On the structure of le-semigroups

Ahsan Mahboob · Noor Mohammad Khan

Abstract In this paper, $(0,m)$-ideal elements and 0-minimal $(0,m)$-ideal elements in poe-semigroups are investigated. Then, for any positive integers m, n, relations $I_{n,m}$, $H_{n,m}$, $B_{n,m}$ and $Q_{n,m}$ on le-semigroups are introduced. We show that, in any le-semigroup, $B_{n,m} \subseteq Q_{n,m} \subseteq H_{n,m}$ and provide some sufficient conditions to get the equality. We, then, prove that either a $Q_{n,m}$-class (resp. $H_{n,m}$-class) is $(m,0)$ and $(0,n)$-regular or none of its element is $(m,0)$ and $(0,n)$-regular respectively. Next we show that either a $B_{n,m}$-class (resp. $Q_{n,m}$-class, $H_{n,m}$-class) is (m,n)-right weakly regular or none of its element is (m,n)-right weakly regular. Finally, we define a strong (m,n)-quasi-ideal element in an le-semigroup and provide some sufficient conditions on an (m,n)-quasi-ideal element to be a strong (m,n)-quasi-ideal element.

Keywords \(\forall e\)le-semigroup · (m,n)-ideal element · (m,n)-quasi-ideal element

Mathematics Subject Classification (2010) 06F05

1 Introduction

In [14], S. Lajos introduced the concept of an (m,n)-ideal in a semigroup. Prompted by this, several authors studied (m,n)-ideals in various algebraic structures such as rings, semirings and ordered semigroups etc; for example, Akram et al. [1], Bussaban and Changphas [3], Changphas [4], Tilidetzke [18], Yaqoob and Chinram [19] and many others. In [2], Bhuniya and Kumbhakar studied bands and normal bands in le-semigroups and obtained several characterizations of regular and intra-regular le-semigroups. Kehayopulu [5] studied (m,n)-ideal elements and (m,n)-quasi-ideal elements in poe-semigroups and le-semigroups. In [6, 7, 10], Kehayopulu characterized intra-regular \(\forall e\)-semigroups and regular le-semigroups in terms of left (resp. right)-ideal elements, ideal-elements, bi-ideal elements and quasi-ideal elements of respective semigroups. In [8, 9], Kehayopulu studied left (resp. right) duo regular, left-regular and left duo poe-semigroups. In [13], Kehayopulu characterized idempotent ideal elements of le-semigroups in terms of
semisimple elements while intra-regular le-semigroup in terms of prime and semiprime ideal elements. The Green-Kehayopulu relations \(\mathcal{L}, \mathcal{R} \) and \(\mathcal{H} \) have been introduced and investigated by Kehayopulu in [11,12]. In [17], Petro and Pasku studied the property of Green-Kehayopulu relation \(\mathcal{H} \) and obtained some properties of Green-Kehayopulu relation \(\mathcal{H} \) on le-semigroup which differ from Green-relation \(\mathcal{H}_{\text{plain}} \) on plain semigroups. They also proved that an \(\mathcal{H} \)-class \(H \) of an le-semigroup satisfies Green's condition \((a, b \in H \text{ implies } ab \in H)\) if and only if it contains an idempotent element and provided several conditions under which an \(\mathcal{H} \)-class of an le-semigroup forms a subsemigroup. In [15], Pasku and Petro showed that, in an le-semigroup, \(B \subseteq H \) and provided some necessary and sufficient conditions for a \(B \)-class to be regular or intra-regular. They further investigated several conditions under which a \(B \)-class formed a subsemigroup.

In this paper, we first characterize \((0,m)\)-ideal elements and 0-minimal \((0,m)\)-ideal elements in poe-semigroups. Then, we investigate \((m,n)\)-regular le-semigroups and prove that an le-semigroup \(S \) is \((m,n)\)-regular if and only if \(a \wedge q = q^m a q^n \) for each \((m,n)\)-quasi-ideal element \(q \) and for each ideal-element \(a \) of \(S \) besides some more results on \((m,n)\)-regular le-semigroups. We, then, have defined the relations \(m\mathcal{I}, \mathcal{I}_n, \mathcal{B}_m^n, \mathcal{Q}_m^n \) and \(\mathcal{H}_m^n \) on le-semigroups and provided some sufficient conditions under which these relations are equal. We also study the \((m,0)\)-regularity [(0,\(n \))-regularity] and \((m,n)\)-right weakly regularity of \(\mathcal{B}_m^n \)-classes, \(\mathcal{Q}_m^n \)-classes and \(\mathcal{H}_m^n \)-classes respectively in le-semigroups. Finally, after introducing the concept of strong \((m,n)\)-quasi-ideal elements in le-semigroups, we prove that, on le-semigroups, the relations \(\mathcal{H}_m^n \) and \(\mathcal{Q}_m^n \) coincide if and only if each \((m,n)\)-quasi-ideal element is a strong \((m,n)\)-quasi-ideal element and provide some sufficient conditions so that \((m,n)\)-quasi-ideal elements are strong \((m,n)\)-quasi-ideal elements.

Definition 1.1 Let \(S \) be a non-empty set. The triplet \((S, \cdot, \leq)\) is called an ordered semigroup (or poe-semigroup) if \((S, \cdot)\) is a semigroup and \((S, \leq)\) is a partially ordered set such that

\[
 a \leq b \Rightarrow ac \leq bc \text{ and } ca \leq cb
\]

for all \(a, b, c \in S \). A poe-semigroup with a greatest element “e” (i.e., for each \(a \in S, a \leq e \)) is said to be a poe-semigroup.

Let \(S \) be a poe-semigroup and let \(a \in S \). The element \(a \) is called a subsemigroup element if \(a^2 \leq a \) and a left (resp. right) ideal element of \(S \) if \(ea \leq a \) (resp. \(ae \leq a \)). It is called an ideal element of \(S \) if it is both a left and a right-ideal element of \(S \) and a bi-ideal element of \(S \) if \(aea \leq a \). Further \(a \) is called an idempotent element if \(a = a^2 \); and a quasi-ideal element if \(ae \wedge ea \) exists and \(ae \wedge ea \leq a \). An element \(z \in S \) is called a zero element of \(S \) if \(za = az = z \) and \(z \leq a \) for each \(a \in S \). The zero element, if exists, is always unique. We shall denote it, in whatever follows, by the symbol 0. A poe-semigroup \(S \) is called regular (left-regular, right-regular) if
a \leq aea \ (a \leq ea^2, a \leq a^2e) \text{ for each } a \in S \text{ and commutative if } ab = ba \text{ for all } a, b \in S.

Definition 1.2 A poe-semigroup S is said to be a \(\lor\)-semigroup if it is an upper semilattice under \(\lor\) and
\[
c(a \lor b) = ca \lor cb \text{ and } (a \lor b)c = ac \lor bc
\]
for all \(a, b, c \in S\). A \(\lor\)-semigroup which is a lattice is said to be an \(le\)-semigroup.

It is well known that in an \(le\)-semigroup S,
\[
a \leq b \iff a \land b = a \text{ and } a \lor b = b
\]
for all \(a, b \in S\).

For simplicity, throughout the paper, for any element \(a\) of an ordered semigroup \(S\), we shall write \(a^n\) for \(aa \cdots a\) \((n - \text{copies of } a)\). Also the integers \(m, n\) will stand for positive integers throughout the paper until and unless otherwise specified.

Definition 1.3 [5] Let \(S\) be a poe-semigroup and \(m, n\) be non-negative integers. An element \(a\) of \(S\) is called an \((m, n)\)-ideal element of \(S\) if \(a^m e a^n \leq a\).

Remark 1.1 Throughout the paper, we shall use the convention \(a^0b = b a^0 = b\), for all \(a, b \in S\). In particular, for \(m = 0, n = 1\) (resp. \(m = 1, n = 0\) and \(m = 1 = n\)), each \((m, n)\)-ideal element \(a\) of \(S\) is a left-ideal element (resp. right-ideal element and bi-ideal element). Clearly each left-ideal element (resp. each right-ideal element and each bi-ideal element) is a \((0, n)\)-ideal element for each positive integer \(n\) (resp. \((m, 0)\)-ideal element for each positive integer \(m\) and \((m, n)\)-ideal element for each positive integers \(m, n\). Therefore the concept of a \((0, n)\)-ideal element (resp. \((m, 0)\)-ideal element and \((m, n)\)-ideal element) is a generalization of the concept of a left-ideal element (resp. a right-ideal element and a bi-ideal element).

