On the Stanley depth of a special class of Borel type ideals

Mircea Cimpoeaș

Abstract We give sharp bounds for the Stanley depth of a special class of monomial ideals of Borel type.

Keywords monomial ideals · ideals of Borel type · Stanley depth

Mathematics Subject Classification (2010) 13C15 · 13P10 · 13F20 · 05C07

Introduction

Let \(K \) be a field and \(S = K[x_1, \ldots, x_n] \) the polynomial ring over \(K \). Let \(M \) be a \(\mathbb{Z}^n \)-graded \(S \)-module. A Stanley decomposition of \(M \) is a direct sum \(\mathcal{D} : M = \bigoplus_{i=1}^{r} m_i K[Z_i] \) of \(\mathbb{Z}^n \)-graded \(K \)-vector spaces, where \(m_i \in M \) is homogeneous with respect to \(\mathbb{Z}^n \)-grading, \(Z_i \subset \{ x_1, \ldots, x_n \} \) such that \(m_i K[Z_i] = \{ um_i : u \in K[Z_i] \} \subset M \) is a free \(K[Z_i] \)-submodule of \(M \). We define \(\text{sdepth}(\mathcal{D}) = \min_{1 \leq i \leq r} |Z_i| \) and \(\text{sdepth}(M) = \max \{ \text{sdepth}(\mathcal{D}) | \mathcal{D} \text{ is a Stanley decomposition of } M \} \). The number \(\text{sdepth}(M) \) is called the Stanley depth of \(M \).

Stanley conjectured in [17] that \(\text{sdepth}(M) \geq \text{depth}(M) \) for any \(M \). The conjecture was disproved in [9] for \(M = S/I \), where \(I \subset S \) is a monomial ideal, but remains open in the case \(M = S/I \). Herzog, Vladoiu and Zheng showed in [13] that \(\text{sdepth}(M) \) can be computed in a finite number of steps if \(M = I/J \), where \(J \subset I \subset S \) are monomial ideals. In [16], Rinaldo gave a computer implementation for this algorithm, in the computer algebra system CoCoA [8]. For an introduction in the thematic of Stanley depth, we refer the reader to [10].

We say that a monomial ideal \(I \subset S \) is of Borel type, see [12], if it satisfies the following condition: \((I : x_j^n) = (I : (x_1, \ldots, x_j)^{\infty}) \), \((\forall) 1 \leq j \leq n \). The Mumford-Castelnuovo regularity of \(I \) is the number \(\text{reg}(I) = \max \{ j - i : \beta_{ij}(I) \neq 0 \} \), where \(\beta_{ij} \)'s are the graded Betti numbers.

The regularity of the ideals of Borel type was extensively studied, see for instance [12], [1] and [5]. We study the invariant \(\text{sdepth}(I) \), for an ideal of Borel
type. In the general case, we note some bounds for \(\text{sdepth}(I) \), see Proposition 1.2 and we give some tighter ones, when \(I \) has a special form, see Theorem 1.6.

1 Main results

First, we recall the construction of the sequential chain associated to a Borel type ideal \(I \subset S \), see [12] for more details. Assume that \(\text{Ass}(S/I) = \{ P_0, \ldots , P_m \} \) with \(P_i = (x_1, \ldots , x_m) \), where \(n \geq n_0 > n_1 > \cdots > n_m \geq 1 \). Also, assume that \(I = \bigcap_{i=0}^m Q_i \), is the reduced primary decomposition of \(I \), with \(P_i = \sqrt{Q_i} \), for all \(0 \leq i \leq m \).

We define \(I_k := \bigcap_{j=k}^m Q_j \), for all \(0 \leq k \leq m \). One can easily check that \(I_i = (I_{i-1} : x_{n_{i-1}}^\infty) \), for all \(1 \leq i \leq m \). The sequence of ideals \(I = I_0 \subset I_1 \subset \cdots \subset I_m \subset I_{m+1} := S \) is called the sequential sequence of \(I \). Let \(I_i \) be the monomial ideal generated by \(G(I_i) \) in \(S_i := K[x_1, \ldots , x_n] \), for all \(0 \leq i \leq m \). Then, the saturation \(I_i^{sat} = (I_i : (x_1, \ldots , x_n)^\infty) = J_i + S_i \), for all \(0 \leq i \leq m \), where \(J_{m+1} := S_{m+1} \). One has \(I_{i+1} / I_i \cong (J_{i+1}^{sat} / J_i)[x_{n+i+1}, \ldots , x_n] \). If \(M = \bigoplus_{i \geq 0} M_i \) is an Artinian graded \(S \)-module, we denote \(s(M) = \max \{ t : M_t \neq 0 \} \). We recall the following result.

Proposition 1.1 [12, Corollary 2.7] \(\text{reg}(I) = \max \{ s(J_0^{sat} / J_0), \ldots , s(J_m^{sat} / J_m) \} + 1 \).

