SDEs in Banach spaces driven by cylindrical fractional Brownian motions

Elena Issoglio

Friedrich-Schiller-Universität Jena, Germany

June 18-30, 2012
Iasi

This work has been financially supported by Marie Curie Initial Training Network (ITN), FP7-PEOPLE-2007-1-1-ITN, no. 213841-2,
“Deterministic and Stochastic Controlled Systems and Applications”
Outline

Introduction

Fractional Brownian Motion in Banach Spaces
 Preliminaries
 The cylindrical fBm

The stochastic integral
 Definition and properties
 SDEs in Banach spaces
SDEs in Banach spaces

We consider the following evolution equation in a Banach space

\[
\begin{align*}
\text{(SDE)} & \quad \begin{cases}
 dY(t) = AY(t)dt + CdB^H(t), & t \in (0, T] \\
 Y(0) = Y_0
\end{cases}
\end{align*}
\]

where

- \(A \) is the generator of a \(C_0 \) semigroup \((S_t)_{t \geq 0} \) on a Banach space \(V \)
- \(U \) is another Banach space
- \(C \) is a bounded and linear operator \(C : U \to V \)
- \(\{B^H(t), t \geq 0\} \) is a (cylindrical) fBm in \(U \)
- \(Y_0 \) is a given (cylindrical) random variable.

AIM: solve (SDE) using mild solutions, i.e. solution of the type

\[
Y(t) = S_t Y_0 + \int_0^t S_{t-s} C dB^H(s), \quad t \in [0, T].
\]
What are the problems?

$$Y(t) = S_t Y_0 + \int_0^t S_{t-s} C \, dB^H(s)$$

(a) define a fractional Brownian motion \(\{B^H(t), t \geq 0\} \) in a Banach space

(b) define a stochastic integral with respect to it

$$\int_0^T \varphi(t) \, dB^H(t)$$

for deterministic integrands \(\varphi \).
In Hilbert spaces:

(a) the noise is characterized by a series. For instance a Brownian motion \(\{ W(t), t \geq 0 \} \) in \(H \) is given by

\[
W(t) = \sum_{k=1}^{\infty} \lambda_k e_k \beta_k(t).
\]

with

- \((\beta_k)_k\) \(1\)-dim Bm
- \((e_k)_k\) basis for \(H \)
- \(\lambda_k\) real positive numbers.

(b) the stochastic integral is defined exploiting the series representation. For instance for \(\varphi(t) \in \mathcal{L}(H) \) we have

\[
\int_0^T \varphi(t) \, dW(t) = \sum_{k=1}^{\infty} \int_0^T \lambda_k \varphi(t) e_k \, d\beta_k(t)
\]

(need assumptions for it to converge in \(L^2(\Omega; H) \))
Introduction

Fractional Brownian Motion in Banach Spaces
Preliminaries
The cylindrical fBm

The stochastic integral
Definition and properties
SDEs in Banach spaces
U separable Banach space.

U^* topological dual: linear and continuous mapping on U

- A **cylindrical random variable** in U is a linear map $X : U^* \to L^0_\mathbb{P}(\Omega; \mathbb{R})$.

- A **cylindrical stochastic process** in U is a family of cylindrical r.v. $Y = \{Y(t), t \geq 0\}$.
FBm: finite dimensional case

(1-dim) - continuous zero-mean Gaussian process \(\{ B^H(t), t \geq 0 \} \) on \((\Omega, \mathcal{F}, P) \)
- Hurst parameter \(H \in (0, 1) \)
- covariance function

\[
\mathbb{E}(B^H(t)B^H(s)) = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H})
\]

for all \(t, s \geq 0 \).

(n-dim) - \(M \) positive symmetric \(n \times n \) matrix
- \((\cdot, \cdot)_n\) scalar product in \(\mathbb{R}^n \)
- continuous zero-mean \(\mathbb{R}^n \)-valued Gaussian process \(\{ B^H(t), t \geq 0 \} \)
- Hurst parameter \(H \in (0, 1) \)
- covariance function

\[
\mathbb{E}[(v_1, B^H(t))_n(v_2, B^H(s))_n] = (Mv_1, v_2)_n \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H})
\]

for all \(t, s \geq 0 \) and \(v_1, v_2 \in \mathbb{R}^n \).
Cylindrical fBm: infinite dimensional case
A cylindrical process \((B^H(t), t \geq 0)\) in \(U\) is a cylindrical fBm with Hurst parameter \(H \in (0, 1)\) if

(i) for any \(u_1^*, \ldots, u_n^* \in U^*\) and \(n \in \mathbb{N}\), the \(\mathbb{R}^n\)-valued stochastic process
\[
\{(B^H(t)u_1^*, \ldots, B^H(t)u_n^*), t \geq 0\}
\]

is an \(n\)-dimensional fBm with Hurst parameter \(H \in (0, 1)\);

(ii) the mapping of \(B^H(1) : U^* \to L^0_P(\Omega; \mathbb{R})\) is continuous.

