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ON QUASI-CLASS A OPERATORS
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Abstract. Let H be a separable infinite dimensional complex Hilbert space, and let
B(H) denote the algebra of all bounded linear operators on H. Let A,B be operators in
B(H). In this paper we prove that if A is quasi-class A and B∗ is invertible quasi-class
A and AX = XB, for some X ∈ C2 (the class of Hilbert-Schmidt operators on H), then
A∗X = XB∗. We also prove that if A is a quasi-class A operator and f is an analytic
function on a neighborhood of the spectrum of A, then f(A) satisfies generalized Weyl’s
theorem. Other related results are also given.
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1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let
B(H) denote the algebra of all bounded linear operators on H. Let A ∈
B(H). Set as usual, |A| = (A∗A)

1
2 and [A∗, A] = A∗A−AA∗ = |A|2−|A∗|2

(the self commutator of A), and consider the following standard definitions:
A is normal if A∗A = AA∗, hyponormal if A∗A − AA∗ ≥ 0, p-hyponormal
(0 < p ≤ 1) if (|A|2p − |A∗|2p ≥ 0). An operator A ∈ B(H) is said to be
paranormal if ∥Ax∥2 ≤ ∥A2x∥ ∥x∥, for all x ∈ H. In general hyponormal ⊂
p−hyponormal ⊂ paranormal. A is said to be log-hyponormal if A is inver-
tible and satisfies the following inequality log(A∗A) ≥ log(AA∗). It is known
that invertible p-hyponormal operators are log-hyponormal operators but
the converse is not true [27]. However it is very interesting that we may
regard log-hyponormal operators are 0-hyponormal operators [27, 28]. The
idea of log-hyponormal operator is due to Ando ([2]) and the first paper in
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which log-hyponormality appeared is [16]. See [27, 28, 29] for properties of
log-hyponormal operators.

We say that an operator A ∈ B(H) belongs to the class A if |A2| ≥
|A|2. Class A was first introduced by Furuta-Ito-Yamazaki ([15]) as a
subclass of paranormal operators which includes the classes of p-hyponormal
and log-hyponormal operators. The following theorem is one of the results
associated with class A.

Theorem 1.1 ([15]). (1) Every log-hyponormal operator is a class A.
(2) Every class A operator is a paranormal operator.

A is said to be p-quasihyponormal if A∗((A∗A)p − (AA∗)p) ≥ 0, (0 <
p ≤ 1), quasi-class A if A∗|A2|A ≥ A∗|A|2A ≥ 0. A is said to be normaloid
if ∥A∥ = r(A) (the spectral radius of A). Let (pH), (HN), Q(p), QA,
A and (NL) denote the classes consisting of hyponormal, p-hyponormal,
p-quasihyponormal, quasi-class A, class A and normaloid operators. these
classes are related by proper inclusion (HN) ⊂ (pH) ⊂ (Q(p)) ⊂ QA and
(HN) ⊂ (pH) ⊂ A ⊂ QA. It is known that hyponormal, p-hyponormal,
and p-quasihyponormal are normaloid. But quasi-class A operator is not
normaloid [20].

Fuglede-Putnam theorem is given in [11, 15, 17] as follows:

Theorem 1.2. If A and B are normal operators and if X is an operator
such that AX = XB, then A∗X = XB∗.

Berbebian ([3]) relaxes the hypothesis on A and B in Theorem 1.2 at
the cost of requiring X to be Hilbert-Schmidt class. Cha ([12]) showed
that the hyponormality in the result of Berberian ([3]) can be replaced
by the quasi-hyponormality of A and B∗ under some additional conditions.
Recently Lee ([22]) proved that if A is p-quasihyponormal operator and
B∗ is an invertible p-quasihyponormal operator such that AX = XB for
some X ∈ C2(H) and ∥|A|1−p∥.∥|B−1|1−p∥ ≤ 1, then A∗X = XB∗. In
this paper we prove that the above result remains true for quasi-class A
operators without the additional condition ∥|A|1−p∥.∥|B−1|1−p∥ ≤ 1 as it is
proved in ([21, Theorem 4]).

