Korovkin type theorems in weighted L_p-spaces via statistical A-summability

Sevda Orhan · Tuncer Acar · Fadime Dirik

Received: 8.V.2014 / Accepted: 4.VI.2014

Abstract In this paper, we study Korovkin type approximation theorems on weighted spaces $L_{p,\omega}(\mathbb{R})$ and $L_{p,\Omega}(\mathbb{R}^n)$, with help of statistical A-summability which is stronger than A-statistical convergence. Also, we construct examples such that our new approximation result works but its statistical case does not work.

Keywords Statistical A-summability · Positive linear operator · Korovkin type approximation theorem

Mathematics Subject Classification (2010) 41A25 · 41A36 · 47B38

1 Introduction

Approximation theory has important applications in theory of polynomial approximation, in various areas of functional analysis, in numerical solutions of differential and integral equations, etc [5]. The well-known Korovkin theorem [5,20] on approximation of continuous functions on a compact interval, is mainly based on the existence of the limit $\lim_{n} L_n(f;x) = f(x)$. Many researchers have extended this theorem for various operators on different spaces [1,2,8,12,14,15]. One of the most important paper in these extensions is given by GADJIEV [13].

Recently, some Korovkin type approximation theorems have been studied via statistical convergence [3,4,7,10,17–19]. Also, DIRIK, ARAL and DEMIRCI [6] have studied a Korovkin type approximation theorem on weighted spaces $L_{p,\omega}(\mathbb{R})$ and $L_{p,\Omega}(\mathbb{R}^n)$.
using the concept of I–convergence. Those results which obtained are stronger than the classical Korovkin theorem.

The purpose of the paper is to give Korovkin type approximation theorems on weighted spaces $L_{p,\omega}(\mathbb{R})$ and $L_{p,\Omega}(\mathbb{R}^n)$ using the concept of statistical A-summability which is stronger than A-statistical convergence.

We now recall some basic definitions and notations used in the paper.

Let \mathbb{R} denote the set of real numbers. The function ω is called a weight function if it is a positive continuous function on the whole real axis and, for a fixed $p \in [1, \infty)$, satisfying the condition

$$\int_{\mathbb{R}} t^{2p} \omega(t) \, dt < \infty. \quad (1.1)$$

We denote by $L_{p,\omega}(\mathbb{R})$ $(1 \leq p < \infty)$ the linear space of measurable, p–absolutely integrable functions on \mathbb{R} with respect to weight function ω, i.e.

$$L_{p,\omega}(\mathbb{R}) = \{ f : \omega \in \mathbb{R}; \| f \|_{p,\omega} = \left(\int_{\mathbb{R}} |f(t)|^p \omega(t) \, dt \right)^{\frac{1}{p}} < \infty \}. \quad (1.2)$$

The analogous of (1.1) and (1.2) in multidimensional space are given as follows. Let Ω be a positive continuous function in \mathbb{R}^n, satisfying the condition

$$\int_{\mathbb{R}^n} |t|^{2p} \Omega(t) \, dt < \infty, \quad (1.3)$$

and

$$L_{p,\Omega}(\mathbb{R}^n) = \{ f : \Omega \in \mathbb{R}^n; \| f \|_{p,\Omega} = \left(\int_{\mathbb{R}^n} |f(t)|^p \Omega(t) \, dt \right)^{\frac{1}{p}} < \infty \}. \quad (1.4)$$

Let $A = \{a_{kj}\}, k, j = 1, 2, \ldots$ be an infinite summability matrix. For a given sequence $x = \{x_j\}$, the A–transform of x, denoted by $Ax := \{Ax\}_k$ is given by $(Ax)_k = \sum_{j=1}^{\infty} a_{kj}x_j$, provided the series converges for each $k \in \mathbb{N}$. We say that A is regular (see [16]) if $\lim Ax = L$ whenever $\lim x = L$.

