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Abstract
We study a thermal model associated with a heat-conducting material based on a three-phase-lag constitutive equation
for the heat flux, a model that leads to a Moore–Gibson–Thompson type equation for the thermal displacement. We
are researching the compatibility of the three-phase-lag constitutive equation in concern with the second law of ther-
modynamics, thus discovering restrictions to be imposed on the involved thermal coefficients. On this basis, we manage
to obtain the well-posedness problem of the model as the uniqueness of the solutions and their continuous dependence
on the given data. Finally, we show that such a model not only allows the propagation of damped in time waves but
also exponentially decaying in time thermal standing mode waves. We also show that if the thermodynamic restrictions
are not fulfilled, then we can be led to instability. Through the present treatment of the thermal model in question, we
obtain important information on the associated Moore–Gibson–Thompson type equation for the thermal displacement.

Keywords
Three-phase-lag heat conduction, thermodynamic compatibility, well-posed problems, Moore–Gibson–Thompson type
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1. Introduction
Jordan [1] considered the propagation of finite-amplitude acoustic waves in fluids that exhibit both viscosity
and thermal relaxation described by the Maxwell–Cattaneo law, which is a well-known generalization of the
Fourier law that includes the effects of thermal inertia. The Maxwell–Cattaneo law, when combined with the
other basic equations of the model, leads to a nonlinear third-order in time partial differential equation (see, for
example, Jordan [1] and Kaltenbacher et al. [2]):

τ
...
ψ + ψ̈ − c2�ψ − b�ψ̇ = d

dt

(
1

c2

B

2A
ψ̇2 + ψ,iψ,i

)
, (1)
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where � is the Laplace operator, τ is a relaxation time, and the other coefficients are some positive parameters.
A linearized version is written in the more general abstract form:

τ
...
u + aü + c2Au + bAu̇ = 0, (2)

(with A being a self-adjoint positive operator and a, b, and c being the positive parameters); it was subjected to
an intense research regarding the well-posedness and stability of its solutions (see, for example, Kaltenbacher
et al. [2], Lasiecka and Wang [3, 4], Pellicer and Said-Houari [5], and Chen and Ikehata [6]). It was observed by
Quintanilla [7] that the Moore–Gibson–Thompson equation appears in the generalized thermoelastic theories
based upon the introduction of the thermal displacement (see Green–Naghdi’s model [8–10]) and using the
Maxwell–Cattaneo constitutive equation for the heat flux vector. Besides, there is a recent, rich, and intense
research activity of the third-order in time differential equations, either separately or coupled with the elastic
deformations of medium, leading to valuable results concerning the well-posedness: Quintanilla [7], Pellicer
and Quintanilla [11], Conti et al. [12], Ostoja-Starzewski and Quintanilla [13], Bazarra et al. [14], Fernandez
and Quintanilla [15, 16], and Fernandez et al. [17].

All these studies suffer from an inconvenience, namely, that they prescribe initial and boundary data in terms
of temperature (or thermal displacement), instead of including mixed data for temperature (or thermal displace-
ment) and heat flux vector. That is why initial boundary value problems with important physical significance
are excluded from their research. Also, by leaving the original thermomechanical model, the thermodynamic
restrictions on the thermal coefficients involved are not known.

In this work, we eliminate all the shortcomings listed above. For this purpose, we consider the three-phase-
lag constitutive equation for the heat flux vector as proposed by Roy Choudhuri [18] and then we determine the
conditions on the coefficients involved in order to have compatibility with the second law of thermodynamics.
Then, we formulate and establish the well-posedness for the associated initial boundary value problems. In
this sense, we use the classical conservation law, as well as the Lagrange identity method and the logarithmic
convexity method. Finally, we show that such a model not only allows the propagation of damped in time
harmonic waves but also exponentially decaying in time thermal standing mode waves. We also show that if the
thermodynamic restrictions are not fulfilled, then we can be led to instability. Through the present treatment of
the thermal model in question, we obtain important information regarding well-posedness and instability on the
associated Moore–Gibson–Thompson type equation for the thermal displacement.

The plan of the work is the following. Section 2 presents the basic system of differential equations describing
the evolutionary behavior of the heat flux and of the thermal displacement in the line described by Roy Choud-
huri [18]. The associated third-order in time differential equation in terms of thermal displacement is explicitly
written. Section 3 establishes the explicit restrictions on the thermal coefficients deduced from the compatibil-
ity of the constitutive law with the second law of thermodynamics. Section 4 formulates the initial boundary
value problems associated with the model in concern and then describes a modified version of them that will be
useful in the future analysis. A conservation law of energy identity is also presented. Section 5 is dedicated to
the study of uniqueness and continuous data dependence problems under common assumptions on the thermal
coefficients. The Lagrange identity and logarithmic convexity methods are also used to establish uniqueness
result under mild assumptions on the thermal coefficients. Section 6 discusses possible thermal wave solutions
that can satisfy the basic equations. It is shown that if the thermodynamic restrictions are not fulfilled, then we
can be led to unbounded wave solutions when time goes to infinity and so we have instability.

