Permanent weak module amenability of semigroup algebras

Abasalt Bodaghi · Massoud Amini · Ali Jabbari

Received: 29.VI.2013 / Revised: 22.I.2014 / Accepted: 29.I.2014

Abstract We employ the fact that $L^1(G)$ is n-weakly amenable for each $n \geq 1$ to show that for an inverse semigroup S with the set of idempotents E, $\ell^1(S)$ is n-weakly module amenable as an $\ell^1(E)$-module with trivial left action. We study module amenability and weak module amenability of the module projective tensor products of Banach algebras.

Keywords Banach modules · module derivation · n-weak module amenability · inverse semigroup · module projective tensor product

Mathematics Subject Classification (2010) 43A20 · 46H25

1 Introduction

A Banach algebra A is amenable if $H^1(A, X^*) = \{0\}$ for every Banach A-module X, where $H^1(A, X^*)$ is the first Hochschild cohomology group of A with coefficients in X^*. The notion is introduced by Johnson in [17]. Dales et al. introduced the notion of n-weak amenability of Banach algebras in [12]. A Banach algebra A is n-weakly amenable if $H^1(A, A^{(n)}) = \{0\}$, where $A^{(n)}$ is nth dual space of A (1-weak amenability is called...
A Banach algebra is called **permanently weakly amenable** if it is \(n \)-weakly amenable for each positive integer \(n \). It is well known that for any locally compact group \(G \), \(L^1(G) \) is \(n \)-weakly amenable whenever \(n \in \mathbb{N} \) (see [10], [12] and [18]). As for \(\mathcal{A} \hat{\otimes} \mathcal{B} \), for amenable Banach algebras \(\mathcal{A} \) and \(\mathcal{B} \), that is always amenable (see [17]). However, \(\mathcal{A} \hat{\otimes} \mathcal{B} \) is weakly amenable when \(\mathcal{A} \) and \(\mathcal{B} \) are commutative and weakly amenable (see [15]).

In [3], the second author and Bagha extended the notion of weak amenability for a Banach algebra \(\mathcal{A} \) to the case that there is an extra \(\mathfrak{A} \)-module structure on \(\mathcal{A} \) and showed that \(\ell_1(S) \) is weakly module amenable, as an \(\ell_1(E) \)-module, when \(S \) is a commutative inverse semigroup with the set of idempotents \(E \). The same is true for an arbitrary inverse semigroup with trivial left action (see [5]). Also Bodaghi et al. in [8] showed that \(\ell_1(S) \) is \(n \)-weakly module amenable as an \(\ell_1(E) \)-module (with trivial left action) when \(n \) is odd. It is proved in [4] that the module projective tensor product \(\ell_1(S) \hat{\otimes} \ell_1(E) \ell_1(S) \) is module amenable when \(S \) is amenable (the module contractibility case is shown in [6]).

In this paper, we investigate \(n \)-weak module amenability of semigroup algebras and using the fact that for a locally compact group \(G \), \(L^1(G) \) is \(n \)-weakly amenable for all \(n \in \mathbb{N} \), we show that the inverse semigroup algebra \(\ell_1(S) \) is \(n \)-weakly module amenable as an \(\ell_1(E) \)-module for all \(n \in \mathbb{N} \). We also investigate module amenability and weak module amenability of the module projective tensor product \(\mathcal{A} \hat{\otimes} \mathcal{B} \) (as \(\mathfrak{A} \)-module) under certain conditions. In particular, we show that \(\ell_1(S) \hat{\otimes} \ell_1(E) \ell_1(S) \) is weakly module amenable.

2 \(n \)-weak module amenability of semigroup algebras

Let \(\mathfrak{A} \) and \(\mathcal{A} \) be Banach algebras such that \(\mathcal{A} \) is a Banach \(\mathfrak{A} \)-bimodules with following compatible actions \(\alpha \cdot (ab) = (\alpha \cdot a)b, (ab) \cdot \alpha = a(b \cdot \alpha) \), for every \(a, b \in \mathcal{A}, \alpha \in \mathfrak{A} \).

If \(\mathfrak{A} \) is a unital Banach algebra, the Banach algebra \(\mathcal{A} \) is said to be a unital Banach \(\mathfrak{A} \)-module if \(e_{\mathfrak{A}} \cdot a = a \cdot e_{\mathfrak{A}} = a \) for every \(a \in \mathcal{A} \). Let \(\mathcal{A} \) and \(\mathcal{B} \) be Banach \(\mathfrak{A} \)-bimodules with compatible actions. An \(\mathfrak{A} \)-module map is a mapping \(\varphi : \mathcal{A} \rightarrow \mathcal{B} \) with following properties

1. \(\varphi(a \pm b) = \varphi(a) \pm \varphi(b) \) \((a, b \in \mathcal{A}) \);
2. \(\varphi(\alpha \cdot a) = \alpha \cdot \varphi(a), \varphi(a \cdot \alpha) = \varphi(a) \cdot \alpha \) \((a \in \mathcal{A}, \alpha \in \mathfrak{A}) \).

