A VANISHING THEOREM FOR VERTICAL TENSOR FIELDS ON COMPLEX FINSLER BUNDLES

BY

CRISTIAN IDA

Abstract. Using the Bochner technique for the vertical Laplacian associated to a complex Finsler bundle \((E, L)\) over a hermitian manifold \((M, g)\), we obtain a vanishing theorem for holomorphic vertical tensor fields with compact support on the total space of \((E, L)\).

Mathematics Subject Classification 2000: 53B40, 53B21, 32L20.

Key words: complex Finsler bundles, vertical Laplacian, vanishing theorems.

1. Introduction and preliminaries notions

The importance of Bochner technique, initiated in \([4, 5, 6]\), in geometrical study both in Riemannian and Kählerian manifolds, is without question, and for instance, were discussed in details in \([8, 12, 16, 19, 20, 22]\). The study of existence of holomorphic sections on complex Finsler bundles was initiated in \([13]\). There is obtained an important theorem which states that a holomorphic vector bundle \(E\) with a strongly pseudoconvex complex Finsler metric \(F\) over a compact hermitian manifold \((M, g)\) admits no holomorphic sections if a mean curvature is negative, (see also \([3, 10]\) and \([14]\)). Different from \([13, 14]\), using the Bochner technique for the horizontal Laplacian associated to a strongly Kähler-Finsler manifold, recently in \([24]\), is obtained a vanishing theorem of holomorphic forms on strongly Kähler-Finsler manifolds. This theorem generalizes the classical vanishing theorems of holomorphic tensor fields on Kähler manifolds \([5, 6]\). Also, in \([21]\), are obtained some vanishing theorems of Bochner and Kodaira type for some horizontal forms on strongly Kähler-Finsler manifolds.
In a previous paper [11], we have proved that the vertical Laplacian associated to a complex Finsler bundle \((E, L)\) over a hermitian manifold \((M, g)\) has similar properties as the horizontal Laplacian associated to a strongly Kähler-Finsler manifold. Thus, following the same ideas from [23, 24], in the present paper we obtain a vanishing theorem of Bochner type for holomorphic vertical tensor fields with compact support on the total space of \((E, L)\).

Let us begin our study with a short review of the geometry of the total space of a complex Finsler bundle. For more, see [1, 2, 3, 17].

Let \(\pi : E \to M\) be a holomorphic vector bundle of rank \(m \geq 2\) over a complex manifold \(M\) of \(\text{dim}_{\mathbb{C}} M = n\). Let us consider \(U = \{U_\alpha\}\) an open covering set of \(M\) and \((z^k)\), \(k = 1, \ldots, n\) the local complex coordinates in a chart \((U, \varphi)\) and \(s_U = \{s_a\}, a = 1, \ldots, m\) a local holomorphic frame for the sections of \(E\) over \(U\). The covering \(\{U, s_U\}, U \in U\) induces a complex coordinate system \(\mathbf{u} = (z^k, \eta^a)\) on \(\pi_1^{-1}(U)\), where \(s = \eta^a s_a\) is a holomorphic section on \(E_z = \pi^{-1}(z)\). If we denote by \(g_{UV} : U \cap V \to GL(m, \mathbb{C})\) the transition functions, then in \(z \in U \cap V\), \(g_{UV}(z)\) has a local representation by the complex matrix \(M^a_b(z)\) and if \((z'^k, \eta'^a)\) are the complex coordinates in \(\pi^{-1}(V)\), the transition laws of these coordinates are:

\[
(1.1) \quad z'^k = z'^k(z), \quad \eta'^a = M^a_b(z) \eta^b,
\]

where \(M^a_b(z), a, b = 1, \ldots, m\) are holomorphic functions and \(\det M^a_b \neq 0\).

As we already know, the total space \(E\) has a structure of \((m + n)\)-dimensional complex manifold because the transition functions \(M^a_b(z)\) are holomorphic. Consider the complexified tangent bundle \(T^C E = T' E \oplus T'' E\), where \(T' E\) and \(T'' E = \overline{T'E}\) are the holomorphic and antiholomorphic tangent bundles. The vertical holomorphic tangent bundle \(V E = \ker \pi_*\) is the relative tangent bundle of the holomorphic projection \(\pi\) and a local frame field on \(V_u E\) is \(\{\frac{\partial}{\partial z^k}\}, a = 1, \ldots, m\). The vertical distribution \(V_u E\) is isomorphic to the sections module of \(E\) in \(u\).

