On convergence and summability with speed in ultrametric fields

P.N. Natarajan

Abstract. Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Following Kangro [2–4], we introduce the concepts of convergence with speed λ (or λ-convergence) and λ-summability by the infinite matrix A (or A^λ-summability) in K. We then prove a characterization of the matrix class (c^λ,c^μ), where c^λ denotes the set of all λ-convergent sequences.

Keywords. ultrametric (or non-archimedean) field · convergence with speed λ (or λ-convergence) · λ-summability by the matrix A (or A^λ-summability) · matrix class (c^λ,c^μ)

Mathematics Subject Classification (2010) 40C05 · 40D05 · 40H05 · 46S10

1 Introduction

In the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Sequences, infinite series and infinite matrices have entries in K. For a given sequence $x = \{x_k\}$ in K and an infinite matrix $A = (a_{nk})$, $a_{nk} \in K$, $n,k = 0,1,2,\ldots$, we define

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk}x_k, n = 0,1,2,\ldots,$$

where we suppose that the series on the right converge. $A(x) = \{(Ax)_n\}$ is called the A-transform of the sequence $x = \{x_k\}$.

If X,Y are sequence spaces, we write $A = (a_{nk}) \in (X,Y)$ if $\{(Ax)_n\} \in Y$, whenever $x = \{x_k\} \in X$. In the sequel, c,c_0 respectively denote the ultrametric Banach spaces of convergent and null sequences.

The following result is well-known (for instance, see [5–7]).
Theorem 1.1 (Kojima-Schur) \(A \in (c,c), \) i.e., \(A \) is convergence preserving or conservative if and only if

\[
\sup_{n,k} |a_{nk}| < \infty; \tag{1.1}
\]

\[
\lim_{n \to \infty} a_{nk} = a_k, k = 0, 1, 2, \ldots; \tag{1.2}
\]

and

\[
\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{nk} = a. \tag{1.3}
\]

In such a case,

\[
\lim_{n \to \infty} (Ax)_n = sa + \sum_{k=0}^{\infty} (x_k - s)a_k, \tag{1.4}
\]

where \(\lim_{k \to \infty} x_k = s. \)

In the context of Theorem 1.1, it is worthwhile to note that Monna [5] proved Theorem 1.1 using modern tools like the ultrametric version of the Banach-Steinhaus theorem, while Natarajan [6] proved the same result using the “sliding hump method”.

The following result can be easily proved.

Theorem 1.2 \(A \in (c_0, c) \) if and only if (1.1) and (1.2) hold.

2 Convergence with speed \(\lambda \) (or \(\lambda \)-convergence), \(\lambda \)-summability by the matrix \(A \) (or \(A^\lambda \)-summability), characterization of the matrix class \((c^\lambda, c^\mu) \)

For a detailed study of \(\lambda \)-convergence and \(A^\lambda \)-summability in the classical case, one can refer to [1]. Following Kangro [2–4], we introduce the concepts of \(\lambda \)-convergence and \(A^\lambda \)-summability in \(K \) as follows.

Definition 2.1 Let \(\lambda = \{\lambda_n\} \) be a sequence in \(K \) such that

\[0 < |\lambda_n| \nearrow \infty, n \to \infty. \]

A sequence \(\{x_n\} \) in \(K \) is said to be convergent with speed \(\lambda \) or \(\lambda \)-convergent if \(\{x_n\} \in c \) with \(\lim_{n \to \infty} x_n = s \) (say) and

\[\lim_{n \to \infty} \lambda_n(x_n - s) \text{ exists (finitely)}. \]

\(\{x_n\} \) is said to be \(\lambda \)-summable by the matrix \(A = (a_{nk}) \) or \(A^\lambda \)-summable if the \(A \)-transform of \(x = \{x_n\} \), i.e., \(A(x) = \{(Ax)_n\} \) is \(\lambda \)-convergent.
Let c^λ denote the set of all λ-convergent sequences in K. By definition,
\[c^\lambda \subset c. \]

We note that the sequences
\[e_k = \{0, 0, ..., 0, 1, 0, \ldots\}, \text{1 occurring in the } k\text{th place, } k = 0, 1, 2, \ldots; \]
e = \{1, 1, 1, \ldots\};
and
\[e^\lambda = \{ \frac{1}{\lambda_0}, \frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \ldots \} \]
all belong to c^λ.
Let $\mu = \{\mu_n\}$ be a sequence in K such that
\[0 \prec |\mu_n| \prec \infty, n \to \infty. \]

We now have the following characterization of the matrix class (c^λ, c^μ).