Assume that A is a nonnegative regular summability matrix. The A-density of a subset $K \subset \mathbb{N}$, denoted by $\delta_A(K)$, is given by

$$\delta_A(K) = \lim_k \sum_{j \in K} a_{kj},$$

provided the limit exists. Then the sequence $x = \{x_j\}$ is called A-statistically convergent to L provided that, for every $\varepsilon > 0$,

$$\delta_A(\{ j \in \mathbb{N} : |x_j - L| \geq \varepsilon \}) = 0. \quad (1.5)$$

In this case we write $\text{st}_A \lim x = L$.

Note that if we take $A = (C, 1)$, which is the Cesáro matrix, then $(C, 1)$–statistical convergence coincides with the notion of statistical convergence, which was introduced in [11]. Finally, if we replace the matrix A by the identity matrix, then A–statistical convergence reduces to the usual convergence.
Definition 1.1 ([9]) Let $A = \{a_{kj}\}$ be a non-negative regular summability matrix and $x = \{x_j\}$ be a sequence. We say that x is statistically A–summable to L if for every $\varepsilon > 0$, $\delta\{k \in \mathbb{N} : |(Ax)_k - L| \geq \varepsilon\} = 0$, i.e., $\lim_{N \to \infty} \frac{\sum_{k \leq N} |(Ax)_k - L| \geq \varepsilon}{N} = 0$.

Thus $x = \{x_j\}$ is statistically A–summable to L if and only if Ax is statistically convergent to L. In this case we write $(A)_x \rightarrow x$, $x(L)$, or $\lim_{n \to \infty} (A)_n x = L$.

We note that if we take $A = (C, 1)$ then statistical A–summability is reduced to the statistical $(C, 1)$ – summability.

Let $A = \{a_{kj}\}$ be a non-negative regular summability matrix and $\{L_j\}$ be a sequence of positive linear operators from $L_{p, \omega}$ into $L_{p, \omega}$. By $A_k(f; x)$ we denote

$$ A_k(f; x) = \sum_{j=1}^{\infty} a_{kj} L_j (f(t); x). \quad (1.6) $$

2 Main results

Now we first recall the classical and statistical cases of Korovkin type results introduced in [15, 6], respectively.

Theorem 2.1 ([15]) Let $\{L_j\}_{j \in \mathbb{N}}$ be the sequence of positive linear operators $L_j : L_{p, \omega}(\mathbb{R}) \to L_{p, \omega}(\mathbb{R})$ and let the sequence $\{\|L_j\|\}$ be uniformly bounded. If $\lim_j \|L_j(t^i, x) - x^i\|_{p, \omega} = 0$, $i = 0, 1, 2$, then for any function $f \in L_{p, \omega}(\mathbb{R})$, we have $\lim_j \|L_j(f) - f\|_{p, \omega} = 0$.

Theorem 2.2 ([6]) Let $A = \{a_{kj}\}$ be a non-negative regular summability matrix. Let $\{L_j\}_{j \in \mathbb{N}}$ be the sequence of positive linear operators $L_j : L_{p, \omega}(\mathbb{R}) \to L_{p, \omega}(\mathbb{R})$ and let the sequence $\{\|L_j\|\}$ be uniformly bounded. If $st \rightarrow \lim_j \|L_j(t^i, x) - x^i\|_{p, \omega} = 0$, $i = 0, 1, 2$, then for any function $f \in L_{p, \omega}(\mathbb{R})$, we have $st \rightarrow \lim_j \|L_j(f) - f\|_{p, \omega} = 0$.

Theorem 2.3 Let $A = \{a_{kj}\}$ be a non-negative regular summability matrix and $\{L_j\}$ be a sequence of positive linear operators from $L_{p, \omega}$ into $L_{p, \omega}$. Assume that

$$ \sup_k \|A_k\|_{L_{p, \omega} \to L_{p, \omega}} < \infty. \quad (2.1) $$

If

$$ st \rightarrow \lim_k \|A_k(t^i; x) - x^i\|_{p, \omega} = 0, \quad i = 0, 1, 2, \quad (2.2) $$

then for any function $f \in L_{p, \omega}(\mathbb{R})$, we have $st \rightarrow \lim_k \|A_k f - f\|_{p, \omega} = 0$.