A subbundle \(H E\) of \(T' E\) complementary to \(V E\), i.e. \(T' E = V E \oplus H E\), is called a complex nonlinear connection on \(E\), briefly c.n.c. A local base for the horizontal distribution \(H_u E\), called adapted for the c.n.c. is \(\{\frac{\delta}{\delta z^k} = \frac{\partial}{\partial z^k} - N^a_k \frac{\partial}{\partial \eta^a}\}, k = 1, \ldots, n\), where \(N^a_k(z, \eta)\) are the coefficients of the c.n.c.

As in the case of general theory of vector bundles see [15], we notice that the existence of a c.n.c. is an important ingredient in the "linearization" of geometry of the total space of a holomorphic vector bundle.
In the following we consider the abbreviate notations: $\partial_k = \frac{\partial}{\partial z^k}$; $\delta_k = \frac{\partial}{\partial \zeta^k}$. The adapted frames denoted by $\{\delta_k := \frac{\delta}{\delta z^k}\}$ and $\{\partial_k := \frac{\partial}{\partial \zeta^k}\}$, for the distributions $\mathcal{V}E$ and $\mathcal{H}E$ are obtained respectively by conjugation. The adapted coframes are locally given by $\{dz^k\}$, $\{\delta \eta^a = d\eta^a + N^a_k dz^k\}$, $\{d\zeta^k\}$ and $\{\delta \eta^a = d\eta^a + N^a_k d\zeta^k\}$, respectively.

A strictly pseudoconvex complex Finsler structure on E, is a positive real valued smooth function $F^2 = L : E \to \mathbb{R}_+ \cup \{0\}$, which satisfies the following conditions:

(i) L is smooth on $E - \{\text{zero section}\}$;
(ii) $L(z, \eta) \geq 0$ and $L(z, \eta) = 0$ if and only if $\eta = 0$;
(iii) $L(z, \lambda \eta) = |\lambda|^2 L(z, \eta)$ for any $\lambda \in \mathbb{C}$;
(iv) $(h^a_b) = (\delta_a \delta_b (L))$ (the complex Levi matrix) is positive defined and determines a hermitian metric tensor on the fibers of vertical bundle VE.

Definition 1.1 ([13]). The pair (E, L) is called a complex Finsler bundle.

According to [2], [17], a c.n.c. related only to the complex Finsler structure L is the Chern-Finsler c.n.c., locally given by

\begin{equation}
(1.2)
\end{equation}

\[C^F_k = h^a_a \partial_k \delta_a (L). \]

We also identify the holomorphic local frame fields $s = \{s_1, \ldots, s_m\}$ of E, with the one of the pull-back bundle $\tilde{E} := \pi^* E$ which is isomorphic to VE by $\delta_a \leftrightarrow \pi^* s_a := s_a$. Then, \tilde{E} admits a hermitian metric h_L defined by

\begin{equation}
(1.3)
\end{equation}

\[h_L(Z, W) = h_{ab} Z^a \overline{W^b} \text{ for any } Z = Z^a s_a, W^a s_a \in \Gamma(\tilde{E}). \]

Let $\nabla : \Gamma(\tilde{E}) \to A^1(\tilde{E})$ be the hermitian connection of the bundle (\tilde{E}, h_L), i.e. $\nabla = \nabla' + \nabla''$ is the unique connection on the bundle (\tilde{E}, h_L) satisfying the conditions

\begin{equation}
(1.4)
\end{equation}

\[\nabla'' = d''; \quad dh_L(Z, W) = h_L(\nabla Z, W) + h_L(Z, \nabla W), \quad \forall Z, W \in \Gamma(\tilde{E}). \]