Theorem 2.2 $A = (a_{nk}) \in (c^\lambda, c^\mu)$ if and only if
\[A(e_k), A(e), A(e^\lambda) \in c^\mu, k = 0, 1, 2, \ldots; \]
\[\sup_{n,k} \frac{|a_{nk}|}{\lambda_k} < \infty; \]
and
\[\sup_{n,k} \left| \frac{\mu_n (a_{nk} - a_k)}{\lambda_k} \right| < \infty. \]

Proof. Necessity. Let $A = (a_{nk}) \in (c^\lambda, c^\mu)$. As noted above,
\[e_k, e, e^\lambda \in c^\lambda, k = 0, 1, 2, \ldots \]
and so
\[A(e_k), A(e), A(e^\lambda) \in c^\mu, k = 0, 1, 2, \ldots, \]
i.e., (2.1) holds.
Since $A(e) \in c^\mu$, \(\{ \sum_{k=0}^{\infty} a_{nk} \}_{n=0}^{\infty} \) converges and so (1.3) holds. Let, now,
\(x = \{ x_k \} \in c^\lambda \), with \(\lim_{k \to \infty} x_k = s \). Let \(\beta_k = \lambda_k (x_k - s) \) and \(\lim_{k \to \infty} \beta_k = \beta \).
Then, for \(n = 0, 1, 2, \ldots \),

\[
(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k
= \sum_{k=0}^{\infty} a_{nk} \left(\frac{\beta_k}{\lambda_k} + s \right)
= \sum_{k=0}^{\infty} a_{nk} \frac{\beta_k}{\lambda_k} + s \sum_{k=0}^{\infty} a_{nk}.
\]

(2.4)

Now, \(\{ (Ax)_n \} \in c \) and (1.3) holds. Since \(\{ \beta_k \} \in c \), in view of (2.4), the infinite matrix \(\left(\frac{a_{nk}}{\lambda_k} \right) \in (c,c) \). Now, using Theorem 1.1, we have,

\[
\sup_{n,k} \left| \frac{a_{nk}}{\lambda_k} \right| < \infty,
\]

i.e., (2.2) holds.

Since \(\left(\frac{a_{nk}}{\lambda_k} \right) \in (c,c) \), (1.2) holds and

\[
\lim_{n \to \infty} \sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} \text{ exists and } = a^\lambda \text{ (say)}.
\]

Further, using (1.4), we have,

\[
y = \lim_{n \to \infty} (Ax)_n
= a^\lambda \beta + as + \sum_{k=0}^{\infty} \frac{a_k}{\lambda_k} (\beta_k - \beta).
\]

(2.5)
In view of (2.4) and (2.5),

\[(Ax)_n - y = \sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} \beta_k + s \sum_{k=0}^{\infty} a_{nk} - a^\lambda \beta - as
\]

\[- \sum_{k=0}^{\infty} \frac{a_k}{\lambda_k} (\beta_k - \beta) \]

\[= \sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} (\beta_k - \beta) + s \sum_{k=0}^{\infty} a_{nk} - a^\lambda \beta - as - \sum_{k=0}^{\infty} \frac{a_k}{\lambda_k} (\beta_k - \beta) \]

\[= \sum_{k=0}^{\infty} \frac{a_{nk} - a_k}{\lambda_k} (\beta_k - \beta)
\]

\[+ \beta \left\{ \sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} - a^\lambda \right\}
\]

\[+ s \left\{ \sum_{k=0}^{\infty} a_{nk} - a \right\}. \]

So,

\[\mu_n \{(Ax)_n - y\} = \sum_{k=0}^{\infty} \mu_n \frac{a_{nk} - a_k}{\lambda_k} (\beta_k - \beta)
\]

\[+ \mu_n \beta \left\{ \sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} - a^\lambda \right\}
\]

\[+ \mu_n s \left\{ \sum_{k=0}^{\infty} a_{nk} - a \right\}. \tag{2.6} \]

Since \(A(e) \in e^\mu\),

\[\lim_{n \to \infty} \mu_n \left\{ \sum_{k=0}^{\infty} a_{nk} - a \right\} \text{ exists.} \]

Since \(A(e^\lambda) \in e^\mu\),

\[\lim_{n \to \infty} \mu_n \left\{ \sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} - a^\lambda \right\} \text{ exists.} \]

Since \(\{(Ax)_n\} \in e^\mu\),

\[\lim_{n \to \infty} \mu_n \{(Ax)_n - y\} \text{ exists.} \]
Noting that \(\{ \beta_k - \beta \} \in c_0 \), using (2.6) and Theorem 1.2, the infinite matrix
\[
\left(\mu_n \frac{a_{nk} - a_k}{\lambda_k} \right) \in (c_0, c)
\]
and so
\[
\sup_{n,k} \left| \mu_n \frac{a_{nk} - a_k}{\lambda_k} \right| < \infty,
\]
i.e., (2.3) holds.