2. Three-phase-lag heat conducting model for a rigid conductor
Tzou [19] has proposed a two-phase-lag model by generalizing the Fourier law of heat conduction qi(x, t) =
−kijT,j(x, t) in the following form:

qi(x, t + τq) = −kij(x)T,j(x, t + τT ), (3)

where qi are the components of the heat flux vector, T is the variation of the temperature from the constant
reference temperature T0 > 0, kij are the components of the thermal conductivity tensor, and the delay time
τq > 0 is the phase-lag of the heat flux and the delay time τT > 0 is the phase-lag of the temperature gradient.

On the other side, Green and Naghdi [8–10] have introduced the thermal displacement by α(x, t) = Ṫ(x, t)
and they have proposed a heat conduction law as:

qi(x, t) = −
[
kij(x)T,j(x, t) + k∗

ij(x)α, j(x, t)
]

, (4)
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where k∗
ij are the components of the conductivity rate tensor.

Roy Choudhuri [18] combined the two above models and he proposed the three-phase-lags for the heat
flux vector qi, i.e., he considers the following generalized constitutive equation for heat conduction in order to
describe the lagging behavior:

qi(x, t + τq) = −
[
kij(x)T,j(x, t + τT ) + k∗

ij(x)α,j(x, t + τα)
]

, (5)

where τα > 0 is the phase-lag of the thermal displacement gradient.
Furthermore, by taking the Taylor series expansion of equation (5) up to the first-order terms in τq, τT , and

τα , Roy Choudhuri proposes the following generalized heat conduction law valid at a point x at time t:

qi(x, t) + τqq̇i(x, t) = −k∗
ij(x)α, j(x, t) −

(
kij(x) + ταk∗

ij(x)
)
α̇, j(x, t) − τT kij(x)α̈, j(x, t). (6)

Equation (6) serves as a generalized constitutive heat conduction law in which the elastic deformation term is
ignored.

The three-phase-lags model for a rigid conductor as proposed by Roy Choudhuri [18] is based on the
constitutive equation (6) and the well-known heat equation:

−qi,i(x, t) + r(x, t) = c(x)Ṫ (x, t), (7)

where r(x, t) represents the heat source acting per unit volume, and c(x) is the specific heat per unit volume.
In terms of the thermal displacement α, the three-phase-lags model for a rigid conductor as proposed by Roy

Choudhuri [18] is based upon the following differential equation:

cτq
...
α + cα̈ −

(
k∗

ijα, j

)
,i
−

[(
kij + ταk∗

ij

)
α̇, j

]
,i
− τT

(
kijα̈, j

)
,i

= 0, (8)

where we assumed the vanishing of the heat source and, moreover, the dependence on the independent variables
x and t was suppressed, but implicitly understood.

It can be easily seen that equation (8) generalizes the Moore–Gibson–Thompson equation in the sense that a
neglect of the term containing the relaxation time τT leads to equation (2). Consequently, all our analysis in this
paper will remain valid in the case of the simpler model used in the studies by Kaltenbacher et al. [2], Lasiecka
and Wang [3, 4], Pellicer and Said-Houari [5], and Chen and Ikehata [6].

3. Thermodynamic compatibility of the three-phase-lag constitutive equation
In this section, we discover the restrictions imposed by the second law of thermodynamics on the basic consti-
tutive equation of the model described by the relations (6) and (7). In this sense, we note that the constitutive
equation (6) can be written in the form:

∂

∂t

[
et/τq qi(t)

] = − 1

τq
et/τq

[
k∗

ijα, j(t) +
(

kij + τα k∗
ij

)
α̇, j(t) + τT kijα̈, j(t)

]
, (9)

so that, by assuming that limt→−∞ qi(t) = 0, we get:

qi(t) = − 1

τq

∫ t

−∞
e(z−t)/τq

[
k∗

ijα, j(z) +
(

kij + τα k∗
ij

)
α̇, j(z) + τT kijα̈, j(z)

]
dz, (10)

and where we have omitted everywhere the explicit dependence upon the space variable. Furthermore, with the
change of variable t − z = s, we obtain:

qi(t) = − 1

τq

∫ ∞

0
e−s/τq

[
k∗

ijα
t
, j(s) +

(
kij + τα k∗

ij

)
α̇t

, j(s) + τT kijα̈
t
, j(s)