Remark 1.2 For each positive integers \(m\) and \(n\), any \((m, 0)\)-ideal element (resp. \((0, n)\)-ideal element) is an \((m, n)\)-ideal element as \(a^m e a^n \leq a\) (resp. \(a^m e a^n \leq a\)).

Definition 1.4 [5] An element \(q\) of a poe-semigroup \(S\) is called an \((m, n)\)-quasi-ideal element of \(S\) if \(q^m e \land q^n\) exists and \(q^m e \land q^n \leq q\). Clearly every quasi-ideal element is an \((m, n)\)-quasi-ideal element for each positive integers \(m\) and \(n\) such that \(q^m e \land q^n\) exists, but the converse is not true in general.

Example 1.1 Let \(S = \{a, b, c, d\}\). Define the binary operation \(\cdot\)' as follows:

\[
\begin{array}{cccc}
 & a & b & c & d \\
 a & a & a & a & a \\
b & b & b & b & b \\
c & c & c & c & c \\
d & a & a & b & a
\end{array}
\]

287
Then the set $P(S)$ of all non-empty subsets of S is a poe-semigroup under the binary operation of set product induced by the binary operation defined by the above table and partially ordered by set inclusion. The set $\{a, d\}$ is an (m, n)-ideal element and an (m, n) quasi-ideal element for each integers $m, n \geq 2$, but $\{a, d\}$ is neither a bi-ideal element nor a quasi-ideal element of the poe-semigroup $P(S)$.

We denote by (a), $<a>_{m,n}$ and $(a)_{m,n}$ the ideal-element, (m, n)-ideal element and (m, n) quasi-ideal element of S generated by the element a of S i.e., the least ideal-element, the least (m, n)-ideal element and the least (m, n) quasi-ideal element of S greater than the element a and had been described by [5,13] as follows:

$$(a) = a \lor ea \lor ae;$$

$$<a>_{m,n} = a \lor a^m e a^n;$$

$$(a)_{m,n} = a \lor (a^m e \land e a^n).$$

Thus an element $a \in S$ is an ideal (resp. (m, n)-ideal, (m, n) quasi-ideal) element if and only if $(a) = a$ (resp. $<a>_{m,n} = a$, $(a)_{m,n} = a$).

2 Characterization of $(0, m)$-ideal elements

Lemma 2.1 [5] Let S be a $\lor e$-semigroup, $a \in S$ and $m, n, k \geq 0$ are integers. Then

1. $(a \lor a^m e a^k)^m e = a^m e$;
2. $e(a \lor a^k e a^n)^n = e a^n$;
3. $<a>_{m,n}$ exists and $<a>_{m,n} = a \lor a^m e a^n$.

Lemma 2.2 Let S be an le-semigroup, $m \in \mathbb{Z}^+$ and a be a subsemigroup element of S. Then a is an $(1, m)$-ideal element of S if and only if there exist a $(0, m)$-ideal element c and a right-ideal element b of S such that $bc^m \leq a \leq b \land c$.

Proof. Let a be any $(1, m)$-ideal element of S. Then $a \lor e a^m$ and $a \lor e a$ are $(0, m)$-ideal element and right-ideal element of S respectively. Let $b = a \lor e a$ and $c = a \lor e a^m$. Then

$$bc^m = (a \lor e a)(a \lor e a^m)^m$$

$$= a(a \lor e a^m)^m \lor e a(a \lor e a^m)^m$$

$$= (a^2 \lor a e a^m)(a \lor e a^m)^{m-1} \lor a e a^m \quad \text{(by Lemma 2.1)}$$

$$\leq (a^2 \lor a)(a \lor e a^m)^{m-1} \lor a \quad \text{(as } a e a^m \leq a \text{)}$$

$$= a(a \lor e a^m)^{m-1} \lor a \quad \text{(as } a^2 \leq a \text{)}$$

$$= (a^2 \lor a e a^m)(a \lor e a^m)^{m-2} \lor a$$

$$\leq (a^2 \lor a)(a \lor e a^m)^{m-2} \lor a \quad \text{(as } a e a^m \leq a \text{)}$$

288
= a(a \lor ea^m)^{m-2} \lor a \quad (a^2 \leq a)
= \cdots
= a.

As \ a \leq b \land c, we have \ b^m \leq a \leq b \land c, as required.

Conversely, assume that \ b \ is a right-ideal element and \ c \ is a \ (0,m)-ideal element of \ S \ such that \ b^m \leq a \leq b \land c. As \ a \leq b \land c, \ b \ is a right-ideal element and \ b^m \leq a, we have \ ace^m \leq (b \land c)e(b \land c)^m \leq bec^m \leq be^m \leq a. Therefore \ a \ is an \ (1,m) \ ideal element of \ S.

\qed

Definition 2.3 Let \ S \ be a poe-semigroup and \ a \ be any left-ideal (right-ideal) element of \ S. Then \ a \ is said to be a minimal left-ideal (right-ideal) element of \ S \ if for every left-ideal (right-ideal) element \ b \ of \ S, \ b \leq a \ implies \ b = a. Further any non-zero left-ideal (right-ideal) element \ a \ of a poe-semigroup \ S \ with \ 0 \ is said to be a 0-minimal if for each left-ideal (right-ideal) element \ b \ of \ S, \ b \leq a \ implies either \ b = 0 \ or \ b = a.

Similarly we may define a minimal and a 0-minimal \ (m,n)-ideal \ (resp. \ (m,0)-ideal, \ (0,n)-ideal) element for each positive integers \ m \ and \ n.

Lemma 2.4 Let \ S \ be a poe-semigroup with zero, \ m \in \mathbb{Z}^+ \ and let \ a \ be any 0-minimal left-ideal element of \ S. Then a subsemigroup element \ b \ of \ S \ is a \ (0,m)-ideal element of \ S \ smaller than \ a \ if and only if either \ b^m = 0 \ or \ b = a.

Proof. Let \ S \ be a poe-semigroup with 0 and \ b \ be a subsemigroup element as well as a \ (0,m)-ideal element of \ S \ smaller than the 0-minimal left-ideal element \ a \ of \ S. As \ eb^m \ is a left-ideal element of \ S \ and \ eb^m \leq b \leq a, \ so by minimality of the left-ideal element \ a \ of \ S, \ eb^m = 0 \ or \ eb^m = a. If \ eb^m = a, \ then \ a = eb^m \leq b. Therefore \ b = a. In the other case when \ eb^m = 0, as \ eb^m = 0 \leq b^m, \ b^m \ is a left-ideal element of \ S \ smaller than \ a \ (as \ b \ is a subsemigroup element and, so, \ b^m \leq b). Now, by 0-minimality of the left-ideal element \ a \ of \ S, \ we have \ b^m = 0 \ or \ b^m = a. Since \ b \ is a subsemigroup element, \ we have \ b^m \leq b. Therefore \ a = b^m \leq b. Hence in both of the cases, \ either \ b^m = 0 \ or \ b = a, \ as required.

The converse is obvious.

\qed

Lemma 2.5 Let \ S \ be a poe-semigroup with zero, \ m \in \mathbb{Z}^+ \ and let \ a \ be any subsemigroup element of \ S. If \ a \ is a 0-minimal \ (0,m)-ideal element of \ S, \ then \ a^m = 0 \ or \ a \ is a 0-minimal left-ideal element of \ S.