One should note that \(\varphi \) is not linear, in general. Let \(X \) be a Banach \(\mathcal{A} \)-bimodule and a Banach \(\mathfrak{A} \)-bimodule with following compatible actions: \(\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, a(\alpha \cdot x) = (a \cdot \alpha) \cdot x, (\alpha \cdot x) \cdot a = a \cdot (\alpha \cdot x), (a \cdot \alpha) \cdot x = a \cdot (\alpha \cdot x), (x \cdot \alpha) \cdot a = x \cdot (\alpha \cdot a), \) for every \(x \in X, a \in \mathcal{A}, \alpha \in \mathfrak{A} \). In this case, we say \(X \) is a Banach \(\mathcal{A} \hat{\otimes} \mathfrak{A} \)-module. If \(\alpha \cdot x = x \cdot \alpha \), for every \(x \in X \) and \(\alpha \in \mathfrak{A} \), then \(X \) is called a commutative Banach \(\mathcal{A} \hat{\otimes} \mathfrak{A} \)-module. Moreover, if \(a \cdot x = x \cdot a \), for every \(x \in X \) and \(a \in \mathcal{A} \), then \(X \) is called a bi-commutative Banach \(\mathcal{A} \hat{\otimes} \mathfrak{A} \)-module. It is clear that \(\mathcal{A} \) is a Banach \(\mathfrak{A} \)-module. Also, if \(\mathcal{A} \) is a commutative \(\mathfrak{A} \)-bimodule, then \(\mathcal{A} \) is a commutative \(\mathcal{A} \hat{\otimes} \mathfrak{A} \)-module, and so is the \(n \)-th dual of \(\mathcal{A} \). If moreover \(\mathcal{A} \) is a commutative Banach algebra, then it is a bi-commutative Banach \(\mathcal{A} \hat{\otimes} \mathfrak{A} \)-module, and the same holds for its \(n \)-th dual.

An \(\mathfrak{A} \)-module map \(D : \mathcal{A} \rightarrow X \) is called a module derivation if \(D(ab) = a \cdot D(b) + D(a) \cdot b, \) \((a, b \in \mathcal{A}) \). A module derivation \(D \) is called bounded if there exists \(M > 0 \)
such that \(\|D(a)\| \leq M\|a\| \), for every \(a \in A \). Note that boundedness of \(D \) implies its norm continuity while \(D \) can be non-linear. We use the notations \(Z_A(A,X) \) and \(N_A(A,X) \) for the set of all continuous module derivations and continuous inner module derivations from \(A \) to \(X \) respectively. Also the quotient space \(Z_A(A,X)/N_A(A,X) \) (which we call the first \(A \)-module cohomology group of \(A \) with coefficients in \(X \)) is denoted by \(H^n(A,X) \). From now on, by a module derivation we mean a continuous module derivation.

The Banach algebra \(A \) is called module amenable (as an \(A \)-module) if for any commutative Banach \(A \)-module \(X \), each module derivation \(D : A \rightarrow X^* \) is inner [1], in other word, \(A \) is module amenable if \(H^n(A,X^*) = \{0\} \), for each commutative Banach \(A \)-module \(X \) (see [1]). It is proved in [5] that \(A \) is module amenable if \(H^n(A,X^*) = \{0\} \), for each commutative Banach \(A \)-module \(X \) (see [6, 21]). Also \(A \) is weakly module amenable (as an \(A \)-module) if for any subset \(Y \) of \(A^* \) which is \(A \)-submodule and commutative Banach \(A \)-submodule, each module derivation from \(A \) to \(Y \) is inner [5].

Let \(G \) be a locally compact and \(A \) be a Banach space. Suppose that \(G \) acts on \(X \) by homomorphisms, i.e., we have the continuous mappings \((s, x) \mapsto s \cdot x \) from \(G \times X \) into \(X \) and \((x, s) \mapsto x \cdot s \) from \(X \times G \) into \(X \) such that \((s \cdot t) \cdot x = s \cdot (t \cdot x) \), \(s \cdot (x \cdot t) = (s \cdot x) \cdot t \), \(x \cdot (s \cdot t) = x \cdot s \cdot t \), \((s,t) \in G , x \in X \). A map \(\delta : G \rightarrow X \) is called a \(G \)-derivation if \(\delta(st) = s \cdot \delta(t) + \delta(s) \cdot t \), for every \(s,t \in G \). The \(G \)-derivation \(\delta \) is called inner if there exists \(x \in X \) such that \(\delta(s) = s \cdot x - x \cdot s \), for every \(s \in S \). In this case we write \(\delta = ad_x \). A map \(\psi : G \rightarrow X \) is called a crossed homomorphism if \(\psi(st) = s \cdot \psi(t) \cdot s^{-1} + \psi(s) \), for every \(s,t \in G \), and \(\psi \) is called principal if there exists \(x \in X \) such that \(\psi(s) = s \cdot x \cdot s^{-1} - x \), for every \(s \in G \). Let \(\delta : G \rightarrow X \) be a \(G \)-derivation, and set \(\delta(s) = \delta(s) \cdot s^{-1} \), for \(s \in G \). Then \(\psi \) is a crossed homomorphism, and \(\psi \) is principal if \(\delta \) is inner. Conversely, Let \(\psi : G \rightarrow X \) be a crossed homomorphism. Set \(\delta(s) = \psi(s) \cdot s \) for \(s \in G \). Then \(\delta \) is a \(G \)-derivation, and \(\delta \) is inner if \(\psi \) is principal. Let \(D : \ell^1(G) \rightarrow X^* \) be continuous derivation. Set \(\delta(s) = D(\delta_s) \) for every \(s \in G \). Then \(\delta \) is a \(G \)-derivation, and it is clear that if \(D \) is an inner derivation then so is \(\delta \).

