|
|
|
Data şi locul naşterii
- 27 ianuarie 1955, Iaşi, România
Studii
- 1962 - 1974: Scoala elementară, gimnazială şi liceul la Liceul "C. Negruzzi" Iaşi;
- 1974 - 1975: Serviciul militar;
- 1975 - 1979: Facultatea de matematică (licenţa), Universitatea "Al.I. Cuza" Iaşi;
- 1979 - 1980: Anul V specializare: Ecuaţii funcţionale;
- 14.12.1991: Susţinerea tezei de docorat. Titlul tezei: Soluţii vâscoase
pentru ecuaţii Hamilton-Jacobi infinit dimensionale. Conducător ştiinţific: acad. Viorel Barbu.
Experienţa profesională
- 1980 - 1984: profesor de matematică, Liceul industrial nr. 8, CUG Iaşi;
- 1984 - 1991: matematician la Institutul de Matematică, Academia Română, Filiala Iaşi Iaşi;
- 1991 - 1993: cercetător, Instititul de Matematică, Academia Română, Filiala Iaşi
- 1993 - 1995: lector, Facultatea de Matematică, Universitatea "Al.I. Cuza" Iaşi
- 1995 - 2008: conferenţiar, Facultatea de Matematică, Universitatea "Al.I. Cuza" Iaşi
- 2008 - prezent: profesor, Facultatea de Matematică, Universitatea "Al.I. Cuza" Iaşi
Alte poziţii
- Profesor invitat, Department of Mathematics, University of Wyoming, USA,
Spring semesters of 2004 and 2005;
- Cercetător, Institutul de Matematică, Academia Română, Filiala Iaşi Iaşi; 2005 - present
Domenii de competenţă şi interes
- Studiul unor clase de ecuaţii integro-diferenţiale cu argument întârziat;,
- Studiul unor clase de ecuaţii Hamilton-Jacobi de ordinul I şi II;
- Studiul controlabilităţii ecuaţiilor din dinamica fluidelor
(ecuaţiile Navier-Stokes şi ecuaţiile magnetohidro-dinamicii).
Cărţi publicate
- T. Havârneanu, Ecuaţii integrale, Editura "Alexandru Myller", Iaşi, 2007 (ISBN: 978-973-
88565-0-9)
- T. Havârneanu, C. Popa, S.S. Sritharan, Controllability of Viscous Incompressible Fluid, Editura Springer,
New York, în curs de apariţie.
Articole publicate (selecţie)
- T. Havârneanu, Semigroups and differential equations with infinite delay, Nonlinear Analysis, T.M.A., 5 (7)
(1981), 737 - 756.
- T. Havârneanu, On the exponential stability of the solutions of a class of functional-differential equations
with delay, An. St. Univ. "Al.I. Cuza" Iasi, Sect. I-a Mat. (NS) 27 (2) (1981), 353 - 364.
- T. Havârneanu, Existence for the dynamic programming equation of control diffusion processes in Hilbert
spaces, Nonlinear Analysis, T.M.A., 9 (6) (1985), 619 - 629.
- T. Havârneanu, N. Luca, On a class of linear integral equations of Volterra - Fredholm type, An. St. Univ.
"Al.I. Cuza" Iasi, Sect. I-a Mat. 35 (1) (1989), 17 - 26.
- T. Havârneanu, An approximation scheme for the variational solutions with max-min Hamiltonians in Hilbert
spaces, Differential and Integral Equations 8 (4) (1995), 867 - 875.
- V. Barbu, T. Havârneanu, C. Popa, S.S. Sritharan, Exact controllability of the magnetohydrodynamic equa-
tions, Communications on Pure and Applied Mathematics, 56 (2003), 732 - 783.
- T. Havârneanu, C. Popa, S.S. Sritharan, Exact controllability for the three-dimensional Navier-Stokes equa-
tions with the Navier slip boundary conditions, Indiana University Mathematics Journal, 54 (5) (2005),
1303 - 1350.
- V. Barbu, T. Havârneanu, C. Popa, S.S. Sritharan, Local exact controllability for the magnetohydrodynamic
equations revisited, Advanced in Differential Equations, 10 (5) (2005), 481 - 504.
- T. Havârneanu, C. Popa, S.S. Sritharan, Exact internal controllability of the magnetohydrodynamic equations
in multi-connected domains, Advanced in Differential Equations, 11 (2006), 893 - 929.
- T. Havârneanu, C. Popa, S.S. Sritharan, Exact controllability for the two-dimensional Navier-Stokes equations
with the Navier slip boundary conditions, Systems and Control Letters, 55 (12) (2006), 1022 - 1028.
- T. Havârneanu, C. Popa, S.S. Sritharan, Exact internal controllability for the two-dimensional magnetohy-
drodynamic equations, SIAM Journal on Control and Optimization, 46 (5) (2007), 1802 - 1830.
- T. Havârneanu, A semigroup approach to a class of Hamilton - Jacobi equations with nonconvex Hamiltonians,
An. St. Univ. "Al.I. Cuza" Iasi, Sect. I-a Mat, 53 (2) (2007), 383 - 417.
- T. Havârneanu, N. Luca, On a class of abstract differential equations of neutral type with infinite delays,
in Differential Equations: Qualitative Theory (Szeged, 1984), Colloq. Math. Soc. "Janos Bolyai", 47,
North-Holland, Amsterdam-New York, 1987, 429 - 441.
- T. Havârneanu, An approximation scheme of the dynamic programming equation for a stochastic control
problem with infinite horizon, in Differential Equation and Control Theory, V. Barbu ed., Pitman Research
Notes in Mathematics 250, Longman Scientific & Technical, Harlow, 1991, 103 - 111 (ISBN 0-582-06691-3).
- T. Havârneanu, An approximation scheme for the variational solutions of Hamilton - Jacobi equations of
control theory, in Control of Partial Differential Equations, G. Da Prato and L. Tubaro, eds., Lecture Notes
in Pure and Applied mathematics, 165, Marcel Dekker, Inc., New York, 1994, 87 - 98 (ISBN 0-8247-9240-8).
|