Definition 1.2 ([1]). The hermitian connection ∇ on (\tilde{E}, h_L) is called the Chern-Finsler linear connection of the bundle (E, L).
The \((1,0)\)-connection form \(\omega = (\omega^a_b)\) of \(\nabla\), with respect to a holomorphic frame \(s = \{s_a\}, a = 1, \ldots, m\), is defined by
\[
\nabla s_b = \omega^a_b \otimes s_a, \quad \omega^a_b = \Gamma^a_{bk} dz^k + C^a_{bc} d\eta^c,
\]
where the local coefficients of the connection are given by
\[
\Gamma^a_{bk} = h^a_{ca} \partial_k (h_{bc}), \quad C^a_{bc} = h^a_{da} \partial_c (h_{bd}).
\]
Using the adapted frames and coframes with respect to the Chern-Finsler c.n.c., the \((1,0)\)-connection form \(\omega^a_b\) can be rewritten by
\[
\omega^a_b = L^a_{bk} dz^k + C^a_{bc} \delta \eta^c, \quad L^a_{bk} = h^a_{ca} \delta_k (h_{bc}).
\]
We notice that the vertical coefficients \(C^a_{bc}\) satisfy the symmetry relation \(C^a_{bc} = C^a_{cb}\) and it is easy to check that \(C^a_{ab} = \partial_b (\ln h)\) where \(h = \det(h_{ab})\).

The \((1,1)\)-curvature form \(R = (R^a_b)\) of \(\nabla\) is locally given by
\[
R^a_b = d'' \omega^a_b.
\]
Using the decomposition \(d'' = d''^h + d''^v + \partial_1 + \partial_2\), see [9], [18], a straightforward calculus in (1.8) leads to the following decomposition of the curvature
\[
R = R^{\bar{h}\bar{b}} + R^{h\bar{b}} + R^{\bar{v}\bar{b}} + R^{v\bar{b}},
\]
i.e. in a horizontal component \(R^{\bar{h}\bar{b}}\), in two mixed components \(R^{h\bar{b}}, R^{\bar{v}\bar{b}}\) and a vertical component \(R^{v\bar{b}}\). Also, we notice that with respect to a holomorphic local frame field \(s = \{s_a\}\) the vertical part of the curvature is given by
\[
R^{v\bar{b}} s_b = (S^a_{b,\bar{c}} \delta \eta^c \wedge \delta \eta^d) s_a,
\]
where \(S^a_{b,\bar{c}} = - \partial_\bar{c} (C^a_{bc})\) and it will be important in our study.

2. Vertical Ricci identities

In this section, we briefly recall the vertical covariant derivatives with respect to the Chern-Finsler connection for contravariant and covariant vertical tensor fields. Also, some vertical Ricci identities are established.
If $T_{ApBq}(z, \eta)$ are the components of a contravariant vertical complex tensor field of type (p, q) on E, where $A_p = (a_1 \ldots a_p)$ and $B_q = (b_1 \ldots b_q)$, then its vertical covariant derivatives with respect to the Chern-Finsler connection are given by

\[(2.1) \quad \nabla_{\partial a} T_{ApBq} = \dot{\partial}_a (T_{ApBq}) + \sum_{k=1}^{p} T_{a_1 \ldots a_{k-1} \lambda a_{k+1} \ldots a_p Bq} C_{\lambda a}^{a_k},\]

\[(2.2) \quad \nabla_{\partial \pi} T_{ApBq} = \dot{\partial}_{\pi} (T_{ApBq}) + \sum_{k=1}^{q} T_{Apb_1 \ldots b_{k-1} \lambda b_{k+1} \ldots b_q Bq} C_{Bq}^{b_k}.\]

If $T_{ApBq}(z, \eta)$ are the components of a covariant vertical complex tensor field of type (p, q) on E, then its vertical covariant derivatives with respect to the Chern-Finsler connection are given by

\[(2.3) \quad \nabla_{\partial a} T_{ApBq} = \dot{\partial}_a (T_{ApBq}) - \sum_{k=1}^{p} T_{a_1 \ldots a_{k-1} \lambda a_{k+1} \ldots a_p Bq} C_{\lambda a}^{a_k},\]

\[(2.4) \quad \nabla_{\partial \pi} T_{ApBq} = \dot{\partial}_{\pi} (T_{ApBq}) - \sum_{k=1}^{q} T_{Apb_1 \ldots b_{k-1} \lambda b_{k+1} \ldots b_q Bq} C_{Bq}^{b_k}.\]

