SOBRIETY VIA θ -OPEN SETS

 \mathbf{BY}

M. CALDAS, S. JAFARI and R.M LATIF

Abstract. SÜNDERHAUF studied the important notion of sobriety in terms of nets. In this paper, by the same token, we present and study the notion of θ -sobriety by utilizing the notion of θ -open sets.

 $\textbf{Mathematics Subject Classification 2000:}\ 54B05,\ 54C08,\ 54D05.$

Key words: θ -open, θ -closed, θ -compact space, θ -sobriety.

1. Introduction. In 1943, Fomin [4] (see, also [5]) introduced the notion of θ -continuity. The notions of θ -open subsets, θ -closed subsets and θ -closure were introduced by Veličko [11] for the purpose of studying the important class of H-closed spaces in terms of arbitrary filterbases. Dickman and Porter [2], [3], Joseph [7] continued the work of Veličko. Recently Noiri and Jafari [9] have also obtained several new and interesting results related to these sets.

In what follows (X,τ) and (Y,σ) (or X and Y) denote topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by Int(A) and Cl(A), respectively. A point $x \in X$ is called a θ -cluster point of A if $A \cap Cl(U) \neq \emptyset$ for every open set U of X containing x. The set of all θ -cluster points of A is called the θ -closure of A. A subset A is called θ -closed if A and its θ -closure coincide. The complement of a θ -closed set is called θ -open. We denote the collection of all θ -open sets by $\theta(X,\tau)$. It is shown in [8] that the collection of θ -open sets in a space X form a topology denoted by τ_{θ} . A topological space (X,τ) is called θ -compact [6] if every cover of the space by θ -open sets has a finite subcover. We denote the filter of θ -open neighbourhoods [1] of some point x in X by $\Omega_{\theta}(x)$.

Definition 1. A function $f:(X,\tau)\to (Y,\sigma)$ is called θ -continuous if for each $x\in X$ and each V in Y containing f(x), there exists an open set U in X containing x such that $f(Cl(U))\subset Cl(V)$.

Definition 2. Two topological spaces (X, τ) and (Y, σ) are θ -homeomorphic [11] if there exists a one-to-one and onto function $f:(X, \tau) \to (Y, \sigma)$ such that f and f^{-1} are both θ -continuous.

2. θ -sobriety

Definition 3. A space (X, τ) is said to be θ -sober if it is θ -homeomorphic with the space of points of its frame of θ -open sets.

Recall that the θ -saturated set and the θ -kernel of a set A [1] are the same, i.e. $\cap \{O \in \theta(X, \tau) \mid A \subset O\}$.

 θ -sobriety implies the existence of LUB(= least upper bound) of subsets which are directed with respect to the order of θ -specialization, i.e. if (X, τ) is a topological space, then the order of θ -specialization of X is defined by $x \leq_r y \Leftrightarrow x \in Cl_{\theta}(\{y\})$.

Theorem 1. Let X be a θ -sober space for which finite intersection of θ -compact θ -saturated subsets are θ -compact.

- (1) Every cover of a θ -compact set by θ -open sets contains a finite subcover.
- (2) If the intersection of θ -compact θ -saturated sets is contained in a θ -open set, then the same is true for an intersection of finitely many of them.

Now we offer a new notion called θ -observative net by which we characterize θ -sobriety.

Definition 4. A net $(x_i)_i \in I$ on a space X is θ -observative if for all $i \in I$ and for all $U \in \theta(X, \tau)$ we have that $x_i \in U$ implies that the net is eventually in the set U.

Recall that a filter base \mathcal{F} is called θ -convergent [12] to a point x in X if for any open set U containing x there exists $B \in \mathcal{F}$ such that $B \in Cl(U)$.

Definition 5. A θ -observative $(x_i)_i \in I$ strongly θ -converges to a point x in X if it θ -converges to x with respect to $\theta(X,\tau)$, and also if it satisfies that x is an element of every θ -open set which eventually contains the net. We denote it by $x_i \xrightarrow{\theta} x$.