Proof. We give the proof of theorem as similarly as the proof of theorem in [15]. Let $\chi^B(t)$ be the characteristic function of the interval $[-B, B]$ and $\chi^B(t) = 1 - \chi^B(t)$ for any $B \geq 0$. We can choose a such large B such that for every $\varepsilon > 0$, $\|f \chi^B\|_{p, \omega} < \varepsilon$.

Using the assumption of the convergence of the series in (1.6) for each k, f and the linearity of the operators L_j, we get

$$ \|A_k f - f\|_{p, \omega} = \|A_k (\chi^B - \chi^B) f - (\chi^B f)\|_{p, \omega} \leq \|A_k (\chi^B f) - \chi^B f\|_{p, \omega} + \|A_k (\chi^B f) - \chi^B f\|_{p, \omega} \quad (2.3) $$

$$ = I'_k + I''_k. $$

539
From the condition \((2.1)\), there exists a constant \(K > 0\) such that

\[
\sup_k \|A_k\|_{p,\omega} \leq K. \tag{2.4}
\]

Hence, from \((2.1)\), we have \(I_k^p \leq \|A_k \chi_1^B f\|_{p,\omega} + \|\chi_2^B f\|_{p,\omega} \leq (K + 1)\|\chi_2^B f\|_{p,\omega} < (K + 1)\varepsilon\). For every function \(f \in L_{p,\omega}(\mathbb{R})\) the inequality \(\|\chi_1^B f\|_p \leq \omega_{\min}^{-1/p}\|f\|_{p,\omega}\) implies \(L_{p,\omega}(\mathbb{R}) \subset L_p(-B, B)\). Since the space of continuous functions on \([-B, B]\) is dense in \(L_p(-B, B)\), given \(f \in L_{p,\omega}(\mathbb{R})\), for each \(\varepsilon' > 0\), there exists a continuous function \(\varphi\) on \([-B, B]\) satisfying the condition \(\varphi(x) = 0\) for \(|x| > B\) such that

\[
\|(f - \varphi) \chi_1^B\|_p < \frac{\varepsilon'}{2} \tag{2.5}
\]

Using the inequalities \((2.4)\) and \((2.5)\), we get

\[
I_k = \|A_k (\chi_1^B f) - \chi_1^B f\|_{p,\omega}
\leq \|A_k (f - \varphi) \chi_1^B\|_{p,\omega} + \|A_k (\varphi \chi_1^B) - \varphi \chi_1^B\|_{p,\omega} + \|(f - \varphi) \chi_1^B\|_{p,\omega} \tag{2.6}
\]

On the other hand, since \(\chi_2^B \chi_1^B \varphi = 0\) for some \(B_1 > B\), we get the equality

\[
\|A_k (\varphi \chi_1^B) - \varphi \chi_1^B\|_{p,\omega} = \|\left(\chi_1^{B_1} + \chi_2^{B_1}\right) A_k (\varphi \chi_1^B) - \left(\chi_1^{B_1} + \chi_2^{B_1}\right) \varphi \chi_1^B\|_{p,\omega}
\leq \left\|\left[A_k (\varphi \chi_1^B) - \varphi \chi_1^B\right] \chi_1^{B_1}\right\|_{p,\omega} + \left\|\chi_2^{B_1} A_k (\varphi \chi_1^B)\right\|_{p,\omega}.
\]

Now, by denoting \(M_\varphi = \max_{t \in \mathbb{R}} |\varphi(t)| \chi_1^B(t)\), we get

\[
\left\|\chi_2^{B_1} A_k (\varphi \chi_1^B)\right\|_{p,\omega} = \left(\int_{|t| > B_1} |A_k (\varphi \chi_1^B; t)|^p \omega(t) \, dt\right)^{\frac{1}{p}}
\leq M_\varphi \left(\int_{|t| > B_1} |A_k (1; t) - 1|^p \omega(t) \, dt\right)^{\frac{1}{p}} + M_\varphi \left(\int_{\mathbb{R}} \chi_2^{B_1} \omega(t) \, dt\right)^{\frac{1}{p}}.
\]