Proof. Let \ S \ be a poe-semigroup with 0 and \ a \ be any subsemigroup 0-minimal \ (0,m)-ideal element of \ S. Therefore \ a^m \leq a \ and \ e(a^m)^m = e^{a^m}a^m\cdots a^m \leq aa\cdots a = a^m, \ it follows that \ a^m \ is (0,m)-ideal element
of \(S \). As \(a^m \leq a \), by minimality of a 0-minimal \((0, m)\)-ideal element \(a \) of \(S \), \(a^m = 0 \) or \(a^m = a \). Suppose \(a^m = a \). Now \(ea = ea^m \leq a \) implies \(a \) is left-ideal element of \(S \). It remains to show that \(a \) is a 0-minimal left-ideal element of \(S \). So, let \(b \) be any left-ideal element of \(S \) such that \(b \leq a \). As \(b \) is a \((0, m)\)-ideal element of \(S \), \(a \) is a 0-minimal \((0, m)\)-ideal element of \(S \) and \(b \) \(\leq a \), we have either \(b = 0 \) or \(b = a \). Hence \(a \) is a 0-minimal left-ideal element of \(S \).

\[\square \]

Lemma 2.6 Let \(S \) be an le-semigroup, \(m \in \mathbb{Z}^+ \) and \(a \) be any subsemigroup element of \(S \). Then \(a \) is a \((0, m)\)-ideal element of \(S \) if and only if \(ba \leq a \) for some \((0, m-1)\)-ideal element \(b \) \((a \leq b)\) of \(S \).

Proof. Suppose \(a \) is a \((0, m)\)-ideal element of \(S \). By Lemma 2.1, \(e(a \lor ea^{m-1})^{m-1} = ea^{m-1} \). So it follows that \(e(a \lor ea^{m-1})^{m-1} = ea^{m-1} \leq a \lor ea^{m-1} \) i.e., \(a \lor ea^{m-1} \) is a \((0, m-1)\)-ideal element of \(S \). Let \(b = a \lor ea^{m-1} \). Then, as \(a \) is a subsemigroup and \((0, m)\)-ideal element of \(S \), \(ba = (a \lor ea^{m-1})a = a^2 \lor ea^m \leq a^2 \lor a = a \), as required.

Conversely assume that \(b \) is a \((0, m-1)\)-ideal element of \(S \) and \(a \) be an element of \(S \) such that \(ba \leq a \) with \(a \leq b \). Now \(ea^m \leq eb^{m-1}a \leq ba \leq a \). Therefore \(a \) is a \((0, m)\)-ideal element of \(S \).

\[\square \]

Lemma 2.7 Let \(S \) be a poe-semigroup and let \(a \in S \). Then \(a \) is a minimal \((m, m-1)\)-ideal element \((m \in \mathbb{Z}^+, m \geq 2) \) if and only if \(a \) is a minimal bi-ideal element of \(S \).

Proof. Let \(S \) be a poe-semigroup and \(a \) be a minimal \((m, m-1)\)-ideal element of \(S \). Then, by definition, \(a^m ea^{m-1} \leq a \), we have \((a^m ea^{m-1})^m \leq a^m ea^{m-1} \). Therefore \(a^m ea^{m-1} \) is a \((m, m-1)\)-ideal element of \(S \) such that \(a^m ea^{m-1} \leq a \). So, by minimality of \(a \), we have \(a^m ea^{m-1} = a \).

Now

\[a = (a^m ea^{m-1})(a^m ea^{m-1}) \leq a^m ea^{m-1} = a \]

and

\[a = a^m ea^{m-1} \leq a^m ea^{m-1} = a. \]

This implies that \(a \) is a bi-ideal element of \(S \). Now we show that \(a \) is a minimal bi-ideal element of \(S \). So take any bi-ideal element \(b \) of \(S \) such that \(b \leq a \). As \(b^{m+}b^{m-1} = b(b^{m-1}eb^{m-2})b \leq beb \leq b \), \(b \) is a \((m, m-1)\)-ideal element of \(S \). Since \(a \) is a minimal \((m, m-1)\)-ideal element of \(S \), \(b = a \). Hence \(a \) is a minimal bi-ideal element of \(S \).

Conversely assume that \(a \) is a minimal bi-ideal element of \(S \). As \(a^m ea^{m-1} = a(a^m ea^{m-2})a \leq aea \leq a \), \(a \) is an \((m, m-1)\)-ideal element of \(S \). To show that \(a \) is a minimal \((m, m-1)\)-ideal element of \(S \), take any \((m, m-1)\)-ideal element \(b \) of \(S \) such that \(b \leq a \). As \((b^{m+}b^{m-1})(b^{m+}b^{m-1}) = b^{m+}(b^{m-1}eb^{m-1})b^{m-1} \leq b^{m+}b^{m-1} \) and \((b^{m+}b^{m-1})e(b^{m+}b^{m-1}) = b^{m+}(b^{m-1}eb^{m-1})b^{m-1} \leq b^{m+}b^{m-1} \),
it follows that $b^m e b^{m-1}$ is a bi-ideal element of S. Since a is a minimal bi-ideal element of S and $b^m e b^{m-1} \leq a$, we have $b^m e b^{m-1} = a$. As $b^m e b^{m-1} \leq b$, $a \leq b$. Now, as $b \leq a$, we have $b = a$. Hence a is a minimal $(m, m-1)$-ideal element of S.

Lemma 2.8 Let S be a commutative poe-semigroup such that $e^2 = e$ and let m, n be any non-negative integers. Then

1. $I_{<m,0>}$, the set of all $(m, 0)$-ideal elements of S, is a subsemigroup of S.
2. $I_{<0,n>}$, the set of all $(0, n)$-ideal elements of S, is a subsemigroup of S.
3. $I_{<m,n>}$, the set of all (m, n)-ideal elements of S, is a subsemigroup of S.

Proof. Straightforward.

3 (m, n)-regular le-semigroups

Definition 3.1 Let S be a poe-semigroup and let m, n be non-negative integers. An element $a \in S$ is said to be an (m, n)-regular element of S if $a \leq a^m e a^n$. Further S is said to be (m, n)-regular if every element of S is (m, n)-regular. A $(1, 1)$-regular poe-semigroup is said to be regular.

It is clear from Definition 3.1 that, for each non-negative integers m and n, every (m, n)-regular poe-semigroup is an (r, s)-regular poe-semigroup ($r \leq m, s \leq n$ are non-negative integers). In particular, for each $m, n \in \mathbb{Z}^+$, (m, n)-regular poe-semigroup is regular. On the other hand, for each $m \in \mathbb{Z}^+$, $(m, 0)$-regular poe-semigroup need not be a regular poe-semigroup.

Example 3.1 Let $S = \{x, y, z\}$. Define a binary operation $'$ and an order $' \leq'$ as follows:

$$
\begin{array}{c|ccc}
\cdot & x & y & z \\
x & z & x & z \\
y & x & y & z \\
z & z & z & z \\
\end{array}
$$

$$
\leq := \{(x, x), (y, y), (z, z), (z, x), (x, y), (z, y)\}.
$$

Clearly S is a poe-semigroup with greatest element $e = y$. As $(x, x y x) \notin \leq$, S is not a regular poe-semigroup, but S is $(1, 0)$-regular as $a \leq ae$ for each $a \in S$.

Lemma 3.2 [5] Let S be an le-semigroup, $a \in S$ and m, n non-negative integers. Then the followings hold:

1. $(a \lor (a^m e \land e a^n))^m e \leq a^m e$.
2. $e (a \lor (a^m e \land e a^n))^n \leq e a^n$.
3. $(a)_{<m,n>}$ exists and $(a)_{<m,n>} = a \lor (a^m e \land e a^n)$.
Theorem 3.3 Let S be an le-semigroup and m, n be positive integers. Then S is (m, n)-regular if and only if $a \wedge q = q^m a q^n$ for each (m, n)-quasi-ideal element q and for each ideal-element a of S.

Proof. Let S be an (m, n)-regular le-semigroup, q be an (m, n)-quasi-ideal element and a be an ideal-element of S. Since $q^m a q^n \leq q^m e$ and $q^m a q^n \leq e q^n$, we have $q^m a q^n \leq q^m e \wedge e q^n$. As q is an (m, n)-quasi-ideal element of S, we get $q^m e \wedge e q^n \leq q$. Thus $q^m a q^n \leq q$. Since a is an ideal-element of S, we have $q^m a q^n \leq e a c \leq a c \leq a$. Therefore $q^m a q^n \leq q \wedge a$. As S is (m, n)-regular, we have

\[
(a \wedge q) \leq (a \wedge q)^m e (a \wedge q)^n
\]

\[
\leq (a \wedge q)^m e ((a \wedge q)^n)^m e ((a \wedge q)^n)^n
\]

\[
= (a \wedge q)^m e ((a \wedge q)^n)^m (a \wedge q)^m \ldots (a \wedge q)^m e ((a \wedge q)^n)^n
\]

\[
\leq q^m e a \underbrace{a \ldots a}_{n \text{-times}} \underbrace{a \ldots a}_{n \text{-times}}
\]

\[
= q^m e a \underbrace{a \ldots a}_{n-1 \text{-times}} \underbrace{a \ldots a}_{n-1 \text{-times}} q^n
\]

\[
\leq q^m e a q^n
\]

Therefore $a \wedge q = q^m a q^n$.

