Translation surfaces of linear Weingarten type

Antonio Bueno · Rafael López

Abstract We give a relatively simple proof that if a translation surface in Euclidean space satisfies a relation of type $aH + bK = c$, for some real numbers a, b, c, where H and K are the mean curvature and the Gauss curvature of the surface, respectively, then $a = 0$ or $b = 0$. In particular, K is constant or H is constant. Our method of proof extends to the Lorentzian ambient space.

Keywords translation surface · linear Weingarten surface · mean curvature · Gauss curvature

Mathematics Subject Classification (2010) 53A05 · 53A10 · 53A35

1 Introduction and results.

A Weingarten surface in Euclidean space \mathbb{R}^3 is a surface S whose mean curvature H and Gauss curvature K satisfies a non-trivial relation $\Psi(H, K) = 0$. These surfaces were introduced by the very Weingarten in the context of the problem of finding all surfaces isometric to a given surface of revolution and have been extensively studied in the literature [13]. In order to simplify the study of Weingarten surfaces, it is natural to impose some additional geometric condition on the surface, as for example, that S is ruled or rotational [1,3,4,7,12].

Following this strategy, Dillen, Goemans and Van de Woestyne considered Weingarten surfaces that are graphs of type $z = f(x) + g(y)$, where f and g are smooth functions defined in some intervals $I, J \subset \mathbb{R}$, respectively [2]. A surface S in \mathbb{R}^3 is called a translation surface if it can locally parametrize as $X(x, y) = (x, y, f(x) + g(y))$. In particular, a translation surface has the property that the translations of a parametric curve $x = \text{const}$ by the parametric curves $y = \text{const}$ remain in S (similarly for the parametric curves $x = \text{const}$). In the cited paper, the authors classify all translation surfaces of Weingarten type:
Theorem 1.1 ([2]) A translation surface in \mathbb{R}^3 of Weingarten type is a plane, a generalized cylinder, a Scherk’s minimal surface or an elliptic paraboloid.

The proof given in [2] (see also [6]) discusses many cases, involving the solvability of a large number of ODE systems and it requires the use of a computer algebra program (as Maple) to manipulate the algebraic operations. In fact, in [2] it is described the procedure and only some cases are mentioned. Previously some authors obtained partial results assuming simpler functions f and g, as for example, that they are polynomial in its variables, simplifying and doing easier the computations ([11,15]).

In this paper we provide a significantly simpler proof of Theorem 1.1 when the Weingarten relation is linear in its variables. A linear Weingarten surface in Euclidean space \mathbb{R}^3 is a surface where there exists a relation

$$a H + b K = c, \quad (1.1)$$

for some real numbers a, b, c, not all zero. In the class of linear Weingarten surfaces, we mention two families of surfaces that correspond with trivial choices of the constants a and b: surfaces with constant Gauss curvature ($a = 0$) and surfaces with constant mean curvature ($b = 0$). In Theorem 1.1, only the first three surfaces are linear Weingarten surfaces, which have constant H or constant K: a plane ($H = K = 0$), a generalized cylinder ($K = 0$) and the Scherk’s minimal surface parametrized as $z = \log(\cos(\lambda y)) - \log(\cos(\lambda x))$, $\lambda > 0$ ($H = 0$). We observe that for an elliptic paraboloid, the Weingarten relation $\Psi(H,K) = 0$ is not linear. Indeed, if this surface writes as $z = a(x^2 + y^2)$, $a \neq 0$, then we have $\Psi(\alpha, \beta) = 2\sqrt{2|a| \text{ sign}(a)} \alpha - \beta^{3/4} - 2|a| \beta^{1/4}$. Finally, we point out that the classification of linear Weingarten surfaces in the general case is almost completely open today; see for example [5,9,12].

The result that we prove is:

Theorem 1.2 A translation surface in Euclidean space \mathbb{R}^3 of linear Weingarten type is a surface with constant Gauss curvature K or constant mean curvature H. In particular, the surface is congruent with a plane, a generalized cylinder or a Scherk’s minimal surface.