Since \(\omega \in L_1(\mathbb{R})\), we can choose a number \(B_1\) such that

\[
\left(\int_{\mathbb{R}} \chi_2^{B_1} \omega(t) \, dt\right)^{\frac{1}{p}} < \frac{\varepsilon'}{M_\varphi}.
\]

Using this inequality we have \(\left\|\chi_2^{B_1} A_k (\varphi \chi_1^B)\right\|_{p,\omega} \leq M_\varphi \|A_k (1; x) - 1\|_{p,\omega} + \varepsilon'\). As a corollary, we get the following inequality for \(I_k^p\)

\[
I_k^p \leq 2\varepsilon' + M_\varphi \|A_k (1; x) - 1\|_{p,\omega} + \left\|[A_k (\varphi \chi_1^B) - \varphi \chi_1^B] \chi_1^{B_1}\right\|_{p,\omega}.
\]
Since \(\varphi \chi^B_1 \) is a continuous function on \([-B, B]\), for given any \(\varepsilon' > 0 \) there exist a \(\delta > 0 \) such that \(|\varphi(t) \chi^B_1(t) - \varphi(x) \chi^B_1(x)| < \varepsilon' + 2M_\varepsilon \frac{(t-x)^2}{\delta^2} \). So we have

\[
\|A_k(\varphi \chi^B_1) - \varphi \chi^B_1 \|_{p,\omega} \leq \|A_k((\varphi(t) \chi^B_1(t) - \varphi(x) \chi^B_1(x))(x)) \|_{p,\omega} \\
+ \|\varphi(x) \chi^B_1(x)(A_k(1; x) - 1)\|_{p,\omega} \\
\leq (\varepsilon' + \frac{2M_\varepsilon}{\delta^2}B^2 + M_\varepsilon) \|A_k(1; x) - 1\|_{p,\omega} \\
+ \frac{4M_\varepsilon}{\delta^2} B \|A_k(t; x) - x\|_{p,\omega} + \frac{2M_\varepsilon}{\delta^2} \|A_k(t^2; x) - x^2\|_{p,\omega}.
\]

Using (2.7), we can write

\[
I_k' \leq 2\varepsilon' + \left(\varepsilon' + \frac{2M_\varepsilon}{\delta^2}B^2 + 2M_\varepsilon \right) \|A_k(1; x) - 1\|_{p,\omega} \\
+ \frac{4M_\varepsilon}{\delta^2} B \|A_k(t; x) - x\|_{p,\omega} + \frac{2M_\varepsilon}{\delta^2} \|A_k(t^2; x) - x^2\|_{p,\omega}.
\]

Then we obtain the following equality for (2.3) as \(\|A_k f - f\|_{p,\omega} \leq 2\varepsilon' + (K+1)\varepsilon + C\{\|A_k(1; x) - 1\|_{p,\omega} + \|A_k(t; x) - x\|_{p,\omega} + \|A_k(t^2; x) - x^2\|_{p,\omega}\} \), where \(C := \max\{\varepsilon' + \frac{2M_\varepsilon}{\delta^2}B^2 + 2M_\varepsilon, \frac{4M_\varepsilon}{\delta^2} B, \frac{2M_\varepsilon}{\delta^2}\} \). Let \(r > 0 \) be a number such that \((2\varepsilon' + (K+1)\varepsilon) < r \).

Then, let

\[
D := \left\{ k \leq N : \sum_{i=0}^{2} \|A_k(t^i; x) - x^i\|_{p,\omega} \geq \frac{r - (2\varepsilon' + (K+1)\varepsilon)}{C} \right\},
\]

\[
D_1 := \left\{ k \leq N : \|A_k(1; x) - 1\|_{p,\omega} \geq \frac{r - (2\varepsilon' + (K+1)\varepsilon)}{3C} \right\},
\]

\[
D_2 := \left\{ k \leq N : \|A_k(t; x) - x\|_{p,\omega} \geq \frac{r - (2\varepsilon' + (K+1)\varepsilon)}{3C} \right\},
\]

\[
D_3 := \left\{ k \leq N : \|A_k(t^2; x) - x^2\|_{p,\omega} \geq \frac{r - (2\varepsilon' + (K+1)\varepsilon)}{3C} \right\}.
\]