]
ds, (11)

where:
αt(s) = α(t − s). (12)
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Some integration by parts in (11) gives:

qi(t) = −τT

τq
kijα̇, j(t) + 1

τ 2
q

[
τT kij − τq

(
kij + τα k∗

ij

)]
α, j(t)

− 1

τ 3
q

[
τT kij − τq

(
kij + τα k∗

ij

)
+ τ 2

q k∗
ij

] ∫ ∞

0
e−s/τq α, j(t − s)ds. (13)

To determine the restrictions imposed by thermodynamics on the constitutive equation in concern, we postu-
late the second law of thermodynamics in terms of a Clausius–Duhem inequality formulated on cyclic histories
of period p, i.e., (see, for example, Amendola et al. [20], Chapter 8, section 8.2: Thermodynamic Constraints
for Rigid Heat Conductors, page 216), ∮

qi(t)T,i(t)dt ≤ 0, (14)

or equivalently, ∫ p

0
qi(t)T,i(t)dt ≤ 0. (15)

Consequently, any cycle for α,i(t), characterized by:

α,i(t) = Ai cosωt + Bi sinωt, (16)

withω > 0, and Ai and Bi arbitrary constants in time (but depending on the spatial variable x), with AiAi+BiBi �=
0, has to fulfill equation (15) as an inequality. Therefore, it has to fulfill the following inequality:

∫ 2π/ω

0
qi(t)α̇,i(t)dt ≤ 0, (17)

for all ω > 0, and for arbitrary real constants in time Ai and Bi with AiAi + BiBi �= 0.
If we use relations (13) and (16), we get:

∫ 2π/ω

0
qi(t)α̇,i(t)dt = −πωτT

τq
kij

(
AiAj + BiBj

)

+ π

τ 3
q

[
τT kij − τq

(
kij + τα k∗

ij

)
+ τ 2

q k∗
ij

] (
AiAj + BiBj

)
I , (18)

where:

I =
∫ ∞

0
e−s/τq sinωsds = ωτ 2

q

1 + τ 2
qω

2
. (19)

Therefore, the second law of thermodynamics implies, for all ω > 0,

τTτq kij

(
AiAj + BiBj

)
ω2 + κij

(
AiAj + BiBj

) ≥ 0, (20)

where:
κij = kij + (

τα − τq

)
k∗

ij. (21)

Consequently, the constitutive equation (6) is compatible with the second law of thermodynamics if:

(R(i)) the tensor kij is positive semi-definite;

(R(ii)) the tensor κij = kij + (
τα − τq

)
k∗

ij is positive semi-definite.
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4. Formulation of the initial boundary value problem—the modified problem
We assume that a regular region B is filled by an inhomogeneous and anisotropic conductor material with three-
phase-lag times. Throughout this paper, we consider the initial boundary value problem P defined by the heat
equation (7), the constitutive equation (6), the initial conditions:

α(x, 0) = 0, α̇(x, 0) = α̇0(x), qi(x, 0) = q0
i (x) for all x ∈ B, (22)

and the following boundary conditions:

α(x, t) = 	(x, t) on 
1 × (0, ∞),

qi(x, t)ni = Q(x, t) on 
2 × (0, ∞).
(23)

Here, α̇0(x) and q0
i (x), as well as 	(x, t) and Q(x, t), are prescribed smooth functions. Moreover, 
1 and 
2

are the subsets of the boundary ∂B so that 
1 ∪
2 = ∂B and 
1 ∩
2 = ∅.
By a solution of the initial boundary value problem P, corresponding to the given data D = {r; α̇0, q0

i ;	, Q},
we mean the ordered array S = {α, qi} defined on B × (0, ∞) with the properties that α(x, t) ∈ C2,2(B × (0, ∞)),
qi(x, t) ∈ C1,1(B × (0, ∞)) and which satisfy the field equations (6) and (7), the initial conditions (22), and the
boundary conditions (23). In what follows, we denote by P0 the initial boundary value problem P corresponding
to the zero given data D = {r; α̇0, q0

i ;	, Q} = 0.
In order to conveniently deal with topics regarding the uniqueness, continuous data dependence of solutions,

it is necessary to define a modified initial boundary value problem P̃ associated with the problem in question
P. In this sense, we introduce the notations:

q̃i = qi + τqq̇i, α̃ = α + τqα̇, (24)

and note that the heat equation (7) implies:

−q̃i,i + r̃ = c ¨̃α in B × (0, ∞), (25)

while the constitutive equation (6) becomes:

q̃i = −k∗
ijα, j −

(
kij + ταk∗

ij

)
α̇, j − τT kijα̈, j in B × (0, ∞), (26)

where:
r̃ = r + τqṙ. (27)

Furthermore, in view of the initial conditions (22) and the heat equation (7), we have:

α̃(x, 0) = τqα̇
0(x), ˙̃α(x, 0) = α̇0(x) + τqα̈(x, 0), cα̈(x, 0) = r(x, 0) − q0

i,i(x), (28)

while the boundary conditions (23) furnishes:

α̃(x, t) = 	̃(x, t) on 
1 × (0, ∞),

q̃i(x, t)ni = Q̃(x, t) on 
2 × (0, ∞),
(29)

with 	̃ = 	+ τq	̇ and Q̃ = Q + τqQ̇.
We now proceed to establish an energetic identity satisfied by any solution of the initial boundary value

problem P̃ . Thus, on the basis of the equation (25), we get:

∫
B

c ˙̃α ¨̃αdv =
∫

B
r̃ ˙̃αdv −

∫
∂B

q̃ini
˙̃αda +

∫
B

˙̃α,iq̃idv. (30)
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Furthermore, by taking into account the relation (24) and the constitutive equation (26), we obtain:

∫
B

˙̃α,iq̃idv = −
∫

B

(
α̇,i + τqα̈,i

) [
k∗

ijα, j +
(

kij + ταk∗
ij

)
α̇, j + τT kijα̈, j

]
dv, (31)

and hence, by some appropriate calculations, we deduce that:

∫
B

˙̃α,iq̃idv = −1

2

d

dt

∫
B

{
k∗

ij

(
α,i + τqα̇,i

) (
α, j + τqα̇, j

) + τq

[
kij + (

τα − τq

)
k∗

ij

]
α̇,iα̇, j

+τT kijα̇,iα̇, j

}
dv −

∫
B

{[
kij + (

τα − τq

)
k∗

ij

]
α̇,iα̇, j + τqτT kijα̈,iα̈, j

}
dv. (32)

Consequently, the above relations (30) and (32) imply:

dE
dt

(t) =
∫

B
r̃(t) ˙̃α(t)dv −

∫
∂B

q̃i(t)ni
˙̃α(t)da, (33)

where:

E(t) = 1

2

∫
B

{
c ˙̃α(t)2 + k∗

ijα̃,i(t)α̃, j(t)

+τq

[
kij + (

τα − τq

)
k∗

ij

]
α̇,i(t)α̇, j(t) + τT kijα̇,i(t)α̇, j(t)

}
dv

+
∫ t

0

∫
B

{[
kij + (

τα − τq

)
k∗

ij

]
α̇,i(s)α̇, j(s) + τqτT kijα̈,i(s)α̈, j(s)

}
dvds.

(34)

5. Uniqueness and continuous data dependence results
In our further analysis, we will need some of the following hypotheses upon the characteristic material
coefficients:

(H1): the specific heat per unit volume is strictly positive in B, i.e.:

c(x) > 0 for all x ∈ B; (35)

(H2): k∗
ij is a positive semi-definite tensor as:

k∗
rs(x)ξrξs ≥ 0 for all (ξ1, ξ2, ξ3) and for all x ∈ B; (36)

(H3): kij is a positive semi-definite tensor as:

krs(x)ξrξs ≥ 0 for all (ξ1, ξ2, ξ3) and for all x ∈ B; (37)

(H4): κij = kij + (
τα − τq

)
k∗

ij is a positive semi-definite tensor, i.e.:

κrs(x)ξrξs ≥ 0 for all (ξ1, ξ2, ξ3) and for all x ∈ B. (38)

The last two hypotheses prove that the second law of thermodynamics is fulfilled as results from section 3.
The first hypothesis proves that a genuine dynamic thermal situation is considered. While the hypothesis (H2)
represents an extension of hypothesis (H3) for the conductivity rate tensor.