This shows that in the family of translation surfaces, linear Weingarten surfaces correspond with trivial choices of a, b in (1.1), that is, $a = 0$ or $b = 0$. We point out that an early work of Liu proved that the only translations surfaces with constant K or constant H are the first three surfaces of Theorem 1.1 ([8]). Finally, and with minor modifications, we extend in Theorem 3.1 our results to the Lorentzian ambient space (see also [2]).
2 Proof of Theorem 1.2

The mean curvature \(H \) and the Gauss curvature \(K \) are expressed in a local parametrization \(X \) as

\[
H = \frac{lN - 2mM + nL}{2(LN - M^2)}, \quad K = \frac{ln - m^2}{LN - M^2},
\]

where \(\{L, M, N\} \) and \(\{l, m, n\} \) are the coefficients of the first fundamental form and the second fundamental form, respectively. Assume that \(S \) is a translation surface expressed locally as \(X(x, y) = (x, y, f(x) + g(y)) \) for some smooth functions \(f \) and \(g \). Then \(H \) and \(K \) are

\[
H = f''(1 + g'^2) + g''(1 + f'^2) \quad \sqrt{W} + b \frac{f''g''}{(1 + f'^2 + g'^2)^2} = 0.
\]

We multiply (2.3) by \(W^2 \) and divide by \((1 + g'^2)(1 + f'^2) \) obtaining

\[
a \left(\frac{f''}{1 + f'^2} + \frac{g''}{1 + g'^2} \right) \sqrt{W} + b \frac{f''g''}{1 + f'^2 + g'^2} = 0.
\]

Introduce the next notation:

\[
F = \frac{f''}{1 + f'^2}, \quad G = \frac{g''}{1 + g'^2}.
\]

In particular, since \(f'' \neq 0 \) and \(g'' \neq 0 \), then \(F \neq 0 \) and \(G \neq 0 \). Then (2.4) writes as

\[
a(F + G)\sqrt{W} + bFG = 0.
\]
Let us observe that this identity implies $F + G \neq 0$, since on the contrary, $b = 0$. From (2.6), we have

$$1 + f'^2 + g'^2 = W = \frac{b^2}{a^2} \left(\frac{FG}{F + G} \right)^2.$$

We differentiate this equation with respect to x and then with respect to y. Because the left hand side is a sum of a function of x and a function of y, this calculation yields 0. On the other hand, the right hand side concludes

$$6 \frac{b^2 F^2 G^2 F' G'}{(F + G)^4} = 0.$$ \hfill (2.7)

This implies $F'G' = 0$. We discuss the two possibilities:

1. Suppose that there exists $x_0 \in I$ such that $F'(x_0) \neq 0$. Then $G' = 0$ in some subinterval $J' \subset J$ and this implies that G is a constant function in J'. By the definition of G in (2.5), and since $g'' \neq 0$, then $G \neq 0$. Differentiating (2.6) with respect to y, we obtain

$$a(F + G)g'g'' \sqrt{W} = 0.$$ \hfill (2.9)

As $a, F + G, g'' \neq 0$, then $g' = 0$. This implies $g'' = 0$, a contradiction.

2. Therefore $F' = 0$ in the interval I. This implies that F is a constant function. Differentiating now (2.6) with respect to x together a similar argument as in the previous case, we obtain a contradiction.

2.2 Case $c \neq 0$.

Dividing in (1.1) by c, and after a change of notation, the relation (1.1) writes as

$$a \frac{f''(1 + g'^2) + g''(1 + f'^2)}{(1 + f'^2 + g'^2)^{3/2}} + b \frac{f''g''}{(1 + f'^2 + g'^2)^2} = 1,$$ \hfill (2.8)

or equivalently

$$a(F + G)\sqrt{W} + bFG = \frac{W^2}{(1 + f'^2)(1 + g'^2)},$$ \hfill (2.9)

where F and G are defined as in (2.5). We differentiate (2.9) separately with respect to x and with respect to y:

$$a \left(F'\sqrt{W} + (F + G) \frac{f'f''}{\sqrt{W}} \right) + bF'G = \frac{4W f'f''}{(1 + f'^2)(1 + g'^2)} - \frac{2f'f''W^2}{(1 + f'^2)^2(1 + g'^2)}.$$
Translation surfaces of linear Weingarten type

\[a \left(G' \sqrt{W} + (F + G) \frac{g'g''}{\sqrt{W}} \right) + bFG' = \frac{4Wg'g''}{(1 + f'^2)(1 + g'^2)} - \frac{2g'g''W^2}{(1 + f'^2)(1 + g'^2)\sqrt{W}}. \]