It is easy to see that \(D \subset D_1 \cup D_2 \cup D_3 \) and we have

\[
\left| \left\{ k \leq N : \|A_k f - f\|_{p,\omega} \geq r \right\} \right| \\
\leq \left| \left\{ k \leq N : \|A_k(1; x) - 1\|_{p,\omega} \geq \frac{r - (2\varepsilon' + (K+1)\varepsilon)}{3C} \right\} \right| \\
+ \left| \left\{ k \leq N : \|A_k(t; x) - x\|_{p,\omega} \geq \frac{r - (2\varepsilon' + (K+1)\varepsilon)}{3C} \right\} \right| \\
+ \left| \left\{ k \leq N : \|A_k(t^2; x) - x^2\|_{p,\omega} \geq \frac{r - (2\varepsilon' + (K+1)\varepsilon)}{3C} \right\} \right|,
\]

541
where \(|A|\) denotes the cardinality of the set \(A\). Then taking the limit \(N \to \infty\), using the hypothesis of theorem, we obtain
\[
\lim_{N \to \infty} \frac{1}{N} \left\lfloor k \leq N : \|A_k f - f\|_{p, \omega} \geq r \right\rfloor = 0
\]
which is the desired result. \(\square\)

Now we give an example of a sequence of positive linear operators which satisfy the conditions of Theorem 2.3 in the weighted space \(L_{p, \omega}(\mathbb{R})\).

Example 2.1 We choose \(\omega(x) = e^{-x}\). Note that this selection of \(\omega\) satisfies the condition (1.1). Also note that for \(1 \leq p < \infty\), \(L_{p, \omega}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} : e^{-x} f(x) \in L_p(\mathbb{R})\}\). Also, \(A = (C, 1)\) is the Cesáro matrix, i.e.,
\[
c_{kj} = \begin{cases} \frac{1}{k}, & 1 \leq j \leq k, \\ 0, & \text{otherwise}. \end{cases}
\]
and \(\alpha = \{\alpha_j\}\) is defined by \(\alpha_j = (-1)^j\), then we can easily see that
\(s t - \lim k ((C, 1) \alpha) = 0\). However, the sequence \((\alpha_j)\) does not converge in usual and statistical sense. The Kantorovich variant of the Szasz-Mirakyan operators [21] by replacing \(f(b_j x)\) with an integral mean of \(f(x)\) over the interval \([s+1]b_j / j, sb_j / j\) is as follows:
\[
S_j (f; x) := \frac{j}{b_j} \sum_{s=0}^{\infty} P_{j, s}(x) \int_{sb_j / j}^{(s+1)b_j / j} f(t) \, dt, \quad j \in \mathbb{N}, \quad x \in [0, b_j),
\]
where \(\{b_j\}\) is a sequence of positive real numbers satisfying the conditions \(\lim_{j \to \infty} \frac{b_j}{j} = 0\) and \(\lim_{j \to \infty} b_j = \infty\) and \(P_{j, s}(x) := e^{-jx/b_j} \left(jx/b_j\right)^s / s!\), \(s = 0, 1, 2, \ldots\). It is known that \(S_j(1; x) = 1\), \(S_j (t; x) = x + \frac{b_j}{j} \) and \(S_j (t^2; x) = x^2 + \frac{2b_j}{j} x + \frac{b_j^2}{3j}\). Then using the operators \(S_j\) and the sequence \(\alpha = (\alpha_j)\), we define the sequence of positive linear operators \(L_j(f; x) = (1 + \alpha_j)S_j(f; x)\) for \(f \in L_{p, \omega}(\mathbb{R})\) and \(j \in \mathbb{N}\). By some simple calculations, we obtain
\[
\|C_k (1; x) - 1\|_{p, \omega} = \left\lfloor \frac{1}{k} \sum_{j=1}^{k} \alpha_j \right\|1\|_{p, \omega},
\]
\[
\|C_k (t; x) - x\|_{p, \omega} \leq \frac{1}{k} \sum_{j=1}^{k} \frac{b_j}{j} \|1\|_{p, \omega} + \left\lfloor \frac{1}{k} \sum_{j=1}^{k} \alpha_j \right\|x\|_{p, \omega},
\]
\[
\|C_k (t^2; x) - x^2\|_{p, \omega} \leq \frac{4}{k} \sum_{j=1}^{k} \frac{b_j}{j} \|x\|_{p, \omega} + \frac{2}{3k} \sum_{j=1}^{k} \frac{b_j^2}{j^2} \|1\|_{p, \omega} + \left\lfloor \frac{1}{k} \sum_{j=1}^{k} \alpha_j \right\|x^2\|_{p, \omega},
\]
where \(C_k (f; x) = \sum_{j=1}^{\infty} c_{kj} L_j (f(t); x)\).
Also, \(\sup_k \|C_k\|_{L_{p, \omega} \to L_{p, \omega}} = \sup_k \sup_{\|f\|_{p, \omega}=1} \|C_k (f; x)\|_{p, \omega} < \infty\). Hence (2.1), (2.2) conditions are provided. For any function \(f \in L_{p, \omega}(\mathbb{R})\), we have \(st - \lim k \|C_k f - f\|_{p, \omega} = 0\).
Also, an analogue of Theorem 2.3 for the space of function of several variables can be obtained. Now we establish this theorem.