\textbf{Theorem 2.1} Let \(G \) be a discrete group. Then \(\ell^1(G) \) is \(n \)-weakly amenable for all \(n \in \mathbb{N} \).

\textbf{Proof.} The odd case is proved in [12, Theorem 4.1] and [18]. Therefore it is sufficient to prove the result in the even case (compare with [10]). Let \(D : \ell^1(G) \rightarrow \ell^1(G)^{(2n)} \) be a bounded derivation. Since \(G \) is discrete, the group algebra \(\ell^1(G) \) has an identity. Hence \(\ell^1(G) = M(G) \). Put \(\Omega_0 = G \). On the other hand, \(\ell^\infty(G) \) is a commutative unital \(C^* \)-algebra so by Gelfand-Naimark Theorem we have \(\ell^\infty(G) \cong C(\Omega_1) \), where \(\Omega_1 \) is \(w^* \)-compact. Similarly \(\ell^\infty(G)^{**} \cong C(\Omega_1)^{**} \cong C(\Omega_2) \), for a \(w^* \)-compact space \(\Omega_2 \). Now if \(n \geq 2 \) and \(\ell^1(G)^{(2n-2)} \cong M(\Omega_{n-1}) \), for some \(w^* \)-compact space \(\Omega_{n-1} \), then \(\ell^1(G)^{(2n)} \cong (\ell^1(G)^{(2n-2)})^{**} \cong C(\Omega_{n-1})^{***} \cong C(\Omega_n)^* \cong M(\Omega_n) \), for some \(w^* \)-compact space \(\Omega_n \).
Abasalt Bodaghi, Massoud Amini, Ali Jabbari

Let us show that G acts on Ω_1 by homeomorphisms. Each $x \in G$ induces a map $\alpha_x : \Omega_1 \to \Omega_1$ defined by $\alpha_x(\omega)(f) = \omega(\ell_x f)$ for $f \in \ell^\infty(G)$, where ℓ_x is the left translation by x. It is clear that if ω is a continuous character on $\ell^\infty(G)$, so is ω_x and α_x is $w^*\cdot w^*$-continuous. Also $\alpha_x^{-1} = \alpha_{x^{-1}}$ and α_x is a homeomorphism. Similarly G acts on Ω_n by homeomorphisms and $M(\Omega_n)$ is a Banach $\ell^1(G)$-module and the above isomorphism of Banach spaces is indeed an isomorphism of Banach $\ell^1(G)$-modules. By Johnson’s Theorem ([11, Theorem 5.6.39]), $D'(s) = D(\delta_s)$ defines a bounded crossed homomorphism ψ from G into $M(\Omega_n)$, and by Theorem 1.1 of [20], ψ is principal, and therefore D is inner. □

JOHNSON and RINGROSE in [19] showed that for a discrete group G, $H^1(\ell^1(G), \ell^1(G)) = \{0\}$. This is not true for arbitrary locally compact groups. Let G be an infinite compact (which is unimodular), noncommutative group. Choose $x \in G$ which is not in the center of G, then the continuous derivation $D : \ell^1(G) \to \ell^1(G) ; f \mapsto \delta_x \ast f - f \ast \delta_x$ is not inner. Indeed, if $D = ad_g$ for some $g \in \ell^1(G)$, then take a local basis U_a of identity element e such that xU_a is not equal to $(U_a)x$ (x is not in the center), and let f_a be the characteristic function of U_a divided by Haar measure of U_a, then f_a is a bounded approximate identity, and if we consider $D(f_a) = ad_g(f_a)$ and let $a \to \infty$ then the right hand side goes to zero, but the left hand side does not. However, if $D : \ell^1(G) \to \ell^1(G)$ is a bounded derivation then a similar argument as in the proof of the above theorem shows that $D = ad_\mu$ for some $\mu \in M(G)$ and $ad_\mu - ad_e$ is an inner derivation on $\ell^1(G)$ if and only if $\mu - \nu \in \ell^1(G)$, where $\ell^1(G)$ is considered as a closed ideal of $M(G)$. When $n \geq 1$, as in the above argument we get $\ell^1(G)^{(2n)} = M(\Omega_n)$ for some G-space Ω_n and Johnson’s Theorem ([11, Theorem 5.6.39]) implies that D is inner. Summing up:

Theorem 2.2 Let G be a locally compact group. Then $H^1(\ell^1(G), \ell^1(G)) = M(G)/\ell^1(G)$ and $H^1(\ell^1(G), \ell^1(G)^{(2n)}) = \{0\}$, for $n \geq 1$.