Theorem 1. (Uniqueness of solution). Suppose the hypotheses (H1) to (H4) to be fulfilled. Then, the initial
boundary value problem P admits at most one solution.
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Proof. Having a linear problem, proving the uniqueness of the solution is equivalent to proving that the problem
with homogeneous data, P0, admits only the trivial solution. In this connection, we note that for the initial
boundary value problem P0, from equation (28), we have:

α̃(x, 0) = 0, ˙̃α(x, 0) = 0, α̇(x, 0) = 0, for all x ∈ B, (39)

and
α̃(x, t) = 0 on 
1 × (0, ∞), q̃i(x, t)ni = 0 on 
2 × (0, ∞),

r̃(x, t) = 0 for all (x, t) ∈ B × (0, ∞).
(40)

By virtue of relations (39) and (40), the identity (33) provides:

E(t) = 0 for all t ∈ (0, ∞). (41)

But, on the contrary, based on hypotheses (H1) to (H4), E(t) in equation (34) appears as a sum of positive terms,
and therefore, equality (41) implies that each term of the sum has to be zero. In particular, we deduce that:

˙̃α = 0, (42)

and hence, we have:
α̇ + τqα̈ = 0. (43)

which, when integrated under zero initial conditions for α, furnishes:

α(x, t) = 0 for all (x, t) ∈ B × (0, ∞). (44)

Using this result in the constitutive equation (6), we obtain the following differential equation:

qi + τqq̇i = 0, (45)

from which and using the initial condition qi(x, 0) = 0, we get:

qi(x, t) = 0 for all (x, t) ∈ B × (0, ∞). (46)

Concluding we see that S = {α, qi} = 0 and the proof is finished.

Theorem 2. (Continuous dependence of solution with respect to the heat source). Suppose the hypotheses (H1)
to (H4) to be fulfilled. Assume that the solution S = {α, qi} corresponds to the given data D = {r; 0, 0; 0, 0} on
B × (0, ∞). Then, the following estimate holds true:

√
E(t) ≤ 1√

2

∫ t

0

(∫
B

1

c
r̃(s)2dv

)1/2

ds for all t > 0. (47)

Proof. Under the assumptions of the theorem, the identity (33) furnishes:

E(t) =
∫ t

0

∫
B

r̃(s) ˙̃α(s)dvds, (48)

so that, by means of the Cauchy–Schwarz inequality, we get the estimate:

E(t) ≤
∫ t

0

(∫
B

1

c
r̃(s)2dv

)1/2 (∫
B

c ˙̃α(s)2dv

)1/2

ds ≤
∫ t

0

√
2E(s)ψ(s)ds, (49)

where:

ψ(t) =
(∫

B

1

c
r̃(t)2dv

)1/2

. (50)
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If we set:

�(t)2 =
∫ t

0

√
2E(s)ψ(s)ds, (51)

then we get:

2�(t)
d�

dt
(t) =

√
2E(t)ψ(t) ≤

√
2�(t)ψ(t), (52)

and hence:
d�

dt
(t) ≤ 1√

2
ψ(t). (53)

Consequently, we obtain: √
E(t) ≤ �(t) ≤ 1√

2

∫ t

0
ψ(s)ds, (54)

that is the estimate (47) and the proof is complete.

Theorem 3. Suppose the hypotheses (H1), (H3), and (H4) to be fulfilled. Then, the initial boundary value
problem P admits at most one solution.

Proof 1: Lagrange identity method (see, for example, Brun [21] and Rionero and Chiriţă [22]). We start with
the following identity:

∂

∂z

[
α̃(t + z) ˙̃α(t − z) + α̃(t − z) ˙̃α(t + z)

]
= α̃(t − z) ¨̃α(t + z) − α̃(t + z) ¨̃α(t − z), (55)

and then an integration over z on [0, t], followed by the use of the heat equation (25) and the zero given data,
gives:

2
∫

B
cα̃(t) ˙̃α(t)dv =

∫ t

0

∫
B

[
α̃(t − z)q̃i,i(t + z) − α̃(t + z)q̃i,i(t − z)

]
dvdz. (56)

Then, we use the divergence theorem combined with the null data on the boundary to obtain:

2
∫

B
cα̃(t) ˙̃α(t)dv =

∫ t

0

∫
B

[
q̃i(t − z)α̃,i(t + z) − q̃i(t + z)α̃,i(t − z)

]
dvdz. (57)

Furthermore, we use the relation (24) and the constitutive equation (26) to get:

q̃i(t − z)α̃,i(t + z) − q̃i(t + z)α̃,i(t − z) = ∂

∂z

{[
kij + (

τα − τq

)
k∗

ij

]
α,i(t − z)α, j(t + z)

+τT kijα,i(t − z)α̇, j(t + z) + τT kijα,i(t + z)α̇, j(t − z) + τqτT kijα̇,i(t − z)α̇, j(t + z)
}

.

(58)

Now, we use equation (58) into relation (57) and then by an integration combined with null given data, we
deduce: ∫

B

[
cα̃(t)2 + τT kijα,i(t)α, j(t)

]
dv

+
∫ t

0

∫
B

{[
kij + (

τα − τq

)
k∗

ij

]
α,i(s)α, j(s) + τqτT kijα̇,i(s)α̇, j(s)

}
dvds = 0.

