RIEMANNIAN METRICS ON THE TANGENT BUNDLE OF A FINSLER SUBMANIFOLD

BY

AUREL BEJANCU and HANI REDA FARRAN

Abstract. Let $IF^n = (M, F)$ be a Finsler submanifold of a Finsler manifold $IF^{n+p} = (\tilde{M}, \tilde{F})$. Then the induced non-linear connection HTM^o and the canonical non-linear connection GM^o define two Riemannian metrics G and G^* on $TM^o = TM \setminus \{0\}$, both of Sasaki-Finsler type. On the other hand, the Sasaki-Finsler metric Gg on $TfM^o = TM \setminus \{0\}$ induces a Riemannian metric G_{ind} on TM^o. We prove that IF^n is totally geodesic immersed in IF^{n+p} if and only if $G = G^* = G_{ind}$ on TM^o.

Mathematics Subject Classification 2000: 53C60, 53C40.

Key words: Finsler submanifold, Sasaki metric, totally geodesic immersion.

1. Preliminaries

Let $IF^{n+p} = (\tilde{M}, \tilde{F})$ be an $(n+p)$-dimensional Finsler manifold, where \tilde{F} is the fundamental function of IF^{n+p} that is of class C^∞ on the slit tangent bundle $T\tilde{M}^o = T\tilde{M} \setminus \{0\}$ (see Bao-Chern-Shen [1], Bejancu-Farran [3], Matsumoto [4], Rund [5], for basic results on Finsler geometry). Denote by (x^i, y^i), $i = \{1, \ldots, n+p\}$ the local coordinates on $T\tilde{M}$, where (x^i) are the local coordinates of a point $x \in \tilde{M}$ and (y^i) are the coordinates of a vector $y \in T_x\tilde{M}$. The vertical vector bundle $VT\tilde{M}^o$ on $T\tilde{M}^o$ is endowed with a Riemannian metric whose local components are given by

$$\tilde{g}_{ij}(x, y) = \frac{1}{2} \frac{\partial^2 \tilde{F}^2}{\partial y^i \partial y^j}.$$

Denote by $\tilde{g}^{ij}(x, y)$ the entries of the inverse of the $(n+p) \times (n+p)$-matrix $[\tilde{g}_{ij}(x, y)]$. Then the geodesics of IF^{n+p} are given by the solutions of the
system of differential equations
\[
\frac{d^2 x^i}{ds^2} + \tilde{G}^i \left(x^j(s), \frac{dx^j}{ds}\right) = 0,
\]
where \tilde{G}^i are given by
\[
\tilde{G}^i(x, y) = \frac{1}{4} g^{ih} \left\{ \frac{\partial^2 \tilde{F}^2}{\partial y^i \partial x^j} y^j - \frac{\partial \tilde{F}^2}{\partial x^h} \right\}.
\]
We note that $VT\tilde{M}^o$ is an integrable distribution on $T\tilde{M}^o$ which is locally spanned by $\left\{ \frac{\partial}{\partial y^i} \right\}$, $i \in \{1, \ldots, n+p\}$. Also, on $T\tilde{M}^o$ there exists a distribution $GT\tilde{M}^o$ (in general, non-integrable) which is given by the non-holonomic frame field:
\[
\frac{\delta^*}{\delta^* x^i} = \frac{\partial}{\partial x^i} - \tilde{G}^i \frac{\partial}{\partial y^i}, \quad i \in \{1, \ldots, n+p\},
\]
where \tilde{G}^i are given by
\[
\tilde{G}^i = \frac{\partial \tilde{G}^i}{\partial y^i}.
\]
It is important to note that we have
\[
TT\tilde{M}^o = GT\tilde{M}^o \oplus VT\tilde{M}^o,
\]
that is, $GT\tilde{M}^o$ and $VT\tilde{M}^o$ are complementary distributions on $T\tilde{M}^o$. We call $GT\tilde{M}^o$ the canonical non-linear connection on $T\tilde{M}^o$. The above decomposition of $TT\tilde{M}^o$ enables us to define the Sasaki-Finsler metric \bar{G} on $T\tilde{M}^o$ given locally as follows (cf. Bao-Chern-Shen [1], p. 48, Bejancu-Farran [3], p. 35, Matsumoto [4], p. 136)

\[
(1) \quad \bar{G} \left(\frac{\delta^*}{\delta^* x^i}, \frac{\delta^*}{\delta^* x^j} \right) = \bar{G} \left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \right) = \bar{g}_{ij}(x, y), \quad \bar{G} \left(\frac{\delta^*}{\delta^* x^i}, \frac{\partial}{\partial y^i} \right) = 0.
\]

