiffiffiffiffi
.

a33

r
wP3

+
K31

K33
s2 +

d31

ß2K33
+

c31c1T0

ßK33
w

� �
T1 +

K32

K33
s2 +

d32

ß2K33
+

c32c1T0

ßK33
w

� �
T2

+ s2 +
d33

ß2K33
+

c33c1T0

ßK33
w

� �
T3 = 0:

ð28Þ

Therefore, the algebraic system defined by relations (25)–(28), in terms of the unknown variables V ,
W , P1, P2, P3, T1, T2, T3, admits non-trivial solutions, and so its discriminant has to be null, i.e.,

s2 +
c2

1

c2
2

w2

� �
det p(s2)
� �

= 0, ð29Þ

where p(s2) is the 7× 7 matrix:

p(s2) [ pM N (s2)
� �

(7× 7)
, ð30Þ
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having its elements pMN (s2), M ,N = 1, 2, :::, 7, defined as in Appendix 1. We denote by s2
1, s2

2, . . . , s2
7, the

roots of the equation:

det p(s2)
� �

= 0, ð31Þ

and we set:

rM = i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

M

q
, M = 1, 2, :::, 7: ð32Þ

Furthermore, the relations (25) and (29) give the root s2 = s2
8, with the corresponding V = V (8), and

s2
8 =� c2

1

c2
2

w2, V (8) = 1, ð33Þ

and hence, we set:

r8 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

8

q
= i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

c2
1

c2
2

w2

s
= i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

c2
2

s
: ð34Þ

Therefore, for

r1 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

1

q
, ð35Þ

we deduce the following solution:

U (1)
1 =

1

s2
1

, U (1)
2 =

r1

s2
1

,

P(1)
1 =

p�21(s2
1)

p�11(s2
1)
,P(1)

2 =
p�31(s2

1)

p�11(s2
1)
,P(1)

3 =
p�41(s2

1)

p�11(s2
1)
,

T (1)
1 =

p�51(s2
1)

p�11(s2
1)
, T (1)

2 =
p�61(s2

1)

p�11(s2
1)
, T (1)

3 =
p�71(s2

1)

p�11(s2
1)

;

ð36Þ

for

r2 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

2

q
, ð37Þ

we deduce the following solution:

U (2)
1 =

1

s2
2

p�12(s2
2)

p�22(s2
2)
, U (2)

2 =
r2

s2
2

p�12(s2
2)

p�22(s2
2)
,

P(2)
1 = 1, P(2)

2 =
p�32(s2

2)

p�22(s2
2)
, P(2)

3 =
p�42(s2

2)

p�22(s2
2)
,

T (2)
1 =

p�52(s2
2)

p�22(s2
2)
, T (2)

2 =
p�62(s2

2)

p�22(s2
2)
, T (2)

3 =
p�72(s2

2)

p�22(s2
2)

;

ð38Þ

for

r3 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

3

q
, ð39Þ
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we deduce the following solution:

U (3)
1 =

1

s2
3

p�13(s2
3)

p�33(s2
3)
, U (3)

2 =
r3

s2
3

p�13(s2
3)

p�33(s2
3)
,

P(3)
1 =

p�23(s2
3)

p�33(s2
3)
, P(3)

2 = 1, P(3)
3 =

p�43(s2
3)

p�33(s2
3)
,

T (3)
1 =

p�53(s2
3)

p�33(s2
3)
, T (3)

2 =
p�63(s2

3)

p�33(s2
3)
, T (3)

3 =
p�73(s2

3)

p�33(s2
3)

;

ð40Þ

for

r4 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

4

q
, ð41Þ

we deduce the following solution:

U (4)
1 =

1

s2
4

p�14(s2
4)

p�44(s2
4)
, U (4)

2 =
r4

s2
4

p�14(s2
4)

p�44(s2
4)
,

P(4)
1 =

p�24(s2
4)

p�44(s2
4)
, P(4)

2 =
p�34(s2

4)

p�44(s2
4)
, P(4)

3 = 1,

T (4)
1 =

p�54(s2
4)

p�44(s2
4)
, T (4)

2 =
p�64(s2

4)

p�44(s2
4)
, T (4)

3 =
p�74(s2

4)

p�44(s2
4)

;