Conversely assume that $a \wedge q = q^m a q^n$ for each (m, n)-quasi-ideal element q and for each ideal-element a of S. Take any $b \in S$. As $(b)_{<m,n>}$ and (b) are (m, n)-quasi-ideal elements and ideal-elements of S respectively, we have

\[
(b) \wedge (b)_{<m,n>} = (b)_{<m,n>} (b)_{<m,n>} \leq (b)_{<m,n>} e (b)_{<m,n>} \leq b^m e b^n.
\]

As $b \leq (b)_{<m,n>}$, we have $b \leq b^m e b^n$. Hence S is (m, n)-regular.

\[\square\]

Theorem 3.4 [5] Let S be an le-semigroup and m, n be non-negative integers. Then, the following conditions are equivalent:

1. S is $<m, n>$-regular.
2. $a^m e a^n = a$ for each $a \in I_{<m,n>}$.
3. $e q^n a q^n = a$ for each $q \in Q_{<m,n>}$.
4. $(a)_{<m,n>} = (a)_{<m,n>}$ for each $a \in S$.
5. $(a)_{<m,n>} = (a)_{<m,n>}$ for each $a \in S$.

Theorem 3.5 Let S be an le-semigroup and let m, n be non-negative integers. Then S is (m, n)-regular if and only if $a \wedge b = a^m b^n$ for each $(m, 0)$-ideal element a and for each $(0, n)$-ideal element b of S.

Proof. The statement is trivially true for $m = 0 = n$. If $m = 0$ and $n \neq 0$ or $m \neq 0$ and $n = 0$, then the result follows by Theorem 3.4. So, let $m \neq 0$, $n \neq 0$, a be any $(m, 0)$-ideal element and b be any $(0, n)$-ideal element of S. Then $a^m b^n \leq a^m e \leq a$ and $a^m b^n \leq e b^n \leq b$. Therefore $a^m b^n \leq a \wedge b$. As
On the structure of le-semigroups

S is \((m, n)-\)regular, we have
\[
(a \wedge b)^m e (a \wedge b)^n \leq a^m e b^n \leq a^m e b^{n-1} (b^m e b^n) e b^n \leq a^m e b^{n-1} b^{m-1} (b^m e b^n) e b^{n-1} (b^m e b^n) e b^n \leq \cdots \leq a^m e b^{n-1} b^{m-1} \cdots b^{m-1} (b^m e b^n) e b^n \leq a^m e b^n \leq a^m b^n.
\]
Therefore \(a \wedge b = a^m b^n\).

Conversely assume that \(a \wedge b = a^m b^n\) for each \((m, 0)\)-ideal element \(a\) and for each \((0, n)\)-ideal element \(b\) of \(S\). For any \(a \in S\), as \(< a >_{m, 0} >_{0, n} \leq e a^n\). As \(a^m e\) is an \((m, 0)\)-ideal element and \(e a^n\) is a \((0, n)\)-ideal element of \(S\), by hypothesis, we have
\[
a \leq < a >_{m, 0} \land < a >_{0, n} \leq a^m e \land e a^n = (a^m e)^n a^n \leq a^m e a^n.
\]
Hence \(S\) is \((m, n)\)-regular.

\[\square\]

Theorem 3.6 Let \(S\) be an le-semigroup and let \(m, n\) be positive integers (either \(m \geq 2\) or \(n \geq 2\)). Then the following are equivalent:

1. Each \((m, n)\)-ideal element of \(S\) is idempotent.
2. For each \((m, n)\)-ideal elements \(a, b\) of \(S\), \(a \wedge b \leq a^m b^n\).
3. \(< a >_{m, n} \land < b >_{m, n} \leq (\langle a \rangle_{<m,n>} \land \langle b \rangle_{<m,n>})^n \forall a, b \in S\).
4. \(< a >_{m, n} \leq (\langle a \rangle_{<m,n>} \land \langle b \rangle_{<m,n>})^n \forall a \in S\).
5. \(S\) is \((m, n)\)-regular.

Proof. (1) \(\Rightarrow\) (2) Assume that each \((m, n)\)-ideal element of \(S\) is idempotent. Let \(a\) and \(b\) be any \((m, n)\)-ideal elements of \(S\). As \(a \wedge b\) is an \((m, n)\)-ideal element of \(S\), we have
\[
a \wedge b = (a \wedge b)^2 = (a \wedge b)^3 = \cdots = (a \wedge b)^m a \wedge b^n \leq a^m b^n.
\]
(2) \(\Rightarrow\) (3) and (3) \(\Rightarrow\) (4). Obvious.
(4) \Rightarrow (5). Take any $a \in S$. Then, by (4), we have
\[
\begin{align*}
&< a ><_{m,n}> \\
&\leq (< a ><_{m,n}>)^m(< a ><_{m,n}>)^n \\
&\leq (< a ><_{m,n}>)^m(< a ><_{m,n}>)^{n-1}(< a ><_{m,n}>)^m(< a ><_{m,n}>)^n \\
&\leq (< a ><_{m,n}>)^m(e(< a ><_{m,n}>))^n \\
&= a^m e a^n \quad \text{(by Lemma 2.1).}
\end{align*}
\]
As $a \leq < a ><_{m,n}>$, we have $a \leq a^m e a^n$. Hence S is (m, n)-regular.

(5) \Rightarrow (1). Take any (m, n)-ideal element a of S. As S is (m, n)-regular and a is an (m, n)-ideal element, we have $a = a^m e a^n$. Now
\[
a^2 = (a^m e a^n)(a^m e a^n) \leq (a^m e a^n) = a
\]
and
\[
a = a^m e a^n = (a^m e a^n) e a^n \leq (a^m e a^n)(a^m e a^n) = aa = a^2.
\]
Therefore $a = a^2$. Hence each (m, n)-ideal element of S is an idempotent.

\[\square\]

Lemma 3.7 Let S be an le-semigroup and let m, n be non-negative integers. Then S is $< m, 0 >$-regular ($(0, n)$-regular) if and only if $I_{< m, 0 >} (I_{< 0, n >})$, the set of all $(m, 0)$-ideal elements of S ($(0, n)$-ideal elements of S), is $(m, 0)$-regular ($(0, n)$-regular).

Proof. When $m = 0$, the statement holds trivially because e is the only $(0, 0)$-ideal element of S. So, let $m \neq 0$ and $a \in I_{< m, 0 >}$. Therefore $a^m e \leq a$. As S is $(m, 0)$-regular, we have $a \leq a^m e$. Thus $a = a^m e$. Since $e \in I_{< m, 0 >}$, so a is a $(m, 0)$-regular element of $I_{< m, 0 >}$. Hence $I_{< m, 0 >}$ is $(m, 0)$-regular.

Conversely assume that $I_{< m, 0 >}$ is $(m, 0)$-regular. Take any $a \in S$. As $< a ><_{m, 0}$ is in $I_{(m, 0)}$ and $I_{(m, 0)}$ is $(m, 0)$-regular, there exists $b \in I_{(m, 0)}$ such that $< a ><_{m, 0} = (< a ><_{m, 0} >)^m b \leq (< a ><_{m, 0} >)^m e$. By Lemma 2.1, $(< a ><_{m, 0} >)^m e = a^m e$. As $a \leq a <_{m, 0}$, we have $a \leq a^m e$. Hence S is $(m, 0)$-regular.

\[\square\]

Lemma 3.8 Let S be an le-semigroup and let m, n be non-negative integers. Then S is (m, n)-regular if and only if $I_{< m, n >}$, the set of all (m, n)-ideal elements of S, is (m, n)-regular.