Lemma 1. If $(x_i)_i \in I$ is a θ -observative net on a space (X, τ) , then $x_i \xrightarrow{\theta} x$ if and only if $x_i \longrightarrow x$ with respect to the τ_{θ} .

Proof. Let $x_i \xrightarrow{\theta} x$ and $x \in A$ for some θ -closed set A. If the net is not eventually contained in A, then it is frequently in the θ -open set X - A. By hypothesis, the net is θ -observative and therefore $[x]_{\geq i} \subseteq X - A$ for some tail. Hence $x \in X - A$ as a consequence of strong θ -convergence. But this is a contradiction and hence the claim.

Now suppose that $x_i \longrightarrow x$ with respect to the τ_{θ} . Then a θ -open set which eventually contains the net but does not contain x establishes a θ -neighbourhood X - U of x which has been forgotten by the net. Therefore strong θ -convergence follows readily.

Here we establish the θ -derived filter $\mathcal{F}(x)\mathcal{I}$ for a net $(x_i)_i \in I$ as follows:

$$\mathcal{F}(x)\mathcal{I} = \{ U \in \theta(X, \tau) \mid \exists i \in I \cdot [x]_{\geq i} \subseteq U \}.$$

Definition 6. A filter $\mathcal{F} \subseteq \tau$ is called θ -completely prime if for every $O \in \mathcal{F}$ and for any family of θ -open sets $(O_i)_{i \in I}$ such that $O \subseteq \bigcup_I O_i$, then $O_k \in \mathcal{F}$ for some $k \in I$.

Theorem 2. A filter derived from a θ -observative is θ -completely prime.

Proof. Let the net $(x_i)_i \in I$ be a θ -observative and $[x]_{\geq i} \subseteq \bigcup_{j \in J} U_j$ for some collectection of θ -open sets and some index $i \in I$. Hence $x_i \in \bigcup_{j \in J} U_j$. Therefore there is some $j_0 \in J$ with $x_j \in U_{j_0}$. Since the net is θ -observative, then it follows that some tail is contained in U_{j_0} . Thus the set is a filter. \square

Proposition 1. If $(x_i)_i \in I$ is a θ -observative net, then $x_i \xrightarrow{\theta} x$ if and only if $\mathcal{F}(x)\mathcal{I} = \Omega_{\theta}(x)$.

Proof. Since $(x_i)_i \in I$ strongly θ -converges to x if and only if it is the case that $x \in U$ is equivalent to the existence of some $i \in I$ with $[x]_{\geq i} \subseteq U$.

But how can we deal with the situation where a space is θ -sober if all its θ -observative nets strongly θ -converge?

In such situation, we need the following construction:

Assign to each θ -completely prime filter \mathcal{F} a θ -observative net such that $\mathcal{F}(x)\mathcal{I}=\mathcal{F}$.

Theorem 3. Let \mathcal{F} be a filter of θ -open subsets of the space (X, τ) . Then \mathcal{F} is θ -completely prime if and only if for all $U \in \mathcal{F}$, there exists $x \in U$ with the property that $x \in G$ implies $G \in \mathcal{F}$ for every $G \in \theta(X, \tau)$. **Proof.** Suppose that \mathcal{F} has this property and $\bigcup_{j\in J} U_j \in \mathcal{F}$. Take $x\in\bigcup_{j\in J} U_j$ with $x\in G\Rightarrow G\in \mathcal{F}$. Clearly, $x\in U_{j_0}$ for some $j_0\in J$. Therefore $U_{j_0}\in \mathcal{F}$. This means that the filter is θ -completely prime. Conversely. assume that $U\in \mathcal{F}$ has not this property. It follows that for each $x\in U$, this is $G_x\in \theta(X,\tau)$ with $G_x\notin \mathcal{F}$. Put $U_x:=G_x\cap U$. Now we have $U_x\notin \mathcal{F}$ for all $x\in U$ and $U=\bigcup_{x\in U}U_x\in \mathcal{F}$. But this is against our hypothesis that \mathcal{F} is θ -completely prime and hence the claim. \square

Now we give a new appropriate construction. Let \mathcal{F} be a θ -completely prime filter of θ -open sets on (X, τ) . Take \mathcal{F} with reserved set inclusion as order to be the index set of our net. If $U \in \mathcal{F}$, pick $x_U \in U$ with the property that $x_U \in G$ implies $G \in \mathcal{F}$. This is possible by the above Theorem. A net established in this way is called a θ -derived net from the filter.