Proposition 1.2 With the above notations, the following assertions hold:

1. \(\text{sdepth}(S/I) = \text{depth}(S/I) = n - n_0 \), for all \(0 \leq i \leq m \).
2. \(\text{sdepth}(I_0) \leq \text{sdepth}(I_1) \leq \cdots \leq \text{sdepth}(I_m) \).
3. \(\text{depth}(I_i) = n - n_i + 1 \leq \text{sdepth}(I_i) \leq \text{sdepth}(P_i) = n - \left\lfloor \frac{n_i}{2} \right\rfloor \), \(\forall 0 \leq i \leq m \).

Proof: (1) From [13, Lemma 3.6] it follows that \(\text{sdepth}(S/I) = \text{sdepth}(S_i/J_i) + n - n_i \). Also, we have \(\text{sdepth}(S_i/J_i) \leq \text{depth}(S_i/J_i) + n - n_i \).

Since \(P_i S_i = (x_1, \ldots , x_n) S_i \subset \text{Ass}(S_i/J_i) \), it follows that \(\text{depth}(S_i/J_i) = 0 \) and thus, by [6, Theorem 1.4] or [10, Proposition 18], we get \(\text{sdepth}(S_i/J_i) = \text{depth}(S_i/J_i) = 0 \).

(2) Since \(I_i = (I_{i-1} : x_{n_{i-1}}^\infty) \), by [14, Proposition 1.3] (see arXiv version), we get \(\text{sdepth}(I_{i-1}) \leq \text{sdepth}(I_i) \), for all \(1 \leq i \leq m \).

3. Since \(I_i = J_i S_i \), by [13, Lemma 3.6], it follows that \(\text{sdepth}(I_i) = n - n_i + \text{sdepth}_S(J_i) \geq n - n_i + 1 \). Since \(P_i \in \text{Ass}(I_i) \), it follows that there exists a monomial \(v \in S_i \) such that \(P_i = (I_i : v) \). Therefore, by [14, Proposition 1.3] (see arXiv version), it follows that \(\text{sdepth}(P_i) \geq \text{sdepth}(I_i) \). On the other hand, \(P_i \) is generated by variables. Thus, by [13, Lemma 3.6] and [2, Theorem 1.1], it follows that \(\text{sdepth}(P_i) = n - \left\lfloor \frac{n_i}{2} \right\rfloor = n - \left\lfloor \frac{n_i}{2} \right\rfloor \).

\[\square \]

Lemma 1.3 Let \(r \leq n \) and \(a_1, \ldots , a_r \) be positive integers. If \(Q = (x_1^{a_1}, \ldots , x_r^{a_r}) \subset S \), then \(\text{reg}(Q) = a_1 + \cdots + a_r - r + 1 \).

Proof. Let \(\bar{Q} := Q \cap S' \subset S' \), where \(S' = K[x_1, \ldots , x_r] \). As a particular case of Proposition 1.1, we get \(\text{reg}(Q) = \text{reg}(\bar{Q}) = s(S' / \bar{Q}) + 1 = a_1 + \cdots + a_r - r + 1 \).

We recall the following result from [1].
Proposition 1.4 [1, Corollary 3.17] If \(I \subset S \) is an ideal of Borel type with the irredundant irreducible decomposition \(I = \bigcap_{j=1}^{r} C_j \), then \(\text{reg}(I) = \max\{\text{reg}(C_i) : 1 \leq i \leq r\} \).

Let \(n \geq n_0 > n_1 > \cdots > n_m \geq 1 \) be some integers. Let \(a_{ij} \) be some positive integers, where \(0 \leq i \leq m \) and \(1 \leq j \leq n_i \). We consider the monomial irreducible ideals \(Q_i = (x_{i1}^{a_{i1}}, \ldots, x_{in_i}^{a_{in_i}}) \), for \(0 \leq i \leq m \). Let \(I_i := \bigcap_{j=1}^{n_i} Q_j \) and denote \(I = I_0 \). Since \(P_i = (x_1, \ldots, x_{n_i}) = \sqrt{Q_i} \) for all \(0 \leq i \leq m \), by [11, Proposition 5.2] or [5, Corollary 1.2], it follows that \(I \) is an ideal of Borel type. As a direct consequence of Lemma 1.3 and Proposition 1.4, we get the following corollary.

Corollary 1.5 If \(a_{ij} \geq a_{i+1,j} \) for all \(j \leq n_{i+1} \) and \(i \leq m \), then \(\text{reg}(I_i) = \text{reg}(Q_i) = a_{i1} + a_{i2} + \cdots + a_{in_i} - n_i + 1 \), for all \(0 \leq i \leq m \).