Theorem 2.4 Let $A = \{a_{kj}\}$ be an infinite matrix with non-negative real entries and $\{L_j\}$ be a sequence of positive linear operators from $L_{p,\Omega}(\mathbb{R}^n)$ into $L_{p,\Omega}(\mathbb{R}^n)$. Assume that

$$\sup_k \|A_k\|_{L_{p,\Omega}} < \infty. \quad (2.9)$$

If

$$\begin{align*}
st - \lim_k \|A_k(1;x) - 1\|_{p,\Omega} &= 0, \quad i = 0, 1, 2, \\
st - \lim_k \|A_k(t^i;x) - x^i\|_{p,\Omega} &= 0, \quad i = 1, 2, ..., n, \\
st - \lim_k \|A_k(|t|^2;x) - |x|^2\|_{p,\Omega} &= 0, \quad i = 0, 1, 2,
\end{align*} \quad (2.10)$$

then for any function $f \in L_{p,\Omega}(\mathbb{R}^n)$, we have $st - \lim_k \|A_k f - f\|_{p,\Omega} = 0$.

Proof. Let χ_j^B be the characteristic function of the ball $|x| \leq B$ and $\chi_j^B(t) = 1 - \chi_j^B(t)$. Then, it is possible to choose a sufficient large B such that

$$\|f \chi_j^B(t)\|_{p,\Omega} < \varepsilon. \quad (2.11)$$

By the condition (2.9) there exists a positive constant K' such that $\sup_k \|A_k\|_{p,\Omega} \leq K'$ and so, for given $\varepsilon' > 0$ there exists a continuous function θ on $|x| \leq B$ satisfying the condition $\theta(x) = 0$, for $|x| > B$ and such that

$$\|f - \theta \chi_1^B\|_{p,\Omega} < \frac{\varepsilon'}{(K' + 1) \left(\max_{|t| \leq B} \Omega(t)\right)^{1/p}}. \quad (2.12)$$

Since the series (1.6) is convergent for each k, f and using the linearity of the operators L_j, which means the linearity of A_k, we obtain

$$\|A_k f - f\|_{p,\Omega} \leq \|A_k(\chi_1^B \theta) - \chi_1^B \theta\|_{p,\Omega} + (K' + 1) \varepsilon + \varepsilon'. \quad (2.12)$$