Recall that a left Banach \mathcal{A}-module X is called a right essential \mathcal{A}-module if the linear span of $X \cdot \mathcal{A} = \{x \cdot a : a \in \mathcal{A}, x \in X\}$ is dense in X. Left essential \mathcal{A}-modules and (two-sided) essential \mathcal{A}-bimodules are defined similarly. The following result is proved in [8, Theorem 3.14] when n is an odd number but essentially the same proof works for an even natural number. So we have:

Theorem 2.3 Let $n \in \mathbb{N}$. Let \mathcal{A}/J has a left or right identity and \mathfrak{A} acts trivially on \mathcal{A} from left. If \mathcal{A} is n-weakly module amenable, then \mathcal{A}/J is n-weakly amenable. The converse is true if \mathcal{A} is a right essential \mathfrak{A}-module.

A semigroup S is called an inverse semigroup if for each $s \in S$ there exists unique $s^* \in S$ with $ss^*s = s$, $s^*ss^* = s^*$. More details on inverse semigroups may be found in [16]. The mapping $s \mapsto s^*$ is an involution on S, i.e. $s^{**} = s$ and $(st)^* = t^*s^*$ for all $s, t \in S$. We denote the set of idempotents in S by E. Each idempotent of S is self-adjoint, and E is a commutative idempotent subsemigroup of S and a semilattice. In particular, $\ell^1(E)$ is a subalgebra of $\ell^1(S)$. We can consider $\ell^1(S)$ as a Banach module over $\ell^1(E)$ with trivial left action and multiplication as the right action (see [1]), that is $\delta_e \cdot s = \delta_s$, $\delta_e^* = \delta_e$ for $s, t \in S$ and $e \in E$. To consider the inverse semigroup S.

Considering $\mathcal{A} = \ell^1(S)$ and $\mathfrak{A} = \ell^1(E)$ in the above Theorem, J is the closed ideal of $\ell^1(S)$ generated by $\{\delta_{st} - \delta_{st} : s, t \in S, e \in E_S\}$. We consider an equivalence relation on S as follows: $s \approx t \iff \delta_s - \delta_t \in J$, for every $s, t \in S$. For an inverse semigroup S,
the quotient S/ \approx is a discrete group (see [2] and [21]), and by Theorem 3.3 of [22], we have $\ell^1(S)/J \cong \ell^1(S/\approx)$.

Corollary 2.4 Let $n \in \mathbb{N}$ and let S be an inverse semigroup with the set of idempotents E. Then $\ell^1(S)$ is n-weakly module amenable as an $\ell^1(E)$-module with trivial left action.

Proof. The result is proved in Theorem 3.15 of [8] when n is odd. In the above action of $\ell^1(E)$ on $\ell^1(S)$, $\ell^1(S)$ is a right essential $\ell^1(E)$-module (see the proof of [8, Theorem 3.15]). According to above statement, S/\approx is a discrete group, so Theorem 2.1 implies that $\ell^1(S/\approx)$ is $2n$-weakly module amenable. Now by applying Theorem 2.3, $\ell^1(S)$ is $2n$-weakly module amenable. \(\square \)

It is well known that amenability of $\ell^1(S)$ implies amenability of S (see [11, Theorem 5.6.1]). In general, $\ell^1(S)$ is not even weakly amenable if S is amenable (a concrete example is bicyclic inverse semigroup). However, if S is inverse semigroup, then $\ell^1(S)$ is amenable if and only if S has only finitely many idempotents and every subgroup of S is amenable (see [13]). In the case that S is commutative:

(i) $\ell^1(S)$ is amenable if and only if S is a finite semilattice of amenable groups (see [14]);

(ii) If every element of S is idempotent, then $\ell^1(S)$ is spanned by its idempotents and so it is weakly amenable by [11, Proposition 2.8.72].

Let S be a Clifford semigroup (an inverse semigroup whose idempotents are central). Then $H^1(\ell^1(S), \ell^\infty(S)) = \{0\}$ [9, Theorem 2.1], but $H^1_{\ell^1(E)}(\ell^1(S), \ell^1(S))$ is zero in general. We also have $H^1(\ell^1(S), \ell^\infty(S)) = \{0\}$ when S has only finitely many idempotents [9, Theorem 3.2]. Consider $\ell^1(S)$ as a $\ell^1(E)$-module with the following action:

$$\delta_s \cdot \delta_e = \delta_e \cdot \delta_s = \delta_e * \delta_e = \delta_{se}. \quad (2.1)$$

Since every idempotent commutes with the elements of S, the proof of [8, Theorem 3.15] shows that $\ell^1(S)$ is an essential $\ell^1(E)$-module. Now, it follows from the proof of [5, Theorem 3.14] that every module derivation D from $\ell^1(S)$ into $\ell^\infty(S)$ is inner and thus we have the following result:

Theorem 2.5 If S is a Clifford semigroup, then $\ell^1(S)$ is weakly module amenable.

It is proved in [3, Theorem 3.1] that $\ell^1(S)$ is $\ell^1(E)$-weakly module amenable with the actions (2.1) when S is commutative. Note that in the proof of this result the commutativity of S is not needed and the same proof works if each idempotent is central.