Dividing the first equation by \(f'f'' \) and the second one by \(g'g'' \), we have, respectively,

\[\frac{4W}{(1 + f'^2)(1 + g'^2)} - a\frac{F + G}{\sqrt{W}} = a\frac{F'\sqrt{W}}{f'f''} + b\frac{F'G'}{f'f''} + \frac{2W^2}{(1 + f'^2)(1 + g'^2)} \]

\[\frac{4W}{(1 + f'^2)(1 + g'^2)} - a\frac{F + G}{\sqrt{W}} = a\frac{G'\sqrt{W}}{g'g''} + b\frac{FG'}{g'g''} + \frac{2W^2}{(1 + f'^2)(1 + g'^2)}. \]

Thus

\[a\frac{F'\sqrt{W}}{f'f''} + b\frac{F'G'}{f'f''} + \frac{2W^2}{(1 + f'^2)(1 + g'^2)} = a\frac{G'\sqrt{W}}{g'g''} + b\frac{FG'}{g'g''} + \frac{2W^2}{(1 + f'^2)(1 + g'^2)}. \]

From (2.9), we replace the value of \(W \) in the above expression, obtaining

\[
\begin{align*}
& a \left(\frac{F'}{f'f''} + 2\frac{(F + G)}{1 + f'^2} - \frac{G'}{g'g''} - \frac{2(F + G)}{1 + g'^2} \right) \sqrt{W} \\
& = -b \left(\frac{F'G'}{f'f''} + \frac{2FG}{1 + f'^2} - \frac{FG'}{g'g''} - \frac{2FG}{1 + g'^2} \right). \quad (2.10)
\end{align*}
\]

Now we write (2.8) as

\[a \left(f''(1 + g'^2) + g''(1 + f'^2) \right) \sqrt{W} + b f''g'' = W^2. \]

We differentiate this expression first with respect to \(x \) and with respect to \(y \):

\[
\begin{align*}
& a \left(f'''(1 + g'^2) + 2f'f''g'' \right) \sqrt{W} + a \left(f''(1 + g'^2) + g''(1 + f'^2) \right) \frac{f'f''}{\sqrt{W}} \\
& + b f'''g'' = 4f'f''W.
\end{align*}
\]

\[
\begin{align*}
& a \left(2f'g'g'' + g''(1 + f'^2) \right) \sqrt{W} + a \left(f''(1 + g'^2) + g''(1 + f'^2) \right) \frac{g'g''}{\sqrt{W}} \\
& + b f'''g'' = 4g'g''W.
\end{align*}
\]

From both equations, we deduce the value of \(W \) on the right hand sides and we equal both expressions, deducing

\[
\begin{align*}
& a \left(\frac{f''}{f'f''}(1 + g'^2) + 2g'' - \frac{g''}{g'g''}(1 + f'^2) \right) \sqrt{W} = b \left(f'' g'' - \frac{g''}{f'f''}(1 + f'^2) \right). \quad (2.11)
\end{align*}
\]
If we write (2.10) and (2.11) as \(aP_1\sqrt{W} = bQ_1\) and \(aP_2\sqrt{W} = bQ_2\), respectively, we obtain \(P_1Q_2 - P_2Q_1 = 0\). After some manipulations, this identity writes as

\[
(f'f''g'' - f'''g'g'') \left(2f'f''g''g'' + f'f''g'''(1 + f'^2) - f'''g'g''(1 + g'^2)\right) = 0,
\]

that is, \(P_2Q_2 = 0\). We discuss by cases:

1. There exists \((x_0, y_0) \in I \times J\) such that \(P_2(x_0, y_0) \neq 0\). Then \(Q_2 = 0\) in some sub-rectangle of \(I \times J\). By (2.11), we obtain \(aP_2 = 0\), a contradiction.