Let $B_1 > B$, so we also have $\|A_k(\chi_1^B \theta) - \chi_1^B \theta\|_{p,\Omega} \leq \|A_k(\chi_1^B \theta) - \chi_1^B \theta||\chi_1^B\|_{p,\Omega} + M_\theta \|A_k(1) - 1\|_{p,\Omega} + M_\theta \|\chi_1^B\|_{p,\Omega}$, where $M_\theta := \max_{t \in \mathbb{R}^n} \|\theta(t)\|_{p,\Omega}$. Furthermore, we can choose B_1 such that $\|\chi_1^B\|_{p,\Omega} < \varepsilon'/M_\theta$, and for sufficiently large k, we estimate $\|A_k(1) - 1\|_{p,\Omega} < \varepsilon'/M_\theta$. Substituting these estimates in (2.12), we obtain

$$\|A_k f - f\|_{p,\Omega} \leq \|A_k(\chi_1^B \theta) - \chi_1^B \theta\|_{p,\Omega} + (K' + 1) \varepsilon + 3 \varepsilon'. \quad (2.12)$$

Since $|\chi_1^B(t)\theta(t) - \chi_1^B(x)\theta(x)| < \varepsilon' + 2M_\theta \sqrt{|t - x|^2}$ we can write

$$\|A_k f - f\|_{p,\Omega} \leq (K' + 1) \varepsilon + 4 \varepsilon' K' \|\Omega\|_1^{1/p} + C \left\{ \|A_k(|t|^2;x) - |x|^2\|_{p,\Omega} + \|A_k(1) - 1\|_{p,\Omega} \right\}.$$
where $C = 2M_\theta \frac{(1+B)^2}{3}$. Now for a given $r' > 0$ such that $(2\varepsilon' + (K' + 1) \varepsilon) < r'$. Then, let us define the following sets

$$D := \left\{ k \leq N : \|A_k f - f\|_{p,\Omega} \geq r' \right\},$$

$$D_1 := \left\{ k \leq N : \|A_k (1; x) - 1\|_{p,\Omega} \geq \frac{r' - (2\varepsilon' + (K' + 1) \varepsilon)}{3C} \right\},$$

$$D_2 := \left\{ k \leq N : \sum_{i=1}^{n} \|A_k (t^i; x) - x^i\|_{p,\Omega} \geq \frac{r' - (2\varepsilon' + (K' + 1) \varepsilon)}{3C} \right\},$$

$$D_3 := \left\{ k \leq N : \|A_k (|t|^2; x) - |x|^2\|_{p,\Omega} \geq \frac{r' - (2\varepsilon' + (K' + 1) \varepsilon)}{3C} \right\}.$$

It is easy to see that $D \subset D_1 \cup D_2 \cup D_3$ and we have

$$\left| \left\{ k \leq N : \|A_k f - f\|_{p,\Omega} \geq r' \right\} \right| \leq \left| \left\{ k \leq N : \|A_k (1; x) - 1\|_{p,\Omega} \geq \frac{r' - (2\varepsilon' + (K' + 1) \varepsilon)}{3C} \right\} \right| + \left| \left\{ k \leq N : \sum_{i=1}^{n} \|A_k (t^i; x) - x^i\|_{p,\Omega} \geq \frac{r' - (2\varepsilon' + (K' + 1) \varepsilon)}{3C} \right\} \right| + \left| \left\{ k \leq N : \|A_k (|t|^2; x) - |x|^2\|_{p,\Omega} \geq \frac{r' - (2\varepsilon' + (K' + 1) \varepsilon)}{3C} \right\} \right|,$$

where $|A|$ denotes the cardinality of the set A. Then taking the limit as $N \to \infty$, using the hypothesis of theorem, we obtain $\lim_{N \to \infty} \frac{1}{N} |\{ k \leq N : \|A_k f - f\|_{p,\Omega} \geq r' \}| = 0$ which is desired. \qed

Now we give an example such that:

Example 2.2 We choose $\Omega(x, y) = e^{-x-y}$. Note that this selection of Ω satisfies the condition (1.3). Also note that for $1 \leq p < \infty$, $L_{p,\Omega}(\mathbb{R}^2) = \{ f : \mathbb{R}^2 \to \mathbb{R} : \Omega(x, y)f(x) \in L_p(\mathbb{R}^2) \}$. Also, let $A = (C, 1)$ and $\alpha = (\alpha_j)$ be as the Example 2.1. The Kantorovich variant of the double Szasz-Mirakyan operators by replacing $f(\frac{tb_j}{j}, \frac{sb_j}{j})$ with an integral mean of $f(x, y)$ over the interval $[(t+1)b_j/j, tb_j/j] \times [(s+1)b_j/j, sb_j/j]$ is as follows: for $j \in \mathbb{N}$, $x, y \in [0, b_j)$,

$$S_j(f; x, y) := \frac{j^2}{b_j^2} \sum_{t=0}^{\infty} \sum_{s=0}^{\infty} P_{j,t,s}(x, y) \int_{tb_j/j}^{(t+1)b_j/j} \int_{sb_j/j}^{(s+1)b_j/j} f(u, v) dudv, \quad (2.13)$$

where $\{b_j\}$ is a sequence of positive real numbers satisfying the conditions $\lim_{j \to \infty} \frac{b_j}{j} = 0$ and $\lim_{j \to \infty} b_j = \infty$ and

$$P_{j,t,s}(x, y) := e^{-\frac{j(x+y)}{k_j}} \frac{(jx)^t(jy)^s}{t!s!b_j^{t+s}}, \quad t, s = 0, 1, 2,$$
It is known that
\[S_j (1; x, y) = 1, \]
\[S_j (u; x, y) = x + \frac{b_j}{2^j}, \]
\[S_j (v; x, y) = y + \frac{b_j}{2^j}, \]
\[S_j (u^2 + v^2; x, y) = x^2 + y^2 + \frac{2b_j}{j} (x + y) + \frac{2b_j^2}{3j^2}. \]

Then using the operators \(S_j \) and the sequence \(\alpha = (\alpha_j) \), we define the sequence of positive linear operators \(L_j(f; x, y) = (1 + \alpha_j) S_j(f; x, y) \) for \(f \in L_{p,\Omega}(\mathbb{R}^2) \) and \(j \in \mathbb{N} \).

By some simple calculations, we obtain
\[
\| C_k (1; x, y) - 1 \|_{p,\Omega} = \left| \frac{1}{k} \sum_{j=1}^{k} \alpha_j \right| \| 1 \|_{p,\Omega},
\]
\[
\| C_k (u; x, y) - x \|_{p,\Omega} \leq \frac{1}{k} \sum_{j=1}^{k} \frac{b_j}{j} \| 1 \|_{p,\Omega} + \left| \frac{1}{k} \sum_{j=1}^{k} \alpha_j \right| \| x \|_{p,\Omega},
\]
\[
\| C_k (v; x, y) - y \|_{p,\Omega} \leq \frac{1}{k} \sum_{j=1}^{k} \frac{b_j}{j} \| 1 \|_{p,\Omega} + \left| \frac{1}{k} \sum_{j=1}^{k} \alpha_j \right| \| y \|_{p,\Omega},
\]
\[
\| C_k (u^2 + v^2; x, y) - (x^2 + y^2) \|_{p,\Omega} \leq \frac{4}{k} \sum_{j=1}^{k} \frac{b_j}{j} \| x + y \|_{p,\Omega} + \left| \frac{1}{k} \sum_{j=1}^{k} \alpha_j \right| \| x^2 + y^2 \|_{p,\Omega},
\]

where \(C_k (f; x, y) = \sum_{j=1}^{\infty} c_{kj} L_j (f(u, v); x, y) \). Also,
\[
\sup_k \| C_k \|_{L_{p,\Omega} \rightarrow L_{p,\Omega}} = \sup_k \sup_{\| f \|_{p,\Omega} = 1} \| C_k (f; x, y) \|_{p,\Omega} < \infty.
\]

Hence, (2.9), (2.10) conditions are provided which means that for any function \(f \in L_{p,\Omega}(\mathbb{R}^2) \), we have \(st \lim_k \| C_k f - f \|_{p,\Omega} = 0 \).

Acknowledgements The authors are thankful to referee(s) for making valuable suggestions leading to a better presentation of the paper.

References