Next, let M be an n-dimensional submanifold of \tilde{M} that is locally given by the equations
\[
x^i = x^i(u^1, \ldots, u^n), \quad i \in \{1, \ldots, n+p\}.
\]
Throughout the paper we use the following ranges for indices: \(i, j, k, \ldots \in \{1, \ldots, n + p\} \), \(\alpha, \beta, \gamma, \ldots \in \{1, \ldots, n\} \), \(a, b, c, \ldots \in \{n + 1, \ldots, n + p\} \). Consider \((u^\alpha, v^\alpha)\) as local coordinates on \(TM^o = TM \setminus \{0\} \) and define the function \(F(u^\alpha, v^\alpha) = \tilde{F}(x^i(u), y^j(u,v)) \), where we put
\[
y^j(u,v) = B^j_\alpha v^\alpha, \quad B^j_\alpha = \frac{\partial x^i}{\partial u^\alpha}.
\]
Then \(\mathbb{F}^n = (M, F) \) is a Finsler submanifold of \(\mathbb{F}^{n+p} \).
As above, we have the decomposition
\[
TTM^o = GTM^o \oplus VTM^o,
\]
where \(VTM^o \) and \(GTM^o \) are the vertical vector bundle and the canonical non-linear connection on \(TM^o \), locally spanned by \(\left\{ \frac{\partial}{\partial v^\alpha} \right\} \) and
\[
\frac{\delta^s}{\delta^s u^\alpha} = \frac{\partial}{\partial u^\alpha} - \Gamma_{\alpha}^\beta \frac{\partial}{\partial v^\beta},
\]
respectively. Thus the Sasaki-Finsler metric \(G^o \) on \(TM^o \) defined by the decomposition (1.2) is locally given by
\[
G^o \left(\frac{\delta^s}{\delta^s u^\alpha}, \frac{\delta^s}{\delta^s v^\alpha} \right) = G^o \left(\frac{\partial}{\partial v^\beta}, \frac{\partial}{\partial v^\alpha} \right) = g_{\alpha \beta}(u,v), \quad G^o \left(\frac{\delta^s}{\delta^s u^\alpha}, \frac{\partial}{\partial v^\alpha} \right) = 0,
\]
where we put \(g_{\alpha \beta}(u,v) = \frac{1}{2} \frac{\partial^2 F^2}{\partial v^\alpha \partial v^\beta} \). By direct calculations it follows that
\[
g_{\alpha \beta} = \tilde{g}_{ij} B^i_\alpha B^j_\beta.
\]
On the other hand, \(\tilde{G} \) induces a Riemannian metric \(G_{\text{ind}} \) on \(TM^o \) as follows
\[
G_{\text{ind}}(X,Y) = \tilde{G}(X,Y), \quad \forall X,Y \in \Gamma(TTM^o).
\]
Here, and in the sequel, we denote by \(\Gamma(TTM^o) \) the \(\mathcal{F}(TM^o) \)-module of vector fields on \(TM^o \), where \(\mathcal{F}(TM^o) \) is the algebra of smooth functions on \(TM^o \). The same notation will be used for the module of sections of any vector bundle.
Now, we denote by \(VTM^o \perp \) the orthogonal complementary vector subbundle to \(VTM^o \) in \(VTM|TM^o \) with respect to \(\tilde{G} \) and call it the Finsler normal bundle of the immersion of \(\mathbb{F}^n \) in \(\mathbb{F}^{n+p} \) (cf. BEJANCU [2], p. 47). Then we consider a local field of orthonormal frames \(\{B_a = B^i_a \partial/\partial y^i \} \),
\[a \in \{n + 1, \ldots, n + p\} \text{ in } VTM^\perp, \text{ and taking into account that } \{\partial/\partial v^\alpha = B^i_\alpha \partial/\partial y^i\} \text{ is a local field of frames in } VTM^\circ, \text{ we deduce that} \]

\[
\begin{align*}
(6) \quad (a) \quad \tilde{g}_{ij} B^i_\alpha B^j_\alpha &= 0, & (b) \quad \tilde{g}_{ij} B^i_\alpha B^j_\beta &= \delta_{\alpha\beta}.
\end{align*}
\]

Denote by \([\tilde{B}^\alpha_i \tilde{B}^i_\alpha]\) the inverse of the transition matrix \([B^\alpha_i B^i_\alpha]\) from the natural field of frames \(\{\frac{\partial}{\partial y^i}\}\) on \(VTM^\circ\) to the field of frames \(\{\frac{\partial}{\partial v^i}, B^i_\alpha\}\).