Proof. On the lines similar to the proof of Lemma 3.7.

\[\square\]

Lemma 3.9 Let S be an le-semigroup and let m, n be non-negative integers. Then S is (m, n)-regular if and only if $Q_{< m, n >}$, the set of all (m, n)-quasi-ideal elements of S, is (m, n)-regular.
Proof. If \(m = n = 0 \), then the result trivially holds as \(Q_{<0,0>} = \{e\} \). When \(m \neq 0 \) and \(n = 0 \) or \(m = 0 \) and \(n \neq 0 \), then the result follows by Lemma 3.7, as the set of all \((m, 0)\) \((0, n)\)-quasi-ideal elements \(Q_{<m,0>} \ (Q_{<0,n>}) \) coincides with the set of all \((m, 0)\) \((0, m)\)-ideal elements \(I_{<m,0>} \ (I_{<0,n>}) \). So, let \(m \neq 0 \) and \(n \neq 0 \) and \(a \in Q_{<m,n>} \). Therefore \(a^m e a^n \leq a^m e \land e a^n \leq a \). As \(S \) is \((m, n)\)-regular, we have \(a \leq a^m e a^n \). Since \(e \in Q_{<m,n>} \), it follows that \(a \) is an \((m, n)\)-regular element of \(Q_{<m,n>} \). Hence \(Q_{<m,n>} \) is \((m, n)\)-regular.

Conversely assume that \(Q_{<m,n>} \) is \((m, n)\)-regular and \(a \) be any element of \(S \). Then \(< a >_{m,n} \in Q_{<m,n>} \). Therefore there exists \(b \in Q_{<m,n>} \) such that

\[
(a)_{<m,n>} = ((a)_{<m,n>})^m b ((a)_{<m,n>})^n.
\]

Now \(((a)_{<m,n>})^m b ((a)_{<m,n>})^n \leq ((a)_{<m,n>})^m e ((a)_{<m,n>})^n \) and, by Lemma 3.2, \(((a)_{<m,n>})^m e ((a)_{<m,n>})^n \leq a^m e a^n \). As \(a \leq (a)_{<m,n>} \), we have \(a \leq a^m e a^n \). Therefore \(a \) is \((m, n)\)-regular and, hence, \(S \) is \((m, n)\)-regular.

\(\square \)

4 Characterization of relations \(\mathcal{I}_n, m\mathcal{I}, \mathcal{B}_m^n, Q_m^n \) and \(\mathcal{H}_m^n \)

Lemma 4.1 Let \(S \) be an le-semigroup, \(a \in S \) and let \(m, n \) be non-negative integers. Then

1. \(< a >_{m,n} <_{m,n} = < a >_{m,n} \).
2. \(((a)_{<m,n>})_{<m,n>} = (a)_{<m,n>} \).

Proof. (1). By definition, we have

\[
<a>_{m,n} <_{m,n} = a \lor a^m e a^n <_{m,n} \\
= (a \lor a^m e a^n) \lor (a \lor a^m e a^n) e (a \lor a^m e a^n)^n \\
= (a \lor a^m e a^n) \lor (a^m e a^n) \text{ (by Lemma 2.1)} \\
= < a >_{m,n}.
\]

(2). Now

\[
((a)_{<m,n>})_{<m,n>} \\
= (a \lor (a^m e \land e a^n))_{<m,n>} \\
= (a \lor (a^m e \land e a^n)) \lor ((a \lor (a^m e \land e a^n))^m e \land e (a \lor (a^m e \land e a^n))^n). \\
\]

Now, by Lemma 3.2, \((a \lor (a^m e \land e a^n))^m e \leq a^m e \) and \(e ((a \lor (a^m e \land e a^n))^n \leq e a^n \). So \((a \lor (a^m e \land e a^n))^m e \land e (a \lor (a^m e \land e a^n))^n \leq a^m e \land e a^n \). Therefore

\[
((a)_{<m,n>})_{<m,n>} \\
= (a \lor (a^m e \land e a^n)) \lor ((a \lor (a^m e \land e a^n))^m e \land e (a \lor (a^m e \land e a^n))^n) \\
\leq a \lor (a^m e \land e a^n) \\
= (a)_{<m,n>}.
\]

295
Also
\[
(a)_{m,n} = a \lor (a^m e \land e a^n) \\
\leq (a \lor (a^m e \land e a^n)) \lor ((a \lor (a^m e \land e a^n)) e (a \lor (a^m e \land e a^n)))^n \\
= ((a)_{m,n})_{m,n}.
\]

Hence \((a)_{m,n} = (a)_{m,n}\), as required. \(\Box\)

Corollary 4.2 Let \(S\) be an le-semigroup, \(a \in S\) and let \(m, n\) be non-negative integers. Then
1. \(<< a >_{m,0} >_{m,0} = << a >_{m,0}\); \(<< a >_{0,n} >_{0,n} = << a >_{0,n}\).

Remark 4.1 Let \(S\) be an le-semigroup and let \(m, n\) be non-negative integers. If \(a, b \in S\) such that \(a \leq b\), then
1. \(<< a >_{m,0} \leq b >_{m,0}\); \(<< a >_{0,n} \leq b >_{0,n}\); \(<< a >_{m,n} \leq b >_{m,n}\); \(<< a >_{m,n} \leq (b)_{m,n}\).

Lemma 4.3 Let \(S\) be an le-semigroup, \(a \in S\) and let \(m, n\) be non-negative integers. Then
1. \(<< (a)_{m,n} >_{m,0} \leq << a >_{m,0}\); \(<< (a)_{m,n} >_{0,n} = < a >_{0,n}\).

Proof. Straightforward. \(\Box\)

Lemma 4.4 Let \(S\) be an le-semigroup, \(a \in S\) and let \(m, n\) be non-negative integers. Then
1. \(< (a)_{m,n} >_{m,0} = < a >_{m,0}\); \(< (a)_{m,n} >_{0,n} = < a >_{0,n}\).

Proof. On the lines similar to the proof of Lemma 4.1. \(\Box\)

Definition 4.5 Let \(S\) be an le-semigroup and let \(m, n\) be positive integers. We define the relations \(I_n\), \(m, I\), \(H^n_m\), \(B^n_m\), and \(Q^n_m\) as follows:
\[
I_n = \{(a, b) \in S \times S \mid < a >_{m,0} = b >_{n,0}\}; \\
m, I = \{(a, b) \in S \times S \mid < a >_{m,0} = b >_{m,0}\}; \\
H^n_m = m, I \cap I_n; \\
B^n_m = \{(a, b) \in S \times S \mid < a >_{m,n} = b >_{m,n}\}; \\
Q^n_m = \{(a, b) \in S \times S \mid (a)_{m,n} = (b)_{m,n}\}.
\]

Clearly all the relations defined above are equivalence relations on \(S\).
Lemma 4.6 Let S be an le-semigroup. If $a, b \in S$ are mI-related (resp. H_1-related), then $a^m e = b^m e$ (resp. $ea^n = eb^n$).

Proof. Suppose $(a, b) \in mI$. Then, by definition, $<a >_{< m,0> } = _{< m,0> }$ i.e. $a \vee a^m e = b \vee b^m e$. Therefore $a \leq b \vee b^m e$ and $b \leq a \vee a^m e$. Thus $a^m e \leq (b \vee b^m e)^m e \leq b^m e$ (by Lemma 2.1). Similarly, from $b \leq a \vee a^m e$, we have $b^m e \leq a^m e$. Hence $a^m e = b^m e$.

Dually it may be shown that if $(a, b) \in I_n$, then $ea^n = eb^n$.

\[\square\]

Lemma 4.7 Let S be an le-semigroup. If $a, b \in S$ are H_m-related, then $a^m e = b^m e$, $ea^n = eb^n$ and $a^m ea^n = b^m eb^n$.

Proof. Suppose $(a, b) \in H_m$. Then, by definition, $(a, b) \in mI$ and $(a, b) \in I_n$. Now, by Lemma 4.6, $a^m e = b^m e$ and $ea^n = eb^n$. Also, as $a^m e = b^m e$ and $ea^n = eb^n$, we have $a^m ea^n = b^m ea^n = b^m eb^n$, as required.

\[\square\]

Lemma 4.8 In any le-semigroup S, $B_m \subseteq H_m$.