ð42Þ

for

r5 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

5

q
, ð43Þ

we deduce the following solution:

U (5)
1 =

1

s2
5

p�15(s2
5)

p�55(s2
5)
, U (5)

2 =
r5

s2
5

p�15(s2
5)

p�55(s2
5)
,

P(5)
1 =

p�25(s2
5)

p�55(s2
5)
, P(5)

2 =
p�35(s2

5)

p�55(s2
5)
, P(5)

3 =
p�45(s2

5)

p�55(s2
5)
,

T (5)
1 = 1, T (5)

2 =
p�65(s2

5)

p�55(s2
5)
, T (5)

3 =
p�75(s2

5)

p�55(s2
5)

;

ð44Þ

for

r6 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

6

q
, ð45Þ

we deduce the following solution:

U (6)
1 =

1

s2
6

p�16(s2
6)

p�66(s2
6)
, U (6)

2 =
r6

s2
6

p�16(s2
6)

p�66(s2
6)
,

P(6)
1 =

p�26(s2
6)

p�66(s2
6)
, P(6)

2 =
p�36(s2

6)

p�66(s2
6)
, P(6)

3 =
p�46(s2

6)

p�66(s2
6)
,

T (6)
1 =

p�56(s2
6)

p�66(s2
6)
, T (6)

2 = 1, T (6)
3 =

p�76(s2
6)

p�66(s2
6)

;

ð46Þ
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for

r7 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

7

q
, ð47Þ

we deduce the following solution:

U (7)
1 =

1

s2
7

p�17(s2
7)

p�77(s2
7)
, U (7)

2 =
r7

s2
7

p�17(s2
7)

p�77(s2
7)
,

P(7)
1 =

p�27(s2
7)

p�77(s2
7)
, P(7)

2 =
p�37(s2

7)

p�77(s2
7)
, P(7)

3 =
p�47(s2

7)

p�77(s2
7)
,

T (7)
1 =

p�57(s2
7)

p�77(s2
7)
, T (7)

2 =
p�67(s2

7)

p�77(s2
7)
, T (7)

3 = 1;

ð48Þ

and for

r8 = i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

8

q
= i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

c2
1

c2
2

w2

s
= i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

c2
2

s
, ð49Þ

we deduce the following solution:

U (8)
1 =

r8

s2
8

, U (8)
2 =� 1

s2
8

,

P(8)
1 = P(8)

2 = P(8)
3 = 0, T (8)

1 = T (8)
2 = T (8)

3 = 0:

ð50Þ

Here, we have denoted by p�M N (s2), M ,N = 1, 2, :::, 7, the elements of the adjoint matrix p�(s2) related
to the previous matrix p(s2).

At this point, one has to remember that the eight wave solutions (18) in which we have set

U =U(M), M = 1, 2, :::, 8, where U[ fU1,U2,P1,P2,P3, T1,T2, T3g and U(M) [ fU (M)
1 ,U (M)

2 ,P(M)
1 ,P(M)

2 ,

P(M)
3 , T (M)

1 , T (M)
2 , T (M)

3 g, M = 1, 2, :::, 8, given by the relations (35)–(50), satisfy the basic equations (1)–(3)
as well as the asymptotic conditions (16), for any value of y (or w).

3.2. Rayleigh wave solution

The treatment of the Rayleigh wave propagation problem implies that we have to search its solution as a
linear combination of the eight solutions of the previous section, that is we seek the solution in the form:

u1(x1, x2, x3, t) =Re
i

ß
eiß(x1�yt)

X8

M = 1

AM U (M)
1 eißrM x2

( )
,

u2(x1, x2, x3, t) =Re
i

ß
eiß(x1�yt)

X8

M = 1

AM U (M)
2 eißrM x2

( )
,

u3(x1, x2, x3, t) = 0,

p1(x1, x2, x3, t) =Re c1

ffiffiffiffiffiffi
.

a11

r
eiß(x1�yt)

X8

M = 1

AM P(M)
1 eißrM x2

( )
,

ð51Þ
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p2(x1, x2, x3, t) =Re c1

ffiffiffiffiffiffi
.

a22

r
eiß(x1�yt)

X8

M = 1

AM P(M)
2 eißrM x2

( )
,

p3(x1, x2, x3, t) =Re c1

ffiffiffiffiffiffi
.

