ON SEMI-P-REDUCIBLE FINSLER METRICS

BY

A. TAYEBI, B. NAJAFI and E. PEYGHAN

Abstract. The class of semi-P-reducible manifolds contains the class of Randers manifolds and Landsberg manifolds as special cases. In this paper, we prove that every semi-P-reducible manifold with P-reducible metric reduces to a Landsberg manifold. Then we show that there is not exists P2-like Randers metric.

Mathematics Subject Classification 2010: 53C60, 53C25.

Key words: Finsler metric, semi-C-reducible metric, C-reducible metric.

1. Introduction

Various interesting special forms of Cartan and Landsberg tensors have been obtained by some Finslerians (see [4], [5], [12], [13]). The Finsler spaces having such special forms have been called C-reducible, P-reducible, general relatively isotropic Landsberg and others (see [10], [11]). In [3], MATSUMOTO introduces the notion of C-reducible Finsler metrics and proved that any Randers metric is C-reducible. Later on, MATSUMOTO-HOJO [7] proves that the converse is also true. A Randers metric $F = \alpha + \beta$ is just a Riemannian metric α perturbed by a one form β. Randers metrics have important applications both in mathematics and physics ([14]). Then as a generalization of C-reducible metrics, Matsumoto-Shimada introduce the notion of P-reducible metrics ([8], [9]).

Let us remark some important curvatures in Finsler geometry. For a Finsler metric $F = F(x, y)$, its geodesics are characterized by the system of differential equations $\ddot{c}^i + 2G^i(\dot{c}) = 0$, where the local functions $G^i = G^i(x, y)$ are called the spray coefficients. A Finsler metric F is called a Berwald metric if $G^i = \frac{1}{2} \Gamma^i_{jk}(x)y^jy^k$ are quadratic in $y \in T_xM$ for any $x \in M$.
The second derivatives of $\frac{1}{2}F^2_x$ at $y \in T_xM_0$ is an inner product g_y on T_xM. The third order derivatives of $\frac{1}{2}F^2_x$ at $y \in T_xM_0$ is a symmetric trilinear forms C_y on T_xM. We call g_y and C_y the fundamental form and the Cartan torsion, respectively. The rate of change of C_y along geodesics is the Landsberg curvature L_y on T_xM for any $y \in T_xM_0$. F is said to be Landsbergian if $L = 0$.

There is a weaker notion of metrics- weakly Landsberg metrics. Set $I_y := \sum_{i=1}^n C_y(e_i, e_i, \cdot)$ and $J_y := \sum_{i=1}^n L_y(e_i, e_i, \cdot)$, where $\{e_i\}$ is an orthonormal basis for (T_xM, g_y). I_y and J_y is called the mean Cartan and mean Landsberg curvature, respectively. A Finsler metric F is said to be weakly Landsbergian if $J = 0$.

In [5], Matsumoto-Shibata introduce the notion of semi-C-reducibility by considering the form of Cartan torsion of a non-Riemannian (α, β)-metric on a manifold M with dimension $n \geq 3$. A Finsler metric is called semi-C-reducible if its Cartan tensor is given by $C_{ijk} = \frac{p}{1+n} \{h_{ij}I_k + h_{jk}I_i + h_{ki}I_j\} + \frac{q}{1+n} I_i I_j I_k$, where $p = p(x, y)$ and $q = q(x, y)$ are scalar function on TM, h_{ij} is the angular metric and $C^2 = I^2 I_k$. The function p is called characteristic scalar of F. If $q = 0$, then F is called C-reducible metric. It is remarkable that, an (α, β)-metric is a Finsler metric on M defined by $F := \alpha \phi(s)$, where $s = \beta/\alpha$, $\phi = \phi(s)$ is a C^∞ function on the $(-b_0, b_0)$ with certain regularity, α is a Riemannian metric and β is a 1-form on M.