(59)

As can be seen, by virtue of the constitutive hypotheses (H1), (H3), and (H4), in equation (59) we have a
sum of positive terms and this can be equal to zero only if each term is vanishing. In particular, we deduce that:

c(x)α̃2(x, t) = 0 in B × (0, ∞). (60)

Since c(x) > 0 in B, from equation (60), it follows that the relation (44) holds true and it can be used like in
Theorem 1 in order to prove that S = {α, qi} = 0 and the proof is completed.
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Proof 2: Logarithmic convexity method (see, for example, Knops and Payne [23]). Guided by the above proof,
we introduce now the following function:

F(t) =
∫

B

[
cα̃(t)2 + τT kijα,i(t)α, j(t)

]
dv

+
∫ t

0

∫
B

{[
kij + (

τα − τq

)
k∗

ij

]
α,i(s)α, j(s) + τqτT kijα̇,i(s)α̇, j(s)

}
dvds,

(61)

and note that:

Ḟ(t) = 2
∫

B

[
cα̃(t) ˙̃α(t) + τT kijα,i(t)α̇, j(t)

]
dv

+2
∫ t

0

∫
B

{[
kij + (

τα − τq

)
k∗

ij

]
α,i(s)α̇, j(s) + τqτT kijα̇,i(s)α̈, j(s)

}
dvds,

(62)

and moreover,

F̈(t) = 2
∫

B

[
c ˙̃α(t)2 + τT kijα̇,i(t)α̇, j(t) + cα̃(t) ¨̃α(t) + τT kijα,i(t)α̈, j(t)

]
dv

+2
∫

B

{[
kij + (

τα − τq

)
k∗

ij

]
α,i(t)α̇, j(t) + τqτT kijα̇,i(t)α̈, j(t)

}
dv.

(63)

Furthermore, in view of basic equations (25) and (26) and using the null given data, we have:
∫

B
cα̃(t) ¨̃α(t)dv = −

∫
B
α̃(t)q̃i,i(t)dv =

∫
B
α̃,i(t)q̃i(t)dv −

∫
∂B

q̃i(t)niα̃(t)da

= −
∫

B

[
k∗

ijα,i(t)α, j(t) +
(

kij + ταk∗
ij

)
α,i(t)α̇, j(t) + τT kijα,i(t)α̈, j(t) + τqk∗

ijα̇,i(t)α, j(t)

+τq

(
kij + ταk∗

ij

)
α̇,i(t)α̇, j(t) + τqτT kijα̇,i(t)α̈, j(t)

]
dv.

(64)

Thus, relations (63) and (64) furnish:

F̈(t) = 2
∫

B

[
c ˙̃α(t)2 + τT kijα̇,i(t)α̇, j(t) − k∗

ijα̃,i(t)α̃, j(t)

−τq

[
kij + (

τα − τq

)
k∗

ij

]
α̇,i(t)α̇, j(t)

]
dv.

(65)

Then, the conservation law (41) together with relation (34) gives:

−
∫

B

{
k∗

ijα̃,i(t)α̃, j(t) + τq

[
kij + (

τα − τq

)
k∗

ij

]
α̇,i(t)α̇, j(t)

}
dv =

∫
B

[
τT kijα̇,i(t)α̇, j(t) + c ˙̃α(t)2

]
dv

+2
∫ t

0

∫
B

{[
kij + (

τα − τq

)
k∗

ij

]
α̇,i(s)α̇, j(s) + τqτT kijα̈,i(s)α̈, j(s)

}
dvds.

(66)

Consequently, from relations (65) and (66), we obtain:

F̈(t) = 4

{∫
B

[
c ˙̃α(t)2 + τT kijα̇,i(t)α̇, j(t)

]
dv

+
∫ t

0

∫
B

{[
kij + (

τα − τq

)
k∗

ij

]
α̇,i(s)α̇, j(s) + τqτT kijα̈,i(s)α̈, j(s)

}
dvds

}
.

(67)



10 Mathematics and Mechanics of Solids 00(0)

Based on the Cauchy–Schwarz inequality, from relations (61), (62), and (67), we deduce that:

F(t)F̈(t) − Ḟ(t)2 ≥ 0, for all t ≥ 0, (68)

that proves that ln [F(t)] is a convex function on (0, ∞). Thus, we conclude that:

0 ≤ F(t) ≤ 0, (69)

and the proof follows like the above Proof 1.

Remark 1. A brief look at the two demonstration methods used above shows that, unlike the logarithmic con-
vexity method, the Lagrange identity method does not use the conservation law expressed by the relations (33)
and (34), and this gives it a slight advantage in dealing with weak solutions.

