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SEMI-INVARIANT SUBMANIFOLDS OF A SASAKIAN MANIFOLD
BY

AUREL BEJANCU and NECULAI PAPAGHIUC

0. Intreduction. The differential geometrv of several classes of sub-
manifolds in a Sasakian manifold has been investigated by many people.
Interesting results have been obtained by G. Ludden, M. Oku-
mura, K. Yano [3], K. Yano and M. Kon [6] in studying
anti-invariant submanifolds of Sasakian manifolds and by M. Kon [4]
in studying invariant submanifolds. Moreover, K. Yano and M. Kon
have studied generic submanifolds of odd dimensional spheres which are
generalizations of anti-invariant submanifolds [7].

Recently in [1] one of the present authors introduced the notion
of CR-submanifold in a Kaehler manifold. CR-submanifolds appear as
a natural generalization of both complex submanifolds and totally real
submanifolds.

The purpose of the present paper is to introduce and study a similar
class of submanifolds in a Sasakian manifold. In §1 we introduce the notion
of semi-invariant submanifold of a Sasakian manifold and give fundamental
formulas for later use. The integrability of all distributions involved in
the definition of a semi-invariant submanifold is studied in §2. Finally,
we give a complete characterization for totally umbilical semi-invariant
submanifolds of a Sasakian manifold.

1. Semi-invariant submanifolds of a Sasakian manifold. First, we
recall the definition and some properties of a Sasakian manifeld.

Let M be a (2n-1)-dimensional differentiable manifold of class C=
and F, v, ¥ be a tensor field of type (1.1), a 1-form and a vector filed on M
respectively, which safisly
for any vector field X on A7, where I is the identity tensor on A7,

Then A is called an almost contact manifold and (F,4, &) an almost

contact structure on M. _ -
Now, suppose on A7 is given a Ricmannian metric tensor field g
which satisfies the equations

(1.2) g(FX, FY)=g(X, Y)— (&)1 (Y),
(1.3) n(X)=g(X, &),

for any vector fields X, Y tangent to M. Then A7 is called an almost con-
tact metric manifold. When we have

(1.4) dq (X, Y)=g(X, F,Y)
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for any vector fields X, ¥ tangent to A7, we say that M is a contact metric
manifold. If the Nijenhuis tensor field of F verifies

(1.5) ‘ N p-2dn @E=0,

then M is called a normal almost t_:_ontact manifold. If the contact mefric
manifold M is normal we say that M ia a Sasakian manifold and {F, =, &, &)

is called a Sasakian structure on M. It is known {[2], p. 73) that an almost
contact metric structure is Sasakian if and only if

(1.6) (VxF)Y =g(X, Y)E— (V) X,

where V denotes the Riemannian conmnection of A/. Also, on a Sasakian
manifold we have

(1.7) Vxb=m—FX

for all vector field X tangent to M.

As we have mentioned in the introduction, anti-invariant submani-
folds and invariant submanifolds have been intensively studied and in-
teresting results have been obtained. Nevertheless, it arises the question
if there exist some other classes of submanifolds as generalizations of both
invariant submanifolds [4] and anti-invariant submanifolds [3], [6]. We
shall introduce here such a class of submanifolds in an almost contact me-
tric manifold.

Let M be an sm-dimensional Riemannian manifold isometrically im-
mersed in an almost contact metric manifold 34 such that the structure
véctor field £ of M is tangent to M. Denote by T'M and TM+ respectively
the tangent bundle of M and the normal bundle to M. The 1-dimensional
distribution on M defined by £ is denoted by {&}. Suppose there exist on
M two differentiable orthogonal distributions D and D! such that the follo-
wing conditions are fulfilled '

(i) TM=DaD+@{},
(ii) the distribution D s invariant by F, that is, F¥ (D;)=D, for each x =],
(iii) the distribution DL is anti-invariant by F, that is, F(DL) =T ML for
each xeM. : -

Definition. 4 submanifold M of an almost contact melvic mantfold M
endowed with the pair of distributions (D, D) satisfying conditions (1), (#)
and (iii) is called a semi-invariant submanifold of M.

‘The distributions D and DL are called respectively the invariant dis
tribution and the awii-tnvariant distribution of M. : :

Suppose the dimension of D.(resp. D) be 2p (resp. 'q). Then it is
easily seen that when p==0 (resp. g=>0) the semi-invariant submanifold
M becomes an anti-invariant submanifold (resp. an invariant submanifold).
An example of semi-invariant submanifold in an almost contact metric
manifold is given by

Proposition 1.1. Let M be a hypersurface of an almost contact metric
mamifold M such that & is tangent to M. Then, M is a semi-invariant sub-

masifold of M.
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Proof. We define on M the distribution D+ by DL=F(TM+). The
complementary orthogonal distribution to Di@{f} in 71 is denoted by
D. Thus, M endowed with thé pair of distributions (D, I)+) becomes a semi-
invariant submanifold.

