Some L_k-biconservative Lorentzian hypersurfaces in Minkowski 5-space

Firooz Pashaie

Abstract. A Lorentzian hypersurface M^4_1 of Minkowski 5-space (i.e. E_5^1), defined by an isometric immersion $x : M^4_1 \rightarrow E_5^1$, is said to be L_k-biconservative if the tangent component of L^2_kx is identically zero, where L_k is the kth extension of Laplace operator $\Delta = L_0$. The operator L_k is the linearized operator arisen from the first variation of $(k + 1)$th mean curvature vector field on M^4_1. This subject is motivated by a well-known conjecture of Bang-Yen Chen which says that the condition $\Delta^2x = 0$ implies the minimality for submanifolds of Euclidean spaces. In this paper, we study L_k-biconservative Lorentzian hypersurfaces of E_5^1 in four different cases based on the matrix representation forms of the shape operator. We show that if such a hypersurface has constant mean curvature and at most two distinct principal curvatures, then its $(k + 1)$th mean curvature is constant.

Keywords. Lorentzian hypersurface · biharmonic · L_k-biconservative

Mathematics Subject Classification (2010). 53A30 · 53B30 · 53C40 · 53C43

1 Introduction

Let $x : M^n \rightarrow \mathbb{E}^{n+1}$ be an isometric immersion of a hypersurface M^n in the Euclidean $(n + 1)$-space with Laplace operator Δ, shape operator S associated to a chosen unit normal vector field n and ordinary mean curvature function H. By definition, M^n is said to be harmonic (biharmonic) if x satisfies equation $\Delta x = 0$ ($\Delta^2 x = 0$, respectively). It is called biconservative if the tangent component of $\Delta^2 x$ vanishes identically. A famous equality due to Beltrami says that $\Delta x = -nHn$. Then, the conditions $\Delta x = 0$ and $\Delta^2 x = 0$ are equivalent to $H \equiv 0$ and $\Delta (Hn) = 0$, respectively. Clearly, every minimal hypersurface is biharmonic but not vice versa. In this context, a well-known conjecture of Bang-Yen Chen (in 1987) says that each biharmonic submanifold of a Euclidean space is minimal. In 1992, Dimitrić proved that every biharmonic hypersurface in a Euclidean space with at most two distinct principal curvatures is minimal [5]. Also, Hasanis and
VLACHOS [6] and DEFEVER [4] have proved the Chen conjecture on hypersurfaces of Euclidean 4-space. In 2007, biharmonic Lorentz hypersurfaces of Minkowski 4-space have been studied [3]. In 2013, Akutagawa and Maeta have affirmed the conjecture on some submanifolds of Euclidean spaces [1].

In this paper, we study L_k-biconservative Lorentzian hypersurfaces of pseudo-Euclidean 5-space \mathbb{E}_5^5. The operator L_k is an extension of the Laplace operator $L_0 = \Delta$, which stands for the linearized operator of the first variation of $(k+1)$th mean curvature function (see, for instance, [2, 7, 11, 12]). L_k is defined (on M^4_1) by $L_k(f) = \text{tr}(P_k \circ \nabla^2 f)$ for any $f \in C^\infty(M^4_1)$, where P_k denotes the kth Newton transformation associated to the second fundamental form of the hypersurface and $\nabla^2 f$ is the hessian of f. The hypersurface $x: M^4_1 \to \mathbb{E}_5^5$ is said to be L_k-harmonic (L_k-biharmonic) if x satisfies condition $L_kx = 0$ ($L_k^2x = 0$, respectively). It is called L_k-biconservative if the tangent component of L_k^2x vanishes identically. We show that, every L_k-biconservative Lorentzian hypersurface of \mathbb{E}_5^5, with constant kth mean curvature and some additional conditions on principal curvatures, has constant $(k+1)$th mean curvature.

Here, we present the organization of paper. In section 2 we remember some notations and definitions which will be needed in paper. In section 3, we illustrate some examples of standard L_k-biconservative Lorentzian hypersurfaces of \mathbb{E}_5^5 for nonnegative integers k less than 4. In section 4, we study the L_k-biconservative Lorentzian hypersurfaces with constant mean curvature and at most two distinct principal curvatures, separately according to four possible types I, II, III and IV. We show that, if a hypersurface M^4_1 of type I has constant mean curvature and at most two distinct principal curvatures, then it has constant mean curvature (see theorems 4.1, 4.2 and 4.3). In Theorem 4.4, we study L_k-biconservative Lorentzian hypersurfaces of type II, and we show that if such a hypersurface has at most two distinct principal curvatures, then it’s $(k+1)$th mean curvature is constant. Theorems 4.5 and 4.6 state the same result on L_k-biconservative Lorentzian hypersurfaces M^4_1 of types III and IV.

2 Preliminaries

First, we recall some preliminaries from [2, 7, 8] and [9]-[13]. The 5-dimensional pseudo-Euclidean space, \mathbb{E}_5^5, is the Euclidean 5-space endowed with the Lorentz product defined by

$$\langle x, y \rangle := -x_1y_1 + \sum_{i=2}^{5} x_iy_i,$$

for every two vectors $x, y \in \mathbb{R}^5$. Throughout the paper, we study on every Lorentzian hypersurface of \mathbb{E}_5^5, defined by an isometric immersion $x: M^4_1 \to \mathbb{E}_5^5$. The symbols ∇ and $\bar{\nabla}$ stand for the Levi-Civita connection on M^4_1 and \mathbb{E}_5^5, respectively. For every tangent vector fields X and Y on M, the Gauss formula is given by $\bar{\nabla}_X Y = \nabla_X Y + \langle SX, Y \rangle n$, for every $X, Y \in \chi(M)$, where, n is a (locally) unit normal vector field on M and S is the shape
Some Lk-biconservative Lorentzian hypersurfaces in Minkowski 5-space

operator of M relative to n. For each non-zero vector $X \in \mathbb{E}_5^1$, the real value $<X, X>$ may be a negative, zero or positive number and then, the vector X is said to be time-like, light-like or space-like, respectively. According to whether the induced metric on a nondegenerate hypersurface M_4^ν of index ν in \mathbb{E}_5^1 is positive definite or indefinite, M_4^ν is called Riemannian (when $\nu = 0$) or Lorentzian (when $\nu = 1$), and therefore every normal vector on M_4^ν is time-like or light-like, respectively.

Definition 2.1 For a 4-dimensional Lorentzian vector space V_4^1, a basis $\mathcal{B} := \{e_1, \cdots, e_4\}$ is said to be orthnormal if it satisfies $<e_i, e_j> = \epsilon_i \delta^j_i$ for $i, j = 1, \cdots, 4$, where $\epsilon_1 = -1$ and $\epsilon_i = 1$ for $i = 2, 3, 4$. As usual, δ^j_i stands for the Kronecker function. \mathcal{B} is called pseudo-orthnormal if it satisfies $<e_1, e_1> = <e_2, e_2> = 0$, $<e_1, e_2> = -1$ and $<e_i, e_j> = \delta^j_i$, for $i = 1, 2, 3, 4$ and $j = 3, 4$.