Let C be the bicyclic inverse semigroup generated by a and b, that is $C = \{a^mb^n : m, n \geq 0\}, (a^mb^n)^* = a^nb^m, E_C = \{a^nb^n : n = 0, 1, ...\}$. It is shown in [2] that $\ell^1(C)$ is $\ell^1(E_C)$-module amenable, and so it is weakly module amenable. Now, it follows from [9, Theorem 3.6] and the above discussions that $H^1_{\ell^1(E)}(\ell^1(C), \ell^1(C)) = \{0\}.$

The Brandt inverse semigroup corresponding to group G and non-empty set I is denoted by $S = M(G, I)$ which is the collection of all $I \times I$ matrices $(g)_{jk}$ with $g \in G$ in the $(j,k)^{th}$ place and zero elsewhere and the $I \times I$ zero matrix 0. It is shown in [21, Example 3.2] that $\ell^1(S)$ is super module amenable (as $\ell^1(E)$-module) and so $H^1_{\ell^1(E)}(\ell^1(S), \ell^1(S)) = \{0\}.$
Lemma 2.6 Let A be a essential bi-commutative $A\mathfrak{A}$-module. Then A is weakly module amenable (as an \mathfrak{A}-module) if and only if for each bi-commutative Banach $A\mathfrak{A}$-module X, all bounded module derivations from A into X are zero.

Proof. We follow the standard argument in [11, Theorem 2.8.63]. Assume that there exists $D \in Z_{\mathfrak{A}}(A, X)$ with $D \neq 0$. Since $\mathfrak{A}^2 = \mathfrak{A}$, there exists $a_0 \in A$ such that $D(a_0^2) \neq 0$. We have $a_0 \cdot D(a_0) \neq 0$ and thus $f \in X^*$ with $f(a_0 \cdot D(a_0)) = 1$. Set $R : X \to A^*$ defined by $R(x)(a) = f(a \cdot x)$ where $a \in A, x \in X$. It is easy to check that $R \circ D \in Z_{\mathfrak{A}}(A, A^*)$. We get $\langle R \circ D(a_0), a_0 \rangle = \langle f, a_0 \cdot D(a_0) \rangle = 1$, and so $R \circ D \neq 0$. This shows that \mathfrak{A} is not weakly module amenable. The converse is clear. \hfill \Box

Theorem 2.7 Let $n \in \mathbb{N}$ and let S be a commutative inverse semigroup with the set of idempotents E. Then $\ell^1(S)$ is n-weakly module amenable as an $\ell^1(E)$-module with the actions (2.1).

Proof. For any semigroup S, the semigroup algebra $\ell^1(S)$ is commutative if and only if S is commutative. Since $\ell^1(S)$ is a bi-commutative Banach $\ell^1(S)$-$\ell^1(E)$-module, so is $\ell^1(S)^{(n)}$. By [3, Theorem 3.1], $\ell^1(S)$ is weakly module amenable as an $\ell^1(E)$-module. The semigroup algebra $\ell^1(S)$ is essential, in fact $\ell^1(S) = \ell^1(S)\ast \ell^1(E) \subseteq \ell^1(S)\ast \ell^1(S) \subseteq \ell^1(S)$ (see the proof of [8, Theorem 3.15]). Now, it follows from Lemma 2.6 that every module derivation from $\ell^1(S)$ into $\ell^1(S)^{(n)}$ is zero. This shows that $\ell^1(S)$ is n-weakly module amenable. \hfill \Box

Corollary 2.8 Let S be a commutative inverse semigroup with the set of idempotents E. Then $H^1_{\ell^1(E)}(\ell^1(S), \ell^1(S)) = \{0\}$.

3 Module amenability and weak module amenability

Let A and B be Banach algebras and Banach \mathfrak{A}-bimodules. Consider the Banach space $A\otimes_{\mathfrak{A}} B = A \otimes B/N$, where N is the closed linear span of $\{a \cdot \alpha \otimes b - a \otimes \alpha \cdot b \mid \alpha \in \mathfrak{A}, a \in A, b \in B\}$. By the following actions $A\otimes_{\mathfrak{A}} B$ becomes a Banach \mathfrak{A}-bimodule

$$\alpha \cdot (a \otimes \beta) = \alpha \cdot a \otimes \beta$$

and

$$(a \otimes \beta) \cdot \alpha = a \otimes \alpha \cdot \beta$$

for every $\alpha \in \mathfrak{A}, a \in A$ and $b \in B$. By the above actions N becomes \mathfrak{A}-submodule of $A\otimes_{\mathfrak{A}} B$. We define multiplication on $A\otimes_{\mathfrak{A}} B$ by usual algebraic tensor product on rings and modules as follows:

$$(a \otimes b)(c \otimes d) = (a \otimes b + N)(c \otimes d + N) = ac \otimes bd + N = ac \otimes_{\mathfrak{A}} bd,$$

for every $a, c \in A$ and $b, d \in B$. Also, $A\otimes_{\mathfrak{A}} B$ is a Banach A-bimodule by following actions

$$a \cdot (a' \otimes b') = aa' \otimes b \quad \text{and} \quad (a' \otimes b') \cdot a = a'a \otimes b', \quad (3.1)$$

for every $a, a' \in A$ and $b, b' \in B$. Similarly we can see $A\otimes_{\mathfrak{A}} B$ as a Banach B-bimodule. We call $A\otimes_{\mathfrak{A}} B$ the module projective tensor product of A and B.