2. Therefore \(P_2 = 0\) in \(I \times J\). Using (2.11) again, we have \(Q_2 = 0\) in \(I \times J\).

These two equations write as

\[
\frac{f'''}{f'f''} = \frac{g'''}{g'g''} \quad (2.12)
\]

and

\[
2(f'' - g'') + \frac{g'''}{g'g''}(1 + f'^2) - \frac{f'''}{f'f''}(1 + g'^2) = 0. \quad (2.13)
\]

Because the left hand side of Equation (2.12) depends only on the variable \(x\), and the right hand side depends only on the variable \(y\), then there exists a constant \(\lambda \in \mathbb{R}\) such that

\[
\frac{f'''}{f'f''} = \frac{g'''}{g'g''} = 2\lambda \quad (2.14)
\]

and thus

\[
\frac{f'''}{f'} = 2\lambda f'', \quad \frac{g'''}{g'} = 2\lambda g''.
\]

Substituting the above information in (2.13), we get

\[
2(f'' - g'') + 2\lambda(1 + f'^2)g'' - 2\lambda(1 + g'^2)f'' = 0,
\]

or equivalently

\[
f'' - g'' + \lambda g'' - \lambda f'' = \lambda f''g'^2 - \lambda g''f'^2. \quad (2.15)
\]

If \(\lambda \neq 0\), we differentiate this equation with respect to \(x\) and then with respect to \(y\) and we deduce

\[
f'f''g''' = g'g''f'''.
\]

As we are assuming that \(f'', g'' \neq 0\), we conclude that

\[
\frac{f'''}{f'f''} = \frac{g'''}{g'g''} = \mu
\]

for some constant \(\mu \in \mathbb{R}\). Substituting in (2.14) we deduce that \(\mu \neq 0\) and that \(f''', g'''\) are both constant functions. Then \(f''' = g''' = 0\), so (2.14) yields \(\lambda = 0\), a contradiction.
Therefore, \(\lambda = 0 \) in (2.14). Equation (2.15) says now that \(f'' = g'' = \rho \), for some real number \(\rho \neq 0 \). Then (2.8) writes as
\[
ap(2 + f'^2 + g'^2) = W + b\rho^2 W^{-\frac{1}{2}}.
\]
Differentiating with respect to \(x \) and simplifying by \(f'f'' \), we get
\[
2a\rho = 3W^\frac{1}{2} + b\rho^2 W^{-\frac{3}{2}},
\]
which implies that \(W \) is a constant function. As \(W = 1 + f'^2 + g'^2 \), this would say that \(f'' = g'' = 0 \), a contradiction.

3 The Lorentzian case

We consider the Lorentz-Minkowski space \(L^3 \), that is, the real vector space \(\mathbb{R}^3 \) endowed with the metric \((dx)^2 + (dy)^2 - (dz)^2\) where \((x, y, z) \) are the canonical coordinates. A surface \(S \) immersed in \(L^3 \) is said non degenerate if the induced metric on \(S \) is non degenerated. The induced metric on \(S \) can only be of two types: a Riemannian metric and in such a case \(S \) is called a spacelike surface, or a Lorentzian metric, and \(S \) is called a timelike surface. For both types of surfaces, it is defined the mean curvature \(H \) and the Gauss curvature \(K \) and we say again that the surface is of linear Weingarten type if there exists a linear relation between \(H \) and \(K \) as in (1.1).

Similarly, in Lorentzian setting we can extend the concept of translation surface. A surface \(S \) in \(L^3 \) is again locally a graph on one of the coordinate planes, since this property is not metric but because \(S \) is immersed. Thus a translation surface in \(L^3 \) is a surface that writes locally as the graph of a function which is the sum of two real functions. However, in \(L^3 \) we can say a bit more. If \(S \) is spacelike, then \(S \) is a graph on the \(xy \)-plane and if \(S \) is a timelike surface, then \(S \) is a graph on the \(xz \)-plane or on the \(yz \)-plane [14]. Therefore, if \(S \) is a translation surface in \(L^3 \), we may suppose that:

1. If \(S \) is spacelike, then \(S \) writes locally as \(z = f(x) + g(y) \).
2. If \(S \) is timelike, then \(S \) writes locally as \(y = f(x) + g(z) \) or as \(x = f(y) + g(z) \).

In [2], Theorem 1.1 was extended to non-degenerate surfaces of \(L^3 \), obtaining a similar result. If we restrict to the case that the surface is a linear Weingarten surface, then the only translation surfaces appear with trivial choices of \(a \) and \(b \), that is, \(a = 0 \) or \(b = 0 \), and the surfaces have constant mean curvature \(H \) or constant Gauss curvature \(K \). Similarly, we extend the proof of Theorem 1.2 as follows:

Theorem 3.1 A non-degenerate translation surface in Lorentz-Minkowski space \(L^3 \) of linear Weingarten type is a surface with constant Gauss curvature \(K \) or constant mean curvature \(H \).
Translations surfaces in \mathbb{L}^3 with constant mean curvature or constant Gauss curvature were classified in [8] and they are a plane, a Scherk’s minimal surface or a generalized cylinder.