Lemma 2. A θ -derived net from a θ -completely prime filter is θ -observative.

Proof. Let $U \in \mathcal{F}$ and $x_u \in G$. Then $G \in \mathcal{F}$ by choice of x_U . If $V \subseteq G$, then $x_v \in V \subseteq G$. Hence $[x]_{\geq i} \subseteq G$. Therefore the net is θ -observative. \square

Theorem 4. Every θ -completely prime filter equals the θ -derived filter of any of its θ -derived nets.

Proof. Clearly, $[x]_{\geq i} \subseteq U$ for $U \in \mathcal{F}$. Thus $U \in \mathcal{F} \Rightarrow \mathcal{F}(x)\mathcal{U}$. Conversely, $U \in \mathcal{F}(x)\mathcal{U} \Rightarrow [x]_{\geq i} \subseteq U$ for some $G \in \mathcal{F}$. Therefore, $x_U \in U$ which implies that $U \in \mathcal{F}$ by choice of x_G .

Theorem 5. A topological space is θ -sober if and only if every θ -observative net strongly θ -converges to a unique point.

Proof. Obvious.

REFERENCES

- CALDAS, M.; JAFARI, S.; NOIRI, T. Weak separation axioms via Veličko's θ-open sets and θ-closure operator, Seminário Brasileiro de Análise, Institute de Matemática Universidade Federal Fluminense, Niterói, 56 (2002), 657–663.
- 2. DICKMAN, R.F., Jr.; PORTER, J.R. θ -closed subsets of Hausdorff spaces, Pacific J. Math., 59 (1975), 407–415.

Received: 30. V. 2008

- 3. DICKMAN, R.F., JR.; PORTER, J.R. θ -perfect and θ -absolutely closed functions, Ilinois J. Math., 21 (1977), 42–60.
- 4. Fomin, S. Extensions of topological spaces, Ann. of Math., 44 (1943), 471-480.
- 5. ILIADIS, S.; FOMIN, S. The method of concentric systems in the theory of topological spaces, (Russian) Uspehi Mat. Nauk, 21 (1966), 47–76.
- JAFARI, S. Some properties of quasi θ-continuous functions, Far East J. Math. Sci., 6 (1998), 689–696.
- 7. Joseph, J.E. θ-closure and θ-subclosed graphs, Math. Chronicle, 8 (1979), 99–117.
- 8. Long, P.E.; Herrington, L.L. The T_{θ} -topology and faintly continuous functions, Kyungpook Math. J., 22 (1982), 7–14.
- 9. Noiri, T.; Jafari, S. *Properties of* (θ, s) -continuous functions, Proceedings of the Janos Bolyai Mathematical Society 8th International Topology Conference (Gyula, 1998), Topology Appl., 123 (2002), 167–179.
- SÜNDERHAUF, P. Sobriety in terms of nets, Appl. Categ. Structures, 8 (2000), 649–653.
- Veličko, N.V. H-closed topological spaces, (Russian) Mat. Sb. (N.S.), 70 (1966), 98–112.
- 12. Veličko, N.V. On extension of mappings of topological spaces, Amer. Math. Soc. Trans., 92 (1970), 41–47.

Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n, 24020-140, Niteroi, RJ, BRASIL gmamccs@vm.uff.br

> College of Vestsjaelland South, Herrestaede 11, 4200 Slagelse, DENMARK jafari@stofanet.dk

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, SAUDI ARABIA raja@kfupm.edu.sa