Module amenability of module projective tensor product of Banach algebras and semigroup algebras are studied in [4] and [7], respectively. We say that X is a Banach $A\mathfrak{B}$-\mathfrak{A}-module if X is a Banach $A\mathfrak{A}$-module and a Banach $B\mathfrak{A}$-module.
Theorem 3.1 Let A and B be unital Banach \mathfrak{A}-modules. If A and B are module amenable then every continuous module derivation from $A \widehat{\otimes}_\mathfrak{A} B$ into X^* is inner, where X is a Banach $A-B-\mathfrak{A}$-module.

Proof. Let $D : A \widehat{\otimes}_\mathfrak{A} B \to X^*$ be a continuous module derivation. Set $A_1 = A \widehat{\otimes}_\mathfrak{A} e_B$ and $B_1 = e_A \widehat{\otimes}_\mathfrak{A} B$. Then the map $D_1 : A \to X^*$ defined by $D_1(a) = D(a \otimes e_B + N)$ is a continuous module derivation, hence there exists $f \in X^*$ such that $D(a \otimes e_B + N) = (a \otimes e_B + N) \cdot f - f \cdot (a \otimes e_B + N) = D_f(a \otimes e_B + N), (a \in A)$.

It is clear that $D - D_f|_{A_1} = 0$. Therefore for every $a \in A$ and $b \in B$ we have

$$(D - D_f)(a \otimes b + N) = (D - D_f)((a \otimes e_B + N)(e_A \otimes b + N))$$

$$= (a \otimes e_B + N) \cdot (D - D_f)(e_A \otimes b + N)$$

$$+ (D - D_f)(a \otimes e_B + N) \cdot (e_A \otimes b + N)$$

$$= (a \otimes e_B + N) \cdot (D - D_f)(e_A \otimes b + N)$$

$$= (D - D_f)((e_A \otimes b + N)(a \otimes e_B + N))$$

$$= (e_A \otimes b + N) \cdot (D - D_f)(a \otimes e_B + N)$$

$$+ (D - D_f)(e_A \otimes b + N) \cdot (a \otimes e_B + N)$$

$$= (D - D_f)(e_A \otimes b + N) \cdot (a \otimes e_B + N).$$

Thus, (3.2) and (3.3) imply that $(a \otimes e_B + N) \cdot (D - D_f)(e_A \otimes b + N) = (D - D_f)(e_A \otimes b + N) \cdot (a \otimes e_B + N)$, for every $a \in A$ and $b \in B$. Let Y be the annihilator of $(D - D_f)(e_A \otimes b + N)$ in X then Y is a B-submodule. By relations (3.2) and (3.3) we have $((a \otimes e_B + N) \cdot y - y \cdot (a \otimes e_B + N), (D - D_f)(e_A \otimes b + N)) = 0$, for every $y \in Y, a \in A$ and $b \in B$. By a similar argument X/Y is a Banach \mathfrak{A}-\mathfrak{A}-bimodule. Since the restriction of $D - D_f$ to B_1 defines a continuous module derivation from B into $Y^* \subseteq X^*$ and since B is module amenable, there is $g \in Y^*$ such that $D - D_f = D_g$ and $D - D_f - D_g|_{B_1} = 0$. Since $(A \widehat{\otimes}_{\mathfrak{A}} e_B) \cup (e_A \widehat{\otimes}_{\mathfrak{A}} B)$ generates $A \widehat{\otimes}_{\mathfrak{A}} B$, $D - D_f - D_g|_{A \widehat{\otimes}_{\mathfrak{A}} B} = 0$. This shows that $D = D_f + D_g$, and so D is inner. □

Corollary 3.2 Let A and B be unital commutative Banach algebras and unital Banach \mathfrak{A}-modules. If A and B are module amenable then $A \widehat{\otimes}_{\mathfrak{A}} B$ is module amenable.

Proof. Let $D : A \widehat{\otimes}_{\mathfrak{A}} B \to X^*$ be a continuous module derivation, where X is a Banach $A \widehat{\otimes}_{\mathfrak{A}} B-\mathfrak{A}$-module. Since A and B are commutative, X is a Banach $A-B-\mathfrak{A}$-module. Similar to the proof of Theorem 3.1, set $A_1 = A \widehat{\otimes}_{\mathfrak{A}} e_B$ and $B_1 = e_A \widehat{\otimes}_{\mathfrak{A}} B$. Then the mapping $D_1 : A \to X^*$ defined by $D_1(a) = D(a \otimes e_B + N)$ is a continuous module derivation. Then $D|_{A_1} = 0$. Therefore for every $a \in A$ and $b \in B$ we have