The shape operator of M_4^1 in \mathbb{E}_5^1, as a self-adjoint linear map on the tangent bundle of M_4^1, locally can be put into one of four possible canonical matrix forms, usually denoted by I, II, III and IV (see for instance [8, 13]). In cases I and IV, with respect to an orthonormal basis of the tangent space of M_4^1, the matrix representation of the induced metric on M_4^1 is

$$G_1 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and the shape operator of M_4^1 can be put into matrix forms

$$B_1 = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix} \quad \text{and} \quad B_4 = \begin{pmatrix} \kappa & \lambda & 0 & 0 \\ -\lambda & \kappa & 0 & 0 \\ 0 & 0 & \eta_1 & 0 \\ 0 & 0 & 0 & \eta_2 \end{pmatrix}, \quad (\lambda \neq 0)$$

respectively. For cases II and III, using a pseudo-orthnormal basis of the tangent space of M_4^1, the induced metric on which has matrix form

$$G_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and the shape operator of M_4^1 can be put into matrix forms

$$B_2 = \begin{pmatrix} \kappa & 0 & 0 & 0 \\ 0 & \kappa & 0 & 0 \\ 1 & 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} \quad \text{and} \quad B_3 = \begin{pmatrix} \kappa & 0 & 0 & 0 \\ 0 & \kappa & 0 & 0 \\ -1 & 0 & \kappa & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix},$$

respectively. In case IV, the matrix B_4 has two conjugate complex eigenvalues $\kappa \pm i\lambda$, but in other cases the eigenvalues of the shape operator are real numbers.
Remark 2.1 In two cases II and III, one can substitute the pseudo-orthonormal basis $B := \{e_1, e_2, e_3, e_4\}$ by a new orthonormal basis $\tilde{B} := \{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}$ where $\tilde{e}_1 := \frac{1}{2}(e_1 + e_2)$ and $\tilde{e}_2 := \frac{1}{2}(e_1 - e_2)$. Therefore, we obtain new matrix representations \tilde{B}_2 and \tilde{B}_3 (instead of B_2 and B_3, respectively) as

$$
\tilde{B}_2 = \begin{pmatrix}
\kappa + \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
-\frac{1}{2} & \kappa - \frac{1}{2} & 0 & 0 \\
0 & 0 & \lambda_1 & 0 \\
0 & 0 & 0 & \lambda_2
\end{pmatrix}
$$

and

$$
\tilde{B}_3 = \begin{pmatrix}
\kappa & 0 & -\sqrt{\kappa} & 0 \\
0 & \kappa & -\sqrt{\kappa} & 0 \\
-\sqrt{\kappa} & \sqrt{\kappa} & \kappa & 0 \\
0 & 0 & 0 & \lambda
\end{pmatrix}
$$

After this changes, to unify the notations we denote the orthonormal basis by B in all cases.

Notation: According to four possible matrix representations of the shape operator of M^4_1, we define its principal curvatures, denoted by unified notations κ_i for $i = 1, \cdots, 4$, as follow.

In case I, we put $\kappa_i := \lambda_i$ for $i = 1, \cdots, 4$, where λ_i’s are the eigenvalues of B_1.

In case II, we take $\kappa_i := \kappa$ for $i = 1, 2$, and $\kappa_i := \lambda_{i-2}$ for $i = 3, 4$.

In case III, the shape operator S has matrix representation B_3 and we take $\kappa_i := \kappa$ for $i = 1, 2, 3$, and $\kappa_4 := \lambda$.

Finally, in case IV, S is of form B_4 and we put $\kappa_1 = \kappa + i\lambda$, $\kappa_2 = \kappa - i\lambda$, and $\kappa_3 := \eta_{i-2}$, for $i = 3, 4$.

The characteristic polynomial of S on M^4_1 is of the form $Q(t) = \prod_{i=1}^4 (t - \kappa_i) = \sum_{j=0}^4 (-1)^j s_j t^{4-j}$, where, $s_0 := 1$, $s_i := \sum_{1 \leq j_1 < \cdots < j_i \leq 4} \kappa_{j_1} \cdots \kappa_{j_i}$ for $i = 1, 2, 3, 4$.

For $j = 1, \cdots, 4$, the jth mean curvature H_j of M^4_1 is defined by $H_j = \frac{1}{(j-1)} s_j$. When H_j is identically null, M^4_1 is said to be $(j-1)$-minimal.

Definition 2.2 (i) A timelike hypersurface $x : M^4_1 \rightarrow \mathbb{E}^5_1$, with diagonalizable shape operator, is said to be *isoparametric* if all of its principal curvatures are constant.

(ii) A timelike hypersurface $x : M^4_1 \rightarrow \mathbb{E}^5_1$, with non-diagonalizable shape operator, is said to be *isoparametric* if the minimal polynomial of its shape operator is constant.

Remark 2.2 Here we remember Theorem 4.10 from [8], which assures us that there is no isoparametric timelike hypersurface of \mathbb{E}^5_1 with complex principal curvatures.

The well-known Newton transformations $P_j : \chi(M) \rightarrow \chi(M)$ on M^4_1, is defined by

$$
P_0 = I, \quad P_j = s_j I - S \circ P_{j-1}, \quad (j = 1, 2, 3, 4),
$$

where, I is the identity map. Using its explicit formula, $P_j = \sum_{i=0}^j (-1)^i s_{j-i} S^i$ (where $S^0 = I$), and the well-known Cayley-Hamilton theorem (which says
that every operator is annihilated by its characteristic polynomial) we get $P_4 = 0$. Clearly, P_j is self-adjoint and it commutes with S (see [2,11]).

Also, we will use the following notation:

$$
\mu_{i;k} = \sum_{1 \leq j_1 < \cdots < j_k \leq 4; i \neq j_k} \kappa_{j_1} \cdots \kappa_{j_k}, \quad (i = 1, 2, 3, 4; 1 \leq k \leq 3).
$$

(2.2)

Corresponding to four possible matrix forms of S, the Newton transformation P_j has different forms. In case I, we have $P_j = \text{diag}[\mu_1, \ldots, \mu_4]$, for $j = 1, 2, 3$.