2. Main results

Lemma 2.1 ([20]). Let A be a quasi-class A operator on Hilbert space
H. if 0 ̸= λ ∈ C, x ∈ H and Ax = λx, then A∗x = λx.
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Lemma 2.2 ([20]). Let A,B ∈ B(H). A and B are quasi-class A
operators if and only if A⊗B is also a quasi-class A operator.

Let C2(H) denote the class of Hilbert-Schmidt operators on H.

Corollary 2.1. Let A,B ∈ B(H). If A and B are quasi-class A ope-
rators, then the operator K : C2(H) 7→ C2(H) defined by KX = AXB∗ is a
quasi-class A operator.

Proof. It is known that KX can be identified with A⊗B (see [1]). �

Theorem 2.1. Let A,B ∈ B(H). If A is quasi-class A operator and
B∗ is an invertible quasi-class A operator such that AX = XB, for some
X ∈ C2(H), then A∗X = XB∗.

Proof. Let K : C2(H) 7→ C2(H) be defined by KY = AY B−1. Since B
is quasi-class A, B−1 is a quasi-class A (see [21]). Then it follows from Coro-
llary 2.1 that K is a quasi-class A operator, furthermore, KX = AXB−1 =
X and so, X is an eigenvector of K. Now by applying Lemma 2.1 we get
K∗X = A∗X(B−1)∗ = X, that is, A∗X = XB∗ and the proof is achieved.�

Remark 2.1. In [30], Uchiyama presented an example of non-reducing
eigenspace of a paranormal operator. Thus Lemma 2.1 does not hold for
paranormal operator. Since the proof of Theorem 2.1 is thoroughly depen-
dent on Lemma 2.1, Theorem 2.1 does not hold for paranormal operator.

3. Generalized Weyl’s theorem

Let K(H) denote, respectively, the algebra of bounded linear operators
and the ideal of compact operators acting on infinite dimensional separable
Hilbert space H. If A ∈ B(H) we shall write N(A) and R(T ) for the null
space and the range of A, respectively. Also, let α(A) := dimN(A), β(A) :=
dim(A∗), and let σ(A), σa(A) and π0(A) denote the spectrum, approximate
point spectrum and point spectrum of A, respectively.

An operator A ∈ B(H) is called Fredholm if it has closed range, finite
dimensional null space, and its range has finite co-dimension.

The index of a Fredholm operator is given by I(A) = α(A) − β(A).
An operator A ∈ B(H) is called Weyl if it is a Fredholm of index zero,
and Browder if it is Fredholm of finite ascent and descent, equivalently [19,
Theorem 7.9.3] if A is Fredholm and A−λ is invertible for sufficiently small
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|λ| > 0, λ ∈ C. The essential spectrum σe(A), the Weyl spectrum σw(A)
and the Browder spectrum σb(A) of A are defined by [18, 19]

σe(A) = {λ ∈ C : A− λ is not Weyl},
σw(A) = {λ ∈ C : A− λ is not Fredholm},
σb(A) = {λ ∈ C : A− λ is not Browder},

respectively. Evidently

σeA ⊆ σw(A) ⊆ σbA = σe(A) ∪ accσ(A),

where we write accK for the accumulation points of K ⊆ C. If we write
isoK = K \ accK, then we let

π00(A) := {λ ∈ isoσ(A) : 0 < α(A− λ) < ∞},
p00(A) := σ(A) \ σb(A).

We say that Weyl’s theorem holds for A if σ(A) \ σw(A) = π00(A). The
operator A is said to be B-Fredholm if there exists a natural number n such
that An(H) is closed and the induced operator An = A|An(H) is Fredholm, A
is B-Weyl if it is B-Fredholm of index 0, and A satisfies generalized Weyl’s
theorem if σ(A) \ σBw(A) = E(A), where σBw(A) is the B-Weyl spectrum
of A, i.e., the set of complex numbers λ for which A−λI fails to be B-Weyl
and E(A) is the set of isolated eigenvalues of A.