We remark that if we combine the formulas above, we get the vertical covariant derivatives for mixed contravariant and covariant vertical complex tensor fields. Also, it is easy to check

\[(2.5) \quad \nabla_{\partial c} h_{\alpha \bar{\beta}} = \nabla_{\partial \alpha} h_{\bar{\beta} \alpha} = \nabla_{\partial \alpha} h_{\bar{\beta} \alpha} = \nabla_{\partial \alpha} h_{\bar{\beta} \alpha} = 0.\]

Now, by using the above vertical covariant derivatives with respect to Chern-Finsler connection, a straightforward calculus leads to

Proposition 2.1. Let (E, L) be a complex Finsler bundle, X^a the components of a contravariant vertical complex tensor field X on E and φ_a the components of a covariant vertical complex tensor field φ on E. Then

\[\left[\nabla_{\partial \alpha}, \nabla_{\partial \beta}\right] X^a = X^d S_{d,a,\beta}^a, \quad \left[\nabla_{\partial \alpha}, \nabla_{\partial \beta}\right] X^\pi = -X^d S_{d,a,\beta}^\pi,\]

\[\left[\nabla_{\partial \alpha}, \nabla_{\partial \beta}\right] \varphi_a = -\varphi_d S_{d,a,\beta}^a, \quad \left[\nabla_{\partial \alpha}, \nabla_{\partial \beta}\right] \varphi^\pi = \varphi_d S_{d,a,\beta}^{\pi}.\]

If we denote by $S_{a_5,a_6} = h_{a_5} S_{a_5 a_6}^{a_7}$, then, by using the homogeneity conditions of complex Finsler structure L, namely

\[\dot{\partial}_c (h_{a \bar{\beta}}) \eta^c = 0, \quad \dot{\partial}_c (h_{a \bar{\beta}}) \eta^a = 0, \quad \dot{\partial}_{\pi} (h_{a \bar{\beta}}) \eta^b = 0, \quad \dot{\partial}_{\pi} (h_{a \bar{\beta}}) \eta^c = 0,\]

we obtain
Proposition 2.2. Let \((E, L)\) be a complex Finsler bundle. Then

\[
(S_{\bar{a},\bar{c}}^a - S_{\bar{b},\bar{a}}^c)\eta^a \bar{\eta}^b = 0, \tag{2.6}
\]
\[
S_{\bar{a}}^c \bar{a} - S_{\bar{c}, \bar{a}}^a = 0, \tag{2.7}
\]
\[
(S_{\bar{a}, \bar{c}}^a - S_{\bar{d}, a\bar{d}})\eta^a \bar{\eta}^b \bar{\eta}^c \bar{\eta}^d = 0. \tag{2.8}
\]

Definition 2.1. The vertical generalized Ricci tensor field of \((E, L)\) is locally defined by

\[
S_{a\bar{d}} = S_{\bar{a}, \bar{d}}^b = -\partial_a (C_{ab})^b. \tag{2.9}
\]

We also have

\[
S_{a\bar{d}} = h^{ac} S_{a\bar{c}, \bar{a}}^d = -\partial_a (\ln h). \tag{2.10}
\]

3. A vanishing theorem

Let us suppose that the base manifold of the complex Finsler bundle \((E, L)\) is a hermitian manifold \((M, g)\). Then, due to [7], in natural manner we can consider the following hermitian metric structure of Sasaki type on \(E\)

\[
G = g_{\bar{z}}(z) dz^j \otimes d\bar{z}^k + h_{ab}(z, \eta) \delta \eta^a \otimes \delta \bar{\eta}^b, \tag{3.1}
\]

where \(g_{\bar{z}}(z)\) is the hermitian metric on the base manifold \(M\), \(h_{ab}(z, \eta)\) is the fundamental metric tensor defined by the complex Finsler structure \(L\) and the adapted coframes are considered with respect to the Chern-Finsler c.n.c.