In case II, for $j = 1, 2, 3$ we have

$$
P_j(p) = \begin{pmatrix}
\frac{\mu_{1,2,j} + (\kappa - \frac{1}{2})\mu_{1,2,j-1}}{2\mu_{1,2,j-1}} & -\frac{\mu_{1,2,j-1}}{2\mu_{1,2,j-1}} & -\frac{\mu_{1,2,j-1}}{2\mu_{1,2,j-1}} & \frac{\mu_{1,2,j}}{\mu_{1,2,j-1}} \\
\frac{\mu_{1,2,j}}{\mu_{1,2,j-1}} & \frac{\mu_{1,2,j}}{\mu_{1,2,j-1}} & \frac{\mu_{1,2,j}}{\mu_{1,2,j-1}} & \mu_{3,j} \\
\end{pmatrix}.
$$

In case III, $P_j(p)$ is of form

$$
\begin{pmatrix}
u_3 & -\nu_{j-1} & -\nu_{j-1} & \nu_{j-1} \\
u_{j-1} & \nu_{j-1} & \nu_{j-1} & \nu_{j-1} \\
u_{j-1} & \nu_{j-1} & \nu_{j-1} & \nu_{j-1} \\
u_{j-1} & \nu_{j-1} & \nu_{j-1} & \nu_{j-1} \\
\end{pmatrix},
$$

where $u_3 = u_2 = 0$, $u_1 = \lambda$, $u_0 = 1$ and $u_{-1} = u_{-2} = 0$. In case IV, we have

$$
P_j = \begin{pmatrix}
\frac{\kappa\mu_{1,2,j-1} + \mu_{1,2,j}}{\lambda\mu_{1,2,j-1}} & -\lambda\mu_{1,2,j-1} \\
\lambda\mu_{1,2,j-1} & \kappa\mu_{1,2,j-1} + \mu_{1,2,j} & \mu_{3,j} \\
\end{pmatrix}.
$$

(2.3)

Fortunately, in all cases we have the following important identities, similar to those in [2,11].

(i) $s_{j+1} = \kappa_i \mu_{i;j} + \mu_{i;j+1}$, $1 \leq i \leq 4$; $1 \leq j \leq 3$

(ii) $\mu_{i;j+1} = \kappa_i \mu_{i,j} + \mu_{i;j+1}$, $1 \leq i, l \leq 4, i \neq l$

(2.4)

$$
(i) \quad \text{tr}(P_j) = (n - j)s_{j+1} = c_j H_j,
(ii) \quad \text{tr}(P_j \circ S) = (n - (n - j - 1))s_{j+1} = (j+1)s_{j+1} = c_j H_{j+1},
$$

where $c_j = (n - j)\binom{n}{j} = (j+1)\binom{n}{j+1}$.

$$
\text{tr}S^2 = 4(4H_1^2 - 3H_2), \quad \text{tr}(P_j \circ S^2) = \binom{n}{j+1}[nH_j H_{j+1} - (n - j - 1)H_{j+2}].
$$

(2.5)

The linearized operator of the $(j+1)$th mean curvature of M, $L_j : \mathcal{C}^\infty(M) \to \mathcal{C}^\infty(M)$ is defined by the formula

$$
L_j(f) := \text{tr}(P_j \circ \nabla^2 f),
$$

5
where, \(<\nabla^2 f(X), Y> = <\nabla_X \nabla f, Y> \) for every \(X, Y \in \chi(M) \).

Associated to the orthonormal frame \(\{e_1, \cdots, e_4\} \) of tangent space on \(M^4_1 \), for \(k = 0, \cdots, 3 \), \(L_k(f) \) has an explicit expression as

\[
L_k(f) = \sum_{i=1}^{4} \epsilon_i \mu_{i,k}(\epsilon_i e_i f - \nabla e_i e_i f).
\]

(2.6)

For a Lorentzian hypersurface \(x : M^4_1 \to \mathbb{E}^5_1 \), with a chosen (local) unit normal vector field \(n \), for an arbitrary vector \(a \in \mathbb{E}^5_1 \) we use the decomposition \(a = a^T + a^N \) where \(a^T \in TM \) is the tangential component of \(a \), \(a^N \perp TM \), and we have the following formulae from [2,11].

\(\nabla <x,a> = a^T \), \(\nabla <n,a> = -Sa^T \).

(2.7)

Then, we get

\[
\begin{align*}
(i) \quad & L_1 n = -6(\nabla H_2 + 2(2H_1 H_2 - H_3)n) \\
(ii) \quad & L_2 n = -4(\nabla H_3 + (4H_1 H_3 - H_4)n) \\
(iii) \quad & L_3 n = -\nabla H_4 - 4H_1 H_4 n \\
(iv) \quad & L_1^2 x = 24[P_2 \nabla H_2 - 9H_2 \nabla H_2] + 12[L_1 H_2 - 12H_2(2H_1 H_2 - H_3)]n \\
(v) \quad & L_2^2 x = 24[P_3 \nabla H_3 - 6H_3 \nabla H_3] + 12[L_2 H_3 - 4H_3(4H_1 H_3 - H_4)]n \\
(vi) \quad & L_3^2 x = -12H_4 \nabla H_4 + 4(L_3 H_4 - 4H_1 H_3^2)n \\
\end{align*}
\]

(2.9)

Assume that a hypersurface \(x : M^4_1 \to \mathbb{E}^5_1 \) satisfies the condition \(L_k^2 x = 0 \), then it is said to be \(L_k \)-biharmonic. By equalities (2.9)(iv,v,vi), \(x : M^4_1 \to \mathbb{E}^5_1 \) is \(L_k \)-biharmonic (for \(k = 1,2,3 \)) if and only if it satisfies conditions:

\[
\begin{align*}
(i) \quad & L_k H_{k+1} = \binom{4}{k+1} H_{k+1}(4H_1 H_{k+1} - (4 - k - 1)H_{k+2}), \\
(ii) \quad & P_{k+1} \nabla H_{k+1} = 3(4 - k)H_{k+1} \nabla H_{k+1}. \\
\end{align*}
\]

(2.10)

Also, \(x : M^4_1 \to \mathbb{E}^5_1 \) is said to be \(L_k \)-biconservative, if its \((k + 1) \)th mean curvature satisfies the condition (2.10)(ii).

The well-known structure equations on \(\mathbb{E}^5_1 \) are given by \(d\omega_i = \sum_{j=1}^{5} \omega_{ij} \wedge \omega_j \),

\(\omega_{ij} + \omega_{ji} = 0 \) and \(d\omega_{ij} = \sum_{l=1}^{5} \omega_{il} \wedge \omega_{lj} \). Restricted on \(M \), we have \(\omega_5 = 0 \).
Some L_k-biconservative Lorentzian hypersurfaces in Minkowski 5-space

and then, $0 = d\omega_5 = \sum_{i=1}^4 \omega_{5,i} \wedge \omega_i$. So, by Cartan’s lemma, there exist functions h_{ij} such that $\omega_{5,i} = \sum_{j=1}^4 h_{ij} \omega_j$ and $h_{ij} = h_{ji}$, which gives the second fundamental form of M, as $B = \sum_{i,j} h_{ij} \omega_i \omega_j e_5$. The mean curvature H is given by $H = \frac{1}{4} \sum_{i=1}^4 h_{ii}$. Therefore, we obtain the structure equations on M as follow.

\[d\omega_i = \sum_{j=1}^4 \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0, \quad (2.11) \]

\[d\omega_{ij} = \sum_{k=1}^4 \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l=1}^4 R_{ijkl} \omega_k \wedge \omega_l, \quad (2.12) \]

for $i, j = 1, 2, 3$, and the Gauss equations $R_{ijkl} = (h_{ik} h_{jl} - h_{il} h_{jk})$, where R_{ijkl} denotes the components of the Riemannian curvature tensor of M. Denoting the covariant derivative of h_{ij} by h_{ijk}, we have

\[dh_{ij} = \sum_{k=1}^4 h_{ijk} \omega_k + \sum_{k=1}^4 h_{kj} \omega_{ik} + \sum_{k=1}^4 h_{ik} \omega_{jk}, \quad (2.13) \]

and by the Codazzi equation we get

\[h_{ijk} = h_{ikj}. \quad (2.14) \]

3 Examples

In this section, we see some examples of L_k-biconservative Lorentzian hypersurfaces in E_5^5.