Now, suppose R+ endowod with its natural Sasakian structure
(F,q,E g ([2], p 81). If (af, 3%, 2) is a system of coordinates on R+,

then § is ]ust — . It is not difficult to sec that each hypersurface M of

R¥+1 which is glven locally by
B (AU Lo PR U Tl (SO S M A 5 1 SR S0

-

is an example of semi-invariant submanifold. In fact, € is tangent to M
and the assertion foliows from Proposition 1.1.

By ITM) wc mean the module of all differentiable vector fields on
M. We say that X e I(T3) is a section of D (resp. of D4) if X, =D, (resp.
X, e D%) for each x =M. Denote by 1'(D) {(resp. I'(D+)) the module of diffe-
rentiable sections of D (resp. D1},

If M is endowed with an almost contact metric structure (F, 4, &, g)
then it is known that M %X R carries an almost Hermitian structure J
given by
(1.8) J (X, fdlat)y=(FX—~f&, n{X)d[dt) .

Suppose M is a Riemannian submanifold of M such that £ is tangent to
M. Then, we have
* Theorem 1.1. The submanifold M s a semi-invariant submanifold of
M if and only if M is a CR-submanifold of M x R, with D as holomorphic
distribution and {E}@DL as fotally veal distribution.
Proof. From (1.8) we have

(1.9) J{X,0)=(FX, 0) for each vector field X tangent to M such
that 7 (X}=0 and

(1.10) JEE, 0)= {0, d/di) .
Now, suppose M is a semi-invariant submanifold of M. Then from (1.9)
taking into account that D is invariant by I, it follows J(X, 0} e I'(D), for
all X e (D). Also, from (1.9) it {ollows that J {Y, 0) belongs to the normal
bundle to M in M < R for each ¥ e I'(D+). Then, by using (1.10) we obtain
that {§}@DL is going in TAI+ by J. Conversely, if M is a CR-submanifold
of M xR, by (1.9) we obtain that FX eI'(D) for each X «I'(D) and FY &
eI(TML) for each YV eT'(DL). Hence M is a semi-invariant submani-
fold of M.

In this paper we are dealing only Wlth semi-invariant submanifolds
of a Sasakian manifold.

Let M be an m-dimensional Rlemanman manifold isometrically
immersed in a Sasakian manifold . Then, we have

Proposition 1.2, (K. Yano and M. Kon [61). If the siructure

vector field & is novmal to M, then M is an anti-tnvariant submanifold in M
and m<n.
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Let M be a semi-invariant submanifold of a Sasakian manifold M.
We shall denote by the same symbol g both metrics on M and M. The pro-
jection morphisms of TM to D and D1 are denoted respectively by P and
(). Then we have -
{1.11) X=PX 40X +4{X)E

for all vector ficlds X tangent to M.
If N is a vector field in the normal bundle T4+ we put

(1.12) FN=BN-CN

where BN eT(D+) and CN e[(TAM4). Substituiing N by FQX in (1.12)
and taking into account (1.1), we obtain:

(1.13) BFQX4+0X=0; CFQX=0 for all X eT(T3).
Applying F to (1.2} we have
(1.14) ©CANANLFBN=0,; BCN=0.

From (1.13) and {I.14), it follows C3+4-C=0 that is, we have

Proposition 1.3. O the normal bundle of each semi-invariant submant-
Jold of a Sasakian manifold there exist an S-structure C_[5].

Let ¥ and v be the Levi-Civita connections on M and respectively
M. Denote by k the second fundamental form of M. Then, the equations of
Gauss and Weingarten are given by

(1.15) VY=V, Y4AX,Y) and respectively

(1.16) ' VN =l y X +VEN

for all X, Y e(TM), Nel(TM1), where Vi is the normal connection
induced by V on TML and Ay is the fundamental tensor of Weingarten

with respect to the normal section N.
It is known that we have .

(1.17) ' g(h(X, Y), Ny=g(dsX, Y). |
Lemma 1.1. Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then, we have :

(1.18) PV FPY—PA pop X =FPVzY— (V) PX,
(1.19). OV F PY—QA poy X =BIX, Y)—2 (Y)0X,
(1200 L a(VaFPY—drerX)=g(FX, FY),

(1.21) WX, FPY)+ViFQY =CHX, Y)+FQVzY,

for all vector fields X, Y tangent to M.
Proof. Substituing Y by FY in (1.15) and using (1.6) we obtain

(1.22)89 2 F PY +h(X, FPY)——A poy X+ V4FQY =F VY +g(X, V)8~ 2 (Y)X.