As a generalization of C-reducible metrics, Matsumoto-Shimada introduce the notion of P-reducible metrics (see [6], [16]). A Finsler metric is called P-reducible if its Landsberg tensor is given by following $L_{ijk} = \frac{1}{1+n} \{h_{ij}J_k + h_{jk}J_i + h_{ki}J_j\}$. In [15], Rastogi introduces a new class of Finsler spaces named by semi-P-reducible spaces, which contains the notion of P-reducible metrics, as a special case. A Finsler metric F is called semi-P-reducible if its Landsberg tensor is given by

$$L_{ijk} = \lambda J_i h_{jk} + J_j h_{ki} + J_k h_{ij} + 3\mu J_i J_j J_k,$$

where $\lambda = \lambda(x, y)$ and $\mu = \mu(x, y)$ are scalar functions on TM. We have some special cases as follows: If $\mu = 0$, then F is a P-reducible metric; if $\lambda = 0$, then F is a P^2-like metric [15] and if $\mu = \lambda = 0$, then F is a Landsberg metric. The geometric meaning of P-reducible Finsler metrics is studied in [16]. Since the class of semi-P-reducible metrics contains the class of C-reducible metrics as a special case, therefore the study of this class of Finsler spaces will enhance our understanding of the geometric meaning of Randers metrics.
In this paper, we prove that every semi-P-reducible manifold with P-reducible metric reduces to a Landsberg manifold. Then we show that there is not exists any P2-like Randers metric.

In this paper, we use the Berwald connection on Finsler manifolds. The h- and the v-covariant derivatives of a Finsler tensor field are denoted by “$|$” and “,” respectively.

2. Preliminaries

Let M be an n-dimensional C^∞ manifold. Denote by T_xM the tangent space at $x \in M$, and by $TM = \cup_{x \in M} T_xM$ the tangent bundle of M. A Finsler metric on M is a function $F : TM \to [0, \infty)$ which has the following properties:

(i) F is C^∞ on $TM_0 := TM \setminus \{0\}$;

(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM;

(iii) for each $y \in T_xM$, the following quadratic form g_y on T_xM is positive definite, $g_y(u, v) := \frac{1}{2} \left[F^2(y + su + tv) \right]_{s, t = 0}$, $u, v \in T_xM$.

Let $x \in M$ and $F_x := F|_{T_xM}$. To measure the non-Euclidean feature of F_x, define $C_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by $C_y(u, v, w) := \frac{1}{2} \frac{d}{dt} \left[g_{y+tu}(u, v) \right]_{t=0}$, $u, v, w \in T_xM$. The family $C := \{C_y\}_{y \in TM_0}$ is called the Cartan torsion. It is well known that $C = 0$ if and only if F is Riemannian. For $y \in T_xM_0$, define mean Cartan torsion I_y by $I_y(u) := I_i(y)u^i$, where $I_i := g^{jk}C_{ijk}$ and $u = u^i \frac{\partial}{\partial x^i}$. By Diecke Theorem, F is Riemannian if and only if $I_y = 0$ ([17]). For $y \in T_xM_0$, define the Matsumoto torsion $M_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by $M_y(u, v, w) := M_{ijk}(y)u^iv^jw^k$ where $M_{ijk} := C_{ijk} - \frac{1}{n+1} \left(I_i h_{jk} + I_j h_{ik} + I_k h_{ij} \right)$, and $h_{ij} := FF_{y^iy^j} = g_{ij} - \frac{1}{F^2} g_{ip}g_{jp}g_{kq}y^k y^q$ is the angular metric. A Finsler metric F is said to be C-reducible if $M_y = 0$. This quantity is introduced by MATSUMOTO [3]. Matsumoto proves that every Randers metric satisfies $M_y = 0$. Later on, MATSUMOTO-HÔJÔ [7] proves that the converse is true too.

The horizontal covariant derivatives of C along geodesics give rise to the Landsberg curvature $L_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ defined by $L_y(u, v, w) := L_{ijk}(y)u^iv^jw^k$, where $L_{ijk} := C_{ijk|y^s}$, $u = u^i \frac{\partial}{\partial x^i}|x$, $v = v^i \frac{\partial}{\partial x^i}|x$ and $w = w^i \frac{\partial}{\partial x^i}|x$. The family $L := \{L_y\}_{y \in TM_0}$ is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if $L = 0$ ([2]).
Define $\vec{M}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by $\vec{M}_y(u, v, w) := \vec{M}_{ijk}(y)u^iv^jw^k$ where $\vec{M}_{ijk} := L_{ijk} - \frac{1}{n+1}\{J_ih_{jk} + J_jh_{ki} + J_kh_{ij}\}$. A Finsler metric F is said to be P-reducible if $\vec{M}_y = 0$. The notion of P-reducibility was given by Matsumoto-Shimada [8].

3. Main results

In this section, we are going to consider semi-P-reducible Finsler manifold with P-reducible metric. Then we prove the following.