Example 3.1 Consider the hypersurface \(\{ y = (y_1, ..., y_5) \in E_5^5 | -y_1^2 + y_2^2 + y_3^2 + y_4^2 = r^2 \} \) representing $S^5_1(r) \times E^1 \subset E^5_1$ (for $r > 0$) with the Gauss map $n(y) = -\frac{1}{r}(y_1, y_2, y_3, y_4, 0)$. Clearly, it has two distinct constant principal curvatures $\kappa_1 = \kappa_2 = \frac{1}{r}$ and $\kappa_3 = \kappa_4 = 0$ and constant higher order mean curvatures $H_1 = \frac{3}{4}r^{-1}$, $H_2 = \frac{1}{2}r^{-2}$, $H_3 = \frac{1}{4}r^{-3}$ and $H_4 = 0$.

Example 3.2 Consider \(\{ y = (y_1, ..., y_5) \in E_5^5 | -y_1^2 + y_2^2 + y_3^2 = r^2 \} \) representing the hypersurface $S^2_1(r) \times E^2 \subset E^5_1$ (for $r > 0$), with the Gauss map $n(y) = -\frac{1}{r}(y_1, y_2, y_3, 0, 0)$. It has two distinct principal curvatures $\kappa_1 = \kappa_2 = \frac{1}{r}$ and $\kappa_3 = \kappa_4 = 0$ and constant higher order mean curvatures $H_1 = \frac{1}{2}r^{-1}$, $H_2 = \frac{1}{6}r^{-2}$ and $H_3 = H_4 = 0$.

7
Example 3.3 Consider the submanifold \(\{ y = (y_1, \ldots, y_5) \in \mathbb{L}^5 | -y_1^2 + y_2^2 = r^2 \} \) representing the hypersurface \(S_1^4(r) \times \mathbb{E}^3 \subset \mathbb{E}_1^5 \) (for \(r > 0 \)), with the Gauss map \(n(y) = -\frac{1}{r}(y_1, y_2, 0, 0, 0) \). Clearly, it has two distinct principal curvatures \(\kappa_1 = \frac{1}{r}, \kappa_2 = \kappa_3 = \kappa_4 = 0 \), and constant higher order mean curvatures \(H_1 = \frac{1}{4} r^{-1} \), and \(H_2 = H_3 = H_4 = 0 \).

Example 3.4 Consider the submanifold \(\{ y = (y_1, \ldots, y_5) \in \mathbb{E}_1^5[y_3^2 + y_4^2 + y_5^2 = r^2] \} \) denoting the hypersurface \(\mathbb{E}_1^3 \times S^1(r) \subset \mathbb{L}^5 \) (for \(r > 0 \)) with the Gauss map \(n(y) = -\frac{1}{r}(0, 0, 0, y_4, y_5) \). It has two distinct principal curvatures \(\kappa_1 = \kappa_2 = \kappa_3 = 0 \) and \(\kappa_4 = \frac{1}{r} \) and constant higher order mean curvatures \(H_1 = \frac{1}{4r} \), and \(H_k = 0 \) for \(k = 2, 3, 4 \).

Example 3.5 Consider \(\{ y = (y_1, \ldots, y_5) \in \mathbb{E}_1^5[y_3^2 + y_4^2 + y_5^2 = r^2] \} \) defining the product \(\mathbb{E}_1^3 \times S^2(r) \subset \mathbb{E}_1^5 \) (for \(r > 0 \)) with the Gauss map \(n(y) = -\frac{1}{r}(0, 0, y_3, y_4, y_5) \). It has two distinct principal curvatures \(\kappa_1 = \kappa_2 = 0 \) and \(\kappa_3 = \kappa_4 = \frac{1}{r} \) and constant higher order mean curvatures \(H_1 = \frac{1}{2r} \), \(H_2 = \frac{1}{6} r^{-2} \) and \(H_k = 0 \) for \(k = 3, 4 \).

4 Results

In this section, we prove six theorems on \(L_k \)-biconservative connected orientable Lorentzian hypersurface in the Minkowski 5-space with constant ordinary mean curvature. Theorems 4.1, 4.2 and 4.3 state the case that the shape operator on hypersurface is diagonalizable. Theorems 4.4, 4.5 and 4.6 are related to the cases that the shape operator on hypersurface is of type \(II \), \(III \) and \(IV \), respectively.

Theorem 4.1 Let \(x : M_1^4 \to \mathbb{E}_1^5 \) be isometric immersion of a \(L_k \)-biconservative orientable Lorentzian hypersurface (for a positive integer number \(k < 4 \)) in the Lorentz-Minkowski 5-space \(\mathbb{E}_1^5 \) having diagonalizable shape operator. If \(M_1^4 \) has a principal curvature of multiplicity four, then it has constant \((k+1)\)th mean curvature.

Proof. Considering the open subset \(\mathcal{U} \) of \(M \) as \(\mathcal{U} := \{ p \in M_1^4 : \nabla h_{k+1}^2(p) \neq 0 \} \), we prove that \(\mathcal{U} \) is empty. Assuming \(\mathcal{U} \neq \emptyset \), we consider \(\{ e_1, e_2, e_3, e_4 \} \) as a local orthonormal frame of principal directions of \(A \) on \(\mathcal{U} \) such that for \(i = 1, 2, 3, 4 \) we have \(Se_i = \lambda e_i \) and then, for \(j = 1, 2, 3 \), we have

\[
\mu_{i,j} = \binom{3}{j} \lambda^2, \quad H_j = \lambda j. \tag{4.1}
\]

By condition (2.10)(ii), we have to consider two different cases based on the choice of the value of \(k \).