$$(D(a \otimes b + N) = D((a \otimes e_B + N)(e_A \otimes b + N))$$

$$= (a \otimes e_B + N) \cdot D(e_A \otimes b + N)$$

$$+ D(a \otimes e_B + N) \cdot (e_A \otimes b + N)$$

$$= (a \otimes e_B + N) \cdot D(e_A \otimes b + N)$$

$$= D(e_A \otimes b + N)(a \otimes e_B + N))$$

$$= (e_A \otimes b + N) \cdot D(a \otimes e_B + N)$$

$$+ D(e_A \otimes b + N) \cdot (a \otimes e_B + N)$$

$$= D(e_A \otimes b + N) \cdot (a \otimes e_B + N).$$
Then (3.4) and (3.5) imply that \((a \otimes e_B + N) \cdot D(e_A \otimes b + N) = D(e_A \otimes b + N) \cdot (a \otimes e_B + N)\) for every \(a \in A\) and \(b \in B\). Let \(Y\) be the annihilator of \(D(e_A \otimes b + N)\) in \(X\) then \(Y\) is a \(B\)-submodule. By relations (3.4) and (3.5) we have \(\langle \langle (a \otimes e_B + N) \cdot y - y \cdot (a \otimes e_B + N), D(e_A \otimes b + N) \rangle \rangle = 0\), for every \(y \in Y\), \(a \in A\) and \(b \in B\). Since \(X/Y\) is a Banach \(B\)-module, and the restriction of \(D\) to \(B_{1}\) defines a continuous module derivation from \(B\) into \(Y^{*}\), we have \(D|_{B_{1}} = 0\). Therefore \(D|_{A \otimes A B} = 0\). □

Replacing \(A \otimes A B\) by \(X\) in the Corollary 3.2, and viewing \(A \otimes A B\) as a Banach \(A\)-\(B\)-\(A\)-module (relations (3.1)), we have the following result:

Corollary 3.3 Let \(A\) and \(B\) be unital commutative Banach algebras and unital Banach \(A\)-modules. If \(A\) and \(B\) are weakly module amenable then \(A \otimes A B\) is weakly module amenable.

Next we study weak module amenability of module projective tensor products of Banach algebras.

Theorem 3.4 Let \(A\) be a unital Banach \(A\)-bimodule and \(\varphi : A \to A\) be a continuous surjective map. Suppose that \(ab = \varphi(a) \cdot b\), for each \(a, b \in A\). Then \(A\) is weakly module amenable.

Proof. Let \(D : A \to A^{*}\) be a continuous module derivation. Then
\[
\varphi(a) \langle c, Db \rangle = \langle c, D(ab) \rangle = \langle c, a \cdot D(b) + D(a) \cdot b \rangle = \langle ca, Db \rangle + \langle bc, Da \rangle = \varphi(c) \langle a, Db \rangle + \varphi(b) \langle c, Da \rangle,
\]
for each \(a, b, c \in A\). Let \(\lambda \in A^{*}\), and let \(\delta_{\lambda} : A \to A^{*}\) be the inner derivation specified by \(\lambda\). Hence
\[
\langle b, \delta_{\lambda}(a) \rangle = \langle b, a \cdot \lambda \cdot \lambda \cdot a \rangle = \langle ba, \lambda \rangle - \langle ab, \lambda \rangle = \varphi(b) \langle a, \lambda \rangle - \varphi(a) \langle b, \lambda \rangle,
\]
for each \(a, b \in A\). Choose \(a_{0} \in A\) with \(\varphi(a_{0}) = e_{A}\), and set \(\lambda(a) = \langle a_{0}, Da \rangle\) for each \(a \in A\). Clearly \(\lambda\) is linear. Using (3.6) and (3.7) we have \(\langle b, \delta_{\lambda}(a) \rangle = \varphi(b) \langle a, \lambda \rangle - \varphi(a) \langle b, \lambda \rangle = \varphi(b) \langle a_{0}, Da \rangle - \varphi(a) \langle a_{0}, Db \rangle = \varphi(a_{0}) \langle b, Da \rangle = \langle b, Da \rangle\), therefore \(D = \delta_{\lambda}\), and so \(A\) is weakly module amenable. □

Example 3.1 Let \(\mathbb{N}\) be set of the positive integers. We can see it as a semigroup by denoting the product of two elements to be their maximum. The resulting semigroup, which we denote by \(\mathbb{N}\), is a semilattice. The semilattice \(\mathbb{N}\), is a commutative semigroup in which every element is idempotent. If we denote the set of idempotent elements of \(\mathbb{N}\) by \(E(\mathbb{N})\), then \(E(\mathbb{N}) = \mathbb{N}\). We may then form the \(\ell^{1}\)-convolution algebra \(\ell^{1}(\mathbb{N})\). For every \(t \in \mathbb{N}\) we denote the point mass concentrated at \(t\) by \(\delta_{t}\). The definition of multiplication in \(\ell^{1}(\mathbb{N})\) ensures that \(\delta_{n} \ast \delta_{m} = \delta_{\max\{n,m\}}\) for all \(m, n \in \mathbb{N}\). Consider \(\ell^{1}(\mathbb{N})\) as a Banach \(\ell^{1}(\mathbb{N})\)-bimodule. Define \(\varphi : \ell^{1}(\mathbb{N}) \to \ell^{1}(\mathbb{N})\) by \(\varphi(\delta_{n}) = \delta_{1}\). Then \(\delta_{n} \ast \delta_{m} = \delta_{m} \ast \delta_{n} = \varphi(\delta_{n}) \ast \delta_{\beta}\), where \(\alpha = \min\{m, n\}\) and \(\beta = \max\{m, n\}\). Then by Theorem 3.4, \(\ell^{1}(\mathbb{N})\) is weakly module amenable.