Sufficiency. Let (2.1), (2.2) and (2.3) hold. Let \(x = \{ x_k \} \in c^\lambda \). Since \(A(e_k) \in c^\mu \), (1.2) holds. Also, since \(A(e^\lambda) \in c^\mu \), \(\lim_{n \to \infty} \sum_{k=0}^{\infty} \frac{a_{nk}}{\lambda_k} \) exists.

These, along with (2.2) and Theorem 1.2, imply that the infinite matrix
\[
\left(\frac{a_{nk}}{\lambda_k} \right) \in (c, c).
\]
Since \(A(e) \in c^\mu \), (1.3) holds. Now, using (2.4), since \(\{ \beta_k \} \in c \),
\[
\lim_{n \to \infty} (Ax)_n \text{ exists.}
\]
Since \(A(e_k) \in c^\mu \),
\[
\lim_{n \to \infty} \mu_n(a_{nk} - a_k) \text{ exists, } k = 0, 1, 2, \ldots
\]
These, along with (2.3) and Theorem 1.2, imply that the infinite matrix
\[
\left(\mu_n \frac{a_{nk} - a_k}{\lambda_k} \right) \in (c_0, c)
\]
so that
\[
\lim_{n \to \infty} \sum_{k=0}^{\infty} \mu_n(a_{nk} - a_k) \frac{(\beta_k - \beta)}{\lambda_k}
\]
exists, since \(\{ \beta_k - \beta \} \in c_0 \). Now, using (2.6) and the fact that \(A(e), A(e^\lambda) \in c^\mu \), it follows that
\[
\lim_{n \to \infty} \mu_n \{(Ax)_n - y\} \text{ exists,}
\]
i.e., \(\{(Ax)_n\} \in c^\mu \).

This completes the proof of the theorem.

\[\square \]

Definition 2.3 If \(A = (a_{nk}) \in (c^\lambda, c^\lambda) \), \(A \) is said to be \(\lambda \)-conservative or \(\lambda \)-convergence preserving.
Definition 2.4 If \(A \in (c^\lambda, c^\mu) \), where,
\[
\lim_{n \to \infty} \left| \frac{\mu_n}{\lambda_n} \right| = \infty,
\]
(2.7)
\(A \) is said to improve \(\lambda \)-convergence.

Theorem 2.5 Any matrix \(A \), which improves \(\lambda \)-convergence, is \(\lambda \)-conservative.

Proof. Let \(A \in (c^\lambda, c^\mu) \), where (2.7) holds. Let \(x = \{x_k\} \in c^\lambda \), i.e.,
\[
\lim_{k \to \infty} \lambda_k (x_k - s) \text{ exists, where } \lim_{k \to \infty} x_k = s.
\]
Since \(\{(Ax)_n\} \in c^\mu \),
\[
\lim_{n \to \infty} \mu_n \{(Ax)_n - y\} \text{ exists, where } \lim_{n \to \infty} (Ax)_n = y.
\]
We now claim that \(\{(Ax)_n\} \in c^\lambda \), i.e., we have to prove that
\[
\lim_{n \to \infty} \lambda_n \{(Ax)_n - y\} \text{ exists.}
\]
Now,
\[
|\lambda_n \{(Ax)_n - y\}| = |\lambda_n|(Ax)_n - y| = \left| \frac{\lambda_n}{\mu_n} \right| |\mu_n \{(Ax)_n - y\}|
\]
\[
\to 0, \ n \to \infty,
\]
since (2.7) holds and \(\lim_{n \to \infty} \mu_n \{(Ax)_n - y\} \) exists.
This completes the proof of the theorem. \(\square \)

References
Received: 23.XI.2021 / Revised: 21.XII.2021 / Accepted: 22.XII.2021

AUTHOR

P.N. Natarajan,
Old no. 2/3, New no. 3/3,
Second Main Road, R.A. Puram,
Chennai-600028, India,
E-mail: pinnangudinatarajan@gmail.com