Consider the cases \(k = 1, 2 \). Applying condition (2.10)(ii) on the both sides of the polar decomposition \(\nabla H_{k+1} = \sum_{i=1}^4 e_i < \nabla H_{k+1}, e_i > e_i \), we
Some L_k-biconservative Lorentzian hypersurfaces in Minkowski 5-space

get $\epsilon_i < \nabla H_{k+1}, e_i > (\mu_{i,k+1} - 3(4 - k)H_{k+1}) = 0$ on \mathcal{U} for $i = 1, 2, 3, 4$. If $< \nabla H_2, e_i > \neq 0$ on \mathcal{U} for some i, then we get $\mu_{i,k+1} = 3(4 - k)H_{k+1}$, which, using equalities (4.1), gives $\lambda^{k+1} = 0$ and then $H_{k+1} = 0$ on \mathcal{U}, which is a contradiction. Hence \mathcal{U} is empty and H_{k+1} is constant on M.

If $k = 3$, then we have $\nabla H_2^3 = 0$ which, gives H_4 is constant on M.

\[\square \]

Theorem 4.2 Let $x : M^4 \rightarrow E^5_1$ be isometric immersion of a L_k-biconservative orientable Lorentzian hypersurface (for a positive integer number $k < 4$) in the Lorentz-Minkowski 5-space E^5_1 having diagonalizable shape operator with constant ordinary mean curvature. If M^4 has exactly two principal curvatures λ and η of multiplicities 3 and 1 (respectively), then it’s $(k+1)$th mean curvature is constant.

Proof. Taking the open set $\mathcal{U} := \{ p \in M^4 : \nabla H^2_{k+1}(p) \neq 0 \}$, we prove that it is empty. Assuming $\mathcal{U} \neq \emptyset$, we consider $\{e_1, e_2, e_3, e_4\}$ a local orthonormal frame of principal directions of the shape operator A on \mathcal{U} such that $S e_i = \lambda e_i$ for $i = 1, 2, 3$ and $S e_4 = \eta e_4$. Therefore, we obtain

$$\mu_{1,2} = \mu_{2,2} = \mu_{3,2} = \lambda^2 + 2\lambda \eta, \mu_{4,2} = 3\lambda^2, \mu_{1,3} = \mu_{2,3} = \mu_{3,3} = \mu_{4,3} = 3\lambda^3,$$

$$4H_1 = 3\lambda + \eta, 6H_2 = 3\lambda(\lambda + \eta), 4H_3 = \lambda^2(\lambda + 3\eta), H_4 = \lambda^3 \eta.$$

(4.2)

We have to consider three different cases based on the choice of the value of k.

Case 1: $k = 1$. In this case, by conditions (2.10)(ii) we have $P_2 \nabla H_2 = 9H_2 \nabla H_2$, which, using the polar decomposition $\nabla H_2 = \sum_{i=1}^4 e_i < \nabla H_2, e_i > e_i$, gives $e_i < \nabla H_2, e_i > (\mu_{ij} - 9H_2) = 0$ on \mathcal{U} for $i = 1, 2, 3, 4$. Hence, if for some i we have $< \nabla H_2, e_i > \neq 0$ on \mathcal{U}, then we get

$$\mu_{i,2} = 9H_2.$$

(4.3)

By assumption we have $\nabla H_2 \neq 0$ on \mathcal{U}, which gives one or both of the following states.

State 1. $< \nabla H_2, e_i > \neq 0, \text{ for some } i \in \{1, 2, 3\}$. Using equalities (4.2), from (4.3) we obtain $\lambda(5\eta + 7\lambda) = 0$. If $\lambda = 0$ then $H_2 = 0$. Otherwise, we get $\lambda = \frac{5}{7}H_1, \eta = -\frac{7}{5}H_1$ and $H_2 = -\frac{3}{5}H_1^2$.

State 2. $< \nabla H_2, e_i > = 0, \text{ for } i \in \{1, 2, 3\}$ and $< \nabla H_2, e_4 > \neq 0$. By equalities (4.2) and (4.3), we obtain $3\lambda^2 = \frac{9}{2}(\lambda \eta + \lambda^2)$, which gives $\lambda(3\eta + \lambda) = 0$. If $\lambda = 0$ then $H_2 = 0$. Otherwise, we have $\lambda = \frac{3}{2}H_1, \eta = -\frac{1}{2}H_1$ and $H_2 = \frac{3}{4}H_1^2$.

Hence, H_2 is constant on M. **Case 2:** $k = 2$. In this case we have $P_3 \nabla H_3 = 6H_3 \nabla H_3$, which, using the polar decomposition $\nabla H_3 = \sum_{i=1}^4 e_i < \nabla H_3, e_i > e_i$, gives $e_i < \nabla H_3, e_i > (\mu_{i,3} - 6H_3) = 0$ on \mathcal{U} for $i = 1, 2, 3, 4$. Hence, if for some i we have $< \nabla H_{k+1}, e_i > \neq 0$ on \mathcal{U}, then we get

$$\mu_{i,3} = 6H_3.$$

(4.4)
Now, by definition we have $\nabla H_3 \neq 0$ on U, which gives one or both of the following states.

State 1. $\langle \nabla H_3, e_i \rangle \neq 0$, for some $i \in \{1, 2, 3\}$. Using equalities (4.2), from (4.4) we obtain $\lambda^2(7\eta + 3\lambda) = 0$. If $\lambda = 0$ then $H_3 = 0$. Otherwise, we get $\lambda = -\frac{14}{7}H_1$, $\eta = -\frac{2}{7}H_1$ and $H_3 = -\frac{196}{7^2}H_1^3$.

State 2. $\langle \nabla H_{k+1}, e_i \rangle = 0$, for $i \in \{1, 2, 3\}$ and $\langle \nabla H_{k+1}, e_4 \rangle \neq 0$. By equalities (4.2) and (4.4), we obtain $3\lambda^2 = \frac{9}{2}(\lambda\eta + \lambda^2)$, which gives $\lambda^2(3\eta - \lambda) = 0$. If $\lambda = 0$ then $H_3 = 0$. Otherwise, we have $\lambda = -\frac{6}{5}H_1$, $\eta = \frac{2}{5}H_1$ and $H_3 = \frac{108}{125}H_1^3$.

Hence, H_3 is constant on M.

Case 3: $k = 3$. In this case by (2.10)(ii) we have $\nabla H_4^2 = 0$, which, means that H_4 is constant on M.

\[\Box\]

Theorem 4.3 Let $x : M_1^4 \to \mathbb{E}_5^5$ be isometric immersion of a L_k-biconservative orientable Lorentzian hypersurface (for a positive integer number $k < 4$) in the Lorentz-Minkowski 5-space \mathbb{E}_5^5 having constant ordinary mean curvature and diagonalizable shape operator. If M_1^4 has two principal curvatures λ and η both of multiplicity 2, then it is $(k+1)$th mean curvature is constant.