In [11], is proved that with respect to the hermitian metric structure from (3.1) the vertical complex Laplacians for smooth functions on \(E\) are given by

\[
\Box' f = \frac{1}{h} \partial_a (hh^{\bar{a}} \partial_{\bar{a}} f) \quad \text{and} \quad \Box'' f = \frac{1}{h} \partial_{\bar{a}} (hh^{\bar{a}} \partial_{\bar{a}} f). \tag{3.2}
\]

Remark 3.1. In terms of the vertical covariant derivatives with respect to the Chern-Finsler linear connection, we have

\[
\Box' f = h^{ba} \nabla_{\partial_a} \nabla_{\partial_b} f. \tag{3.3}
\]
Also, if \(f \) is a smooth function with compact support on \(E \) then, we have

\[
\int_E \Box^v f dV_E = 0,
\]

where \(dV_E \) is the volume form associated to the hermitian structure \(G \) on \(E \), see for details [11].

Now, let \(X^{A_p}_{B_q}(z, \eta) \) be the components of a mixed vertical complex tensor field \(X \) with compact support on \(E \) of contravariant valency \(p \) and of covariant valency \(q \). In the following we denote by \(||X||^2 \) the local scalar product of this tensor with itself with respect to the natural inner product induced by the hermitian metric structure \(G \) on \(E \), that is

\[
||X||^2 = h_{A_pC_p}h^{D_qB_q}X^{A_p}_{B_q}X^{C_p}_{D_q}
\]

where \(h_{A_pC_p} = h_{a_1\bar{a}_1}\ldots h_{a_p\bar{a}_p} \) and \(h^{D_qB_q} = h_{\bar{d}_1b_1}\ldots h_{\bar{d}_q b_q} \).

If \(X^{A_p}_{B_q}(z, \eta) \) are holomorphic functions of the fiber coordinates \((\eta^a) \), then

\[
\nabla_{\frac{\partial}{\partial \eta}} X^{A_p}_{B_q} = 0.
\]

We have

Proposition 3.1. Let \((E, L)\) be a complex Finsler bundle over a hermitian manifold \((M, g)\). Then

\[
\Box^v ||X||^2 = ||\nabla^v X||^2 + G^v(X),
\]

where we have denoted \(||\nabla^v X||^2 = h^{5a}h_{A_pC_p}h^{D_qB_q}(\nabla_{\frac{\partial}{\partial \eta}} X^{A_p}_{B_q})(\nabla_{\frac{\partial}{\partial \eta}} X^{C_p}_{D_q}) \),

\[
G^v(X) = -\sum_{k=1}^{p} S_{\lambda_k}^{\bar{X}_{C_p}} X^{D_q}_{C_p} X^{\bar{X}_{\bar{d}_1k+1\ldots \bar{d}_q}} + \sum_{k=1}^{q} S_{\lambda_k}^{\bar{X}_{D_q}} X^{C_p}_{D_q} X^{\bar{X}_{\bar{d}_1k+1\ldots \bar{d}_q}},
\]

and \(X^{D_q}_{C_p} = h_{A_pC_p}h^{D_qB_q}X^{A_p}_{B_q} \), \(S_{\lambda_k}^{\bar{X}_{C_p}} = h_{5a}S_{\lambda_k}^{\bar{X}_{\bar{d}_1k+1\ldots \bar{d}_q}} \).

Proof. We have

\[
\Box^v ||X||^2 = h^{5a} \nabla_{\frac{\partial}{\partial \eta}} \nabla_{\frac{\partial}{\partial \eta}} (h_{A_pC_p}h^{D_qB_q}X^{A_p}_{B_q}X^{C_p}_{D_q})
\]

\[
= h^{5a}h_{A_pC_p}h^{D_qB_q} \nabla_{\frac{\partial}{\partial \eta}} (X^{A_p}_{B_q} \nabla_{\frac{\partial}{\partial \eta}} X^{C_p}_{D_q})
\]

\[
= h^{5a}h_{A_pC_p}h^{D_qB_q} \nabla_{\frac{\partial}{\partial \eta}} X^{A_p}_{B_q} \nabla_{\frac{\partial}{\partial \eta}} X^{C_p}_{D_q} + X^{A_p}_{B_q} \nabla_{\frac{\partial}{\partial \eta}} X^{C_p}_{D_q}
\]