Remark 2. It should be noted that hypothesis (H1) can be replaced with one of the following types: (a) c(x) ≥ 0,
but kij(x) is supposed to be a positive definite tensor and meas(
1) �= 0 or (b) c(x) ≥ 0, but κij(x) = kij(x) +(
τα − τq

)
k∗

ij(x) to be assumed a positive definite tensor and meas(
1) �= 0! In such a situation, the relation (59)
implies:

α,i(x, t) = 0 in B × (0, ∞), (70)

which leads again to the relation (44) and, moreover, it proves that S = {α, qi} = 0.

6. Instability of solutions
The aim of this section is to prove that when the constitutive equation (6) does not fulfill the second law of
thermodynamics, then we can find a solution of the basic equations (6) and (7) which is unstable. To simplify
the mathematical calculations, we will consider the case of an isotropic and homogeneous material conductor
where kij = kδij and k∗

ij = k∗δij so that the thermodynamic restrictions are written now in the following form:

k ≥ 0 and k + (τα − τq)k∗ ≥ 0. (71)

According to the hypotheses (H1) to (H4), we assume now that:

c > 0, k∗ > 0, k > 0, k + (
τα − τq

)
k∗ > 0. (72)

Moreover, the Moore–Gibson–Thomson type equation (8) takes the following form:

cτq
...
α + c α̈ − k∗�α − (k + τα k∗)� α̇ − τT k� α̈ = 0, (73)

where � is the Laplace operator.
Our analysis in this section is related to the possible wave propagation problem for the thermal model in

concern. The solutions in this case will be waves of the form:

α(x1, t) = Re
{
A eiκ(x1−vt)

}
, (74)

where i = √−1 is the imaginary unit, Re{·} is the real part, κ > 0 is the real wave number, and A is a complex
nonzero number. Furthermore, x1 is the spatial coordinate in the propagation direction and v is a complex
parameter so that Re(v) ≥ 0 will represent the wave speed and Im(v) ≤ 0 will be related to the rate of decaying
in time. We must note that for Re(v) > 0, there is a genuine wave, while for Re(v) = 0, there is a standing
mode. Moreover, when Im(v) < 0, there is the phenomenon of damping in time, while for Im(v) = 0, there is
an undamped in time wave.

A substitution of the relation (74) into the equation (73) (or in the basic equations (6) and (7)) leads to the
following algebraic equation for determining the parameter v:

iκcτqv3 − (
c + τT kκ

2
)

v2 − iκv (k + ταk∗) + k∗ = 0. (75)

Moreover, if we set:
v = iχ , (76)
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the above equation takes the form:

f (χ) ≡ κcτqχ
3 + (

c + τT kκ
2
)
χ2 + κ (k + ταk∗)χ + k∗ = 0. (77)

Obviously, this equation admits at least one real and negative root, be it χ = χ1 = −ζ , ζ > 0.
Furthermore, we write equation (77) in the form:

f (χ) = χ2
(
κcτq χ + c + τT kκ

2
) + [

κ (k + ταk∗)χ + k∗] = 0, (78)

and introduce the values of χ :

χ̃1 = − c + τT kκ
2

κcτq
, χ̃2 = − k∗

κ (k + ταk∗)
. (79)

Then, we see that:

f (χ̃1) = − 1

τq

[
k + (

τα − τq

)
k∗ + κ

2τT k

c
(k + ταk∗)

]
,

f (χ̃2) = cχ̃2
2

k + ταk∗

[
k + (

τα − τq

)
k∗ + κ

2τT k

c
(k + ταk∗)

]
,

(80)

and hence, it results that:

f (χ̃1)f (χ̃2) = − cχ̃2
2

τq (k + ταk∗)

[
k + (

τα − τq

)
k∗ + κ

2τT k

c
(k + ταk∗)

]2

< 0. (81)

We can now conclude that the root χ = χ1 = −ζ < 0 is situated between χ̃1 and χ̃2. Moreover, we have
to note that equation (77) does not admit other real roots outside the interval delimited by the values χ̃1 and χ̃2.
This allows us to conclude that if equation (77) admits all three real roots, then they are all negative and are
included in the interval delimited by χ̃1 and χ̃2. Therefore, in these cases, we are led to thermal standing mode
waves that decrease exponentially in time as:

αthsm(x1, t) = Re
{
A eiκx1

}
eκξ t, (82)

where ξ is any one of the three negative real roots of the equation (77).
Besides, there is still the situation in which equation (77) also admits a complex conjugate root:

χ2,3 = −γ ± iδ, γ ∈ R, δ > 0. (83)