a33

r
eiß(x1�yt)

X8

M = 1

AM P(M)
3 eißrM x2

( )
,

un(x1, x2, x3, t) = T0Re eiß(x1�yt)
X8

M = 1

AM T (M)
n eißrM x2

( )
,

ð51Þ

where A1,A2, :::,A8 are the constant parameters, and at least one of them is different from zero. They
are determined in such a way that the boundary conditions (15) hold true, and with
U(M) [ fU (M)

1 ,U (M)
2 ,P(M)

1 ,P(M)
2 ,P(M)

3 , T (M)
1 , T (M)

2 , T (M)
3 g, M = 1, 2, :::, 8, given by relations (36)–(50). We

have to remember that the system of functions (51) satisfies the basic equations (1)–(3) as well as the
asymptotic conditions (16), for any value of y. In the following, we determine the unknown complex
parameter y and the unknown parameters A1,A2, :::,A8, not all null, so that the boundary conditions
(15) are fulfilled. Therefore, using the system of functions (51) in the constitutive equation (17) and in
the boundary conditions (15), we obtain for the determination of the unknown parameters A1,A2, :::,A8,
the following homogeneous algebraic system:

P8
M = 1

S(M)
21 AM = 0,

P8
M = 1

S(M)
22 AM = 0,

P8
M = 1

P(M)
n AM = 0,

P8
M = 1

T (M)
n AM = 0, n = 1, 2, 3,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð52Þ

with

S(M)
21 = rM U (M)

1 + U (M)
2 ,

S(M)
22 = 1� 2c2

2

c2
1

� �
U (M)

1 + rM U (M)
2 , M = 1, 2, :::, 8:

ð53Þ

Since we are looking for non-trivial solutions for the Rayleigh wave propagation problem in the form
(51), the algebraic system (52) has to have non-trivial solutions. That means we have its discriminant to
be vanishing and, therefore, we are led to the following secular equation for the determination of the
complex parameter y (or w):

E(r1, s1) E(r2, s2) E(r3, s3) E(r4, s4) E(r5, s5) E(r6, s6) E(r7, s7)
p�21(s2

1) p�22(s2
2) p�23(s2

3) p�24(s2
4) p�25(s2

5) p�26(s2
6) p�27(s2

7)
p�31(s2

1) p�32(s2
2) p�33(s2

3) p�34(s2
4) p�35(s2

5) p�36(s2
6) p�37(s2

7)
p�41(s2

1) p�42(s2
2) p�43(s2

3) p�44(s2
4) p�45(s2

5) p�46(s2
6) p�47(s2

7)
p�51(s2

1) p�52(s2
2) p�53(s2

3) p�54(s2
4) p�55(s2

5) p�56(s2
6) p�57(s2

7)
p�61(s2

1) p�62(s2
2) p�63(s2

3) p�64(s2
4) p�65(s2

5) p�66(s2
6) p�67(s2

7)
p�71(s2

1) p�72(s2
2) p�73(s2

3) p�74(s2
4) p�75(s2

5) p�76(s2
6) p�77(s2

7)
































= 0, ð54Þ

where

E(rk, sk) = p�kk(s2
k) S(k)

22 S(8)
21 � S(8)

22 S(k)
21

� �
, not summed on k, k = 1, 2, :::, 7, ð55Þ
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and, moreover, in view of relations (36)–(50) and (53) and (55), we have:

E(rk, sk) =
c2

2p�1k(s2
k)

c2
1s2

8s2
k

2� s2
8

� �
2� c2

1

c2
2

s2
k

� �
+ 4rkr8


 �
, not summed on k, k = 1, 2, :::, 7: ð56Þ

A brief look at the relations defining the elements of the determinant describing the secular equation
(54) shows that these elements are dependent on w. This means that the secular equation (54) is an alge-
braic equation in terms of w, subjected to the restrictions given by the following:

Re(w) ł 0, Im(w) ł 0, ð57Þ

and the restrictions imposed by the relation (21). As a consequence, we have to get roots w of the secular
equation (54) fulfilling the restrictions (57) and which make:

Im rk(w)ð Þ. 0, k = 1, 2, :::, 8: ð58Þ

In the current general context, it is difficult to demonstrate the existence of a single solution w of this
equation that would lead to solve the Rayleigh wave problem formulated at the beginning of this sec-
tion (here, we include conditions (57) and (58)). However, when a triple porous material is specified by
its characteristics, then the secular equation (54) can be solved by specific mathematical tools, and this
will be exemplified later for Berea sandstones.