Note that if the generalized Weyl’s theorem holds for A, then so does
Weyl’s theorem [6]. Recently in [7], Berkani showed that if A is a hyponor-
mal operator, then A satisfies Weyl’s theorem σBw(A) = σ(A) \E(A), and
the B-weyl spectrum σBw(A) of A satisfies the spectral mapping theorem.
In [31], Weyl proved that Weyl’s theorem holds for hermtian operators.
Weyl’s theorem has been extended from hermitian operators to hyponormal
operators and Toeplitz operators [10], and to several classes of operators in-
cluding semi-normal operators ([4, 5]). Curto and Han ([9]) have extended
Lee’s results to algebraically paranormal operators. In [13] the authors
showed that Weyl’s theorem holds for algebraically p-hyponormal opera-
tors. Mecheri ([23, 24, 25, 26]) showed that Weyl’s and generalized Weyl’s
theorem hold for algebraically (p, k)-quasihyponormal operators, classA op-
erators and class H(q) operators. Recently in [14] the authors showed that
Weyl’s theorem holds for quasi-class A operator. In this paper we show
that generalized Weyl’s theorem holds for quasi-class A operators.
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4. Results

Before proving the following lemma, we need a notation and a definition.
We say that A ∈ B(H) has the single valued extension property (SVEP)

if for every open set U ⊆ C the only analytic function f : U 7→ H which
satisfies the equation (A− λ)f(λ) = 0 is the constant function f ≡ 0.

Lemma 4.1 ([20]). Let A be a quasi-class A operator. Then A has
SVEP.

Lemma 4.2 ([20]). Let A be a quasi-class A operator and λ ∈ C. If
σ(A− λ) = {0}, then A− λ = 0.

It is shown in [9] that a quasinilpotent algebraically paranormal operator
A is nilpotent. By the same way we prove that this result remains hold for
a quasi-class A operator.

Lemma 4.3. Let A be a quasinilpotent algebraically quasi-class A
operator. Then A is nilpotent.

Proof. Assume that p(A) is quasi-class A for some nonconstant polyno-
mial p. Since σ(p(A)) = p(σ(A)), the operator p(A)−p(0) is quasinilpotent.
Thus Lemma 4.2 would imply that CAm(A−λ1)...(A−λn) ≡ p(A)−p(0) =
0, where m ≥ 1. Since A − λi is invertible for every λi ̸= 0, we must have
Am = 0. �

Lemma 4.4. Let A be an algebraically quasi-class A operator. Then A
is isoloid.

Proof. Let λ ∈ isoσ(A) and let

P :=
1

2πi

∫
∂D

(µ−A)−1dµ

be the associated Riesz idempotent, where D is a closed disk centered at λ
which contains no other points of σ(A). We can then represent A as the
direct sum

A =

(
A1 0
0 A2

)
,

where σ(A1) = {λ} and σ(A2) = σ(A) \ {λ}. Since A is algebraically quasi-
class A, p(A) is quasi-class A for some nonconstant polynomial p. Since
σ(A1) = {λ}, we must have σ(p(A1)) = p(σ(A1)) = {p(λ)}.
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Therefore p(A1) − p(λ) is quasinilpotent. Since p(A1) is quasi-class A,
it follows from Lemma 4.2 that p(A1)− p(λ) = 0. Put q(z) := p(z)− p(λ).
Then q(A1) = 0, so A1 is algebraically quasi-class A, it follows from Lemma
4.3 that A1 − λ is nilpotent. Therefore λ ∈ π0(A1), and hence λ ∈ π0(A).
This shows that A is isoloid. �

Theorem 4.1. Let A be an algebraically quasi-class A operator. Then
generalized Weyl’s theorem holds for A.

Proof. We will show that σ(A) \ σBw(A) ⊂ E(A). For this assume
that λ ∈ σ(A) \ σBw(A). Then A− λI is a B- Fredholm operator of index
zero and there exists a direct sum decomposition H = H1 ⊕H2 such that
A1 = (A−λI) |H1 is a Fredholm operator of index zero, A2 = (A−λI) |H2 is
nilpotent and A−λI = A1 ⊕A2 [8, Lemma 4.1]. We have two possibilities:
either λ ∈ σ(A |H1) or λ ̸∈ σ(A |H1).