Next, we consider the induced non-linear connection \(HTM^\circ\) on \(TTM^\circ\), which is defined as the complementary orthogonal distribution to \(VTM^\circ\) in \(TTM^\circ\) with respect to \(G_{\text{ind}}\). Thus, apart from (2), \(TTM^\circ\) admits the decomposition

\[
(7) \quad TTM^\circ = HTM^\circ \oplus VTM^\circ.
\]

We should note that both (2) and (7) are orthogonal decompositions, but with respect to different metrics \(G^*\) and \(G_{\text{ind}}\), respectively. Locally, \(HTM^\circ\) is given by the field of frames \(\{N^\alpha_i\}, \alpha \in \{1, \ldots, n\}\), expressed as follows (cf. Bejancu-Farran [3], pp. 74, 75)

\[
(8) \quad \frac{\delta}{\delta u^\alpha} = \frac{\partial}{\partial u^\alpha} - N^\beta_\alpha \frac{\partial}{\partial v^\beta}; \quad N^\alpha_i = \tilde{B}^\alpha_i \left(B^i_\alpha + B^j_\beta \tilde{G}^i_j\right),
\]

or

\[
(9) \quad \frac{\delta}{\delta u^\alpha} = B^i_\alpha \frac{\delta^*}{\delta^* x^i} + H^\alpha_i B^i_\alpha; \quad H^\alpha_i = \tilde{B}^i_\alpha \left(B^i_\alpha + B^j_\beta \tilde{G}^i_j\right),
\]

where we put

\[B^i_\alpha = \frac{\partial^2 x^i}{\partial u^\alpha \partial u^\beta} v^\beta. \]

Finally, by using the decomposition (7) we can define another Sasaki-Finsler metric \(G\) on \(TM^\circ\) given by

\[
(10) \quad G\left(\frac{\delta}{\delta u^\beta}, \frac{\delta}{\delta u^\alpha}\right) = G\left(\frac{\partial}{\partial v^\beta}, \frac{\partial}{\partial v^\alpha}\right) = g_{\alpha\beta}, \quad G\left(\frac{\delta}{\delta u^\beta}, \frac{\partial}{\partial u^\alpha}\right) = 0.
\]

Summing up, we constructed on \(TM^\circ\) three Riemannian metrics: \(G^*\), \(G_{\text{ind}}\) and \(G\) given by (3), (5) and (10), respectively. Thus, it is natural to ask the following question. What class of Finsler submanifolds is characterized by the condition \(G^* = G_{\text{ind}} = G\)? In the second part of this paper we give the answer to this question.
2. The main result

Let $\mathbb{F}^n = (M, F)$ be a Finsler submanifold of $\mathbb{F}^{n+p} = (\tilde{M}, \tilde{F})$. Then we say that \mathbb{F}^n is totally geodesic immersed in \mathbb{F}^{n+p} if any geodesic of \mathbb{F}^n is a geodesic of \mathbb{F}^{n+p}. The main purpose of this section is to prove the following theorem.

Theorem 2.1. Let $\mathbb{F}^n = (M, F)$ be a Finsler submanifold of $\mathbb{F}^{n+p} = (\tilde{M}, \tilde{F})$. Then the following assertions are equivalent:

(i) \mathbb{F}^n is totally geodesic immersed in \mathbb{F}^{n+p}.

(ii) $G_{\text{ind}} = G^*$ on TM°.

(iii) $G_{\text{ind}} = G$ on TM°.

As a direct consequence of this result we state the following.

Corollary 2.1. \mathbb{F}^n is a totally geodesic Finsler submanifold of \mathbb{F}^{n+p} if and only if $G^* = G_{\text{ind}} = G$ on TM°.