Proof. Let $(a, b) \in B_m$. Then $<a >_{< m,0> } = _{< m,0> }$ i.e., $a \vee a^m e = b \vee b^m e$. So $a \leq b \vee b^m e$ and $b \leq a \vee a^m e$. Now $a^m e \leq (b \vee b^m e)^m e$ and $b^m e \leq (a \vee a^m e)^m e$. Thus, by Lemma 2.1, $a^m e \leq b^m e$ and $b^m e \leq a^m e$.

Now

$<a >_{< m,0> } = a \vee a^m e \leq b \vee b^m e \vee a^m e \leq b \vee b^m e \vee b^m e = _{< m,0> }$ and

$_{< m,0> } = b \vee b^m e \leq a \vee a^m e \vee b^m e \leq a \vee a^m e \vee a^m e = <a >_{< m,0> }$.

Therefore $<a >_{< m,0> } = _{< m,0> }$. Similarly we may show that $<a >_{< n,0> } = _{< n,0> }$. Thus $(a, b) \in H_m$. Hence $B_m \subseteq H_m$.

\[\square\]

Remark 4.2 The converse of the Lemma 4.8 is not true in general as shown by the following example:

Example 4.1 [15] Let $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ be the multiplicative semigroup under multiplication mod 8. Then the power semigroup $P(Z_8) = (P(Z_8), \cup, \cap, 1)$, where $1 \cdot$ is the extension of the multiplication of Z_8 to the power set $P(Z_8)$ of Z_8, is an le-semigroup with the largest element $e = Z_8$.

Observe that

$\{2\} \cup \{2\}e\{2\} = \{2\} \cup \{2\}Z_8\{2\} = \{0, 2, 4\},$

$\{6\} \cup \{6\}e\{6\} = \{6\} \cup \{6\}Z_8\{6\} = \{0, 4, 6\},$

which shows that $\{2\}$ is not $B(= B_1)$-related to $\{6\}$. On the other hand, as

$\{2\} \cup \{2\}e = \{2\} \cup \{2\}Z_8 = \{0, 2, 4, 6\},$

$\{6\} \cup \{6\}e = \{6\} \cup \{6\}Z_8 = \{0, 2, 4, 6\},$

we have $\{2\}R\{6\}$. Since $P(Z_8)$ is commutative, the relations $R(= I)$ and $H(= H_1)$ coincide. Thus $\{2\}H_1\{6\}$ which implies that $H_1 \subseteq B_1$.
Theorem 4.9 In any \((m,n)\)-regular le-semigroup \(S\), \(B^n_m = H^n_m\).

Proof. Let \((a,b) \in H^n_m\). Then, by Lemma 4.7, \(a^mea^n = b^meb^n\). As \(S\) is \((m,n)\)-regular, we have \(a \leq a^mea^n \text{ and } b \leq b^meb^n\). So \(< a >_{<m,n>} = a \lor a^mea^n \text{ and } < b >_{<m,n>} = b \lor b^meb^n\). Thus \(< a >_{<m,n>} = < b >_{<m,n>}\) i.e., \((a,b) \in B^n_m\). So \(H^n_m \subseteq B^n_m\). Hence, by Lemma 4.8, \(B^n_m = H^n_m\).

Lemma 4.10 In any le-semigroup \(S\), \(B^n_m \subseteq Q^n_m\).

Proof. Let \((a,b) \in B^n_m\). Then \(< a >_{<m,n>} = < b >_{<m,n>}\) i.e., \(a \lor a^mea^n = b \lor b^meb^n\). So \(a \leq b \lor b^meb^n\) and \(b \leq a \lor a^mea^n\). Therefore \(a^me \leq (b \lor b^meb^n)^m e \leq b^m e\) and \(ea^n \leq e(b \lor b^meb^n)^n \leq eb^n\). Thus \(a^me \land ea^n \leq b^m e \land eb^n\). Now

\[(a)_{<m,n>} = a \lor (a^me \land ea^n) \leq b \lor b^meb^n \lor (a^me \land ea^n) \leq b \lor b^meb^n \lor (b^me \land eb^n) = (b)_{<m,n>}.
\]

Similarly, as \(b \leq a \land a^mea^n\), we may show that \((b)_{<m,n>} \leq (a)_{<m,n>}\) i.e., \((a,b) \in Q^n_m\). Hence \(B^n_m \subseteq Q^n_m\), as required.

Remark 4.3 The converse of the Lemma 4.10 is not true in general. It is easy to verify from Example 4.1 that \(\{2\} \neq Q^1_1 = Q\{6\}\) while \(\{2\} \neq B^1_1 = B\{6\}\).

Theorem 4.11 Let \(S\) be an \((m,n)\)-regular le-semigroup. Then \(Q^n_m = B^n_m\).

Proof. Let \((a,b) \in Q^n_m\). Then \((a)_{<m,n>} = (b)_{<m,n>}\) i.e., \(a \lor (a^me \land ea^n) = b \lor (b^me \land eb^n)\). So \(a \leq b \lor (b^me \land eb^n)\) and \(b \leq a \lor (a^me \land ea^n)\). As \(Q^n_m \subseteq H^n_m\), we have \((a,b) \in H^n_m\). So, by Lemma 4.7, \(a^mea^n = b^meb^n\). Now

\[< a >_{<m,n>} = a \lor a^mea^n \leq b \lor (b^me \land eb^n) \lor a^mea^n \quad \text{(because } a \leq b \lor (b^me \land eb^n)\)]

\[\leq b \lor (b^me \land eb^n) \lor b^meb^n \quad \text{(as } a^mea^n = b^meb^n\)]

\[= b \lor b^meb^n \quad \text{(because } b^meb^n \leq b^m e \land eb^n)\]

\[= b \lor (b^m e)^n (eb^n) \quad \text{(by Theorem 3.5)}\]

\[\leq < b >_{<m,n>} .
\]

Similarly, as \(b \leq a \lor (a^me \land ea^n)\), we have \(< b >_{<m,n>} \leq < a >_{<m,n>}\).

Therefore \(< a >_{<m,n>} = < b >_{<m,n>}\). Thus \((a,b) \in B^n_m\). This implies that \(Q^n_m \subseteq B^n_m\). Hence, by Lemma 4.10, \(Q^n_m = B^n_m\).

Lemma 4.12 In any le-semigroup, \(Q^n_m \subseteq H^n_m\).

Proof. Let \(S\) be any le-semigroup and let \((a,b) \in Q^n_m\). Then \((a)_{<m,n>} = (b)_{<m,n>}\) i.e. \(a \lor (a^me \land ea^n) = b \lor (b^me \land eb^n)\). So \(a \leq b \lor (b^me \land eb^n)\) and \(b \leq a \lor (a^me \land ea^n)\). Now
On the structure of le-semigroups

\[<a>_{<m,0>} = a \lor a^m e \leq (b \lor (b^m e \land eb^n)) \lor (b \lor (b^m e \land eb^n))^n e \leq _{<m,0>} \]

and

\[<a>_{<0,n>} = a \lor ea^n \leq (b \lor (b^m e \land eb^n)) \lor e(b \lor (b^m e \land eb^n))^n e \leq _{<0,n>} . \]

Similarly, as \(b \leq a \lor (a^m e \land ea^n) \), we have \(_{<m,0>} \leq <a>_{<m,0>} \) and \(_{<0,n>} \leq <a>_{<0,n>} \). Therefore \(<a>_{<m,0>} = _{<m,0>} \) and \(<a>_{<0,n>} = _{<0,n>} \) implying that \((a,b) \in H^m_m\). Hence \(Q^m_n \leq H^m_m \), as required.

\[\square \]

Corollary 4.13 Let \(S \) be an \((m, n)\)-regular le-semigroup. Then \(B^m_n = Q^m_n = H^m_m \).

Lemma 4.14 If \(B_x \) and \(B_y \) are two \((m, n)\)-regular \(B^m_n \)-classes contained in the same \(H^m_m \)-class of an le-semigroup \(S \), then \(B_x = B_y \).