\[
+ \sum_{k=1}^{p} X^{\bar{X}_{C_p}} X^{\bar{X}_{\bar{d}_1k+1\ldots \bar{d}_q}} C_{\lambda_k}^{\bar{X}_{\bar{d}_1k+1\ldots \bar{d}_q}} B_{\lambda_k}^{\bar{X}} = \sum_{k=1}^{q} X^{\bar{X}_{D_q}} X^{\bar{X}_{\bar{d}_1k+1\ldots \bar{d}_q}} C_{\lambda_k}^{\bar{X}_{\bar{d}_1k+1\ldots \bar{d}_q}} B_{\lambda_k}^{\bar{X}}
\]
Let $b \in L^2_{\text{loc}}(X, \mathbb{R})$. If $X = \sum_{a} X^a \frac{\partial}{\partial x^a}$, then

$$\nabla_{\partial b} X^a = 0.$$

which completes the proof. \hfill \Box

Theorem 3.1. Let (E, L) be a complex Finsler bundle over a hermitian manifold (M, g) and $X^A_{B_q}(z, \eta)$ be the components of a mixed vertical complex tensor field with compact support on E. If $X^A_{B_q}$ are holomorphic functions of fiber coordinates (η^a) and satisfy the inequality $\Re G^v(X) \geq 0$ then $G^v(X) = 0$ and $\nabla_{\partial a} X^A_{B_q} = 0$ at every point $(z, \eta) \in E$.

Finally, we give some particularizations of the above theorem.

Proposition 3.2. Let (E, L) be a complex Finsler bundle over a hermitian manifold (M, g) and $X^a(z, \eta)$ the components of a contravariant vertical complex tensor field with compact support on E. Then

(i) If X^a are holomorphic functions of (η^a) coordinates and $\Re S^a_{b} X^a X^b \leq 0$ then $\nabla_{\partial b} X^a = 0$;

(ii) If X^a are holomorphic functions of (η^a) coordinates and $\Re S^a_{b} X^a X^b < 0$ then $X^a = 0$.

Proposition 3.3. Let (E, L) be a complex Finsler bundle over a hermitian manifold (M, g) and $\varphi_a(z, \eta)$ the components of a covariant vertical complex tensor field with compact support on E. If we denote by $S^a_{b} = h^{c\bar{d}} h^p_{a\bar{q}} S^c_{b} \mathcal{E}_{c\bar{d}p \bar{q}}$, then

(i) If φ_a are holomorphic functions of (η^a) coordinates and $\Re S^a_{b} \varphi_a \overline{\varphi_b} \geq 0$ then $\nabla_{\partial b} \varphi_a = 0$;

(ii) If φ_a are holomorphic functions of (η^a) coordinates and $\Re S^a_{b} \varphi_a \overline{\varphi_b} > 0$ then $\varphi_a = 0$.

Remark 3.2. If the complex Finsler structure comes from a hermitian structure on E, that is $L(z, \eta) = h_{ab}(z) \eta^a \eta^b$, then $C^u_{bc} = 0$ and so $G^v(X) = 0$. In this case, if $X^A_{B_q}(z, \eta)$ are the components of a mixed vertical complex
tensor field with compact support on E and if $X^{A_p}_{B_q}$ are holomorphic functions of (η^a) coordinates, then $\nabla_{\partial_b} X^{A_p}_{B_q} = \partial_b X^{A_p}_{B_q} = 0$, so $X^{A_p}_{B_q} = X^{A_p}_{B_q}(z)$. But on the other hand, if this happens, then obviously $X^{A_p}_{B_q}$ doesn’t have compact in E. This contradicts the assumption that $X^{A_p}_{B_q}$ are compactly supported in E, so $X^{A_p}_{B_q} = 0$.

Acknowledgments. The author would like to thank the anonymous referee for his/her suggestions and comments that helped us improve this article.

REFERENCES

10. Ida, C. – Weitzenböck type formulas and a vanishing theorem on complex Finsler bundles, Tensor (N.S.), 71 (2009), 61–68

Received: 18.X.2010
Department of Algebra, Geometry and Differential Equations,
Transilvania University of Brașov,
Brașov 500091, Str. Iuliu Maniu 50,
ROMANIA
cristian.ida@unitbv.ro

Revised: 21.II.2011