First, we prove the following lemma.

Lemma 2.1. Let $\mathbb{F}^n = (M, F)$ be a Finsler submanifold of $\mathbb{F}^{n+p} = (\tilde{M}, \tilde{F})$. Then we have:

\[
\begin{align*}
\text{(a)} & \quad G_{\text{ind}} \left(\frac{\delta}{\delta u^\beta}, \frac{\delta}{\delta u^\alpha} \right) = g_{\alpha\beta} + \sum_{a=n+1}^{n+p} H^a_{\alpha}H^a_{\beta}, \\
\text{(b)} & \quad G_{\text{ind}} \left(\frac{\delta}{\delta u^\beta}, \frac{\partial}{\partial v^\alpha} \right) = 0, \\
\text{(c)} & \quad G_{\text{ind}} \left(\frac{\partial}{\partial v^\beta}, \frac{\partial}{\partial v^\alpha} \right) = g_{\alpha\beta}.
\end{align*}
\]

Proof. By direct calculations using (5), (9), (1) and (4) we obtain

\[
G_{\text{ind}} \left(\frac{\delta}{\delta u^\beta}, \frac{\delta}{\delta u^\alpha} \right) = \tilde{G} \left(B^i_{\beta} \delta^* x^i + H^b_{\beta}B_b, B^i_{\alpha} \delta^* x^i + H^a_{\alpha}B_a \right)
\]

\[
= \tilde{g}_{ij} B^i_{\alpha}B^j_{\beta} + H^a_{\alpha}H^a_{\beta} \delta_{ab} = g_{\alpha\beta} + \sum_{a=n+1}^{n+p} H^a_{\alpha}H^a_{\beta},
\]

\[
\text{(11)}
\]
which proves (11a). Then, (11b) follows from the definition of the non-linear connection HTM°. Finally, by using (5), (1) and (4) we deduce that

$$G_{\text{ind}} \left(\frac{\partial}{\partial y^\beta}, \frac{\partial}{\partial y^\alpha} \right) = \tilde{G} \left(B_\beta^j \frac{\partial}{\partial y^j}, B_\alpha^i \frac{\partial}{\partial y^i} \right) = \tilde{g}_{ij} B_\alpha^i B_\beta^j = g_{\alpha\beta},$$

which completes the proof of the lemma.

Next, we recall the following characterization of totally geodesic Finsler submanifolds.

Theorem 2.2 (Bejancu-Farran [3], p. 134). If (M, F) is a totally geodesic Finsler submanifold of $F^{n+p}=(\tilde{M}, \tilde{F})$ if and only if we have

$$(12) \quad H_a^\alpha = 0, \quad \forall \alpha \in \{1, ..., n\}, \quad a \in \{n+1, ..., n+p\}.$$

Now, we can state the following.

Theorem 2.3. F^n is a totally geodesic Finsler submanifold of F^{n+p} if and only if $G_{\text{ind}} = G$ on TM°.

Proof. By comparing (11) with (10) we deduce that $G_{\text{ind}} = G$ on TM° if and only if

$$\sum_{a=n+1}^{n+p} H_a^\alpha H_\beta^a = 0, \quad \forall \alpha, \beta \in \{1, ..., n\},$$

which is equivalent to (12).

In order to find another characterization of totally geodesic Finsler submanifolds we present the relationship between the induced non-linear connection HTM° and the canonical non-linear connection GTM° on TM°. First we consider the Cartan tensor field of type $(0,3)$ on F^{n+p}, whose local components are given by

$$\tilde{g}_{ijk} = \frac{1}{4} \frac{\partial^3 \tilde{F}^2}{\partial y^i \partial y^j \partial y^k}.$$

Then we define on TM° p Finsler tensor fields of type $(1,1)$ whose local components are given by

$$g_a^\alpha = g^{\beta\gamma} \tilde{g}_{ijk} B_\alpha^i B_\beta^j B_\gamma^k, \quad a \in \{n+1, ..., n+p\}, \alpha, \beta \in \{1, ..., n\}.$$
Finally, we consider the deformation Finsler tensor field D with respect to the pair (HT^o, GT^o), whose local components are given by

\[
D^\beta_\alpha = g^\alpha_\beta H^\gamma_\mu u^\gamma.
\]