Theorem 1.6 If \(a_{ij} \geq a_{i+1,j} \) for all \(j \leq n_{i+1} \) and \(i \leq m \), then for all \(0 \leq i \leq m \), it holds that

\[
\text{sdepth}(I_i) \geq n + \left\lceil \frac{n_m}{2} \right\rceil - n_i.
\]

Proof: The first inequality follows from Proposition 1.2(3). In order to prove the second one, let \(i \leq m \). If \(i = m \), then \(I_m = Q_m \) is an irreducible ideal, and therefore, by [7, Theorem 1.3], \(\text{sdepth}(I_m) = n - \left\lfloor \frac{n_m}{2} \right\rfloor = n + \left\lceil \frac{n_m}{2} \right\rceil - n_m \).

Assume \(i < m \). We can write \(Q_i = U_i + V_i \), where \(U_i = (x_{i1}^{a_{i1}}, \ldots, x_{in_i}^{a_{in_i}}) \) and \(V_i = (x_{n_{i+1}}^{a_{i+1}}, \ldots, x_{n_i}^{a_{ni}}) \). Since \(a_{ij} \geq a_{i+1,j} \) for all \(j \leq n_{i+1} \), it follows that \(U_i \subset Q_{i+1} \).

Therefore, \(I_i = (U_i + V_i) \cap I_{i+1} = (U_i \cap I_{i+1}) + (V_i \cap I_{i+1}) \). Note that \(J := U_i \cap I_{i+1} = U_i \cap I_{i+2} \) is a Borel type ideal with the irredundant irreducible decomposition \(J = U_i \cap Q_{i+2} \cap \cdots \cap Q_m \), and, therefore, of the same class as \(I_{i+1} \). Thus, by induction hypothesis, it follows that \(\text{sdepth}(J) \geq n + \left\lceil \frac{n_m}{2} \right\rceil - n_{i+1} \).

On the other hand, by [4, Remark 1.3] and the induction hypothesis, \(\text{sdepth}(V_i \cap I_{i+1}) \geq \text{sdepth}(V_i) + \text{sdepth}(I_{i+1}) - n = \text{sdepth}(I_{i+1}) - \left\lceil \frac{n_{i+1}}{2} \right\rceil \).

Let \(\tilde{V} \subset S' = K[x_{n_{i+1}}, \ldots, x_{n_i}] \) be the monomial ideal generated by \(G(V_i) \) and let \(J \subset S'' = K[x_1, \ldots, x_{n_{i+1}}, x_{n_i+1}, \ldots, x_{n_i}] \) be the monomial ideal generated by \(G(J) \).

Since \(J \subset I_{i+1} \), it follows that \(I_i = (J \cap_K (S' / \tilde{V})) \oplus (V_i \cap I_i) \). By [3, Proposition 2.10] and [15, Lemma 2.2], we get:

\[
\text{sdepth}(I_i) \geq \min \{ \text{sdepth}(J) - n_i + n_{i+1}, \text{sdepth}(I_{i+1}) - \left\lceil \frac{n_i - n_{i+1}}{2} \right\rceil \} \geq n + \left\lceil \frac{n_m}{2} \right\rceil - n_i,
\]
as required. \(\square \)

Question: What can we say about the case when the condition \(a_{ij} \geq a_{i+1,j} \) is removed? Of course, the method used in the proof of the Theorem 1.6 does not work. However, our computer experiments in \texttt{Cocoa} [8] suggested that the conclusion of the Theorem 1.6 might be true. Unfortunately, we are not able to give either a proof, or a counterexample.

The next example shows that the bounds given in Theorem 1.6 are sharp.
Example 1.1 Let $I = Q_0 \cap Q_1$, where $Q_0 = (x_1^3, x_2^2, x_3^2, x_4, x_5)$, $Q_1 = (x_1, x_2, x_3, x_4)$ are ideals in $S = K[x_1, \ldots, x_5]$. Then $I_1 = Q_1$ and $sdepth(I_1) = 5 - \left\lfloor \frac{n}{2} \right\rfloor = 3$. Also $n = 5$, $n_0 = 5$ and $n_1 = 4$. Using CoCoa, we get $sdepth(I) = 2 = n - \left\lfloor \frac{n_0}{2} \right\rfloor - n_0$. Let $Q' = (x_1^2, x_2^2, x_3, x_4, x_5) \subseteq S$ and $I' = Q'_0 \cap Q_1$. Using CoCoa [8], we get $sdepth(I') = 3 = n - \left\lfloor \frac{n_0}{2} \right\rfloor$.

Acknowledgements The support from grant ID-PCE-2011-1023 of Romanian Ministry of Education, Research and Innovation is gratefully acknowledged.

References

16. RINALDO, G. – An algorithm to compute the Stanley depth of monomial ideals, Matematiche (Catania), 63 (2008), no. 2, 243-256.

Received: 23.VI.2017 / Accepted: 12.IX.2017

AUTHOR

MIRCEA CIMPOEAŞ,
Simion Stoilow Institute of Mathematics,
Research unit 5, P.O.Box 1-764,
Bucharest 014700, România.
E-mail: mircea.cimpoeas@imar.ro

372