By a direct computation using (1.11), (1.12), (1.15), (1,16} and (1.2) from
(1.22) follows (1.18)—(1.21).
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Lemma 1.2. Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then, we have

(1.23) . FPAyX=PAyX—PVyBN,
(1.24) BYAN =0V BN—Q4 X,
(1.25) WX, BN)+VECN+FQA X=CV}N,
(1.26) 0 (Vx BN—A oy X) =0,

Jor all vector fields X tangent to M and normal section N,

Proof. Differentiating (1.12) with respect to X eI’(TM) and taking
into account (1.6), (1.15) and (1.16), we obtain:
(1.27) FVyN=VxBN+(X, BN)—A4 xX+VECN.

Then, (1.23)—(1.26) follows from (1.27) by using (1.11), (1.12) and (1.16).
Lemma 1.3. Let M be a semi-tnvariant submanifold of & Sasakian

manifold M. Then, we have

(1.28) WX, E)=0,

(1.29) © Y E=—FX, for all X=D(D) and

(1.30) WY, £)=—FY,

(1.31) VyE=0, for all Y eT'(D1).
Proof. By using (1.7) and (1.15) we obtain

(1.32) - Vi h{(Z, §)=—FZ.

for each vector field Z tangent to M. Then, substituiting Z in (1.32) by X
eT(D) (resp. Y =I'(D)}, it follows (1.28) and (1.29) (resp. (1.30) and (1.31)).
The 2-form ® of the Sasakian manifold M is defined by

(1.33) O(X, ¥)=g(X, FY).

Then, we have

(1.34) o(X, FY)+g(FX, Y)=0 X, YT (TM).
for all

2. Integrability of distributions on a semi-invariant submanifold.
As we have seen. in the definition of a semi-invariant submanifold are in-
volved two distributions D and DL. The main purpose of this paragraph
is to study the integrability of distributions D, D+, D@D+, D@ {€}, DE@{E}.
Tt is well known that the contact distribution on a Sasakian manifold is

never involutive. However we shall see in this paragraph that some of the
above distributions are always involutive on .

Lemma 2.1. Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then, we have

(2-1) flprEAFYx for ail X,‘YEF(D"L)
Proof. By using (1.2), (1.15), (1.17) and (1.34), we obtain
(2.2) (A px¥, Z)=-—g(V,;Y, FX)
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for each vector field Z tangent to 3. Now, Ly using (1.6) and (1.16) the
second part of (2.2) becomes

(2.3) ¢(V,Y, FX}=—g(FV,Y, X)=—g(V,FY, X)=¢(d X, Z).
Thus, (2.1) follows from (2.2) and (2.3).

Lemma 2.2. Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then, we have

(2.4) (X, Y)el(D®DL) for all X,Y eT(D).

Proof. Since V is the Levi-Civita connection on M, by (1.7) and
(1.34) we obtaing([ X, Y], £) =g(X, VyE)—g(Y, Vx&) =g(V, FX)—g{X, FY)=
=0, for all X, Y el'(D1), which proves the assertion of the lemma. Now,
we can state

Theorem 2.1. Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then, the anii-invariant distribution is iuvolulive.

Proof. We take X, Yel(D+)and by using (1.15), (1.16) and {1.6),
we obtain

(2.5) FVRXAFMX, V) +g(X, V)E=—4 px Y+ VEFX.

Substituing ¥ by X in (2.5) and substracting the obtained relation from
(2.5), we have

(2.6) FLY, X_}"—”[I F}_’X"—A FX}"‘}"VE‘?F;Y“V*I;YW.
Then, by (1.1} and lemmas 2.1 and 2.2 we see that (2.6) becomes
(2.7) (X, Y]=F(V#FX—V3FY).

Now, we denote by D the complementary orthogonal subbundle of F({D1)
in TAf4. Then we take an arbitrary normal section N eT'(f)) and by using
(1.6), (L.16) and (1.34) we obtain

(2.8) gN, V#rX)=—g{Ad Y, X).

Substituting ¥ by X in (2.8) and substracting the obtained relation’ {rom
(2.8), we have B

(2.9 g(N, VFX—V%FY)=0,
since. 4 py is a symmetrical operator with respect to g.
Hence V#FX—V+FY eT(FDL), which together with (2.7) implies [X, Y] e
eI'(D+). Thus the proof is complete.