Then it is proved in Bejancu-Farran [3], p. 112, that the local fields of frames $\{\delta^\alpha_\mu u^\alpha\}$ and $\{\delta^\alpha_\mu\}$ in GT^o and HT^o are related by

\[
\frac{\delta}{\delta u^\alpha} = \frac{\delta^\star}{\delta^\star u^\alpha} + D^\beta_\alpha \frac{\partial}{\partial v^\beta}.
\]

Lemma 2.2. Let $F^n = (M, F)$ be a Finsler submanifold of $F^{n+p} = (\tilde{M}, \tilde{F})$. Then we have:

\[
\begin{align*}
(a) & \quad G_{\text{ind}}(\frac{\delta^\star}{\delta^\star u^\beta}, \frac{\delta^\star}{\delta^\star u^\alpha}) = g_{\alpha\beta} + \sum_{a=n+1}^{n+p} H^a_\alpha H^a_\beta + g_{\gamma\mu} D^\gamma_\alpha D^\mu_\beta, \\
(b) & \quad G_{\text{ind}}(\frac{\delta^\star}{\delta^\star u^\beta}, \frac{\partial}{\partial v^\alpha}) = -g_{\alpha\gamma} D^\gamma_\beta.
\end{align*}
\]

Proof. First by using (14) and (11) we obtain

\[
G_{\text{ind}}(\frac{\delta^\star}{\delta^\star u^\beta}, \frac{\delta^\star}{\delta^\star u^\alpha}) = G_{\text{ind}} \left(\frac{\delta}{\delta u^\beta} - D^\mu_\beta \frac{\partial}{\partial v^\mu}, \frac{\delta}{\delta u^\alpha} - D^\gamma_\alpha \frac{\partial}{\partial v^\gamma} \right)
\]

\[
= g_{\alpha\beta} + \sum_{a=n+1}^{n+p} H^a_\alpha H^a_\beta + g_{\gamma\mu} D^\gamma_\alpha D^\mu_\beta,
\]

and (15a) is proved. In a similar way we obtain (15b). □

Theorem 2.4. F^n is a totally geodesic Finsler submanifold of F^{n+p} if and only if $G_{\text{ind}} = G^*$.

Proof. Suppose F^n is totally geodesic in F^{n+p}. Then by (12) and (13) we have $H^\beta_\alpha = 0$ and $D^\beta_\alpha = 0$, $\forall \alpha, \beta \in \{1, \ldots, n\}$, $a \in \{n+1, \ldots, n+p\}$. Using these in (15) and comparing with (3) we deduce that $G_{\text{ind}} = G^*$. Conversely, if $G_{\text{ind}} = G^*$, from (15) and (3) we deduce that

\[
g_{\alpha\gamma} D^\gamma_\beta = 0 \quad \text{and} \quad \sum_{a=n+1}^{n+p} H^a_\alpha H^a_\beta + g_{\gamma\mu} D^\gamma_\alpha D^\mu_\beta = 0, \forall \alpha, \beta \in \{1, \ldots, n\},
\]
which imply (12). Hence \mathbb{F}^n is totally geodesic.

By Theorems 2.3 and 2.4 we have a proof of Theorem 2.1. In particular, let us consider $\mathbb{F}^{n+p}=(\tilde{M}, \tilde{F})$ a Riemannian manifold, that is $\tilde{g}_{ij} = 0$, $\forall i, j, k \in \{1, ..., n+p\}$. Then by (13) we deduce that $D^\alpha_\beta = 0$ for all $\alpha, \beta \in \{1, ..., n\}$, and therefore by (14) we obtain $HTM^\circ = GTM^\circ$. As a conclusion we have $G = G^\ast$. Therefore, in the particular case of Riemannian submanifolds we obtain the following result.

Theorem 2.5. Let (M, g) be a submanifold of a Riemannian manifold (\tilde{M}, \tilde{g}). Then (M, g) is totally geodesic if and only if the Riemannian metric induced on TM by the Sasaki metric of TM coincides with the Sasaki metric induced on TM by g.

REFERENCES

Received: 17.III.2009

Kuwait University,
Department of Mathematics and Computer Science,
P.O. Box 5969, Safat 13060,
KUWAIT
aurel.bejancu@ku.edu.kw
hani.farran@ku.edu.kw