Proof. As \(x \) and \(y \) are \((m, n)\)-regular elements of \(S \), \(x \leq x^m e x^n \) and \(y \leq y^m e y^n \). Therefore \(x_{<m,n>} = x \lor (x^m e x^n) = x^m e x^n \) and \(y_{<m,n>} = y \lor (y^m e y^n) = y^m e y^n \). Since \(x \) and \(y \) are contained in the same \(H^m_m \)-class, by Lemma 4.7, \(x^m e x^n = y^m e y^n \). So \(x_{<m,n>} = y_{<m,n>} \). Therefore \(x B^m_n y \). Hence \(B_x = B_y \).

\[\square \]

Lemma 4.15 If \(Q_x \) and \(Q_y \) are two \((m, n)\)-regular \(Q^m_n \)-classes contained in the same \(H^m_m \)-class of an le-semigroup \(S \), then they coincide.

Proof. As \(x \) and \(y \) are \((m, n)\)-regular elements of \(S \), \(x \leq x^m e x^n \leq x^m e \land ex^n \) and \(y \leq y^m e y^n \leq y^m e \land ey^n \). Therefore \(x_{<m,n>} = x \lor (x^m e \land ex^n) = x^m e \land ex^n \) and \(y_{<m,n>} = y \lor (y^m e \land ey^n) = y^m e \land ey^n \). Since \(x \) and \(y \) are contained in the same \(H^m_m \)-class, by Lemma 4.7, \(x^m e = y^m e \) and \(ex^n = ey^n \). Therefore \(x^m e \land ex^n = y^m e \land ex^n \). This implies that \((x)_{<m,n>} = (y)_{<m,n>} \). So \(x Q^m_n y \) implies \(Q_x = Q_y \), as required.

\[\square \]

5 \((m, 0)\)-regularity \([(0, n)\)-regularity\] and \((m, n)\)-right weakly regularity of \(B^m_n \)-classes, \(Q^m_n \)-classes and \(H^m_m \)-classes

Proposition 5.1 A \(Q^m_n \)-class \(Q \) of an le-semigroup \(S \) is \((m, 0)\)-regular \([(0, n)\)-regular\] if it contains an \((m, 0)\)-regular \([(0, n)\)-regular\] element.

Proof. Let \(a \in Q \) be an \((m, 0)\)-regular element and \(b \in Q \). Then \((b)_{<m,n>} = (a)_{<m,n>} = a \lor (a^m e \land a^n) \leq a \lor a^m e = a^m e \) (since \(a \) is \((m, 0)\)-regular, \(a \leq a^m e \)). By Lemma 4.10 and Lemma 4.7, \(a^m e = b^m e \). So \((b)_{<m,n>} \leq b^m e \). Thus \(b \leq b^m e \). Therefore \(b \) is a \((m, 0)\)-regular element and, hence, \(Q \) is \((m, 0)\)-regular. The dual statement may be proved on similar lines.

\[\square \]
Proposition 5.2 An \(\mathcal{H}_{m,n} \)-class \(H \) of a \(\vee \)-semigroup \(S \) is \((m,0)\)-regular \([(0,n)\)-regular] if it contains an \((m,0)\)-regular \([(0,n)\)-regular] element.

Proof. Let \(a \in H \) be an \((m,0)\)-regular element and \(c \in H \). Then \(< a >_{m,0}^c = a \vee a^m e = a^m e \) (since \(a \) is \((m,0)\)-regular, \(a \leq a^m e \)). By Lemma 4.7, \(a^m e = b^m e \). This implies that \(< b >_{m,0}^c \leq b^m e \). Hence \(b \leq b^m e \). So \(b \) is \((m,0)\)-regular element. Hence \(H \) is \((m,0)\)-regular. The dual statement follows on the similar lines.

\[\square\]

Corollary 5.3 An \(\vee \)-semigroup \(S \) is \((m,0)\)-regular \([(0,n)\)-regular] if and only if each \(\mathcal{Q}_{m,n} \)-class \((\mathcal{H}_{m,n} \)-class) of \(S \) contains an \((m,0)\)-regular \([(0,n)\)-regular] element.

Definition 5.4 Let \(S \) be a \(\text{po}e \)-semigroup and \(m, n \) be positive integers. An element \(a \) of \(S \) is said to be an \((m,n)\)-right regular element if \(a \leq a^m e a^n e \). Further \(S \) is said to be \((m,n)\)-right weakly regular if each element of \(S \) is \((m,n)\)-right weakly regular.

Proposition 5.5 A \(\mathcal{B}_{m,n} \)-class \(B \) of a \(\vee \)-semigroup \(S \) is \((m,n)\)-right weakly regular if it contains an \((m,n)\)-right weakly regular element.

Proof. Let \(a \in B \) be an \((m,n)\)-right weakly regular element and \(b \in B \) be any element of \(B \). Then \(a \leq a^m e a^n e \). So, it follows that \(a^m e a^n \leq (a^m e a^n e)^n e (a^m e a^n e)^n \leq a^m e a^n e \). Since \(a, b \in B \), we have \(< a >_{m,n}^c = a \vee a^m e a^n e \leq a \vee a^m e a^n e = a^m e a^n e \). By Lemmas 4.8 and 4.7, we have \(a^m e a^n = b^m e b^n \). This implies that \(< b >_{m,n}^c \leq b^m e b^n \). So \(b \leq b^m e b^n \). Thus \(b \) is an \((m,n)\)-right weakly regular element of \(B \). Hence \(B \) is \((m,n)\)-right weakly regular.

\[\square\]

Proposition 5.6 A \(\mathcal{Q}_{m,n} \)-class \(Q \) of an \(\text{po}e \)-semigroup \(S \) is \((m,n)\)-right weakly regular if it contains an \((m,n)\)-right weakly regular element.

Proof. Let \(a \in Q \) be an \((m,n)\)-right weakly regular element and \(b \in Q \) be any element of \(Q \). Then \(a \leq a^m e a^n e \). Thus \(a^m e \leq (a^m e a^n e)^m e \leq a^m e a^n e \). Since \(a, b \in Q \), we have \((b)_{m,n}^c = (a)_{m,n}^c = a \vee (a^m e a^n e) \leq a \vee a^m e a^n e \leq a \vee a^m e a^n e = a^m e a^n e \). As, by lemmas 4.10 and 4.7, \(a^m e a^n = b^m e b^n \), we have \((b)_{m,n}^c \leq b^m e b^n \). Thus \(b \leq b^m e b^n \). This implies that \(b \) is an \((m,n)\)-right weakly regular element of \(Q \) and, hence, \(Q \) is \((m,n)\)-right weakly regular.

\[\square\]

Proposition 5.7 An \(\mathcal{H}_{m,n} \)-class \(H \) of a \(\vee \)-semigroup \(S \) is \((m,n)\)-right weakly regular if it contains an \((m,n)\)-right weakly regular element.

Proof. On the lines similar to the proof of Proposition 5.6.

\[\square\]

Corollary 5.8 An \(\text{po}e \)-semigroup \(S \) is \((m,n)\)-right weakly regular if and only if each \(\mathcal{B}_{m,n} \)-class \((\mathcal{Q}_{m,n} \)-class, \(\mathcal{H}_{m,n} \)-class) of \(S \) contains an \((m,n)\)-right weakly regular element.
6 Strong \((m, n)\)-quasi-ideal element

In a poe-semigroup \(S\), meet of an \((m, 0)\)-ideal element \(a\) and a \((0, n)\)-ideal element \(b\) is an \((m, n)\)-quasi-ideal if \((a \land b)^m \land c(a \land b)^n\) exists. The converse statement does not hold in general. As an example [5], let \(S = \{a, b, c, d\}\). Define a binary operation \(\cdot\) as follows:

\[
\begin{array}{cccc}
 a & b & c & d \\
 a & a & a & a \\
 b & a & a & d \\
 c & a & c & c \\
 d & a & c & b \\
\end{array}
\]

Then the set \(\mathcal{P}(S)\) of all non-empty subsets of \(S\) is a poe-semigroup under the binary operation of set products induced by the binary operation defined by the above table and partially ordered by set inclusion. The set \(\{a, b\}\) is an \((1, 1)\)-quasi-ideal element of \(S\). The sets \(\{a\}\), \(\{a, b, c, d\}\), \(\{a, c\}\) and \(\{a\}\), \(\{a, b, c, d\}\), \(\{a, d\}\) are the \((1, 0)\) and \((0, 1)\)-ideal element of \(S\) respectively, but \(\{a, b\}\) is not the intersection of any \((1, 0)\) and \((0, 1)\)-ideal element.