The above result may be considered as most general in the sense that some other important formulas,
previously established by different authors, may be deduced from our result as special cases:

Classical elasticity theory: when the porosity and thermal effects are canceled, then our results show
that:

s2
1 =

y2

c2
1

, r1 = i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

c2
1

s
,

s2
8 =

y2

c2
2

, r8 = i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

c2
2

s
,

ð59Þ

and the secular equation (54) reduces to E(r1, s1) = 0, i.e.,

2� y2

c2
2

� �2

= 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

c2
1

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

c2
2

s
, ð60Þ

a relation first established by Rayleigh [50].

Classical thermoelasticity theory: when all pores have the same temperature and the effects of the
pores are canceled, our results look like:

s2
8 =

y2

c2
2

, r8 = i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

c2
2

s
, ð61Þ

and s2
1 and s2

5 are the roots of the following equation:

s4 + w2 +
c1T0

ßK11
w c11 +

v2
1

.c2
1

� �
 �
s2 +

c1T0

ßK11
c11w3 = 0, ð62Þ
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and the secular equation (54) reduces to:

s2
1 +

c1c11T0

ßK11
w

� �
s2

5 + w2
� �

2� s2
8

� �
2� c2

1

c2
2

s2
1

� �
+ 4r1r8


 �

+
v2

1T0s2
1w

.c1ßK11
2� s2

8

� �
2� c2

1

c2
2

s2
5

� �
+ 4r5r8


 �
= 0,

ð63Þ

having denoted by K11 the thermal conductivity, by c11 the heat capacity, and by v1 the thermal expan-
sion coefficient for the classical thermoelastic case.

Elastic solid with triple porosity: when the thermal effects are canceled, then our results show that s2
8

is given by relation (61), while s2
1, s2

2, s2
3, and s2

4 are the solutions of the equation:

det P(s2)
� �

= 0, ð64Þ

where

P(s2) [

p11(s2) p12(s2) p13(s2) p14(s2)
p21(s2) p22(s2) p23(s2) p24(s2)
p31(s2) p32(s2) p33(s2) p34(s2)
p41(s2) p42(s2) p43(s2) p44(s2)

0
BB@

1
CCA, ð65Þ

and the secular equation (54) reduces to:

E(r1, s1) E(r2, s2) E(r3, s3) E(r4, s4)
p�21(s2

1) p�22(s2
2) p�23(s2

3) p�24(s2
4)

p�31(s2
1) p�32(s2

2) p�33(s2
3) p�34(s2

4)
p�41(s2

1) p�42(s2
2) p�43(s2

3) p�44(s2
4)




















= 0, ð66Þ

which agrees with the secular equation described in Arusoaie and Chiritxă [51].

4. Numerical simulation

In order to give practical application to the theoretical results shown in the previous section, we take
into account a material like the Berea sandstone, considering for it the propagation of Rayleigh surface
waves. The reference is to a sedimentary rock with grains predominantly sand-sized, made of quartz
sand held together by silica, whose importance in the oil and gas industry is considerable. The Berea
sandstone, a good reservoir rock in view of relatively high porosity and permeability, often finds appli-
cation as a reference material in the event that the constituents of a reservoir are not known. For further
details about the characteristics of Berea sandstone, the reader can refer to the book by Jaeger et al.
[52], as well as to the papers by Shankland et al. [36], Davis et al. [41], Khaled et al. [53], Coyner [54],
Davis [55], and Ikeda et al. [56].