Proof. Taking the open subset U of M as $U := \{p \in M_1^4 : \nabla H_{k+1}^2(p) \neq 0\}$, we prove that U is empty. Assuming $U \neq \emptyset$, we use the local orthonormal frame $\{e_1, e_2, e_3, e_4\}$ of principal directions of A on U such that $Se_i = \lambda e_i$ for $i = 1, 2$, and $Se_i = \eta e_i$ for $i = 3, 4$. Therefore, we obtain

\[
\begin{align*}
\mu_{1,2} &= \mu_{2,2} = \eta^2 + 2\lambda \eta, \\
\mu_{3,2} &= \mu_{4,2} = \lambda^2 + 2\lambda \eta, \\
\mu_{1,3} &= \mu_{2,3} = \lambda \eta^2, \\
\mu_{3,3} &= \mu_{4,3} = \lambda^2 \eta, \\
2H_3 &= \lambda^2 \eta + \lambda \eta^2, \\
H_4 &= \lambda^2 \eta^2.
\end{align*}
\]

(4.5)

We consider three distinct cases based on the possible values of k.

Case 1: $k = 1$. By condition (2.10)(ii), we have $P_2(\nabla H_2) = 9H_2 \nabla H_2$, which, using the polar decomposition $\nabla H_2 = \sum_{i=1}^{4} \epsilon_i < \nabla H_2, e_i > e_i$, gives $e_i < \nabla H_2, e_i > (\mu_{i,2} - 9H_2) = 0$ on U for $i = 1, 2, 3, 4$. Hence, for some i such that $< \nabla H_2, e_i > \neq 0$ on U, we get

\[
\mu_{i,2} = 9H_2.
\]

(4.6)

By definition, we have $\nabla H_2 \neq 0$ on U, which gives one or both of the following states.

State 1. $\langle \nabla H_2, e_i \rangle \neq 0$, for some $i \in \{1, 2\}$. Using equalities (4.5), from (4.6) we obtain $3\lambda^2 + \eta^2 + 8\lambda \eta = 0$, which gives $\eta = \frac{2c_0}{x_1 + c_0}H_1$, $H_2 = \frac{2}{3}(1 + \frac{2c_0}{(1 + c_0)^2})H^2$.

Then, we have

\[
\lambda = \frac{2}{1 + c_0}H_1, \\
\eta = \frac{2c_0}{1 + c_0}H_1, \\
H_2 = \frac{2}{3}(1 + \frac{2c_0}{(1 + c_0)^2})H^2.
\]

(4.7)
State 2. \(<\nabla H_2, e_i> = 0\) for \(i \in \{1, 2\}\), and \(<\nabla H_2, e_j> \neq 0\) for some \(j \in \{3, 4\}\). By equalities (4.5) and (4.6), we obtain \(3\lambda^2 = \frac{9}{2}(\lambda \mu + \lambda^2)\), which gives \(\lambda = c_0 \eta\) where \(c_0 := -4 \pm \sqrt{3}\). Then, we have:

\[
\lambda = \frac{2c_0}{1 + c_0} H_1, \quad \eta = \frac{2}{1 + c_0} H_1, \quad H_2 = \frac{2}{3}(1 + \frac{2c_0}{(1 + c_0)^2}) H^2. \tag{4.8}
\]

Hence, \(H_2\) is constant on \(M\).

Case 2: \(k = 2\). By condition (2.10)(ii), we have \(P_3(\nabla H_2) = 6H_3 \nabla H_3\), which, using the polar decomposition \(\nabla H_3 = \sum_{i=1}^{4} \epsilon_i <\nabla H_3, e_i> e_i\), gives \(\epsilon_i <\nabla H_3, e_i> (\mu_{i,3} - 9H_3) = 0\) on \(U\) for \(i = 1, 2, 3, 4\). Hence, for some \(i\) such that \(<\nabla H_3, e_i> \neq 0\) on \(U\), we get

\[
\mu_{i,3} = 6H_3. \tag{4.9}
\]

By definition, we have \(\nabla H_3 \neq 0\) on \(U\), which gives one or both of the following states.

State 1. \(<\nabla H_3, e_i> \neq 0, \text{ for some } i \in \{1, 2\}\). Using equalities (4.5), from (4.9) we obtain \(\eta \lambda (3\lambda + 2\eta) = 0\). If \(\eta \lambda = 0\), then \(H_3 = 0\) and it remains nothing to prove. If \(\eta \lambda \neq 0\), then we get \(\eta = -\frac{3}{2}\lambda\), which gives

\[
\lambda = -4H_1, \quad \eta = 6H_1, \quad H_3 = -24H_1^3. \tag{4.10}
\]

State 2. \(<\nabla H_3, e_i> = 0\) for \(i \in \{1, 2\}\), and \(<\nabla H_3, e_j> \neq 0\) for some \(j \in \{3, 4\}\). By equalities (4.5) and (4.9), we obtain \(\eta \lambda (3\eta + 2\lambda) = 0\). If \(\lambda \eta = 0\), then \(H_3 = 0\) and it remains nothing to prove. If \(\lambda \eta \neq 0\), then we get \(\lambda = -\frac{3}{2}\eta\), which gives

\[
\lambda = 6H_1, \quad \eta = -4H_1, \quad H_3 = -24H_1^3. \tag{4.11}
\]

Hence, \(H_3\) is constant on \(M\).

Case 3: \(k = 3\). In this case by (2.10)(ii) we have \(\nabla H_4^2 = 0\), which, means that \(H_4\) is constant on \(M\).

\(\square\)

Theorem 4.4 Let \(x : M^4_1 \to \mathbb{E}^5_1\) be isometric immersion of a \(L_k\)-biconservative orientable Lorentzian hypersurface (for a positive integer number \(k < 4\)) in the Lorentz-Minkowski 5-space \(\mathbb{E}^5_1\) having shape operator of type \(II\). If \(M^4_1\) has at most two distinct principal curvatures and constant ordinary mean curvature, then it’s \((k + 1)\)th mean curvature is constant.

Proof. We suppose that, a Lorentzian hypersurface \(x : M^4_1 \to \mathbb{E}^5_1\) be \(L_k\)-biharmonic with shape operator of type \(II\), which has constant \(k\)th mean curvature and at most two distinct principal curvatures. First, we show that \(H_{k+1}\) is constant on \(M^4_1\). Defining the open subset \(U = \{p \in M : \nabla H^2(p) \neq 0\}\), we assume \(U \neq \emptyset\). By the assumption, with respect to a suitable (local) orthonormal tangent frame \(\{e_1, \cdots, e_4\}\) on \(M\), the shape operator \(S\) has the matrix form \(B_2\), such that \(Se_1 = (\kappa + \frac{1}{2})e_1 - \frac{1}{2}e_2\),
$Se_2 = \frac{1}{2}e_1 + (\kappa - \frac{1}{2})e_2$, $Se_3 = \lambda e_3$ and $Se_4 = \lambda e_4$, and then, we have
$P_2e_1 = (\lambda^2 + 2(\kappa - \frac{1}{2})\lambda)e_1 + 2\lambda e_2$, $P_2e_2 = -\lambda e_1 + (\lambda^2 + 2(\kappa + \frac{1}{2})\lambda)e_2$, and
$P_2e_3 = (\kappa^2 + 2\kappa\lambda)e_3$ and $P_2e_4 = (\kappa^2 + 2\kappa\lambda)e_4$.