Special case: \(H = 1/2\) cylindrical Wiener Process.
Theorem (series representation)

For a cylindrical process B^H the following are equivalent:

(a) B^H is a cylindrical fBm with $H \in (0, 1)$;

(b) there exist a Hilbert space H, an orthonormal basis $(e_k)_{k \in \mathbb{N}}$, an operator $F \in L(H, U)$ and independent real valued fBm $(\beta_k^H)_{k \in \mathbb{N}}$ such that

$$B^H(t)u^* = \sum_{k=1}^{\infty} \langle Fe_k, u^* \rangle \beta_k^H(t)$$

in $L^2_{\mathbb{P}}(\Omega; \mathbb{R})$ for all $u^* \in U^*$ and all $t \geq 0$.
\[B^H(t)u^* = \sum_{k=1}^{\infty} \langle Fe_k, u^* \rangle \beta^H_k(t) \]

- the space \(H \) is called *Reproducing Kernel Hilbert Space* associated to \(Q \) and is unique (up to isometry).
- the operator \(Q \) is factorized through \(H \) by \(Q = FF^* \) and in some special cases \(F = Q^{1/2} \)

\[\begin{array}{ccc}
Q : U^* & \rightarrow & U \\
Q^{1/2} = F^* & \downarrow & F = Q^{1/2} \\
H & \cup & (e_k)_k
\end{array} \]

- we have \(\langle Fe_k, u^* \rangle = [e_k, F^* u^*]_H \).
Special case: the U-valued fBm

An U-valued stochastic process $(B^H(t), t \geq 0)$ is called U-valued fBm if there exists a Gaussian measure on $\mathcal{B}(U)$ with covariance operator $Q : U^* \to U$ such that

- $\mathbb{E}\langle B^H(t), u^* \rangle = 0$ for all $u^* \in U^*$ and all $t \geq 0$;
- the covariance is given by

$$\mathbb{E}[\langle B^H(t), u^* \rangle \langle B^H(s), v^* \rangle] = \langle Qu^*, v^* \rangle \frac{1}{2} (t^{2H} + s^{2H} - |t - s|^{2H})$$

for all $t \geq 0$ and $u^*, v^* \in U^*$.

Remarks:

- see [Duncan, Jakubowski, Pasik-Duncan (2006)] (Hilbert space case)
- if U is a Hilbert space then $Q : U^* \to U$ is a covariance operator if and only if Q is positive, symmetric and trace class
- if U is a Banach space need to be careful!
Theorem (series representation)

For an adapted U-valued process B^H the following are equivalent:

(a) B^H is a U-valued fBm

(b) there exist a Hilbert space H, an orthonormal basis $(e_k)_{k \in \mathbb{N}}$, a γ-radonifying operator $F \in L(H, U)$ and independent real valued fBms $(\beta_k^H)_{k \in \mathbb{N}}$ such that

$$W(t) = \sum_{k=1}^{\infty} F e_k \beta_k^H(t)$$

in $L^2_{\mathbb{P}}(\Omega; U)$ for all $t \geq 0$.

special cases:

- $H = 1/2$: U-valued Wiener process
- if U is a Hilbert space: F Hilbert-Schmidt $\iff F$ is γ-radonifying
cylindrical fBm $B^H(t) : U^* \to L^2(\Omega; \mathbb{R})$.
U-valued fBm $\tilde{B}^H(t) \in L^2(\Omega; U)$.

Example

One can define a cylindrical fBm $B^H(t) : U^* \to L^2(\Omega; \mathbb{R})$ by

$$B^H(t)u^* = \langle \tilde{B}^H(t), u^* \rangle$$

for all $u^* \in U^*$.

We say that a cylindrical process Y is induced by an U-valued process \tilde{Y} if $Y(t)u^* = \langle \tilde{Y}(t), u^* \rangle$ for all $u^* \in U^*$.

Careful: not every cylindrical process is induced by a U-valued process.

QUESTION: when is a cylindrical fBm induced by a U-valued process (fBm)? \longrightarrow when F is γ-radonifying.
Introduction

Fractional Brownian Motion in Banach Spaces
Preliminaries
The cylindrical fBm

The stochastic integral
Definition and properties
SDEs in Banach spaces
The cylindrical stochastic integral

- B^H cylindrical fBm in U: $B^H(t)u^* = \sum_{k=1}^{\infty} \langle Fe_k, u^* \rangle \beta_k^H(t)$
- V another Banach space
- $\varphi: [0, T] \to \mathcal{L}(U, V)$ deterministic

The cylindrical integral $\int_0^T \varphi(t) \, dB^H(t) = \mathcal{I}_T(\varphi)$ is a cylindrical process in V defined by

$$\mathcal{I}_T(\varphi)v^* := \sum_{k=1}^{\infty} \int_0^T \langle \varphi(t)Fe_k, v^* \rangle_v \, d\beta_k^H(t)$$

for every $v^* \in V^*$.