Theorem 3.5 Let \(A\) and \(B\) be unital commutative Banach algebras and unital Banach \(A\)-modules, \(\varphi : A \to A\) and \(\psi : B \to A\) be continuous surjective maps. Suppose that \(ab = \varphi(a) \cdot b\), \(cd = \psi(c) \cdot d\), for each \(a, b \in A\) and \(c, d \in B\). Then \(A \otimes A B\) is weakly module amenable.
Proof. Let \(e_A \) and \(e_B \) be the unit elements of \(A \) and \(B \), respectively. Let \(D : A \hat{\otimes}_\mathbb{Q} B \rightarrow (A \hat{\otimes}_\mathbb{Q} B)^* \) be a continuous module derivation. For each \(a, c, e \in A \) and \(b, d, f \in B \) we have

\[
\langle c \otimes d + N, D(\lambda D e + N) + (e \otimes f + N) \rangle = \langle c \otimes d + N, D((a \otimes b + N)(e \otimes f + N)) \rangle
\]

\[
= \langle e \otimes d + N, (a \otimes b + N) \cdot D(e \otimes f + N) \rangle
\]

\[
+ \langle e \otimes d + N, D(a \otimes b + N) \cdot (e \otimes f + N) \rangle
\]

\[
= \langle ca \otimes db + N, D(e \otimes f + N) \rangle + \langle ec \otimes fd + N, D(a \otimes b + N) \rangle
\]

\[
= \varphi(c)\psi(d)(a \otimes b + N, D(e \otimes f + N)) + \varphi(e)\psi(f)(c \otimes d + N, D(a \otimes b + N))
\]

\[
= \varphi(a)\psi(b)(c \otimes d + N, D(e \otimes f + N)).
\]

Fix \(b_0 \in B \) with \(\psi(b_0) = e_\mathbb{Q} \). Then by (3.8), we may write

\[
\langle e_A \otimes e_B + N, D(a \otimes b + N) \rangle = \langle e_A \otimes e_B + N, D((a \otimes b_0 + N)(e_A \otimes b + N)) \rangle
\]

\[
= \varphi(a)\psi(b_0)(e_A \otimes e_B + N, D(e_A \otimes b + N))
\]

\[
= \langle a \otimes b_0 + N, D(e_A \otimes b + N) \rangle.
\]

for each \(a \in A \) and \(b \in B \). Hence there exists \(\lambda \in (A \hat{\otimes}_\mathbb{Q} B)^* \) such that

\[
\langle a \otimes b + N, \lambda \rangle = \langle a \otimes b_0 + N, D(e_A \otimes b + N) \rangle,
\]

(3.10) for each \(a \in A \) and \(b \in B \). Let \(\delta_\lambda : A \hat{\otimes}_\mathbb{Q} B \rightarrow (A \hat{\otimes}_\mathbb{Q} B)^* \) be the inner module derivation induced by \(\lambda \). Take \(a \in A \) and \(b, c \in B \). Then \(\langle a \otimes c + N, (e_A \otimes b + N) \cdot \lambda - \lambda \cdot (e_A \otimes b + N) \rangle = \langle a \otimes c + N, (e_A \otimes b + N) \cdot \lambda - (a \otimes c + N, \lambda \cdot (e_A \otimes b + N) \rangle = \langle a \otimes b_0 + N, \psi(c)D(e_A \otimes b + N) \rangle - \langle a \otimes b_0 + N, \lambda \cdot (e_A \otimes b + N) \rangle = \langle a \otimes b_0 + N, \psi(c)D(e_A \otimes b + N) \rangle - \langle a \otimes b_0 + N, \lambda \cdot (e_A \otimes b + N) \rangle = \langle a \otimes b_0 + N, \psi(c)D(e_A \otimes b + N) \rangle - \langle a \otimes b_0 + N, \lambda \cdot (e_A \otimes b + N) \rangle = \langle a \otimes b_0 + N, \psi(c)D(e_A \otimes b + N) \rangle
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]
It is shown in [1, Lemma 3.1] that if \(\ell^1(E) \) acts on \(\ell^1(S) \) by multiplication from right and trivially from left, then \(\ell^1(S) \hat{\otimes} \ell^1(E) \ell^1(S) \cong \ell^1(S \times S)/I \), where \(I \) is the closed ideal of \(\ell^1(S \times S) \) generated by the set of elements of the form \(\delta_{(st,u)} - \delta_{(st,u)} \), where \(s, t, u \in S \) and \(e \in E \).

Corollary 3.6 Let \(S \) be commutative and unital inverse semigroup with the set of idempotents \(E \). Then \(\ell^1(S) \hat{\otimes} \ell^1(E) \ell^1(S) \) is weakly module amenable.

Proof. The result follows from [3, Theorem 3.1] and Corollary 3.3. \(\square \)

Acknowledgements The authors sincerely thank the anonymous reviewer for his/her careful reading, constructive comments and fruitful suggestions to improve the quality of the first draft. The first author would like to thanks the Young Researchers and Elite Club of Islamic Azad University of Islamshahr for its financial support.

References