Definition 6.1 Let \(S\) be a \(\vee\)-e-semigroup and \(q\) be an \((m, n)\)-quasi-ideal element of \(S\). Then \(q\) is said to be a strong \((m, n)\)-quasi-ideal element of \(S\) if \(q\) can be written as the meet of an \((m, 0)\)-ideal element and a \((0, n)\)-ideal element.

Theorem 6.2 Let \(S\) be a \(\vee\)-e-semigroup and \(q\) be an \((m, n)\)-quasi-ideal element of \(S\). Then the following are equivalent:
1. \(q\) is a strong \((m, n)\)-quasi-ideal element of \(S\);
2. \(< q >_{<m,0>} \land < q >_{<0,n>} = q\);
3. \(< a >_{<m,0>} \land < b >_{<0,n>} \leq q \quad (\forall a, b \leq q)\).

Proof. (1) \(\Rightarrow\) (2). Let \(q\) be a strong \((m, n)\)-quasi-ideal element of \(S\). Then \(q = a \land b\) for some \((m, 0)\)-ideal element \(a\) and \((0, n)\)-ideal element \(b\) of \(S\). Therefore \(< a >_{<m,0>} = a\) and \(< b >_{<0,n>} = b\). Now, as \(< q >_{<m,0>} = < a \land b >_{<m,0>} = < a >_{<m,0>} \land < a >_{<0,n>} = < a \land b >_{<m,0>} \leq < b >_{<0,n>} = b\), it follows that \(< q >_{<m,0>} \land < q >_{<0,n>} \leq a \land b = q\). Again, as \(q^m e \land eq^n \leq q, \quad q = q \lor (q^m e \land eq^n)\). Therefore \(q \leq q \lor q^n = < q >_{<m,0>}\) and \(q \leq q \lor q^n = < q >_{<0,n>}\). Thus \(q \leq < q >_{<m,0>} \land < q >_{<0,n>} = q\), as required.

(2) \(\Rightarrow\) (3). Obvious.

(3) \(\Rightarrow\) (1). As \(q \leq q\), by (3), we have \(< q >_{<m,0>} \land < q >_{<0,n>} \leq q\). Also, as \(q \leq < q >_{<m,0>} \land < q >_{<0,n>}\), we have \(< q >_{<m,0>} \land < q >_{<0,n>} = q\).

Since \(< q >_{<m,0>}\) and \(< q >_{<0,n>}\) are \((m, 0)\) and \((0, n)\)-ideal elements of \(S\) respectively, by definition, \(q\) is a strong \((m, n)\)-quasi-ideal element of \(S\).

Lemma 6.3 Let \(S\) be an le-semigroup and let \(a \in S\). Then the strong \((m, n)\)-quasi-ideal element of \(S\) generated by the element \(a\), denoted by \(q_s(a)\), is equal to

\(< a >_{<m,0>} \land < a >_{<0,n>}\).
Proof. Let a ∈ S. Then <a><m,0> ∧ <a><0,n> is a strong (m, n)-quasi-ideal element of S. Let q be any strong (m, n)-quasi-ideal element of S such that a ≤ q. Then, by Theorem 6.2, we have <a><m,0> ∧ <a><0,n> ≤ q. Therefore qa(a) = <a><m,0> ∧ <a><0,n>.

Theorem 6.4 Let S be an (m, n)-regular le-semigroup. Then each (m, n)-quasi-ideal element is a strong (m, n)-quasi-ideal element.

Proof. Let S be an (m, n)-regular le-semigroup and q be an (m, n)-quasi-ideal element of S. As q ≤ qmqn, we have q ≤ qmqn and q ≤ eqn. Therefore qmqn = q ∨ qmqn = <q><m,0> and eqn = q ∨ eqn = <q><0,n>. As q ≤ <q><m,0> ∧ <q><0,n>, we have <q><m,0> ∧ <q><0,n> ≤ q. Hence, by Theorem 6.7, q is a strong (m, n)-quasi-ideal element of S.

Lemma 6.5 Each (m, n)-quasi-ideal element in a distributive le-semigroup is a strong (m, n)-quasi-ideal element.

Proof. Straightforward.

Lemma 6.6 Each Hm-class H of S has a strong (m, n)-quasi-ideal element which is the greatest element of H and is equal to <a><m,0> ∧ <a><0,n> for a ∈ H.

Proof. Let a ∈ H. Then, by Lemma 4.3, <a><m,0> ∧ <a><0,n> = <a><m,0> and <a><m,0> ∧ <a><0,n> = <a><m,0>. So, we have <a><m,0> ∧ <a><m,0>, a) ∈ mI and <a><m,0> ∧ <a><m,0>, a) ∈ mI. Now take any element b ∈ H. As b ≤ <m,0>=<m,0> and b ≤ <n,0>=<n,0>, we have b ≤ <a><m,0> ∧ <a><n,0>. Therefore <a><m,0> ∧ <a><n,0> is the greatest strong (m, n)-quasi-ideal element of H.

Theorem 6.7 Let S be an le-semigroup. Then Hm = Qm if and only if each (m, n)-quasi-ideal element is a strong (m, n)-quasi-ideal element.

Proof. Let (a, b) ∈ Hm. Therefore <a><m,0>=<m,0> and <a><0,n>=<0,n>. As each (m, n) quasi-ideal element is a strong (m, n) quasi-ideal element, therefore, by Theorem 6.2, we have

(a)<m,n> = <a><m,0> ∧ <a><0,n> = <a><m,0> ∧ <a><0,n> = <m,0> ∧ <0,n> = <m,0> ∧ <0,n> = <m,0> ∧ <0,n> = (b)<m,n>.
Thus \((a, b) \in Q^n_m\). Hence, by Lemma 4.10, \(Q^n_m = H^n_m\).

Conversely, assume that \(q\) be any \((m, n)\)-quasi-ideal element of \(S\). Therefore \(q \in Q^n_m(a)\) for some \(a \in S\). Let \(x \in Q^n_m(a)\). Then \((x)_{<m,n>} = (q)_{<m,n>} = q\) implies \(x \leq q\). Thus \(x\) is the greatest element of \(Q^n_m(a)\). By assumption \(Q^n_m(a) = H^n_m(a)\). Therefore, by Lemma 6.3, we have \(q = <a >_{<m,n>} \wedge <a >_{<0,n>}\). Hence \(q\) is a strong \((m, n)\)-quasi-ideal element of \(S\).

\[\square \]

Corollary 6.8 In any distributive \(le\)-semigroup, \(H^n_m = Q^n_m\).

Proof. The proof follows by Lemma 4.15 and Theorem 6.7.

\[\square \]

Motivation and Application: The main motivation of the present paper is to introduce the equivalence relations \(mI, I_n, B^m, Q^n_m\) and \(H^n_m\) on an \(le\)-semigroup and enhance the understanding of different classes of \(le\)-semigroups ((\(m, n\))-regular, \((0, n)\)-regular, \((m, n)\)-right weakly regular) by considering the structural influence of the equivalence relations \(mI, I_n, B^m, Q^n_m\) and \(H^n_m\). In particular, if we take \(m = 1 = n\) in the equivalence relations \(mI, I_n, B^m, Q^n_m\) and \(H^n_m\), then we get the equivalence relations \(L, R, B, Q\) and \(H\). Again, if we take \(m = 1 = n\) in Theorem 3.5, Lemma 4.6, Lemma 4.7, Lemma 4.8, Theorem 4.9, Lemma 4.10, Theorem 4.11, Lemma 4.12, Lemma 4.14, Lemma 4.15, Corollary 6.8, then all results of the papers [15–17] are deduced as corollaries which is the main motivation of the paper and a testimony of the genuineness of the notions introduced in the paper.

References

Received: 16.X.2018 / Accepted: 22.II.2019

Authors

Ahsan Mahboob (Corresponding author),
Department of Mathematics,
Aligarh Muslim University,
Aligarh-202002, India,
E-mail: khanahsan56@gmail.com

Noor Mohammad Khan,
Department of Mathematics,
Aligarh Muslim University,
Aligarh-202002, India,
E-mail: nm_khan123@yahoo.co.in