Let us study these conjugate roots and, in this sense, we recall the first Vièta’s formulas for equation (77):

χ1 + χ2 + χ3 = −c + τT kκ
2

κcτq
, (84)

which furnishes:

γ = 1

2

(
c + τT kκ

2

κcτq
− ζ

)
= −1

2
(χ̃1 + ζ ) . (85)

Moreover, there is:

δ2 = k∗

κcτqζ
− γ 2. (86)

Now, we have two situations to discuss:

(1) the first is when:
χ̃1 < χ̃2; (87)
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(2) the second is when:
χ̃1 > χ̃2. (88)

The first situation is equivalent to:

c
[
k + (

τα − τq

)
k∗] + τT kκ

2 (k + ταk∗) > 0, (89)

which is fulfilled as a consequence of the compatibility of the constitutive equation with the second law (see the
consequences (R(i)) and (R(ii))). In this situation, there is:

ζ < |χ̃1| = c + τT kκ
2

κcτq
, (90)

and hence, it results from equation (85) that:
γ > 0. (91)

In view of relations (74) and (83), we have the following damped in time thermal wave:

αthw(x1, t) = Re
{
A eiκ(x1−δt)} e−κγ t. (92)

Let us now consider the item (2), i.e., we assume that χ̃1 > χ̃2. Then, it follows that:

ζ > |χ̃1| = c + τT kκ
2

κcτq
, (93)

and hence, it results from equation (85) that:
γ < 0. (94)

Then, we have the following wave solution:

αinst(x1, t) = Re
{
A eiκ(x1−δt)} e−κγ t, (95)

which becomes infinity when t → ∞, and therefore, the instability of solutions follows.

Remark 3. It can be seen that the discriminant of the algebraic equation (77), which depends on the wave
number κ, can take positive as well as negative values. This means that the model in concern can have three
thermal standing mode waves or one thermal standing mode wave and one damped in time thermal wave, as
discussed above.

7. Discussion
Our study in this paper highlights some important aspects in the analysis of mechanical models, which can be
summarized as follows:

(a) the restrictions on the thermal coefficients used in the mathematical studies of the Moore–Gibson–
Thompson equation acquire here a precise mechanical meaning using the compatibility of the constitutive
equation with the second law of thermodynamics;

(b) in this paper, the (unknown) solution is represented by the couple {thermal displacement – heat flux
vector} and all the obtained results refer to this couple;

(c) removing one of the variables from the mechanical context of the model (here the heat flux vector) may
contribute to the loss of some important characteristics of the problem. The previous studies on the Moore–
Gibson–Thompson equation are limited only to the initial and boundary conditions for the remaining
variable (here the thermal displacement), leaving aside the initial and boundary conditions on the heat
flux vector. Thus, these studies give insufficient information (here only for the thermal displacement), but
nothing about the eliminated variable (here the heat flux vector);
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(d) in the studies on the Moore–Gibson–Thompson equation, the initial conditions are expressed in terms of
the initial values for α(x, 0), α̇(x, 0), and α̈(x, 0). Giving the initial condition α̈(x, 0) is not equivalent to
giving the initial condition for qi(x, 0). In fact, if qi(x, 0) is given, then, from equation (7), α̈(x, 0) can be
determined, but vice versa, knowing α̈(x, 0) we can only determine qi,i(x, 0) and not qi(x, 0). However, if
we want to see what happens with the heat flux vector, expressed by the constitutive equation (6), we reach
the situation when we cannot unique determine it! This can be seen more specific from Theorem 1, where
it is clear that we cannot integrate the differential equation (45) to obtain relation (46), i.e., qi(x, t) = 0 for
all (x, t) ∈ B × (0, ∞), because qi(x, 0) does not turn out to be zero. In fact, with α(x, 0) = 0, α̇(x, 0) = 0,
and α̈(x, 0) = 0 from the basic equations (6) and (7), we only get qi,i(x, 0) = 0 and not qi(x, 0) = 0;

(e) our study considers both boundary data for the thermal displacement, as well as boundary data in terms of
the heat flux (these last which have not been considered in the papers on the Moore–Gibson–Thompson
equation);

(f) as shown in section 6, the model under discussion admits standing mode waves decreasing exponentially
in time, but it can also admit thermal waves damped in time, unlike the classic thermal model (based on
the Fourier law) where they are missing;

(g) if the thermodynamic restrictions are not fulfilled, then it is possible to have wave solutions that grow
infinitely in time, and thus we are in a situation of instability.

The authors think that the results presented in this paper are not contrary to those existing in the literature,
but rather they complement them and give them consistency from a mechanical point of view.
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