Theorem 2.2, Let M be a semi-tnvariant submanifold of a Sasakian
manifold M. Then, the distribution DE®{E} is involutive.

Proof. For any XeI'(DL) and Y €T'(D) we have
(2.10) g(X, £), V) =¢(VaE—VeX, V) =g(X, VY).

Now we take ZeT1(D) such that FZ=Y and 'by using {1.6), (1.28) and
(2.10), we obtain o


pc3
Rectangle


7 BEMI-TNVARITANT SUBMANIFOLDS OF A SASANIAN MANIFOLD 169

@.11)  e[X, 8], V) =g(X, VolZ)=g(X, FV;Z)=g(X, FV,Z)=0.
Consequently, [X, ] sU(DL@{E}) which together with Theovem 2.1 im-
plies that Di@{&} is involutive.

Definition. A semri-invariant submanifold M of a Sasakian manifold M
is called a proper semi-invariant submanifold, if it is neither an invariant
submanifold (i.c. dim D=0 for each x=M) nor an anti-invariant subma-
nifold (i.e. dim D,=0 for ecach x <) '

Theorem 2.3, Let M be a proper semi-invariait submanifold of a Sa-
sakian wmanifold M. Then, the invariant distribution dis never involulive.

Proof. By using (1.7) and (1.33) we have
(212) (X, Y], §)=g(Vx¥—V:X, =g(X, ViE)—g(Y, Vi) =

=g(Y, FX)—g(X, FY)=20(Y, X), for all X, Y elXD).
But the 2-form @ does not vanish on D x D since for an unit vector field
X el(D), we take Y=FX and obtain ®(Y, X)=1. Hence, by (2.12) the
invariant distribution is mever involutive. From this theorem we have

Corollaty 2.1. Let M be a proper semi-invariant subsmanifold of a
Sasakian manifold M. Then, the distribution D@DL is never involutive.

Now, we need two lemmas in order to get a necessary and sufficient
condition for the integrability of the distribution D@®{E}.

Lemma 2.3. Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then, we have

(2.13) o alh(X, Y), FZ)=glAy Z, FY)

Jor all wvector fields X <« U(TM), Y eT(D) and Z eT{D+).
Proof. By using (1.16) and (1.17), we obtain

(2.14) g(h(X, Y), TZ)s=g(d 1y X, Y) =g(VEFZ—N 1 FZ, Y)=—g(VxFZ, Y).
On the other hand, by using (1.15) and (1.34), we have
(2.15) AVZ, FY)=gl{VyZ, FY)= —g(FVyZ, Y)

2.

for all X e(TM), Yel(D), Zel'(DL). From (2.14) and (2.15) it follows
(2.13) by means of (1.6},

Lemma 2.4. Lef M be a semi-invariant submanifold of a Sasakian
manifold M. Then, [X, £] e T{D®IE}) for each wveclor field X e(D).

Proof. By using (1.7) and (1.28) we have

(2.16)  g([X, £], V) =—g(V;X, ¥)=—g(V:X, V) =g(X, V¢¥)

for each Y eI'(DL) and XeT(D).

Now, we take Z & I'(D) such that X==FZ and by using lemma 2.3 and (1.28)
obtain

(2.17) X, VeY)=g(FZ, ViY)=g(h(g, Z), FY)=0

for all X e (D) and Y «'(D4). Thus, by (2.16) and (2.17), it follows the
assertion of the lemma.
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Theorem 2.4, Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then, the distribution D®{E} is involutive if and only if we have

(2.18) WX, FY)=hFX,Y) for all X,Y =T(D).

Proof. From (1.21) we obtain MX, FY)=CMX, Y)-+I(QVyY, for all
X, YeT(D). Since % is a symmetrical morphism of vector bundles, it
follows WX, FY}—Ai(Y, FX)=FQ([X, Y]}. In this way, [X, Y] =T'(D®{t})
if and only if (2.18) is satisfied. Taking into account lemma 2.4, the
proof is complete.

Finally, we establish a result on totally umbilical semi-invariant
submanifolds. It is known that A is a totally umbilical submanifold if
its second fundamental form satisfies '

(2.19) WX, V)=g(X, Y)H

for all X, Y eD(TM), where H is the mean curvature vector of M. Then,
from (1.30} and (2.19), it follows

Theorem 2.5. Let M be a tolaly wmbilical semi-tnoariant submani-
fold of a Sasakian manifold M. Then, M is an invariant submanifold,

Corollary 2.2. There does not exist totally wmbilical proper semi-inva-
riant submanifolds of a Sasakian manifold.
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