The coefficients entering into the secular equation take the values:

c1 = 2402
m

s
, c2 = 1511

m

s
, . = 2115

kg

m3
,

ß = 1 m�1, T0 = 208C;

ð67Þ

b1 = 0:11875, b2 = 0:95, b3 = 0:55,

v1 =� 2:61× 104 kg

ms2 8C
, v2 =� 1:5× 104 kg

ms2 8C
, v3 =� 2:01× 104 kg

ms2 8C
;

ð68Þ
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g1 = 0:5
ms

kg
, g2 = 0:4

ms

kg
, g3 = 0:6

ms

kg
,

d1 = 0:3
kg

ms3 8C
, d2 = 0:2

kg

ms3 8C
, d3 = 0:1

kg

ms3 8C
;

ð69Þ

A=
5:4 0:4 0:3
0:4 1:35 0:2
0:3 0:2 2

0
@

1
A× 10�6 × ms2

kg
, B=

�1 1 0

1 �1 1

0 1 �1

0
@

1
A× 10�9 × 1

8C

C=
0:88 0:05 0:03

0:05 0:99 0:04

0:03 0:04 0:77

0
@

1
A× 105 × kg

ms2 8C2
;

ð70Þ

(km n) =
24:722 0:01 0:02

0:01 6:1806 0:03

0:02 0:03 8:005

0
@

1
A× 10�12 × m3s

kg
,

(Km n) =
2:34 �0:01 0:02

�0:01 2:02 0:03

0:02 0:03 1:99

0
@

1
A× kgm

s3 8C
:

ð71Þ

The secular equation (54) referred to the case of fully coupled model, as well as the secular equations
(60), (63), and (66) referred to the classical elasticity, thermoelasticity, and elasticity with triple porosity
sub-cases, respectively, are solved through the software package Wolfram Mathematica. The graphical
results proposed are obtained by resorting to software packages Mathematica and MathWorks
MATLAB. The performed analysis provides information about the main features of the Rayleigh wave
solution: the speed of propagation and the exponential decrease of the amplitude, as well as the time
attenuation factor.

Regarding Table 1, we can observe that it involves important effects on the essential characteristics of
the Rayleigh wave propagation: (1) the propagation speed and (2) the attenuation of the amplitude in
time. Actually, it suggest that (1) the coupling of the mechanical deformations with the thermal processes
produces an increase of the propagation velocity for the Rayleigh waves, corroborated with the appear-
ance of the attenuation in time of their amplitude; (2) the coupling of the mechanical deformations with
the pore system also turns into an increase of the speed of propagation for the Rayleigh waves, corrobo-
rated with the appearance of the attenuation in time of their amplitude; and (3) the coupling of mechani-
cal deformations with both pore system and thermal imbalance leads to a significant increase in the
propagation velocity of the Rayleigh waves and to an increase of their amplitude attenuation, even in
relation to the former results (points 1 and 2).

Figures 1–4 highlight, each of them, the graphical position of the solution w of the secular equation
for the corresponding coupled cases in question. Concerning the involved pictures, we outline some tech-
nical observations on the graphical results proposed.

Figure 1 is referred to the classical thermoelastic case: it is a purely analytical plot obtained through
the Mathematica Plot3D tool. Figure 2 is referred to the elastic case with triple porosity: given the com-
plexity of the related secular equation, it is obtained by creating an appropriate (Re(w), Im(w)) grid,

Table 1. Solutions of the secular equations depending on the coupling conditions.

Classical elasticity, equation (60) Classical thermoelasticity, equation (63)

w
y = iwc1

�0:5700698473 i
1369:30777 m=s

�3:6833× 10�9 � 0:5700698853 i
(1369:30786� 8:8472× 10�6 i) m=s

Elastic with triple porosity, eq. (66) Fully coupled model, equation (54)

w
y = iwc1

�5:3823× 10�9 � 0:5700710675 i
(1369:31070� 12:9282× 10�6 i) m=s

�5:3847× 10�9 � 0:5700711370 i
(1369:31087� 12:9342× 10�6 i) m=s
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and then representing the numerical results through the Mathematica ListPlot3D tool. Figures 3 and 4
are referred to the fully coupled model: in this case, the level of complexity of the secular equation is
even greater, which is why in addition to the discretization of the data, as in the case of Figure 2, it is
necessary to proceed as follows. A two-dimensional (2D) version of the result is obtained through the
Mathematica ListContourPlot tool while, with regard to its three-dimensional (3D)-counterpart, purely
technical limitations of the machine force the use of the MATLAB plot3 tool, with a clearly improved
graphic rendering. As for the discretization process, it is important to underline that all the numerical

Figure 1. Classical thermoelastic case. Mathematica Plot3D of Log jY wð Þj, being Y(w) the LHS of the secular equation (63), versus
Re(w), Im(w).