Using the polar decomposition $\nabla H_{k+1} = \sum_{i=1}^{4} e_i (H_{k+1}) e_i$, from condition (2.10) we have $P_{k+1}\nabla H_{k+1} = 3(4 - k)H_{k+1} \nabla H_{k+1}$ for $k = 1, 2, 3$, which gives

\begin{align*}
(i) & \ [\mu_{1,2;k+1} + (\kappa - \frac{1}{2})\mu_{1,2;k} - 3(4 - k)H_{k+1}]e_1 e_1 (H_{k+1}) = \frac{1}{2} \mu_{1,2;k} e_2 e_2 (H_{k+1}) \\
(ii) & \ [\mu_{1,2;k+1} + (\kappa + \frac{1}{2})\mu_{1,2;k} - 3(4 - k)H_{k+1}]e_2 e_2 (H_{k+1}) = -\frac{1}{2} \mu_{1,2;k} e_1 e_1 (H_{k+1}), \\
(iii) & \ [\mu_{3;k+1} - 3(4 - k)H_{k+1}]e_3 e_3 (H_{k+1}) = 0, \\
(iv) & \ [\mu_{4;k+1} - 3(4 - k)H_{k+1}]e_4 e_4 (H_{k+1}) = 0.
\end{align*}

(4.12)

Now, we prove some simple claims.

Claim: $e_1 (H_{k+1}) = e_2 (H_{k+1}) = e_3 (H_{k+1}) = e_4 (H_{k+1}) = 0$.

If $e_1 (H_{k+1}) \neq 0$, then by dividing both sides of equalities (4.12)(i) and (4.12)(ii) by $e_1 (H_{k+1})$ we get

\begin{align*}
(i) & \quad \mu_{1,2;k+1} + (\kappa - \frac{1}{2})\mu_{1,2;k} - 3(4 - k)H_{k+1} = \frac{1}{2} \mu_{1,2;k} u, \\
(ii) & \quad [\mu_{1,2;k+1} + (\kappa + \frac{1}{2})\mu_{1,2;k} - 3(4 - k)H_{k+1}]u = -\frac{1}{2} \mu_{1,2;k},
\end{align*}

(4.13)

where $u := \frac{e_2 e_2 (H_{k+1})}{e_1 (H_{k+1})}$. By substituting (i) in (ii), we obtain $\mu_{1,2;k}(1 + u)^2 = 0$, then $\mu_{1,2;k} = 0$ or $u = -1$. If $\mu_{1,2;k} = 0$, then, we have $\binom{2}{k}\lambda^k = 0$ which gives $\binom{k}{k+1}\lambda^{k+1} = 0$, so $H_{k+1} = 0$. If $\mu_{1,2;k} \neq 0$, we get $u = -1$, which gives $\mu_{1,2;k+1} + \kappa \mu_{1,2;k} = 3(4 - k)H_{k+1}$. We continue the proof separately in three distinct cases based on the possible values of k.

Case 1: $k = 1$. In this case we get $3\kappa^2 + \lambda^2 + 8\kappa\lambda = 0$. Since $2H_1 = \kappa + \lambda$ is assumed to be constant on M, by substituting which in the last equality, we get $\lambda^2 - H_1 \lambda - 3H_1^2 = 0$, which means that, λ, κ and the jth mean curvatures (for $j = 2, 3, 4$) are constant on M. So, we got a contradiction and therefore, the first part of the claim is proved.

Case 2: $k = 2$. In this case we get $\kappa\lambda(3\kappa + 2\lambda) = 0$. Since $2H_1 = \kappa + \lambda$ is assumed to be constant on M, by substituting which in the last equality, we get $\kappa(4H_1 + \kappa)(2H_1 - \kappa) = 0$, which means that, λ, κ and the jth mean curvatures (for $j = 2, 3, 4$) are constant on M. So, we got a contradiction and therefore, the first part of the claim is proved.

Case 3: $k = 3$. In this case, since $P_4 = 0$, we get $\nabla H_4^2 = 0$. So H_4 is constant on M. Hence, the first part of the claim is affirmed.
By a similar manner, each of assumptions $e_i(H_{k+1}) \neq 0$ for $i = 2, 3, 4$, gives the equality $\mu_{1,2,k+1} + \kappa \mu_{1,2,k} = 3(4 - k)H_{k+1}$, which implies a contradiction. So, the claim is confirmed. By assumption H_1 is assumed to be constant and by the first stage, it is proved that H_{k+1} is constant.

\[\blacksquare\]

Theorem 4.5 Let $x : M^4_1 \to E^5_1$ be isometric immersion of a L_k-biconservative orientable Lorentzian hypersurface (for a positive integer number $k < 4$) in the Lorentz-Minkowski 5-space E^5_1 having shape operator of type III. If M^4_1 has constant ordinary mean curvature, then its $(k+1)$th mean curvature is constant.

Proof. Similar to proof of Theorem 4.4, we assume that H_{k+1} is non-constant and considering the open subset \mathcal{U}, we prove that $\mathcal{U} = \emptyset$. Similarly, we get the conditions

\begin{align*}
(i) \quad & (u_{k+1} + 2\kappa u_k + (\kappa^2 - \frac{1}{2})u_{k-1} - 3(4 - k)H_{k+1})e_1e_1(H_{k+1}) - \frac{1}{2}u_{k-1}e_2e_2(H_{k+1}) \\
& = \frac{\sqrt{2}}{2}(u_k + \kappa u_{k-1})e_3e_3(H_{k+1}), \\
(ii) \quad & \frac{1}{2}u_{k-1}e_1e_1(H_{k+1}) + (u_{k+1} + 2\kappa u_k + (\kappa^2 - \frac{1}{2})u_{k-1} - 3(4 - k)H_{k+1})e_2e_2(H_{k+1}) \\
& = -\frac{\sqrt{2}}{2}(u_k + \kappa u_{k-1})e_3e_3(H_{k+1}), \\
(iii) \quad & \frac{\sqrt{2}}{2}(u_k + \kappa u_{k-1})(e_1e_1(H_{k+1}) + e_2e_2(H_{k+1})) \\
& = -(u_{k+1} + 2\kappa u_k + \kappa^2 u_{k-1} - 3(4 - k)H_{k+1})e_3e_3(H_{k+1}), \\
(iv) \quad & (\mu_{4,k+1} - 3(4 - k)H_{k+1})e_4e_4(H_{k+1}) = 0. \\
& \quad \text{(4.14)}
\end{align*}

Now, we prove that H_{k+1} is constant.

Claim: $e_1(H_{k+1}) = e_2(H_{k+1}) = e_3(H_{k+1}) = e_4(H_{k+1}) = 0$.