Remark: each 1-dim integral is performed as a Wiener integral. Need at least $\langle \varphi(\cdot)Fe_k, v^* \rangle_v, v^* \in \mathcal{H}_T$.

CAUTION: this is the definition if the series converges in $L^2_{\mathbb{P}}(\Omega, \mathbb{R})$.

Elena Issoglio

SDEs in Banach spaces driven by cylindrical fractional Brownian motions
Space of integrable functions

We have

\[[e_k, F^* \varphi^*(\cdot)v^*]_{H_Q} = \langle \varphi(\cdot)F e_k, v^* \rangle_{V, V^*} \in \mathcal{H}_T \]

\[\iff \]

\[F^* \varphi^*(\cdot)v^* \in \mathcal{H}_T. \]

We define the space of integrable functions as

\[\mathcal{I}_T := \{ \varphi : [0, T] \to \mathcal{L}(U, V) \text{ such that for all } v^* \in V^*, F^* \varphi^*(\cdot)v^* \in \mathcal{H}_T \} \]

Theorem

Let \(\varphi \in \mathcal{I}_T \). Then the integral \(\mathcal{I}_T(\varphi) \) is well defined and the following isometry property holds

\[\| \mathcal{I}_T(\varphi)v^* \|_{L^2_{\mathbb{F}}(\Omega; \mathbb{R})}^2 = \| F^* \varphi^*(\cdot)v^* \|_{\mathcal{H}_T}^2 \]

The definition does not depend on the representation of the fBm.
When is the integral $\mathcal{I}_T(\varphi)$ induced by a classical r.v. in V?

Introduce the following subspace of integrable functions

$$\mathcal{B}_T := \{ \varphi \in \mathcal{I}_T \text{ such that } \exists C > 0 : \| F^* \varphi^* (\cdot) v^* \|_{\mathcal{H}_T} \leq C \| v^* \|_{V^*} \text{ for all } v^* \in V^* \}.$$

Theorem

If $\varphi \in \mathcal{B}_T$ then $\mathcal{I}_T(\varphi)$ is a zero-mean (strongly) Gaussian r.v. with covariance operator $Q_{T, \varphi}$ which is V-valued and can be decomposed through

$$Q_{T, \varphi} : V^* \rightarrow V$$

$$\Gamma_{T, \varphi} \downarrow \Gamma_{T, \varphi}^* \uparrow$$

$$L^2([0, T]; H_Q)$$

Corollary

$\mathcal{I}_T(\varphi)$ is a V-valued random variable $\Leftrightarrow \Gamma_{T, \varphi}^*$ is γ-radonifying.
SDEs in Banach spaces

Back to our initial problem:

\[
\begin{aligned}
\text{(SDE)} \quad \begin{cases}
 dY(t) &= AY(t)dt + CdB^H(t), \quad t \in (0, T] \\
 Y(0) &= Y_0 \end{cases}
\end{aligned}
\]

The solution is a cylindrical process \(\{Y(t), t \in [0, T]\} \) in \(V \), i.e.

\[
Y(t) : V^* \to L^0_P(\Omega; \mathbb{R})
\]

- **weak solution:** for all \(v^* \in \text{dom}(A^*) \),

\[
Y(t)v^* = Y_0v^* + \int_0^t AY(s)v^* \, ds + CB^H(t)v^* \quad \text{where}
\]

\[
AY(t)v^* = Y(t)(A^*v^*) \quad \text{and} \quad CB^H(t)v^* = B^H(t)(C^*v^*)
\]

- **mild solution:** \(Y(t) = S_t Y_0 + \int_0^t S_{t-s} C dB^H(s) \) as cylindrical process in \(V \)
Theorem
Under some assumptions on \((S_t)_{t \geq 0}\) the Cauchy problem (SDE) has a unique cylindrical weak solution given by the mild form

\[
Y(t) = S_t Y_0 + \int_0^t S_{t-s} C \, dB^H(s)
\]

for all \(t \in [0, T]\).

Theorem
Let \(Y_0\) be a classical \(V\)-valued r.v. and let the assumptions on \(S\) hold. Then the solution \(Y(t)\) is induced by a classical process in \(V\) if and only if the (covariance) operator \(\Gamma^*_{t, S(\cdot)} C\) is \(\gamma\)-radonifying.
Thank you for your attention!