Figure 2. Elastic case with triple porosity. Mathematica ListPlot3D of Log jF(w)j, being F(w) the LHS of the secular equation (66),
versus Re(w), Im(w).
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data are obtained using the software package Mathematica: in particular, to be more explicit, Figures 3
and 4 refer to exactly the same set of numerical data.

Concluding, it is worth underline that the above simulations bring to light the following important
phenomena: (1) an increase in the velocity of propagation for the Rayleigh wave solution,

Figure 3. Fully coupled case. MATLAB plot3 of Log jC(w)j, being C(w) the LHS of the secular equation (54), versus Re(w), Im(w).

Figure 4. Fully coupled case. Mathematica ListContourPlot of Log jC(w)j, being C(w) the LHS of the secular equation (54), versus
Re(w), Im(w). Highlighted with dashed lines the numerical values detectable in Table 1 and related to the fully coupled case.
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simultaneously with the emergence of the time exponential decrease of its amplitude and (2) a slower
attenuation in time of the amplitude of the Rayleigh wave solution.

5. Final discussions

This paper provides mathematical results regarding the propagation of Rayleigh waves in an elastic
material with triple porosity and local thermal imbalance, culminating in the establishment of a complex
secular equation. It also shows how numerical methods, Mathematica and MATLAB software
packages, can be used in solving the secular equation to discover the effects of coupling mechanical
deformation with thermal processes and pore systems. A significant illustrative example is chosen
regarding the simulation of the results on a material such as Berea sandstone, highlighting the conse-
quences of accounting for the thermal effects and pore systems on the speed of propagation of the
Rayleigh wave and on the damping over time of its amplitude.

When a triple porous medium in local thermal non-equilibrium is taken into account, then friction
phenomena and heat transfer processes, in combination with the presence of fluid flows at level of
macro-, meso-, and micro-pores, appear to be mechanisms able to cause an attenuation in time of the
Rayleigh wave solutions. In particular, with regard to the mechanical friction, it happens that part of the
kinetic energy from the elastic wave is converted in thermal energy: clearly, this energy is not lost, but
has the effect of slightly raising the temperature of the medium. In addition, considering the skeleton/
fluid thermal exchanges at the level of macro- and micro-pores, the Rayleigh wave solution results atte-
nuated over time. On the other side, the secular relation (54) shows a close connection between mechani-
cal, thermal, and porosity effects on the Rayleigh wave solution. In fact, the fluid flow oscillations inside
the pores induce an increase of the propagation velocity for the Rayleigh surface wave, in parallel with a
decrease in time of its amplitude. Our investigation provides thus interesting information about the
Rayleigh wave propagation problem when interactions between elastic structure, triple porosity, and
local thermal effects are considered. In this context, the results of the various mechanical couplings with
the thermal ones and with the pore systems are compared, highlighting the increase of the propagation
speed of the Rayleigh wave and the appearance of the amortization in time of its amplitude.

Finally, we note that, although the thermo-mechanical model in question is quite complex (based on
a system consisting of nine differential equations: three hyperbolic and six parabolic), the methodology
developed by us, by looking for wave solutions with assigned wavelength, manages to establish the secu-
lar equation in the form of an algebraic equation involving a seventh-order determinant. It allows the
rediscovery of previous results regarding simpler mechanical models, such as classical thermoelasticity
and elastic triple porosity.

Although the problem treated is substantially theoretical, we are confident that it can give useful
information to experimenters and researchers working in the geophysical field, as well as to seismolo-
gists interested in mining earthquakes and fractured reservoirs.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article:

V.Z. acknowledges the GNFM (Italian National Group of Mathematical Physics, INdAM) for supporting his research activity;
S.C. acknowledges a support from the Project STARDUST-R H2020-MSCA-ITN-2018, Grant Agreement number 813644, Al.
I. Cuza University of Iasxi.

ORCID iDs

Vittorio Zampoli https://orcid.org/0000-0001-5395-2089
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Appendix 1

The elements of matrix p(s2)

The elements of the matrix p(s2) are defined as follows:
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