Proof. The proof of Theorem 3.1 is similar as in Theorem 1.2 and we only sketch the differences. Moreover, we will carry jointly the cases that the surface S is spacelike or timelike. Again, we suppose by contradiction that H and K are not constant functions, in particular, $a,b \neq 0$. The expressions of H and K in local coordinates are

$$H = \varepsilon \frac{1}{2} \frac{LN - 2mM + nL}{LN - M^2}, \quad K = \varepsilon \frac{ln - m^2}{LN - M^2},$$

where $\varepsilon = -1$ is S is spacelike and $\varepsilon = 1$ if S is timelike ([10,14]).

Suppose that S writes as $z = f(x) + g(y)$ if S is spacelike or $y = f(x) + g(z)$ if S is timelike. Then

$$H = -\varepsilon f''(1 + \varepsilon g'') + \varepsilon g''(1 + \varepsilon f'') \quad \text{and} \quad K = -\varepsilon f''g''(1 + \varepsilon f'')^2,$$

with $W = 1 + \varepsilon f'' - g'' > 0$. As we are assuming that K is not constant, the expression of K implies f'', $g'' \neq 0$. Let

$$F = \frac{f''}{1 + \varepsilon f'}, \quad G = \frac{g''}{1 - g'}.$$

Suppose $c = 0$ in (1.1). Then Equation (2.6) is the same, obtaining (2.7). Then the contradiction arrives similarly as in the Euclidean case.

Suppose $c \neq 0$ in (1.1). After a change of constants a and b, we assume that $c = 1$. Now the linear Weingarten condition (1.1) expresses as

$$a(F + G)\sqrt{W} + bFG = \varepsilon \frac{W^2}{(1 + \varepsilon f'')(1 + g'')(1 + g'^2)}, \quad (3.1)$$

Now (2.10) and (2.11) write, respectively, as

$$a \left(\frac{F'}{f'} + \frac{2(F+G)}{\varepsilon + f'^2} + \varepsilon \frac{g'}{g'g''} + \varepsilon \frac{2(F+G)}{-1 + g'^2} \right) \sqrt{W}$$

$$+ b \left(\frac{F'G}{f'} + \frac{2FG}{\varepsilon + f'^2} + \varepsilon \frac{FG'}{g'g''} + \varepsilon \frac{2FG}{-1 + g'^2} \right) = 0$$

$$a \left(\frac{f''}{f'}(-1 + g'^2) + 2g'' + 2\varepsilon f'' + \varepsilon(\varepsilon + f'^2) \frac{g'''}{g'g''} \right) \sqrt{W}$$

$$+ \varepsilon b \left(\frac{f''}{g'g''} + \varepsilon g'' \frac{f'''}{f'} \right) = 0.$$
We deduce

\[
\left(f' f'' g'' + \varepsilon f''' g' g'' \right) \left(2 f' f'' g'' (f'' + \varepsilon g') + f' f'' g'' (f^2 + \varepsilon) \right) + \varepsilon f''' g' g'' (g^2 - 1) = 0.
\]

Now the discussion by cases is similar as it was done in the Euclidean case, obtaining that \(W \) is a constant function. Hence \(f'' = g'' = 0 \), obtaining a contradiction.

\[\square \]

Acknowledgements The second author has been partially supported by the MEC-FEDER grant no. MTM2017-89677-P.

References

12. Rosenberg, H.; Sa Earp, R. – The geometry of properly embedded special surfaces in \(\mathbb{R}^3 \), e.g., surfaces satisfying \(aH + bK = 1 \), where \(a \) and \(b \) are positive, Duke Math. J., 73 (1994), no. 2, 291-306.
Received: 1.IV.2016 / Accepted: 15.VII.2016

Authors

ANTONIO BUENO,
Departamento de Geometría y Topología,
Universidad de Granada,
18071 Granada, Spain,
E-mail: jabueno@ugr.es

RAFAEL LÓPEZ (Corresponding author),
Departamento de Geometría y Topología,
Instituto de Matemáticas (IEMath-GR),
Universidad de Granada,
18071 Granada, Spain,
E-mail: rcamino@ugr.es