If $e_1(H_{k+1}) \neq 0$, then by dividing both sides of equalities (4.14)(i, ii, iii) by $e_1e_1(H_{k+1})$, and using the identity $2H_2 = \kappa^2 + \kappa \lambda$ in type III, putting
\(w_1 := \frac{e_2 e_2(H_{k+1})}{e_1 e_1(H_{k+1})} \) and \(w_2 := \frac{e_3 e_3(H_{k+1})}{e_1 e_1(H_{k+1})} \), we get

(i) \(u_{k+1} + 2\kappa u_k + (\kappa^2 - \frac{1}{2})u_{k-1} - 3(4-k)H_{k+1} - \frac{1}{2}u_{k-1}w_1 \)

\[= \frac{\sqrt{2}}{2}(u_k + \kappa u_{k-1})w_2, \]

(ii) \(\frac{1}{2}u_{k-1} + (u_{k+1} + 2\kappa u_k + (\kappa^2 + \frac{1}{2})u_{k-1} - 3(4-k)H_{k+1})w_1 \)

\[= -\frac{\sqrt{2}}{2}(u_k + \kappa u_{k-1})w_2, \]

(iii) \(\frac{\sqrt{2}}{2}(u_k + \kappa u_{k-1})(1 + w_1) + (u_{k+1} + 2\kappa u_k + \kappa^2 u_{k-1} - 3(4-k)H_{k+1})w_2 = 0, \)

(4.15)

which, by comparing (i) and (ii), gives

\[[u_{k+1} + 2\kappa u_k + \kappa^2 u_{k-1} - 3(4-k)H_{k+1}(1 + w_1) = 0. \]

(4.16)

We continue the proof of the first part of the claim (i.e., \(e_1(H_{k+1}) = 0 \)) separately in three distinct cases based on the possible values of \(k \).

Case 1: \(k = 1 \). In this case, from (4.16), we get \(\kappa(5\lambda + 7\kappa)(1 + w_1) = 0 \).

If \(\kappa = 0 \), then \(H_2 = 0 \). Assuming \(\kappa \neq 0 \), we get \(w_1 = -1 \) or \(\lambda = -\frac{7}{5}\kappa \). If \(w_1 \neq -1 \), then \(\lambda = -\frac{7}{5}\kappa \) and then by (4.16) and (4.15)(iii) we obtain \(w_1 = -1 \), which is a contradiction. Hence we have \(w_1 = -1 \), which by (4.15)(i, iii) implies \(w_2 = 0 \) and then \(\lambda = -\frac{7}{5}\kappa \). Since \(4H_1 = 3\kappa + \lambda \) is assumed to be constant on \(M \), then \(4H_1 = \frac{8}{7}\kappa \) is constant, which means that, \(\lambda, \kappa \) and the \(j \)th mean curvatures (for \(j = 2, 3, 4 \)) are constant on \(M \). So, we got a contradiction and therefore, the first part of the claim is proved.

Case 2: \(k = 2 \). In this case, from (4.16), we get \(\kappa^2(7\lambda + 3\kappa)(1 + w_1) = 0 \).

If \(\kappa = 0 \), then \(H_2 = 0 \). Assuming \(\kappa \neq 0 \), we get \(w_1 = -1 \) or \(\lambda = -\frac{3}{5}\kappa \). If \(w_1 \neq -1 \), then \(\lambda = -\frac{3}{5}\kappa \) and then by (4.16) and (4.15)(iii) we obtain \(w_1 = -1 \), which is a contradiction. Hence we have \(w_1 = -1 \), which by (4.15)(i, iii) implies \(w_2 = 0 \) and then \(\lambda = -\frac{3}{5}\kappa \). Since \(4H_1 = 3\kappa + \lambda \) is assumed to be constant on \(M \), then \(4H_1 = \frac{18}{5}\kappa \) is constant, which means that, \(\lambda, \kappa \) and the \(j \)th mean curvatures (for \(j = 2, 3, 4 \)) are constant on \(M \). So, we got a contradiction and therefore, the first part of the claim is proved.

Case 3: \(k = 3 \). In this case, since \(P_4 = 0 \), we get \(\nabla H_4^2 = 0 \). So \(H_4 \) is constant on \(M \). Hence, the first part of the claim is affirmed.

By a similar manner, each of assumptions \(e_i(H_{k+1}) \neq 0 \) for \(i = 2, 3, 4 \), gives a contradiction. So, the claim is confirmed. By assumption \(H_1 \) is assumed to be constant and by the first stage, it is proved that \(H_{k+1} \) is constant.

\(\square \)
Theorem 4.6 Let $x: M^4 \to \mathbb{E}^5$ be isometric immersion of a L_k-biconservative orientable Lorentzian hypersurface (for a positive integer number $k < 4$) in the Lorentz-Minkowski 5-space \mathbb{E}^5 having shape operator of type IV. If M^4 has at most two distinct non-zero principal curvatures, then it’s $(k+1)$th mean curvature is constant and also, M^4 is isoparametric.

Proof. Suppose that, H_{k+1} be non-constant. Considering the open subset $\mathcal{U} = \{p \in M : \nabla H_{k+1}(p) \neq 0\}$, we try to show $\mathcal{U} = \emptyset$. By assumption, the shape operator S of M^4 is of type IV with at most two distinct nonzero eigenvalue functions, then, with respect to a suitable (local) orthonormal tangent frame $\{e_1, \ldots, e_4\}$ on M, the shape operator S has the matrix form B_4, such that $Se_1 = -\lambda e_2$, $Se_2 = \lambda e_1$, $Se_3 = Se_4 = 0$ and then, we have $P_2e_1 = P_2e_2 = 0$, $P_2e_3 = \lambda^2 e_3$ and $P_2e_4 = \lambda^2 e_4$. Using the polar decomposition $\nabla H_2 = \sum_{i=1}^{4} \epsilon_i e_i(H_2)e_i$, from condition (2.10(ii)) we get

\begin{align}
(i) \quad 9H_2e_1e_1(H_2) &= 0, \\
(ii) \quad 9H_2e_2e_2(H_2) &= 0, \\
(iii) \quad (\lambda^2 - 9H_2)e_3e_3(H_2) &= 0, \\
(iv) \quad (\lambda^2 - 9H_2)e_4e_4(H_2) &= 0, \\
\end{align}

which gives $e_1(H_2) = e_2(H_2) = e_3(H_2) = e_4(H_2) = 0$.

Then, $6H_2 = \lambda^2$ is constant and M^4 is a timelike isoparametric hypersurface of \mathbb{E}^5.

\[\square\]

References

Received: 03.X.2020 / Revised: 26.XI.2022 / Accepted: 28.XI.2022

AUTHOR

Firooz Pashaie,
Department of Mathematics,
Faculty of Basic Sciences,
University of Maragheh,
P.O. Box 55181-83111, Maragheh, Iran,
E-mail: f.pashaie@yahoo.com