Assume that λ ∈ σ(A |H1). Since A is algebraically quasi-class A,
A |H1 is also algebraically quasi-class A. Hence [14] implies A |H1 satisfies
Weyl’s theorem. Therefore if λ ∈ σ(A |H1), then λ ∈ π00(A |H1). Hence
λ ∈ isoσ(A |H1). Now since A−λI = (A |H1 −λI)⊕A2, and A2 is nilpotent,
we have σ(A1) \ {0} = σ(A− λI) \ {0} and λ ∈ isoσ(A). This implies that
λ ∈ π00(A) ⊂ E(A). Now assume that λ ̸∈ σ(A |H1). Then we deduce from
A − λI = (A |H1 −λI) ⊕ A2 that λ is isolated in σ(A). Since A − λI is
not invertible, λ ∈ E(A). Conversely, let λ ∈ E(A), i.e., an isolated point
of the spectrum of A which is an eigenvalue. Let P = Pλ be the spectral
projection with respect to λ. Then H = PH ⊕ (I − P )H = H1 ⊕ H2

and σ(A |H1) = {λ}, σ(A |H2) = σ(A) \ {λ}. Then Lemma 4.2 implies
(A− λI) |H1= 0. Hence A− λI = 0⊕ (A− λI) |H2 is invertible, it implies
λ ∈ σ(A) \ σBw(A). �

Corollary 4.1. (1) Every algebraically class A operator satisfies genera-
lized Weyl’s theorem. In particular Weyl’s theorem holds for algebraically
class A operators.

(2) Every algebraically log-hyponormal operator satisfies generalized
Weyl’s theorem. In particular Weyl’s theorem holds for algebraically log-
hyponormal operators.

(3) Every algebraically p-hyponormal operator satisfies generalized
Weyl’s theorem. In particular Weyl’s theorem holds for algebarically p-
hyponormal operators.
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(4) Every algebraically p-quasihyponormal operator satisfies generalized
Weyl’s theorem. In particular generalized Weyl’s theorem holds for p-quasi-
hyponormal operators.

Theorem 4.2. Let A be an algebraically quasi-class A operator. Then
generalized Weyl’s theorem for f(A) for every function f analytic on a
neighborhood of σ(A).

Proof. Since A is isoloid by Lemma 4.4, has the SVEP and satisfies
generalized Weyl’s theorem, it follows from ([32, Theorem 2.2]) that f(A)
satisfies generalized Weyl’s theorem. �

Corollary 4.2. Let A ∈ B(H). Then the generalized Weyl’s theorem
holds for f(A) for every function f analytic in a neighborhood of σ(A) under
either of the following hypothesis

(1) A is algebraically quasi-class A operator.
(2) A is algebraically class A operator.
(3) A is an algebraically log-hyponormal operator.
(4) A is an algebraically p-hyponormal operator.
(5) A is an algebraically quasihyponormal operator.
(6) A is an algebraically p-quasihyponormal operator.

Theorem 4.3. Let A ∈ B(H) be a quasi-class A operator and let
σw(A) = 0. Then A is compact and normal.

Proof. Since Weyl’s theorem holds for A by the previous theorem
and σw(A) = 0 and since a quasi-class A operator is normaloid, every
non zero spectrum of A is an isolated normal eigenvalue with finite di-
mensional eigenspace, which reduces A. Hence σ(A) \ σw(A) is a finite
set or a countable infinity set whose accumulation point is only zero. Let
σ(A)\σw(A) = {λn} with |λ1| ≥ |λ2| ≥ ... ≥ 0 and let En be the orthogonal
projection onto ker(A − λn). Then AEn = EnA = λnEn and EnEm = 0 if
n ̸= m. Put E = ⊕nEn. Then

A = ⊕nλnEn ⊕A |(1−E)H

and σ(A |(1−E)H) = {0}. Since A |(1−E)H is also a quasi-class operator
because EH is a reducing subspace of A, A |(1−E)H= 0. This implies that
A = ⊕nλnEn is normal. The compactness of A follows from the finiteness
of the countability of {λn}n satisfying |λn| ↓ 0 and each En is a finite rank
projection. �
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Corollary 4.3. Let A ∈ B(H). Then
(1) Every class A operator with σw(A) = 0 is compact and normal.
(2) Every log-hyponormal operator with σw(A) = 0 is compact and nor-

mal.
(3) Every p-hyponormal operator with σw(A) = 0 is compact and nor-

mal.
(4) Every p-quasihyponormal operator with σw(A) = 0 is compact and

normal.
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