Theorem 3.1. Let (M, F) be a semi-P-reducible Finsler manifold and $\mu \neq 0$. Suppose that F is a P-reducible metric. Then F reduces to a Landsberg metric.

Proof. Let F be a P-reducible metric

$$L_{ijk} = \frac{1}{n+1}\{J_ih_{jk} + J_jh_{ki} + J_kh_{ij}\}. \tag{2}$$

On the other hand, F is a semi-P-reducible metric

$$L_{ijk} = \lambda\{J_ih_{jk} + J_jh_{ki} + J_kh_{ij}\} + 3\mu J_iJ_jJ_k. \tag{3}$$

By (2) and (3), we get

$$\left(\frac{1}{n+1} - \lambda\right)\{J_ih_{jk} + J_jh_{ki} + J_kh_{ij}\} = 3\mu J_iJ_jJ_k. \tag{4}$$

Multiplying (4) with g^{ij} implies that

$$\{(n+1)\lambda + 3\mu J^2 - 1\}J_k = 0. \tag{5}$$

Suppose that $J_k \neq 0$. Then we have

$$\lambda = \frac{1 - 3\mu J^2}{n+1}. \tag{6}$$

Plugging (6) into (3) implies that

$$L_{ijk} = \frac{1}{n+1}\{J_ih_{jk} + J_jh_{ki} + J_kh_{ij}\} - 3\mu J^2 \left\{\frac{1}{n+1}\{J_ih_{jk} + J_jh_{ki} + J_kh_{ij}\} - \frac{1}{J^2}J_iJ_jJ_k\right\}. \tag{7}$$
Since F is a P-reducible metric, thus (7) reduces to the following

\[3\mu J^2 \left\{ \frac{1}{n+1} \{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \} - \frac{1}{J^2} J_i J_j J_k \right\} = 0. \tag{8} \]

By (8) and our assumptions, we deduce that the following holds

\[\frac{1}{n+1} \{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \} = \frac{1}{J^2} J_i J_j J_k. \tag{9} \]

This is impossible, since $\text{Rank}(h_{jk} J^2) = n - 1$ and $\text{Rank}(J_i J_j J_k) = 1$. Thus

\[J^2 = J_i J_i = 0. \tag{10} \]

Since F is a positive-definite metric, then $J_i = 0$. Thus by (2), we conclude that F is a Landsberg metric.

Example 3.1. Let (M, F) be a 2-dimensional Finsler manifold. We refer to the Berwald’s frame (ℓ^i, m^i), where $\ell^i = y^i / F(y)$, m^i is the unit vector with $\ell_i m^i = 0$ and $\ell_i = g_{ij} \ell^j$. Then the Cartan tensor is given by following $C_{ijk} = C m_i m_j m_k$, where $C := m_p m^p$ (for more details see [1]). By taking a horizontal derivation of above equation, we get $L_{ijk} = F C_{0m_i m_j m_k}$, where $C_0 := C_{1y} y^s$. By multiplying of above equation with g^{ij}, we can deduce that every Finsler surface is P2-like.

Theorem 3.2. Let (M, F) be a Finsler manifold of dimension $n \geq 3$. Then there is not exists any P2-like Randers metric.

Proof. Let F be a P2-like Randers metric on a manifold M of dimension $n \geq 3$. It is easy to see that F is P-reducible. We have

\[\frac{1}{n+1} \{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \} = \frac{1}{J^2} J_i J_j J_k. \tag{11} \]

We have

\[h_{ij} J^i = (g_{ij} - \ell_i \ell_j) J^i = J_j. \tag{12} \]

Contracting (11) with J^i and using (12) yields

\[\frac{1}{n+1} \{ h_{jk} J^2 + 2J_j J_k \} = J_j J_k, \tag{13} \]

or equivalently

\[h_{jk} J^2 = (n - 1) J_j J_k. \tag{14} \]

By the same argument used in Theorem 3.1, we conclude that there is not exists any P2-like Randers metric on a manifold M of dimension $n \geq 3$. \hfill \qed
REFERENCES

Received: 30.XI.2010
Revised: 13.I.2011
Accepted: 19.I.2011

Faculty of Science,
Department of Mathematics,
University of Qom,
Qom,
IRAN
akbar.tayebi@gmail.com

Faculty of Science,
Department of Mathematics,
Shahed University,
Tehran,
IRAN
najafi@shahed.ac.ir

Faculty of Science,
Department of Mathematics,
Arak University,
Arak 38156-8-8349,
IRAN
epeyghan@gmail.com